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ABSTRACT 

Ong, Benjamin P. 2016. Using Remote Sensing for Quantity Analysis of Chip 

Pile Inventory in Mill Yards. 75pp. 

 

An integral part of proper wood chip inventory management is the ability 

to accurately monitor wood chip quantities. This thesis examines the use of a 

new method of capturing the volume of mill yard wood chip piles through the 

utilization of aerial drones. The drones are used to capture images and the 

images are converted into digital 3D models, which are then capable of 

measuring pile volume. This process allows for conversion of the volume into an 

accurate mass estimate by compensating for compression factors within the 

chip pile. These factors can change the volume by a maximum of 9.46%, but on 

average during simulations and real world applications, most piles exhibit a 

change in volume in the range of 1% to 6% difference. By performing the 

estimation procedure multiple times and averaging the results this method is 

able to generate a result that is more precise, timely and less labour intensive 

than the previous methods of using a ground survey to determine volume and 

applying a linear volume to mass conversion for the quantity of wood chips. The 

results suggest that this averaging technique can improve the standard 

deviation spread from over 5% variation in the measurement to less than 2%. 

This new method combines multiple techniques to improve both overall 

accuracy and precision. Each stage of the new method was examined to 
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determine the accumulated degree of error. This included looking at operator 

error of about 2.4%, considering the precision of 3D volume capture, which adds 

on average of 5% to 10% error, understanding the variation in bulk density due 

to pile shape, and size, which adds 1% to 6% error, using different 3D software 

modeling for measuring pile volume, which adds about 4% error. Combined 

together in extreme cases, these errors can skew the results by over 20%. The 

results of this examination provides research-based recommendations as to 

how to collect the images, generate the models, and process the data for mass 

estimation and improve error reduction at all stages.  

 

Keywords: 3D model capture, bulk density, compression forces, error reduction,  

mass estimation, mill yard inventory, UAV imagery, volume loss, wood-chip pile. 
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INTRODUCTION 

Inventory management is crucial to the smooth and efficient operation of 

the manufacturing process in any industry. For the pulp and paper industry, it 

has become a recognized fact that the inaccuracies in determining the quantity 

of wood chips in their yard piles can cause significant financial challenges. 

These inaccuracies are a result of differences between the mass of the chips 

delivered by trucks to the mill, surveyed quantities of the chip pile inventory in 

the mill yards, and estimated mass of chips consumed during the operations of 

the boilers. In total, these discrepancies can add up to millions of dollars of 

unaccountable wood chips each year at each mill. The current sources of mass 

estimation are visual scale estimation, truckload logistics, and ground surveys of 

the wood chip piles. The discrepancies that are found between the three 

methods are the reason that is driving this study of wood chip mass estimation 

using remote sensing imagery. The general desire voiced by many mills was to 

have a simple and accurate method of chip inventory estimation that can be 

implemented regularly. In addition, the new method developed would also be 

more cost effective to allow for an increase in the frequency of these 

inventories, as well as increased safety of the survey crews performing the 

surveys. This was to be accomplished without interfering with daily mill 

operations while still improving the accuracy and precision of their estimates to 

generate consistent and reliable results. 
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OBJECTIVE OF THE STUDY 

 

This thesis will develop a method of using remote sensing drones to 

capture 3D volume models of chip piles. Then by applying a conversion formula, 

that incorporates varying bulk density values, moisture content, and 

compression factors, to estimate the mass of the wood fibre of chip piles from 

the 3D model. In addition, this thesis will also examine the accuracy and 

precision of such a method, and attempt to improve on accuracies currently 

obtained by present mill estimation methods. 

A SYNOPSIS OF THE STAGES IN THIS STUDY 

 

This study uses aerial photography from unmanned aerial vehicles 

(UAVs), commonly known as drones to survey chip piles. This method’s 

relevance increased due to the easy accessibility and lowering cost of UAVs 

and digital camera technology. Using drones and digital technology also allows 

for automation of a previously manual system thereby improving both the 

precision and accuracy of the mass estimations while reducing the cost of each 

survey. More importantly, there is a minimization in the risk to the survey crews, 

and maximization in the time reduction of the intensive methods previously 

employed to complete an inventory estimate. UAVs capture multi-view stereo 

images of the wood chip piles, which are then converted into three-dimensional 

(3D) digital representations of the piles using specific image analysis software. 
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Once in the 3D form, the volume of the pile is measured from the computer 

model and, through the application of calibrated formulas, the pile’s value is 

converted into an accurate and reliable mass estimate.  

 

This methodology can be simplified into five stages. The first stage is to 

capture imagery of the pile. In the second stage, software changes the imagery 

into a 3D digital model of the pile. The model is then measured for total volume, 

in the third stage, which is modified, in the fourth stage, based on compression 

factors of the shape and size of the pile. Finally, the fifth stage converts the 

compensated volume to a mass estimate using a specialized formula. 

 

While specific models of UAVs and software packages, listed in this 

research and are capable of generating the 3D models desired for volume 

measurements, they are not the only ones capable of capturing and producing 

the necessary data. There are different models of UAVs, cameras, and 3D 

modeling software capable of generating similar results. The ultimate choice of 

which combination of equipment and software works best for the end-user 

should be based on specific project needs and budget limitations. For the 

purposes of this thesis, the focus of the research was to accomplish the survey 

process, to create the digital 3D image, and to understand when and where 

methods to improve accuracy and precision may be deployed to produce the 

best mass estimates. 
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The first stage of this analytical technique involves the use of UAVs, or 

drones, to acquire the aerial imagery used to generate the computer model. 

Capturing the imagery is performed using UAVs with on-board cameras. The 

two UAVs used for this analysis were the DJI Phantom 2 and the DJI Inspire. 

These drones are agile, highly responsive, capable of multiple types of flight 

modes, and come with built-in cameras. The camera is mounted to the drone 

with a 3-axis gimbal, ensuring the camera remains level in all flight conditions 

and the camera has a 94° field of view, which minimizes distortion. The UAV is 

flown over the wood chip pile and its surrounding area in a grid pattern. While 

the UAV is in flight, the on board camera automatically takes images of the 

ground in one of two ways. The first method is to have the camera triggered to 

take images at regular intervals and the second is to have the camera capture 

the whole flight in a video format where individual frames can be extracted back 

in the lab for processing.  

 

In the second stage, the still images produced from the UAV’s flight are 

analysed by 3D modeling software such as PhotoModeler-Scanner, AgiSoft’s 

PhotoScan, or Pix4D-Mapper to create an accurate 3D digital model of the 

wood chip pile.  

 

The third stage translates the 3D digital model into a volume 

measurement of the wood chip piles. The volume calculation, based on the 3D 
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digital model, is integral to the next step in the process: a step that varies greatly 

from current industry methods.  

 

Once the third stage has successfully calculated the volume of the pile 

from the 3D images, the fourth stage converts the volume measurement into an 

accurate mass estimate. It is at this stage that the study varies from current 

methods of mass estimation. Once the height, shape, and size of each pile are 

determined, a formula is required to convert the volume to a mass estimate. 

Based upon discussions with mill supervisors, the formulas currently in use by 

industry are modified versions of a physics density formula that calculates mass 

from knowing volume and bulk density. These conversion formulas are usually 

historical averages incorporated into a density conversion formula. They are 

proprietary formulas developed by the mills, and are usually not in any 

academic publications. In this thesis, these mill conversion formulas will be 

grouped together using the term, Basic Linear Conversion (BLC) formulas. This 

is a term created by the author for ease of referencing and discussion. In a BLC 

method, the mass is estimated using a correlation between the volume of the 

chip pile and a single bulk density measurement of the wood chips. Depending 

on the company, the formula is usually modified by correction factors that are 

historically averaged calibrated variables. These correction factors came into 

being, through the mills’ trial and error and pile calibration tests over many years 

of operation. Therefore, mills tend to keep these details as closely guarded 

secrets. This thesis develops a conversion formula that is accurate and 
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independent of the mill formulas and historical data developed by industry over 

the years. 

 

Stage four, applies the assumption that bulk density is not a fixed value 

within a chip pile, and therefore a single standard bulk density cannot be applied 

as an averaged value for all variations of pile shapes and sizes. This is because 

wood chips at the bottom of the pile are under greater compression forces than 

those chips at or near the surface of the pile. Being under greater pressures 

causes the wood chips to have smaller void spaces between chips, resulting in 

smaller overall volumes, and, by direct correlation, higher bulk densities. 

Therefore, depending on the shape and size of a pile there will be different 

percentages of wood chips that are under high and low compressive forces, and 

a single averaged bulk density cannot account for all variations. Mapping and 

compensating for this varying bulk density in the chip pile allows for higher 

accuracy in mass prediction than using a single standard bulk density value for 

the conversion. Henceforth within this thesis, this estimation methodology using 

the variation in bulk density is referred to as the Compression Compensated 

Conversion (CCC) method. The CCC method is accomplished by the division of 

a chip pile into various smaller units of wood chips, which will be referred to as 

‘cells’ of wood chips. This division will make it possible to determine the amount 

of volume loss due to compression on each cell. The volume loss due to 

compression is based on the amount of load from the column of wood chips 

above each cell. This means that even if two cells have identical volumes, the 
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cell that is subjected to greater compressive forces will contain a greater mass 

of wood fibre, as that cell will have a slightly higher bulk density than the other 

cells.  

 

The fifth stage takes the compensation factor calculated in stage four and 

produces a mass estimate of the wood fibre available in the surveyed chip pile. 

This last stage is similar to the BLC method of mass estimation but it includes 

the compensation factor estimated by the CCC method. Overall, this 

compensation will improve estimates and reduce the differences between actual 

quantities of wood chips and inventory mass estimates of the chip piles in mill 

yards. 

 

The industry is always interested in improving the accuracy of mass 

estimations, as errors in their chip inventory can add up to millions of dollars in 

discrepancies. In more extreme cases, these variations in estimates may lead to 

inefficient management practices for maintaining mill yard inventory, while 

regarded as necessary steps employed to overcome these discrepancies. For 

example, a mill may decide to maintain a larger stockpile to accommodate for 

the uncertainty in inventory quantities. The focus of this thesis explores the 

development of a practical application of the hypothesised CCC method in mill 

yards, while also identifying other possible areas of error that can further 

improve the accuracy of wood chip inventory in mill yards.  
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LITERATURE REVIEW 

VOLUME CAPTURE USING STEREO IMAGERY ANALYSIS SOFTWARE 

 

Walford (2009) describes a new technique capable of remotely capturing 

highly accurate 3D shapes of large outdoor features. By acquiring multi-view 

stereo imagery of the feature, it is possible to capture the shape and generate a 

3D point cloud model in a computer. In the report, there is an example of a large 

gravel pile, complete with width, length, and height, captured in a 3D computer 

model using aerial photography (Walford 2009). This method can easily be 

applied to capturing the shape of a wood chip pile in a computer 3D model. 

These 3D point clouds generated can have accuracies that are comparable to 

point clouds generated by LiDAR systems (Strecha, et al. 2008), and are easier 

to acquire especially for reproducing larger outdoor features. Another report 

produced by EOS Systems Inc. (2012) suggests that their proprietary software 

PhotoModeler Scanner is not only capable of generating point clouds from multi-

view stereo imagery, but the models generated can be as accurate as 1:44,000 

when imagery is captured with an artificial planar scene where all parameters of 

the camera are known. More commonly, this ratio drops to about 1:9,000 in 

smart mode, which automatically analyses the images and allows the software 

to estimate all the details of camera parameters, position, and angles. In most 

cases, the point cloud generated has an error of ±0.9mm at a 3.5-meter range 

from the object (EOS Systems Inc. 2012). It is due to this degree of accuracy 
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that this software is chosen for this study. The primary issue with this method of 

surface capture is the large point clouds generated to maintain a high degree of 

accuracy. These large data sets require a powerful computer to handle the 

analysis without resorting to excessive processing times. Researchers studying 

this issue have looked at algorithms, which can process these large quantities of 

data to reconstruct the surface without heavy memory use or long computer 

processing times (Hudson 2003). While these algorithms can optimize the data 

analysis, these techniques cannot be manually incorporated into existing 

software such as PhotoModeler Scanner. They use their own algorithms, but 

one can hope that regular updates by the company are incorporating new 

optimization techniques into their code. As an additional note, this technique of 

generating point clouds of large outdoor piles of biomass is already being 

studied by other researchers. A study by Trofymow, et al. (2014) looked at using 

remote sensing to capture volumes of burn piles in harvest operations. They 

have reported an improvement in estimations using remote sensing techniques 

compared to ground measurement methods, but they also stated there is room 

for improvement. 

GLOBAL POSITIONAL SYSTEM (GPS) LOCATION CAPTURE ACCURACY 

 

The capability to capture the features of a chip pile into a computer model 

is moot if the model does not match the real life chip pile. Therefore, it is 

necessary to review possible accuracy issues that may factor into this method of 
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volume capture. The techniques most commonly used in remote sensing 

systems are reliant on commercially available GPS units to determine the 

location and scale of the chip pile. If the scale of the model and image 

coordinates captured by the drone are being mapped using a commercial, on 

board GPS unit then coordinate accuracy is critical to determining the size of the 

error a GPS unit may impart to the chip mass estimates. For years, GPS units 

have been employed to record location of objects, and several studies have 

looked into the reliability and accuracy of these units to capture coordinates and 

trajectories. It is widely accepted that commercial GPS units can acquire 

stationary accuracies to within ten to fifteen meters and with additional systems 

enabled such as WAAS, it can improve accuracy down to a range of three to 

five meters. These positional accuracies were collected using averaged 

readings over a period of 30-minute intervals (Arnold and Zandbergen 2011). In 

another study, GPS accuracy was measured on a cyclist in motion. It was 

discovered that a GPS unit can achieve a mean absolute deviation of straight-

line trajectories of 0.78 meters for non-WAAS units, and that deviation improves 

to 0.11 meters for WAAS enabled GPS units (Witte and Wilson, 2005). The 

same research team also discovered that while manufacturers claim their GPS 

units are accurate to velocities of 0.1 or 0.2 m/s actual measurements suggest 

that less than half of the velocity data meets that accuracy. Actual 

measurements found that only 45% of the time is the speed accurate to within 

0.2 m/s. If the error range is relaxed to 0.4 m/s, it will include an additional 19% 

of the velocity data recorded. They go on to discover that error in velocity data 
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increases as the path changes from linear to circular due to a tendency to 

underestimate the travel speeds (Witte and Wilson, 2004). In another study, it 

was shown that GPS accuracy could change due to surrounding cover. 

Accuracy can change from an average of five meters from true position in an 

open sky setting, to ten meters under a closed canopy forest (Wing et al. 2005). 

What all these studies suggest is that the precision of GPS units vary from day-

to-day depending on satellite visibility, obstacles that interfere with GPS signals 

and whether the GPS unit is in motion. This information suggests that while 

coordinates of GPS units can be very accurate, the precision can be 

compromised depending on conditions at that location when that coordinate is 

collected. It raises a concern for the accuracy of the scales created using GPS 

units, since the GPS coordinates are obtained while the image capture drone is 

in motion. In addition, there can also be interference due to buildings and silos 

in mill yards, which can block or bounce GPS signals. The smallest positional 

error in most cases still generates at least ten centimeters of uncertainty from 

any commercial GPS unit. Hence, care needs to be taken to minimize or 

eliminate these errors from affecting the final mass estimate of the chip pile.  

COMPRESSION FORCE DISTRIBUTION IN PILES OF PARTICLES 

 

Once volume of the chip pile is measured, there is a need to compensate 

for the compressive forces affecting the chip pile due to its shape and size. To 

be able to map these forces, it is important to understand how forces are 
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distributed throughout a chip pile. In physics research there have been studies 

examining and modeling the force transfers between particles in a pile. In most 

cases, the models predict the forces travel downwards with a bit of sideways 

deflection of forces in the outer layers of these piles. Based on these models, it 

is possible to predict and model the magnitude of the forces at any location in a 

pile (Oron and Herrmann 1998). This understanding does not mean that all piles 

will behave similarly. There is evidence that certain piles will exhibit non-

uniformly distributed forces. Some piles seem to present a reduction in the 

downward force directly below the highest portion of the pile where it is 

expected to be the highest due to the amount of material in that area. While this 

phenomenon has been noted by several physicists, the reason for this dip in 

force under the peak is not well understood. Different studies have found variant 

conditions where such a dip in force is detected. One team found the condition 

occurred when the conical pile consisted of small particles like sand or very 

small glass beads, and as the particles got larger, the dip effect disappears 

(Brockbank and Huntley 1997). Another team noticed the reduction in the 

normal forces under the peak occurred when different sized particles in a pile 

were deposit into different conical layers. However, they noted that piles with 

different particle sizes that are not separated into distinct layers, but have the 

particles of different sizes randomly distributed in the pile would not generate a 

dip in the downward force under the peak (Liffman, et al. 2001). Considering 

that a wood chip pile is not composed of primarily small grain like particles, and 

the chips are not sorted in layers based on particle sizes, this phenomenon will 
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not be a consideration. It may apply to other studies when the pile consists of 

other biomaterials such as sawdust, which has smaller particles, but for the 

profile of sizes found in wood chip piles, the reduction of the normal force under 

the peak is not an issue. So the normal downward distribution of the forces can 

be used to model the forces in a chip pile. 

LOSS OF WOOD FIBRE DURING STORAGE IN MILL YARDS 

 

Another issue to consider when determining accuracy for mass 

estimation is the deterioration of wood chips that can alter the conversion ratio 

from volume to mass in a wood chip pile. Scientists initially studied this concern 

over 50 years ago. One study showed that deterioration occurs mostly in the 

outer layers of the chip piles, which had higher moisture content than the inner 

layers (Lindgren and Eslyn 1961). Of the different species studied softwoods 

like pine were revealed to deteriorate less vigorously as chips compared to 

when the pine is in rough pulpwood form. The primary concern of chip 

deterioration is micro fungi, which produces soft-rot in chip piles. This decay 

reduces the density of the pulpwood. While the rate of decay is not linear, it can 

be roughly estimated as about 1% to 2% loss per month during the warmer 

months of the year, and over a full year, the loss can be approximately 11% to 

15% of its specific gravity (Lindgren and Eslyn 1961). The aforementioned 

research supports the premise that compensation of all the issues of wood chip 

deterioration can be monitored and compensated by the bulk density values of 
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the wood chips. Therefore, it is not required to calculate and compensate for this 

aspect directly. 

ECONOMIC IMPACTS OF INVENTORY MANAGEMENT IN MILL YARDS 

 

The focus of this study is to improve the accuracy of managing the wood 

chip inventory in mill yards. Supervisors at various mills suggest there can be 

discrepancies of about 10% between the different methods of estimating the 

mass of wood chips in mill yards. To see how much of an influence this 

discrepancy can affect the industry, a study that documented a paper mill’s 

finances was used to put these discrepancies into perspective. Based on a case 

study about application of environmental management accounting at a 

Canadian paper mill, certain values and facts can be extracted. It disclosed that 

a mill’s yearly wood chip supply could account for about 44.7% of a mill’s yearly 

variable cost. This percentage can be in the range of $20.7 million dollars (Gale 

2006), which would mean a 10% variation in inventory could result in millions of 

dollars of which the financial department cannot accurately account. Since this 

variation in inventory changes depending if the mill had a small, medium, or 

large wood chip storage piles, it makes it difficult to control or compensate for 

these inaccuracies of inventory. Hence, minimizing these discrepancies is a 

critical issue to be addressed by the industry.   

 

  



15 
 

METHODOLOGY 

As stated in the introduction, the ability to estimate the mass of the wood 

fibre requires multiple stages. These stages can be broken down to collecting 

multiple images of the pile, converting the images to a 3D model, segmenting 

the model into smaller cells of wood chips. Once the model is segmented into 

smaller cells, the CCC method can be applied. The CCC method determines a 

percentage to increase the volume of each cell to compensate for compression 

forces, and applies the bulk density to the modified volume to get the estimated 

mass of the wood chips in the pile. It was determined that to understand the 

factors which may affect the CCC method and its accuracy, data needed to be 

collected about volume measurement error, mass estimation error, 3D software 

modeling error, and technician error. All this would lead to the comparison of the 

CCC method with existing industry mass estimations to see what affects the 

new conversion method will bring to the accuracy of mass estimations in the mill 

yards. 

PHASE I (DEVELOPMENT OF THE COMPRESSION CURVE) 

 

In phase I, experiments were developed to explore the speed and 

magnitude at which wood chips compress, and decompress depending on the 

compression pressures applied to the wood chips. This exploration was 

accomplished in three parts to identify three factors of volume changes. The 
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three factors are initial compression, sustained compression, and 

decompression behaviour on the volume of wood chips. Initial compression 

measures the volume change immediately after force is applied to a wood chip 

pile. Sustained compression measures volume changes after a mass has been 

loaded on the chip pile and it has been given time to settle. This settling allows 

chips to shift over time and reduces the void spaces between chips to a 

minimum under sustained load forces. The third part looked at decompression 

of the wood chips after a sustained load is removed from the pile, and the chips 

have time to decompress from the removal of the compressive force. All three 

parts were measured using the same experiment parameters. These 

parameters consisted of a system of compressing and decompressing wood 

chips in a barrel by applying heavy barbell plates onto the wood chips and 

recording changes of volume over time. The weights or load plates used to 

generate a compressive force are the same as barbell plates used by weight 

lifters at the gym. 

 

Figure 1 below shows the experiment setup. A hard plastic 44-imperial 

gallon drum is loosely filled with varying volumes of wood chips. Next, a levelling 

plate with a mass of about 4 kg is used as a cap at the top of the wood chips to 

ensure it is level, and to ensure even distribution of force over the whole top of 

the wood chips when the weights are loaded into place. Each load plate has 

been premeasured and the exact mass is determined and labeled on each 

plate. The volume of wood chips is measured by calculating the distance 
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between the levelling plate and the lip of the barrel in the four cardinal 

directions. This ensures the plate is level, and, in conjunction with the known 

dimensions of the barrel, it gives enough information to calculate the volume of 

the uncompressed wood chips loaded into the barrel. An initial measure of 

distance from the center mark on the levelling plate to the bottom edge of the 

measurement bar placed over all the barrels is taken to define the initial 

condition. Next, a predetermined mass is placed on the levelling plate and the 

distance to the measurement bar is immediately noted. Then, without increasing 

the load, the distance is measured over the day at intervals of one minute, five 

minutes, fifteen minutes, thirty minutes, one hour, two hours, eight hours and 

twenty-four hours. After a day under a compression load, the load plates are 

removed and the displacement distance from the levelling plate to the 

measurement bar is, once again, measured at one, five, ten, fifteen, twenty, 

thirty, forty-five, and sixty minutes. This second series of measurements are 

recorded to determine the decompression rate of wood chips after a 

compressive load is removed. The entire procedure is repeated using different 

volumes of wood chips, different compression load masses, and each 

configuration setup is replicated in three barrels to confirm no other variables 

are affecting the results. These values are then used to generate time 

compression and decompression curves. Results from these curves are used to 

determine some of the parameters in the next stage of the experiment. 
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To develop the maximum compression curve, the same equipment 

configuration as used in the previous stage is used, but this time only a single 

measurement is taken per compression load. The distance is measured at the 

eight-minute interval, followed by increasing the compression load and taking 

another reading after the next eight-minute interval. This process continued until 

the compression distance stops changing regardless of the increase in load 

mass placed onto the levelling plate. This methodology is used to determine the 

max compression achievable for that specific volume of wood chips. The point 

of this was to develop a curve that can predict the volume loss when a certain 

amount of compression force is placed on the wood chips. As with the previous 

Figure 1: Three 44-imperial gallon barrels used for compression and decompression testing. 
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stage, this was repeated with different volumes of wood chips and each 

configuration was replicated in the three barrels. Once the compression curve 

was developed, it was possible to convert volumes to masses that were 

dependant on the compressive loads applied to the wood chips. 

 PHASE II (PROOF OF CONCEPT ON A SMALL SCALE) 

 

Phase II was performed on a small pile of wood chips. The wood chips 

were measured in a one-cubic-meter High-Density Polyethylene (HDPE) liquid 

container, which was then lifted by an automobile engine hoist onto an industrial 

floor scale to determine its mass, as seen in Figure 2. The amount of chips is 

shown in Figure 3. The wood chips filled the container 100.8 times giving the 

pile a loose volume of 100.8 cubic meters and each time it was filled it was 

weighed, which had the combined total of 30,820 kg. In addition, the wood chips 

were processed using standard moisture content tests and sorted using a wood 

chip screener to determine chip size distribution. This information was recorded 

for control purposes and for comparison with mass estimates in the later 

phases. 
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Once the total mass and volume of the wood chips were determined, all 

the chips were manipulated into a cone like pile roughly 3.4 m tall, as shown in 

Figure 3. The chips were left alone for two days to settle and stabilize before 

any attempt to capture its shape and volume was made. The capturing of the 

shape and volume was accomplished using a digital camera and a tripod. Each 

set of pictures consisted of approximately 75 digital images, which were taken 

from all angles around the chip pile at a distance of 5 meters from the closest 

bottom edge of the pile, and at 1.6 m above ground level. This process is 

Figure 2: One cubic meter container used for measuring the wood chips on a 
small scale pile. 
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described in detail later in this section. As the process took place in a large 

warehouse with artificial lightning of equal intensity at regular intervals, it 

ensured the photos around the pile had a uniform light exposure. Each set of 

photos consisted of a full 360° view of the chip pile and each photo was spaced 

evenly around the chip pile. Multiple sets of photos of the same chip pile were 

taken following the same procedure used for the first set of images. In total 15 

sets of images were captured of the cone shaped pile. 

  

The next stage of this phase involved reshaping the pile from its previous 

cone shape to a more flattened shape that was no higher than 1 meter at any 

point of the pile as seen in Figure 4. The conical pile was flattened by a 

bulldozer scooping the chips off the top of the pile and unloading it around sides 

of the chip pile. This new pile was allowed to decompress and equalize for two 

days. After the decompression, the flattened pile was photographed in the same 

fashion as that of the cone shaped pile. Images were captured approximately 5 

Figure 3: Small-scale wood chip pile shaped into a conical shape. 
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meters away from the closest bottom edge of the pile and these sets required 

100 equally spaced images to capture the 360° view of the pile due to the 

increased base diameter of the pile. Due to issues noticed in the 3D surface 

generation from the cone shaped pile, 18 sets of images were collected of the 

flattened pile, in order to replace any sets that generated poorly captured 3D 

surfaces with the reserve sets already collected on the same day. 

 

Regardless of the pile shape, conical or flattened, each set of images 

was processed using the analysis software called PhotoModeler-Scanner. This 

software takes all of the images and calculates the location and angle of each 

photo based on different stereo pair images. This process can be seen in Figure 

5, where the camera positions are defined by the blue boxes and the direction of 

the lens is indicated by the green cylinders. After determining the position of the 

camera for each photo, it looks at each image and using the different angles of 

the camera it can triangulate the X, Y, Z position of the pixels or patterns it finds 

Figure 4: Small-scale pile reshaped into a flattened pile. 
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in common between photos. When enough of these pixel positions are 

determined, it connects them to form a surface of the object in the virtual 3D 

computer model. Next, this model can be scaled properly using known control 

points and distances so that the size of the model can be determined. In Figure 

5, the line across the pile is a measured control distance introduced for scale 

purposes. This generates a 3D model of the chip pile that can be manipulated 

and the volumes can be estimated with a high degree of accuracy.  

 

This process was repeated for each image set captured for both the 

conical and flattened piles. The best 10 sets of the conical and the flattened 

piles were used to calculate the volumes of the chip pile. Models with voids in 

the surfaces were not used, as the void areas required the software to make an 

estimation of the missing surface areas, which may be incorrect hence, the 

Figure 5: 3D model of the chip pile showing the location of all the camera locations. 
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collection of more than 10 sets per pile shape. Figure 6, shows an example of 

both the conical and the flattened pile converted into 3D computer models. 

 

To estimate the mass of the wood chips, the shape of the pile is 

segmented into multiple layer slices. Each layer is compensated for volume loss 

due to compression from the mass of the chips piled above that layer. This is 

determined based on the compression curve developed in phase I. All the 

compensated volumes are then summed up to generate a new uncompressed 

total volume and when multiplied by the bulk density gives an estimated mass of 

the pile. All these calculations were performed in an excel spreadsheet. These 

estimated masses are then compared to the manually measured total mass of 

Figure 6: Transition from photo image to 3D model on the computer for both conical and flattened piles. 
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the chip pile. The accuracy of this method is determined through a comparison 

to the measured mass of the whole pile.  

PHASE III (MEDIUM SCALE ANALYSIS)  

 

After developing the method to estimate the mass of wood fibre 

accurately from chip pile imagery, it was important to field test at mill sites. The 

first test site was at a mill located in Longlac, Ontario. This chip pile at this site 

was tested using the method developed in the small scale warehouse testing. 

Figure 7 displays an aerial view of the chip pile in Longlac. The first step was to 

take radial positioned photographs around the chip pile. This pile required over 

200 images to cover the whole pile radially, standing about 10 to 20 meters from 

the base of the pile. To test an additional method, an aerial video was taken of 

the whole pile using a DJI Phantom 2 drone. By extracting frames from this 

video, it was possible to create a second set of imagery comprised of roughly 

140 images of the chip pile using a top down view. For these sets, both radial 

and aerial images were processed as described in Phase II using the 

PhotoModeler-Scanner software to generate a 3D model of the chip pile. Based 

on the results from this test, it was determined aerial photography required 

fewer images to generate a cleaner model that did not contain voids.  
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To test if it was possible to improve accuracy without having to fly 

multiple missions over the same pile, the 140 images were randomly sorted out 

into multiple sets. By randomly selecting roughly 100 images evenly distributed 

from the full set of 140 images, it was possible to create multiple image sets. 

This technique was used to generate multiple 3D models of the pile with the 

primary objective to test volume measurement accuracy. For example set one 

may include images 1,3,4,7,8…138, set two may include images 2,3,5,8,9…140 

and set three may include 2,3,6,7,9…139 etc. The images have a high 

percentage of overlap between images. This overlap ensures that eliminating 

some of the images from the full set will still leave a subset of images that has 

full coverage of the entire chip pile. This method of generating subsets from one 

UAV flight will be explained in detail in the error portion of the discussion section 

of this thesis.  

Figure 7: Aerial view of the chip pile at the mill in Longlac taken using a Phantom II - DJI drone. 
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Based on the results at Longlac, an arrangement with a mill in Thunder 

Bay permitted the survey of three chip piles for five consecutive days. See 

Figure 8 for a sample overhead view of the chip piles at the Thunder Bay mill. 

Comparing the estimated results with the mass values provided by the mill 

themselves allowed the test of the CCC method on a larger scale. The three 

piles of wood chips changed volumes on a daily basis throughout the week, and 

comparison of mill and CCC mass estimates on a daily basis allowed accuracy 

analysis of the new method. Each day at a known time, an aerial survey was 

taken of the chip piles. By knowing the exact time the aerial photos were taken it 

was possible to determine the quantity of wood chips on the pile by calculating 

which truck loads were already delivered to the chip pad at the time of the 

survey. Using the techniques developed over the previous phases, each pile on 

each day is calculated by averaging three sets of images. These values were 

then compared to the values supplied by the mill to check for accuracy. The 

conversion used the compression curves developed in phase I, and the bulk 

density used in the formula followed ASTM standards for measuring bulk 

density (ASTM International 2016). It was not feasible to generate a bulk density 

as in phase II where the whole pile was measured for its mass and 

uncompressed volume.  
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Figure 8: Overhead Drone Photo of the chip pile in Thunder Bay. 
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PHASE IV (ERROR ANALYSIS AND LARGE SCALE PREDICTIONS) 

 

At the end of Phase III, it was noticed that the system was accurate but 

there were still some error discrepancies compared to figures delivered by the 

mill. To improve the accuracy phase IV analysed where the errors were being 

generated and looked at how to reduce these errors.  

 

In phase II, it was noticed that by averaging multiple sets of images it was 

possible to improve the precision of the estimations. To examine the benefits of 

adding this step into the process, a 10,000 iteration Monte Carlo simulation was 

applied to analyse both conical and flattened shaped piles from phase II. The 

simulation utilized the normal distribution curve of the values from the ten 

estimated mass calculations to generate new estimates. For each shaped pile, 

three cases were generated. Case 1 simulated 10,000 estimates without the 

use of averaging. Case 2 simulated 10,000 estimates using an average of five 

image sets for each mass calculation. Case 3 simulated 10,000 estimates using 

an average of ten image sets for each mass calculation. The three cases were 

generated for both the conical and the flattened piles and then the basic 

statistics of each case was reviewed to determine the effectiveness of applying 

the averaging method into the mass estimation. 

 

Part of the error was determined to come from technician or operator 

accuracy. When the imagery is processed by PhotoModeler-Scanner, the 
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control points that define the scale have a source of human input error, which is 

introduced into the scale of the model. These control points will shift slightly 

depending on where the technician identifies the control points are in the 

images. To examine this error, multiple processing runs of the same image set 

were performed. Each run required the technician to identify the control points 

as they normally would. With all other variables the same, the results from all 

the runs were analysed to see what percentage of the final error is attributed to 

the technician due to the need to identify control points in the images. It was 

possible to attribute the error to the technician since the image set and the 

software used were the same every time. The only place an error can be 

introduced is by the operator identifying the location of the control points. 

 

Another part in the process where error could occur is from the choice of 

software used to generate the 3D models. Different software uses different 

algorithms to estimate the location of the surfaces. So to see how much this 

contributes to the total error, the same image sets were processed using two 

different software packages. In phase III, the image sets used for estimating 

chip piles at the mill were processed through AgiSoft’s PhotoScan and 

PhotoModeler-Scanner. The volume results from both software packages were 

compared with each other and the differences were analysed to determine the 

portion of the error that is contributed by the software algorithms. 
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Finally, it was necessary to examine how volume to mass conversions 

can vary depending on the scale of the chip pile. The same 3D model was 

processed through the CCC method and a simplified mill conversion formula. 

This was repeated when the pile had its xyz dimensions increased by three 

times, and it was repeated again with the xyz dimensions increased by ten times 

the original size. The differences between methods were compared to see if the 

scale altered the magnitude of difference between the two methods.  
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RESULTS 

COMPRESSION, DECOMPRESSION, AND TIME COMPRESSION CURVES 

 

In Phase I of this project, the physical characteristics of the supplied 

wood chips were analysed to gather the behaviour of the chips under physical 

pressures. The first experiment was designed to examine how the volume 

changes over time as a force is applied on a volume of wood chips. The results 

are shown in Figure 9 were based on various static loads that were applied to 

the chip piles. Each time a load was applied, the effects were monitored for over 

24 hours, but only the first 3 hours is graphed, because after 3 hours all the 

piles had reached a steady state. The y-axis displays the amount of volume 

loss, based on a scale where 0% is an uncompressed pile and 100% is a pile 

that has reached maximum compression for the load placed on the chips. 

Notice that at least 60% of the volume loss happens at time zero, and in some 

cases, the pile reaches 100% volume loss immediately after applying the load. 

In most cases, the compression has passed the 90% mark by the one-hour 

interval. 
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The next physical response to be examined was how the chips 

decompressed after the load was removed from the pile. The results for this 

portion of the experiment are not as definitive as the time compression graph. 

The data points are scattered between the maximum and minimum boundaries 

(Figure 10). The chip piles immediately recover a third of the compressed 

volume loss and will eventually recover as much as 57% of the original volume 

loss after 30 minutes. The piles were left for at least 24 hours to see if they 

would decompress further, but no further decompression occurred after the 30-

minute interval without physically shaking the barrel and manually stirring and 

loosening the wood chips. If the chips are manually decompressed, it will return 

to the original state with 100% volume loss recovered. Overall, the 

decompression is not consistent, as barrels of chips seem to recover a random 
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Figure 9: Graph showing the percentage of volume loss due to static compression applied over time. 
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amount of lost volume limited between the boundaries (see Figure 10). The 

reason one pile would recover a third and another pile would recover half the 

original lost volume during decompression is not clear, however some 

suggestions will be made in the discussion. 

 

The next experiment looked at the percentage of volume loss based on 

the pressure applied to the top of the chip pile. Multiple runs with various loads 

and volumes were processed and all plotted on the same graph shown in Figure 

11. Every run appeared to follow a similar curve, and when plotted together it 

was possible to generate a trend line that predicts the change of volume based 

on applied surface pressure with a R2 value of 0.96 (see Figure 11).  
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The trend line formula is listed below as Equation 1. It is used to predict 

the volume loss (V), when the pressure (P) is entered into the equation. The 

equation of the trend line is actually a parabola and will eventually curve back 

down at around 1977.3 kg/m2. Since the volume will never start to decompress 

while increasing the applied pressures past the limit of the curve, the second 
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Figure 11: Chart showing the volume loss due to pressure applied on to the wood chips. 



36 
 

half of the trend line is converted to a flat line, indicating the maximum 

compression has been reached. This asymptotical curve matches the individual 

compression curves seen in each individual repetition of this experiment. To 

determine this limit, the derivative of Equation 1 is taken and V’ is set to zero to 

determine the pressure at maximum compression. This is shown as Equation 2. 

It is determined that 1977.3 kg/m2 is the minimum pressure to achieve 

maximum compression, and when this pressure is substituted back into 

Equation 1, the maximum compression for these chips is determined to be at 

9.46% volume loss. 

 

V = (-2.42 x 10-8) P2 + (9.57x10-5) P    Equation 1 

V’ = (-4.84 x 10-8) P + (9.57x10-5)    Equation 2 

SMALL SCALE CHIP PILE VOLUMETRIC AND MASS ESTIMATIONS 

 

To have an accurate value to judge the accuracy of the estimates 

generated by the different methods, the chip pile had to be measured manually. 

The chip pile was measured one container load at a time and was filled 101 

times with the last load being only 80% full. This generated the measure volume 

of 100.8 m3 with an error of ±1.01 m3. The masses summed up to 30,820 kg 

with an accumulated error of ±5.02 kg as the certified industrial scale used has 

an accuracy of ±0.5 kg. Combining these two values generates a loose bulk 

density of about 305.8 kg/m3. It should be noted that this bulk density value is a 

calculated loose bulk density. After phase II, all bulk densities were determined 
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using an ASTM standard bulk density measurement, which is a more precise 

bulk density value than a loose bulk density calculation. The full reason will be 

explained later in the discussion section. 

 

During phase II, the volume of the pile was calculated using 

PhotoModeler-Scanner and subsequently converted to the mass of the wood 

chips using the following conversion formulas.   

 

M = V x D      {BLC Method} Equation 3 

M = (1+C) x V x D    {CCC Method} Equation 4 

 

The BLC method listed above as Equation 3, provides an estimated 

mass using the volume (V) of the pile, and the bulk density (D) of the wood 

chips. The CCC method listed above as Equation 4, takes into account an extra 

compensation variable (C) which increased the volume by the estimated 

percentage for the volume loss due to compression. This will be explained in 

detail in the discussion section.  

 

The first configuration of the wood chips was a conical shaped pile and 

using ten images sets, ten volumes were measured of the same pile. From the 

ten volumes, twenty mass estimates were generated which consisted of ten 

estimates using the BLC method and ten using the CCC method. All mass 

estimates were compared to the total chip mass previously measured using the 

HDPE container. Table 1 shows both methods produced estimates that have a 
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similar standard deviation spread with a range of about 18% difference between 

the maximum and minimum values. The only difference was that the CCC 

method had better averaged accuracy compared to the BLC method. The 

overall average mass of the CCC estimates was about 1.6% off from the 

manually measured mass whereas the BLC estimates average was about 7% 

off.  

Table 1: Descriptive statistics for a small conical pile showing the difference between BLC and CCC 
conversion methods. 

 

Similar results were noticed when estimating masses of the flattened chip 

pile (Table 2). This time there was a range of masses, which has about 14% 

difference between maximum and minimum estimates. The overall accuracy 

was about 4% less than the measured mass, but this time there is only a 

difference of about 2% between the two methods. 

 

Table 2: Descriptive statistics for a small-flattened pile showing the difference between BLC and 
CCC conversion methods. 

Flatten Pile 
Basic Linear Conversion 

(BLC) 

Compression Compensated 

Conversion (CCC) 

Measured Mass of Wood Chips 30820.0 30820.0 

Average Estimated Mass  29390.4 29786.3 

Percentage Difference  -4.64% -3.35% 

Standard Deviation 1254.2 1282.8 

Maximum Estimate 5.0% 6.5% 

Minimum Estimate -8.8% -7.6% 

Cone Shaped Pile 
Basic Linear Conversion 

(BLC) 

Compression Compensated 

Conversion (CCC) 

Measured Mass of Wood Chips 30820.0 30820.00 

Average Estimated Mass 28572.9 30329.8 

Percentage Difference -7.29% -1.59% 

Standard Deviation 1532.2 1630.6 

Maximum Estimate 1.6% 7.8% 

Minimum Estimate -15.9% -10.8% 
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To determine if the differences between the BLC and CCC methods were 

statistically significant, one-way anova analyses were applied to the conical and 

flattened pile cases. The results were different depending on the shape of the 

pile as hinted by the averages shown in Tables 1 and 2. Table 3 shows that 

when the chips were arranged in a conical chip pile, there was a statistically 

significant difference between the two methods, but for the case with the 

flattened chip pile, there was no statistically significant difference. 

Table 3: Chart examining the F statistics and significance level of mass estimation between BLC 
and CCC conversion methods, for conical chip and flattened chip piles. 

Pile Configuration F statistic Significance Level 

Conical shaped pile F(1,18) = 6.166 p = 0.023 

Flatten shaped pile F(1,18) = 0.487 p = 0.494 

MEDIUM SCALE ANALYSIS 

 

Aerial images were taken on consecutive days using a hex-copter drone 

with a downward pointing camera. The images captured three piles over five 

days. These piles grew and shrank daily with piles A and B being roughly 

conical and pile C being a flattened pile. Notice the images in Figure 12 to 15 

showing the key days with transitional changes over the week. Pile A grew in 

size until Thursday of that week, at which point it was being consumed by the 

mill on Friday. Pile B had the opposite behaviour as it was consumed by 

Thursday where a new pile was being formed on Friday. Pile C being located 
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over the screws that draw the chips into the mill was being fed with chips and 

remained relatively consistent in size and shape throughout the week.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: 3D model of the chip piles on Monday June 15. 
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Figure 13: 3D model of the chip piles on Tuesday June 16. 
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Figure 14: 3D model of the chip pile on Thursday June 18. 
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Table 4 shows the difference between the mill’s chip mass estimate and 

CCC method of estimating chip mass where the difference between the two 

methods varied by about 2.7%. It also confirms that the CCC method of 

estimation is accurate enough to track the variations of mass in each pile on a 

daily basis. 

Table 4: Daily mass estimations of three chip piles at a local mill comparing the differences 
between CCC method and the mills method. 

Date Pile 
Volume 

(m
3
) 

CCC Mass 

Estimate (t) 

Mill Mass 

Estimate (t) 
Difference (t) Percentage 

15-Jun-2015 A 7,961.9 1,425.3 1,386.9 -38.42 -2.70% 

B 2,425.6 430.1 422.5 -7.54 -1.75% 

C 2,666.5 465.8 464.5 -1.33 -0.29% 

16-Jun-2015 A 5,121.1 912.7 892.0 -20.70 -2.27% 

B 5,012.3 894.2 873.1 -21.11 -2.36% 

C 2,895.6 505.6 504.4 -1.22 -0.24% 

17-Jun-2015 A 2,125.7 375.1 370.3 -4.86 -1.29% 

B 8,262.2 1,475.1 1,439.2 -35.88 -2.43% 

C 2,321.5 404.6 404.4 -0.22 -0.05% 

18-Jun-2015 A 2,257.0 397.3 393.2 -4.19 -1.06% 

B 9,226.2 1,652.8 1,607.1 -45.72 -2.77% 

C 2,465.9 429.5 429.5 0.03 0.01% 

19-Jun-2015 A 4,945.0 880.4 861.4 -19.00 -2.16% 

B 4,715.6 838.9 821.4 -17.44 -2.08% 

C 2,811.6 490.2 489.8 -0.46 -0.09% 

 

B 

A 

C 

Figure 15: 3D model of the chip piles on Friday June 19. 
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Through further sorting of the data in Table 4 certain trends are noted. 

Mill estimations of the oven dry mass in conical piles A and B were consistently 

less than values generated using the CCC method by about 2%. However, in 

the analysis of the flatten pile C both the mill’s method and the CCC method 

only deviated from each other by about 0.13% over the whole week. This result 

is summarized in Table 5. 

Table 5: Comparison of the mass estimates on Table 4 sorted and averaged based on the conical 
and flattened pile shapes. 

Descriptive Statistics Piles A & B Pile C 

Standard Deviation 0.56% 0.13% 

Average -2.09% -0.13% 

Minimum -1.06% 0.01% 

Maximum -2.77% -0.29% 

PREDICTION OF COMPRESSION FORCE DISTRIBUTION IN A CHIP PILE 

WITH CROSS-SECTION MODELING 

 

Based on the findings of the experiments the following compression 

properties and behaviours were deduced from results of Table 1, 2, 4, 5, and 

Figure 11. The cross-section models in Figures 16, 17, and 18, predict the force 

distribution within the piles by varying three distinct physical variables. In each 

pile, the cross-sections are broken down into multiple cubic units of wood chips 

or ‘cells’ of wood chips. For simplicity, each cell can be under the influence of 

light, medium, and heavy compressive forces depending on the number of cells 

above applying a compressive load. In the prediction models, the top cell in 

each column of wood chips is not subjected to any compressive forces from 
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above and is represented by the white cells, which have little to no loss of 

volume. The light grey cells represent on average 5% loss in volume and are 

under medium compression from the light cells above. The dark grey cells are 

wood chips that are subject to the heavy compressive forces from the light and 

medium cells above them. Each of these heavy compression cells are under 

max compression, and these cells will have a volume loss of 9.46%.  

 

The three cases A, B, and C presented in Figure 16 all have a size of 16 

cells stacked in different configurations. While their overall size is the same, 

they have different quantities of light, medium, and heavy cells. Figure 16, 

demonstrates the difference of compression forces based on the shape of the 

pile. Notice the piles vary from a flattened pile to a tall column of wood chips, 

such as in a wood chip silo. After analyzing the different compression 

distribution, A has an overall estimated loss of 6.0% in volume, B has a loss of 

2.5% in volume, and C has a loss of 7.7%. 

 

 

 

 

 

 

 

 

Light Compression 

Medium Compression 

Heavy Compression 

Difference due to the Shape of the Pile 

Case C: Silo Pile 

x2 = 12.5% 
x2 = 12.5% 
x12 = 75.0% 

 

x8 = 50.0% 
x8 = 50.0% 
x0 = 00.0% 

 Case B: Flatten Pile 

x4 = 25.0% 
x4 = 25.0% 
x8 = 50.0% 

 
Case A: Square Pile 

Figure 16: Showing the different varying densities of wood chips throughout a chip pile as 
shape varies from a square pile, a flattened pile, and a tall pile in a silo. 
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In Figure 17, case D and E show how the height of the pile changes the 

percentages of the various compression cells. In these models, case D is a third 

higher than case E with max compression reached at two cells deep. Once 

again, analyzing the compression of cells predict that D has a loss of 5.5% of 

volume, whereas E has a loss of 3.9% of volume.  

 

 

 

 

 

 

 

Figure 18 shows the difference between low-density wood chips and 

high-density wood chips. Both cases are the same size but pile F has a higher 

bulk density than pile G. Calculating the loss of volume due to compression, pile 

F shows a loss of 5.5% whereas pile G shows a loss of 2.7%.  

 

 

 

 

 

 

 

Light Compression 

Medium Compression 

Heavy Compression 

Difference due to the Height of the Pile 

x11 = 30.6% 
x9 = 25.0%  
x16 = 44.4% 

 

Case D: High Pile 

x7 = 43.8% 
x5 = 31.2% 
x4 = 25.0% 

 
Case E: Low Pile 

Figure 17: Showing the different varying densities of wood chips as the pile changes in height. 

Light Compression 

Medium Compression 

Heavy Compression 

Difference due to the Bulk Density of the Wood Chips 

x11 = 30.6% 
x9 = 25.0%  
x16 = 44.4% 

 

Case F: High Density Wood Chips 

x20 = 55.6% 
x12 = 33.3% 
x4 = 11.1% 

 

Case G: Low Density Wood Chips 

Figure 18: Showing the different varying densities of wood chips as the bulk density changes. 
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ERROR IDENTIFICATION AND REDUCTION ANALYSIS 

Large Scale Skew  

To examine if the relationship between volume and mass scaled equally 

as the volume of the chip pile is greatly increased, an exploratory analysis was 

performed using known formulas, and chip pile shapes from phase III. The 3D 

models of piles B and C were increased to twenty-seven and a thousand times 

its original volume. These scales were chosen based on increasing the XYZ 

axis of the model by three and ten times their original linear length. Pile B 

representing conical shaped piles and pile C representing flattened shaped 

piles. Using the CCC method and compensating for moisture content the oven 

dry wood fibre mass was estimated. This mass estimation is compared with 

values obtained by applying the mill formula for the same enlarged volumes. 

The results shown in Table 6, match the results in Table 5 with the original scale 

being within 1.8% of each other. When the volume increases by factors of 27 

and 1000 the two methods begin to deviate in mass estimates. When all the 

models were processed, the estimated oven dry mass of the chips ranged from 

3.5% to 5.6% between the two methods. 

Table 6: Chart showing the difference between CCC and mill estimates for both conical and 
flattened pile shapes when increasing the size of the pile by factors of 27 and 1000. 

Shape and Scale Volume (m
3
) 

CCC Mass 

Estimate (t) 

Mill Mass 

Estimate (t) 

Difference 

(t) 
Percentage 

Conical Volume x1 2,425.6 430.1 422.5 -7.5 -1.75% 

Conical Volume x27 65,490.3 11,929.5 11,407.8 -521.7 -4.37% 

Conical Volume x1000 2,425,565.0 447,464.0 422,511.2 -24,952.8 -5.58% 

Flattened Volume x1 2,666.5 465.8 464.5 -1.3 -0.29% 

Flattened Volume x27 71,994.3 12,992.4 12,540.7 -451.6 -3.48% 

Flattened Volume x1000 2,666,455.7 489,515.6 464,472.2 -25,043.5 -5.12% 
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The examples from Table 6 are modeled in a graphical view mapping the 

compression within the piles (See Figures 19 and 20). The compression 

distributions for both conical and flattened piles, labeled as Case I and L have 

minimal heavy compression volumes for the piles measured in the mill yard, but 

when the volumes were increased by 27 or 1000 times the original size, the 

percentage of volume under heavy compression greatly increased to over 50% 

of each pile.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compression Distribution in Large Scale Models for Conical Piles 

Light Compression 
Medium Compression 
Heavy Compression 

Case I: Conical Volume x1  

 

Case H: Conical Volume x27  

 

Case J: Conical Volume x1000  

Figure 19: Graphic models of compression distribution in the predicted conical piles of Table 6: 
Chart showing the difference between CCC and mill estimates for both conical and flattened pile 
shapes when increasing the size of the pile by factors of 27 and 1000. 

*Pile sizes not on the same scale, but distribution of compression volumes are proportional to each pile. 
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Monte Carlo Simulation of Mass Estimates Improved by Averaging Method 

 

Using the statistical data gathered in phase II, multiple mass estimates 

were generated using a normal distribution generator. This simulates measuring 

the chip pile 10,000 times for each case examined. Table 7 and 8 show 

statistical summaries of these simulated estimates for both conical and flattened 

Case K: Flattened Volume x27  Case L: Flattened Volume x1  

Case M: Flattened Volume x1000 

Light Compression 
Medium Compression 
Heavy Compression 

Compression Distribution in Large Scale Models for Flattened Piles 

Figure 20: Graphic models of compression distribution in the predicted flattened piles of Table 6. 

*Pile sizes not on the same scale, but distribution of compression volumes are proportional to each pile. 
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shape piles. There are three cases generated for each pile shape. First, 10,000 

single mass estimates were generated that matched the average and standard 

deviation of the original ten estimates generated in phase II. Then an additional 

10,000 iterations of mass estimates were generated using the average of five 

random single mass estimates and the last 10,000 values were generated using 

the average of ten random single mass estimates. This resulted in three sets of 

estimates, with each set having 10,000 mass estimates. When the 10,000 

estimates for each case were averaged out, the accuracy of the mass estimates 

did not improve, but the precision error was significantly improved as indicated 

by the standard deviations. Closer examination of the conical shaped pile data, 

shows that averaging multiple single estimates, improved the chances of the 

final value to be within ± 5% of the actual mass to be over 92.7% with just 

averaging 5 estimates together, and improving the number of estimates to be 

within ± 3% from 40.5% to over 70.4%.  

 

Table 7: Chart showing the total average, standard deviation, and percentage of the 10,000 Monte 
Carlo simulated estimates which fall within 3% and 5% of the actual mass when the predicted 
masses have been generated using the average of multiple estimates of conical piles. 

Descriptive Statistics 

Iterations Using 

a Single Mass 

Estimation 

Iterations Using an 

Average of 5 Mass 

Estimations 

Iterations Using an 

Average of 10 

Mass Estimations 

Average Error Percentage -1.59% -1.58% -1.57% 

Standard Deviations 5.4% 2.3% 1.7% 

Percentage within an 

accuracy of ± 3% 
40.5% 70.4% 80.2% 

Percentage within an 

accuracy of ± 5% 
62.5% 92.7% 98.0% 

 

The same procedure was applied to the flattened pile data with similar 

results. Averaging multiple mass estimates improved the chances that the final 
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value will fall within ± 5% of the actual mass over 81.1% of the time with just an 

average of 5 separate estimates. The only difference is with answers that are ± 

3% of the actual mass. The number of answers that fall within that range does 

not improve with just 5 averages, and when averaging 10 estimates it actually 

worsens by 0.6% when compared to single mass estimates. 

 

Table 8: Chart showing the total average, standard deviation, and percentage of the 10,000 Monte 
Carlo simulated estimates which fall within 3% and 5% of the actual mass when the predicted 
masses have been generated using the average of multiple estimates of flattened piles. 

Descriptive Statistics 

Iterations Using 

a Single Mass 

Estimation 

Iterations Using an 

Average of 5 Mass 

Estimations 

Iterations Using 

an Average of 10 

Mass Estimations 

Average Error Percentage -3.27% -3.36% -3.35% 

Standard Deviations 4.1% 1.9% 1.3% 

Percentage within an 

accuracy of ± 3% 
41.0% 42.4% 39.4% 

Percentage within an 

accuracy of ± 5% 
64.2% 81.1% 89.8% 

 

Calculating Error of Operator 

To determine what percentage of the error is due to operator error an 

image set of a chip pile is processed 3 times using the same ground control 

points (GCP), the same procedures, and the same software. This was repeated 

using four different image sets. The height and volume of the chip pile was 

compared to the mean value of the set to see the deviation generated by the 

operator’s procedure. The results shown in Table 9 of an operator manually 

entering GCP, or coordinates, can on average introduce a standard deviation of 

about 1.8% in the height or Z axis, and skew the volume by a standard deviation 

of about 2.4%.  
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Table 9: Comparison of the variation of answers when the same photo set is reprocessed using the 
same procedure to examine deviation due to operator error, both in the Z axis and in the X,Y,Z axis. 

Descriptive Statistics 
Height of the Pile  

(Z Axis) 
Volume of the Pile  

(X,Y,Z Axis) 
Standard Deviation 1.8% 2.4% 

Maximum 2.9% 3.8% 
Minimum -4.1% -5.5% 

 

Calculating Error due to Software 

Using the fifteen image sets, two estimates were generated for each set. 

One estimate was generated using PhotoModeler Scanner software with GCP 

for scale, and a second estimate was generated using Agi-Soft with the scale of 

the model determined based on altitude of the drone and camera specifications. 

Each pair of estimates was compared to the other and the difference between 

estimates were analysed. The statistical differences are summarized in Table 

10. Over the fifteen image sets, an average of 2.34% difference was detected 

between the estimates of the two software packages. The differences covered a 

range of 15.74%, which had a standard deviation of about 3.96%. 

 

Table 10: Chart showing descriptive stats of the difference between estimates generated using 
different software processing identical image sets. 

Average Difference 2.34% 

Standard Deviation 3.96% 
Over Estimated Difference (Maximum) 9.53% 
Under Estimated Difference (Minimum) -6.21% 
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Compensation Error due to Decompression 

Based on the percentages and range of decompression shown in Figure 

10, an illustration of two cross-section models is presented in Figure 21. It 

demonstrates how compression differs between chip piles, which have 

undergone decompression, compared to a normal chip pile without 

decompression. Notice the difference between the piles is at the surface wood 

chips directly under the cells removed from the top of the pile. These cells 

experience a partial decompression after the removal of the four cells of wood 

chips. These models predicted pile N experiencing a volume loss of 4.9% while 

pile O has a volume loss of 5.8% after the removal of the top of the conical pile.  

 

 

 

 

 

 

 

 

 

 

 

 

Light Compression 
Medium Compression 

Heavy Compression 

Difference due to the Decompression of Chip Pile 

Case N: Normal Pile 

x11 = 34.4% 
x  9 = 28.1%  
x12 = 37.5% 

Case O: Decompressed Pile 

x  8 = 25.0% 
x  9 = 28.1% 
x15 = 46.9% 

Removed Chips 

Figure 21: Showing the different varying densities of wood chips as one pile goes through 
decompression while the other pile is formed normally. 
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DISCUSSION 

DEVELOPING THE CONTROL METRICS AND VARIABLES 

 

During the exploratory experiments of phase I, there were various metrics 

collected to use as benchmarks for the estimates, or as controls to determine if 

they affected the final mass estimates. Some of these variables did not to affect 

the mass estimations, while others could be bundled or summed up into a single 

variable. Each variable was analysed and the reason to use or omit them from 

the final equation is explained below. 

 

Chip size composition of the pile is monitored by the mill acquiring the 

wood chips. As long as majority of the pile conforms to the mill’s standard, it will 

not skew the results. The chip size affects the compression characteristics of 

the pile and since the compression curve has been calibrated to each mill’s chip 

size composition, any slight deviation in sizes that is acceptable to the mill’s 

standard will not generate significant errors. That said, I suggest to develop a 

new compression curve for each mill for calibration purposes, or if the material 

is of a different nature, such as hog fuel or wood pellets for example. 

 

Moisture content changes the mass of the chips (Mullins and McKnight 

1981) in the pile, and mass of the chips affects the depth at which maximum 

compression occurs in a pile, but because bulk density accounts for moisture 
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content (Mullins and McKnight 1981) and the density of the wood base on 

species (Mullins and McKnight 1981), it is unnecessary to incorporate all these 

factors as separate variables in the conversion formula. Moisture content was 

only required when estimating oven dry wood fibre mass, as using bulk density 

values will predict the pile’s green mass. The bulk density value takes into 

consideration the moisture content of the wood chips, density of the wood based 

on species, and any variation in the ratio of wood chips versus void space in the 

measured pile. Hence, bulk density can be used to replace all three other 

variables in the conversion formula.  

 

When measuring bulk density, it is possible to acquire a loose bulk 

density value, which is defined in this study as the bulk density of wood chips 

under minimal compressive forces; or an ASTM standard bulk density, which is 

the density of the wood chips that has been tapped and settled into a container 

as per the ASTM standard. A standard bulk density measurement requires 

some compaction of the material being measured as part of the procedure 

requires dropping the box from a height defined in ASTM C29/C29M Standard 

Bulk Density (ASTM International 2016). While the hypothesis was based on 

estimates using an uncompressed wood chip density, this is not achievable in 

practice. Volume measurements of the wood chips in the one-meter tall HDPE 

container or a 44-imperial gallon drum have some settling and compaction 

inherent to the measuring process. This means the compression curves are 

actually developed with some settling and compression incorporated into these 
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values and curves, hence the use of ASTM bulk density is preferred due to the 

benefits of following a standard. In the attempt of measuring loose bulk density 

of the wood chips, it was noted that these values acquired were not reliable. 

They can vary by as much as 10% between measurements, even if using the 

same chips measured several times in the same container. In phase II, the bulk 

density used was a semi-loose bulk density measured from the total volume and 

mass of the whole chip pile, but future phases only used ASTM C29/C29M 

Standard Bulk Density method (ASTM International 2016).The benefit of using 

this standard is twofold. First, the bulk density values obtained using this 

method is consistent, compared to measuring a loose bulk density, thereby 

removing the 10% precision error. Secondly, this international standard is 

already in use by the industry and does not require retraining technicians to 

acquire an accurate ‘loose bulk density’ value. The improvement in precision of 

the bulk density values when using a standard bulk density measuring method 

makes any difference between compressed and uncompressed bulk density a 

minor variation that can be accounted for in a calibration process. This is a case 

where precision is more important than accuracy, as accuracy can be corrected 

in a later stage, but precision errors results in an uncertainty error of the final 

estimate. 
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VOLUME LOSS DUE TO SHAPE, HEIGHT AND BULK DENSITY  

 

The hypothesis of this thesis assumed that bulk density would vary 

throughout a chip pile depending on the amount of compressive pressures 

applied from above by the layers of wood chips. The models in Figures 16, 17, 

and 18, show how varying height, shape, and bulk density will vary the 

compression forces distributed within the chip pile. These variables are actually 

interrelated with each other, as all three variables are different applications of 

the same gravitational force on the chip pile. For example, changing the height 

of the pile will also changes the shape of the pile, but to understand how these 

different characteristics effect the compression individually, these variables are 

examined as separate models. This makes it easier to understand the effects of 

compression due to each of these variables. 

 

In each pile, each cell can be under the influence of light, medium, and 

heavy compressive forces. The white cells are under light compression forces, 

which have little to no loss of volume. These cells can be converted to generate 

an accurate estimate of the fibre mass based on the standard bulk density value 

alone without any other compensation factor. The light grey cells represent 

medium compression, which on average has a loss of 5% in volume. Estimates 

of these volumes will generate a shortage in mass estimates of about 5% due to 

the increase in bulk density in this zone. The dark grey cells are subject to 

heavy compressive forces from the light and medium cells above them. Each of 
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these heavy compression cells are under max compression, and an estimation 

of fibre mass for these cells will be 9.46% short of the actual mass per the 

maximum volume loss found in Figure 11. Notice that most of the models 

presented in Figures 16, and 17 have piles with a size of 16 cells stacked in 

different configurations. While their overall sizes are the same, they have 

different quantities of light, medium, and heavy cell compressions. These 

variations in compression distribution skew the final mass estimates by a 

percentage of 2.5% to 7.7%. This is calculated by summing up the percentage 

of volume compensations for all the cells in the pile and dividing that by the total 

number of cells in the pile. The overall percentage of volume change for a pile 

configuration is the value that is applied to the compression compensated 

conversion Equation 4 as variable C.  

 

 All the cases found in Figures 16 and 17 attain maximum compression 

after a depth of two cells, whereas Figure 18 examines compression differences 

of wood chips with different standard bulk densities. Notice that in case G due to 

the lighter wood chips it takes twice the number of cells to reach maximum 

compression. These models simulate two bulk density wood chips, where one 

pile has a standard bulk density that is twice as heavy as the other pile. This 

may be due to species of the wood, moisture content of the chips, different chip 

size composition that changes the void ratio in the chip pile, or a combination of 

the three factors. The variation of compression forces in the piles, results in 

different volume loss even though both piles occupy the same overall volume.  
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DECOMPRESSION REQUIRES AN ADDITIONAL CORRECTION FACTOR 

 

Another factor that complicates conversion from volume to mass is when 

incorporating chip piles that have undergone a compression followed by a 

decompression stage. One of the experiments examined the decompression of 

wood chips, which was mapped on a graph in Figure 10. The data is spread out 

over a range of values and not a linear relation between volumes recovered 

versus time. While the data shows an immediate volume recovery of 31% to 

44% after a compression load was removed, this was only a partial volume 

recovery. The final volume recovered after an hour was in the range of 36% to 

56%, at which point the wood chips have reached a new equilibrium and no 

further improvement was noticed without manual intervention. When the wood 

chips were manually loosened up it returned to the original volume prior to the 

application of the compression load. This indicates that the chips were not 

damaged during the compression process. It was assumed that during 

unassisted decompression the wood chips are interlocked or entangled with its 

neighbouring chips and do not allow the pile to recover to the original void 

spacing prior to compression. It requires manual decompression to recover the 

original void spacing. 

 

This creates a problem for converting volume to a mass estimate. Since 

the original CCC formula is calibrated to the original void spacing for a chip pile 

with only one compensating variable to account for natural compression within 
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the chip pile, it does not take into consideration the additional volume loss due 

to the pile not fully decompressing. Even if a second correction factor was 

incorporated into the CCC formula to compensate for decompression, at the 

moment there is no accurate method of determining this exact value other than 

to take an median value from the range of volume recovery. With a range of 

36% to 56%, the middle value that is used for all decompression cases would 

be 46%, but this would be a rough estimate. This 46% recovery is a percentage 

of the maximum compression volume loss (9.46%). Hence, the 46% 

decompression recovery translates to 4.35% volume recovery of the maximum 

9.46% volume loss due to compression. This means any cell that was affected 

by decompression will experience an additional 5.11% volume loss per cell in 

addition to any normal volume loss determined by the CCC method.  

 

As an example Case N and O in Figure 21 models a difference in chip 

density depending on whether there was previously loaded chips over the pile. 

In this example both piles have the same volume. While case N will have a 

predicted volume loss of 4.9%, due to the removal of 4 cells from the conical 

pile, case O has a predicted volume loss of 5.8%. In this example the overall 

increase in volume loss due to decompression is only 0.9%, but other 

configurations may yield different volume differences for a pile that has 

undergone decompression factors. 
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STABILIZATION PERIOD REQUIRED FOR ACCURATE MASS ESTIMATION 

 

The experiments preformed in phase I, determined that a settling or 

stabilizing period is a necessary step prior to the image collection stage. 

Allowing the pile to settle before collecting volume imagery will reduce accuracy 

errors. The results from the experiments shows that a pile requires 180 minutes 

after introducing new loads, and 30 minutes after removal of compression loads 

before the pile has sufficient time to settle and stabilize. Since the formulas 

generated to convert volume to mass are calibrated for a stabilized state, it is 

important to allow this settling stage to occur, or the final estimates will be 

inaccurate. By skipping this stage newly created piles will be larger than a 

settled pile generating an over estimation of the mass, and piles without proper 

decompression periods will generate an under estimation of the mass.  

 

Based on Figure 9, it is evident that measuring the volume immediately 

after loading the pile with new material would skew the mass estimates by as 

much as 39% of the volume of the newly added material. Table 9 shows in 

some cases, piles can achieve fully stabilized compressed state immediately 

after a new load was added, but majority of the cases requires up to 3 hours 

before reaching a fully stable state. Whether it is BLC, CCC, or a proprietary 

method used by the mills to convert volume to a mass estimate, these formulas 

have been calibrated for a stable state pile. Measuring the volume prior to this 

stable state will introduce skew into the estimate by as much as 39% of the 
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volume of the new material loaded onto the pile. To accommodate volume 

measurement and mill operations, I suggest measuring volumes of chip piles in 

the morning before the first truckload has been unloaded onto the pile. The 

volume of the existing chips in the pile should be at its most accurate for the 

calibrated formula after having the night to settle into a stable state. 

DIFFERENCES BETWEEN BASIC LINEAR CONVERSION METHOD (BLC) 

AND COMPRESSION COMPENSATED CONVERSION METHOD (CCC) 

 

As shown in Equations 3 and 4, the only difference between the BLC, 

and CCC method is a single compensation factor (1 + C) where the C variable 

represents the total percentage of volume loss in the pile due to compression. 

For example, if we look at case C in Figure 16 where the chips are held inside a 

silo, we see that it has an estimated volume loss of about 7.7%, which makes 

the compensation factor C equal to (1 + 0.077). This suggests that the mass of 

the chips is actually 1.077 times the predicted mass based on bulk density of 

the chips and internal volume of the silo. The reason for this increase is 

because the compensation formula takes into account that the measured bulk 

density is not under high compressive forces, and since most of the chips in the 

silo are under high compression, this factor accounts for the volume loss due to 

compression differences. This is a suspected reason that the mills are 

underestimating the mass of their inventory in their yards. As the piles get larger 

and taller, more chips are compressed into the spaces used for storage. This 
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underestimation could show up as a shortage of chips delivered from field 

operations or as an inefficient processing of the chips by the mill. This loss of 

volume can also be seen in uncontained piles, since the external layer of chips 

can act as a force holding the interior chips together under pressure, similar to a 

container or a silo wall. Hence, in cases D to G in Figures 17 and 18, the 

volume loss can also be calculated even though the piles are not contained 

within a structure. 

APPLICATION OF METHOD IN A MILL ENVIRONMENT 

 

The CCC method developed during phase I and II were applied to chip 

piles at a local mill. By comparing the estimated mass with the values supplied 

by the mill, it is possible to determine if the method used by industry is similar to 

the CCC method. The results in Table 5, shows that between the two methods 

there is a calculated difference of about 1.4%. This suggests that on a medium 

chip pile scale, the formulas used by the mill behave similarly to the CCC 

method. If the data is further separated into pile types, estimates of pile C, which 

is a flattened shape, are more accurate than estimates of piles A or B which are 

conical shaped. There is on average only a 2% difference between methods for 

the conical shaped piles, which is definitely a small error compared to the 

volume error incurred during the volume surveying stage. Being that these 

medium size piles are many factors smaller than most piles on a mill site, an 



62 
 

exploratory analysis was also completed to examine accuracy on large-scale 

chip piles.  

 

To extrapolate for large piles, a couple of the medium size piles were 

scaled up for analysis. In all the cases, it was assumed that all other factors 

such as species, chip size, moisture, etc. remain identical. Only the quantities of 

wood chips were increased. The results shown in Table 6, predicts on average 

an increase in error of about 5% when the volume was changed. Even flattened 

piles that were previously showing a high degree of accuracy with only 0.3% 

difference now revealed a difference between methods of estimation by at least 

3.5% (Flatten Volume x27 percentage in Table 6). It is assumed the mills have 

calibrated their formulas to be accurate at the medium size test piles but do not 

take into consideration the variation of density when increasing the volume of 

their chip piles. Therefore, the results simulated on mass estimates on large-

scale piles can be off by about 5%.  

 

The difference of compression due to scale can be seen when modeling 

the piles graphically. This is shown in Figures 19 and 20 as the percentage of 

the pile that is under heavy compression changes drastically when scaling from 

the mill’s medium size piles (Case I and L) to larger size piles. In these medium 

size piles there are minimal areas of the pile that is under heavy compression, 

with over 75% of these piles composed of medium and light compression. In the 

flattened pile Case L, there is only medium and light compression, which 
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explains the 0.3% oven dry mass prediction difference between the CCC 

method, and the mill’s conversion formula. In the conical pile Case I, there is a 

small amount of heavy compression area in the pile. This is the reason that the 

conical pile generates the 2% difference between the two methods of mass 

estimation.  

 

When the models of the larger piles (scaled by 27 and 1000 times the 

size of the mill’s calibration chip piles) are modeled, notice that majority of these 

piles consist of heavy compression areas. This confirms the increase of the 

3.5% to 5.5% difference between mass estimation methods, as the mill’s linear 

formula does not account for the increase of heavy compression areas. Since 

their main chip piles are closer to this scale of chip piles, the mass estimates 

using the formula calibrated to the medium size piles will fall to account for this 

change. The good news is that once the compression variation for a specific pile 

shape, size, and wood chip properties are determined, a correction factor can 

be applied to the existing mill formula to mitigate this scale error. 

ERROR DISTRIBUTION IN VOLUME MEASUREMENTS AND MASS 

ESTIMATIONS 

 

To improve accuracy of wood chip mass estimations, every stage from 

surveying the pile, to the conversion of the volume to a mass estimate was 

examined. It became obvious that while volume to mass conversion was the 
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focus of the thesis it was not the major source of error. Based on the 

compression curve (Figure 11) the maximum loss of a pile volume is 9.46%, 

with most of the practical results from the small-scale piles to the larger mill piles 

falling in the range of 1% to 6%. Therefore, by applying the CCC method to any 

chip pile will at most improve accuracy by about 6%. Whereas volume 

measurements of the pile have generated about 10% error in the 3D capture 

process (Table 1), up to 5.5% error from operator input (Table 9), up to 9% error 

from software bias (Table 10), as well as a host of other errors such as GPS 

coordinates of GCP. Compounded, these errors can potentially generate over 

20% error in mass estimates, if the errors are at the extreme range, and all the 

errors are skewed in the same direction. This error can be so large that an 

experienced technician or supervisor may even detect the error based solely on 

a visual inspection of the pile. However, on average, the errors generated are 

usually smaller than the above listed maximums, as errors from different 

aspects may be biased in different directions, thereby partially cancelling each 

other out. But the fact that it is possible to have large errors compounded 

together to cause even larger skews of accuracy, means that effort to control 

and manage volume measurement errors will have a greater effect on estimated 

mass accuracy than the incorporation of CCC method of volume to mass 

conversion. While this thesis was originally focused on improving volume to 

mass conversions, it will suggest methods of improving accuracy of volume 

measurements based on errors noticed during the experimental process of 

measuring the chip piles. 
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Volumetric error as noted during phase II of this research is a concern 

that needs be managed. The volume of a single chip pile when surveyed 

multiple times resulted in varying volumes which were skewed to a range of 

18% between maximum and minimum values, as shown in Table 1. This error is 

generated from a combination of using different image sets with known GCP for 

each volume measurement. Volumetric error is also visible within an exploratory 

experiment to compare volume error between two software packages. The 

differences generated a ranged of 16% as shown in Table 10. This time the 

contribution to the error is due to different algorithms in the software packages, 

and the method of determining the scale of the 3D model. The PhotoModeler 

values were generated using distances of known GCP; whereas the AgiSoft 

values were generated using known camera specifications and drone flight 

heights to calculate the scale. Regardless of how these volume errors became 

generated, the solution to reducing these precision errors is to take multiple 

volume measurements and averaging them to get a final value. As shown in the 

Monte Carlo Simulations on Tables 7 and 8, while averaging does not change 

the accuracy error of the estimates it does improve the precision error as 

indicated by the standard deviation (SD) values. A single image set can produce 

a value with a 4% to 5% SD, whereas averaging as little as five sets of images 

improves the SD down to about 2%. The SD is further improved down to about 

1.5% when averaging ten or more image sets together. This reduction covers 

variation in the image sets, errors in the coordinates of GCP, errors in GPS 
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data, differences in software algorithms, and any other precision error that may 

occur when generating volume measurements.  

 

This is further confirmed when looking at the number of 10,000 simulated 

mass estimates that fall within ±5% or ±3% of the actual mass. In all cases 

except for one, averaging greatly improves the number of estimates that are 

within the two chosen percentile ranges. The only one that failed to improve the 

precision after averaging multiple masses was the case with the flattened pile 

and requiring the estimate to be within ± 3% of the actual mass. The precision 

only slightly improves after averaging five estimates, and actually drops by the 

time ten estimates were averaged together. This failure to improve precision has 

to do with the accuracy of that data set. Since the mean of the dataset has an 

error that was greater than -3%. By improving the precision of this set of 

estimates it actually decreased the accuracy by skewing the estimates towards 

the -3% value. Fortunately, by adding a calibration constant to the equation to 

correct for this accuracy error, it will correct the skew generated by the 

averaging method on this data set.  

 

While the averaging method needs multiple image sets, this does not 

require multiple flights of the UAV drone, as suggested in the methodology. By 

capturing a dense grid of images with greater than 80% overlap between the 

images, will allow a randomizing selection method to generate different image 

sets from a single flight. There are two criteria to keep in mind when generating 
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multiple image subsets. The first is to ensure enough images are included in 

each subset to have full coverage of the chip pile. The second is to generate 

enough image subsets that will balance between generating a final volume that 

has a high precision confidence while taking into consideration the hardware 

capabilities of the computer system to be able to generate the models in a 

timely fashion. On average, using a single high-end computer will take about 

five to ten hours to generate a 3D model of a medium sized chip pile. The time 

range is highly dependent on the number of photos in each set. Some surveying 

companies in the industry have used a network of computers to distribute the 

computing task, reducing the processing time down to a couple of hours even 

for larger image sets.  

 

To optimize the processing time and minimize the precision error requires 

minimizing the number of photographs and maximizing the number of photo 

subsets. Most software packages prefer that each point calculated to appear in 

at least three images for reasonable accuracy when determining the X,Y,Z 

coordinates of each point of the point cloud. Since the images have at least 80% 

overlap, it means any point on the chip pile should show up at least five times 

per pass. This means if two images are removed from every string of five 

consecutive images, the remaining images should still cover each point at least 

three times. It is possible to reduce a flight with 100 images down to 60 images 

and still maintain the ratio of three photographs per series of five consecutive 

images. This allows images from a single flight to have the number of images be 
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reduced by 40% for each subset. By varying which 40% is removed for each 

subset will allow the generation of the ten or twenty image subsets desired for 

volume averaging. This is by no means the only way to optimize the image sets, 

as any variations that still adhere to the rule of maintaining three images per 

point of interest could work. The method used should be determined by the 

operator with the capabilities of the computer processing system in mind. In the 

end, as long as the method applied is without bias to all subset images, the 

error in the final estimate will be minimal after it has been averaged together. 

Accuracy Errors due to Image Scale Calibration of the 3D Model 

 

To improve the accuracy of volumetric measurements, proper scale 

needs to be entered into the model. Scale can be introduced through several 

different methods. The preferred method is to perform a precision ground survey 

of GCP using traditional survey equipment such as total stations. Location of 

GCP can be mapped using high accuracy GPS units. Alternatively, another 

method to determine scale is to apply camera specifications and UAV flight 

elevation to calculate the X and Y scale of the image. While all the suggested 

methods will generate a scale for the model, the method capable of millimeter 

range accuracy is the ground survey method. In addition to having high 

accuracy, ground survey methods will also consistently have a low precision 

error. The other two methods, which are dependent on satellite signals, can run 

into issues depending on positions of the GPS satellites when the coordinates 
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are taken. Interference from surrounding features on the GPS signal, as 

explained in the literature review will effect GPS accuracy. While GPS is a more 

convenient method to collect data and has the possibility of being able to be 

incorporated into the data automatically within some software applications, the 

larger precision error, and an accuracy of several centimeters does not make 

this a preferred method. Figure 22 shows GPS coordinates collected during an 

aerial flight after it has been corrected by GCP. The arrows show the corrections 

exaggerated by a thousand times. Since it required GCP to correct the GPS 

coordinates it stands to reason to use GCP in the first place for scale accuracy, 

and skip the correction stage needed by GPS coordinates. 

 

 

Figure 22: Sample of GPS error when compared to ground control points exaggerated 
by 1000 times 
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Accuracy Errors due to Software Algorithms for Generating 3D Models 

 

Finally, a look at the differences or errors generated based on software 

algorithms required another exploratory experiment. In Table 10, two software 

packages measured the volume of the 3D models and the statistical differences 

between the results generate by the two were analysed. The PhotoModeler 

software determined scale using manually entered GCP, while AgiSoft applied a 

scale to the model using the camera specifications and the drone’s altitude as 

reported by the on board GPS unit. Since both cases used the same photo sets, 

the differences in the volumes were solely due to scale of the 3D models and 

software algorithms. These volume differences identifies that the scale precision 

needs to be scrutinized and tightened down, as having a range of 15% variation 

between software measurements is unacceptable. The choice to use 

PhotoModeler Scanner was due to a single publication regarding its capability to 

generate a high positional accuracy, although this is not necessarily the best 

solution. More studies are needed to examine why one algorithm is so vastly 

different from another that it generates up to a 15% variation when the same 

image set is fed to both software algorithms. Moreover, this error needs to be 

further studied, as this error will skew the final inventory estimates by millions of 

dollars.  
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CONCLUSION 

 

This thesis has explored many aspects of remotely sensed estimates of 

wood chip inventories, and while it has exposed many errors that can skew 

these mass estimates, it is not meant to suggest that any fibre mass estimation 

from remote surveying is unreliable or expected to be inaccurate. In these 

experiments, multiple precision and accuracy errors have been identified and 

addressed. If the multiple factors that introduce precision errors are assumed to 

follow a normal distribution, it is very likely that these errors will mostly cancel 

each other out reducing the overall error most of the time. Therefore, on a 

regular basis, estimates of chip inventory can be accurate, but to eliminate the 

possibility of occasional compounded errors skewing the resultant estimate by a 

large amount, the following procedures should be implemented.  

 

1. Images of the chip pile should only be taken after the pile has had a 

chance to settle and stabilize.  

 

2. A period of at least 3 hours settling time should be observed before 

capturing the images.  

 

3. To minimize interruptions of mill operations the images should be taken 

first thing in the morning, after a night of settling has occurred, and before 
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mill operations begin for the day such as new wood chip deliveries, or 

wood chips removed from the pile for use in the mill.  

 

4. The chip pile should have multiple samples measured for ASTM bulk 

density values, and moisture content.  

 

5. These density and moisture content values should be averaged to 

improve precision and lower conversion errors.  

 

6. The chip pile should be captured using an overhead UAV, and the grid of 

images captured should have a high degree of overlap between 

photographs to allow for transforming a single flight into multiple image 

sets of randomly selected photographs.  

 

7. It is expected that at least ten image sets will be required for averaging to 

improve the confidence of the final mass estimate. Each of these image 

sets should still have full coverage of the whole chip pile from various 

angles.  

 

8. Multiple GCP should be identified in each of the image sets to provide the 

software with proper scale for each 3D model generated and these 

control points should be surveyed using a highly accurate, ground-survey 

method to minimize accuracy error.  



73 
 

 

9. Volumes generated by each image set should be processed by the CCC 

method to improve accuracy of the mass estimates.  

 

10. Estimates from multiple image sets should be averaged together to 

improve the overall precision of the final estimate and reduce error 

generated from the multiple stages of this process.  

 

By taking these precautions, it should be possible to improve accuracy of 

the mass estimates, but more importantly the precision and confidence of the 

results. Overall, it is possible to use remotely captured images to generate a 

volume and using the CCC method to convert this volume to a mass estimate. 

In its present form, it will improve the estimates compared to methods used at 

the mills in the industry, but there is stillroom for further refinement to improve 

accuracy and new techniques are required to improve calibration of the system. 
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