
 

TESTING LOCAL ADAPTATION IN FIVE POPULATIONS OF HYALELLA 

AZTECA IN NORTHERN ALBERTA’S OIL SANDS REGION 

 

by 

Steven R .Beery 

 

 

 

 

 

 

 

 

FACULTY OF NATURAL RESOURCES MANAGEMENT 

LAKEHEAD UNIVERSITY 

THUNDER BAY, ONTARIO 

  



ii 
 

 

TESTING LOCAL ADAPTATION IN FIVE POPULATIONS OF HYALELLA 

AZTECA IN NORTHERN ALBERTA’S OIL SANDS REGION 

 

by 

Steven R. Beery 

 

 

A Master’s Thesis Submitted in 
Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Forestry 
 

 

 

 

 

 
Faculty of Natural Resources Management 

Lakehead University 
September 2015 

  



iii 
 

 

LIBRARY RIGHTS STATEMENT 

 

 In presenting this thesis in partial fulfillment of the requirements for the 

M.Sc.F. degree at Lakehead University in Thunder Bay, I agree that the University will 

make it freely available for inspection. 

 

 This thesis is made available by my authority solely for the purpose of 

private study and research and may not be copied or reproduced in whole or in part 

(except as permitted by the Copyright Laws) without my written authority. 

 

 

 

Signature: _____________________________________ 

Date: _____________________________________  



iv 
 

ABSTRACT 

Beery, S.R. 2015. Testing local adaptation in five populations of Hyalella azteca in 
northern Alberta’s oil sands region. 59 pp. 

 
Keywords: ecotoxicology, Hyalella azteca, local adaptation, macroinvertebrate, oil 
sands, reciprocal transplant 
 
 

Canada’s oil sands hold the third largest petroleum reserves worldwide. Rapid 
economic growth has led to increased exploitation of the surrounding boreal forest 
despite limited understanding of the environmental effects caused by development. 
Previous studies have typically focused on laboratory animals exposed to commercially 
available chemicals or extracts of oil sands process-affected material (OSPM; including 
process-affected water, tailings, and coke). The oil sands region provides an ideal 
location for studying local adaptations through reciprocal transplant (RT). Local 
adaptations require certain ecological factors to prevail, such as low gene flow, spatial 
variability in exposure to environmental effects, and genetic variation in traits associated 
with tolerance of these effects. The objectives of this research were: (1) to determine if 
H. azteca from habitats with naturally occurring bitumen exhibited increased tolerance 
to contaminants associated with industrial bitumen extraction compared to H. azteca 
from habitats with no naturally occurring bitumen and (2) to determine if any observed 
tolerance was attributable to local adaptation or plasticity. The RT occurred in reference 
wetlands located off oil sands leases and away from oil sands development and 
reclaimed sites located on oil sands leases and adjacent to mining and upgrading 
activities. Five populations of Hyalella azteca were tested in the RT, four from local 
wetlands plus one naïve laboratory population. Survival, sensitivity, and behaviour were 
measured before and after the RT period. Behaviour was tested in a phototaxis assay 
while sensitivity was assessed using 48 h acute LC50 tests. Survival varied by 
population and site. Pre-RT sensitivity increased along a gradient of increasing 
exposure to contaminants. After the RT, sensitivity decreased in every population. 
There were no significant differences in pre- or post-RT behaviour results for all 
populations. hese results show that the differences in responses among populations are 
likely attributable to developmental differences driven by environmental variables and 
not local adaptation. 
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INTRODUCTION 

In northern Alberta, native aquatic populations, such as Hyalella azteca, are 

constantly exposed to naturally-high environmental levels of bitumen and other organic 

compounds because rivers cut through ore deposits. This exposure, over generations, 

can lead local populations to exhibit a higher tolerance and lower sensitivity to naturally 

occurring contaminants relative to naïve animals from outside the region. These 

differences manifest as local adaptations which can be measured using a suite of 

endpoints such as survival, growth, and reproduction, among others. If the differences 

between populations are pronounced enough, they could have consequences for the 

genetic diversity of a species (Hughes et al. 2008). Genetic diversity of a species, in 

turn, can affect a host of important ecological processes such as primary productivity, 

population recovery from disturbance, interspecific competition, community structure, 

and nutrient fluxes (Hughes et al. 2008). As a result, local adaptations that effect a 

change in genetic diversity can influence population, community, and ecosystem level 

dynamics.  

LOCAL ADAPTATION  

What is Local Adaptation? 

Local adaptation is the pattern of increased fitness and the process leading to it 

for animals within their local habitat compared to foreign habitats (Kawecki and Ebert 

2004). Local adaptation is driven by divergent selection. Divergent selection is driven by 
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environmental differences in habitats such that a local population should evolve traits 

that provide it with some advantage in its local habitat relative to other, non-local 

genotypes. In the absence of other constraints, this advantage should manifest as a 

higher relative fitness for resident populations in their local habitat compared with 

populations originating from other habitats (Hereford 2009). However, local adaptation 

is not a necessary outcome of divergent selection, and can be confounded and 

hindered by other forces such as gene flow, genetic drift, temporal variability, and lack 

of genetic variation (Klerks 2002).  Studying adaptation can be difficult, and even 

impossible, since it necessarily relies on comparisons between the ancestral (less-

adapted) trait and the current (more-adapted) trait in order to determine differences 

attributed to selection forces. In the absence of directional selection, gene flow is 

expected to reduce genetic differentiation across habitats. Since gene flow acts 

opposite local adaptation, the existence of a pattern of local adaptation despite gene 

flow demonstrates the strength of the selection pressures imposed by environmental 

variables. These environmental pressures can be so strong that selection is readily 

apparent (e.g., Gallun 1984).  

How do Local Adaptations Occur? 

Local adaptations are encouraged by a number of ecological factors, including: 

low gene flow, strong selection against genotypes optimally adapted to other habitats 

but moderate selection against intermediate genotypes, low temporal variation in the 

magnitude of selective forces, small differences between habitats in size and quality, 

the presence of costs or constraints on adaptive plasticity, and genetic variation in traits 
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associated with contaminant tolerance (Kawecki and Ebert 2004; Pease et al. 2010). 

For example, small differences in habitat quality, such as contaminant concentration, 

can drive directional selection towards more tolerant genotypes while less tolerant 

genotypes may not be able to survive in the contaminated environment. Larger 

differences in habitat quality elicit stronger selection pressures on intermediate 

genotypes, making it difficult for a population initially adapted to one habitat to invade 

new habitats. However, this benefit conferred in the local habitat usually comes with a 

trade-off cost that manifests as lower relative fitness in a different habitat (Hereford 

2009; Kawecki and Ebert 2004). This pattern of local adaptation has been documented 

in multiple studies and across multiple organisms, from copper-tolerant crustaceans 

(Khan et al. 2011), through creosote-tolerant killifish (Ownby et al. 2002), to mammals 

like the Norway rat and its resistance to the rodenticide warfarin (Bishop and Cook 

1981).  

How are Local Adaptations Tested? 

Local adaptation should manifest as improved fitness for a local population in its 

local habitat compared with a different habitat. This pattern of local adaptation can be 

tested by studying more than two populations across at least two habitats, which allows 

a direct comparison between genotypes under similar environmental conditions. 

Reciprocal transplant (RT) experiments are ideal because they allow the researcher to 

investigate the effects of the entire habitat; however, they are not always possible for 

other reasons (logistical, legal, ethical, etc.). A popular alternative is the common 

garden experiment, in which properties of different habitats are re-created in the 



4 
 

laboratory and tested using different populations. This approach has drawbacks, 

though. For example, not all variables important to selection may be replicated in the 

laboratory setting and some animals may be more difficult to rear in a laboratory setting 

than others. Many examples of studies detecting local adaptations exist (as reviewed by 

Reznick and Ghalambor 2001), including for animals exposed along a gradient of 

industrial contamination (e.g. Khan et al. 2011). In fact, the majority of local adaptation 

studies that document adaptive evolution do so in response to anthropogenic changes 

in the environment (Reznick and Ghalambor 2001).  

What Does Local Adaptation Look Like? 

When a population is naturally adapted to environmental conditions it should 

show improved fitness in its local habitat relative to other non-local populations. This is 

known as the ‘local’ vs. ‘immigrant’ comparison because the comparison is between the 

‘local’ population and the ‘immigrant’ populations introduced into the ‘local’ population’s 

habitat. All other factors and constraints being equal, any genetic differentiation 

observed between populations must be a result of divergent selection driven by 

environmental factors. Another comparison exists, called the ‘home’ vs. ‘away’ 

comparison. This comparison is less important to local adaptation, however, because it 

only compares how a single population performs in its ‘home’ habitat vs. an ‘away’ 

habitat. The reason this is less desirable is that differences between environmental 

variables can confound results. For example, survival of a population optimally-adapted 

to a resource-poor habitat may increase after transplant to a resource-rich habitat 

despite it being optimally-adapted for the resource-poor environment. For this reason, 
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Kawecki and Ebert (2004) argued that the ‘local’ vs. ‘immigrant’ comparison should be 

considered diagnostic of local adaptation. This adaptation can occur on multiple 

timescales depending on generation time, with some adaptations occurring in as little as 

a few years (as reviewed by Reznick and Ghalambor 2001).  

How Will This Project Contribute to Our Understanding of Local Adaptation? 

This project will study four native populations and one non-native population of H. 

azteca from four study wetlands in the oil sands region of northern Alberta. The oil 

sands region meets the required criteria previously described for local adaptation to 

prevail. Limited gene flow is achieved by the poor overland dispersal ability of Hyalella 

azteca. Spatial variability is achieved by selecting reference sites located away from oil 

sands operations while reclaimed sites are located adjacent to operations. Small 

differences between habitats in size and quality, such as ion and metal concentrations, 

are present because some sites are located adjacent to oil sands development while 

others are kilometres away upstream. Lastly, it is assumed that there is at least some 

genetic variation related to tolerance among the five different populations tested here. 

By comparing reclaimed wetlands that are adjacent to mining operations but do not 

incorporate oil sands process-affected material (OSPM) into their construction, to 

reference wetlands that receive no industrial effluent or input, an estimate can be made 

as to the effect of oil sands operations on the H. azteca metapopulation endemic to the 

region. Any effects seen in the reclaimed wetlands tested here, therefore, should be a 

result of environmental factors associated with those reclaimed wetlands that are 
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adjacent to oil sands operations. Local adaptations have not yet been studied using 

Hyalella azteca in Canada’s oil sands region.  

In summation, local adaptation is measured by two criteria: comparison between 

populations within a habitat (‘local vs. foreign’) and comparison of a population across 

habitats (‘home vs. away’) (as reviewed by Kawecki and Ebert 2004). Of these, the 

most important comparison for local adaptation is between local and foreign populations 

within each test habitat (Kawecki and Ebert 2004). This comparison is considered 

diagnostic of local adaptation because it tests divergent natural selection, the driving 

force behind local adaptation, while environmental variables remain constant. ‘Home vs. 

away’ confounds the effect of divergent selection with habitat quality, because it is 

unknown which environmental variables would be responsible for observed differences 

(Kawecki and Ebert 2004). Local adaptation, which is expected to confer some fitness-

related benefit to an animal in its local habitat regardless of the consequences of these 

traits in other habitats, can be investigated by exposing several different populations of 

a species in a spatially heterogeneous environment and measuring responses based on 

fitness-related traits, such as survival.  

My research objectives were: (1) to determine if H. azteca from habitats with 

naturally occurring bitumen exhibit increased tolerance to contaminants associated with 

industrial bitumen extraction compared to H. azteca from habitats with no naturally 

occurring bitumen and (2) to determine if any observed tolerance is attributable to local 

adaptation or plasticity. These objectives were accomplished by subjecting the five H. 

azteca populations to a 14 day RT in situ at the four study wetlands. Endpoints 

measured included: survival after RT period, sensitivity to a reference toxicant before 
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and after the RT period, and behavioural response to light before and after the RT 

period. The animals’ sensitivity to the reference toxicant before and after RT was 

compared to determine if the wetlands had an effect on their ability to tolerate the 

reference toxicant. Similarly, a baseline pre-exposure behavioural assay assessed the 

normal response to light for each population while the post-exposure assays highlighted 

any deviations from the normal caused by exposure. Phototaxis was investigated 

because changes in the normal negative phototactic response of H. azteca have been 

documented in amphipods exposed to contaminants (see Phipps 1915). By comparing 

survival, sensitivity, and behavioural responses of these different populations in habitats 

characterised by different environmental factors, we can conclude not only whether or 

not local adaptation has occurred in any of the populations tested, but can also draw 

conclusions about what environmental factors may be driving such divergent selection.  

LITERATURE REVIEW ON OIL SANDS EFFECTS ON AQUATIC 

INVERTEBRATES 

Oil sand is a mixture of naturally occurring bitumen, sand, and water with 

bitumen saturation levels ranging from 1% to 18% (Government of Alberta 2014). With 

the development of in situ technologies pioneered in the 1990s such as steam assisted 

gravity drainage and cyclic steam stimulation, bitumen has become a major source of 

energy in Canada, surpassing the production of conventional crude oil in Alberta in 

2001 and comprising 56% of total production by 2013 (Alberta Geologic Survey 2012; 

CAPP 2014a). As of July 2013, the number of mining, upgrading, and thermal in situ 
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projects grew to include 114 existing installations (i.e. mining projects, in situ projects, 

upgrading facilities, etc.), of which six are major mining projects with three more 

proposed (Government of Alberta 2014). Alberta’s oil sands deposits cover 142,200 km2 

in the Athabasca region of northern Alberta representing the largest oil sands deposit in 

the world (Alberta Geologic Survey 2012). As of September 2013, 844 km2 of boreal 

forest had been disturbed by these projects (Government of Alberta, 2014). Industry 

operating in the region is required by law to reclaim all disturbed land to an equivalent, 

but not necessarily an identical, productive state (Government of Alberta 2014).  

The large-scale land disturbance required for extraction and open-pit mining of 

bitumen has placed great importance on reclamation strategies in the region. Bitumen is 

extracted using the Clark hot water process, which creates large volumes of OSPM 

laden with environmental contaminants. The water used during the extraction process is 

pumped to tailings ponds where it is allowed to settle before being reused. As a result, 

contaminants within OSPM are concentrated. Chief among these contaminants are 

naphthenic acids (NAs), polycyclic aromatic hydrocarbons (PAHs), metals, and salts.  

Alberta’s oil sands represent a novel venture in the energy sector. With 

production and investment increasing at record levels, both environmental monitoring to 

evaluate effects on the surrounding habitats and effective reclamation strategies are 

important. With the large volume of OSPM stored on-site recent research has focused 

on the impacts of OSPM on aquatic organisms, specifically fish, amphibians, and 

macroinvertebrates. A search of the current literature surrounding oil sands and 

macroinvertebrates generated 22 publications. The search was initially performed in 

May 2013 (and again in June 2015) using the following keywords in the Web of Science 
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online database and Google Scholar web search: oil sands, macroinvertebrates, aquatic 

macroinvertebrates, and Hyalella. The initial results were further narrowed down to 

studies that had an aquatic invertebrate component in their experimental design and 

were directly related to Athabasca’s oil sands region. Only peer-reviewed literature was 

selected for this literature review. Of the 22 studies selected for review, 11 were 

conducted in situ and 13 were conducted ex situ (two studies had both an in situ and ex 

situ component). A number of different stressors were studied, including natural bitumen 

(one paper), OSPM (19 papers), commercial NAs (one paper), extracted NAs (two 

papers), PAHs (one paper), and metals (five papers). No studies thus far have 

examined the effects of diluted bitumen (dilbit) on aquatic macroinvertebrates. All 22 

studies focused on animals that are endemic to the Athabasca oil sands region. 

Different endpoints were investigated depending on the study, with the most common 

being survival (10 papers), followed by community assemblages (nine papers), 

development (eight papers), bioconcentration (five papers), behaviour (two papers), 

biochemical (one paper), and malformations (one paper).  

In one recent study, Chironomus dilutus larvae were exposed to either untreated 

OSPM or ozonated OSPM in a 10 d acute toxicity assay and a chronic emergence 

assay. After the 10 d acute exposure, populations exposed to untreated OSPM had the 

lowest survival, while survival of larvae in the ozonated treatments was similar to 

controls (Anderson et al. 2012a). Chronic exposure to untreated OSPM caused 

significantly lower rates of pupation (31% in untreated OSPM and 71% in controls) and 

emergence (8% in untreated OSPM vs. 81% in controls). Other studies found similar 

results of decreased survival with exposure to a stressor (OSPM organic compounds 
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extract, coke leachates, or NA extracts) in Chironomus dilutus (Anderson et al. 2012b), 

Ceriodaphnia dubia (Puttaswamy and Liber 2012; Puttaswamy and Liber 2011; 

Puttaswamy et al. 2010), and Daphnia magna (Armstrong et al. 2009; Frank et al. 

2009). 

Some of the earliest studies on invertebrates in the region compared benthic 

macroinvertebrate communities from upstream (no natural bitumen) and downstream 

(naturally occurring bitumen) sites along the Steepbank River and found that 

downstream sites supported fewer individuals per unit area and fewer burrowing taxa as 

well as fewer sensitive taxa such as stoneflies and mayflies (Barton and Wallace 1979a; 

1979b). In a pair of studies from 2010, researchers compared community assemblage 

metrics from reference lakes in the Athabasca region with lakes in a high sulphur 

deposition region (Parsons et al. 2010a; 2010b). The test lakes in the high sulphur 

deposition region had lower abundances of benthic macroinvertebrates sensitive to 

pollutants such as Ephemeroptera, Plecoptera, and Trichoptera. However, the cause of 

those differences is more likely related to the differences in lake physico-chemical 

properties than a result of atmospheric deposition (Parsons et al. 2010a). More recently, 

wetlands that incorporated OSPM into their construction or received input from industry 

activities showed lower macroinvertebrate trophic diversity, predator biomass, and 

species richness than those not incorporating OSPM (Bendell-Young et al. 2000; 

Kovalenko et al. 2013).  

Some of the developmental endpoints studied in the oil sands region included 

growth, emergence and pupation (chironomids), and reproduction and fecundity 

(daphniids). Water fleas (Ceriodaphnia dubia) exposed to two different coke leachates 
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(one leached at pH 5.5, the other 9.5) had significantly impaired rates of reproduction in 

seven day chronic tests (Puttaswamy and Liber 2011). The observed toxicity was 

attributed to nickel in the pH 5.5 treatment and vanadium in the pH 9.5 treatment 

(Puttaswamy et al. 2010; Puttaswamy and Liber 2011). In a follow-up study, water fleas 

were exposed to coke leachates that were leached in the presence of different 

concentrations of inorganic ions (bicarbonate, sulphate, and chloride). In three-brood 

daphniid tests, fecundity decreased in a concentration-dependent manner for both Ni 

and V (24 neonates per adult in controls compared with 11 neonates per adult in 2.25 

µg L-1 Ni or 11 neonates per adult in 500 µg L-1 V) independently as well as in mixture 

assays (four neonates per adult in 2.25 µg L-1 Ni + 500 µg L-1 V) (Puttaswamy et al. 

2012).  

Bioaccumulation has also been studied in the Athabasca oil sands region. For 

example, H. azteca were exposed to increasing concentrations of two V species, V(IV) 

and V(V), for seven days. The H. azteca tissues contained V(IV) even when animals 

were only exposed to V(V), indicating that V is taken up and metabolised by H. azteca 

(Jensen-Fontaine et al. 2013). Another study in which microcosms were constructed 

using petroleum coke and embedded in a constructed wetland for three years found that 

Aeshnid spp. dragonflies may be accumulating Ni, V, La, and Y, possibly through their 

diet. They also found that chironomids had the highest tissue concentrations of every 

metal measured, probably due to their close association with sediment putting them in 

direct contact with metals (Baker et al. 2012). Yet another study compared food web 

area and length among sites with three different groupings: low NAs (0-4 mg L-1), 

medium NAs (4-15 mg L-1), and high NAs (>15 mg L-1). There were no significant 
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differences in food web area, food web length, or carbon isotopes between low, 

medium, and high sites. However, differences existed in nitrogen isotopes between 

sites which they suggested was a result of ammonia from OSPM (Elshayeb et al. 2009). 

Farwell et al. (2009) found similar results, with high 15N values found in invertebrates 

along a gradient of increasing exposure to mature fine tailings and consolidated tailings.  

Behaviour is one of the lesser-studied endpoints among oil sands 

macroinvertebrate literature. The two studies reviewed here compared larval chironomid 

activity during acute and chronic exposures to untreated OSPM and found that those in 

experimental groups spent more time outside of their larval cases which could increase 

their risk of predation (Anderson et al. 2012a; 2012b).  

Chironomids were also the subjects of studies that looked at malformations and 

biochemical processes related to oil sands exposure. In one study, researchers found 

that one group of chironomids collected from a wetland receiving oil sands effluent had 

a slightly higher frequency of mentum deformities (8%) when compared to controls (0%) 

(Bendell-Young et al. 2000). The only study to look at biochemical processes affected 

by OSPM exposure quantified abundances of transcripts related to oxidative stress, 

such as glutathione-s-transferase, catalase, apoptosis-inducing factor, and glutathione 

peroxidase, and abundances of transcripts related to endocrine disruption, such as the 

estrogen-related receptor, the ecysteroid receptor, and ultraspiricle protein. They found 

that abundances of some transcripts increased (glutathione peroxidise, apoptosis-

inducing factor, estrogen-related receptor, ecysteroid receptor, and ultraspiricle protein) 

in animals exposed to fresh OSPM after seven days relative to controls but not for aged 

OSPM (Wiseman et al. 2013). Abundances for other transcripts were lower (glutathione-
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s-transferase) or not significantly different (catalase) in animals after seven days of 

exposure to fresh OSPM compared to animals from control treatments (Wiseman et al. 

2013). 

The results of the reviewed studies highlight the varied responses observed in 

animals exposed to different concentrations and types of contaminants associated with 

oil sands operations. Oil sands process-affected material water chemistry is dependent 

on a number of factors, including ore quality, source, extraction processes, and age of 

OSPM (Allen 2008). These differences in water chemistry can lead to spatial variability 

in areas affected by oil sands operations, with nearer sites being more heavily 

influenced, as well as within reclaimed wetlands incorporating OSPM of different ages 

and treatment regimes into their construction. As a result, the Athabasca oil sands 

provide a unique opportunity to study local adaptations, which have not yet been 

addressed in oil sands literature, and the possible consequences on the H. azteca 

metapopulation endemic to the region. 

HYALELLA AZTECA 

Range, Distribution, and Abundance 

Hyalella azteca is a freshwater amphipod crustacean found ubiquitously 

throughout North America. It is not uncommon to find Hyalella azteca in any permanent 

water body that reaches 10°C in the summer throughout North America, including lakes, 

ponds, wetlands, marshes, estuaries, streams, ditches, and even rivers from Mexico to 
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the tree line in Canada (Bousfield 1958). Populations can occur in large densities (up to 

10,000 per m²) under ideal conditions. 

As a member of the talitroidean amphipod family Hyalellidae, Hyalella azteca has 

several characteristics that it shares with other members of the same family. In northern 

Alberta, it is one of two common amphipods, the other being Gammarus lacustris. They 

are easily distinguished based on the presence (H. azteca) or absence (G. lacustris) of 

overlapping dorsal plates that look like teeth on segments eight and nine as well as the 

lack of an accessory flagellum on the first antenna in H. azteca (Clifford 1991). They are 

also very different in adult size, with H. azteca growing to about 8mm (females are 

slightly smaller) while G. lacustris is typically about 20 mm long. 

Ecology 

Hyalella azteca is an epibenthic detritivore. It prefers somewhat alkaline and hard 

waters with a typical pH range of 6.0-8.0 and typical hardness of < 200 mg L-1. Hyalella 

azteca is also somewhat tolerant of high salinity (as high as 2-3%) and occasionally 

occupies estuarine habitats. The species occurs abundantly in lentic environments 

(more so than lotic), especially those with vegetation it can use as both a food source 

and as cover. It is typically found associated with the surficial 1-2 cm of sediment in an 

aquatic habitat. The species is also known for its ability to tolerate low dissolved oxygen 

(30 d lowest-observed-effect concentration < 0.3 mg L-1) and high carbon dioxide 

(Nebeker et al. 1992; Environment Canada 2014). Hyalella azteca is an important food 

source for many other animals including fish, waterfowl, wading birds, salamanders, and 

other larger invertebrates (de March, 1981) thus making it a key component of the 
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benthic environment. In a study of waterfowl from a lake in Saskatchewan, it was found 

that H. azteca accounted for up to 96% of their seasonal diet (Krapu and Reinecke 

1992).  

Reproduction 

Hyalella azteca reproduces sexually and typically reaches sexual maturity about 

30 days after birth in 20°C water (Environment Canada 2014). Their life cycle is typically 

annual, beginning with the spring warm up. Once water temperatures reach about 10°C, 

overwintering females produce a large clutch of eggs. The female is grabbed by the 

male in amplexus, who waits for her to moult so that he can fertilise the eggs. She then 

carries the developing young in her marsupium, or brood pouch, until her next moult 

when they are released and the cycle begins again. As temperatures increase 

throughout summer, females continue to mate and produce broods, albeit typically 

smaller in number of offspring. The previously overwintering females die before the next 

winter, while the later summer broods will overwinter and begin the cycle again. The 

newly hatched animals go through a number of instars (5-8) before reaching sexual 

maturity. It is not uncommon for a single female Hyalella azteca to release 1 to 50 

offspring per brood (Environment Canada 2014).  

Relevance 

Hyalella azteca has been used often in toxicology assessments since the 1980s. 

The species has a few advantageous qualities that make it ideal for toxicity testing, 

including ease of culture, short generation time, and common distribution throughout 
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North America (Strong 1972). Hyalella azteca was found at almost all of the wetland 

sites surveyed in the study region including on-site at Suncor in several wetlands, 

although not in sufficient numbers for toxicity testing. Also, the methodology for acute 

and chronic testing using H. azteca is well established and documented by both 

Environment Canada and the USEPA. These factors make it an ideal test organism for 

this project, which employs both acute and chronic testing. Since it is native to the 

region, the results are directly applicable and may be of specific interest to parties 

pursuing reclamation, remediation, and protective water quality guidelines in the region. 

Additionally, by adding a fifth, non-native laboratory culture population, assumptions can 

be tested about how well standard toxicological testing using laboratory cultures 

extrapolates to in situ situations where animals are exposed to a suite of contaminants 

at once instead of one or two at a time.  

Why Macroinvertebrates? 

The use of aquatic invertebrates as model organisms in toxicological tests has 

many advantages.  Principal among these advantages is their size; being much smaller 

than higher order organisms, aquatic invertebrates require much less space for rearing 

and experimentation.  Another advantage is their lifespan, which is generally short, 

allowing for multi-generational studies that could take years to complete in vertebrates 

(Dahms et al. 2011). Ubiquitous throughout northern Alberta, H. azteca primarily lives 

on the benthic surface, which makes it ideal for testing the effects of OSPM since 

reclamation strategies often incorporate OSPM into wet reclamation landscapes as a 

component of sediment (Kovalenko et al. 2013). For my testing purposes, the 
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Environment Canada Environmental Protection Series Biological Test Method for 

sediment or water-only assays using H. azteca was followed (Environment Canada 

2014).  

Why Reciprocal Transplant? 

Reciprocal transplant designs have been used in the past to determine 

differences in responses to environmental factors between native and foreign 

populations (as reviewed by Hereford 2009). A RT experiment permits the researcher to 

determine whether observed differences in population responses to different habitats 

are caused by plasticity or genetic differentiation based on whether or not the defining 

pattern of local adaptation (i.e., higher survival in a native wetland population than in a 

non-native wetland population) is observed in the response variables. The differences in 

tolerance between native and foreign populations exposed to elevated levels of 

toxicants are well documented in aquatic invertebrates. Some examples include 

freshwater unionid clams (Hinch et al. 1986), which showed that growth rate was 

affected by population source while shell shape was affected by transplant destination. 

In a more recent study, Gammarus pulex from clean and historically impacted sites 

were transplanted along a Cu and Zn gradient (Khan et al. 2011). Animals from the 

historically impacted sites accumulated less Cu and Zn and experienced lower levels of 

oxidative stress and mortality than animals from reference sites. 
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METHODS AND MATERIALS 

STUDY AREA  

The study area was located in northern Alberta near Fort McMurray and Suncor’s 

oil sands base plant. Fort McMurray (56°43'44”N 111°23'5"W) is situated south of oil 

sands development on the banks of the Athabasca and Clearwater Rivers. First settled 

in 1870, Fort McMurray has recently experienced a surge of growth thanks to oil sands 

development. In 1999, the population was 42,871, while current estimates put it near 

116,407 (RMWB 2015). Twenty six kilometres to the north of Fort McMurray on 

Highway 63 is Suncor’s main base plant, straddling the banks of the Athabasca River. 

The plant began construction in 1964 and was opened in 1967 ahead of schedule and 

with an expected output of 45,000 barrels per day (bpd) (Suncor 2015). Suncor 

experienced moderate growth and expansion into the 1990s, when the bucketwheels of 

the past were replaced with cost efficient shovels and trucks. It was during this time that 

Suncor opened its Steepbank (1994) and Millennium (2001) mines, bringing total 

production up to 288,000 bpd by 2013 (AER, 2014). At the same time, total oil sands 

production from all producers reached 1.9 million bpd and is expected to continue to 

increase at a rate of 170,000 bpd annually through 2030 (CAPP 2014a). The increased 

production has resulted in record profits and investment in the region with $155 billion in 

annual investment planned over the next 25 years (CAPP 2014b).  

The first open-pit mine at Suncor was on the west bank of the Athabasca River 

(57° 0'14.99"N 111°28'51.91"W) and has since been exhausted. Now, the west bank is 

home to a series of tailings ponds and the upgrading and power generating facilities. Oil 
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sands are extracted from open-pit mines using large hydraulic shovels and hauled to 

the extraction plant by some of the largest haul trucks in the world (capacity: 400 short 

tons). Once in the extraction plant, bitumen is separated from the sand through a 

combination of chemical and mechanical processes. The bitumen becomes frothy and 

rises to the surface of the extraction vessel where it is skimmed off the top and 

transported for further upgrading. The extraction and upgrading processes produces 

large amounts of OSPM as by-products, typically in the form of liquid tailings (water, 

dissolved salts, organic compounds, minerals, residual bitumen), hereafter referred to 

as oil sands process-affected water (OSPW) and petroleum coke, a solid, 

carbonaceous, and heterogeneous solid (Allen 2008; Puttaswamy and Liber 2011). Due 

to a strict zero-discharge policy (Government of Alberta 2010), oil sands producers are 

not permitted to release OSPW. This policy has created the need for large tailings 

ponds that act as settling basins for tailings, allowing the heavier components to settle. 

In this manner, companies reuse their OSPW to limit their withdrawals from the 

Athabasca River. Tailings ponds occupy roughly 182 km2 and are expected to persist 

for decades at current settling rates while the volume of stockpiled coke was 84 million 

tons in 2014 (AER 2014).  
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All experimental study sites were located on Suncor’s west bank (Figure 1). 

Several experimental wetlands were considered for study, but ultimately two reclaimed 

sites were selected from a possible seven. The chosen two were Contaminated-1 

wetland (Co-1) and Contaminated-2 wetland (Co-2). These wetlands were initially 

chosen for a number of reasons: (1) because of previous work conducted at each site, 

(2) to overlap this project with an amphibian research project in the same region, (3) 

because H. azteca were found in sufficient numbers for testing, and (4) because both 

Figure 1. Map of the study area in northern Alberta. Arrows indicate direction of water flow. (H. Beery 2015) 

 

Figure 2. Proportional survival of four populations in each of four study wetlands. Those sharing the same 
lower-case letter designation represent populations at a single site that are not statistically different 
from one another while those sharing upper-case letter designation represent one population across 
all sites.Figure 2. Map of the study area in northern Alberta. Arrows indicate direction of water flow. 
(H. Beery 2015) 
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wetlands formed opportunistically in reclaimed areas. Each of these wetlands was 

designated as reclaimed, meaning that they formed and continue to exist in reclaimed 

areas on oil sands leases. 

The Co-2 wetland formed opportunistically on the site of a reclaimed ex-gravel pit 

in 2011. Located at 56°58'31.39"N 111°27'34.70"W just outside the east gate of Suncor, 

Co-2 receives no manmade input. The Co-1 wetland is located at 56°59'15.45"N 

111°32'23.24"W. It is a reclamation area where overburden was stored when it was 

initially stripped for mining. A wetland formed there opportunistically and it is not 

uncommon to find large numbers of waterfowl there. Located in a reclaimed area to the 

west of Pond 5, it receives no manmade input.  

In contrast, the reference wetlands were located upstream of both Fort McMurray 

and oil sands industry development. Reference sites were defined as any wetlands not 

receiving direct or indirect input from oil sands operations. The Cl-1 wetland was located 

at 56°45'39.73"N 111°37'47.50"W, about 10 km west of Fort McMurray. It is directly 

adjacent to the road, which is used primarily for recreational access to the boreal forest 

surrounding Fort McMurray. The Cl-2 wetland is located at 56°31'9.16"N 

111°16'45.04"W, approximately 15 km south of the Fort McMurray city limits. It sits 

adjacent to the highway. These wetlands were chosen for a few reasons: (1) the 

presence of H. azteca in sufficient numbers to support this study, (2) upstream of oil 

sands and municipal development, (3) minimally influenced by human activity, and (4) 

ease of accessibility.  
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EXPERIMENTAL APPROACH 

Recall that local adaptations are driven by directional selection imposed by 

differences in environmental factors between sites. These differences include 

concentrations of contaminants, such as metals. Alberta`s oil sands region provides an 

ideal location for testing local adaptations for two reasons: (1) there are differences in 

habitat quality between reclaimed and reference wetlands (see Table 1, Table 2) and 

(2) limited gene flow between wetland sites. To test whether or not local adaptations 

have occurred in the region, I executed a 14 day in situ RT experiment using both local 

and foreign populations of H. azteca. Sensitivity was tested because any changes in 

sensitivity should be driven by the differences in environmental factors associated with 

each site. Phototaxis was investigated because changes in the normal negative 

phototactic response of H. azteca have been documented in amphipods exposed to 

contaminants (see Phipps 1915). Sensitivity to a reference toxicant and phototactic 

response were tested before and after the RT to determine: (1) the effect that caging 

had on the animals, (2) whether or not differences in environmental factors of sites were 

pronounced enough to affect population response to a known OSPM-associated 

toxicant, and (3) whether or not environmental factors differed enough between sites to 

affect the phototactic response typical of H. azteca.  

Reciprocal Transplant Design 

For the RT, populations were collected from two reference and two reclaimed 

sites in the Athabasca oil sands region. The two reference sites chosen were Cl-1 and 

Cl-2 and the two reclaimed sites chosen were Co-1 and Co-2. These sites were chosen 
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based on the presence of H. azteca and because they overlapped with previous and 

ongoing research. The two reclaimed sites represent the two different age groups in the 

literature of reclaimed wetlands in the region. The Cl-2 wetland was designated young 

(< 7 years old) and the Cl-1 wetland was designated old (> 7 years old). These 

designations were chosen from the literature because reclaimed wetlands that are < 7 

years old have higher rates of mortality in tadpoles (Hersikorn et al. 2010) and lower 

invertebrate richness than > 7 year old wetlands (Kovalenko et al. 2013).  

Individuals were collected from among littoral vegetation using small dip nets. In 

this way, 1500 individuals from each of the four wetlands were collected from July 20th 

to July 25th, 2014. The remaining 1500 were received via courier from the Canadian 

Centre for Inland Waters (CCIW, Burlington, ON) and an in-house culture at Lakehead 

University (which, in turn, was started from the CCIW animal stock). Prior to the RT, the 

animals were kept in 11 L Rubbermaid replicates in the temperature-controlled onsite 

laboratory with constant aeration and a 16:8 h light to dark ratio.  

For the experiment itself, the five different populations (Cl-1, Cl-2, Co-1, Co-2, 

and laboratory) were transplanted to the four different wetland sites (Cl-1, Cl-2, Co-1, 

Co-2). In this way, each population was represented at each exposure site during the 

test. The exposure period began on July 25th, 2014, with the introduction of the H. 

azteca to the replicates within each wetland. Populations were housed in 11 L 

Rubbermaid replicates with holes cut in the side and replaced with 500 µm Nitex mesh. 

The bins each held 100 individuals and were replicated three times per site for a total of 

300 individuals from each population housed within each site (1500 individuals per 

wetland, 6000 individuals total). The replicates were each provided with a standard 
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meal of 0.27 mg TetraMin commercial fish food flakes per individual every two days (as 

described by Environment Canada 2014). The exposure period ended on August 8th, 

2014, when all animals were counted and collected for post-exposure experiments. At 

the end of the exposure period, proportional survival was calculated for each population. 

Survival has been shown to be the most sensitive indicator of chronic toxicity for H. 

azteca, and not reproduction as is the case with D. magna (Borgmann et al. 1993; 

Keithly et al. 2004). By comparing survival of these different populations in habitats 

characterised by different environmental factors, we can conclude not only whether or 

not local adaptation has occurred in any of the populations tested, but can also draw 

conclusions as to which (if any) environmental factors are driving local adaptation. 

Sensitivity Study Design 

For the sensitivity experiment, a pre-exposure baseline LC50 and a post-

exposure LC50 were estimated for each of the five populations. These tests were 

conducted as 48 h water-only acute assays according to methods described in EPS 

1/RM/33 2nd edition (Environment Canada 2014). Cadmium sulphate octahydrate (3 

CdSO4 · 8 H2O) was chosen as a reference toxicant because Cd is one of the metals of 

concern associated with oil sands development as well as a USEPA priority pollutant 

(USEPA 2014) and was present in each wetland study site (unpublished data). The 

assays were conducted in standard artificial media five-salt (SAM-5S) reconstituted 

laboratory water at nominal concentrations of 0, 1, 4, 22, and 88 µg L-1. The SAM-5S 

water was developed for long-term laboratory testing and culturing using H. azteca 

(Borgmann 1996). These concentrations were chosen based on reported literature 
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values taken from the USEPA’s EcoTox Database for H. azteca (USEPA 2015). Each 

test consisted of 10 randomly selected individuals placed into a test vessel at one of the 

previously mentioned concentrations for 48 h. After 48 h, the survivors were counted 

and frozen for later use.  Each test was replicated three times for a total of 15 test 

vessels per experiment and 150 individuals. All five populations (Cl-1, Cl-2, Co-1, Co-2, 

and laboratory) were tested for pre-exposure baseline LC50s. 

The post-exposure sensitivity experimental design was the same as the pre-

exposure design except using the individuals that were collected after the 14 d 

reciprocal transplant. The main difference between the pre- and post-exposure assays 

was the number of treatment groups. While the pre-exposure experiment had five test 

populations, the post-exposure experiment had 20, one for each of the five populations 

held in each of the four wetlands.  

Behaviour Study Design 

The behavioural study experimental design followed the same basic principles as 

the sensitivity design. A behavioural assay was chosen based on the negative 

phototactic response in Hyalella Azteca (see Phipps 1915). Before and after the RT 

exposure period, populations were tested for their response to light. The experimental 

setup used a six-well plate with half of each well occluded with black acrylic paint on the 

outside. The plate was then placed on top of a custom LED circuit board that had one 

clear LED situated beneath each well. When the light was turned on, approximately half 

of each well was illuminated. The entire setup was placed inside a box to prevent 

interference from outside light sources. A camera placed in the top of the box recorded 
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the individuals for the duration of the experiment. When it was time to begin the 

experiment, a pre-determined amount of SAM-5S reconstituted laboratory water was 

placed into each well of the six-well plate along with one randomly selected individual 

per well. The individuals were allowed to acclimate to the test chamber for four minutes 

before the experiment began. Individuals were recorded for the following eight minutes 

and proportion of time spent in the dark half of the well was determined for each 

individual.  

WATER QUALITY ANALYSES 

Water samples were collected at three points during the RT exposure period 

from each wetland on July 24th, July 31st, and August 9th, 2014. Samples were collected 

in 1 L Nalgene bottles and immediately placed on ice for storage prior to shipping to the 

Lakehead University Nutrient Ecology Laboratory in Thunder Bay, ON, Canada. 

Parameters measured included: specific conductivity, pH, alkalinity (as mg L-1 CaCO3), 

NO2 + NO3, total nitrogen, dissolved organic carbon, Ca, K, Mg, Na (Table 1), and trace 

metals using ICP-MS (Table 2). All trace metals samples were filtered through a 0.45 

µm filter and acidified using 3% HNO3 prior to being analysed.  

STATISTICAL TREATMENT 

All analyses were conducted using R: A language and Environment for Statistical 

Computing (R Core Team 2014). The survival results of the RT experiment were tested 

for normality and homogeneity of variances using Shapiro-Wilks test and Bartlett’s test 

of variance, respectively. The proportional survival data were arcsine square root 
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transformed to account for any deviations from normality. The RT survival data were 

analysed using a two-way analysis of variance (ANOVA) with the two factors as source 

population and exposure site to determine if there were any differences among 

treatments or statistical interactions. Post-hoc analysis was conducted using Tukey’s 

honest significant difference (HSD) test to determine where the significant differences 

were. For the sensitivity tests, LC50s were calculated using probit analysis and 

significance was determined using the ratio test described by Wheeler et al. (2006). 

Behavioural results, measured as proportion of time spent in the dark half of the well, 

were tested for normality and homogeneity of variances using Shapiro-Wilks and 

Bartlett’s test, respectively. Once assumptions were verified, results were analysed 

using a two-way ANOVA with population and site as factors.  

Any differences between treatment groups can be attributed to either differences 

in population characteristics or differences in site-specific variables such as trace metal 

concentrations. To investigate if water chemistry could explain these differences non-

metric multidimensional scaling (NMDS) was performed on all water chemistry 

parameters. Where values were below the detection limit, half of the detection limit was 

used. Compared to other forms of ordination, such as principal component analysis, 

NMDS uses rank orders instead of Euclidean distances, making it a more flexible tool 

for handling data sets characterised by a large set of analytes, in excess of the number 

of samples taken (see Clarke 1993). In NMDS, sites and species are grouped together 

by similarity using a Bray-Curtis dissimilarity matrix and reconstructed in n-dimensional 

space, where n is chosen by the researcher. As with other ordination techniques, fewer 

dimensions make for easier interpretation. In NMDS, axes do not represent any specific 
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variables but rather are oriented arbitrarily in n-dimensional space. However, what is not 

arbitrary is the position of points relative to one another (Clarke 1993). Here, the relative 

distance between points represents the relative similarity in water chemistry. In other 

words, the nearer points are to one another in n-dimensional space, the more similar 

their water chemistry. In order to further interpret the data, a surf function was used to 

overlay a contour plot of the distribution of survival within each population on the 

ordination axes. 

RESULTS 

HYALELLA AZTECA SURVIVAL 

Survival was typically highest in reference sites, with the exception of the Cl-2 

population exposed in its native wetland. Mortality was highest (~80%) in the Cl-2 

population exposed in both the Cl-1 and Cl-2 reference sites and so the Cl-2 population 

was removed from further analysis. Survival varied by both site (F = 9.021, df = 3, p = 

0.0001) and population (F = 3.401, df = 3, p = 0.027). The remaining populations 

showed the highest survival in the Cl-1 reference site, with the exception being the Cl-1 

population, which saw the highest survival in the Co-1 reclaimed site (Figure 2). This 

counterintuitive trend was observed in each site, where a foreign population had higher 

but still not significant survival than the local population. In the Cl-2, Cl-1, and Co-2 sites 

there were no statistical differences among treatments. In the Co-1 reclaimed site, the 

Cl-1 reference population showed statistically higher survival than the Co-2 reclaimed 
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population (t = -3.379, p = 0.039). This was unexpected because the Co-2 population 

was from a reclaimed site while the Cl-1 population was from a reference site.  

For comparisons within populations, survival was highest in the reference sites or 

Co-1 reclaimed site, which appeared to function more like a reference site based on 

observed survival. Co-2 reclaimed, Co-1 reclaimed, and laboratory populations all 

showed the highest survival in the Cl-1 reference site, while Cl-1 showed the highest 

survival in the Co-1 reclaimed site. The lowest survival for all populations was in the Co-

2 reclaimed site with the exception of the Co-2 and Co-1 reclaimed populations, which 

Figure 2. Proportional survival of four populations in each of four study wetlands. Those sharing the same 
lower-case letter designation represent populations at a single site that are not statistically 
different from one another while those sharing upper-case letter designation represent one 
population across all sites. 

 

Table 1. Basic water chemistry results for the study wetlands (n = 3).Figure 2. Proportional survival of four 
populations in each of four study wetlands. Those sharing the same lower-case letter designation 
represent populations at a single site that are not statistically different from one another while 
those sharing upper-case letter designation represent one population across all sites. 
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saw their lowest survival in the Cl-2 reference site. Survival in the Co-2 reclaimed site 

was significantly lower for the Cl-1 reference population (Co-2-Cl-1: t = -3.634, p = 

0.027; Co-2-Co-1: t = -4.777, p = 0.006; Co-2-Cl-2: t = -3.596, p = 0.029). Within the Co-

2 reclaimed population, the only statistical significance was between individuals in the 

Cl-2 reference site and individuals in the Cl-1 reference site (t = 3.382, p = 0.039). For 

the Co-1 reclaimed population, survival in the Cl-1 reference site was significantly 

higher than survival in the Cl-2 reference site or the Co-2 reclaimed site (p = 0.027 and 

0.035, respectively). Within the laboratory population, a non-significant trend of higher 

survival in reference sites than in the reclaimed sites was observed. 

WATER CHEMISTRY 

The pH of all wetlands was between 7.3 and 8.1 (Table 1), indicating that all sites 

were slightly alkaline. Specific conductivity was lowest in Cl-1 and increased through Cl-

2, Co-1, and Co-2. Alkalinity was highest in Co-1 at 215.1 mg L-1 as CaCO3 and lowest 

in Co-2 at 116.2 mg L-1 as CaCO3. The two reference sites were intermediate between 

them at 209.5 (Cl-1) and 145.8 (Cl-2) mg L-1 as CaCO3. The high specific conductivity of 

the reclaimed sites was also reflected in their high hardness values. Both Co-1 and Co-

2 water were almost twice as hard when compared to Cl-1 and Cl-2. Metal 

Table 1. Basic water chemistry results for the study wetlands (n = 3). 

 

 

Table 2. Mean and standard error of trace metals in the four study wetlands (n = 3). Analytes with no 
standard error had fewer than three replicates or too many replicates below the detection limit. 
Bold denotes maximums and minimums.Table 3. Basic water chemistry results for the study 
wetlands (n = 3). 
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concentrations varied across all four wetlands. Metals that were most associated with 

reclaimed sites over reference sites included Ni, Cu, and Sr. Nickel values were 10 

times higher in reclaimed sites than in reference sites while Cu values were two to eight 

times higher in reclaimed sites than reference sites (Table 2). Similarly, Sr values in 

reclaimed sites were almost double those of reference sites. Some metals were higher 

in reference sites than in reclaimed sites, such as As, Cr, and V. Chromium 

concentration was almost twice as high in reference sites compared to reclaimed sites. 

A similar trend was observed in V, which was two times higher in reference sites than 

reclaimed sites. The remaining metals varied by site with no clear, apparent trends.

 

Table 2. Mean and standard error of trace metals in the four study wetlands in µg L-1 (n = 3). Analytes 
with no standard error had fewer than three replicates or too many replicates below the detection 
limit. Bold denotes maximums and minimums. 

 

 

Table 4. Mean and standard error of trace metals in the four study wetlands (n = 3). Analytes with no 
standard error had fewer than three replicates or too many replicates below the detection limit. 
Bold denotes maximums and minimums. 
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SURVIVAL TRENDS WITH WATER CHEMISTRY MAPPING 

Some metals (Al, Li, Mn, Mo, Nb, Pb, Sb, W, Y, Zr) were removed from the 

ordination because of insufficient measurements to calculate a mean or because too 

many measurements were below the detection limit (Cd). The Kruskal stress test of the 

NMDS ordination was 0.03, indicating that the fit of the ordination using two dimensions 

was good (Clarke 1993). Each site tended to cluster around other points from the same 

site, indicating that those sites were similar. The Co-2 reclaimed site was characterised 

by higher Ni, Cu, and specific conductivity, while the Cl-1 reference site was 

characterised by higher levels of As, DOC, V, and Cr. Intermediate to those two were 

the Co-1 reclaimed site and Cl-2 reference site. The polygons drawn over each cluster 

Figure 3. Ordination of wetland sites using NMDS (stress = 0.03) with polygons outlining sites that share 
similar water chemistry. Large font denotes analytes, small font denotes subsites. 

 

 

Figure 3. Ordination of wetland sites (excluding H881) using NMDS (stress = 0.03) with polygons outlining 
sites that share similar water chemistry. Large font denotes analytes, small font denotes subsites. 
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of sites showed that they distinctly separated out from each other (Figure 3).  

For the Cl-1 population, survival was lowest in the Co-2 sites (Figure 4) which 

were characterised by higher Ni, Cu, and specific conductivity than the reference sites. 

Survival increased near the Co-1 sites reaching a maximum before it decreased slightly 

in the Cl-1 sites, which were characterised by lower levels of Cu, Ni, and specific 

conductivity, and higher levels of As, V, Cr, and DOC. Survival was lowest where Ni, 

Cu, and specific conductivity were highest. Where Ni, Cu, and specific conductivity were 

lower, survival increased, along with As, V, Cr, and DOC. Similar patterns can be seen 

in the Co-1 (Figure 5), Co-2 (Figure 6), and laboratory (Figure 7) population survival 

distribution contour plots. 

Figure 4. Survival distribution contour plot for the Cl-1 population compared with water chemistry. 
Numbers on contour lines represent % survival. 

Figure 4. Ordination of wetland sites (excluding H881) using NMDS (stress=0.03) with polygons outlining 
sites that share similar water chemistry. Large font denotes analytes, small font denotes subsites. 

 

Figure 4. Survival distribution contour plot for the TR population compared with water chemistry. Numbers 
on contour lines represent % survival. 
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Figure 5. Survival distribution contour plot for the Co-1 population compared with water chemistry. 
Numbers on contour lines represent % survival. 

Figure 6. Survival distribution contour plot for the Co-2 population compared with water chemistry. 
Numbers on contour lines represent % survival. 

 

yalella azteca sensitivity testingFigure 6. Survival distribution contour plot for the FL population compared 
with water chemistry. Numbers on contour lines represent % survival. 
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HYALELLA AZTECA SENSITIVITY TESTING 

The lowest LC50, corresponding to the highest sensitivity, was observed in the 

naïve laboratory population and increased through Co-1, Cl-2, and Cl-1 (Table 3). The 

highest LC50, corresponding to the lowest sensitivity, was observed in the Co-2 

reclaimed population. The only two statistically different populations were the laboratory 

and Co-2 organisms. After the RT exposure period, animals from each treatment group 

were subjected to a post-exposure sensitivity challenge in the form of a 48 h water-only 

LC50 assay using the cadmium sulphate octahydrate reference toxicant. The LC50s 
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Figure 7. Survival distribution contour plot for the laboratory population compared with water chemistry. 
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calculated for post-exposure populations were unreliable in statistical comparisons 

because all of the post-exposure LC50s were higher than the highest treatment 

concentration tested. However, the high LC50s highlighted an observed trend towards 

decreased sensitivity after the 14 d exposure period in all populations tested relative to 

pre-exposure values (Figure 8). 

 

Table 3. Estimated pre-exposure LC50 values by population. Those of the same letter are not 
significantly different. 

 

 

Table 3. Estimated pre-exposure LC50 values by population. Those of the same letter are not 
significantly different. 

 

Figure 8. Cadmium LC50s for each population before (pre-RT) and after RT. Error bars represent one 
SEM. Populations not shown did not survive the RT in sufficient numbers to be tested. 
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HYALELLA AZTECA BEHAVIOURAL TESTING 

For the pre-exposure assays no population was statistically different from any 

other (Figure 9), but there was an observed trend towards less time spent in the dark for 

the laboratory population. For the post-exposure behavioural assays (Figure 10), all 

treatment groups showed similar preference for the dark side (~60-70%) and no 

treatments were statistically different.  

 

Figure 9. Proportion of time spent in the dark side of the well for the five populations from pre-exposure 
behaviour assays (n = 12). Those of the same letter are not significantly different. 

 

 

Figure 9. Proportion of time spent 

in the dark side of the well for the five 

populations from pre-exposure 

behaviour assays (n = 12). Those of the 

same letter are not significantly different. 
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DISCUSSION 

Despite clearly demonstrated environmental gradients, we observed no evidence 

for local adaptation in Hyalella populations in northern Alberta. According to Klerks 

(2002), by definition a population adapted to an environment is less affected by 

exposure to said environment than a non-adapted population. Based on this description 

and the data presented previously, local adaptation has likely not occurred in the 

populations of H. azteca tested within the scope of this study.  In Figure 2, all 

populations had lower survival in their local wetland than foreign populations, which is 

Figure 10. Proportion of time spent in the dark side of the well for the populations tested in behaviour 
assays (n = 12). Error bars represent 95% confidence intervals. Populations not shown did not 
survive the RT in sufficient numbers to be tested.  

 

 

Table 3. Estimated pre-exposure LC50 values by population. Those of the same letter are not significantly 
different.Figure 10. Proportion of time spent in the dark side of the well for the populations tested 
in behaviour assays (n = 12). Error bars represent 95% confidence intervals. Populations not 
shown did not survive the RT in sufficient numbers to be tested.  
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counter to what is expected in the ‘local vs. foreign’ comparison. For example, within the 

Cl-1 site, the Cl-1 population had the lowest observed survival. Similarly, the Co-1 

population in Co-1 wetland had only the second highest survival and the Co-2 

population in the Co-2 wetland had the third highest survival. Furthermore, when 

comparing results using the ‘home vs. away’ method, all populations had higher survival 

in an away wetland than their home wetland, which is also counter to what would be 

expected had local adaptation occurred here. For example, the Co-1 and Co-2 

populations had higher survival in the Cl-1 wetland relative to their home wetlands, 

while Cl-1 had higher survival in both Co-1 and Cl-2 wetlands than in its home wetland. 

Other studies have found that the ‘local vs. foreign’ pattern of local adaptation 

holds true in habitats with contaminant gradients. Two populations, one naïve and one 

historically impacted, of Gammarus pulex held in five sites in the River Hayle (UK) along 

a polymetal (Cu, Zn) gradient showed that the historically impacted population survived 

significantly longer than the naïve population at more contaminated sites with higher 

concentrations of Cu and Zn (Khan et al. 2011). Another study field-collected 

Ceriodaphnia pulchella from reference sites and a site historically impacted by acid 

mine drainage (AMD) and reared them in the lab for five generations before exposing 

them to water samples characterised as either reference or AMD contaminated. Both 

acclimated (lab-reared five generations) and non-acclimated (recently collected) 

individuals were exposed in order to assess if differences in sensitivity were because of 

environment-induced physiological alterations or local adaptation. In both experiments, 

animals from the historically impacted site survived significantly longer than reference 

animals (Lopes et al. 2005). Another study found that chironomids from a contaminated 
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site had higher rates of emergence from contaminated sediment than clean sediment 

while chironomids from a clean site had higher emergence in clean sediment than 

contaminated, suggesting a trade-off associated with higher fitness in the contaminated 

environment (Bahrndorff et al. 2006).  

Some studies that have investigated local adaptation have found inconsistent or 

no evidence for local adaptation. One study on Bromus tectorum sown at sites with 

different environmental characteristics found that survivorship and fecundity were 

affected by site and year of planting but not by seed source population (Rice and Mack 

1991). The same pattern was observed in other RT experiments using Plantago 

lanceolata (Antonovics and Primack 1982) and Chamaecrista fasciculata (Galloway and 

Fenster 2000). In each of these studies, local adaptation was observed only in the most 

extreme habitats or those that were furthest (1000+ kms) apart, suggesting that 

metapopulation processes and temporal environmental variation hinder local 

adaptation. These results highlight the importance of plastic responses to varying 

environmental conditions because genetic bases for variation in fitness can be 

overwhelmed by environmental determinants of fitness (Hartgerink and Bazzaz 1984).  

One possible reason for not seeing the effects of local adaptation in the 

populations tested here is that oil sands development has only recently accelerated and 

not enough time has passed for local adaptations to develop. In G. pulex from the River 

Hayle (UK), the environmental pressures driving divergent selection were related to 

copper and zinc mine drainage that began as early as the seventeenth and eighteenth 

centuries and continue today (Khan et al. 2011). In contrast, oil sands mining only 

began in the middle part of the nineteenth century and it was not until the 1990s that it 
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experienced rapid acceleration. A similar environmental impact timeframe can be seen 

in a study from Louisiana in which mosquitofish (Gambusia affinis) collected from a site 

historically impacted by petrochemical drainage from 1920 to 1995 initially showed 

higher tolerance to Pb compared to control fish. However, after being held in clean 

laboratory water for 34 d, all tolerance to Pb had disappeared from subsequent assays 

using the historically impacted population, indicating that tolerance was due to 

acclimation and not adaptation (Klerks, 2002). However, other studies have shown that 

adaptations can establish relatively quickly in the presence of strong environmental 

pressures such as contaminant concentration. In one study, least killifish (Heterandria 

formosa) were selected for tolerance to Cd and after six generations, median survival 

times had increased three-fold in 6 mg L-1 Cd exposures (Xie and Klerks 2001). Another 

study characterised through genetic and physiological evidence the “rapid” invasion of 

freshwater habitats by a marine copepod (Eurytemora affinis) as having occurred within 

a period of 60 years (Lee 1999). A review of adaptive evolution studies defined “rapid” 

adaptation as having occurred within the last 200 years (Reznick and Ghalambor 2001).  

Significant gene flow can also hinder local adaptation (Klerks 2002; Kawecki and 

Ebert 2004). Low gene flow can substantially reduce the rate of evolution resistance in 

house flies (Taylor et al. 1983). In the populations tested here, gene flow is assumed to 

be low because of the poor overland dispersal ability of H. azteca coupled with the 

somewhat large (in some cases, 50+ km) distances between wetlands, making it 

unlikely to hinder local adaptation. However, strong selection pressures can overcome 

the influence of low levels of gene flow (e.g., May and Dobson 1986). In the present 

study, the environmental factors (i.e., habitat quality) may not be strong enough to drive 
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adaptive change in the wetlands tested. The largest differences in habitat quality among 

wetland sites were in specific conductivity, water hardness, and some metals (e.g., Cu, 

Ni, As, V, Cr), however, the concentrations of metals measured here were relatively low 

compared to other studies which have shown local adaptation. For example, in the G. 

pulex study in the River Hayle (UK) Cu concentrations ranged from 0.8 to 42.7 µg L-1 

while the range of Cu concentrations reported here were 0.55 to 3.90 µg L-1 (Khan et al. 

2011). In the present study, the environmental pressures of habitat quality may not be 

strong enough to overcome the hindering effects of low gene flow.  

Local adaptation typically has a trade-off associated with higher fitness in the 

local site that manifests as lower relative fitness in foreign sites (Hereford 2009; 

Kawecki and Ebert 2004). The magnitude of the trade-off is dependent on the 

magnitude of differences in habitat quality such that larger environmental differences 

between sites produce larger trade-offs in adapted populations (as reviewed by 

Hereford 2009). In the present study, the environmental differences between sites were 

not large enough to elicit an obvious trade-off and this is evidenced by the reclaimed 

Co-1 population having the highest survival in both a foreign reference wetland and a 

foreign reclaimed wetland (Figure 2). This does not mean that local adaptation has not 

occurred, but it does provide a strong rationale for the observed changes being 

attributable to plasticity rather than adaptation.  

Pre-exposure LC50s determined using the reference toxicant showed a trend 

toward decreasing sensitivity along a gradient of increasing contamination (Table 3). 

The completely naïve laboratory population showed the highest sensitivity followed by 

Co-1, Cl-2, Cl-1, and Co-2 in decreasing order. The Co-2 population, which was 
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collected from the most contaminated and youngest site, showed a significantly higher 

tolerance for the reference toxicant when compared to the naïve laboratory population. 

This pattern of increased tolerance along a gradient of increased contamination has 

been demonstrated in other organisms such as bacteria, plants, and animals (as 

reviewed by Klerks and Weis 1987). However, this is not necessarily indicative of local 

adaptation but rather physiological changes related to developmental differences driven 

by environmental variables such as water chemistry (Klerks and Weis 1987; Lam 1999). 

For the behavioural experiment, results indicated that phototaxis is not affected by 

chronic exposure in the wetlands tested here. These results indicate that phototaxis is 

not a good indicator of sublethal toxicity in the wetlands tested here. A longer exposure 

period or higher concentration of contaminants may elicit a different response than the 

results reported here. 

In conclusion, this research supports the hypothesis that the four populations of 

H. Azteca from northern Alberta tested here have not undergone local adaptation in 

response to oil sands development. Additionally, it shows that naïve laboratory 

populations of H. azteca respond similarly to native wild-caught populations from both 

reference and reclaimed sites. Future research on local adaptation in northern Alberta 

should look to test populations from reclaimed wetlands incorporating different types of 

OSPM into their construction. 
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