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ABSTRACT 

 
 

Lipid A, a unique disaccharide glycolipid, is the active principle of Gram-negative 

bacterial lipopolysaccharide in activating the innate immune response via Toll-like 

receptor 4 (TLR4). Given the important role that TLR4 plays in innate immunity, and 

ultimately, the development of an adaptive immune response, ligands that can modulate 

TLR4-mediated signalling have great therapeutic potential as both vaccine adjuvants, and 

anti-sepsis agents. In attempting to develop novel ligands which can successfully 

modulate TLR4-mediated signalling in a well defined fashion, simplified structures 

which aim to mimic the natural lipid A structure have shown great promise. 

 
The notion of cancer immunotherapy, in which the vast power of the immune system is 

tapped to prevent and/or eradicate the disease has begun to garner considerable attention. 

Tumour associated carbohydrate antigens, carbohydrate containing epitopes which are 

either unique of over-expressed by cancer cells, are viable targets of said immunotherapy. 

A major limitation, however, is the low antigenicity displayed by these carbohydrate 

epitopes. Studies have shown that the inclusion of adjuvant structures, especially when 

directly chemically conjugated to the antigen, improve the success of anti-cancer 

vaccination efforts. 

 
The primary goal of this study has been aimed at the development of novel vaccine 

adjuvants, specifically the design of novel molecular frameworks to mimic the structure 

of lipid A in the activation of TLR4. A secondary goal of this study has aimed at the 
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application of successful novel lipid A mimics as the immunostimulatory component of 

self-adjuvanting carbohydrate antigens for use in therapeutic cancer vaccines. 

 
One novel molecular framework that has been designed and synthesized employs a 

flexible, acyclic diethanolamine-based scaffold to mimic one of the sugar moieties 

natural to the lipid A disaccharide. Several structural variations of this framework were 

generated for structure-activity relationship studies in an effort to maximize 

immunostimulatory potency. The mimics were evaluated in vitro for their ability to 

induce TLR4-mediated cytokines. All variations showed confirmed TLR4 stimulatory 

activity, the potency of which was dependent on the functionalization of the terminal 

ethanol moiety of the diethanolamine-based acyclic scaffold. In vivo studies evaluating 

the adjuvant potential of this novel family of lipid A mimics are currently underway. 

 
As part of an industrial partnership aimed at the development of novel vaccine adjuvants, 

a second lipid A mimic framework was designed and synthesized, in which an aromatic 

residue has been incorporated into the structural backbone. Two structural variations of 

the framework were generated which vary in the functionalization of the phenolic 

hydroxyl of the aromatic-based backbone. Several in vivo studies have shown that both 

mimics exhibit potent TLR4 immunostimulatory activity, and successful adjuvant 

properties. 

 
In an effort to construct a fully synthetic, self-adjuvanting tumour associated 

carbohydrate antigen for eventual use in therapeutic cancer vaccines, the 

immunostimulatory activity of the diethanolamine-based lipid A mimic framework 

designed herein, was tapped. As such, a conjugate structure in which the lipid A mimic 
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framework and the Thomsen-Friedenreich carbohydrate antigen are directly linked via a 

flexible chemical linker was designed and synthesized. Future studies will determine the 

ability of the conjugate to induce an effective antibody response towards the carbohydrate 

epitope. 
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1 INTRODUCTION & OBJECTIVES 
 
1.1 The Immune System 
 
1.1.1 An Introduction to Immunity 
 
Immunity is a biological term describing a state in which sufficient biological defences 

are present to avoid infection or disease. The immune system is a complex, multilayered 

system comprising two separate arms: (i) innate immunity, and (ii) adaptive immunity. 

The innate and adaptive immune responses, although separate, work in concert to protect 

the host 1. 

 

The innate immune system represents the first line of defence against pathogens that have 

entered the body. Characteristic to innate immune responses are rapid kinetics, providing 

almost immediate protection, in addition to the lack of both antigen specificity, and the 

learning process that ultimately generates immunological "memory". The primary role of 

the innate immune system is the induction of an inflammatory response that serves to 

control the spread, and eliminate much of the invading pathogen. The second, equally 

important role that the innate immune response serves is the induction of the adaptive 

immune system 1. 

 

Adaptive immunity provides a second line of defence, often at later stages of pathogenic 

infection. Adaptive immune responses are characterized by slow kinetics, and effector 

mechanisms which are highly antigen specific. After elimination of the pathogen, the 

adaptive immune response ultimately establishes a state of immunological "memory", 

thus allowing for a much more rapid, and stronger immunological response if the 
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pathogen is encountered further. This "memory" is the hallmark of the adaptive immune 

response, and is the basis of preventative vaccination strategies 1. 

 
1.1.2 The Innate Immune System 
 
Cells of the innate immune system represent a very diverse set of cells, comprising both 

tissue-residing cells such as macrophages and dendritic cells, in addition to non-tissue-

residing, rather, "moving" cells, such as neutrophils, eosinophils and monocytes that 

patrol the body via the blood and lymph circulation 2.  

 

The cells of the innate immune system are able to detect an invading pathogen through a 

limited set of innate immune receptors often referred to as pattern recognition receptors 

(PRRs). PRRs recognize a series of conserved structural motifs found throughout the 

pathogenic world known as pathogen-associated molecular patterns (PAMPs). Some 

examples of common PAMPs include bacterial products such a peptidoglycan, 

lipoteichoic acid, lipopolysaccharide (LPS), flagellin, as well as viral RNA. Among 

PRRs, Toll-like receptors (TLRs) have garnered considerable attention as pivotal 

components of the innate immune system. These receptors are capable of sensing a wide 

spectrum of organisms including bacteria, viruses, and parasites 2. TLRs will be 

discussed in detail in the coming sections. 

 

In addition to the TLR family, another family of intracellular PRRs have been identified. 

The NOD-like receptor (NLR) family of cytoplasmic receptors comprises over 20 

members able to react to intracellular pathogen-derived structures 3. Remarkably, the 

NLR family can also sense cellular damage, even in the absence of a pathogen-derived 
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trigger, via natural ligands referred to as danger associate molecular patterns (DAMPs). 

These DAMPs can include normal intracellular constituents that are released upon cell 

lysis. The discovery of the NLR family has altered the notion of the innate immune 

system as that being only able to detect infectious events, to that which is now able to 

detect both infectious events and the consequences of said infections 4. 

 

Phagocytosis represents the primary effector mechanism of innate immune response, in 

that nearly all cells of the innate immune system are effective phagocytes 5. Efficient 

elimination of pathogens via phagocytosis requires the rapid recruitment of effector cells 

to the site of infection, a process knows as the inflammatory response. Upon pathogen 

recognition, innate immune cells secrete a series of chemokines and cytokines that both 

attract phagocytes from the blood circulation, and also increase their phagocytic capacity. 

Elevated secretion of cytokines and chemokines leads to the recruitment of cells and 

plasma proteins to the infection site through increased vessel permeability, ultimately 

resulting in the classical signs of inflammation such as swelling, redness, heat, and pain 6. 

 
1.1.3 The Adaptive Immune System 

 
Due to the limited diversity of the PRRs of the innate immune system, the detection and 

elimination of those pathogens displaying a high mutation rate, or those pathogens, such 

as viruses, that are able to replicate intracellularly, is particularly challenging. The 

adaptive immune system is a highly sophisticated response involving antibodies and T-

lymphocytes that has evolved in response to these challenges 7. 
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Antibodies are proteins that are produced by B lymphocytes. Characteristic to antibodies 

is an almost infinite diversity, from which virtually all known molecular structures, 

whether biological or synthetic, can be recognized. Each B lymphocyte expresses 

numerous copies of a unique antibody as a receptor on the cellular surface known as the 

B cell receptor (BCR). Upon encounter with it's particular antigen, the respective B cell is 

stimulated to divide and differentiate into plasma B cells and memory B cells. Most 

plasma B cells return to the bone marrow, where they produce large amounts of soluble 

antibodies of their respective specificity that are released into the blood and other fluids. 

The binding of an antibody to its target is often sufficient to render the antigen harmless. 

However, more often the antigen-antibody complex is able to recruit additional effector 

mechanisms that ultimately lead to pathogen destruction 8, 9. 

 

Although antibodies allow the immune system to react with a large variety of antigens, 

these large proteins cannot cross the cellular membrane, thus rendering them ineffective 

at detecting and eliminating intracellular pathogens. To achieve this seemingly difficult 

task, T lymphocytes exploit the fact that nearly all cells display peptide fragments derived 

from intracellular proteins at their cellular surface. These intracellular peptides are 

presented to T lymphocytes bound to transmembrane presenting molecules encoded by 

the major histocompatibility complex (MHC) genes in humans. Similar to B 

lymphocytes, T lymphocytes express a unique antigen-specific receptor on their cell 

surface called the T cell antigen receptor (TCR), which is a specialized receptor able to 

recognize the molecular complex made up of a given intracellular peptide fragment and 

accompanying MHC molecule. T lymphocytes that react to protein fragments of 
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cytoplasmic origin are identified by the expression of the CD8 cell surface marker, and 

react to peptide fragments presented by the class I MHC subset. In contrast, those T 

lymphocytes expressing the CD4 cell surface marker react to protein fragments bound by 

the class II MHC subset of presenting molecules, the likes of which are formed in the 

endocytic vesicles and are derived from proteins in the extracellular milieu. It is 

important to note that MHC class II molecules are only expressed by cells of the immune 

system known as antigen presenting cells (APCs). The complex mechanism of antigen 

presentation via MHC restriction allows the immune system to scan and detect 

intracellular proteins while maintaining cellular integrity 10.  

 

In terms of effector mechanisms, CD8+ lymphocytes possess the ability to inhibit 

intracellular pathogen replication through the secretion of soluble mediators which 

interfere with pathogen replication and induce the death of infected cells. Similarly, 

CD4+ lymphocytes secrete soluble mediators which can affect pathogen survival, 

however, the more important action of these cells is the regulation of other cells of the 

adaptive immune system. Thus, CD4+ T lymphocytes are commonly referred to as helper 

T cells, regulating the activity of other immune cells through the secretion of cytokines 11, 

12. 

 

With an almost infinite number of possible antigens, lymphocytes of a particular 

specificity are too infrequent to mount an effective immune response on their own. When 

a TCR or BCR of a lymphocyte binds to its respective antigen, in a process known as 

clonal selection, it induces its multiplication and therefore, increase in relative abundance 
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before, and after the immune response. Immunological memory is a consequence of this 

permanent alteration of the components of the immunological system, whereby a fraction 

of those now overrepresented lymphocytes is maintained during the life of the host, 

ultimately allowing for a faster and stronger response upon future encounter with the 

same pathogen 8, 13. 

 
1.1.4 Dendritic Cells: The Link Between Innate & Adaptive Immunity 
 
The selection and control of the complex array of effector mechanisms of the adaptive 

immune system requires the cooperation between various cell types. Activation of CD4+ 

helper T cells is an early and important step in the initiation of an immune response. The 

ability to activate naive helper T cells is a specific property of the rare class of APCs 

known as dendritic cells (DCs) 14, 15, 16. 

 

DCs are members of the innate immune system, and as such, express members of the 

TLR family. DCs also express receptors to several of the cytokines produced during an 

innate immune response in their environment. Signalling through these receptors leads to 

DC maturation. Maturation is characterized sequentially by the accumulation of high 

numbers of peptide antigen loaded MHC class II complexes at the cellular surface, loss of 

adherence of the DC with surrounding tissue and subsequent migration to the lymphoid 

organs, and finally, expression of the cytokines and costimulatory signals required for the 

optimal activation of naive CD4+ helper T cells. DC maturation represents a 

confirmation signal, effectively linking the development of an adaptive immune response 

to the previous recognition of an invading pathogen mediated by the innate immune 
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system. Moreover, DCs function as a "lens", in that they highlight certain pathogenic 

characteristics, thus indicating the correct adaptive immune effectors 17, 18. 

 
1.1.5 The Humoral Response & The Role of Helper T Cells 
 
Antigens able to directly activate the BCR of B lymphocytes, induce their differentiation 

into antibody secreting cells independent of helper T cell influence. These response are 

characterized by slow kinetics, and the secretion of low levels of mainly low affinity IgM 

antibodies. Overall, this type of primary response is most often inefficient for the 

elimination of invading pathogens. The typical secondary antibody response, 

characterized by rapid kinetics, and a higher, more sustained secretion of higher affinity 

IgG antibodies, only occurs under the control of helper T cells 19, 20, 21. 

 
1.1.6 Basic Principles of Modern Vaccination 
 
Vaccination rests on the premise of immunological memory, whereby the second 

encounter with a particular pathogen induces an enhanced immune response. An ideal 

vaccine should therefore represent an innocuous form of a given pathogen, able to elicit a 

strong and adequate immune response. The challenge for modern vaccinology is to be 

able to elicit all of the required steps leading to immune activation in vivo. Antigen 

presentation and DC maturation are currently thought of as the limiting step in the 

development of vaccines 22. 

 

Vaccine adjuvants are defined as compounds that modulate or increase the intrinsic 

immunogenicity of a particular antigen. Adjuvants allow the use of lower doses of 

antigens, thus minimizing the potential of adverse reactions. Recognizing the link 
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between the innate and adaptive immune response has led to a reappraisal of the role of 

adjuvants in vaccination, in that the ability to activate the innate immune system 

represents an obligatory property for an effective adjuvant. Recent observations have 

clearly indicated that most efficient adjuvants, including the widely used aluminium-

based salts, are able to activate an innate immune response by either directly activating 

DCs, or by inducing the release of those cytokines able to activate DCs. Greater 

understanding of the signals involved in the innate immune response has led to the 

rational design of immunological modulators as potential vaccine adjuvants 23. 

 
1.2 Toll-Like Receptors 
 
1.2.1 Discovery 
 
The discovery of a protein named Toll in Drosophila has revolutionized our 

understanding of the innate immune system. Toll was discovered as a membrane bound 

protein which was initially implicated in the development of polarity in the Drosophila 

embryo, and later shown to be responsible for anti-fungal defences in the adult fly. A 

genomic search resulted in the discovery of homologous proteins in mammals, which 

were called TLRs 24. Characteristics to these receptors is a defined amino acid homology 

with the interleukin-1 (IL-1) receptor. The Toll/IL-1 (TIR) domain has been shown to 

regulate intracellular signalling pathways through the interaction with intracellular 

adaptor proteins which differentially regulate the expression of the inflammatory 

cytokines associated with the innate immune response 25. To date, 13 mammalian 

members of the TLR family have been identified, and 10-or-more distinct TLRs have 

been identified in humans 26. 
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1.2.2 Ligand Specificity 

 
Although all members of the TLR family share a large degree of sequence homology, 

growing evidence suggests specificity in their recognition and response. The TLRs 

involved in the recognition of bacterial ligands are transmembrane proteins with leucine-

rich, horseshoe shaped extracellular domains that play a major role in PAMP based 

pathogen detection. TLR4 and TLR5 recognize LPS and bacterial flagellin respectively, 

while TLRs 1, 2, and 6 work cooperatively in the recognition of lipoproteins and 

glycolipids from Gram-positive bacteria. In contrast, the other members of the TLR 

family are restricted to intracellular compartments and recognize mostly viral products 

and nucleic acids; TLRs 3, 7, and 8 are involved in the detection of viral RNA, while 

TLR9 is specific to the recognition of unmethylated DNA common to both bacteria and 

viral sources 27. 

 

1.2.3 Signalling 

 
Activation of a TLR by its respective ligand leads to a conformational change in the TLR 

that ultimately results in the recruitment of intracellular adaptor proteins that initiate one 

of, or in the case of TLR 4, both of two separate intracellular signalling pathways (Figure 

1). One signalling pathway is mediated by the adaptor protein myeloid differentiation 

primary response gene 88 (MyD88),  whereas the other signalling pathway is mediated in 

concert by the adaptor proteins TIR-domain-containing adapter-inducing interferon-� 

(TRIF) and TRIF-related adapter molecule (TRAM) 28. 

 

The adaptor protein MyD88 is a member of the TIR family, with the primary effect of the 

MyD88 signalling cascade being the activation of the nuclear factor kappa-light chain-
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enhancer of activated B cells (NF�B). All TLRs, with the exception of TLR3, utilize the 

MyD88 signalling cascade. Upon interaction with the TIR domain of the TLR, MyD88 

recruits interleukin-1 receptor kinases (IRAKs) 1, 2, and 4, which subsequently 

phosphorylate and activate the protein tumour necrosis factor receptor associated factor 6 

(TRAF6). TLRs 1, 6, 2, and 4 accomplish this task with the help of the MyD88-adapter-

like (Mal) protein. TRAF6 serves to activate the NF�B essential modulator (NEMO), 

which in turn phosphorylates I�B, causing its degradation, thus allowing NF�B to diffuse 

into the nucleus, ultimately resulting in the transcription and induction of inflammatory 

cytokines such as tumour necrosis factor-� (TNF-�), IL-6, and IL-1� 28. 

 

Both TLR3 and TLR4 utilize the other TLR-induced intracellular signalling cascade, in 

which the adaptor proteins TRIF and TRAM are first recruited to the TIR domain of the 

activated TLR. TRIF activates the TANK binding kinase 1 (TBK1), which in turn 

activates the interferon regulatory factor 3 (IRF3), allowing for its translocation into the 

nucleus, and final induction of interferon � (IF-�) 28.  

 

In all, TLR signalling ultimately leads to the induction or suppression of thousands of 

genes that make up the inflammatory response. Although TLR signalling is highly 

pleiotropic, it also one of the most tightly regulated signalling pathways. Interestingly, 

TLR4 is the only TLR, which upon activation, induces both the MyD88 and 

TRIF/TRAM dependent signalling pathways 28. 
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Figure 1. Intracellular TLR Dependent Signalling (Adapted from Reference 28) 
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1.2.4 Therapeutic Potential 

 
Given the direct link between TLR activation and the maturation of DCs, which is 

thought to be the key step in the development of an adaptive immune response, TLR 

signalling has been pegged for its vaccine adjuvant potential. The identification of the 

natural ligands of the TLR family has led to the development of purified and synthetic 

ligands which can activate TLR signalling pathways in a well defined manner. The end 

goal of this research is the maximization of antigen immunogenicity while minimizing 

systemic inflammatory effects 29.  

 

Inhibition of pathogen induced TLR signalling is also an area of intense research. The 

inflammatory response induced by prolonged TLR activation can ultimately be harmful 

to the host. As our knowledge of the molecular basis of TLR activation increases, 

effective competitive inhibitors are being designed to alleviate the undesired effects of 

pathogen induced TLR activation 29. 

 
1.3 Toll-Like Receptor 4 
 
1.3.1 LPS as Trigger of TLR4 
 
LPS has been identified as the primary ligand of TLR4. LPS is a unique glycolipid 

molecule ubiquitous to Gram-negative bacteria where it is found in the outer portion of 

the outer membrane, which is the second lipid bilayer outside of the cytoplasmic 

membrane characteristic to this type of bacteria 30. Pffeifer first described this material 

firmly bound to the cells of Vibrio cholerae in 1892, and given its toxicity, aptly named 

the material endotoxin 31. LPS is, perhaps, the most effective trigger of the innate 



 13 

immune response, with its potent toxicity causing high fever, tissue damage, and even 

death in experimental animals. A serious clinical syndrome in humans known as septic 

shock, which can ultimately become fatal, occurs if LPS levels remain elevated for an 

extended period of time 32. 

 

Structurally, LPS consists of three distinct, covalently linked segments: the O-

polysaccharide, the core oligosaccharide, and a terminal glycolipid lipid A (Figure 2). 

The O-polysaccharide at the distal terminal is composed of repeating oligosaccharide 

units, the structure of which varies between bacterial species and strains. In contrast, the 

core oligosaccharide is comprised of more conserved structures. Finally, the glycolipid 

lipid A, located at the proximal terminal, anchors the molecule via hydrophobic 

interactions to outer membrane of the Gram-negative bacteria 31, 33. 

 

 
 
Figure 2. Schematic Representation of LPS 
 
 

1.3.2  Lipid A as Endotoxic Principle of LPS 
 
Westphal and Lüderitz noted that the mild acid treatment of LPS allowed for the cleavage 

of the bond between the core oligosaccharide and the glycolipid Lipid A. Lipid A was 

later shown to be solely responsible for the endotoxic activity of LPS 34. As such, the 
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chemical structure of Lipid A became an area of intense investigation. However, due to 

its amphipathic nature, extensive purification was inhibited. Therefore, the structure of 

the hydrophilic backbone and the presence of O- and N-linked acyl moieties were only 

proposed, with the exact structural details not known 35, 36. The first successful isolation 

of a single molecular species of Lipid A from Escherichia coli (E. coli) was reported by 

Imoto et al, and its chemical structure was elucidated by spectroscopic and chemical 

analysis 37. The backbone of Lipid A consists of a �-(1-6) linked disaccharide of 

glucosamine, which is bisphosphorylated at the 1- and 4'-hydroxyl groups (Figure 3). 

This disaccharide backbone is common to all lipid A molecules, regardless of bacterial 

species or strain. However, significant variability in the number, length, and composition 

of the acyl lipid chains exists between species. This structural variability has been 

proposed as one of the mechanisms responsible for the highly variable degree of toxicity 

associated with different bacterial strains 38. The E. coli Lipid A molecule was also 

synthesized by Imoto et al 38, 39, and shown to be identical with its natural counterpart in 

terms of both in vitro and in vivo activities 40. 
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Figure 3. Structure of Lipid A From E. coli 
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1.3.3 Mechanism of TLR4 Activation 

 
The interaction between TLR4 and LPS/lipid A has been, perhaps, the most studied of all 

mammalian TLRs, with significant effort gone into the delineation of the precise 

molecular events that ultimately lead to the profound biological response generated. 

Several obligate accessory proteins have been discovered that are critically involved in 

the recognition of LPS/lipid A. Lipopolysaccharide binding protein (LBP), found in 

serum, binds aggregate forms of LPS and facilitates the transfer of monomeric LPS to 

CD-14 41. CD-14 exists as both a serum soluble or as a membrane bound protein 42. 

Either form of CD-14 has been shown to be responsible for the transfer of monomeric 

LPS to a third accessory protein, MD-2 43. MD-2 is a protein which lacks any 

intracellular domain and has been shown to bind to the extracellular domains of TLR4 44. 

The TLR4-MD-2 complex is expressed as a heterodimer on the surface of immune cells. 

Transfer of LPS from CD-14 to MD-2 is thought to bring about a reorganization of the 

cytoplasmic TIR domain of TLR4, enabling the induction of the two separate signalling 

pathways associated with TLR signalling 45. 

 
1.3.4 TLR4 Signalling Antagonism 

 
Antagonism of the TLR4 signalling pathway has also been reported. Several natural 

antagonistic Lipid A structures have been isolated from various bacterial sources. For 

example, Lipid A structures from Rhodobacter sphaeroides and Rhodobacter caspulatas   

show potent antagonism of E. coli lipid A induced TLR4 activation (Figure 4) 46. 
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Figure 4. Natural Lipid A TLR4 Antagonists 
 
 

Lipid IVa, the tetra-acyl biosynthetic precursor of the E. coli Lipid A molecule, which 

lacks the two �-acyloxy lipid chains was proposed and synthesized  (Figure 5) 46, 47. 

Lipid IVa was shown to have full endotoxic activity as compared to E. coli lipid A when 

tested using murine cells 48. However, it was also shown to behave as an antagonist when 

tested in human cells, inhibiting the endotoxic activity of E. coli lipid A 49. 
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Figure 5. Lipid A Biosynthetic Precursor lipid IVa 
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Biochemical investigations have confirmed that murine MD-2 binds both lipid A and 

lipid IVa similarly, ultimately leading to TLR4 dimerization and activation with either 

ligand. The same combination of human MD-2 and TLR4 was found to also effectively 

bind lipid IVa, but neither a conformational change, or the dimerization of TLR4 occurs. 

Furthermore, a chimeric complex of murine TLR4 and human MD-2 behaves in the same 

manner. It was therefore concluded that MD-2 is responsible for this species-specific 

recognition difference 50. The antagonism of the TLR4 signalling cascade in the human 

system is viewed as a promising approach to the treatment of bacterial sepsis, a topic 

which is discussed in detail in the coming sections. 

 
1.3.5 Therapeutic Potential of TLR4 Signalling 
 
Given the far reaching impacts of the TLR4 signalling pathway, it is not a surprise that it 

has been targeted for its possible therapeutic potentials. The focus, thus far, has centered 

on three main areas of therapeutic potential: anti-sepsis treatment, vaccine adjuvants, and 

anti-cancer therapies 51. With an ever increasing knowledge of the biochemical pathways 

of TLR4 signalling, the manipulation of this pathway for potential beneficial effects is 

becoming a more realistic possibility. 

 

The secretory products released as results of bacterial LPS induced TLR4 activation serve 

to assist the host in eradicating, and preventing the spread of the infecting pathogen. 

Unfortunately, as previously mentioned, the continued presence of elevated levels of 

bacterial LPS in the blood, having been released from dead or dying bacteria, can lead to 

a biological over-reaction which results in the release of toxic levels of these cellular 

mediators. This reaction is referred to as the systemic inflammatory response syndrome, 
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and is commonly referred to as sepsis. Characteristic to sepsis are life threatening 

responses such as tissue damage, vascular leakage, hypotension, organ dysfunction and 

eventual failure resulting in death. The antagonistic action in humans of lipid IVa and 

various other natural lipid A molecules could potentially be employed for the treatment 

of sepsis. The competitive inhibition of these antagonists could serve to not only treat 

sepsis once it has developed, but also prevent the bacterial infections that ultimately 

cause the condition 51. 

 

Given the strong immunological responses that result from the activation of the TLR4 

signalling cascade, there has been significant effort in terms of employing it for its 

vaccine adjuvant potential. However, as will be discussed in detail in the next section, an 

underlying concern is the strong inflammatory response associated with TLR4 activation. 

In order to serve as a successful adjuvant system, the ability to stimulate the adaptive 

immune system must be uncoupled from the strong inflammatory cytokine response 52. 

 

Chemotherapy and radiation can successfully delay the progression of cancer, yet in 

many cases, the cancer can relapse. TLR4 agonism is a promising molecular treatment 

against chemotherapy and radiation relapsing cancer metastases. The potent anticancer 

action of microbes or microbial products has been known since the beginning of the 18th 

century when Deider reported that infection in cancer patients was concomitant with 

disease remission 53. This anti-tumour effect was later found by Shear et al to be due to 

LPS 54. It is now known that the TNF-� cytokine that results from TLR4 activation 

selectively increases the permeability of tumoural neoangiogenic vessels to cytotoxic 
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drugs 55. Moreover, nitric oxide derived from TLR4 activation participates in local 

tumouricidal activity against many different tumour types, the likes of which was later 

found to be associated with apoptosis 56, 57. Unfortunately, because of the toxicity 

associated with LPS, the treatment of cancer patients has been limited to the local 

application of small amounts of bacterial LPS, those doses being too low to obtain any 

beneficial anti-tumour effects 58. 

 
1.3.6  TLR4 Therapeutic Concerns 
 
In order for the modulation of TLR4 signalling to be practical for immunotherapeutic 

purposes, certain issues need to be addressed. The most important concern is the high 

toxicity associated with naturally derived Lipid A molecules. Therefore, an important 

issue for the design of safe immune modulators is a detailed knowledge of structure-

activity relationships (SARs), which could ultimately allow for the maximization of the 

beneficial effects, and the minimization of the undesired toxicity. This information has 

been difficult to obtain using naturally isolated compounds, a direct result of the 

inhomogeneity encountered with natural lipid A preparations. Natural preparations suffer 

from a lack of consistency in both composition and performance, even when derived 

from the same bacterial strain, Moreover, possible contamination with other 

inflammatory components is also of prime concern 59.  

 

Recent work has focused on the preparation of single molecular species by way of 

chemical synthesis. Chemical synthesis not only provides single, pure molecules, but also 

allows for the creation of structural analogs of the natural lipid A structure. By modifying 

the natural structure, those structural details that are beneficial to desired therapeutic 
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purposes may be separated from those details that are associated with the undesired 

toxicity. 

 

1.3.7 Lipid A Structure Activity Relationships 
 
Structure-activity analysis of LPS isolates from different bacterial species, and of 

synthetic lipid A derivatives indicate that both the length, and number of acyl chains are 

critical in the activation of TLR4. Studies indicate that the hexa-acylated lipid A from E. 

coli (Figure 3) maximally stimulates TLR4 60. Lipid A molecules with five or seven acyl 

chains are ~100 fold less active, while lipid IVa, the biosynthetic precursor with four acyl 

chains, lacks any agonistic activity, and is in fact, antagonistic to human TLR4 activation 

60, 61. Even among those hexa-acylated lipid A molecules, acyl chain length is strongly 

linked to TLR4 activation. It has been demonstrated that the optimum acyl chain length is 

12-14 carbons, with a rapid decline in activity noted with chain lengths less than 10 or 

greater than 16 carbons 62, 63. 

 

The two phosphate groups in the lipid A structure also greatly influence TLR4 

stimulatory activity. Deletion of either phosphate reduces endotoxic activity ~100 fold, 

while deletion of both abolishes all agonistic activity 64. It appears that phosphates 

specifically are not required, as substitution of the phosphate groups with other 

negatively charged groups has only minor effects 65, 66. 

 
1.3.8 Molecular Basis of TLR4 Activation 
 
Our understanding of the molecular basis of the LPS/lipid A activation of the TLR4 

receptor complex has increased significantly as of late, thanks largely to several crystal 
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structures. For instance, the crystal structure of human MD-2 was obtained in both its 

native form, as well as bound to the antagonistic lipid IVa. A large, deep hydrophobic 

cavity is reported, in which all four acyl chains of the ligand are found. No direct contacts 

are made between the lipid IVa ligand and TLR4. Moreover, the conformational change 

of MD-2 upon binding of lipid IVa was noted to be minimal 67. 

 

More recently, the crystal structure of the TLR4-MD-2 receptor complex bound to LPS 

has  been reported. The structure shows the lipid A portion of LPS binding to two copies 

of TLR4, with the dimerization facilitated through hydrophilic and hydrophobic 

interactions with LPS. Five of the six acyl chains of lipid A are found within the 

hydrophobic pocket of MD-2, with the remaining chain exposed to the surface where it 

forms hydrophobic interactions with phenylalanine residues on TLR4. The binding of 

LPS is noted to cause structural changes within a loop region of MD-2 (Phe 126), leading 

to hydrophilic interactions between TLR4 and MD-2 that further stabilize the complex 68. 

This structural change in the Phe 126 loop region of MD-2 following LPS binding is 

essential for the formation of the receptor complex dimers, and subsequent downstream 

signalling. This is supported by mutation analysis of Phe 126 in MD-2, which shows that 

alterations to this key amino acid prevents receptor complex dimerization 69. The two 

phosphate groups of lipid A form medium range ionic interactions with positively 

charged residues on both TLR4, and MD-2, as well as with the adjacent TLR4 of the 

dimer complex. This explains the phosphate-activity relationship discovered in the 

structure-activity studies mentioned in earlier sections, and why the phosphates can be 

replaced with other negatively charged groups 64, 65, 66. Moreover, in comparison to the 
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binding of the antagonistic lipid IVa, the extra lipid chain inserted into the binding pocket 

of MD-2 when LPS is bound results in the displacement of the di-glucosamine backbone 

of lipid A, such that the phosphate groups can form such key associations 68. 

 
1.3.9  Disaccharide Lipid A Analogs 
 
Over the past decade, a great deal of research has gone into the synthesis of analogs of 

the lipid A disaccharide structure, with hopes that the beneficial immunostimulatory 

properties can be separated from the associated high toxicity. One notable discovery is 

that through the removal of the anomeric phosphate and the 3-O acyl chain of the 

reducing sugar of lipid A derived from Salmonella minnesota RC595, a significant 

decrease in endotoxicity is achieved while immunostimulatory activity is still maintained 

69. The resulting structure has been named as monophosphoryl lipid A (MLA) (Figure 6), 

and has been synthesized along with numerous structural analogs 70. Certain MLA 

structures have shown excellent adjuvant characteristics, and have been approved for use 

in therapeutic vaccines 70, 71. 
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Figure 6. MLA structure derived from Salmonella minnesota RC595 Lipid A 
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Recently, it has been reported that the MLA somehow engages the TLR4-MD-2 receptor 

complex differently than those lipid A molecules which possess high endotoxicity. MLA 

has been shown to selectively activate only the TRIF-TRAM dependent arm of the TLR4 

signalling pathways. The failure of MLA to engage the Myd88 pathway, which controls 

the expression of inflammatory cytokines, appears to account for the lack of harmful 

toxic effects normally associated with TLR4 signalling activation. These findings have 

provided an empirical basis supporting the use of MLA as a vaccine adjuvant, in that it 

shows that it is not simply weakly endotoxic 72. It has also been suggested that the lack of 

pro-inflammatory activity of MLA may be due its ability to stimulate higher levels of the 

anti-inflammatory cytokine IL-10 73, or due to its inability to activate caspase-1, which is 

involved in the maturation of several pro-inflammatory cytokines such as IL-1� and IL-

18 74. 

 

Two highly promising TLR4 antagonist have been synthesized based on the naturally 

occurring antagonistic structures of Lipid A derived from R. capsulatas and R. 

sphaeroides  mentioned earlier (Figure 4). E5531, a structural mimic of R. capsulatas 

lipid A, is a potent antagonist of TLR4 (Figure 7) 75, 76, 77, 78. E5564, based on R. 

sphaeroides lipid A, has shown similar activity with a notable increase in potency. 

Currently, E5564 is in clinical trials as an anti-sepsis treatment under the name Eritoran 

79, 80, 81. The crystal structure of E5564 bound to the murine TLR4-MD-2 receptor 

complex was reported. Similar to the binding of the antagonistic lipid IVa, the four lipid 

chains of E5564 are noted to be found in the hydrophobic cavity of MD-2, and no 

interaction between the ligand and TLR4 is observed 82. 
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Figure 7. Synthetic Disaccharide TLR4 Antagonists  
 
 

Another notable discovery in terms of disaccharide lipid A analogs is the tri-acyl OM-

174 (Figure 8). This compound has shown significant promise as both a vaccine 

adjuvant, and a molecular treatment of chemotherapy and radiotherapy relapsing cancers. 

The toxicity of OM-174 was noted to be more than 100 times lower than that of LPS 83. 

The immunostimulatory properties of OM-174 are not only being targeted for their anti-

tumour effect, but also as a palliative for chemotherapy induced immunosuppression, 

which has the potential to result in fatal opportunistic infections 55. 
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Figure 8. Synthetic Adjuvant & Anti-Cancer Agent OM-174 
 
 

1.3.10 Monosaccharide Lipid Analogs 

 
Numerous subunit derivatives of bacterial lipid A have been synthesized. These 

molecules have typically been synthetic analogs of either the reducing or non-reducing 

glucosamine functionalities of lipid A, or analogs in which one of the glucosamine units 

has been replaced with an acyclic scaffold. These subunit analogs provide a structural 

motif more amenable to systematic SAR investigations than more complex disaccharide 

analogs. Synthetic analogs of either the reducing or non-reducing glucosamine moieties 

of lipid A which contain up to five acyl chains typically exhibit very low biological 

activities. Moreover, monosaccharide analogs of the reducing glucosamine often exhibit 

TLR4 antagonistic activities. However, certain monosaccharide derivatives, mainly of the 

non-reducing subunit which possess three lipid chains show an elevated level of 

immunostimulatory power with low toxicity compared to natural lipid A 84. For example, 

GLA-60 has shown the best adjuvant properties among various non-reducing subunit 

analogs (Figure 9) 85. 
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Figure 9.  Monosaccharide Lipid A Based Adjuvant GLA-60 
 
 

A novel class of monosaccharide lipid A mimics known as aminoalkyl glucosaminide 4-

phosphates (AGPs), in which the reducing sugar has been replaced with an N-acyl 

aglycon unit have been developed (Figure 10). Certain analogs of the AGP generic 

structure show significant promise as both TLR4 agonists and antagonists 86. 
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Figure 10. Generic Structure of AGP Class of Lipid A Mimics 
 
 

In the AGP class of Lipid A mimics, adjuvant potential shows a profound dependence on 

both the acyl chain, and the aglycon chain length, as well as on the nature of the of the 
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aglycon �-substituent. The highest levels of immunostimulatory activity are noted when 

the secondary acyl chains (R1, R2, R3, Figure 10) are 10 to 12 carbons in length, the 

aglycon is 2 carbons long (n = 1), and the aglycon �-substituent (R4) is a carboxyl group, 

as exemplified by CRX-527 (Figure 11). Immunostimulatory activity is abolished in 

TLR4 antagonist CRX-526, in which the length of the secondary acyl chains has been 

reduced to 6 carbons 86. RC-520, in which the �-carboxyl moiety has been eliminated 

shows an even greater activity to toxicity profile, and has been investigated for uses as a 

paediatric vaccine 71. Interestingly, selective TRIF-dependent signalling has recently been 

reported for an analog of CRX-527 in which the stereochemistry of the �-carboxyl 

moiety has been inverted 87. 
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Figure 11. Notable members of the AGP Class of Lipid A Mimics 
 
 

As a further testament to the AGP approach of adjuvant design using synthetic 

monosaccharide derivatives of lipid A, a set of analogs in which the reducing 

glucosamine has been replaced with an N-acylated pentaerythritol aglycon unit have been 



 28 

synthesized (Figure 11). These compounds were noted to exhibit a biological activity 

similar to that of natural lipid A, inducing the secretion of high levels of inflammatory 

cytokines. In a totally synthetic liposomal vaccine system, these mimics were noted to 

exhibit strong immunostimulatory adjuvant properties 88. 
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Figure 12.  Pentaerythritol Based Monosaccharide Lipid A Mimics 
 
 
1.3.11 Acyclic Lipid A Analogs 
 
In an extension of the approach in which one of the glucosamine residues of the natural 

lipid A disaccharide framework is replaced with an acyclic scaffold, several lipid A 

mimics in which both of the glucosamine residues have been replaced by acyclic 

scaffolds have been reported. The premise behind this approach to generating lipid A 

mimic structures is to simplify the structure of the mimic, preserving only those elements 

which have been shown to be critical for TLR4 activation, namely the acyl chains and the 

phosphate moieties. For instance, E6020 is a lipid A mimic containing a hexa-acylated 

acyclic backbone (Figure 13), and is being developed as a vaccine adjuvant 89, 90. OM-

294 is based on the structure of the synthetic adjuvant OM-174 (Figure 8), and contains a 
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tri-acylated pseudo-dipeptide acyclic backbone. This class of lipid A mimics show potent 

immunostimulatory activity, practically devoid of any toxicity 91. 
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Figure 13.  Acyclic Lipid A Mimics 
 
 

1.4 Cancer Immunotherapy 
 
1.4.1 Background 
 
The traditional treatment options for cancer, which include surgery, chemotherapy, and 

radiation, are generally unselective. Not only do they suffer from many undesired side 

reactions, they may not be able to eliminate cancer cells that have metastasized. In an 

effort to overcome these problems, significant effort has been directed towards  

employing the human immune system to selectively remove cancerous cells. The concept 

of cancer immunotherapy was first employed over 100 years ago by Coley, where it was 

found that the injection of a mixture of bacterial toxins into a tumour was able to initiate 

an immune response that led to its complete eradication 92. Given our current 
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understanding of the molecular mechanisms of human immune system, it is now 

generally regarded that LPS molecules in the bacterial mixture activated the innate 

immune system, leading to the release of cytokines that ultimately resulted in the 

induction of the protective effects of the adaptive immune system.  

 

It has been shown that antibodies which target tumour-associated antigens have the 

ability to eliminate circulating tumour cells 93, 94, 95. Antibodies against tumour-associated 

antigens can mediate elimination of cancerous cells by various mechanisms, including 

complement dependent cytotoxicity and antibody-dependent cellular toxicity. Moreover, 

antibodies have been shown to interfere with receptor-mediated signalling, adhesion, and 

metastasis of tumour cells 96.  

 

Traditionally, vaccines are employed to provide protection against invading pathogens. 

However, the concept of cancer immunotherapy utilizes a vaccination to evoke an 

immune response which can eradicate an already existing disease 97. In addition to 

eradicating a pre-existing tumour, anti-cancer vaccination can protect the host against the 

common relapses of the same cancer 98. 

 
1.4.2 Tumour-Associated Carbohydrate Antigens 
 
The first efforts to develop a cancer vaccine utilized the patient's own tumour cells, which 

when removed, inactivated, and re-injected into the patient, initiated a tumour-specific 

immune response. This approach has been refined over time, however, major drawbacks 

of this approach include the cost and labour intensiveness of such personalized medicine 

99. 
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The identification of tumour-associated carbohydrate antigens (TACAs) has made it 

possible to develop general anti-cancer vaccination strategies. It has been known for a 

long time that the majority of human cancers are characterized by abnormal glycosylation 

100, 101, 102, 103. Cancerous cells may over-express truncated versions of oligosaccharides, 

and unusual terminal oligosaccharide sequences. Mechanistically, several theories have 

been proposed to account for the formation of TACAs, including an altered metabolism 

of cancerous cells, changes in the tumour microenvironment, and changes in the 

glycosylation genetic code 104, 105, 106.  

 

The oligosaccharides found on the surface of cells are involved in many biological 

processes. It is not a surprise that cancerous cells, which display abnormal glycosylation, 

also display differences in cell adhesion and mobility 107, 108, 109. In addition to being 

membrane bound, many TACAs are secreted into the serum by the cancerous cells, thus 

providing viable targets for the development of both diagnostic evaluations, and selective 

vaccinations. 

 

TACAs can be linked to lipids, such as gangliosides. The glycosphingolipids GM2, GD2,  

and GD3 are highly expressed on human melanoma cells, and have received considerable 

research in terms of vaccine development (Figure 14) 110. Globo-H has been identified as 

TACA for ovary, colon, prostate, lung, and small-cell lung cancers 111. 
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Figure 14. Glycosphingolipid TACAs 
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Several tumour-associated glycosphingolipids have been identified as adhesion 

molecules, and thus have been shown to promote tumour cell invasion and metastasis 112. 

For instance, the Lewis antigen Ley is over-expressed on ovary, breast, colon, prostate 

and non-small cell lung cancers (Figure 15) 113. The KH-1 antigen is found on human 

colon cancer cells, and has never been isolated from normal colonic tissue. This makes 

this TACA a highly specific target for vaccination strategies 113, 114, 115. 
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Figure 15. Tumour-Associated Carbohydrate Adhesion Molecules 
 
 

TACAs can also be linked to proteins, such as mucins, which are a family of densely 

glycosylated high molecular weight proteins implicated in epithelial cancers. For 

example, MUC-1, a membrane-bound mucin, is noted to be over-expressed in almost all 

breast carcinomas, as well as being associated with ovarian, lung, colon, and pancreatic 

carcinomas 116. The tumour-associated MUC-1 displays the truncated blood group 

antigens Tn, sialylated Tn (STn) and TF (Figure 16), which all result from incomplete O-

glycan synthesis. In addition, both the Globo series (Figure 14) and Lewis antigens 

(Figure 15) can be found linked to proteins 117.  
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Figure 16. Glycoprotein TACAs 
 
 
1.4.3 Difficulties Associated With Carbohydrate Vaccine Development 
 
Although TACAs offer a promising target for cancer immunotherapy, several issues 

complicate their use as the target of vaccination strategies. For instance, generating an 

appropriate immune response to a carbohydrate antigen in a vaccination setting is highly 

difficult, owing to their inherently T-cell independent nature. As such, immune responses 

to carbohydrate antigens are often only short-lived, generating only low affinity IgM 

antibodies which ultimately lack immunological memory. In addition, several TACAs are 

found on normal cells as well, albeit in low abundance, and therefore receive tolerance 

from the immune system. The TACAs are often shed into the blood stream by growing 

tumours, further reinforcing the tolerance of the immune system toward these antigens. 

Consequently, the induction of high affinity IgG antibodies against TACAs has proven to 

be much more challenging than inducing the same response against viral or bacterial 

carbohydrates 118. 

 
1.4.4  Protein Conjugate Vaccines: The Classical Approach 
 
Given the challenges associated with generating an appropriate immune response to 

TACAs, considerable efforts have been focused on better presenting these antigens, such 
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that specific and relevant antibody responses are generated. The classical approach for 

carbohydrate-based cancer vaccination strategies involve the conjugation of the antigen 

to a carrier protein, such as keyhole limpet hemocyanin, bovine serum albumin, and 

tetanus toxoid. The premise behind this approach is that the carrier protein contains 

helper T-cell epitopes, which ultimately lead to the activation of this vital class of 

lymphocyte. In addition, the protein carrier can possess adjuvant-like properties that 

stimulate the innate immune response to provide the necessary signals for the generation 

of the desired adaptive immune response. However, most often, the protein conjugate is 

administered with an external adjuvant to stimulate the desired innate immune response 

119. 

 

A critical issue for carbohydrate-protein conjugate vaccine development is the 

conjugation chemistry employed to attach the carbohydrate antigen to the carrier protein. 

Carbohydrate antigens isolated from natural sources are often conjugated to the protein 

carrier via reductive amination, which has the potential to destroy vital recognition 

elements and result in the complete loss of immunogenicity. Organic chemistry has 

allowed for the synthesis of TACA which incorporate a linker that has functional groups 

which allow for selective conjugation to the carrier protein without affecting the 

carbohydrate epitope. The results of several studies indicate that the choice of protein 

carrier, adjuvant, and linker chemistry can greatly influence the immune response 

generated to the TACA. For instance, in many cases, immune responses against the linker 

are generated, the likes of which ultimately suppress the desired immune response against 

the carbohydrate 120, 121, 122, 123. 
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Several carbohydrate-protein conjugate vaccine constructs have been examined in 

various stages of clinical trials. The results indicate that the vaccines are well tolerated, 

and appear most effective when used in conjunction with a potent adjuvant. However, 

even with optimized immunization protocols, high titers of high affinity IgG antibodies 

have remained elusive. One major problem noted is that the carrier proteins are highly 

immunogenic, eliciting strong immune responses themselves which ultimately lead to the 

suppression of the desired immune response against the TACA 120, 121, 122, 123, 124. 

 
1.4.5 Synthetic, Two-Component, Self-Adjuvanting Cancer Vaccines 
 
The attachment of a TACA to a carrier protein represents a problematic aspect of 

conjugate vaccine development. The conjugation chemistry is often difficult to control, 

resulting in conjugates with differences in composition and structure. In addition, the 

linkers that are employed for the conjugation can be immunogenic, leading to 

suppression of the desired immune response against the TACA.  

  

One approach to improve the presentation of TACAs to the appropriate immune cells is 

to synthetically attach the antigen to a receptor ligand that activates the desired immune 

cells. Such vaccine candidates are advantageous as they incorporate only those elements 

required for the desired immune response, and can be produced in a reproducible fashion. 

For example, the TLR2 ligand Pam3Cys has been covalently attached to TACAs, with the 

hope that the cytokines produced from TLR2 stimulation would lead to the activation of 

dendritic cells. An example utilizing this approach was reported by Toyukuni et al., in 

which a dimeric Tn-antigen was covalently linked to Pam3Cys. Although low titers of 

IgG antibodies were found, the study was monumental in that it showed that an immune 
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response against a small synthetic carbohydrate antigen could be generated devoid of a 

protein carrier 125, 126. 

 

Several other attempts at covalently linking a TACA to the TLR2 ligand Pam3Cys have 

been reported. In general, mainly low affinity IgM antibodies are noted, even with the use 

of an external adjuvant 121, 127, 128. These results highlight the T-cell independent nature of 

the TACAs, in that without the inclusion of a helper T-cell epitope, the desired antibody 

class switch and affinity maturation cannot be achieved. 

 
1.4.6 Synthetic, Multi-Component, Self-Adjuvanting Cancer Vaccines 
 
The lack of T-helper cell involvement in the two-component synthetic vaccine 

approaches lead to the notion of a tri-component synthetic vaccine that incorporates the 

TACA, a helper T-cell epitope, and a potent immune activator, such as a TLR ligand. 

Such a vaccine construct constitutes the minimal subunits necessary to evoke the desired 

immune response against the carbohydrate 129, 130, 131. For example, a fully synthetic 

three-component vaccine construct consisting of the Tn-antigen, a helper T-cell epitope 

derived from Neisseria meningitis, and the TLR2 ligand Pam3Cys was designed and 

synthesized by Boons et al. Moderate titers of IgG antibodies against the Tn-antigen were 

found, thus validating the concept of a fully synthetic anti-cancer vaccine 130. 

 

The influence of the covalent attachment of the various components of the vaccine 

construct on the immune response has been studied. Uptake and processing of the 

construct is necessary for the presentation of the helper T-cell epitope. It could be argued 

that by incorporating the three components of the vaccine construct into a liposome, 
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processing of the vaccine construct would be rendered unnecessary, and a more robust 

immune response would be expected. However, it has been shown that covalent 

attachment of the three components is critical in achieving good antibody titers. One 

possible explanation is that the covalent attachment of the adjuvant ensures that the 

cytokines induced are produced locally at the site where the vaccine interacts with the 

desired immune cells. 131. 

 
1.4.7 A Self-Adjuvanting MLA-TACA Conjugate  
 
Previous efforts towards developing a synthetic, self-adjuvanting TACA have primarily 

focused on the use of TLR2 ligands as the immunostimulatory component. In a paradigm 

shifting experiment, the adjuvant power of the TLR4 ligand MLA has recently been 

employed in a self-adjuvanting vaccine conjugate. MLA from Neisseria meningitidis was 

synthetically conjugated to a modified form of the GM3 TACA (Figure 17) 132. 

Vaccination studies indicate that a robust, high affinity IgG antibody response is elicited 

by the construct, thus indicating T-cell mediated immunity 133. Interestingly though, the 

construct lacks any helper T-cell epitopes. The exact nature through which T-cell 

mediated immunity is induced by the construct is still to be determined. 
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Figure 17. MLA-GM3 Conjugate  
 
 

1.5 Objectives of Thesis Project 
 
1.5.1 Novel Lipid A Mimic Frameworks 

 
Given our current understanding of the molecular basis of the activation of the TLR4 

receptor complex by LPS/lipid A, the design of potent immunostimulatory lipid A mimic 

structures as potential vaccine adjuvants is possible. The primary goal of the current 

study is the design and synthesis of novel molecular frameworks to mimic the 

disaccharide structure of natural lipid A in the activation of the TLR4 receptor complex. 

The novel frameworks will be tested for their potential to activate TLR4 mediated 

signalling. Moreover, efforts will focus on maximizing the immunological response 

generated by the novel frameworks in an effort to generate a potential vaccine adjuvant 

candidate. 
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1.5.2 Fully Synthetic Self-Adjuvanting Carbohydrate Antigens 
 
Based on the results achieved with the MLA-TACA vaccine conjugate discussed earlier, 

other TLR4 ligands have potential for being employed as the immunostimulatory 

component of synthetic, self-adjuvanting antigens. The secondary goal of the current 

study is therefore, the application of the adjuvant potential of the novel molecular lipid A 

mimic frameworks designed herein for the construction of self-adjuvanting carbhydrate 

antigens. Those antigens generated will be tested as potential synthetic, self-adjuvanting 

anti-cancer vaccine candidates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 41 

2 DIETHANOLAMINE-CONTAINING LIPID A MIMICS 
 
2.1 Initial Studies 
 
2.1.1 Design 

 
Simplified lipid A structures with various acyclic molecular frameworks to mimic one, or 

both of the D-glucosamine residues of the natural lipid A disaccharide backbone have 

been reported to display interesting immunostimulatory activities.134-141 In those lipid A 

mimics in which the reducing glucosamine residue has been replaced by an acyclic 

acylated aglycon, it appears that the location of the fatty acyl chain on the aglycon is 

directly related to immunostimulatory activity, in that optimal immunostimulatory 

activity is observed when the aglycon acyl chain is separated from the glycosyl residue 

by a two or three carbon linker.136, 139, 141 In addition, SAR studies have also indicated that 

the position of any aglycon phosphate residues aiming to mimic the distal (reducing 

sugar) phosphate of the natural disaccharide lipid A structure is not strictly required.142 

 
In an effort to design and synthesize novel molecular frameworks to mimic the 

disaccharide structure of natural lipid A in the activation of the TLR4 receptor complex, 

diethanolamine (DEA) has been envisioned as an acyclic scaffold to replace the reducing 

glucosamine residue of the natural lipid A disaccharie. As such, two different DEA-

containing lipid A mimic structures were initially targeted (1 & 2, Figure 18). DEA was 

envisioned as an simple, efficient acyclic molecular framework capable of replacing the 

reducing glucosamine residue of the natural lipid A structure based on several 

considerations: (a) a conservation of essential functional groups involved in TLR4/MD-2 

activation, namely the phosphate groups and fatty acid chains; (b) a conservation of the 

glycosidic linkage; (c) the appropriate location of each functional group in the DEA 
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acyclic molecular framework. Compounds 1 and 2 are both monophosphorylated lipid A 

mimics with different numbers of fatty acyl chains. Compound 1 carries six fatty acyl 

chains, and has been designed to directly mimic the structure of E. coli Lipid A (Figure 

3). In an effort to examine the effect of lipid content on activity in this novel family of 

lipid A mimics, Compound 2 carries eight acyl chains, and is likely the first example of a 

lipid A analog, either natural or synthetic, with more than seven fatty acyl chains. 
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Figure 18. Targeted DEA-Containing Lipid A Mimics 
 

 

2.1.2  Retrosynthetic Analysis 

 
Beginning with compound 2, elimination of the terminal fatty acyl chain on the acyclic 

scaffold  yields compound 1 and dilipid acid 3 (Scheme 1) 143. The benzyl (Bn) 

protecting group was then employed to protect all glycosyl hydroxyl residues, the likes of 

which would ultimately allow for global deprotection via hydrogenolysis. Elimination of 

the amide bound fatty acyl chain resulted in the free glucosamine moiety, which was 

subsequently protected as the 2,2,2-trichloroethoxycarbonyl(Troc). The Troc protecting 
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group was employed for its proven �-glycoside directing ability through neighbouring 

group participation.144 Cleavage of the glycosidic bond yielded readily available 

trichloroacetimidate glycosyl donor 4 136, and DEA based glycosyl acceptor 5. Finally, 

elimination of the fatty acyl chain on compound 5, ultimately yielded DEA as the starting 

point of the synthesis. 
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Scheme 1. Retrosynthetic Analysis of Targeted DEA-Containing Lipid A Mimics 
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2.1.3  Synthesis of Dilipid Acid 3 

 
Natural to the archetypical lipid A structure from E. coli (Figure 3)  are enantiomerically 

pure lipid moieties, specifically of the (R) orientation. Through the retrosynthesis of  

targeted lipid A mimics 1 and 2 (Scheme 1), enantiomerically pure dilipid acid 3 143 arose 

as a necessary chemical building block. As such, 3 was prepared via a known literature 

procedure 143. Briefly, a Reformatsky reaction between commercially available dodecyl 

aldehyde and ethyl bromoacetate forms a racemate of �-hydroxy ester I (Scheme 2). 

Hydrolysis of the ethyl ester yields a racemate of mono-lipid acid II. Enantiomeric 

enrichment was achieved via the formation the optically pure (R)-salt of mono-lipid acid 

II and commercially available (+)-dehydroabietylamine through repeated recrystalization 

efforts. Hydrolysis of the optically pure salt provides pure-(R) monolipid acid III, the 

enantiomeric excess of which was estimated to be > 95% based on optical rotation 

measurements. The protection of the carboxylic acid III as the corresponding phenacyl 

ester allowed for conversion into dilipid acid based V (Scheme 3) via reaction with 

myristoyl chloride in pyridine. Finally, deprotection of the carboxylic acid yields desired 

optically pure (R)-dilipid acid 3. 
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Scheme 2. Synthesis of Enantiomerically Pure Monolipid Acid III 
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2.1.4 Synthesis of Diethanolamine-Containing Lipid A Mimics 

 
The synthesis of the designed lipid A Mimics 1 and 2 began with the installation of the 

fatty acyl chains onto the DEA acyclic scaffold (Scheme 4). As such, the amine moiety 

in DEA was selectively acylated with dilipid acid 3 143 under the promotion of peptide 

coupling reagent O-benzotriazole-N, N, N', N'-tetramethyl-uronium-hexafluorophosphate 

(HBTU) to form glycosylation acceptor 5 in 68% yield. NMR spectral data indicated that 

the two ethanol residues in 5 were not identical, a consequence of the prohibited free 

rotation about the amide bond. The trimethylsilyl tirfluoromethanesulfonate (TMSOTf) 

catalyzed glycosylation of 5 with known imidate donor 4 136 yielded the desired mono-

glycosylation product 6 in 53% yield, along with the di-glycosylation product 7, which 

was isolated in 15% yield. Compound 6 existed as a mixture of two rotational isomers in 

an approximate rationof 3:2 as a result of the presence of the secondary amide moiety. 

The desired �-glycosidic linkage in 6 was confirmed by NMR spectral data (1H NMR: � 

4.78, d, J 8.0 Hz, H-1 from one isomer; and 13C NMR: � 100.44 and 100.87, C-1 of two 

isomers). 
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Scheme 4. Synthesis of DEA-Containing Mimic Framework 
 
 
Removal of the N-Troc protecting group in 6 via treatment with zinc in acetic acid-THF 

(1:4) provided free amine 8 (Scheme 5), which was found to be slowly converted to a 

new product spot during the reaction, as visualized by TLC. This unexpected product was 

isolated and its MS data showed a molecular weight with and additional 72 mass units, 
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which corresponded to the incorporation of a THF molecule. Careful analysis of the 

respective NMR data led to the establishment of its structure as 9.  

 

n- 

n- 

n- 

n- C11H23

C13H27

O

O

OC11H23

C13H27

O

O

O

O
N

O
(BnO)2PO

O

NH2

O

OBnO

OH

n- 

n- 

n- 

n- C11H23

C13H27

O

O

OC11H23

C13H27

O

O

O

O
N

OH
(BnO)2PO

O

NH2

O

OBnO

6

a) Zinc dust, THF: HOAc (4:1)
      
              or

b) Zinc dust, HOAc

8

a) 25%

b) 85% 

+

9

a) 55%

b) 0%  
 

Scheme 5. Cleavage of the N-Troc Protecting Group 
 
 
THF ring opening is usually initiated by a strong Lewis acid 145, 146 or an electrophilic 

reagent.147, 148 With the weakly acidic reaction conditions employed for the cleavage of 
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the N-Troc protecting group, the ring opening of THF was suspected to be initiated by an 

electrophilic intermediate present in the reaction. Indeed, earlier studies showed that �-

hydroxy alkylamides reacted with carboxylic acids via oxazolinium cation intermediates 

to form esters.149, 150 Accordingly, we proposed a mechanism to account for the formation 

of product 9 (Scheme 6). Under acid catalysis, compound 8 could dehydrate to form 

oxazolinium cation II, which thereby reacted readily with nucleophiles present in the 

reaction mixture. Thus, the reaction of II with THF led to intermediate III, which was 

followed by a nucleophilic attack by water to generate compound 9. Water was certainly 

present in the reaction mixture as the solvents were not dried. Accordingly, direct attack 

of intermediated II by water would regenerate compound 10. Acetic acid was likely the 

weakest nucleophile present, and thus no product carrying an additional acetate 

functionality was observed. Supporting this proposed mechanism, was the clean 

conversion of compound 7 into desired amine 8 when the reaction was repeated with 

acetic acid as the sole solvent (Scheme 5). 
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The N, N'-dicyclohexylcarbodiimide (DCC) promoted coupling of amine 8 with dilipid 

acid 3 provided both hexa-acylated 10 and octa-acylated 11 in 65% and 16% yields, 

respectively (Scheme 7). Acylation of a hydroxyl group normally does not occur under  

solely DCC-promoted peptide coupling condition, and typically requires the inclusion of 

the acyl transfer-reagent 4-dimethylaminopyridine (DMAP). Previous reports have 

shown that the hydroxyl group in �-hydroxy alkylamides displays higher reactivity than 

normal alcohols, the likes of which was noted to be likely the result of an intra-molecular 

hydrogen bond.151, 152 Therefore, the formation of 11 might be due to an increased 

nucleophilicity of the hydroxyl group in 10 as a result of the presence of the same type of 

intra-molecular hydrogen bonding (Figure 19). Through said hydrogen bonding, 

resonance structure 10-B is further stabilized and the electron density on the oxygen atom 

of the hydroxyl group is increased. Since enough material of 11 was obtained from this 

reaction, no attempt was made to prepare 11 separately through further acylation of 10 

under typical hydroxyl acylation conditions. 
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Scheme 7. Acylation of Glycosyl Amine Moiety 
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Figure 19. Intra-Molecular Hydrogen Bonding in 10 via a Seven-Member Ring 
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Global de-benzylation of 12 was furnished via catalytic hydrogenation under atmospheric 

pressure in the presence of palladium on charcoal. Initially the reaction was carried out in 

an acetic acid-THF (1 : 4) solvent system to give the desired product 1 in 44% yield, 

together with a side a product 12 in 21% yield (Scheme 8). The structures of 1 and 12 

were confirmed by their 1H NMR and ESI-MS data. Side product 12 contained an 

additional 1-hydroxybutyl group reminiscent to that of compound 9, which was formed 

under similar reaction conditions (acetic acid-THF, Scheme 3). Thus, the formation of 12 

(and other partially debenzylated precursors) was most likely through the same 

mechanism described for the formation of 9 (Scheme 6). It was also noticed that higher 

temperatures (even at 30 °C) could significantly increase the conversion rate of 1 to 12. 

An acetic acid-THF mixture is a common solvent mixture used for the hydrogenation 

reactions of this type of compound.141, 153-155 The reaction was initially tried with this 

solvent mixture with no concept, at the time, about the mechanistic details for the 

formation of side product 9. Since the formation of the oxazolinium cation was acid 

catalysis dependent, the hydrogenation of 10 was repeated using THF alone as the 

solvent. Indeed, the side reaction could be largely suppressed without acetic acid as the 

co-solvent: the side product 12 was formed in less than 5% and the yield of 1 was raised 

to 76%. Finally, a similar global debenzylation of 11 in THF provided 2 in 85% yield, 

with its structure confirmed by 1H NMR and high resolution ESI-MS data (Scheme 9). 
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Scheme 8. Global Deprotection of 10 to Obtain DEA-Containing Lipid A Mimic 1 
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Scheme 9. Global Deprotection of 11 to Obtain DEA-Containing Lipid A Mimic 2 

 
 
2.1.5 Biological Evaluation 

 
The activation of TLR4 by specific ligands leads to the release of pro-inflammatory 

cytokines and the up-regulation of cellular adhesion molecules. The Human pre-

monocytic THP-1 cell line expresses TLR4 as well as other receptors 156, and LPS has 

been shown to induce the expression of intercellular adhesion molecule-1 (ICAM-1) in 

these cells.157, 158 Our initial studies of the immunostimulatory activity of lipid a mimics 

1, 2 & 12 involved the evaluation of the molecules in affecting the expression level of 

ICAM-1 by pre-monocytic THP-1 cells. 

 
Preliminary data indicates that compound 1 significantly increases the level of ICAM-1 

expression in Human pre-monocytic THP-1 cells (Figure 20). Compound 12 also 

exhibits significant activity, although it is less potent than 1. A maximum ICAM-1 

expression level is achieved at a concentration of 2.0 µM for both 1 and 12, upon which 

further increases in their concentrations results in a decrease in ICAM-1 expression 

levels. In contrast, no significant increase in ICAM-1 expression level is noted for octa-
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acylated analog 2 up to the highest concentration tested (4.0 µM). Importantly, all three 

compounds (1, 2 & 12) show no detrimental effect on cell viability at the highest 

concentrations tested for each, as measured through the assay of cellular Trypan Blue 

exclusion. 
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Figure 20.  ICAM-1 expression by THP-1 cells after exposure to LPS & lipid A  
  mimics (1, 2 & 12). THP-1 cells were incubated for 18 h with increasing  
  concentrations of 1, 2 & 12. The resulting ICAM-1 expression was  
  measured via immunostaining and flow cytometry analysis. The   
  results are expressed as the mean fluorescence intensity and are shown as  
  the average of three separate experiment. 
 
 
ICAM-1 expression is NF-�B-dependent, and induction of high levels of ICAM-1 occurs 

in response to various inflammatory mediators, including bacterial LPS, and pro-

inflammatory cytokines, such as tumour necrosis factor-� (TNF-�), interleukin-1� (IL-

1�), and �-interferon (�-IFN) 159, 160. In an effort to further characterize the 

immunostimulatory properties of 1, 2 & 12, the direct effects of the analogs on TNF-�, 
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IL-6, and IL-1� cytokine production were measured via the enzyme-linked 

immunosorbent assay (ELISA) methodology. The pre-monocytic THP-1 cell line is 

weakly responsive in terms of cytokine production to immunostimulatory signals such as 

LPS.161 As such, terminal differentiation of the pre-monocytes was induced via 5 ng mL-1 

of phorbol 12-myristate 13-acetate (PMA), the concentration of which was chosen to 

ensure that residual cytokine expression levels would be minimal and that small 

responses to weak stimuli were measurable.162 

 
In general, the responses measured for all three cytokines mirror that of the ICAM-1 

expression response, with compound 1 showing the greatest potency, compound 12 

showing a slightly decreased potency, and compound 2 inducing very little to no 

detectable response (Figures 21-23). Both 1 and 12 induce the highest level of TNF-�, 

IL-6, and IL-1� at the 9 µM maximum concentration tested, which is in contrast to the 

induction of ICAM-1 expression, which maximized at a 2 µM stimulus concentration. 

The IL-1� induced by 1 and 12 at the 9 µM stimulus concentration is 3-4 fold that 

induced by E. coli LPS at a concentration of 0.01 µg mL-1. Interestingly, compound 2 

also induces significant IL-1� expression at the 9 µM maximum stimulus concentration 

tested, while at lower stimulus concentrations (up to 3 µM), the level of IL-1� is hardly 

detectable. IL-1� contributes to host defence against infection by augmenting the 

antimicrobial properties of phagocytes and initiating Th1 and Th17 adaptive immune 

responses.163 Production of IL-1� involves the proteolytic cleavage of pro-IL-1� by 

intracellular cysteine protease caspase-1164, which is regulated by protein complexes 

called inflammasomes.165 Since 2 does not show any activity in the induction of ICAM-1 

expression  and other pro-inflammatory cytokines including TNF-� and IL-6, it is a 
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possibility that the induction of IL-1� by 2 may involve a different mechanism than that 

of analogs 2 and 12.  
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Figure 21.  TNF-� production by differentiated THP-1 monocytes after exposure to  
  LPS & lipid A mimics (1, 2 & 12). THP-1 monocytes were incubated for  
  24 h with increasing concentrations of lipid A mimics 1, 2 & 12. TNF-� in 
  cell supernatants was measured via ELISA. The results are shown as the  
  average of two separate experiments.  
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Figure 22. IL-6 production by differentiated THP-1 monocytes after exposure to  
  LPS & lipid A Mimics (1, 2 & 12). THP-1 monocytes were incubated for  
  24 h with increasing concentrations of lipid A mimics 1, 2 & 12. IL-6 in  
  cell supernatants was measured via ELISA. The results are shown as the  
  average of two separate experiments.  
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Figure 23. IL-1� production by differentiated THP-1 monocytes after exposure to  
  LPS & lipid A Mimics (1, 2 & 12). THP-1 monocytes were incubated for  
  24 h with increasing concentrations of lipid A mimics 1, 2 & 12. IL-1� in  
  cell supernatants was measured via ELISA. The results are shown as the  
  average of two separate experiments.  
 
 

Structurally speaking, the hexa-acylated analog 1 shows the highest potency in the 

induction of both ICAM-1 expression and the expression of pro-inflammatory cytokines 

(TNF-�, IL-6, and IL-1�). This immunostimulatory activity is retained with the additional 

1-hydroxybutyl group incorporated in the diethanolamine moiety of 12, albeit with 

reduced potency. However, the increased number of lipid chains in octa-acylated analog 

2 seems to have a more profound effect on immunostimulatory activity, as 2 appears 

inactive in terms of inducing ICAM-1 expression, as well as inducing TNF-� and IL-6 

production up to the highest concentration tested in each assay. Although significant IL-
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1� production is observed at the highest concentration of 2 tested, this may involve a 

different mechanism from TLR4/MD-2 activation, which is presumably the mechanism 

of action of analogs 1 and 12. 
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2.2 Improving Immunostimulatory Potency 

 

2.2.1 Design 

 
The two phosphate groups in lipid A greatly affect the immunological activity of lipid 

A/LPS. Deletion of either of the phosphates reduces endotoxic activity ~100 fold, while 

elimination of both phosphates abolishes all activity.166 Phosphate groups are not a strict 

requirement, however, as other negatively charged and acidic groups have been 

employed as bioisosteres of the phosphates, with only minor effects noted.167, 168 In the 

crystal structure of the TLR4/MD-2 receptor complex bound to LPS, the two phosphate 

groups of lipid A have been shown to play an important role in receptor-ligand binding, 

and the subsequent receptor dimerization/activation. The phosphates provide ionic 

interactions with positively charged residues on both TLR4 and MD-2, as well as the 

adjacent TLR4 within the dimer complex.68 

 
Given the key role the two phosphate groups of lipid A play in the dimerization and 

activation of the TLR4/MD-2 receptor complex, two novel analogs of the DEA-

containing lipid A mimic framework (Figure 24) were therefore targeted in an effort to 

improve the immunostimulatory potency of lipid A mimic 1 (Figure 18). Mimic 13 

includes an additional phosphate on the diethanolamine scaffold, while mimic 14 

contains a terminal carboxylic acid moiety as a phosphate bioisostere. 
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Figure 24. Novel DEA-Containing Lipid A Mimics Targeted  
 

 

2.2.2 Retrosynthetic Analysis 

 
There is significant evidence indicating that the degree, pattern, and chain length of the 

lipid acylation in lipid A molecules are important factors contributing to their overall 

biological activity.60, 61 The previously reported synthesis of DEA-containing lipid A 

mimic 1 installed a defined lipid onto the DEA acyclic scaffold at the early stages, thus 

limiting the potential for incorporating variation in any of the above mentioned acyl 

characteristics. An alternate synthetic strategy was therefore employed for accessing lipid 

A mimics 13 and 14, in an effort to ultimately allow for facile acyl chain variation in 

future structure-activity relationship investigations. 

 
Beginning with either mimic 13 or 14, elimination of the DEA-bound phosphate of 13 or 

reduction of the terminal carboxylic acid moiety of 14 into the respective primary 

hydroxyl yields mimic 1 (Scheme 8). The previous synthesis of lipid A mimic 1 left the 

DEA terminal hydroxyl free throughout the synthesis, which proved problematic at many 
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stages, including a propensity to form undesired di-glycosylated products, issues with 

acylation selectivity, and the interesting side reaction in which the solvent THF molecule 

was ring-opened to form 1-hydroxybutyl adducts. As such, the DEA terminal hydroxyl 

was kept protected as the tert-butyldiphenylsilyl ether (TBDPS) until the late stages of 

the synthesis. Combining this protection with the protection of the glycosyl and 

phosphate hydroxyl moieties as benzyl ethers yields 25. Elimination of both amide and 

ester bound acyl lipid chains yields the di-amine, mono-hydroxyl framework, following 

which both amine moieties were protected as their Troc carbamates. Elimination of the 6-

O-benzyl ether and the 4-O-phosphotriester yields 21, following which the protection of 

all glycosyl hydroxyls as their respective acetates (Ac) yields 20. Disconnection of the 

glycosidic bond yields glycosylation acceptor 17, and known trichloroacetimidate 

glycosylation donor 19.
169 Finally, elimination of the DEA-bound TBDPS moiety in 17 

yields 15, from which elimination of the Troc carbamate moiety again yields DEA as the 

starting point of the synthesis. 
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Scheme 8. Retrosynthetic Analysis of Novel DEA-Containing Mimics Targeted 
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2.2.3 Synthesis 

 
The amine moiety of diethanolamine was first protected as the Troc carbamate by 

reaction with 2,2,2-trichloroethoxychloroformate (Troc-Cl) and sodium bicarbonate in 

water to furnish 15 in 78% yield, as well as 16 in a 7% yield, in which one of the �-

hydroxy moieties has reacted to form the Troc carbonate (Scheme 9). Attempts at the 

protection of one of the �-hydroxy moieties of 15 as the TBDPS ether yielded mono-

silylated 17, and di-silylated 18 in 54% and 6%, respectively, with a 35% recovery of 

unreacted 15. 
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Scheme 9. Synthesis of Glycosylation Acceptor 17 
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The TMSOTf catalyzed glycosylation of 17 with known imidate donor 19 169 yielded 

glycoside 20 in 94% yield (Scheme 10). Similar to the previous synthesis of lipid A 

mimic 1, compound 20 existed as a mixture of two rotational isomers in an approximate 

1:1 ratio as a result of prohibited free rotation around the carbamate C-N bond. The 

desired �-glycosidic linkage in 20 was confirmed via NMR spectral data (1H NMR: � 

4.53, d, J 8.5 Hz, H-1 from one isomer & � 4.65, d , J 8.5 Hz, H-1 from the other isomer). 

Compound 20 was treated with guanidinium nitrate-sodium methoxide at room 

temperature to give the O-deacetylated product 21 in 91% yield, leaving the two N-Troc 

groups intact.170 The acid catalyzed installation of the 4,6-di-O-benzylidene group 

furnished 22 in 87% yield. The DMAP and DIC promoted acylation of the 3-OH moiety 

in 22 with dilipid acid 3 yielded intermediate 23 in 93% yield. 
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Scheme 10. Synthesis of 3-O Acyl Intermediate 23 
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Regioselective benzylidene ring opening of 23 was next brought about via sodium 

cyanoborohydride (NaBH3CN) and HCl (g)-infused diethyl ether solution at 0 °C to give 

24, with the free 4-OH, in an 87% yield (Scheme 11). The installation of the benzyl 

protected phosphotriester at the free 4-OH position followed via the reaction of 24 with 

5-phenyl tetrazole (5-Ph-tetrazole) and dibenzyl N,N-diisopropylphosphoramidite 

[(BnO)2PN(iPr)2], and the subsequent m-chloroperbenzoic acid (m-CPBA) promoted 

oxidation at 0 °C to yield advanced intermediate 25 in 85% yield. Following the removal 

of both N-Troc protecting groups, the advanced intermediate 25 would allow for 

chemoselective acylation of the two amine moieties, since the primary amine is 

anticipated to be more reactive towards an acylation reagent that the secondary amine due 

to the increased steric hindrance in the secondary amine.171, 172 Thus, 25 could serve as a 

common precursor to accessing molecules with different acylation patterns on the two 

amine groups. 
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Scheme 11. Synthesis of Advanced Intermediate 25 
 
 

Compound 25 was subjected to a zinc treatment in acetic acid to furnish the di-amine, 

which was immediately coupled with dilipid acid 3 143 under the promotion of the peptide 

coupling reagent HBTU to form 26 in 65% overall yield (Scheme 12). Deprotection of 

the acyclic scaffold hydroxyl via a tetrabutylammonium fluoride treatment furnished the 

previously reported intermediate 10 in 90% yield. 
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Scheme 12.     Synthesis of Hexa-Acylated Intermediate 10 

 

To obtain the di-phosphate DEA-containing lipid A mimic 13, compound 10 was 

subjected to a similar phosphoramidite treatment as 24 (Scheme 11) to install the desired 

phosphotriester functionality in 27 in 71% yield (Scheme 13). Compound 27 was found 

to be quite unstable during chromatographic purification, thus accounting for the less 

than ideal yield for the conversion of 10 to 27, and was also noted to be rather unstable 

upon storage in the freezer. Practically, due to its relative instability, compound 27 had to 

be purified quickly and immediately subjected to global deprotection via catalytic 

hydrogenation under atmospheric pressure in the presence of palladium on charcoal to 

yield 13 in a 70% yield. The structure of 13 was confirmed by 1H NMR and MALDI-MS 

data. 
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Scheme 13.     Synthesis of Di-Phosphate DEA-Containing Lipid A Mimic 13 

 

 
The ready decomposition encountered with compound 27, however problematic, was 

again attributed to the propensity of the DEA acyclic framework to form the oxazolinium 

ion, as previously noted. Thus, it is speculated that the decomposition of 27 may involve 

an intramolecular substitution to form the relatively stable oxazolinium ion 27-A 

(Scheme 14).149 Oxazolinium ions have been reported and structurally confirmed by 

NMR as intermediates for �-hydroxy alkyl amides, which react readily with a carboxylic 

acid to form esters under neutral conditions.149 The oxazolinium ion 27-A may undergo 
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nucleophilic attack or an elimination reaction leading to further decomposed products 

such as 27-B to 27-D. At this stage of the investigation, the structures of the decomposed 

products have not been determined. 
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Scheme 14.     Proposed Mechanism Accounting For The Ready Decomposition of 27 

 
 
 

To obtain the terminal carboxylic acid DEA-containing lipid A mimic 14, the free 

hydroxyl of compound 10 was first subjected to a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl 

(TEMPO) and bis(acetoxy)iodobenzene (BAIB) promoted oxidation to yield acid 28 in 

an 83 % yield, with which no stability issued were noted (Scheme 15). A similar catalytic 

hydrogenation to remove benzyl protecting groups in acid 28 yielded 14 in a 77% yield, 

the structure of which was again confirmed by 1H NMR and MALDI-MS data. 
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Scheme 15.     Synthesis of Terminal Acid DEA-Containing Lipid A Mimic 14 

 

 
 
2.2.4     Biological Evaluation 

 
To evaluate the relative immunostimulatory activity of lipid A mimics 1, 13 & 14, the 

direct effects of the mimics on TNF-�, IL-6, and IL-1� production in the PMA 

differentiated human monocytic cell line THP-1 was again evaluated. Initially, 5 ng ml-1 

of PMA was employed for the differentiation process, in order to minimize residual 

cytokine levels, and thus allow low level responses to weak stimuli to be detected.162 

However, initial results obtained (not shown) were plagued by a both a lack of sensitivity 

and reproducibility. It was therefore concluded that the differentiation process was likely 
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incomplete, and that a greater concentration of PMA was needed to induce full 

differentiation. As such, all further experiments employed a PMA concentration of 25 ng 

mL-1, a concentration which is much more in accordance with what is commonly reported 

for the differentiation of the THP-1 cell line.173, 174 

 
Lipid A mimics 1, 13 & 14 were tested over a wide range of concentrations (10-4 µM-10 

µM), and the cytokine responses follow a clear dose response relationship (Figures 24-

26). A maximum response level is achieved for all three cytokines at a stimulus 

concentration of between 0.1 µM and 1.0 µM, after which a further increase to a 10 µM 

stimulus concentration results in decreased responses. Significant levels of TNF-� and 

IL-1� are induced by all three mimics at concentrations in the 10-3 µM range. Measurable 

IL-1� is also observed for mimic 14 at a concentration as low as 10-4 µM. In general, both 

mimics 13 and 14 show increased potency over mimic 1, with mimic 14 showing the 

greatest potency for stimulating production of all three cytokines. This trend is most 

evident in the IL-6 response data (Figure 25), in which mimics 13 and 14, in comparison 

to mimic 1, exhibit an approximate 10-fold and 100-fold increase in potency, 

respectively. These results clearly indicate that the phosphate/phosphate bioisostere group 

on the DEA moiety plays an important role in the immunostimulatory potency of these 

lipid A mimics. 
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Figure 24.  TNF-� production by differentiated THP-1 monocytes after exposure to  
  LPS & lipid A mimics (1, 13 & 14). THP-1 monocytes were incubated for  
  24 h with increasing concentrations of lipid A mimics 1, 13 & 14. TNF-�  
  in cell supernatants was measured via ELISA. The results are shown as the 
  average of two separate experiments.  
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Figure 25.  IL-6 production by differentiated THP-1 monocytes after exposure to  
  LPS & lipid A mimics (1, 13 & 14). THP-1 monocytes were incubated for  
  24 h with increasing concentrations of lipid A mimics 1, 13 & 14. IL-6  
  in cell supernatants was measured via ELISA. The results are shown as the 
  average of two separate experiments.  
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Figure 26.  IL-1� production by differentiated THP-1 monocytes after exposure to  
  LPS & lipid A mimics (1, 13 & 14). THP-1 monocytes were incubated for  
  24 h with increasing concentrations of lipid A mimics 1, 13 & 14. IL-1� 
  in cell supernatants was measured via ELISA. The results are shown as the 
  average of two separate experiments.  
 
 
 

The suspected mode of action of lipid A mimics 1, 12, 13 & 14 is stimulation of the 

TR4/MD-2 receptor complex. In an effort to confirm TLR4 as the target of the DEA 

containing lipid A mimics, a competitive inhibition study was performed with lipid IVa. 

As previously mentioned, lipid IVa is the tetra-acyl biosynthetic precursory of lipid A, 

which has been shown to bind to the human TLR4/MD-2 receptor complex, yet not 

induce any activation (Figure 5).46-49 It follows that lipid IVa is a potent antagonist of 

LPS-induced TLR4 activation in the human monocytic cell line THP-1.174 Therefore, the 

potential of lipid IVa to inhibit the TNF-� and IL-1� cytokine response of THP-1 cells to 
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lipid A mimic 14 was tested (Figures 27 & 28). Co-treatment with lipid IVa significantly 

inhibits the production of both cytokines induced by both LPS and mimic 14. At a 

concentration of 0.1 µM of 14, at which point a maximum level of cytokine induction is 

expected, the presence of lipid IVa at 0.5 µM appears to have completely inhibited the 

production of TNF-�, while the production of IL-1� is still marginally increased over 

residual expression levels. In contrast, the presence of lipid IVa at 0.1 µM exhibits only 

partial antagonism against the production of both cytokines induced by mimic 14 at a 

concentration of 0.1 µM. It is worth noting that complete inhibition of the production of 

both cytokines induced by 0.001 µM of  mimic 14 in the presence of 0.1 µM lipid IVa 

(100-fold of 14) is not observed, suggesting that mimic 14 may have a higher binding 

affinity for the TLR4/MD-2 receptor complex than lipid IVa. Based on these data, it is 

concluded that mimic 14 is an agonist of TLR4, and the other DEA-containing Lipid A 

mimics are likely ligands of TLR4 as well. 
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Figure 27. Inhibited TNF-� production by differentiated THP-1 monocytes after 
 stimulation with an agonist (LPS or Lipid A mimic 14) in the presence of 
 lipid IVa. THP-1 cells were incubated for 24 h with either LPS or Lipid A 
 mimic 14 in the presence of increasing concentrations of lipid IVa. TNF-� 
 in cell supernatants was measured via ELISA. The results are shown as the 
 average of two separate experiments. 
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Figure 28. Inhibited IL-1� production by differentiated THP-1 monocytes after 
 stimulation with an agonist (LPS or Lipid A mimic 14) in the presence of 
 lipid IVa. THP-1 cells were incubated for 24 h with either LPS or Lipid A 
 mimic 14 in the presence of increasing concentrations of lipid IVa. IL-1� 
 in cell supernatants was measured via ELISA. The results are shown as the 
 average of two separate experiments. 
 
 
 

Octa-acylated DEA-containing lipid A mimic 2 (Figure 18) was initially tested on THP-1 

cells differentiated with only 5 ng mL-1 PMA, and the results showed a lack of any 

immunostimulatory activity except for a significant production of IL-1� at the highest 

concentration tested (Figures 21-23). Given the difficulties encountered with using only 

5 ng mL-1 in the differentiation of the THP-1 cells encountered, the immunostimulatory 

activity of mimic 2 was investigated again, now in THP-1 cells differentiated using 25 ng 

mL-1 of PMA. Interestingly, a clear dose response relationship was observed for both the 
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production of TNF-� and IL-1� (Figures 29 & 30). However, in comparison to the other 

DEA-containing Lipid A mimics tested, mimic 2 is significantly less potent. When mimic 

2 was tested with 0.1 µM of antagonist lipid IVa, a significant decrease in the production 

of both cytokines was observed. These results clearly indicate that DEA-containing Lipid 

A mimic 2, which is likely the first ever octa-acylated lipid A mimic reported, binds and 

activates the TLR4/MD-2 receptor complex. 
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Figure 29. TNF-� production by differentiated THP-1 monocytes after exposure to  
  lipid A mimic 2 in both the absence and presence of lipid IVa. THP-1  
  monocytes were incubated for 24 h with increasing concentrations of lipid  
  A mimic 2 alone, and in the presence of 0.1 µM lipid IVa. TNF-� in cell  
  supernatants was measured via ELISA. The results are shown as the  
  average of two separate experiments. 
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Figure 30. IL-1� production by differentiated THP-1 monocytes after exposure to  
  lipid A mimic 2 in both the absence, and presence of lipid IVa. THP-1  
  monocytes were incubated for 24 h with increasing concentrations of lipid  
  A mimic 2 alone, and in the presence of 0.1 µM lipid IVa. IL-1� in cell  
  supernatants was measured via ELISA. The results are shown as the  
  average of two separate experiments. 
 
 

2.3 Experimental 
 
2.3.1 General Methods 

All air and moisture sensitive reactions were performed under nitrogen atmosphere.  All 

commercial reagents were used as supplied.  Anhydrous dichloromethane was distilled 

over calcium hydride, whereas anhydrous N,N-dimethylformamide (DMF) was purchased 

from Aldrich. ACS grade solvents were purchased from Fisher Scientific and used for 

chromatography without distillation.  TLC plates (silica gel 60 F254, thickness 0.25 mm) 

and silica gel 60 (40-63 µm) for flash column chromatography were purchased from 
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SILICYCLE INC., Canada.  1H and 13C NMR spectra were recorded on a Varian Unity 

Inova 500 MHz spectrometer.  Tetramethylsilane (TMS, δ 0.00 ppm) or solvent peaks 

were used as internal standards for 1H and 13C NMR spectra.  The chemical shifts were 

given in ppm and coupling constants in Hz indicated to a resolution of ± 0.5 Hz.  

Multiplicity of proton signals is indicated as follows: s (singlet), d (doublet), dd (double 

doublet), t (triplet), q (quartet), m (multiplet), br (broad). Structural assignments were 

made using standard gCOSY and gHSQC methodology. NMR peaks belonging to 

primary lipid chains are denoted with an L subscript, whereas those belonging to 

secondary lipid chains are denoted with an L’ subscript. ESI mass spectra were measured 

on the Applied Biosystems Mariner Bio-Spectrometry Workstation at the University of 

Alberta, Canada. MALDI mass spectra were measured on the Applied Biosystems 

Mariner 4700 system at the University of Western Ontario. Optical rotations were 

measured with Perkin Elmer 343 Polarimeter at 22°C. 

 
2.3.2 N,N-Bis(2-hydroxyethyl)-3-(R)-tetradecanoyloxytetradecanamide  (5): 

 

 To a solution of diethanolamine (73 mg, 0.665 mmol) in DMF (3 mL), dilipid acid 3  

(302 mg, 0.665 mmol), HBTU (262 mg, 0.698 mmol), and diisopropylethylamine 

(DIPEA, 0.24 mL, 1.40 mmol) were added. The mixture was stirred at room temperature 

for 16 h. The mixture was then concentrated, dissolved in water (30 mL), and extracted 

with EtOAc (3 x 30 mL). The combined organic layers were dried over Na2SO4, 

concentrated, and purified by flash column chromatography (hexane/EtOAc/MeOH, 

1:1:0.125) to afford pure 5 (242 mg, 68%) as white solid. Rf 0.28 (hexane/EtOAc/MeOH, 

1:1:0.1); [�]
22
D   - 3.7 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 0.84 (t, 6H, J 7.0 Hz, 
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2 x CH3), 1.16-1.33 (br m, 38H, 19 x CH2 of lipid), 1.51-1.62 (m, 4H, H-4L, H-3L’), 2.23 

(t, 2H, J 7.5 Hz, H-2L’), 2.56 (dd, 1H, J 15.0, 7.5 Hz, H-2La), 2.68 (dd, J 15.0, 7.5 Hz, H-

2Lb), 3.39-3.57 (m, 4H, HOCH2CH2NCH2CH2OH), 3.72-3.78 (m, 4H, 

HOCH2CH2NCH2CH2OH), 4.04-4.36 (br, 2H, OH x 2), 5.16-5.21 (m, 1H, H-3L); 13C 

NMR (125 MHz, CDCl3): � 14.11 (CH3), 22.67 (CH2), 24.96 (CH2), 25.33 (CH2), 29.15 

(CH2), 29.30 (CH2), 29.35 (CH2), 29.41 (CH2), 29.51 (CH2), 29.54 (CH2), 29.57 (CH2), 

29.63 (CH2), 29.65 (CH2), 29.68 (CH2), 31.91 (CH2), 34.49 (C-2L’), 38.76 (C-2L), 50.29 

& 52.39 (HOCH2CH2NCH2CH2OH), 60.44 & 60.74 (HOCH2CH2NCH2CH2OH), 71.40 

(C-3L), 172.36 (C=O), 174.14 (C=O); HRESI-MS (m/z) Calcd for C32H63NO5Na 

[M+Na]+: 564.4587, found: 564.4588. 

 

2.3.3 [N-(2-hydroxyethyl)-(R)-3-tetradecanoyloxytetradecanamido]-eth-1-yl 6-O-

benzyl-2-deoxy-4-O-(di-O-benzylphosphono)-3-O-[(R)-3-

tetradecanoyloxytetradecanoyl]-2-(2,2,2-trichloroethoxycarbonylamino)-�-D-

glucopyranoside (6)  

& 

(R)-3-tetradecanoyloxytetradecanamido-di-(ethyl 6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-[(R)-3-tetradecanoyloxytetradecanoyl]-2-(2,2,2-

trichloroethoxycarbonylamino)-�-D-glucopyranoside) (7):  

 

A solution of 4 (460 mg, 0.36 mmol) and 5 (194 mg, 0.36 mmol) in dry CH2Cl2 (4 mL) in 

the presence of molecular sieves (4 Å, 2.0 g) was stirred under nitrogen for 30 min at 

room temperature. A solution of TMSOTf (0.01 M in dry CH2Cl2, 0.80 mL) was added 
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drop wise in about 3 min. The mixture was stirred at room temperature for 1 h before a 

saturated sodium bicarbonate solution (10 mL) was added to quench the reaction. Solids 

were filtered out before the mixture was extracted with CH2Cl2 (3 x 25 mL). The 

combined organic phase was dried over Na2SO4, concentrated, and purified via repeated 

flash column chromatography (hexane/EtOAc, 2:1 and 3:4) to yield 6 (314 mg, 53%) and 

7 (148 mg, 15%), both as colorless syrups.  

 

For 6: Rf 0.40 (hexane/EtOAc, 3:4); [�]
22
D   + 0.5 (c 1.0, CHCl3); 

1H NMR (500 MHz, 

CDCl3): � 0.89 (t, 12H, J 7.0 Hz, 4 x CH3), 1.20-1.37 (br m, 76H, 38 x CH2 of lipid), 

1.46-1.81 (br m, 8H H-4L x 2, H-3L’ x 2), 2.20-2.31 (m, 4H, H-2L’ x 2), 2.38-2.54 (m, 4, 

H-2L x 2), 3.25-3.40 (m, 1.4H, H-2 from one isomer, H-6b), 3.42-3.52 (m, 1.6H, H-2 

from one isomer, H-6a), 3.56-3.84 (m, 8H, H-5, ROCH2CH2NCH2CH2OH, 

ROCH2CH2NCH2CH2OH), 4.03 (m, 2H, ROCH2CH2NCH2CH2OH), 4.38-4.57 (m, 3H, 

Troc-Ha, Troc-Hb, H-4), 4.64-4.73 (m, 2H, PhCH2), 4.78 (d, 0.4H, J 8.0 Hz, H-1 from 

one isomer), 4.85-4.92 (m, 4.6H, H-1 from one isomer, (PhCH2O)2P), 5.08-5.21 (m, 2H, 

H-3L x 2), 5.35 (dd, 0.4H, J 10.0, 10.0 Hz, H-3 from one isomer), 5.54 (dd, 0.6H, J 9.5, 

9.5 Hz, H-3 from one isomer), 5.76 (d, 0.4H, J 8.0 Hz, NH from one isomer), 6.24 (d, 

0.6H, J 7.0 Hz, NH from one isomer), 7.27-7.32 (m, 15H, Ar-H); 13C NMR (125 MHz, 

CDCl3): � 14.34 (CH3), 22.90 (CH2), 25.19 (CH2), 25.23 (CH2), 25.30 (CH2), 25.56 

(CH2), 25.77 (CH2), 29.38 (CH2), 29.42 (CH2), 29.53 (CH2), 29.57 (CH2), 29.66 (CH2), 

29.75 (CH2), 29.78 (CH2), 29.79 (CH2), 29.82 (CH2), 29.87 (CH2), 29.90 (CH2), 32.13 

(CH2), 34.26 (CH2), 34.51 (CH2), 34.62 (CH2), 34.64 (CH2), 34.74 (CH2), 34.79 (CH2), 

34.84 (CH2), 38.70 (CH2), 39.38 (CH2), 39.61 (CH2), 47.84 (CH2N),  49.54 (CH2N), 
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50.84 (CH2N), 52.20 (CH2N), 56.75 (C-2), 60.35 (C-6 from one isomer), 61.60 (C-6 from 

one isomer), 68.12 (OCH2), 68.36 (OCH2), 68.64 (OCH2), 68.97 (OCH2), 69.85-69.97 

(m, (PhCH2O)2P), 70.24 (C-3L), 70.27 (C-3L), 71.70 (C-3L), 71.91 (C-3 from one isomer), 

72.52 (C-3 from one isomer), 72.15 (C-3L), 73.63 (Troc-CH2), 73.90 (C-4 from one 

isomer), 73.94 (C-5 from one isomer), 74.21 (C-5 from one isomer), 74.26 (d, J 5.0 Hz, 

C-4 from one isomer), 74.33 (d, J 5.0 Hz, C-4 from one isomer), 74.52 (PhCH2 from one 

isomer), 74.67 (PhCH2 from one isomer), 95.17 (Troc-CCl3), 100.44 (C-1 from one 

isomer), 100.87 (C-1 from one isomer), 127.64 (CH-Ar), 127.98 (CH-Ar), 128.08 (CH-

Ar), 128.34 (CH-Ar), 128.56 (CH-Ar), 128.57 (CH-Ar), 128.62 (CH-Ar), 135.43 (d, J 2.5 

Hz, C-Ar), 135.68 (d, J 2.5 Hz, C-Ar), 137.99 (C-Ar), 138.06 (C-Ar), 154.54 (C=O 

Troc), 170.25 (C=O), 170.50 (C=O), 171.18 (C=O), 171.95 (C=O), 173.65 (C=O) 173.80 

(C=O) 174.28 (C=O); HRESI-MS (m/z) Calcd for C90H146Cl3N2O17P [M+Na]+ : 

1685.9282, found: 1685.9317. 

 

For 7: Rf 0.36 (hexane/EtOAc, 2:1); [�]
22
D   + 0.5 (c 1.0, CHCl3); 

1H NMR (500 MHz, 

CDCl3): � 0.88 (t, 18H, J 7.0 Hz, 6 x CH3), 1.20-1.37 (br m, 114H, 57 x CH2 of lipid), 

1.44-1.84 (br m, 12H H-4L x 3, H-3L’ x 3), 2.20-2.31 (m, 6H, H-2L’ x 3), 2.38-2.54 (m, 

4H, H-2L x 2), 2.68-2.77 (m, 2H, H-2L), 3.26-3.43 (m, 3H, H-2 from one sugar, CH2N), 

3.51-3.70 (m, 10H, H-2 from one sugar, H-5 from one sugar, H-6a from both sugars, H-

6b from both sugars, CH2N, CH2O), 3.74-3.92 (m, 3H, H-5 from one sugar, CH2O), 4.36-

4.54 (m, 6H, H-4 from both sugars, PhCH2 from both sugars), 4.58 (d, 1H, J 8.0 Hz, H-1 

from one sugar),  4.63-4.80 (m, 5H, H-1 from one sugar, Troc-Ha from both sugars, 

Troc-Hb from both sugars), 4.86-4.93 (m, 8H, (PhCH2O)2P from both sugars), 5.08-5.16 
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(m, 3H, H-3L), 5.26 (dd, 1H, J 9.5, 9.5 Hz, H-3 from one sugar), 5.52 (dd, 1H, J 9.5, 9.5 

Hz, H-3 from one sugar), 5.73 (d, 1H, J 8.0 Hz, NH from one sugar), 6.14 (d, 1H, J 8.0 

Hz, NH from one sugar), 7.24-7.38 (m, 30H, Ar-H); 13C NMR (125 MHz, CDCl3): � 

14.17 (CH3), 22.73 (CH2), 25.01 (CH2), 25.04 (CH2), 25.09 (CH2), 25.13 (CH2), 25.69 

(CH2), 29.19 (CH2), 29.28 (CH2), 29.36 (CH2), 29.40 (CH2), 29.42 (CH2), 29.49 (CH2), 

29.57 (CH2), 29.62 (CH2), 29.64 (CH2), 29.69 (CH2), 29.71 (CH2), 29.74 (CH2), 31.96 

(CH2), 33.97 (CH2), 34.28 (CH2), 34.43 (CH2), 34.47 (CH2), 34.72 (CH2), 38.30 (CH2), 

38.93 (CH2), 39.20 (CH2), 45.01 (CH2N), 46.83 (CH2N), 46.87 (CH2N), 48.83 (CH2N), 

56.39 (C-2 from one sugar), 56.50 (C-2 from one sugar), 60.21 (C-6 from one sugar), 

61.47 (C-6 from one sugar), 67.94 (OCH2), 68.37 (OCH2), 68.41 (OCH2), 68.45 (OCH2), 

69.64 (m, (PhCH2O)2P from both sugars), 69.97 (C-3L), 72.03 (C-3L), 72.07 (C-3L), 72.14 

(C-3 from one sugar), 72. 44 (C-3 from one sugar), 73.38 (PhCH2 from one sugar), 73.42 

(PhCH2  from one sugar), 73.78 (C-5 from one sugar), 73.84 (C-5 from one sugar), 73.96 

(d, J 5.0 Hz, C-4 from one sugar), 74.05 (d, J 5.0 Hz, C-4 from one sugar), 74.35 (Troc-

CH2 from one sugar), 74.61 (Troc-CH2 from one sugar), 95.51 (Troc-CCl3 from one 

sugar), 95.72 (Troc-CCl3 from one sugar), 100.57 (C-1 from one sugar), 102.03 (C-1 

from one sugar),  127.61 (CH-Ar), 127.67 (CH-Ar), 128.01 (CH-Ar), 128.03 (CH-Ar), 

128.11 (CH-Ar), 128.15 (CH-Ar), 128.36 (CH-Ar), 128.40 (CH-Ar), 128.58 (CH-Ar), 

128.61 (CH-Ar), 128.65 (CH-Ar), 135.56 (m, C-Ar), 137.94 (C-Ar), 138.02 (C-Ar), 

154.12 (C=O Troc from one sugar), 154.51 (C=O Troc from one sugar), 170.01 (C=O), 

170.46 (C=O), 170.70 (C=O), 173.28 (C=O), 173.47 (C=O), 174.11 (C=O); HRESI-MS 

(m/z) Calcd for C148H229Cl6N3O29P2 [M+Na]+ : 2807.3979, found: 2807.4086. 
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2.3.4 [N-(2-(4-hydroxybutyloxy)-ethyl)-(R)-3-tetradecanoyloxytetradecanamido]-

eth-1-yl 6-O-benzyl-2-deoxy-4-O-(di-O-benzylphosphono)-3-O-[(R)-

tetradecanoyloxytetradecanoyl]-2-amino-�-D-glucopyranoside (9): 

 

To a solution of 6 (100 mg, 0.06 mmol) in THF (4 mL) and glacial acetic acid (1 mL), 

zinc powder (500 mg) was added. The mixture was stirred at room temperature and the 

progress of the reaction monitored via TLC. After approximately 30 minutes, the 

complete consumption of 8 was noted. However, two different product spots were noted. 

Interestingly, the slow conversion of one of the product spots into the other was noted as 

the reaction was allowed to stir further. After stirring for approximately 4 hours, the solid 

was filtered, washed with acetic acid (30 mL) and the filtrate concentrated in vacuo. The 

residue was dissolved in CH2Cl2 (100 mL) and washed with a saturated sodium 

bicarbonate solution (50 mL). The organic phase was dried with Na2SO4, concentrated, 

and the residue purified by flash column chromatography (hexane/EtOAc, 2:3) to obtain 

pure 9 (51 mg, 55%) as a colorless syrup. Rf 0.26 (4% MeOH in CH2Cl2); [�]
22
D   + 0.2 (c 

1.0, CHCl3); 
1H NMR (500 MHz, CDCl3): � 0.89 (t, 12H, J 7.0 Hz, 4 x CH3), 1.11-1.40 

(br m, 76H, 38 x CH2 of lipid), 1.41-1.74 (br m, 12H, H-4L x 3, H-3L’ x 3, 

ROCH2CH2CH2CH2OH), 2.18-2.31 (m, 4H, H-2L’ x 2), 2.38-2.45 (m, 1H, H-2L), 2.49-

2.55 (m, 1.4H, H-2 from one isomer, H-2L), 2.60-2.78 (m, 4.6H, H-2 from one isomer, 

NH2, H-2L x 2), 3.33-3.39 (m, 1H, H-6a), 3.43-3.70 (m, 11H, H-5, H-6b, 

ROCH2CH2NCH2CH2OCH2CH2CH2CH2OH), 3.74-3.91 (m, 3H, 

ROCHHCH2NCH2CH2OCH2CH2CH2CH2OH), 4.01-4.06 (m, 1H, 

ROCHHCH2NCH2CH2OCH2CH2CH2CH2OH), 4.30 (d, 0.4H, J 8.0 Hz, H-1 from one 
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isomer), 4.34-4.50 (m, 3.6 H, H-1 from one isomer, H-4, PhCH2), 4.85-4.94 (m, 4H, 

(PhCH2O)2P), 5.04-5.14 (m, 1.4H, H-3 from one isomer, H-3L), 5.19-5.24 (m, 1.6H, H-3 

from one isomer, H-3L), 7.22-7.37 (m, 15H, Ar-H); 13C NMR (125 MHz, CDCl3): � 

22.92 (CH3), 22.73 (CH2), 25.12 (CH2), 25.17 (CH2), 25.21 (CH2), 25.24 (CH2), 25.36 

(CH2), 25.62 (CH2), 25.67 (CH2), 27.76 (CH2), 28.26 (CH2), 29.36 (CH2), 29.41 (CH2), 

29.42 (CH2), 29.44 (CH2), 29.53 (CH2), 29.55 (CH2), 29.59 (CH2), 29.63 (CH2), 29.67 

(CH2), 29.75(CH2), 29.81 (CH2), 29.87 (CH2), 29.89(CH2), 29.91 (CH2), 29.93 (CH2), 

31.31 (CH2), 31.89 (CH2), 31.96 (ROCH2CH2CH2CH2OH from one isomer), 32.01 

(ROCH2CH2CH2CH2OH from one isomer), 32.07 (ROCH2CH2CH2CH2OH from one 

isomer), 32.14 (ROCH2CH2CH2CH2OH from one isomer), 34.56 (CH2), 34.60 (CH2), 

34.77 (CH2), 34.82 (CH2), 38.79 (CH2), 39.23 (CH2), 40.01 (CH2), 40.06 (CH2), 45.69 

(CH2N), 48.34 (CH2N), 49.44 (CH2N), 49.86 (CH2N), 51.33 (C-2 from one isomer), 

52.69 (C-2 from one isomer), 60.03 (OCH2), 60.98 (OCH2), 61.40 (C-6 from one 

isomer), 62.24 (C-6 from one isomer), 62.43 (OCH2), 62.49 (OCH2), 67.95 (OCH2), 

68.14 (OCH2), 68.56 (OCH2), 68.76 (OCH2), 69.91 (m, (PhCH2O)2P), 70.34 (C-3L), 

70.38 (C-3 from one isomer), 71.33 (C-3 from one isomer), 71.52 (C-3L), 73.58 (PhCH2 

from one isomer), 73.62 (PhCH2 from one isomer), 73.94 (C-3 from one isomer), 74.06 

(C-3 from one isomer), 74.20 (C-5 from one isomer), 74.25 (C-5 from one isomer), 74.59 

(d, J 5.0 Hz, C-4 from one isomer), 74.66 (d, J 5.0 Hz, C-4 from one isomer), 100.04 (C-

1 from one isomer), 104.06 (C-1 from one isomer), 127.83 (CH-Ar), 127.86 (CH-Ar), 

128.22 (CH-Ar), 128.27 (CH-Ar), 128.32 (CH-Ar), 128.39 (CH-Ar), 128.56 (CH-Ar), 

128.80 (CH-Ar), 128.85 (CH-Ar), 128.89 (CH-Ar), 135.70 (m, C-Ar), 138.12 (C-Ar), 

170.83 (C=O), 171.16 (C=O), 171.29 (C=O), 171.59 (C=O), 173.68 (C=O), 173.71 
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(C=O), 173.75 (C=O), 173.99 (C=O); ESI-MS (m/z) Calcd for C91H154N2O16P [M+H]+ : 

1563.1, found: 1563.1. 

 

2.3.5 [N-(2-hydroxyethyl)-(R)-3-tetradecanoyloxytetradecanamido]-eth-1-yl 6-O-

benzyl-2-deoxy-4-O-(di-O-benzylphosphono)-3-O-[(R)-3-

tetradecanoyloxytetradecanoyl]-2-[(R)-3-tetradecanoyloxytetradecanamido]-�-D-

glucopyranoside (12)  

& 

2-[N-(2-{(R)-3-tetradecanoyloxytetradecanoyl)-ethyl}-(R)-3-

tetradecanoyloxytetradecanamido]-eth-1-yl 6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-[(R)-3-tetradecanoyloxytetradecanoyl]-2-[(R)-3-

tetradecanoyloxytetradecanamido]-�-D-glucopyranoside (13): 

 

Method 1: 

To a solution of  6 (320 mg, 0.19 mmol) in glacial acetic acid (5 mL), zinc powder (1.0 g) 

was added. The mixture was stirred at room temperature for 30 min and then filtered. The 

solid was washed with acetic acid (30 mL) and the filtrate concentrated in vacuo. The 

residue was dissolved in CH2Cl2 (150 mL) and washed with a saturated sodium 

bicarbonate solution (75 mL). The combined organic phase was dried with Na2SO4 and 

concentrated to obtain free amine 8 (244 mg, 85%) as a white solid. 

A mixture of amine 8 (280 mg), 3 (160 mg, 0.33 mmol), and DCC (154 mg, 0.66 mmol) 

in dry CH2Cl2 (5 mL) was stirred at room temperature for 20 h. Water (0.50 mL) was 

added and the reaction mixture was stirred for a further 20 min. The solid was then 
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filtered through a sintered glass funnel with a bed of Na2SO4. The filtrate was 

concentrated and the residue purified by repeated flash column chromatography 

(hexane/acetone, 5:1 and 4.5:1) to afford 10 (203 mg, 65 % over two steps) and 11 (63 

mg, 16%), both as colorless syrups.   

 

For compound 10: Rf 0.31 (hexane/acetone, 4:1); [�]
22
D  -2.2 (c 1.0, CHCl3); 

1H NMR (500 

MHz, CDCl3): � 0.89 (t, 18H, J 7.0 Hz, 6 x CH3), 1.21-1.39 (br m, 114H, 57 x CH2 of 

lipid), 1.48-1.72 (br m, 12H H-4L x 3, H-3L’ x 3), 2.18-2.56 (m, 10H, H-2L’ x 3, H-2L x 

2), 2.76 (dd, 1H, J 15.5, 7.5 Hz, H-2La), 2.85 (dd. 1H, J 15.5, 5.0 Hz, H-2Lb), 3.18-3.23 

(m, 0.6H, H-2 from one isomer), 3.29-3.37 (m, 2H, H-6a, H-6b), 3.44 (br s, 1H, OH), 

3.52-3.86 (m, 7.4 H, H-2 from one isomer, H-5, ROCH2CH2NCH2CH2OH), 3.97- 4.08 

(m, 2H, ROCH2CH2NCH2CH2OH), 4.41-4.52 (m, 3H, H-4, PhCH2), 4.63 (d, 0.4H, J 8.0 

Hz, H-1 from one isomer), 4.82-4.94 (m, 4H, (PhCH2O)2P), 5.10 (m, 4H, H-1 from one 

isomer, H-3 from one isomer, C-3L x 3), 5.64 (dd, 0.6H, J 10.5, 8.5 Hz, H-3 from one 

isomer), 6.18 (d, 0.4H, J 8.0 Hz, NH from one isomer), 6.80 (d, 0.6H, J 8.0 Hz, NH from 

one isomer), 7.21-7.39 (m, 15H, Ar-H); 13C NMR (125 MHz, CDCl3): � 14.15 (CH3), 

22.73 (CH2), 25.05 (CH2), 25.17 (CH2), 25.20 (CH2), 25.31 (CH2), 25.38 (CH2), 25.69 

(CH2), 29.21 (CH2), 29.25 (CH2), 29.26 (CH2), 29.28 (CH2), 29.32 (CH2), 29.36 (CH2), 

29.39 (CH2), 29.42 (CH2), 29.45 (CH2), 29.50 (CH2), 29.52 (CH2), 29.56 (CH2), 29.62 

(CH2), 29.64 (CH2), 29.66 (CH2), 29.71 (CH2), 29.73 (CH2), 29.74 (CH2), 29.76 (CH2), 

29.80 (CH2), 31.96 (CH2), 31.98 (CH2), 34.19 (CH2), 34.41 (CH2), 34.47 (CH2), 34.53 

(CH2), 34.60 (CH2), 34.66 (CH2), 38.24 (CH2), 38.60 (CH2), 39.25 (CH2), 39.46 (CH2), 

40.85 (CH2), 41.51 (CH2), 47.60 (CH2N), 49.49 (CH2N), 51.21 (CH2N), 51.88 (CH2N), 
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54.77 (C-2 from one isomer), 56.40 (C-2 from one isomer), 60.15 (C-6 from one isomer), 

60.97 (C-6 from isomer), 67.67 (OCH2), 68.25 (OCH2), 68.41 (OCH2), 68.66 (OCH2), 

69.59 (m, (PhCH2O)2P), 70.14 (C-3L), 70.87 (C-3 from one isomer), 71.40 (C-3 from one 

isomer), 71.86 (C-3L), 72.15 (C-3L), 73.37 (PhCH2 from one isomer), 73.45 (PhCH2 from 

one isomer), 73.86 (C-5 from one isomer), 73.90 (C-5 from one isomer), 74.13 (d, J 5.0 

Hz, C-4 from one isomer), 74.33 (d, J 5.0 Hz, C-4 from one isomer), 99.76 (C-1 from one 

isomer), 100.92 (C-1 from one isomer), 127.61 (CH-Ar), 127.66 (CH-Ar), 127.98 (CH-

Ar), 128.00 (CH-Ar), 128.09 (CH-Ar), 128.11 (CH-Ar), 128.30 (CH-Ar), 128.35 (CH-

Ar), 128.52 (CH-Ar), 128.54 (CH-Ar), 128.56 (CH-Ar), 128.58 (CH-Ar), 128.61 (CH-

Ar), 128.67 (CH-Ar), 135.53 (m, C-Ar), 137.84 (C-Ar), 137.97 (C-Ar), 169.80 (C=O), 

170.52 (C=O), 170.62 (C=O), 170.77 (C=O), 171.37 (C=O), 171.69 (C=O), 173.20 

(C=O), 173.33 (C=O), 173.52 (C=O), 173.56 (C=O), 173.58 (C=O), 174.37 (C=O); 

HRESI-MS (m/z) Calcd for C115H197N2O18P [M+Na]+ : 1948.4144, found: 1948.4183. 

 

For compound 11: Rf 0.41 (hexane/acetone, 4:1); [�]
22
D  -1.1 (c 1.0, CHCl3); 

1H NMR (500 

MHz, CDCl3): � 0.83 (t, 24H, J 7.0 Hz, 8 x CH3), 1.21-1.39 (br m, 152H, 76 x CH2 of 

lipid), 1.46-1.79 (br m, 16H, H-4L x 4, H-3L’ x 4), 2.17-2.58 (m, 14H, H-2L’ x 4, H-2L x 

3), 2.73 (dd, 1H, J 16.0, 6.0 Hz, H-2La), 2.85 (dd, 1H, J 16.0, 5.0 Hz, H-2Lb), 3.12-3.17 

(m, 0.6H, H-2 from one isomer), 3.23-3.41 (m, 2H, H-6a, H-6b), 3.49-3.78 (m, 6.4H,  

H-2 from one isomer, H-5, R1OCH2CH2NCH2CH2OR2, OCHH), 3.89-3.95 (m, 1H, 

OCHH), 4.11-4.17 (m, 2H, OCH2), 4.39-4.51 (m, 3H, H-4, PhCH2), 4.69 (d, 0.4H, J 8.5 

Hz, H-1 from one isomer), 4.85-4.91 (m, 4H, (PhCH2O)2P), 5.06-5.24 (m, 4.6 H, H-1 

from one isomer, H-3L x 4), 5.31 (dd, 0.4H, J 10.0, 10.0 Hz, H-3 from one isomer), 5.68 
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(dd, 0.6H, J 10.0, 10.0 Hz, H-3 from one isomer), 6.16 (d, 0.4H, J 8.5 Hz, NH from one 

isomer), 6.67 (d, 0.6H, J 7.5 Hz, NH from one isomer), 7.22-7.39 (m, 15H, Ar-H); 13C 

NMR (125 MHz, CDCl3): � 14.15 (CH3), 22.73 (CH2), 25.07 (CH2), 25.09 (CH2), 25.19 

(CH2), 25.27 (CH2), 25.35 (CH2), 25.74 (CH2), 29.19 (CH2), 29.27 (CH2), 29.35 (CH2), 

29.42 (CH2), 29.49 (CH2), 29.57 (CH2), 29.62 (CH2), 29.68 (CH2), 29.73 (CH2), 29.75 

(CH2), 31.96 (CH2), 34.17 (CH2), 34.48 (CH2), 34.52 (CH2), 34.67 (CH2), 37.81 (CH2), 

38.16 (CH2), 39.19 (CH2), 39.27 (CH2), 40.86 (CH2), 41.33 (CH2), 45.01 (CH2N), 46.00 

(CH2N), 47.16 (CH2N), 48.00 (CH2N), 55.03 (C-2 from one isomer), 56.43 (C-2 from 

one isomer), 61.95 (C-6 from one isomer), 62.39 (C-6 from one isomer), 67.24 (OCH2), 

67.29 (OCH2), 68.36 (OCH2), 68.42 (OCH2), 69.60 (m, (PhCH2O)2P), 70.13 (C-3L), 

70.69 (C-3L), 71.29 (C-3L), 71.78 (C-3L), 72.05 (C-3 from one isomer), 72.71 (C-3 from 

one isomer), 73.33 (PhCH2 from one isomer), 73.37 (PhCH2 from one isomer), 73.82 (C-

5 from one isomer), 73.89 (C-5 from one isomer), 74.01 (d, J 5.0 Hz, C-4 from one 

isomer), 74.38 (d, J 5.0 Hz, C-4 from one isomer), 99.53 (C-1 from one isomer), 100.88 

(C-1 from one isomer), 127.57 (CH-Ar), 127.91 (CH-Ar), 128.08 (CH-Ar), 128.29 (CH-

Ar), 128.36 (CH-Ar), 128.52 (CH-Ar), 128.54 (CH-Ar), 128.56 (CH-Ar), 128.58 (CH-

Ar), 128.60 (CH-Ar), 128.60 (CH-Ar), 135.55 (m, C-Ar), 137.96 (C-Ar), 138.04 (C-Ar), 

169.76 (C=O), 170.10 (C=O), 170.18 (C=O), 170.24 (C=O), 170.43 (C=O), 170.58 

(C=O), 170.67 (C=O), 173.16 (C=O), 173.18 (C=O), 173.22 (C=O), 173.26 (C=O), 

173.39 (C=O), 173.42 (C=O), 173.48 (C=O), 174.04 (C=O); HRESI-MS (m/z) Calcd for 

C143H249N2O21P [M+Na]+ : 2384.8047, found: 2384.8032. 

 

Method 2: 
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To a solution of 26 (890 mg, 0.41 mmol) in CH2Cl (3 mL) and glacial acetic acid (0.1 

mL), a tetrabutylammonium fluoride solution (1 M in THF, 0.62 mL) was added, and the 

mixture was stirred at room temperature for 18 h. The mixture was then poured into a 

saturated sodium bicarbonate solution (30 mL), extracted with CH2Cl (3 x 50 mL), dried 

over Na2SO4, and concentrated. Flash column chromatography of the residue 

(hexane/EtOAc/MeOH, 3 : 1 : 0.1) yielded 10 (715 mg, 90 %) as a colorless syrup 

 

2.3.6 [N-(2-hydroxyethyl)-(R)-3-tetradecanoyloxytetradecanamido]eth-1-yl 2-

deoxy-4-O-(phosphono)-3-O-[(R)-3-tetradecanoyloxytetradecanoyl]-2-[(R)-3-

tetradecanoyloxytetradecanamido]-ββββ-D-glucopyranoside (1)  

&  

2-[N-(2-(4-hydroxybutyloxy)-ethyl)-(R)-3-tetradecanoyloxytetradecanamido]-eth-1-

yl 2-deoxy-4-O-(phosphono)-3-O-[(R)-3-tetradecanoyloxytetradecanoyl]-2-[(R)-3-

tetradecanoyloxytetradecanamido]-ββββ-D-glucopyranoside (12): 

 

Method 1: 

To a solution of 10 (60 mg, 0.03 mmol) in freshly distilled THF (45 ml) and glacial acetic 

acid (5 mL), was added palladium on charcoal (5%, 25 mg). The mixture was stirred at 

room temperature under hydrogen atmosphere for 24 h. The mixture was filtered and the 

filtrate concentrated in vacuo, keeping the bath temperature at 20oC. The residue was 

purified by flash column chromatography (CHCl3/MeOH, 9:1 � CHCl3/MeOH/H2O, 

4:1:0.1) to afford 1 (23 mg, 44%) and 12 (12 mg, 21%). Both 1 and 12 were freeze dried 

from a dioxane-CHCl3 mixture (95:5) to give white fluffy solids.  
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For compound 1: Rf 0.34 (CHCl3/MeOH/H2O, 4:1:0.1); [�]
22
D  -0.2 (c 1.0, CHCl3); 

1H 

NMR (500 MHz, CDCl3:CD3OD, 4:1): � 0.75 (t, 18H, J 7.0 Hz, 6 x CH3), 1.08-1.27 (br 

m, 114, 57 x CH2 of lipid), 1.37-1.58 (br m, 12H, H-4L x 3, H-3L’ x 3), 2.10-2.27 (m, 8H, 

H-2L’ x 3, H-2L x 1), 2.29-2.71 (br m, 4H, H-2L x 2), 3.17-3.29 (br m, H-2, H-6a, H-6b), 

3.47-3.68 (br m, 7H, H-5, ROCH2CH2NCH2CH2OH), 3.71-3.88 (m, 2H, 

ROCH2CH2NCH2CH2OH), 4.03-4.15 (br m, 1H, H-4), 4.30 (d, 0.6H, J 8.0 Hz, H-1 from 

one isomer), 4.45 (d, 0.4H, J 8.0 Hz, H-1 from one isomer), 4.89-5.16 (br m, 4H, H-3, H-

3L x 3); HRESI-MS (m/z) Calcd for C94H178N2O18P [M-H]- 1654.2843, found: 1654.2837. 

 

For compound 12: Rf 0.40 (CHCl3/MeOH/H2O, 4:1:0.1); [�]
22
D  -0.2 (c 1.0, CHCl3); 

1H 

NMR (500 MHz, CDCl3:CD3OD, 4:1): � 0.75 (t, 18H, J 7.0 Hz, 6 x CH3), 1.20-1.45 (br 

m, 114, 57 x CH2 of lipid), 1.52-1.75 (br m, 12H, H-4L x 3, H-3L’ x 3), 1.81-2.03 (br, m, 

4H, ROCH2CH2CH2CH2OH), 2.20-2.51 (br m, 8H, H-2L’ x 3, H-2L x 1), 2.29-2.71 (br m, 

4H, H-2L x 2), 3.28-3.43 (br m, 3H, H-2, H-6a, H-6b), 3.45-4.06 (br m, 13H H-5, 

ROCH2CH2NCH2CH2OCH2CH2CH2CH2OH), 4.41-4.65 (br m, 2H, H-1, H-4), 5.02-5.33 

(br m 4H, H-3, H-3L x 3); ESI-MS (m/z) Calcd for C98H186N2O19P [M-H]- 1726.3, found: 

1726.3. 

 

Method 2: 

To a solution of 10 (40 mg, 0.02 mmol) in freshly distilled THF (45 ml) and glacial acetic 

acid (5 mL), was added palladium on charcoal (5%, 15 mg). The mixture was stirred at 

room temperature under hydrogen atmosphere for 24 h. TLC analysis again indicated the 
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formation of a mixture of both 1 and 12. However, it was observed that 1 formed in far 

greater abundance, with the relative abundance of 12 estimated at being < 5%. The 

mixture was filtered and the filtrate concentrated in vacuo, keeping the bath temperature 

at 20oC. The residue was purified by flash column chromatography (CHCl3/MeOH, 9:1 

� CHCl3/MeOH/H2O, 4:1:0.1) to afford 1 (26 mg, 76%) as white fluffy solid after being 

freeze dried from a dioxane-CHCl3 mixture (95:5). 

2.3.7 [N-(2-{(R)-3-tetradecanoyloxytetradecanoyl)-ethyl}-(R)-3-

tetradecanoyloxytetradecanamido]-eth-1-yl 2-deoxy-4-O-(phosphono)-3-O-[(R)-3-

tetradecanoyloxytetradecanoyl]-2-[(R)-3-tetradecanoyloxytetradecanamido]-�-D-

glucopyranoside (2): 

 

In a similar manner as described for the global deprotection of 10, a solution of 11 (12 

mg, 0.005 mmol) in freshly distilled THF (30 mL) and palladium on charcoal (5%, 15 

mg) was stirred at room temperature under hydrogen atmosphere for 24 h. The mixture 

was filtered, the filtrate concentrated, and the resulting residue purified by flash column 

chromatography (CHCl3/MeOH, 9:1 � CHCl3/MeOH/H2O, 4:1:0.1) to afford 2 (9 mg, 

85%) as white fluffy solid after being freeze dried from a dioxane-CHCl3 mixture (95:5). 

Rf 0.54 (CHCl3/MeOH/H2O, 4:1:0.1); [�]
22
D   -0.1 (c 1.0, CHCl3); 

1H NMR (500 MHz, 

CDCl3:CD3OD, 2:1): � 0.82 (t, 24H, J 7.0 Hz, 8 x CH3), 1.13-1.34 (br m, 114, 57 x CH2 

of lipid), ), 1.42-1.70 (br m, 16H, H-4L x 4, H-3L’ x 4), 2.17-2.43 (br m, 10H, H-2L’ x 4, 

H-2L x 1), 2.45-2.77 (br m, 6H, H-3L x 3), 3.22-3.31 (br m, 3H, H-2, H-6a, H-6b), 3.38-

3.73 (br m, 7H, OCH2, CH2N x 2), 4.03-4.19 (br m, 2H, OCH2), 4.36-4.48 (br m, 2H, H-
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1, H-4), 4.89-5.08 (br m, 5H, H-3, H-3L x 4); HRESI-MS (m/z) Calcd for C122H230N2O21P 

[M-H]- : 2090.6746, found: 2090.6727. 

 

2.3.8 N,N-Bis(2-hydroxyethyl)-2,2,2-trichloroethoxymethanamide (15)  

 

& 

 

N-(2-hydroxyethyl)-N-{2-(2,2,2-trichloroethoxycarbonyloxy)-ethyl}-2,2,2-

trichloroethoxymethanamide (16): 

 

To a solution of diethanolamine (1.10 g, 10.45 mmol) and sodium bicarbonate (3.07 g, 

36.58 mmol) in water (70 mL), 2,2,2-trichloroethoxychloroformate (2.88 g, 13.59 mmol) 

was added drop wise in about 3 min. As the mixture was stirred at room temperature, a 

viscous insoluble oil formed and settled to the bottom of the reaction vessel. After stirring 

for 3 h, the mixture was extracted with EtOAc (3 x 135 mL), after which the combined 

organic layers were dried over Na2SO4 and concentrated. Purification via flash column 

chromatography (hexane/EtOAc/MeOH, 1:1:0.1) yielded 15 (2.29 g, 78%) and 16 (332 

mg, 7%), both as colorless syrups.  

 

For (15): Rf 0.34 (hexane/EtOAc/MeOH, 1:1:0.1); 1H NMR (500 MHz, CDCl3): � 3.52-

3.63 (br m, 6H, NCH2 x 2, OH x 2), 3.86-3.94 (m, 4H, OCH2 x 2), 4.78 (s, 2H, Troc-

CH2); 
13C NMR (125 MHz, CDCl3): � 52.55 (NCH2), 53.26 (NCH2), 61.57 (OCH2), 

62.04 (OCH2), 75.45 (Troc-CH2), 95.61 (Troc-CCl3), 155.15 (C=O); ESI-MS (m/z) Calcd 

for C7H12Cl3NO4 [M + Na]+ : 301.9, found: 302.0. 
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For (16): Rf 0.65 (hexane/EtOAc/MeOH, 1:1:0.1); 1H NMR (500 MHz, CDCl3): � 1.82-

1.95 (br s, 0.5H, OH from one isomer), 2.20-2.34 (br s, 0.5 H, OH from one isomer), 

3.58-3.61 (m, 2H, HOCH2CH2N), 3.73-3.77 (m, 2H, NCH2CH2OTroc), 3.82-3.88 (br m, 

2H, HOCH2), 4.44-4.49 (m, 2H, CH2OTroc), 4.76-4.81 (m, 4H, Troc-CH2 x 2); 13C NMR 

(125 MHz, CDCl3): � 47.45 (HOCH2CH2N from one isomer), 48.24 (HOCH2CH2N from 

one isomer), 51.10 (NCH2CH2OTroc from one isomer), 51.86 (NCH2CH2OTroc from 

one isomer), 61.22 (HOCH2 from one isomer), 61.27 (HOCH2 from one isomer), 66.66 

(CH2OTroc from one isomer), 66.91 (CH2OTroc from one isomer), 75.20 (O-Troc-CH2 

from one isomer), 75.34 (O-Troc-CH2 from one isomer), 76.86 (N-Troc-CH2), 94.24 (O-

Troc-CCl3), 95.22 (N-Troc-CCl3), 153.82 (O-Troc-C=O), 154.52 (N-Troc-C=O from one 

isomer), 155.05 (N-Troc-C=O from one isomer); ESI-MS (m/z) Calcd for C10H13Cl6NO6 

[M + Na]+ : 475.9, found: 475.9. 

 

2.3.9 N-(2-hydroxyethyl)-N-{2-(tert-butyldiphenylsilyloxy)ethyl}-2,2,2-

trichloroethoxymethanamide (17) : 

& 

N,N-Bis{2-(tert-butyldiphenylsilyloxy)ethyl}-2,2,2-trichloroethoxymethanamide 

(18): 

 

To a cooled solution (ice water bath) of 15 (2.00 g, 7.13 mmol) and Et3N (902 mg, 8.91 

mmol) in CH2Cl2 (8 mL), tert-butyldiphenylsilyl chloride (2.45 g, 8.91 mmol) was added. 

After stirring at room temperature for 3 hours, the reaction was quenched with MeOH 

and concentrated. Flash column chromatography purification (hexane/acetone, 3.5 : 1) 



 100 

yielded 17 (2.01 g, 54%) and 18 (321 mg, 6%), as well as recovered 15 (706 mg, 35%), 

all as colorless syrups. 

 

For (17): Rf 0.38 (hexane/acetone, 3:1); 1H NMR (500 MHz, CDCl3): � 1.09 (s, 9H, 

C(CH3)3), 2.69 (br s, 0.4H, OH from one isomer), 2.94 (br s, 0.6H, OH from one isomer), 

3.56-3.64 (m, 4H, NCH2 x 2), 3.83-3.90 (m, 4H, OCH2 x 2), 4.68 (s, 1.2H, Troc-CH2 

from one isomer), 4.78 (s, 0.8H, Troc-CH2 from one isomer), 7.40-7.48 (m, 6H, Ar-H), 

7.67-7.70 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 19.10 (C(CH3)3 from one 

isomer), 19.13 (C(CH3)3 from one isomer), 26.82 (C(CH3)3), 50.77 (NCH2CH2OTBDPS 

from one isomer), 51.42 (NCH2CH2OTBDPS from one isomer), 51.46 (HOCH2CH2N 

from one isomer), 52.44 (HOCH2CH2N from one isomer), 61.54 (CH2OTBDPS from one 

isomer), 61.72 (CH2OTBDPS from one isomer), 62.18 (HOCH2 from one isomer, 62.72 

(HOCH2 from one isomer), 75.15 (Troc-CH2 from one isomer), 75.19 (Troc-CH2 from 

one isomer), 95.30 (Troc-CCl3 from one isomer), 95.57 (Troc-CCl3 from one isomer), 

127.84 (CH-Ar), 127.86 (CH-Ar), 129.93 (CH-Ar), 132.92 (C-Ar), 135.58 (CH-Ar), 

154.40 (C=O from one isomer), 155.45 (C=O from one isomer); ESI-MS (m/z) Calcd for 

C23H30Cl3NO4Si [M - C4H9]
+ : 460.0, found: 460.4. 

 

For (18): Rf 0.67 (hexane/acetone, 3:1); 1H NMR (500 MHz, CDCl3): � 1.05 (s, 18H, 

C(CH3)3 x 2), 3.61-3.69 (m, 4H, NCH2 x 2), 3.85-3.92 (m, 4H, OCH2 x 2), 4.75 (s, 2H, 

Troc-CH2), 7.43-7.52 (m, 12H, Ar-H), 7.72-7.79 (m, 8H, Ar-H); 13C NMR (125 MHz, 

CDCl3): � 19.20 (C(CH3)3), 26.88 (C(CH3)3), 50.86 (NCH2), 51.32 (NCH2), 62.24 

(OCH2), 62.65 (OCH2), 75.04 (Troc-CH2), 95.62 (Troc-CCl3), 127.78 (CH-Ar), 127.82 
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(CH-Ar), 127.85 (CH-Ar), 129.70 (CH-Ar), 129.82 (CH-Ar) 129.84 (CH-Ar), 133.35 (C-

Ar), 133.44 (C-Ar), 133.59 (C-Ar), 135.59 (CH-Ar), 135.62 (CH-Ar), 154.27 (C=O); 

ESI-MS (m/z) Calcd for C39H48Cl3NO4Si2 [M - C4H9]
+ : 698.2, found: 698.5. 

 

2.3.10 N-{2-(tert-butyldiphenylsilyloxy)ethyl}-N-{2-[3,4,6-tri-O-acetyl-2-deoxy-2-

(2,2,2-trichloroethoxycarbonylamino)-�-D-glucopyranosyloxy]-ethyl}-2,2,2-

trichloroethoxymethanamide (20): 

 

A solution of 17 (997 mg, 1.92 mmol) and imidate 19 (1.26 g, 2.02 mmol) in dry CH2Cl2 

(8 mL) in the presence of molecular sieves (4Å, 4.0 g) was stirred under nitrogen at room 

temperature for 30 min. A solution of TMSOTf (0.05 M in dry CH2Cl2, 0.8 mL) was 

added drop wise in about 3 min. The mixture was stirred at room temperature for 1 h 

before a saturated sodium bicarbonate solution (15 mL) was added to quench the 

reaction. Solids were filtered out, and the filtrate was extracted with CH2Cl2 (3 x 30 mL). 

The combined organic phase was dried over Na2SO4 , concentrated, and purified via flash 

column chromatography (hexane/acetone, 2.5 : 1) to  yield 20 (1.77 g, 94%) as a fluffy 

white solid. Rf 0.42 (hexane/acetone, 5:2); [�]
22
D  + 0.9 (c 1.0, CHCl3); 

1H NMR (500 

MHz, CDCl3): � 1.04 (s, 9H, C(CH3)3), 2.01-2.09 (m, 9H, Ac x 3), 3.38-3.47 (m, 2H, 

NCH2), 3.51-3.72 (m, 4H, H-2, H-5, NCH2), 3.75-3.86 (m, 3H, ROCHH, CH2OTBDPS), 

3.94-4.04 (m, 1H, ROCHH), 4.08-4.13 (m, 1H, H-6b), 4.26 (dd, 0.5H, J 12.0, 12.0 Hz, 

H-6a from one isomer), 4.28 (dd, 0.5H, J 12.0, 12.0 Hz, H-6a from one isomer), 4.53 (d, 

0.5H, J 8.5 Hz, H-1 from one isomer), 4.55 (d, 0.5H, J 12.5 Hz, Troc), 4.60 (d, 0.5H, J 

12.0 Hz, Troc), 4.65 (d, 0.5H, J 8.5 Hz, H-1 from one isomer), 4.68 (d, 0.5H, J 12.5 Hz, 
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Troc), 4.72 (d, 0.5H, J 12.5 Hz, Troc), 4.76 (d, 1.0H, J 12.0 Hz, Troc), 4.89 (d, 1.0H, J 

12.0 Hz, Troc), 4.94 (d, 0.5H, J 8.0 Hz, NH from one isomer), 5.05 (dd, 0.5H, J 9.5, 9.5 

Hz, H-4 from one isomer), 5.08 (dd, 0.5H, J 9.5, 9.5 Hz, H-4 from one isomer), 5.22 (dd, 

0.5H, J 9.5, 9.5 Hz, H-3 from one isomer), 5.24 (dd, 0.5H, J 9.5, 9.5 Hz, H-3 from one 

isomer), 5.31 (d, 0.5 H, J 8.0 Hz, NH from one isomer), 7.38-7.46 (m, 6H, Ar-H), 7.62-

7.66 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 19.11 (C(CH3)3 from one isomer), 

19.14 (C(CH3)3 from one isomer), 20.69 (C(CH3)3 from one isomer), 20.80 (C(CH3)3 from 

one isomer), 26.85 (COOCH3), 48.26 (NCH2), 48.33 (NCH2), 50.22 (NCH2), 51.30 

(NCH2), 61.90 (OCH2), 61.94 (OCH2), 61.98 (C-6), 62.48 (OCH2), 66.89 (OCH2), 68.50 

(C-4 from one isomer), 68.58 (C-4 from one isomer), 71.79 (C-5 from one isomer), 71.84 

(C-5 from one isomer), 71.89 (C-3 from one isomer), 72.39 (C-3 from one isomer), 74.32 

(Troc-CH2), 74.35 (Troc-CH2), 75.01 (Troc-CH2), 75.10 (Troc-CH2), 95.38 (Troc-CCl3), 

95.45 (Troc-CCl3), 95.51 (Troc-CCl3), 95.68 (Troc-CCl3), 99.61 (C-1 from one isomer), 

100.99 (C-1 from one isomer), 127.80 (CH-Ar), 127.83 (CH-Ar), 127.84 (CH-Ar), 

129.83 (CH-Ar), 129.88 (CH-Ar), 133.11 (C-Ar), 133.16 (C-Ar), 133.29 (C-Ar), 133.34 

(C-Ar), 135.56 (CH-Ar), 135.57 (CH-Ar), 153.97 (C=O Troc), 153.99 (C=O Troc), 

154.20 (C=O Troc), 154.67 (C=O Troc), 169.49 (C=O), 170.57 (C=O). 170.64 (C=O), 

170.71 (C=O), 170.73 (C=O); MALDI-MS (m/z) Calcd for C38H48Cl6N2O13Si  [M + Na]+ 

: 1001.09, found: 1001.08. 

 

2.3.11 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[2-deoxy-2-(2,2,2-

trichloroethoxycarbonylamino)-�-D-glucopyranosyloxy]-ethyl}-2,2,2-

trichloroethoxymethanamide (21): 
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Guanidinium nitrate (1.87 g, 15.32 mmol) was dissolved in MeOH:CH2Cl2 (9:1, 150 mL) 

and sodium methoxide in methanol solution (0.5 M, 6 mL) was added. 20 (1.86 g, 1.89 

mmol) was dissolved in the above solution and stirred at room temperature for 3 h. The 

mixture was then neutralized by adding weak acidic ion-exchange resin (Amberlite IRC-

64). The resin was filtered and the filtrate concentrated. The residue was purified via 

flash column chromatography (CH2Cl2/MeOH, 13 : 1) to afford 21 (1.48 g, 91%) as a 

white fluffy solid. Rf 0.29 (hexane/acetone, 3:2); [�]
22
D  -12.5 (c 1.0, CHCl3); 

1H NMR 

(500 MHz, CDCl3): � 1.04 (s, 9H, C(CH3)3), 3.25-3.67 (m, 8H, H-2, H-4, H-6b, H-6a, 

NCH2 x 2), 3.69-3.85 (m, 5H, H-3, H-5, ROCHH, CH2OTBDPS), 3.87-3.99 (m, 1H, 

ROCHH), 4.43 (d, 0.4H, J 8.0 Hz, H-1 from one isomer), 4.54 (d, 0.6H, J 8.0 Hz, H-1 

from one isomer),  4.61 (d, 0.6H, J 12.0 Hz, Troc), 4.63 (d, 0.6H, J 12.0 Hz, Troc), 4.69 

(d, 1H, J 12.0 Hz, Troc), 4.71 (d, 0.4 H, J 12.0 Hz, Troc), 4.74 (d, 0.4H, J 12.0 Hz, Troc), 

4.78 (d, 1 H, J 12.0 Hz, Troc), 4.99 (br s, 3H, OH x 3), 6.17 (d, 0.4H, J 8.0 Hz, NH from 

one isomer), 6.31 (d, 0.6H, J 8.0 Hz, NH from one isomer), 7.36-7.43 (m, 6H, Ar-H), 

7.61-7.64 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 19.14 (C(CH3)3 from one 

isomer), 19.17 (C(CH3)3 from one isomer), 26.90 (C(CH3)3), 48.22 (NCH2), 48.42 

(NCH2), 49.93 (NCH2), 51.43 (NCH2), 57.63 (C-2 from one isomer), 57.78 (C-2 from 

one isomer), 61.35 (OCH2), 61.92 (OCH2), 62.40 (C-6), 66.23 (OCH2), 68.32 (OCH2), 

70.07 (C-4 from one isomer), 70.20 (C-4 from one isomer), 73.95 (C-5 from one isomer), 

74.61 (Troc-CH2), 74.72 (C-5 from one isomer), 75.09 (Troc-CH2), 75.17 (Troc-CH2), 

75.50 (C-3 from one isomer), 75.63 (Troc-CH2), 95.31 (Troc-CCl3), 95.61 (Troc-CCl3), 

95.64 (Troc-CCl3), 100.03 (C-1 from one isomer), 101.50 (C-1 from one isomer), 127.81 
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(CH-Ar), 127.87 (CH-Ar), 129.82 (CH-Ar), 129.90 (CH-Ar), 133.09 (C-Ar), 133.27 (C-

Ar), 135.57 (CH-Ar), 154.46 (C=O Troc), 154.88 (C=O Troc), 155.17 (C=O Troc), 

155.57 (C=O Troc); MALDI-MS (m/z) Calcd for C32H42Cl6N2O10Si  [M + Na]+ : 875.06, 

found: 875.05. 

 

2.3.12 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[4,6-O-benzylidene-2-deoxy-2-

(2,2,2-trichloroethoxycarbonylamino)-�-D-glucopyranosyloxy]-ethyl}-2,2,2-

trichloroethoxymethanamide (12): 

 

To a solution of 21 (1.35 g, 1.58 mmol) in CH3CN (8 mL), benzaldehyde dimethyl acetal 

(308 mg, 2.02 mmol) and p-toluene sulfonic acid (15 mg, 0.08 mmol) were added 

successively. The mixture was stirred at room temperature for 2 h before being quenched 

with Et3N (0.5 mL), and concentrated. The residue was purified via flash column 

chromatography (hexane/acetone, 3 : 1) to yield 22 (1.29 g, 87%) as a white fluffy solid. 

Rf 0.46 (hexane/acetone, 5:2); [�]
22
D  -17.9 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 

1.05 (s, 9H, C(CH3)3), 3.33-3.66 (m, 8H, H-2, H-4, H-5, OH, NCH2 x 2), 3.68-3.99 (m, 

6H, H-3, H-6b, OCH2 x 2), 4.27 (dd, 0.4H, J 10.0, 10.0 Hz, H-6a from one isomer), 4.29 

(dd, 0.6H, J 10.0, 10.0 Hz, H-6a from one isomer), 4.45 (d, 0.4H, J 8.0 Hz, H-1 from one 

isomer), 4.53 (d, 0.6H, J 8.0 Hz, H-1 from one isomer), 4.61 (d, 1.4H, J 12.0 Hz, Troc), 

4.69 (0.6H, J 12.0 Hz, Troc), 4.72 (d, 0.6H, J 12.0 Hz, Troc), 4.74 (d, 1H, J 12.0 Hz, 

Troc), 4.81 (d, 0.4H, J 12.0 Hz, Troc), 5.23 (d, 0.4H, J 8.0 Hz, NH from one isomer), 

5.50 (s, 0.4H, Ph-CH from one isomer), 5.52 (s, 0.6H, Ph-CH from one isomer), 5.74 (d, 

0.6H, J 8.0 Hz, NH from one isomer), 7.33-7.44 (m, 9H, Ar-H), 7.47-7.51 (m, 2H, Ar-H), 
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7.61-7.65 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 19.15 (C(CH3)3 from one 

isomer), 19.18 (C(CH3)3 from one isomer), 26.89 (C(CH3)3), 48.38 (NCH2), 48.45 

(NCH2), 50.19 (NCH2), 51.35 (NCH2), 58.45 (C-2 from one isomer), 58.62 (C-2 from 

one isomer), 61.97 (OCH2), 62.51 (OCH2), 66.03 (C-5 from one isomer), 66.17 (C-5 

from one isomer), 66.83 (OCH2), 68.55 (C-6), 70.74 (C-3 from one isomer), 71.81 (C-3 

from one isomer), 74.66 (Troc-CH2), 75.06 (Troc-CH2), 75.15 (Troc-CH2), 81.40 (C-4), 

95.38 (Troc-CCl3), 95.48 (Troc-CCl3), 95.70 (Troc-CCl3), 99.86 (C-1 from one isomer), 

101.35 (C-1 from one isomer), 101.86 (Ph-CH from one isomer), 101.89 (Ph-CH from 

one isomer), 126.43 (CH-Ar), 126.45 (CH-Ar), 127.83 (CH-Ar), 127.87 (CH-Ar), 128.45 

(CH-Ar), 128.49 (CH-Ar), 129.42 (CH-Ar), 129.46 (CH-Ar), 129.85 (CH-Ar), 129.91 

(CH-Ar), 133.12 (C-Ar), 133.14 (C-Ar), 133.31 (C-Ar), 133.33 (C-Ar), 135.58 (CH-Ar), 

137.03 (C-Ar), 154.05 (C=O Troc), 154.54 (C=O Troc), 154.85 (C=O Troc), 155.37 

(C=O Troc); MALDI-MS (m/z) Calcd for C39H46Cl6N2O10Si [M + Na - C4H9]
+: 906.06, 

found: 906.12. 

 

2.3.13 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[4,6-O-benzylidene-2-deoxy-3-

O-((R)-3-tetradecanoyloxytetradecanoyl)-2-(2,2,2-trichloroethoxycarbonylamino)-�-

D-glucopyranosyloxy]-ethyl}-2,2,2-trichloroethoxymethanamide (23): 

 

A mixture of 22 (1.16 g, 1.23 mmol), dilipid acid 3 (590 mg, 1.30 mmol), N,N-

dimethylaminopyridine (15 mg, 0.12 mmol) and N,N’-diisopropylcarbodiimide (235 mg, 

1.85 mmol) in CH2Cl2 (7 mL) was stirred at room temperature for 4 h. Water (0.5 mL) 

was added and the mixture stirred for a further 1 h. The solids were then filtered through 
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a scintered glass funnel with a bed of Na2SO4 . The filtrate was concentrated and the 

residue purified by flash column chromatography (hexane/acetone, 4.5 : 1) to afford 23 

(1.58 g, 93%) as a colorless syrup. Rf 0.38 (hexane/acetone, 4:1); [�]
22
D  -14.1 (c 1.0, 

CHCl3); 
1H NMR (500 MHz, CDCl3): � 0.91 (t, 6H, J 6.5 Hz, CH3 x 2), 1.08 (s, 9H, 

C(CH3)3), 1.14-1.36 (br m, 38H, CH2 x 19), 1.53-162 (br m, 4H, H-4L, H-3L’), 2.16-2.23 

(m, 2H, H-2L’), 2.53-2.66 (m, 2H, H-2L), 3.46-3.68 (m, 7H, H-2, H-4, H-5, NCH2 x 2), 

3.71-3.87 (m, 4H, H-6b, CH2OTBDPS, ROCHH), 3.94-4.04 (m, 1H, ROCHH), 4.33 (dd, 

0.4H, J 10.0, 10.0 Hz, H-6a from one isomer), 4.34 (dd, 0.6H, J 10.0, 10.0 Hz, H-6a from 

one isomer), 4.55 (d, 0.4 H, J 12.0 Hz, Troc), 4.59 (d, 0.6 H, J 12.0 Hz, Troc), 4.61 (d, 

0.4H, J 8.0 Hz, H-1 from one isomer), 4.63 (d, 0.6 H, J 12.0 Hz, Troc), 4.69 (d, 0.6H, J 

8.0 Hz, H-1 from one isomer), 4.72 (d, 0.4 H, J 12.0 Hz, Troc), 4.74 (d, 0.6 H, J 12.0 Hz, 

Troc), 4.78 (d, 0.6 H, J 12.0 Hz, Troc), 4.80 (d, 0.4 H, J 12.0 Hz, Troc), 4.87 (d, 0.4 H, J 

12.0 Hz, Troc), 5.18-5.26 (m, 1H, H-3L), 5.32-5.38 (m, 1.4H, H-3, NH from one isomer), 

5.50-5.54 (m, 1.6H, Ph-CH, NH from one isomer), 7.34-7.49 (m, 11H, Ar-H), 7.58-7.69 

(m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 14.18 (CH3), 19.13 (C(CH3)3 from one 

isomer), 19.17 (C(CH3)3 from one isomer), 22.73 (CH2), 25.01 (CH2), 25.09 (CH2), 26.86 

(C(CH3)3 from one isomer), 26.88 (C(CH3)3 from one isomer), 29.16 (CH2), 29.33 (CH2), 

29.35 (CH2), 29.39 (CH2), 29.400 (CH2), 29.56 (CH2), 29.58 (CH2), 29.68 (CH2), 29.70 

(CH2), 29.71 (CH2), 29.73 (CH2), 33.87 (CH2), 33.92 (CH2), 34.37 (CH2), 39.22 (C-2L 

from one isomer), 39.32 (C-2L from one isomer), 48.35 (NCH2), 48.69 (NCH2), 50.42 

(NCH2), 51.28 (NCH2), 56.85 (C-2), 61.96 (OCH2), 62.51 (OCH2), 66.30 (C-5 from one 

isomer), 66.35 (C-5 from one isomer), 67.57 (OCH2), 68.55 (C-6), 68.65 (OCH2), 69.96 

(C-3L from one isomer), 69.99 (C-3L from one isomer), 70.99 (C-3 from one isomer), 
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71.27 (C-3 from one isomer), 74.41 (Troc-CH2), 74.44 (Troc-CH2), 75.04 (Troc-CH2), 

75.09 (Troc-CH2), 78.74 (C-4 from one isomer), 78.80 (C-4 from one isomer), 95.42 

(Troc-CCl3), 95.51 (Troc-CCl3), 95.69 (Troc-CCl3), 100.95 (C-1 from one isomer), 

101.47 (Ph-CH), 101.84 (C-1 from one isomer), 126.16 (CH-Ar), 127.80 (CH-Ar), 

127.84 (CH-Ar), 128.27 (CH-Ar), 129.18 (CH-Ar), 129.82 (CH-Ar), 129.86 (CH-Ar), 

133.17 (C-Ar), 133.20 (C-Ar), 133.32 (C-Ar), 133.36 (C-Ar), 135.58 (CH-Ar), 136.82 

(C-Ar), 154.01 (C=O Troc), 154.19 (C=O Troc), 154.36 (C=O Troc), 154.50 (C=O Troc), 

170.01 (C=O), 170.06 (C=O), 173.41 (C=O), 173.50 (C=O); MALDI-MS (m/z) Calcd for 

C67H98Cl6N2O13Si  [M + Na]+ : 1399.49, found: 1399.50. 

 

2.3.14 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[6-O-benzyl-2-deoxy-3-O-((R)-

3-tetradecanoyloxytetradecanoyl)-2-(2,2,2-trichloroethoxycarbonylamino)-�-D-

glucopyranosyloxy]-ethyl}-2,2,2-trichloroethoxymethanamide (24): 

 
A solution of 23 (1.51 g, 1.09 mmol) in dry THF (10 mL) and molecular sieves (4Å, 4.0 

g) was stirred at room temperature under nitrogen for 30 min. Sodium cyanoborohydride 

(550 mg, 8.75 mmol) was added and the mixture cooled to 0 °C, followed by the drop 

wise addition of dry ethereal-HCl(g) until no further gas was evolved. The mixture was 

poured into a saturated sodium bicarbonate solution (100 mL) and solids were filtered out 

before removal of the THF in vacuo. The resulting solution was extracted with EtOAc (3 

x 100 mL), with the combined organic phase dried over Na2SO4 and concentrated. Flash 

column chromatography of the residue (hexane/acetone, 4 : 1) afforded 24 (1.31 g, 87%) 

as a colorless syrup. Rf 0.31 (hexane/acetone, 4:1); [�]
22
D  -6.6 (c 1.0, CHCl3); 

1H NMR 
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(500 MHz, CDCl3): � 0.91 (t, 6H, J 6.5 Hz, CH3 x 2), 1.07 (s, 9H, C(CH3)3), 1.24-1.38 (br 

m, 38H, CH2 x 19), 1.54-1.68 (br m, 4H, H-4L, H-3L’), 2.31 (t, 2H, J 7.5 Hz, H-2L’), 2.48-

2.61 (m, 2H, H-2L), 3.46-3.72 (m, 8H, H-2, H-4, H-5, OH, NCH2 x 2), 3.75-3.86 (m, 5H, 

H-6b, H-6a, CH2OTBDPS, ROCHH), 3.94-4.05 (m, 1H, ROCHH), 4.42 (d, 0.4H, J 8.5 

Hz, H-1 from one isomer), 4.48 (d, 0.6 H, J 12.0 Hz, Troc), 4.52-4.65 (m, 2.6H, H-1 from 

one isomer, Ph-CH2), 4.68 (d, 1 H, J 12.0 Hz, Troc), 4.72 (d, 0.6 H, J 12.0 Hz, Troc), 

4.76 (d, 0.4 H, J 12.0 Hz, Troc), 4.80 (d, 0.4 H, J 12.0 Hz, Troc), 4.89 (d, 1 H, J 12.0 Hz, 

Troc), 5.00 (dd, 0.4H, J 10.0, 10.0 Hz, H-3 from one isomer). 5.02 (dd, 0.6H, J 10.0, 10.0 

Hz, H-3 from one isomer), 5.13-5.20 (m, 1H, H-3L), 5.26 (d, 0.4H, J 8.0 Hz, NH from 

one isomer), 5.49 (d, 0.6H, J 8.0 Hz, NH from one isomer), 7.30-7.47 (m, 11H, Ar-H), 

7.63-7.68 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 14.14 (CH3), 19.11 (C(CH3)3 

from one isomer), 19.15 (C(CH3)3 from one isomer), 22.70 (CH2), 24.98 (CH2), 25.14 

(CH2), 26.86 (C(CH3)3), 29.15 (CH2), 29.30 (CH2), 29.36 (CH2), 29.38 (CH2), 29.51 

(CH2), 29.53 (CH2), 29.55 (CH2), 29.65 (CH2), 29.66 (CH2), 29.68 (CH2), 29.72 (CH2), 

31.93 (CH2), 31.94 (CH2), 34.51 (CH2), 34.64 (CH2), 40.09 (C-2L), 48.29 (NCH2), 48.36 

(NCH2), 50.22 (NCH2), 51.20 (NCH2), 55.70 (C-2), 61.89 (OCH2), 62.48 (OCH2), 66.86 

(OCH2), 68.29 (OCH2), 66.71 (C-6 from one isomer), 66.73 (C-6 from one isomer), 

70.10 (C-4), 71.00 (C-3L from one isomer), 71.03 (C-3L from one isomer), 73.69 (Ph-

CH2), 74.36 (Troc-CH2), 74.38 (Troc-CH2), 74.51 (C-5 from one isomer), 74.63 (C-5 

from one isomer), 75.03 (Troc-CH2), 75.11 (Troc-CH2), 75.65 (C-3 from one isomer), 

76.12 (C-3 from one isomer), 95.43 (Troc-CCl3), 95.58 (Troc-CCl3), 95.61 (Troc-CCl3), 

95.71 (Troc-CCl3), 100.17 (C-1 from one isomer), 101.44 (C-1 from one isomer), 127.67 

(CH-Ar), 127.69 (CH-Ar), 127.77 (CH-Ar), 127.81 (CH-Ar), 128.46 (CH-Ar), 129.78 
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(CH-Ar), 129.82 (CH-Ar), 133.20 (C-Ar), 133.36 (C-Ar), 135.57 (CH-Ar), 137.80 (C-

Ar), 137.85 (C-Ar), 154.05 (C=O Troc), 154.20 (C=O Troc), 154.38 (C=O Troc), 154.58 

(C=O Troc), 171.48 (C=O), 174.37 (C=O Troc); MALDI-MS (m/z) Calcd for 

C67H100Cl6N2O13Si  [M + Na]+ : 1401.50, found: 1401.45. 

 

2.3.15 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[6-O-benzyl-2-deoxy-3-O-((R)-

3-tetradecanoyloxytetradecanoyl)-2-(2,2,2-trichloroethoxycarbonylamino)-�-D-

glucopyranosyloxy]-ethyl}-2,2,2-trichloroethoxymethanamide (24): 

 
A solution of 23 (1.51 g, 1.09 mmol) in dry THF (10 mL) and molecular sieves (4Å, 4.0 

g) was stirred at room temperature under nitrogen for 30 min. Sodium cyanoborohydride 

(550 mg, 8.75 mmol) was added and the mixture cooled to 0 °C, followed by the drop 

wise addition of dry ethereal-HCl(g) until no further gas was evolved. The mixture was 

poured into a saturated sodium bicarbonate solution (100 mL) and solids were filtered out 

before removal of the THF in vacuo. The resulting solution was extracted with EtOAc (3 

x 100 mL), with the combined organic phase dried over Na2SO4 and concentrated. Flash 

column chromatography of the residue (hexane/acetone, 4 : 1) afforded 24 (1.31 g, 87%) 

as a colorless syrup. Rf 0.31 (hexane/acetone, 4:1); [�]
22
D  -6.6 (c 1.0, CHCl3); 

1H NMR 

(500 MHz, CDCl3): � 0.91 (t, 6H, J 6.5 Hz, CH3 x 2), 1.07 (s, 9H, C(CH3)3), 1.24-1.38 (br 

m, 38H, CH2 x 19), 1.54-1.68 (br m, 4H, H-4L, H-3L’), 2.31 (t, 2H, J 7.5 Hz, H-2L’), 2.48-

2.61 (m, 2H, H-2L), 3.46-3.72 (m, 8H, H-2, H-4, H-5, OH, NCH2 x 2), 3.75-3.86 (m, 5H, 

H-6b, H-6a, CH2OTBDPS, ROCHH), 3.94-4.05 (m, 1H, ROCHH), 4.42 (d, 0.4H, J 8.5 

Hz, H-1 from one isomer), 4.48 (d, 0.6 H, J 12.0 Hz, Troc), 4.52-4.65 (m, 2.6H, H-1 from 
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one isomer, Ph-CH2), 4.68 (d, 1 H, J 12.0 Hz, Troc), 4.72 (d, 0.6 H, J 12.0 Hz, Troc), 

4.76 (d, 0.4 H, J 12.0 Hz, Troc), 4.80 (d, 0.4 H, J 12.0 Hz, Troc), 4.89 (d, 1 H, J 12.0 Hz, 

Troc), 5.00 (dd, 0.4H, J 10.0, 10.0 Hz, H-3 from one isomer). 5.02 (dd, 0.6H, J 10.0, 10.0 

Hz, H-3 from one isomer), 5.13-5.20 (m, 1H, H-3L), 5.26 (d, 0.4H, J 8.0 Hz, NH from 

one isomer), 5.49 (d, 0.6H, J 8.0 Hz, NH from one isomer), 7.30-7.47 (m, 11H, Ar-H), 

7.63-7.68 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 14.14 (CH3), 19.11 (C(CH3)3 

from one isomer), 19.15 (C(CH3)3 from one isomer), 22.70 (CH2), 24.98 (CH2), 25.14 

(CH2), 26.86 (C(CH3)3), 29.15 (CH2), 29.30 (CH2), 29.36 (CH2), 29.38 (CH2), 29.51 

(CH2), 29.53 (CH2), 29.55 (CH2), 29.65 (CH2), 29.66 (CH2), 29.68 (CH2), 29.72 (CH2), 

31.93 (CH2), 31.94 (CH2), 34.51 (CH2), 34.64 (CH2), 40.09 (C-2L), 48.29 (NCH2), 48.36 

(NCH2), 50.22 (NCH2), 51.20 (NCH2), 55.70 (C-2), 61.89 (OCH2), 62.48 (OCH2), 66.86 

(OCH2), 68.29 (OCH2), 66.71 (C-6 from one isomer), 66.73 (C-6 from one isomer), 

70.10 (C-4), 71.00 (C-3L from one isomer), 71.03 (C-3L from one isomer), 73.69 (Ph-

CH2), 74.36 (Troc-CH2), 74.38 (Troc-CH2), 74.51 (C-5 from one isomer), 74.63 (C-5 

from one isomer), 75.03 (Troc-CH2), 75.11 (Troc-CH2), 75.65 (C-3 from one isomer), 

76.12 (C-3 from one isomer), 95.43 (Troc-CCl3), 95.58 (Troc-CCl3), 95.61 (Troc-CCl3), 

95.71 (Troc-CCl3), 100.17 (C-1 from one isomer), 101.44 (C-1 from one isomer), 127.67 

(CH-Ar), 127.69 (CH-Ar), 127.77 (CH-Ar), 127.81 (CH-Ar), 128.46 (CH-Ar), 129.78 

(CH-Ar), 129.82 (CH-Ar), 133.20 (C-Ar), 133.36 (C-Ar), 135.57 (CH-Ar), 137.80 (C-

Ar), 137.85 (C-Ar), 154.05 (C=O Troc), 154.20 (C=O Troc), 154.38 (C=O Troc), 154.58 

(C=O Troc), 171.48 (C=O), 174.37 (C=O Troc); MALDI-MS (m/z) Calcd for 

C67H100Cl6N2O13Si  [M + Na]+ : 1401.50, found: 1401.45. 
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2.3.16 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-(2,2,2-

trichloroethoxycarbonylamino)-�-D-glucopyranosyloxy]-ethyl}-2,2,2-

trichloroethoxymethanamide (25): 

 

To a solution of 24 (1.25 g, 0.90 mmol) in dry CH2Cl2 (8 mL), 5-phenyltetrazole (265 

mg, 1.80 mmol) and N,N-diisopropylphosphoramidite (0.62 mL, 1.80 mmol) were added. 

The mixture was stirred at room temperature for 1 h and then cooled to 0 °C before the 

addition of m-chloroperbenzoic acid (505 mg, 77 %, 2.25 mmol). The mixture was stirred 

at the reduced temperature for 1 h and then poured into a saturated sodium bicarbonate 

solution (50 mL) and extracted with CH2Cl2 (3 x 50 mL). The combined organic phase 

was dried over Na2SO4, concentrated, and purified by flash column chromatography 

(hexane/acetone, 4 : 1) to give 25 (1.26 g, 85 %) as a colorless syrup. Rf 0.40 

(hexane/EtOAc, 5:2); [�]
22
D  -2.9 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 0.88 (t, 

6H, J 6.5 Hz, CH3 x 2), 1.04 (s, 9H, C(CH3)3), 1.17-1.32 (br m, 38H, CH2 x 19), 1.43-

1.56 (br m, 4H, H-4L, H-3L’), 2.18-2.25 (t, 2H, J 7.5 Hz, H-2L’), 2.38-2.47 (m, 2H, H-2L), 

3.39-3.63 (m, 7H, H-2, H-5, H-6b, NCH2 x 2), 3.68-3.82 (m, 4H, H-6a, CH2OTBDPS, 

ROCHH), 3.94-4.02 (m, 1H, ROCHH), 4.40-4.54 (m, 4H, H-4, Ph-CH2, Troc), 4.57 (d, 

0.4H, J 12.0 Hz, Troc), 4.59 (d, 0.6H, J 12.0 Hz, Troc), 4.64 (d, 0.6H, J 12.0 Hz, Troc), 

4.68 (d, 0.4H, J 12.0 Hz, Troc), 4.71 (d, 0.4H, J 8.0 Hz, H-1 from one isomer), 4.73 (d, 

0.4H, J 12.0 Hz, Troc) 4.75 (d, 0.6H, J 8.0 Hz, H-1 from one isomer), 4.80 (d, 0.6H, J 

12.0 Hz, Troc), 4.86-4.93 (m, 4H, (PhCH2O)2P), 5.14-5.23 (m, 1H, H-3L), 5.34-5.40 (m, 

1H, H-3), 5.43 (d, 0.4H, J 8.0 Hz, NH from one isomer), 5.55 (d, 0.6H, J 8.0 Hz, NH 
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from one isomer), 7.22-7.32 (m, 13H, Ar-H), 7.35-7.44 (m, 8H, Ar-H), 7.60-7.66 (m, 4H, 

Ar-H); 13C NMR (125 MHz, CDCl3): � 14.20 (CH3), 19.13 (C(CH3)3 from one isomer), 

19.16 (C(CH3)3 from one isomer), 22.75 (CH2), 25.05 (CH2), 25.16 (CH2), 26.88 

(C(CH3)3 from one isomer), 26.90 (C(CH3)3 from one isomer), 29.21 (CH2), 29.37 (CH2), 

29.41 (CH2), 29.58 (CH2), 29.59 (CH2), 29.62 (CH2), 29.68 (CH2), 29.70 (CH2), 29.72 

(CH2), 29.74 (CH2), 31.97 (CH2), 34.34 (CH2), 34.49 (CH2), 39.37 (C-2L from one 

isomer), 39.61 (C-2L from one isomer), 48.27 (NCH2), 48.62 (NCH2), 50.30 (NCH2), 

51.17 (NCH2), 56.51 (C-2 from one isomer), 56.54 (C-2 from one isomer), 61.92 

(OCH2ROCH2CH2NCH2CH2OTBDPS from one isomer), 62.49 (OCH2), 67.44 (OCH2), 

68.46 (C-6), 68.58 (OCH2), 69.61-69.73 (m, (PhCH2O)2P), 69.99 (C-3L from one 

isomer), 70.12 (C-3L from one isomer), 72.27 (C-3 from one isomer), 72.62 (C-3 from 

one isomer), 73.46 (Ph-CH2), 74.00 (d, J 5.5 Hz, C-4 from one isomer), 74.05 (d, J 5.5 

Hz, C-4 from one isomer), 74.14 (C-5 from one isomer), 74.19 (C-5 from one isomer), 

74.44 (Troc-CH2), 75.01 (Troc-CH2), 75.06 (Troc-CH2), 95.46 (Troc-CCl3), 95.48 (Troc-

CCl3), 95.50 (Troc-CCl3), 95.69 (Troc-CCl3), 99.77 (C-1 from one isomer), 100.58 (C-1 

from one isomer), 127.65 (CH-Ar), 127.80 (CH-Ar), 127.84 (CH-Ar), 128.04 (CH-Ar), 

128.11 (CH-Ar), 128.14 (CH-Ar), 128.38 (CH-Ar), 128.63 (CH-Ar), 128.67 (CH-Ar), 

129.81 (CH-Ar), 129.84 (CH-Ar), 133.19 (C-Ar), 133.21 (C-Ar), 133.34 (C-Ar), 133.37 

(C-Ar), 135.59 (CH-Ar), 138.00 (C-Ar), 138.02 (C-Ar), 154.02 (C=O Troc), 154.22 

(C=O Troc), 154.49 (C=O Troc), 170.28 (C=O), 170.32 (C=O), 173.61 (C=O), 173.75 

(C=O); MALDI-MS (m/z) Calcd for C81H113Cl6N2O16PSi  [M + Na]+ : 1661.56, found: 

1661.48. 
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2.3.17 N-{2-(tert-butyldiphenylsilyloxy)-ethyl}-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-((R)-3-

tetradecanoyloxytetradecanamido)-�-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (26): 

 

To a solution of 25 (440 mg, 0.27 mmol) in glacial acetic acid (5 mL), zinc powder (750 

mg) was added and the mixture was stirred at room temperature for 45 min. The mixture 

was then filtered, and the solids were washed with acetic acid (10 mL). The filtrate was 

slowly poured into a saturated sodium bicarbonate solution (300 mL) and then extracted 

with CH2Cl2 (3 x 150 mL). The combined organic phase was washed with further 

saturated sodium bicarbonate solution (100 mL), dried over Na2SO4, and concentrated to 

give the crude di-amine (338 mg, 98 %)as a colorless syrup. 

 

A solution of the crude di-amine (337 mg) in DMF (2 mL) was added to a mixture of 

dilipid acid 3 (283 mg, 0.62 mmol), HBTU (352 mg, 0.94 mmol) and DIPEA (0.16 mL, 

0.94 mmol) in DMF (5 mL). The resulting mixture was stirred at room temperature for 18 

h before being poured into a separatory funnel with water (50 mL), and then extracted 

with Et2O (3 x 75 mL). The combined organic phase was washed with a cold saturated 

sodium chloride solution (3 x 8 mL), dried over Na2SO4, and concentrated. Flash column 

chromatography of the residue (hexane/EtOAc, 2.5 : 1) afforded 26 (381 mg, 67 %) as a 

colorless syrup. Rf 0.35 (hexane/acetone, 4:1); [�]
22
D  -1.5 (c 1.0, CHCl3); 

1H NMR (500 

MHz, CDCl3): � 0.88 (t, 18H, J 6.5 Hz, CH3 x 6), 1.03 (s, 9H, C(CH3)3), 1.16-1.38 (br m, 

114H, CH2 x 57), 1.52-1.68 (br m, 12H, H-4L x 6, H-3L’ x 6), 2.17-2.51 (m, 11H, H-2L x 
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5, H-2L’ x 6), 2.75 (dd, 0.4H, J 15.5, 6.5 Hz, H-2LB from one isomer), 2.87 (dd, 0.6 H, J 

15.5, 5.0 Hz, H-2LA from one isomer), 3.07-3.18 (m, 0.4H, H-2 from one isomer), 3.41-

3.79 (m, 10.6H, H-2 from one isomer, H-5, H-6b, H-6a, NCH2 x 2, CH2OTBDPS, 

ROCHH), 3.82-3.91 (m, 1H, ROCHH), 4.36-4.51 (m, 3H, H-4, Ph-CH2), 4.66 (d, 0.4H, J  

8.0 Hz, H-1 from one isomer), 4.84-4.92 (m, 4H, (PhCH2O)2P), 5.04-5.22 (m, 3.6H, H-1 

from one isomer, H-3L x 3), 5.29 (dd, 0.6H, J 10.0, 10.0 Hz, H-3 from one isomer), 5.73 

(dd, 0.4H, J 10.0, 10.0 Hz, H-3 from one isomer), 6.15 (d, 0.4H, J 8.0 Hz, NH from one 

isomer), 6.73 (d, 0.6H, J 8.0 Hz, NH from one isomer), 7.22-7.32 (m, 13H, Ar-H), 7.34-

7.44 (m, 8H, Ar-H), 7.58-7.64 (m, 4H, Ar-H); 13C NMR (125 MHz, CDCl3): � 14.15 

(CH3), 19.08 (C(CH3)3 from one isomer), 19.15 (C(CH3)3 from one isomer), 22.73 (CH2), 

25.06 (CH2), 25.09 (CH2), 25.15 (CH2), 25.18 (CH2), 25.25 (CH2), 25.33 (CH2), 25.42 

(CH2), 25.83 (CH2), 26.85 (C(CH3)3 from one isomer), 26.90 (C(CH3)3 from one isomer), 

29.17 (CH2), 29.23 (CH2), 29.27 (CH2), 29.31 (CH2), 29.35 (CH2), 29.41 (CH2), 29.43 

(CH2), 29.49 (CH2), 29.54 (CH2), 29.56 (CH2), 29.61 (CH2), 29.64 (CH2), 29.68 (CH2), 

29.73 (CH2), 29.76 (CH2), 31.97 (CH2), 34.04 (CH2), 34.12 (CH2), 34.33 (CH2), 34.43 

(CH2), 34.49 (CH2), 34.60 (CH2), 34.700(CH2), 38.04 (C-2L), 38.13 (C-2L), 39.11 (C-2L), 

39.26 (C-2L), 40.74 (C-2L), 41.25 (C-2L), 45.65 (NCH2), 47.09 (NCH2), 48.29 (NCH2), 

50.45 (NCH2), 54.92 (C-2 from one isomer), 56.65 (C-2 from one isomer), 61.61 

(OCH2), 62.64 (OCH2), 63.42 (C-6 from one isomer), 67.22 (C-6 from one isomer), 

68.21 (OCH2), 68.43 (OCH2), 69.46-69.67 (m, (PhCH2O)2P), 69.99 (C-3L), 70.07 (C-3L), 

70.15 (C-3L), 70.68 (C-3L), 71.22 (C-3L), 71.70 (C-3 from one isomer), 72.35 (C-3L), 

72.87 (C-3 from one isomer), 73.30 (Ph-CH2 from one isomer), 73.32 (Ph-CH2 from one 

isomer), 73.73 (C-5 from one isomer), 73.98 (C-5 from one isomer), 74.09 (d, J 5.5 Hz, 
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C-4 from one isomer), 74.49 (d, J 5.5 Hz, C-4 from one isomer), 99.43 (C-1 from one 

isomer), 100.77 (C-1 from one isomer), 127.56 (CH-Ar), 127.60 (CH-Ar), 127.74 (CH-

Ar), 127.77 (CH-Ar), 127.87 (CH-Ar), 127.90 (CH-Ar), 127.99 (CH-Ar), 128.10 (CH-

Ar), 128.12 (CH-Ar), 128.31 (CH-Ar), 128.53 (CH-Ar), 128.56 (CH-Ar), 129.74 (CH-

Ar), 129.77 (CH-Ar), 129.88 (CH-Ar), 129.90 (CH-Ar), 132.94 (C-Ar), 133.36 (C-Ar), 

133.45 (C-Ar), 135.51 (CH-Ar), 135.54 (CH-Ar), 138.08 (C-Ar), 169.70 (C=O), 170.03 

(C=O), 170.24 (C=O), 170.41 (C=O), 170.50 (C=O), 170.74 (C=O), 173.14 (C=O), 

173.29 (C=O), 173.40 (C=O), 173.45 (C=O), 173.52 (C=O), 174.18 (C=O); MALDI-MS 

(m/z) Calcd for C131H215N2O18PSi  [M + Na]+ : 2186.54, found: 2186.48. 

 

2.3.18 N-{2-(di-O-benzylphosphono)-ethyl}-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-((R)-3-

tetradecanoyloxytetradecanamido)-�-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (27): 

 

To a solution of 10 (85 mg, 0.044 mmol) in dry CH2Cl2 (1.5 mL), 5-phenyltetrazole (13 

mg, 0.088 mmol) and N,N-diisopropylphosphoramidite (30 µL, 0.088 mmol) were added. 

The mixture was stirred at room temperature for 30 min and then cooled to 0 °C before 

the addition of m-chloroperbenzoic acid (22 mg, 77 %, 0.099 mmol). The mixture was 

stirred at the reduced temperature for 30 min before being poured into a 10% sodium 

thiosulphate solution (10 mL) and then extracted with CH2Cl2 (3 x 20 mL). The 

combined organic phase was washed with a saturated sodium bicarbonate solution (15 

mL), dried over Na2SO4, concentrated, and purified by repeated flash chromatography 
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(hexane/EtOAc, 3 : 2 � 1 : 1) to give 27 (69 mg, 71%) as a colorless syrup. Rf 0.28 

(hexane/EtOAc, 3:1; 1H NMR (500 MHz, CDCl3): � 0.86 (t, 18H, J 6.5 Hz, CH3 x 6), 

1.14-1.39 (br m, 114H, CH2 x 57), 1.50-1.69 (br m, 12H, H-4L x 6, H-3L’ x 6), 2.18-2.57 

(m, 11H, H-2L x 5, H-2L’ x 6), 2.68 (dd, 0.4H, J 15.5, 6.5 Hz, H-2LB from one isomer), 

2.78 (dd, 0.6 H, J 15.5, 5.0 Hz, H-2LA from one isomer), 3.20-3.37 (m, 2.6H, H-2 from 

one isomer, NCH2), 3.43-3.48 (m, 1H, H-6b), 3.51-3.70 (m, 4.4H, H-2 from one isomer, 

H-5, NCH2, ROCHH), 3.75-3.87 (m, 2H, H-6a, ROCHH), 4.06-4.16 (m, 2H, 

CH2OP(O)(OBn)2), 4.40-4.52 (m, 3H, H-4, Ph-CH2), 4.72 (d, 0.4H, J 8.0 Hz, H-1 from 

one isomer), 4.89-4.94 (m, 4H, (PhCH2O)2P), 4.97-5.04 (m, 4H, CH2OP(O)(OCH2Ph)2), 

5.07 (d, 0.6H, J 8.0 Hz, H-1 from one isomer), 5.09-5.23 (m, 3H, H-3L x 3), 5.39 (dd, 

0.4H, J 10.0, 10.0 Hz, H-3 from one isomer), 5.67 (dd, 0.6H, J 10.0, 10.0 Hz, H-3 from 

one isomer), 6.59 (d, 0.4H. J 8.0 Hz, NH from one isomer), 6.88 (d, 0.6H, J 8.0 Hz, NH 

from one isomer), 7.18-7.42 (m, 25H, Ar-H); 13 C NMR (125 MHz, CDCl3): � 14.15 

(CH3), 22.71 (CH2), 25.05 (CH2), 25.08 (CH2), 25.15 (CH2), 25.17 (CH2), 25.24 (CH2), 

25.35 (CH2), 25.43 (CH2), 25.81 (CH2), 24.84 (CH2), 25.88 (CH2), 29.15 (CH2), 29.21 

(CH2), 29.25 (CH2), 29.301 (CH2), 29.33 (CH2), 29.40 (CH2), 29.43 (CH2), 29.47 (CH2), 

29.52 (CH2), 29.56 (CH2), 29.62 (CH2), 29.64 (CH2), 29.68 (CH2), 29.73 (CH2), 29.77 

(CH2), 31.96 (CH2), 34.02 (CH2), 34.12 (CH2), 34.35 (CH2), 34.43 (CH2), 34.49 (CH2), 

34.61 (CH2), 34.70 (CH2), 37.89 (C-2L), 38.15 (C-2L), 39.04 (C-2L), 39.16 (C-2L), 40.80 

(C-2L), 41.20 (C-2L), 46.15 (NCH2), 46.22 (NCH2) 46.52 (NCH2), 48.63 (NCH2), 55.12 

(C-2 from one isomer), 56.16 (C-2 from one isomer), 64.59 (d, J 5.5 Hz, 

CH2OP(O)(OBn)2 from one isomer), 65.87 (d, J 5.5 Hz, CH2OP(O)(OBn)2 from one 

isomer), 67.34 (C-6), 68.48 (ROCH2), 68.52 (ROCH2), 69.41-69.66 (m, PhCH2O)2P,  
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CH2OP(O)(OCH2Ph)2), 69.96 (C-3L), 70.04 (C-3L), 70.16 (C-3L), 70.68 (C-3L), 71.26 (C-

3L), 71.83 (C-3L), 71.93 (C-3 from one isomer), 72.71 (C-3 from one isomer), 73.32 (Ph-

CH2), 73.81 (C-5 from one isomer), 73.83 (C-5 from one isomer), 74.19 (d, J 5.5 Hz, C-4 

from one isomer), 74.37 (d, J 5.5 Hz, C-4 from one isomer), 99.58 (C-1 from one 

isomer), 100.07 (C-1 from one isomer), 127.55 (CH-Ar), 127.58 (CH-Ar), 127.72 (CH-

Ar), 127.75 (CH-Ar), 127.85 (CH-Ar), 127.90 (CH-Ar), 127.97 (CH-Ar), 128.11 (CH-

Ar), 128.12 (CH-Ar), 128.31 (CH-Ar), 128.52 (CH-Ar), 128.54 (CH-Ar), 129.75 (CH-

Ar), 129.78 (CH-Ar), 129.87 (CH-Ar), 129.90 (CH-Ar), 132.94 (C-Ar), 133.36 (C-Ar), 

133.47 (C-Ar), 135.52 (CH-Ar), 135.54 (CH-Ar), 138.08 (C-Ar), 169.72 (C=O), 170.05 

(C=O), 170.27 (C=O), 170.44 (C=O), 170.51 (C=O), 170.79 (C=O), 173.18 (C=O), 

173.35 (C=O), 173.45 (C=O), 173.48 (C=O), 173.59 (C=O), 174.18 (C=O). 

Decomposition issues prevented the acquiring of optical rotation and mass spectral data. 

 

2.3.19 N-{2-phosphonoethyl}-N-{2-[2-deoxy-4-O-phosphono-3-O-((R)-3-

tetradecanoyloxytetradecanoyl)-2-((R)-3-tetradecanoyloxytetradecanamido)- �-D-

glucopyranosyloxy]-ethyl}-(R)-3-tetradecanoyloxytetradecanamide (3): 

 

To a solution of 27 (53 mg, 0.027 mmol) in freshly distilled THF (45 mL), palladium on 

charcoal (5%, 26 mg) was added and the mixture was stirred at room temperature under a 

hydrogen atmosphere for 24 h. The mixture was filtered, and the filtrate concentrated. 

The residue was purified by flash column chromatography (CHCl3/MeOH, 9 : 1 and then 

CHCl3/MeOH/H2O, 3 : 1 : 0.2)  to afford 13 (28 mg, 70%) as white fluffy solid after 

being freeze dried from a dioxane-CHCl3 mixture (95:5). Rf 0.37 



 118 

(CHCl3/MeOH/H2O/NH4OH, 3 : 2 : 0.2 : 0.2); [�]
22
D  -0.1 (c 1.0, CHCl3); 

1H NMR (500 

MHz, CDCl3): � 0.89 (t, 18H, J 6.5 Hz, CH3 x 6), 1.22-1.43 (br m, 114H, CH2 x 57), 

1.54-1.68 (br m, 12H, H-4L x 6, H-3L’ x 6), 2.20-2.82 (br m, 12 H, H-2L x 6, H-2L’ x 6), 

3.68-4.16 (br m, 12H, H-2, H-5, H-6b, H-6a, NCH2 x 2, OCH2 x 2), 4.48-4.70 (br m, 2H, 

H-1, H-4), 5.06-5.38 (br m, 4H, H-3, H-3L x 3); MALDI-MS (m/z) Calcd for 

C94H180N2O21P2  [M + Na]+ : 1758.24, found: 1758.20. 

 

2.3.20 N-{carboxymethyl}-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-benzylphosphono)-

3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-((R)-3-

tetradecanoyloxytetradecanamido)- �-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (20): 

 

To a solution of 10 (80 mg, 0.042 mmol) in CH2Cl2 (3 mL) and water (0.5 mL), (2, 2, 6, 

6-tetramethylpiperidin-1-yl)oxyl (TEMPO, 3 mg, 0.017 mmol) and 

bis(acetoxy)iodobenzene (54 mg, 0.168 mmol) were added. The mixture was stirred at 

room temperature for 2 h before being poured into a 10% sodium thiosulphate solution 

(10 mL), and extracted with CH2Cl2 (3 x 15 mL). The combined organic phases were 

dried over Na2SO4, concentrated, and purified by repeated flash chromatography 

(hexane/EtOAc/MeOH, 3 : 1 : 0.2) to afford 28 (67 mg, 83%) as a colorless syrup. Rf 

0.35 (hexane/EtOAc, 3:1); [�]
22
D  -0.9 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 0.88 

(t, 18H, J 6.5 Hz, CH3 x 6), 1.16-1.39 (br m, 114H, CH2 x 57), 1.48-1.64 (br m, 12H, H-

4L x 6, H-3L’ x 6), 2.19-2.52 (m, 11H, H-2L x 5, H-2L’ x 6), 2.63 (dd, 0.4H, J 15.5, 6.5 Hz, 
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H-2LB from one isomer), 2.86 (dd, 0.6 H, J 15.5, 5.0 Hz, H-2LA from one isomer), 3.27-

3.34 (m, 0.6H, H-2 from one isomer), 3.44-3.68 (m, 5H, H-5, H-6b, ROCH2CH2N, 

ROCHH), 3.70-3.78 (m, 1.4H, H-2 from one isomer, H-6a), 3.87-3.98 (m, 1H, ROCHH), 

4.00-4.21 (m, 2H, NCH2COOH), 4.40-4.53 (m, 3H, H-4, Ph-CH2), 4.59 (d, 0.4H, J 8.0 

Hz, H-1 from one isomer), 4.83-4.92 (m, 4H, (PhCH2O)2P), 4.98 (d, 0.6H, J 8.0 Hz, H-1 

from one isomer), 5.09-5.24 (m, 3H, H-3L x 3), 5.28 (dd, 0.4H, J 10.0, 10.0 Hz, H-3 from 

one isomer), 5.61 (dd, 0.6H, J 10.0, 10.0 Hz, H-3 from one isomer), 6.32 (d, 0.4H, J 8.0 

Hz, NH from one isomer), 6.67 (d, 0.6H, J 8.0 Hz, NH from one isomer), 7.21-7.34 (m, 

15H, Ar-H); 13C NMR (125 MHz, CDCl3): � 14.12 (CH3), 22.71 (CH2), 25.05 (CH2), 

25.14 (CH2), 25.22 (CH2), 25.32 (CH2), 25.38 (CH2), 25.58 (CH2), 29.21 (CH2), 29.24 

(CH2), 29.28 (CH2), 29.32 (CH2), 29.39 (CH2), 29.40 (CH2), 29.42 (CH2), 29.45 (CH2), 

29.47 (CH2), 29.49 (CH2), 29.52 (CH2), 29.57 (CH2), 29.60 (CH2), 29.62 (CH2), 29.66 

(CH2), 29.68 (CH2), 29.71 (CH2), 29.73 (CH2), 29.75 (CH2), 31.95 (CH2), 31.97 (CH2), 

34.27 (CH2), 34.31 (CH2), 34.44 (CH2), 34.50 (CH2), 34.54 (CH2), 34.62 (CH2), 37.86 

(C-2L), 37.94 (C-2L), 39.19 (C-2L), 39.40 (C-2L), 40.87 (C-2L), 41.45 (C-2L), 47.59 

(NCH2), 48.94 (NCH2), 49.20 (NCH2), 51.54 (NCH2), 55.05 (C-2 from one isomer), 

55.97 (C-2 from one isomer), 67.63 (OCH2), 68.40 (C-6), 69.25 (OCH2), 69.52-69.63 (m, 

PhCH2O)2P), 70.15 (C-3L), 70.18 (C-3L), 70.44 (C-3L), 70.87 (C-3L), 71.16 (C-3L), 71.80 

(C-3L), 72.09 (C-3 from one isomer), 72.62 (C-3L), 73.35 (Ph-CH2 from one isomer), 

73.44 (Ph-CH2 from one isomer), 73.70 (C-5 from one isomer), 73.74 (C-5 from one 

isomer), 74.22 (d, J 5.5 Hz, C-4 from one isomer), 74.30 (d, J 5.5 Hz, C-4 from one 

isomer), 99.76 (C-1 from one isomer), 100.50 (C-1 from one isomer), 127.59 (CH-Ar), 

127.64 (CH-Ar), 127.72 (CH-Ar), 127.80 (CH-Ar), 127.99 (CH-Ar), 128.04 (CH-Ar), 
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128.10 (CH-Ar), 128.13 (CH-Ar), 128.33 (CH-Ar), 128.38 (CH-Ar), 128.54 (CH-Ar), 

128.56 (CH-Ar), 128.59 (CH-Ar), 128.60 (CH-Ar), 128.64 (CH-Ar), 128.66 (CH-Ar), 

135.55 (C-Ar), 135.61 (C-Ar), 137.67 (C-Ar), 137.98 (C-Ar), 169.90 (C=O), 170.35 

(C=O), 170.79 (C=O), 170.93 (C=O), 171.00 (C=O), 171.25 (C=O), 173.23 (C=O), 

173.39 (C=O), 173.75 (C=O), 173.78 (C=O), 173.91 (C=O); MALDI-MS (m/z) Calcd for 

C115H195N2O19P  [M + Na]+ : 1962.39, found: 1962.30. 

 

2.3.21 N-{carboxymethyl}-N-{2-[2-deoxy-4-O-phosphono-3-O-((R)-3-

tetradecanoyloxytetradecanoyl)-2-((R)-3-tetradecanoyloxytetradecanamido)- �-D-

glucopyranosyloxy]-ethyl}-(R)-3-tetradecanoyloxytetradecanamide (14): 

 

In a similar manner as described for preparation of 13, a solution of 28 (35 mg, 0.018 

mmol) and palladium on charcoal (5%, 20 mg) in freshly distilled THF (40 mL) was 

stirred under a hydrogen atmosphere at room temperature for 24 h. The mixture was 

filtered, the filtrate concentrated, and the resulting residue was purified by flash column 

chromatography (CHCl3/MeOH, 9 : 1 and then CHCl3/MeOH/H2O, 3 : 1 : 0.1) to yield 14 

(23 mg, 77%) as a white fluffy solid after being freeze-dried from a dioxane-CHCl3 

mixture (95:5). Rf 0.41 (CHCl3/MeOH/H2O, 3 : 1 : 0.1, ); [�]
22
D  -0.1 (c 1.0, CHCl3); 

1H 

NMR (500 MHz, CDCl3): � 0.80 (t, 18H, J 6.5 Hz, CH3 x 6), 1.12-1.33 (br m, 114H, CH2 

x 57), 1.46-1.62 (br m, 12H, H-4L x 6, H-3L’ x 6), 2.16-2.31 (m, 9 H, H-2L x 3, H-2L’ x 6), 

2.33-2.65 (m, 3H, H-2L x 3), 3.45-3.72 (br m, 7 H, H-2, H-5, H-6b, H-6a, ROCH2CH2N, 

ROCHH), 3.75-3.98 (br m, 3 H, NCH2COOH, ROCHH), 4.41-4.55 (br m, 2 H, H-1, H-
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4), 5.04-5.20 (br m, 4 H, H-3, H-3L x 3); MALDI-MS (m/z) Calcd for C94H177N2O19P  [M 

+ Na]+ : 1692.25, found: 1692.17. 

 

2.3.22 Reagents for biological experiments 

 

E. coli LPS 011:B4 was obtained from Sigma. Each of synthetic lipid A mimics 2-4 were 

reconstituted in 20% DMSO in phosphate buffered saline (PBS) with brief sonication, 

aliquoted and stored at -80 °C. A fresh aliquot was used for each individual experiment. 

Solution concentrations were set such that the total addition of DMSO never exceeded 

0.5% to avoid toxic effects. THP-1 cells were obtained from American Type Culture 

Collection (ATCC). RPMI-1640 media, fetal bovine serum, and antibiotic-antimycotic 

100X were obtained from Gibco BRL. Phorbol 12-myristate 13 acetate (PMA) was 

purchased from Sigma, dissolved in DMSO, aliquoted and stored at -80 °C. Lipid IVa 

was purchased from Peptide Institute, Inc., and was dissolved in DMSO. 

 

2.3.23 Cell maintenance 

 

THP-1 cells were maintained at 37 °C and 5% CO2 atmosphere in RPMI-1640 media 

supplemented with 10% heat-inactivated fetal bovine serum and 1% antibiotic-

antimycotic 100X. Cell counting was performed using a Beckman Coulter ViCell X-R 

instrument, with viability being determined through the trypan blue cellular exclusion 

method. 
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2.3.24 ICAM-1 induction and measurement 

 

 THP-1 cells were plated at 0.5 x 106 cells/well in 6-well tissue culture plates and 

incubated for 18 h. Cells were then incubated with different stimuli for a further 18h.  

Cells were centrifuged at 1000 g for 5 min, washed with phosphate buffered saline (PBS), 

and then resuspended in 100 �L 0.1% Bovine Serum Albumin/PBS to proceed with 

staining and flow cytometry analysis. The expression of ICAM-1 was determined via 

immunostaining with phycoerythrin-conjugated mAb to ICAM-1 (CD54) from BD 

Biosciences, San Jose, CA.  The antibody was added and the mixture incubated at 4 °C 

for 20 h in the dark. After incubation, cells were washed twice with PBS, resuspended in 

500 �L PBS, and subjected to flow cytometry analysis on FACSCalibur with 

CELLQUEST PRO software (BD Biosciences), acquiring 15,000 events. The results 

were presented as the mean fluorescence intensity (MFI) on the FL2 channel. 

 

2.3.25 Cytokine induction and measurement 

 

THP-1 pre-monocytic cells were plated at 0.5 x 106 cells well-1 in 6-well tissue culture 

plates containing the RPMI media further supplemented with either 5 ng ml-1 or 25 ng  

ml-1 of PMA. After 48 h, the media was removed and the now adhered monocytic THP-1 

cells were washed with PBS. The well were then refilled with serum-free RPMI media, 

incubated for 3 h, and then exposed to stimuli. After 24 h stimulation, culture 

supernatants were collected and stored frozen (-80 °C) until assayed for cytokine 

production. 
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All cytokine ELISAs were performed in 96-well MaxiSorp plates. Ready-Set-Go! ELISA 

kits (eBioscience) were used for cytokine quantification of human TNF-�, IL-6, and IL-

1� according to the manufacturer's instructions. The absorbance was measured at 450 nm 

with wavelength correction set to 540 nm using a microplate reader (BMG Labtech). All 

cytokine values were measured in duplicate, and are presented as the mean ± SD of two 

separate experiments. 
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3 AROMATIC-BASED LIPID A MIMICS 

 

3.1 Design 

 

As part of an industrial partnership with the company Immunovaccine aimed at 

synthesizing and evaluating novel lipid A mimics as potential vaccine adjuvants, a novel 

molecular framework to replace the reducing glucosamine residue was envisioned in 

which an aromatic ring has been incorporated. As such, two novel aromatic-based lipid A 

mimic structures were targeted (29 & 30, Figure 31). Mimic 29 is a hexa-acylated, 

mono-phosphorylated lipid A structure with a terminal phenolic residue, whereas mimic 

30 is identical in acylation, but contains the additional phenolic-based phosphate moiety. 

Both mimics 29 & 30 are likely the first examples of a lipid A mimic in which an 

aromatic residue has been incorporated into the structural backbone. 

 

The rationale employed in the design of lipid A mimics 29 & 30 is based on the 

observations that subtle molecular changes in the structure of a lipid A molecule can have 

a profound impact on the overall biological activity that the molecule displays. Perhaps 

the most significant example of this is seen in monophosphoryl lipid A, in which the 

simple elimination of the anomeric phosphate group abolishes all endotoxicity, yet the 

molecule remains a potent immunostimulatory vaccine adjuvant candidate.69-71 The 

presence of the aromatic � system in lipid A mimics 29 & 30 can lead to favourable non-

covalent interactions within the binding pocket, the likes of which include �-stacking, �-

anion/cation interactions, and even �-CH interactions. These non-covalent interactions 

involving �-systems are pivotal in many biological events, including protein-ligand 

recognition.175 It is entirely possible that the non-covalent �-type interactions offered via 
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the inclusion of an aromatic ring in the lipid A mimic backbone may not only result in a 

greater affinity of the ligand for the TLR4/MD-2 receptor complex, thus ultimately 

resulting in increased potency, but may also alter the binding and subsequent receptor 

activation, the likes of which it is hoped will favour immunostimulation over 

endotoxicity. 
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Figure 31. Aromatic-Based Lipid A Mimics Targeted 
 
 

 

3.2 Retrosynthetic Analysis 

 
Beginning with mimic 30, elimination of the phenolic phosphate moiety yielded mimic 

29, from which the protection of the C-6 and phosphate hydroxyls as their benzyl ethers 

(Bn) yielded 36 (Scheme 16). Elimination of the primary amide bound acyl chain 

afforded the free amine, which was subsequently protected as the Troc-carbamate to yield 

35. Disconnection of the glycosyl bond yielded the known trichloroacetimidate glycosyl 

donor 4 
136, and the aromatic based glycoysl acceptor 34. Further elimination of the 
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amide bound acyl chain in acceptor 34 afforded the aromatic-based framework 31, which 

was further disconnected to afford commercially available 2-chloroethanol, and 3-

aminophenol. 
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Scheme 16. Retrosynthetic Analysis of Aromatic-Based Lipid A Mimics 
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3.3 Synthesis 
 
Synthesis began with formation of the aromatic-based backbone. As such, 2-

chloroethanol and 3-aminophenol were reacted in water at 90 °C in the presence of 

sodium bicarbonate to afford 31 in a 58% yield (Scheme 17). The primary hydroxyl was 

next protected as the TBDPS ether via reaction with TBDPS-Cl and imidazole in DMF to 

yield 32 in 84% yield. The free amine was next acylated with dilipid acid 3 by first 

activating the acid as the mixed anhydride via reaction with iso-butyl chloroformate 

(IBCF) and N-methylmorpholine (NMM) at -20 °C, followed by the reaction with the 

free amine moiety in 32 to yield 33 in 80% yield. Interestingly, no rotational isomerism 

about the secondary amide bond was observed in 33, as was observed with the DEA-

based acylic framework. It is possible that that lone pair on the amide nitrogen is in 

conjugation with the aromatic ring system, thus effectively locking the framework into 

one conformation. However, this is only speculative. Finally, deprotection of the primary 

hydroxyl via treatment with tetrabutylammonium fluouride in DCM and acetic acid 

afforded glycosyl donor 34 in 81% yield. 
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Scheme 17. Synthesis of Aromatic-Based Glycosylation Acceptor 34 
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The TMSOTf promoted glycosylation between known glycosyl donor 4 
136 and aromatic-

based acceptor 34 afforded glycoside 35 in 89% yield (Scheme 18). The desired �-

glycosidic linkage in 35 was confirmed via 1H NMR data � 4.78 (d, J 8.5 Hz, H-1). 

Removal of the Troc-carbamate protecting group via treatment with zinc in acetic acid 

afforded the free amine, which was immediately coupled with dilipid acid 3 under 

diisopropylcarbodiimide (DIC) promotion to afford hexa-acylated intermediate 36. 
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Scheme 18. Synthesis of Hexa-Acylated Intermediate 36 
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To obtain targeted aromatic-based, mono-phopshorylated lipid A mimic 29, hexa-

acylated intermediate 36 was subjected to global deprotection via hydrogenolysis 

(Scheme 19) to afford 29 in 88% yield. The structure of 29 was confirmed by 1H NMR 

and HR-MALDI MS data. 
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Scheme 19. Synthesis of Mono-Phosphorylated Aromatic-Based Lipid A Mimic 29 

 
 
 

To obtain targeted aromatic-based, di-phosphorylated lipid A mimic 30, the phenol 

moiety in 36 was first converted to the corresponding phosphotriester via the typical 

reaction with 5-phenyl tetrazole (5-Ph-Tetrazole) and dibenzyl N,N 

diisopropylphosphoramidite [(BnO)2PN(iPr)2], followed by the subsequent m-

chloroperbenzoic acid (m-CPBA) promoted oxidation at 0 °C to yield intermediate 37 in 

a 93% yield (Scheme 20). A similar global deprotection of 37 via hydrogenolysis 

afforded 30 in 88% yield. Again, the structure of 30 was confirmed via 1H NMR and HR-

MALDI MS data. 
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Scheme 20. Synthesis of Di-Phosphorylated Aromatic-Based Lipid A Mimic 30 
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3.4  Biological Evaluation 

 
*** Disclaimer:***  All Biological Evaluations Performed With Lipid A  
    Mimics 29 & 30 Have Been Performed By Scientists At  
    Immunovaccine. Specific Experimental Details Have  
    Been Omitted For Intellectual Property Purposes. 
 
 

To evaluate the potential adjuvant properties of aromatic-based lipid A mimics 29 and 30, 

the compounds were first tested in vivo in a vaccine formulation against cervical cancer. 

Mice bearing tumours derived from the C3 tumor cell line were vaccinated with a 

liposomal-based vaccine formulation containing a HPV16E7 49-57 (R9F) peptide with 

either 29 or 30 as vaccine adjuvant. The C3 tumor cell line is a well-described mouse 

model used for pre-clinical cervical cancer research, and develops tumors when injected 

subcutaneously. It has been used in cancer challenge studies to examine vaccine efficacy 

administered either before or after C3 tumor cell implantation.176 After 28 days, those 

mice vaccinated with formulations containing either 29 or 30 as adjuvant had 

significantly smaller tumour volumes compared to mice vaccinated only with saline or a 

formulation containing no adjuvant (Figure 32). 

 



 133 

0

200

400

600

800

1000

1200

1400

0 10 20 30

Study Day

T
u

m
o
r 

V
o

lu
m

e 
(m

m
3
)

PBS

No Adjuvant

29

30

 
 
Figure 32. Tumor volumes of mice vaccinated with liposomal-based vaccine   
  formulations containing aromatic-based lipid A mimics 29 or 30. Mice  
  were implanted with C3 tumors subcutaneously on day 1. On day five,  
  groups of mice (n = 7) were vaccinated with liposomal based formulations 
  containing the  HPV16E7 49-57 peptide construct and either no adjuvant, or  
  29 and 30 individually as potential adjuvants. Mice vaccinated with saline  
  (PBS) containing no peptide or adjuvant served as a tumor growth control. 
  Tumor size was measured weekly with calipers. 
 
 
 

The aromatic-based lipid A mimics 29 and 30 were next evaluated in the patented 

DepoVaxTM  (DPX) vaccine platform 177. Mice bearing tumors derived from the C3 tumor 

cell line were vaccinated with the DPX vaccine formulation containing the HPV16E7 49-

57 peptide with either 29 or 30 as vaccine adjuvant. After 40 days, mice vaccinated with 

either 29 or 30 showed significantly smaller tumor volumes than those mice vaccinated 
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with either saline or just the DPX vaccine platform containing no additional adjuvant 

(Figure 33). 
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Figure 33. Tumor volumes of mice vaccinated with DPX vaccine formulations  
  containing aromatic-based lipid A mimics 29 or 30. Mice were implanted  
  with C3 tumors subcutaneously on day 1. On day five, groups of mice (n = 
  8) were vaccinated with DPX-based formulations containing the   
  HPV16E7 49-57 peptide and either no adjuvant, or 29 and 30   
  individually as potential adjuvants. Mice vaccinated with saline (PBS)  
  containing no peptide or adjuvant served as a tumor growth control.  
  Tumor size was measured weekly with calipers. 
 
 
 

The ability of aromatic-based lipid A mimics 29 and 30 to influence DC antigen 

presentation was also evaluated in vivo via the measurement of the expression levels of 

both CD40 and CD86. CD40 and CD86 are stimulatory proteins expressed on the surface 

of DCs necessary for antigen presentation and T-cell activation. DCs derived from both 



 135 

C3H / HeOuJ mice, which are known to express TLR4, and C3H / HeJ mice, which are 

deficient in TLR4, were exposed to various stimuli including lipid A mimics 29 and 30. 

Expression levels of both CD40 and CD86 were measured via immunostaining and flow 

cytometry (Figures 34 & 35). Both lipid A mimics 29 and 30 stimulate significant 

increases in both CD40 and CD86 expression levels over cells that were not stimulated. 

Moreover, said increase is not observed in DCs derived from the TLR4 deficient C3H / 

HeJ mice, thus confirming TLR4 as the stimulatory target of lipid A mimics 29 and 30. 
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Figure 34. CD40 expression in DCs exposed to various stimuli including aromatic- 
  based lipid A mimics 29 and 30. DCs were isolated from either C3H /  
  HeOuJ or C3H / HeJ mice and were stimulated overnight with various  
  stimuli. Expression levels of CD40 was then measured via    
  immunostaining and flow cytometry. 
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Figure 35. CD86 expression in DCs exposed to various stimuli including aromatic- 
  based lipid A mimics 29 and 30. DCs were isolated from either C3H /  
  HeOuJ or C3H / HeJ mice and were stimulated overnight with various  
  stimuli. Expression levels of CD86 was then measured via    
  immunostaining and flow cytometry. 
 
 
 

Finally, to test the immunogenicity of the DPX-based vaccine containing aromatic-based 

lipid A mimics 29 and 30, mice were first immunized with the vaccine formulations 

containing a HPV16E7 49-57 (R9F) antigen, and either mimic, or no adjuvant. After 8 

days, mice were terminated, spleens were collected, and suspensions of splenocytes were 

prepared. The splenocytes were plated and stimulated overnight with either the R9F 

peptide, or an irrelevant peptide and no peptide as controls. The next day, antigen specific 

IFN-� responses were measured via ELISPOT (Figure 36). Monophosphorylated lipid A 
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mimic 29 did not enhance antigen specific IFN-� responses, whereas it appears that 

diphosphorylated lipid A mimic 30 did. 
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Figure 36. Antigen specific IFN-� production after DPX-based vaccination with  
  aromatic-based lipid A mimics 29 and 30. Mice (n = 5) were vaccinated  
  with the DPX-based vaccine formulations containing either no adjuvant,  
  or either lipid A mimics 29 and 30 as adjuvants. After 8 days, mice were  
  terminated, splenocytes were obtained and then stimulated overnight. IFN- 
  � production was measured via ELISPOT the next day. 
 
 
3.5 Experimental 
 
3.5.1 General methods 

All air and moisture sensitive reactions were performed under nitrogen atmosphere.  All 

commercial reagents were used as supplied.  Anhydrous dichloromethane was distilled 

over calcium hydride, whereas anhydrous N,N-dimethylformamide (DMF) was purchased 

from Aldrich. ACS grade solvents were purchased from Fisher Scientific and used for 
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chromatography without distillation.  TLC plates (silica gel 60 F254, thickness 0.25 mm) 

and silica gel 60 (40-63 µm) for flash column chromatography were purchased from 

SILICYCLE INC., Canada.  1H and 13C NMR spectra were recorded on a Varian Unity 

Inova 500 MHz spectrometer.  Tetramethylsilane (TMS, δ 0.00 ppm) or solvent peaks 

were used as internal standards for 1H and 13C NMR spectra.  The chemical shifts were 

given in ppm and coupling constants in Hz indicated to a resolution of ± 0.5 Hz.  

Multiplicity of proton signals is indicated as follows: s (singlet), d (doublet), dd (double 

doublet), t (triplet), q (quartet), m (multiplet), br (broad). Structural assignments were 

made using standard gCOSY and gHSQC methodology. NMR peaks belonging to 

primary lipid chains are denoted with an L subscript, whereas those belonging to 

secondary lipid chains are denoted with an L’ subscript. ESI mass spectra were measured 

on the Applied Biosystems Mariner Bio-Spectrometry Workstation at the University of 

Alberta, Canada. MALDI mass spectra were measured on the Applied Biosystems 

Mariner 4700 system at the University of Western Ontario. Optical rotations were 

measured with Perkin Elmer 343 Polarimeter at 22°C. 

 

3.5.2 N-(2-hydroxyethyl)-3-aminophenol (31): 

 

 
To a solution of 3-aminophenol (5.00 g, 45.82 mmol) and sodium bicarbonate  (8.85 g, 

105.39 mmol) in water (7 mL) heated to 90 °C, 2-chloroethanol (3.4 mL, 50.40 mmol) 

was added dropwise over 5 minutes and the mixture was stirred overnight. Solids were 

filtered off through a celite pad, and the filtrate concentrated in vacuo. The resulting 

residue was washed three times with a CH2Cl2:MeOH solution (9 : 1, 10 mL), and the 

combined washes concentrated. Purification via repeated flash chromatography 
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(CH2Cl2/MeOH, 95 : 5 � 90 : 10) afforded 31 (4.10 g, 58%) as a brown solid. Rf 0.31 

(CH2Cl2/MeOH, 95 : 5); [�]
22
D  -0.7 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 3.15 

(t, 2H, J 5.5 Hz, NCH2), 3.68 (t, 2H, J 5.5 Hz, OCH2), 4.58-4.96 (br s, 3H, NH, OH x 2), 

6.15-6.19 (m, 3H, Ar-H), 6.93 (dd, 1H, J 8.5, 8.5 Hz, Ar-H); 13C NMR (125 MHz, 

CDCl3): � 45.88 (NCH2), 60.30 (OCH2), 100.04 (CH-Ar), 104.58 (CH-Ar), 105.42 (CH-

Ar), 129.81 (CH-Ar), 149.96 (C-Ar), 157.69 (C-Ar); HRESI-MS (m/z) Calcd for 

C8H11NO2 [M+H]+: 154.0868, found: 154.0858. 

 

3.5.3 N-(2-(tert-butyldiphenylsilyloxy)ethyl)-3-aminophenol (32): 

 

 
To a cooled solution (ice water bath) of 31 (864 mg, 5.62 mmol) and imidazole (573 mg, 

8.43 mmol) in DMF (5.0 mL), tert-butyldiphenylsilyl chloride (1.60 mL, 6.18 mmol) was 

added dropwise over 2 minutes. The temperature was slowly allowed to rise to room 

temperature over 2 hours, and the mixture was stirred overnight. The mixture was 

concentrated, dissolved in EtOAc (60 mL), and washed with water (40 mL). The aqueous 

layer was further extracted with EtOAc (2 x 60 mL), with the combined organic layers 

dried over Na2SO4 and concentrated. Flash column chromatography purifaction 

(hexane/EtOAc, 3 : 1) afforded 32 (1.86 g, 84%) as a brown solid. Rf 0.38 

(hexane/EtOAc, 3 : 1); [�]
22
D  +3.4 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): �  1.06 

(s, 9H, C(CH3)3), 3.22 (t, 2H, J 5.5 Hz, NCH2), 3.85 (t, 2H, J 5.5 Hz, OCH2), 4.02-4.18 

(br s, 1H, NH), 4.60-4.74 (br s, 2H, OH x 2), 6.01 (s, 1H, Ar-H), 6.15-6.18 (m, 2H, Ar-

H), 6.99 (dd, 1H, J 8.0, 8.0 Hz, Ar-H), 7.37-7.44 (m, 6H, Ar-H), 7.65-7.67 (m, 4H, Ar-

H); 13C NMR (125 MHz, CDCl3): � 19.27 (C(CH3)3), 26.92 (C(CH3)3), 45.90 (NCH2), 
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62.28 (OCH2), 100.22 (CH-Ar), 104.85 (CH-Ar), 106.48 (CH-Ar), 127.85 (CH-Ar), 

129.86 (CH-Ar), 130.27 (CH-Ar), 133.39 (C-Ar), 135.64 (CH-Ar), 149.76 (C-Ar), 

156.81 (C-Ar); HRESI-MS (m/z) Calcd for C24H29NO2Si [M+H]+: 392.2047, found: 

392.2033. 

 

3.5.4 N-(3-hydroxyphenyl)-N-(2-(tert-butyldiphenylsilyloxy)ethyl)-(R)-3-

tetradecanoyloxytetradecanamide (33): 

 
To a solution of dilipid acid 3 (926 mg, 2.04 mmol) in CH2Cl2 (4 mL) cooled to -20 °C, 

N-methylmorpholine (336 µL, 3.06 mmol) and isobutyl chloroformate (278 µL, 2.14 

mmol) were added successively. A solution of 32 (1.6 g. 4.08 mmol) in CH2Cl2 (4 mL) 

was then added dropwise over 3 minutes. The mixture was stirred at reduced temperature 

for 2 hours before being allowed to warm to room temperature. MeOH (2 mL) and water 

(2 mL) were added and the mixture concentrated. The residue was dissolved in CH2Cl2 

(125 mL) and washed with water (35 mL). The organic layer was dried over Na2SO4, 

concentrated, and purified via flash column chromatography (hexane/acetone, 7 : 1) to 

afford 33 (1.35 g, 80%) as a colorless syrup. Rf 0.35 (hexane/acetone; 6 : 1); [�]
22
D  +15.9 

(c 1.0, CHCl3); 
1H NMR (500 MHz, CDCl3): � 0.88 (t, 6H, J 6.5 Hz, CH3 x 2). 1.01 (s, 

9H, C(CH3)3), 1.14-1.36 (br m, 38H, CH2 x 19), 1.50-1.62 (br m, 4H, H-4L, H-3L’), 2.20 

(t, 2H, J 7.5 Hz, H-2L'), 2.29 (dd, 1H, J 15.5, 6.0 Hz, H-2LB), 2.40 (dd, 1H, J 15.5, 7.0 Hz, 

H-2LA), 3.76-3.85 (m, 4H, NCH2, OCH2), 5.16-5.22 (m, 1H, H-3L), 6.38-6.48 (br s, 1H, 

OH), 6.64 (s, 1H, Ar-H), 6.71 (d, 1H, J 8.0 Hz, Ar-H), 6.83 (d, 1H, J 8.0 Hz, Ar-H), 7.19 

(dd, 1H, J 8.0, 8.0 Hz, Ar-H), 7.32-7.41 (m, 6H, Ar-H), 7.58-7.61 (m, 4H, Ar-H); 13C 
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NMR (125 MHz, CDCl3): � 14.16 (CH3), 19.19 (C(CH3)3), 22.72 (CH2), 25.02 (CH2), 

25.26(CH2), 26.83 (C(CH3)3), 29.17 (CH2), 29.39 (CH2), 29.40 (CH2), 29.55 (CH2), 29.57 

(CH2), 29.60 (CH2), 29.67 (CH2), 29.68 (CH2), 29.69 (CH2), 29.71 (CH2), 29.73 (CH2), 

31.95 (CH2), 34.26 (CH2), 34.58 (CH2), 39.08 (C-2L), 51.37 (NCH2), 61.07 (OCH2), 

71.36 (C-3L), 115.29 (CH-Ar), 115.49 (CH-Ar), 120.11 (CH-Ar), 127.70 (CH-Ar), 

129.68 (CH-Ar), 130.41 (CH-Ar), 133.51 (C-Ar), 135.55 (CH-Ar), 143.56 (C-Ar), 

157.17 (C-Ar), 170.05 (C=O), 173.55 (C=O); HRESI-MS (m/z) Calcd for C52H81NO5Si 

[M+H]+: 828.5963, found: 828.5926. 

 

3.5.5 N-(3-hydroxyphenyl)-N-(2-hydroxyethyl)-(R)-3-

tetradecanoyloxytetradecanamide (34): 

 
To a solution of 33 (993 mg, 1.20 mmol) in CH2Cl2 (10 mL), HOAc (0.85 mL, 14.49 

mmol) and Bu4NF (1M in THF, 7.24 mL) were added successively. The mixture was 

stirred at room temperature overnight, and then concentrated. The residue was dissolved 

in CH2Cl2 (150 mL) and washed with a saturated sodium bicarbonate solution (40 mL). 

The organic layer was dried over Na2SO4, concentrated, and purified via flash column 

chromatography (hexane/EtOAc/MeOH, 2 : 1 : 0.1) to yield 34 (571 mg, 81%) as a 

colorless syrup. Rf 0.31 (hexane/EtOAc/MeOH, 2 : 1 : 0.1); [�]
22
D  +4.5 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 0.88 (t, 6H, J 6.5 Hz, CH3 x 2), 1.10-1.32 (br m, 38H, 

CH2 x 19), 1.44-1.57 (br m, 4H, H-4L, H-3L’), 2.27 (t, 2H, J 7.5 Hz, H-2L'), 2.34-2.45 (m, 

2H, H-2L), 3.68-3.93 (m, 6H, NCH2, OCH2, OH x 2), 5.15-5.24 (m, 1H, H-3L), 6.75 (d, 

1H, J 8.0 Hz, Ar-H), 6.85 (s, 1H, Ar-H), 6.89 (d, J 8.0 Hz, Ar-H), 7.27 (dd, 1H, J 8.0 Hz, 
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8.0 Hz, Ar-H); 13C NMR (125 MHz, CDCl3): �  14.16 (CH3), 22.72 (CH2), 24.99 (CH2), 

25.20 (CH2), 29.17 (CH2), 29.33 (CH2), 29.40 (CH2), 29.53 (CH2), 29.55 (CH2), 29.59 

(CH2), 29.68 (CH2), 29.71 (CH2), 29.74 (CH2), 31.95 (CH2), 34.41 (CH2), 34.59 (CH2), 

39.36 (C-2L), 52.33 (NCH2), 60.54 (OCH2), 71.45 (C-3L), 115.48 (CH-Ar), 115.97 (CH-

Ar), 119.01(CH-Ar), 130.86 (CH-Ar), 143.00 (C-Ar), 158.02 (C-Ar), 172.18 (C=O), 

174.22 (C=O); HRESI-MS (m/z) Calcd for C36H63NO5 [M+H]+: 590.4785, found: 

590.4752. 

 

3.5.6 N-(3-hydroxyphenyl)-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-(2,2,2-

trichloroethoxycarbonylamino)-�-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (35): 

 
A solution of 34 (565 mg, 0.96 mmol) and imidate 4 (1.23 g, 0.96 mmol) in CH2Cl2 (8 

mL) in the presence of molecular sieves (4Å, 4.0 g) was stirred under nitrogen at room 

temperature for 30 min. A solution of TMSOTf (0.02 M in CH2Cl2, 0.95 mL) was added 

dropwise in about 3 min. The mixture was stirred at room temperature for 1 h before a 

saturated sodium bicarbonate solution (15 mL) was added to quench the reaction. Solids 

were filtered out, and the filtrate was extracted with CH2Cl2 (3 x 30 mL). The combined 

organic phase was dried over Na2SO4, concentrated, and purified via flash column 

chromatography (hexane/EtOAC/MeOH, 3 : 1 : 0.1) to  yield 35 (1.46 g, 89%) as a 

colorless syrup. Rf 0.36 (hexane/EtOAC/MeOH, 3 : 1 : 0.1); [�]
22
D  -10.6 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 0.88 (t, 12H, J 6.5 Hz, CH3 x 4), 1.15-1.38 (br m, 76H, 
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CH2 x 38), 1.42-1.58 (br m, 8H, H-4L, H-3L’), 2.19-2.52 (m, 8H, H-2L, H-2L'), 3.54-3.62 

(m, 4H, H-5, H-6B, NCH2), 3.66-3.71 (m, 1H, H-2), 3.76-3.81 (m, 1H, H-6A), 3.93-4.06 

(m, 2H, OCH2), 4.42-4.53 (m, 3H, H-4, Ph-CH2), 4.59 (d, 1H, J 8.5 Hz, H-1), 4.63 (d, 

1H, J 12.0 Hz, Troc-HB), 4.71 (d, 1H, J 12.0 Hz, Troc-HA), 4.87-4.94 (m, 4H, 

(PhCH2O)2P), 5.11-5.22 (m, 2H, H-3L), 5.27 (dd, 1H, J 10.0, 10.0 Hz, H-3), 5.82 (d, 1H, 

J 8.0 Hz, NH), 6.00 (br s, 1H, OH), 6.65 (d, 1H, J 7.5 Hz, Ar-H), 6.83 (d, 1H, J 8.0 Hz, 

Ar-H), 6.95 (s, 1H, Ar-H), 7.17-7.35 (m, 16H, Ar-H); 13C NMR (125 MHz, CDCl3): � 

14.16 (CH3), 22.72 (CH2), 25.01 (CH2), 25.05 (CH2), 25.12 (CH2), 25.19 (CH2), 29.19 

(CH2), 29.36 (CH2), 29.40 (CH2), 29.57 (CH2), 29.60 (CH2), 29.62 (CH2), 29.69 (CH2), 

29.71 (CH2), 29.73 (CH2), 31.95 (CH2), 34.18 (CH2), 34.35 (CH2), 34.45 (CH2), 34.61 

(CH2), 39.01 (C-2L), 39.20 (C-2L), 49.61 (NCH2), 56.38 (C-2), 66.58 (OCH2), 68.28 (C-

6), 69.70-69.86 (m, (PhCH2O)2P), 69.90 (C-3L), 71.33 (C-3L), 72.80 (C-3), 73.45 (Ph-

CH2), 73.88 (d, J 5.5 Hz, C-4), 73.93 (C-5), 74.71 (Troc-CH2), 95.22 (Troc-CCl3), 100.01 

(C-1), 115.42 (CH-Ar), 115.87 (CH-Ar), 119.22 (CH-Ar), 127.73 (CH-Ar), 128.04 (CH-

Ar), 128.14 (CH-Ar), 128.39 (CH-Ar), 128.62 (CH-Ar), 128.70 (CH-Ar), 135.41 (C-Ar), 

135.44 (C-Ar), 137.74 (C-Ar), 143.52 (C-Ar), 155.09 (C=O, Troc), 157.67 (C-Ar), 

170.32 (C=O), 170.38 (C=O), 173.59 (C=O); MALDI-MS (m/z) Calcd for 

C94H146Cl3N2O17P [M + Na]+ : 1733.9325, found: 1733.9720. 

 

3.5.7 N-(3-hydroxyphenyl)-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-((R)-3-

tetradecanoyloxytetradecanamido)-�-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (36): 
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To a solution of 35 (550 mg, 0.32 mmol) in glacial acetic acid (20 mL) and EtOAc (5 

mL), zinc powder (3.0 g) was added and the mixture was stirred at room temperature for 

45 min. The mixture was then filtered, the solids were washed with an acetic acid/EtOAc 

solution (9:1, 40 mL), and the filtrate was concentrated. The residue was dissolved in 

CH2Cl2 (100 mL), washed with a saturated sodium bicarbonate solution (40 mL) and the 

aqueous layer was extracted with CH2Cl2 (2 x 40 mL). The combined organic phase was 

dried over Na2SO4 and concentrated to give the crude amine (455 mg) as a colorless 

syrup. 

 

To a solution of dilipid acid 3 (182 mg, 0.40 mmol) in CH2Cl2 (2 mL), DIC (125 µL, 0.80 

mmol) was added and the mixture was stirred at room temperature for 10 minutes. To this 

mixture, a solution of the crude amine (450 mg) in CH2Cl2 was added, and the resulting 

mixture was stirred at room temperature overnight. Water (0.5 mL) was added, and the 

mixture was then dried over Na2SO4. Solids were filtered off, and the filtrate was 

concentrated. The residue was purified via flash column chromatography 

(hexane/EtOAC/MeOH, 3 : 1 : 0.1) to afford 36 (430 mg, 68%) as a colorless syrup. Rf 

0.37 (hexane/EtOAC/MeOH, 2 : 1 : 0.1); [�]
22
D  -3.9 (c 1.0, CHCl3); 

1H NMR (500 MHz, 

CDCl3): ): � 0.88 (t, 18H, J 6.5 Hz, CH3 x 6), 1.17-1.40 (br m, 114H, CH2 x 57), 1.40-

1.63 (br m, 12H, H-4L, H-3L’), 2.18-2.52 (m, 12H, H-2L, H-2L'), 3.55-3.63 (m, 4H, H-5, 

H-6B, NCH2), 3.76-3.80 (m, 3H, H-6A, OCH2), 4.20-4.27 (m, 1H, H-2), 4.40 (d, 1H, J 

8.0 Hz, H-1), 4.43-4.52 (m, 3H, H-4, Ph-CH2), 4.87-4.96 (m, 5H, (PhCH2O)2P, H-3L), 

5.09-5.14 (m, 2H, H-3, H-3L), 5.22-5.28 (m, 1H, H-3L), 6.50 (d, 1H, J 9.5 Hz, NH), 6.61 

(d, 1H, J 8.0 Hz, Ar-H), 6.82 (d, 1H, J 8.0 Hz, Ar-H), 7.01 (s, 1H, Ar-H), 7.16 (dd, 1H, J 
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8.0, 8.0 Hz, Ar-H), 7.23-7.32 (m, 15H, Ar-H), 8.66 (br s, 1H, OH); 13C NMR (125 MHz, 

CDCl3): � 14.15 (CH3), 22.72 (CH2), 24.96 (CH2), 25.00 (CH2), 25.09 (CH2), 25.12 

(CH2), 25.24 (CH2), 29.21 (CH2), 29.25 (CH2), 29.40 (CH2), 29.47 (CH2), 29.49 (CH2), 

29.57 (CH2), 29.61 (CH2), 29.65 (CH2), 29.69 (CH2), 29.71 (CH2), 29.73 (CH2), 29.75 

(CH2), 31.96 (CH2), 34.13 (CH2), 34.25 (CH2), 34.40 (CH2), 34.41 (CH2), 34.50 (CH2), 

34.61 (CH2), 38.87 (C-2L), 38.97 (C-2L), 41.84 (C-2L), 50.69 (NCH2), 53.78 (C-2), 67.00 

(OCH2), 68.29 (C-6), 69.68-69.73 (m, (PhCH2O)2P), 69.79 (C-3L), 70.88 (C-3L), 71.45 

(C-3L), 72.85 (C-3), 73.53 (Ph-CH2), 73.84 (d, J 5.5 Hz, C-4), 74.31 (C-5), 100.88 (C-1), 

115.25 (CH-Ar), 115.57 (CH-Ar), 118.48 (CH-Ar), 127.66 (CH-Ar), 127.69 (CH-Ar), 

128.04 (CH-Ar), 128.13 (CH-Ar), 128.41 (CH-Ar), 128.60 (CH-Ar), 128.61 (CH-Ar), 

128.67 (CH-Ar), 135.48 (C-Ar), 135.53 (C-Ar), 137.86 (C-Ar), 144.12 (C-Ar), 158.41 

(C-Ar), 170.04 (C=O), 170.98 (C=O), 171.92 (C=O), 173.16 (C=O), 173.43 (C=O), 

173.73 (C=O);  MALDI-MS (m/z) Calcd for C119H197N2O18P [M + Na]+ : 1996.4199, 

found: 1996.4117. 

 

3.5.8 N-(3-hydroxyphenyl)-N-{2-deoxy-4-O-phosphono-3-O-((R)-3-

tetradecanoyloxytetradecanoyl)-2-((R)-3-tetradecanoyloxytetradecanamido)-�-D-

glucopyranosyloxy]-ethyl}-(R)-3-tetradecanoyloxytetradecanamide (29): 

 

To a solution of 36 (146 mg, 0.074 mmol) in freshly distilled THF (70 mL), palladium on 

charcoal (5%, 45 mg) was added and the mixture was stirred at room temperature under a 

hydrogen atmosphere for 24 h. The mixture was filtered, and the filtrate concentrated. 

The residue was purified by flash column chromatography (CHCl3/MeOH, 9 : 1 � 

CHCl3/MeOH/H2O, 4 : 1 : 0.1)  to afford 29 (111 mg, 88%) as white fluffy solid after 
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being freeze dried from a dioxane-CHCl3 mixture (95 : 5). Rf 0.57 (CHCl3/MeOH/H2O, 4 

: 1 : 0.1); [�]
22
D  -0.6 (c 0.5, CHCl3); 

1H NMR (500 MHz, CDCl3): � 0.89 (t, 18H, J 6.5 

Hz, CH3 x 6), 1.12-1.39 (br m, 114H, CH2 x 57), 1.43-1.66 (br m, 12H, H-4L, H-3L’), 

2.20-2.47 (m, 10H, H-2L x 4, H-2L'), 2.55-2.72 (m, 2H, H-2L x 2), 3.61-3.74 (m, 4 H, H-5, 

H-6B, NCH2), 3.83-3.94 (m, 3H, H-2, OCH2), 4.01-4.03 (m, 1H, H-6A), 4.20-4.25 (m, 

1H, H-4), 4.48 (d, 1H, J 8.0 Hz, H-1), 5.10-5.26 (m, 4H, H-3, H-3L), 6.65 (d. 1H, J 8.0 

Hz, Ar-H), 6.81-6.87 (m, 2H, Ar-H), 7.25 (dd, 1H, J 8.0, 8.0 Hz, Ar-H); MALDI-MS 

(m/z) Calcd for C98H179N2O18P [M + Na]+ : 1726.2790, found: 1726.2794. 

 

3.5.9 N-(3-(di-O-benzylphosphono)-phenyl)-N-{2-[6-O-benzyl-2-deoxy-4-O-(di-O-

benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-((R)-3-

tetradecanoyloxytetradecanamido)-�-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (37): 

 
To a solution of 36 (122 mg, 0.062 mmol) in CH2Cl2 (3 mL), 5-phenyltetrazole (27 mg, 

0.18 mmol) and N,N-diisopropylphosphoramidite (42 µL, 0.124 mmol) were added. The 

mixture was stirred at room temperature for 1 h and then cooled to 0 °C before the 

addition of m-chloroperbenzoic acid (46 mg, 77 %, 0.186 mmol). The mixture was stirred 

at the reduced temperature for 1 h before being allowed to warm to room temperature. 

An aqueous NaHSO3 (10%, 15 mL) was added and the mixture was stirred at room 

temperature for 20 minutes. The mixture was then extracted with CH2Cl2 (3 x 15 mL), 

and the combined organic phase was washed with a saturated sodium bicarbonate 

solution (15 mL). The organic phase was dried over Na2SO4, concentrated, and purified 
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by flash column chromatography (hexane/acetone, 4 : 1) to give 37 (129 mg, 93%) as a 

colorless syrup. Rf 0.28 (hexane/acetone, 4 : 1); [�]
22
D  -2.6 (c 1.0, CHCl3); 

1H NMR (500 

MHz, CDCl3): � 0.88 (t, 18H, J 6.5 Hz, CH3 x 6), 1.15-1.37 (br m, 114H, CH2 x 57), 

1.41-1.64 (br m, 12H, H-4L, H-3L’), 2.14-2.48 (m, 12H, H-2L, H-2L'), 3.47-3.53 (m, 1H, 

H-2), 3.56-3.69 (m, 4H, H-5, H-6B, NCH2), 3.75-3.77 (m, 1H, H-6A), 3.82-3.91 (m, 2H, 

OCH2), 4.39-4.49 (m, 3H, H-4, Ph-CH2), 4.85-4.92 (m, 5H, H-1, (PhCH2O)2P), 5.11-5.19 

(m, 7H, (PhCH2O)2P, H-3L x 3), 5.49 (dd, 1H, J 10.0, 10.0 Hz, H-3), 6.70 (d, 1H, J 7.5 

Hz, NH), 7.02-7.10 (m, 3H, Ar-H), 7.19-7.34 (m, 26H, Ar-H); 13C NMR (125 MHz, 

CDCl3): � � 14.16 (CH3), 22.72 (CH2), 25.03 (CH2), 25.05 (CH2), 25.14 (CH2), 25.28 

(CH2), 25.32 (CH2), 29.23 (CH2), 29.31 (CH2), 29.40 (CH2), 29.43 (CH2), 29.48 (CH2), 

29.60 (CH2), 29.62 (CH2), 29.64 (CH2), 29.72 (CH2), 29.74 (CH2), 29.76 (CH2), 31.96 

(CH2), 31.98 (CH2), 34.26 (CH2), 34.34 (CH2), 34.44 (CH2), 34.54 (CH2), 38.99 (C-2L), 

39.18 (C-2L), 40.98 (C-2L), 49.12 (NCH2), 55.43 (C-2), 66.10 (OCH2), 68.55 (C-6), 

69.45-69.64 (m, (PhCH2O)2P), 69.90 (C-3L), 70.20-70.32 (m, (PhCH2O)2P), 70.49 (C-

3L), 70.98 (C-3L), 72.71 (C-3), 73.30 (Ph-CH2), 73.97 (d, J 5.5 Hz, H-4), 74.30 (C-5), 

99.35 (C-1), 119.74 (CH-Ar), 120.50 (CH-Ar), 125.53 (CH-Ar), 127.50 (CH-Ar), 127.55 

(CH-Ar), 127.97 (CH-Ar), 128.08 (CH-Ar), 128.12 (CH-Ar), 128.30 (CH-Ar), 128.54 

(CH-Ar), 128.70 (CH-Ar), 128.73 (CH-Ar), 128.87 (CH-Ar), 130.60 (CH-Ar), 135.16 

(C-Ar), 135.21 (C-Ar), 135.60 (C-Ar), 135.65 (C-Ar), 138.14 (C-Ar), 143.82 (C-Ar), 

151.02 (d, J 5.5 Hz, C-Ar), 169.65 (C=O), 170.06 (C=O), 170.17 (C=O), 173.15 (C=O), 

173.19 (C=O), 173.35 (C=O); MALDI-MS (m/z) Calcd for C133H210N2O21P2 [M + Na]+ : 

2256.4801, found: 2256.5198. 
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3.5.10 N-(3-phosphonoxyphenyl)-N-{2-deoxy-4-O-phosphono-3-O-((R)-3-

tetradecanoyloxytetradecanoyl)-2-((R)-3-tetradecanoyloxytetradecanamido)-�-D-

glucopyranosyloxy]-ethyl}-(R)-3-tetradecanoyloxytetradecanamide (30): 

 
In a similar manner as described for the global deprotection of 36, a solution of 37 (203 

mg, 0.091 mmol) and palladium on charcoal (5%, 45 mg) in freshly distilled THF (75 

mL) was stirred under a hydrogen atmosphere at room temperature for 24 h. The mixture 

was filtered, the filtrate concentrated, and the resulting residue was purified by flash 

column chromatography (CHCl3/MeOH, 9 : 1 � CHCl3/MeOH/H2O, 2 : 1 : 0.2) to yield 

30 (145 mg, 89%) as a white fluffy solid after being freeze dried from a dioxane-CHCl3 

mixture (95 : 5). Rf 0.51 (CHCl3/MeOH/H2O/NH4OH, 2 : 1 : 0.2 : 0.1); [�]
22
D  -0.4 (c 0.5, 

CHCl3); 
1H NMR (500 MHz, CDCl3): � 0.89 (t, 18H, J 6.5 Hz, CH3 x 6), 1.18-1.39 (br 

m, 114H, CH2 x 57), 1.49-1.68 (br m, 12H, H-4L, H-3L’), 2.20-2.47 (m, 10H, H-2L x 4, H-

2L'), 2.55-2.72 (m, 2H, H-2L x 2), 3.51-3.80 (br m, H-2, H-5, H-6B, NCH2), 3.85-3.99 (br 

m, 3H, H-6A, OCH2), 4.21-4.28 (br m, 1H, H-4), 4.56 (d, 1H, J 8.0 Hz, H-1), 5.11-5.27 

(m, 4H, H-3, H-3L), 6.88 (d, 1H, J 8.0 Hz, Ar-H), 7.20-7.28 (br m, 2H, Ar-H), 7.35 (dd, 

1H, J 8.0, 8.0 Hz, Ar-H); MALDI-MS (m/z) Calcd for C98H180N2O21P2 [M + Na]+ : 

1806.2458, found: 1806.2502. 
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4 SYNTHESIS OF A SELF-ADJUVANTING CARBOHYDRATE ANTIGEN 

 FOR USE IN THERAPEUTIC CANCER VACCINES 

 

4.1 Design 

 
In the vast world that is cancer research, one avenue for the treatment and perhaps, 

prevention of the disease, is the notion of cancer immunotherapy in which the power of 

the host immune system is employed in place of the more traditional, and invasive 

treatment options. Tumour associated carbohydrate antigens (TACAs), carbohydrate 

containing epitopes which are either unique, or over-expressed by cancer cells have 

emerged as viable targets of said immunotherapy. Recently, the paradigm shifting work 

was reported in which the TLR4 ligand MLA was chemically conjugated to a TACA to 

generate a fully synthetic, self-adjuvanting cancer vaccine construct capable of eliciting 

high titres of high affinity IgG antibodies which were shown to effectively bind to the 

TACA (Figure 17) 132, 133. This discovery has sparked an examination into other potential 

adjuvant structures which can be incorporated into synthetic vaccine constructs capable 

of eliciting the appropriate levels of immunological responses required for not only the 

clearance of cancerous cells, but also the prevention of their re-emergence. 

 

The disaccharide Thomsen-Friedenreich (TF) antigen (Gal�1-3GalNAc�1-Ser/Thr) 

(Figure 16) is the core structure of O-linked mucin type glycans. In normal epithelium, 

the TF structure is concealed by various functionalities, mainly other sugar chains 

forming complex, branched O-glycans 178. In a cancerous state, free, un-substituted TF 

occurs, which has been noted in 90% of all cancers, including cancers of the colon, 

breast, bladder, prostate, liver, kidney, ovary, and stomach 179, 180. The increased 

occurrence of the TF antigen also correlates with cancer progression and metastasis 181, 
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182. The broad expression of the TF antigen in various cancers has resulted in it being 

targeted for both disease diagnosis 182-184, and immunotherapy 186, 187-191. Vaccination 

using both purified and synthetic form TF, or TF-conjugated with immunogenic carriers 

have shown high titre anti-TF antibodies, in many cases, capable of inducing 

complement-mediated cytotoxicity 187-192. 

 

Given the TLR4 stimulatory nature of the DEA-containing lipid A mimic ligands 

synthesized herein, the adjuvant potential of these TLR4 ligands was employed to 

generate the potentially self-adjuvanting carbohydrate antigen 38 (Figure 37). As can be 

seen, 38 contains both the DEA-containing lipid A mimic framework, specifically 

terminal acid containing mimic 14 (Figure 24), and the TF TACA (Figure 16), 

chemically conjugated to each other via a flexible tetraethylene glycol based linker. 

Chemically speaking, the adjuvant and antigen moieties of the construct are linked via 

amide linkages, one between the linker and the terminal acidic moiety of 14, and the 

other between the linker and an amine moiety in the TF antigen. The choice to conjugate 

to terminal acid of lipid mimic 14 may seem counterintuitive at first glance, given that the 

incorporation of this acidic group resulted in an increased TLR4 stimulatory potency. The 

choice to conjugate at this chemical site is based upon the fact that the MLA-TACA 

conjugate previously reported has the conjugation occurring at the anomeric position, and 

is obviously well tolerated in terms of TLR4 binding 132, 133. It is presumed that the acidic 

group in 14 mimics the anomeric phosphate of the natural lipid A structure when binding 

to TLR4, thus linkage through this pseudo-anomeric position will likely also be well 

tolerated by TLR4 when binding the construct. 
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Figure 37. DEA-containing lipid A mimic based synthetic vaccine construct 38 

 

 

4.2 Retrosynthetic Analysis 

 
Through a series of protections, functional group transformations, and protections, 

synthetic vaccine construct 38 was first deconstructed into three distinct molecular 

fragments: DEA-containing lipid A mimic precursor 28 (Scheme 15), TF-based 

disaccharide 50, and tetraethylene glycol based linker 45 (Scheme 21). The disaccharide 

50 was further deconstructed into commercially available tetra-acetylgalactosyl bromide 

((Ac)4Gal-Br), known imidate derivative 46 193, and 3-aminopropanol derivative 47 194. 

The benzylidene protecting group in 46 was chosen for its known �-glycoside directing 

ability, the likes of which was employed for the formation of the desired �-glycoside at 

the reducing end anomeric position 193. 
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Scheme 21. Retrosynthesis of antigen conjugate 38 
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4.3 Synthesis 

 
The synthesis of antigen 38 began with the preparation of terminal acidic linker fragment 

45 (Scheme 24). Tetraethylene glycol was first converted to the mono-tosylate 39 via 

reaction with tosyl-chloride in pyridine in a 75% yield. The remaining free hydroxyl was 

then protected as the corresponding TBDPS silyl ether via reaction with TBDPS-chloride 

and imidazole in DCM at 0 °C to yield intermediate 40 in 97% yield. The tosyl group 

was interchanged for an azide group by reaction with sodium azide in DMF at 60 °C to 

yield intermediate 41 in 88%. Reduction of the azide group via hydrogenation over Pd/C 

in ethanol furnished free amine 42 in 91% yield. Protection of the free amine as the Boc 

carbamate was achieved via reaction with di-tert-butyl dicarbonate (Boc2O) and 

triethylamine in chloroform to yield intermediate 43 in 95% yield. Deprotection of the 

silyl ether was brought about by treatment with tetrabutylammonium fluoride in DCM to 

yield the free hydroxyl 44. Finally, oxidation of the free hydroxyl to the corresponding 

carboxylic acid 45 was achieved in 76% yield via treatment with TEMPO and BAIB in 

wet DCM.   
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Scheme 24. Synthesis of tetraethylene glycol based linker fragment 45 
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Synthesis of the TF antigen fragment began with a boron trifluoride diethyletherate 

catalyzed glycosylation between imidate 46 193 and 3-aminopropanol derivative 47 194  in 

THF at -20 °C to yield glycoside 48 in 51% yield (Scheme 25). The desired �-glycosidic 

linkage was confirmed by 1H NMR data (� 5.02, d, J 3.5 Hz, H-1). Cleavage of the 3-O 

benzoyl (Bz) group was brought about by treatment with sodium methoxide in methanol 

to afford free hydroxyl 49 in 88% yield. The glycosylation of 49 with tetra-

acetylgalactosyl bromide ((Ac)4Gal-Br) in a 1:1 mixture of benzene and nitromethane at 

40 °C was catalyzed by mercury cyanide and furnished the desired disaccharide 50 

(Scheme 21) in 61% yield. The desired �-glycosidic linkage was again confirmed via 1H 

NMR data (� 4.76, d, J 8.0 Hz, H-1'). 
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Scheme 25. Synthesis of TF antigen based intermediate 50 

 

 
 

In attempting to chemically link disaccharide 50 and linker 45, the Boc protecting group 

in 50 was first cleaved via treatment with trifluoroacetic acid in DCM, which also 

cleaved the benzylidene protecting group to yield intermediate 51 (Scheme 26). Multiple 

attempts at the conjugation of 51 with the N-hydroxysuccinimide (NHS) activated form 

of linker fragment 45 repeatedly produced a complicated mixture of product spots, as 

visualized by TLC. No attempts were made to isolate and characterize any of the product 
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spots, as this would likely have been an exercise in futility. It is believed that the free 

hydroxyls in 51 may have interfered with the formation of the desired amide linkage, 

however this is only speculative. 
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Scheme 26. Attempted synthesis of TF antigen-linker conjugate 52 

 

 
Given the difficulties encountered in attempting to create the TF antigen-linker conjugate 

52 (Scheme 26), a revised synthetic strategy was adopted in which the coupling of the 

disaccharide and linker was to take place without the possibility of any interference from 

free hydroxyls. As such, disaccharide 50 was first subjected to a similar trifluoroacetic 

acid in DCM treatment to cleave both the Boc and benzylidene protecting groups 

(Scheme 27). The free amine in the resulting intermediate was then re-protected as the 



 158 

Boc carbamate, via treatment with Boc2O and triethylamine in a methanol and water 

medium. Finally, the remaining free hydroxyls were protected as their respective acetates 

to yield derivative 53 in an 82% overall yield via treatment with acetic anhydride and 

DMAP in pyridine. Deprotection of the amine was again brought about via treatment 

with trifluoroacetic acid in DCM, and the resulting intermediate was immediately 

coupled with linker fragment 45 under promotion of the peptide coupling reagents HBTU 

and diisopropylethylamine in DMF to yield antigen-linker conjugate 54 in 64% overall 

yield. 
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Scheme 27. Synthesis of TF antigen-linker conjugate 54 
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To couple the antigen-linker conjugate with the lipid A mimic fragment, conjugate 54 

was first subjected to a sodium methoxide in methanol treatment to cleave all ester-bound 

acetate protecting groups. Following that, treatment with phosphoric acid in methanol 

cleaved the remaining Boc protecting group, and the resulting free amine was coupled 

with the terminal acidic moiety in lipid A mimic intermediate 28 (Scheme 15) under the 

promotion of the coupling reagent diisopropylcarbodiimide (DIC) in dimethyl sulfoxide 

(DMSO) to yield advanced intermediate 55 in 64% overall yield (Scheme 28). 

Deprotection of the remaining Bn protecting groups was brought about via hydrogenation 

over Pd/C in THF and acetic acid to yield antigen conjugate 38  in 88% yield. 
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Scheme 28. Synthesis of synthetic vaccine construct 38 

 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 161 

4.4 Experimental 

 

4.4.1 General methods 

All air and moisture sensitive reactions were performed under nitrogen atmosphere.  All 

commercial reagents were used as supplied.  Anhydrous dichloromethane was distilled 

over calcium hydride, whereas anhydrous N,N-dimethylformamide (DMF) was purchased 

from Aldrich. ACS grade solvents were purchased from Fisher Scientific and used for 

chromatography without distillation.  TLC plates (silica gel 60 F254, thickness 0.25 mm) 

and silica gel 60 (40-63 µm) for flash column chromatography were purchased from 

SILICYCLE INC., Canada.  1H and 13C NMR spectra were recorded on a Varian Unity 

Inova 500 MHz spectrometer.  Tetramethylsilane (TMS, δ 0.00 ppm) or solvent peaks 

were used as internal standards for 1H and 13C NMR spectra.  The chemical shifts were 

given in ppm and coupling constants in Hz indicated to a resolution of ± 0.5 Hz.  

Multiplicity of proton signals is indicated as follows: s (singlet), d (doublet), dd (double 

doublet), t (triplet), q (quartet), m (multiplet), br (broad). Structural assignments were 

made using standard gCOSY and gHSQC methodology. NMR peaks belonging to 

primary lipid chains are denoted with an L subscript, whereas those belonging to 

secondary lipid chains are denoted with an L’ subscript. MALDI mass spectra were 

measured on the Applied Biosystems Mariner 4700 system at the University of Western 

Ontario. Optical rotations were measured with Perkin Elmer 343 Polarimeter at 22°C. 
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4.4.2 11-tosyl-3,6,9-trioxaundecanol (39): 

 

To a solution of tetraethylene glycol (5.00 g, 25.75 mmol) in pyridine (25 mL), tosyl 

chloride (6.14 g, 32.19 mmol) was added, and the resulting solution was allowed to stir at 

room temperature overnight. The reaction mixture was concentrated in vacuo, and 

purification via flash column chromatography followed (hexane/acetone, 1 : 1), and 

furnished 39 (6.42 g, 75%) as a colorless syrup. Rf 0.34 (hexane/acetone, 1 : 1); 1H NMR 

(500 MHz, CDCl3): � 7.81-7.83 (m, 2H, Ar-H), 7.36-7.38 (m, 2H, Ar-H), 4.16-4.19 (m, 

1H, OH), 3.61-3.74 (m, 14H, 7 x CH2), 2.45-2.47 (m, 2H, CH2OTs); 13C NMR (125 

MHz, CDCl3): � 144.86 (C-Ar), 132.95 (C-Ar), 129.86 (CH-Ar), 128.01 (CH-Ar), 72.47 

(CH2), 70.75 (CH2), 70.67 (CH2), 70.48 (CH2), 70.34 (CH2), 69.29 (CH2), 68.72 (CH2), 

61.75 (CH2OTs); MALDI-MS (m/z) Calcd for C15H24O6S [M + K]+: 371.0931, found: 

371.0740. 

 

4.4.3 11-tosyl-1-tert-butyldiphenylsilyloxy-3,6,9-trioxaundecane (40): 

 

To a cooled solution (ice-water bath) of 39 (1.67 g, 4.77 mmol) and imidazole (487 mg, 

7.16 mmol), TBDPS-Cl (1.44 g, 5.25 mmol) was added and the reaction mixture was 

stirred at the reduced temperature. Upon consumption of the starting material, MeOH (1 

mL) was added and the mixture was stirred for one hour before being concentrated. 

Purification via flash column chromatography (hexane/acetone, 3 : 1) afforded 40 (2.73 

g, 97%) as a colorless syrup. Rf 0.31 (hexane/acetone, 3 : 1). 
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4.4.4 11-azido-1-tert-butyldiphenylsilyloxy-3,6,9-trioxaundecane (41): 

 

A solution of 40 (2.5 g, 4.38 mmol) and sodium azide (427 mg, 6.57 mmol) in DMF (10 

mL) was heated at 60 °C for 2 hours. The reaction mixture was concentrated, and then 

purified by flash column chromatography (hexane/acetone, 2 : 1 to afford 41 (1.76 g, 

88%) as a colorless syrup. Rf 0.34 (hexane/acetone, 2 : 1); 1H NMR (500 MHz, CDCl3): 

� 7.70-7.73 (m, 4H, Ar-H), 7.39-7.46 (m, 6H, Ar-H), 3.81-3.84 (m, 2H, CH2OTBDPS), 

3.61-3.70 (m, 12H, 6 x CH2), 3.38-3.42 (m, 2H, CH2N3), 1.11 (s, 9H, C(CH3)3);
 13C 

NMR (125 MHz, CDCl3): � 135.68 (CH-Ar), 133.73 (C-Ar), 129.62 (CH-Ar), 127.66 

(CH-Ar), 72.48 (CH2), 70.81 (CH2), 70.73 (CH2), 70.06 (CH2), 63.51 (CH2OTBDPS), 

50.70 (CH2N3), 26.82 (C(CH3)3), 19.28 (C(CH3)3); MALDI-MS (m/z) Calcd for 

C24H35N3O4Si [M + Na]+: 480.2295, found: 480.2538. 

 

 

4.4.5 11-amino-1-tert-butyldiphenylsilyloxy-3,6,9-trioxaundecane (42): 

 

A solution of 41 (1.60 g, 3.50 mmol) and Pd/C (100 mg) in EtOH (90%, 70 mL) was 

stirred under a hydrogen atmosphere (balloon) overnight. The Pd/C was filtered off and 

the remaining solution concentrated to afford 42 (1.37 g, 91%) as a colorless solid. Rf 

0.38 (CHCl3/MeOH/H2O, 2 : 1 : 0.1). 
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4.4.6 11-N-(tert-butyloxycarbonyl)-amino-1-tert-butyldiphenylsilyloxy-3,6,9 

trioxaundecane (43): 

 

To a solution of 42 (1.3 g, 3.02 mmol) and Et3N (1 mL) in CHCl3 (20 mL), a solution of 

Boc2O (987 mg, 4.53 mmol) in CHCl3 (20 mL) was added drop wise over 10 minutes. 

The resulting solution was stirred at room temperature overnight before being 

concentrated. Purification via flash column chromatography (hexane/EtOAc, 2 : 1) 

afforded 43 (1.48 g, 95%) as a colorless syrup. Rf 0.37 (hexane/EtOAc, 2 : 1); 1H NMR 

(500 MHz, CDCl3): � 7.67-7.70 (m, 4H, Ar-H), 7.36-7.44 (m, 6H, Ar-H), 5.01-5.04 (br 

m, 1H, NH), 3.80-3.82 (m, 2H, CH2OTBDPS), 3.52-3.65 (m, 12H, 6 x CH2), 3.28-3.31 

(m, 2H, CH2NHBoc), 1.44 (s, 9H, C(CH3)3 Boc), 1.05 (C(CH3)3 TBDPS); 13C NMR (125 

MHz, CDCl3): � 156.01 (C=O), 135.62 (CH-Ar), 133.69 (C-Ar), 129.64 (CH-Ar), 127.66 

(CH-Ar), 79.05 (C(CH3)3 Boc), 72.47 (CH2), 70.81 (CH2), 70.70 (CH2), 70.59 (CH2), 

70.29 (CH2), 70.21 (CH2), 63.47 (CH2OTBDPS), 40.38 (CH2NHBoc), 28.46 (C(CH3)3), 

26.86 (C(CH3)3), 19.22 (C(CH3)3 TBDPS); MALDI-MS (m/z) Calcd for C29H45NO5Si 

[M + Na]+: 554.2914, found: 554.3565. 

 

4.4.7 11-N-(tert-butyloxycarbonyl)-amino-3,6,9-trioxaundecanol (44): 

 

 
To a solution of 43 (500 mg, 0.94 mmol) in CH2Cl2 (4 mL), a solution of Bu4NF in THF 

(1 M, 1.2 mL) was added and the resulting mixture was stirred at room temperature 

overnight. The mixture was then concentrated, and purified by flash column 

chromatography (hexane/acetone, 3 : 2) to afford 43 (224 mg, 86%) as a colorless syrup. 
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Rf 0.42 (hexane/acetone, 1 : 1); 1H NMR (500 MHz, CDCl3): � 5.62-5.65 (br m, 1H, 

NH), 3.30-3.71 (m, 17H, 8 x CH2, OH), 1.43 (s, 9H, C(CH3)3);
 13C NMR (125 MHz, 

CDCl3): � 156.19 (C=O), 78.92 (C(CH3)3), 72.62 (CH2), 70.59 (CH2), 70.42 (CH2), 70.23 

(CH2), 70.06 (CH2), 61.60 (CH2OH), 40.36 (CH2NHBoc), 28.43 (C(CH3)3); MALDI-MS 

(m/z) Calcd for C13H27NO5 [M + Na]+: 316.1736, found: 316.1674. 

 

 

4.4.8 11-N-(tert-butyloxycarbonyl)-amino-3,6,9-trioxaundecanamide (45): 

 

 
To a solution of 44 (200 mg, 0.72 mmol) in CH2Cl2 (2 mL) and water (0.3 mL), TEMPO 

(35 mg, 0.22 mmol) and BAIB (721 mg, 2.24 mmol) were added and the resulting 

mixture was stirred at room temperature for 1 hour. The mixture was the concentrated 

and purified by flash column chromatography (CH2Cl2/MeOH, 5 : 0.3) to afford 45 (159 

mg, 76%) as a colorless syrup. Rf 0.37 (CH2Cl2/MeOH, 5 : 0.3); 1H NMR (500 MHz, 

CDCl3): � 8.12-8.24 (br s, 1H, COOH), 5.20-5.22 (br m, 1H, NH), 4.15 (s. 2H, 

CH2COOH), 3.53-3.76 (m, 12H, 6 x CH2), 3.31-3.33 (m, 2H, CH2NHBoc), 1.44 (s, 9H, 

C(CH3)3);
 13C NMR (125 MHz, CDCl3): � 173.12 (C=O), 156.24 (C=O Boc), 79.35 

(C(CH3)3), 70.95 (CH2), 70.43 (CH2), 70.29 (CH2), 69.96 (CH2), 68.98 (CH2), 40.28 

(CH2NHBoc), 28.41 (C(CH3)3); MALDI-MS (m/z) Calcd for C13H25NO6 [M + Na]+: 

330.1529, found: 330.1417. 
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4.4.9 N-(tert-butyloxycarbonyl)-N-{3-[2-acetamido-3-O-benzoyl-4,6-O-benzylidene-

2-deoxy-�-D-galactopyranosyloxy]-propyl}-amine (48): 

 
To a solution of imidate 46 (2.58 g, 4.63 mmol) and 3-aminopropanol derivative 47 (2.03 

g, 11.58 mmol) in THF (7 mL) with molecular sieves (4Å, 4.0 g) at -20 °C, a solution of 

BF3•OEt2 in THF (0.3 M, 2.3 mL) was added drop wise over 5 minutes. The mixture was 

allowed to stir at the reduced temperature for 1 hour before solids were filtered off. The 

remaining solution was diluted with CH2Cl2 (100 mL) and washed with a saturated 

sodium bicarbonate solution (30 mL), with the aqueous phase further extracted with 

CH2Cl2 (2 x 100 mL). The combined organic phase was dried over Na2SO4, concentrated, 

and purified by flash column chromatography (hexane/acetone, 2 : 1) to afford 48 (1.35 

g, 51%) as a white fluffy solid. Rf 0.34 (hexane/acetone, 2 : 1); [�]
22
D  +22.3 (c 1.0, 

CHCl3); 
1H NMR (500 MHz, CDCl3): � 8.07-8.09 (m, 1H, Ar-H), 7.33-7.57 (m, 9H, Ar-

H), 6.33 (d, 1H, J 6.5 Hz, NHAc), 5.55 (s, 1H, PHCH), 5.35 (dd, 1H, J 11.0, 3.5 Hz, H-

3), 5.02 (d, 1H, J 3.5 Hz, H-1), 4.96-5.00 (m, 1H, H-2), 4.61-4.64 (br m, 1H, NHBoc), 

4.49-4.52 (m, 1H, H-4), 4.09-4.30 (m, 2H, H-6A, H-6B), 3.80-3.84 (m, 2H, H-5, 

ROCHHCH2CH2NHBoc), 3.41-3.51 (m, 2H, ROCHHCH2CH2NHBoc, 

ROCH2CH2CHHNHBoc, 3.18-3.22 (m, 1H, ROCH2CH2CHHNHBoc), 1.95 (s, 3H, 

C(O)CH3), 1.72-1.81 (m, 2H, ROCH2CH2CH2NHBoc), 1.43 (s, 9H, C(CH3)3);
 13C NMR 

(125 MHz, CDCl3): � 170.59 (C=O, Ac), 166.85 (C=O, Bz), 156.22 (C=O, Boc), 137.71 

(C-Ar), 133.30 (CH-Ar), 130.03 (CH-Ar), 129.59 (C-Ar), 128.48 (CH-Ar), 126.26 (CH-

Ar), 100.66 (PhCH), 98.34 (C-1), 79.18 (C(CH3)3), 73.62 (C-4), 70.78 (C-3), 69.33 (C-6), 

64.55 (ROCH2CH2CH2NHBoc), 62.73 (C-5), 47.28 (C-2), 36.87 
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(ROCH2CH2CH2NHBoc), 30.04 (ROCH2CH2CH2NHBoc), 28.39 (C(CH3)3), 23.22 

(C(O)CH3); MALDI-MS (m/z) Calcd for C30H38N2O9 [M + Na]+: 593.2475, found: 

593.3215. 

 

 

4.4.10 N-(tert-butyloxycarbonyl)-N-{3-[2-acetamido-4,6-O-benzylidene-2-deoxy-�-

D-galactopyranosyloxy]-propyl}-amine (49): 

 
A solution of NaOMe in MeOH (0.5M, 0.8 mL) was added to a solution of 48 (1.3 g, 

2.28 mmol) in MeOH (30 mL), and the resulting solution was stirred at room temperature 

for 3 hours. The reaction was then neutralized with weak acid resin IRC-64. Solids were 

filtered off, and the resulting solution concentrated. Purification via flash column 

chromatography (hexane/acetone/MeOH, 2 : 1 : 0.2) afforded 49 (936 mg, 88%) as a 

white fluffy solid. Rf 0.24 (hexane/acetone, 2 : 1); [�]
22
D  + 18.7 (c 1.0, CHCl3); 

1H NMR 

(500 MHz, CDCl3): � 7.52-7.54 (m, 2H, Ar-H), 7.34-7.38 (m, 3H, Ar-H; 7.05 (d, 1H, J 

6.5 Hz, NHAc), 5.58 (s, 1H, PhCH), 4.87 (d, 1H, J 3.0 Hz, H-1), 4.60-4.62 (br m, 1H, 

NHBoc), 4.45-4.50 (m, 1H, H-2), 4.20-4.27 (m, 2H, H-4, H-6A), 4.07 (dd, 1H, J 12.5, 

1.5 Hz, H-6B), 3.92-3.96 (m, 1H, H-3), 3.77-3.81 (m, 1H, H-5), 3.55-3.69 (m, 3H, 

ROCHHCH2CH2NHBoc, ROCH2CH2CHHNHBoc, OH), 3.36-3.40 (m, 1H, 

ROCHHCH2CH2NHBoc), 3.06-3.11 (m, 1H, ROCH2CH2CHHNHBoc), 2.11 (s, 3H, 

C(O)CH3), 1.68-1.77 (m, 2H, ROCH2CH2CH2NHBoc), 1.43 (s, 9H, C(CH3)3); 
13C NMR 

(125 MHz, CDCl3): � 173.12 (C=O, Ac), 156.45 (C=O, Boc), 137.82 (C-Ar), 128.96 

(CH-Ar), 128.12 (CH-Ar), 126.39 (CH-Ar), 101.06 (PhCH), 98.19 (C-1), 79.20 
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(C(CH3)3), 75.64 (C-4), 69.72 (C-3), 69.34 (C-6), 63.90 (ROCH2CH2CH2NHBoc), 62.95 

(C-5), 50.88 (C-2), 36.32 (ROCH2CH2CH2NHBoc), 30.05(ROCH2CH2CH2NHBoc), 

28.36 (C(CH3)3), 22.88 (C(O)CH3); MALDI-MS (m/z) Calcd for C23H34N2O5 [M + Na]+: 

489.2213, found: 489.2520. 

 

4.4.11 N-(tert-butyloxycarbonyl)-N-{3-[2-acetamido-4,6-O-benzylidene-2-deoxy-3-

O-(2,3,4,6-tetra-aceto-�-D-galactopyranosyl)-�-D-galactopyranosyloxy]-propyl}-

amine (50): 

 
A solution of 49 (850 mg, 1.82 mmol), tetra-acetylgalactosyl bromide (900 mg, 2.20 

mmol), and mercury cyanide (504 mg, 2.00 mmol) in benzene (6 mL) and nitromethane 

(6 mL) was heated at 40 °C for 2 hours. The reaction mixture was then concentrated and 

purified by flash column chromatography (hexane/acetone, 1 : 1) to afford 50 (884 mg, 

61%) as a white fluffy solid. Rf 0.33 (hexane/acetone, 1 : 1); [�]
22
D  +35.5 (c 1.0, CHCl3); 

1H NMR (500 MHz, CDCl3): � 7.52-7.56 (m, 2H, Ar-H), 7.31-7.40 (m, 3H, Ar-H), 6.21 

(d, 1H, J 8.5 Hz, NHAc), 5.56 (s, 1H, PhCH), 5.37-5.39 (m, 1H, H-4'), 5.20-5.24 (m, 1H, 

H-2'), 4.98-5.01 (m, 1H, H-3'), 4.93-4.95 (br m, 1H, NHBoc), 4.90 (d, 1H, J 3.5Hz, H-1), 

4.76 (d, 1H, J 8.0 Hz, H-1'), 4.66-4.72 (m, 1H, H-2), 4.04-4.30 (m, 5H, H-4, H-6A, H-

6B, H-6A', H-6B'), 3.91-3.96 (m, 2H, H-3, H-5'), 3.68-3.84 (m, 2H, H-5, 

ROCHHCH2CH2NHBoc), 3.44-3.48 (m, 1H, ROCHHCH2CH2NHBoc), 3.18-3.32 

(ROCH2CH2CH2NHBoc), 1.98-2.17 (m, 15H, 5 x C(O)CH3), 1.58-1.76 (m, 2H, 

ROCH2CH2CH2NHBoc), 1.45 (s, 9H, C(CH3)3);
 13C NMR (125 MHz, CDCl3): � 170.35 

(C=O, Ac), 170.33 (C=O, Ac), 170.27 (C=O, Ac), 170.21 (C=O, Ac), 170.09 (C=O, Ac), 
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170.03 (C=O, Ac), 169.49 (C=O, Ac), 156.17 (C=O, Boc), 137.76 (C-Ar), 128.78 (CH-

Ar), 128.12 (CH-Ar), 126.26 (CH-Ar), 101.53 (C-1'), 100.69 (PhCH), 98.19 (C-1), 79.31 

(C(CH3)3), 75.71 (C-4), 74.92 (C-5), 70.95 (C-3'), 70.80 (C-3), 69.34 (C-6), 68.76 (C-2'), 

66.97 (C-4'), 64.38 (ROCH2CH2CH2NHBoc), 63.12 (C-5), 61.32 (C-6'), 48.16 (C-2), 

36.93 (ROCH2CH2CH2NHBoc), 29.98 (ROCH2CH2CH2NHBoc), 28.41 (C(CH3)3), 23.36 

(NHC(O)CH3), 20.77 (C(O)CH3), 20.73 (C(O)CH3), 20.71 (C(O)CH3), 20.58 (C(O)CH3); 

MALDI-MS (m/z) Calcd for C37H52N2O17 [M + Na]+: 819.3164, found: 819.4091. 

 

 
 
4.4.12 N-(tert-butyloxycarbonyl)-N-{3-[2-acetamido-4,6-diaceto-2-deoxy-3-O-

(2,3,4,6-tetra-aceto-�-D-galactopyranosyl)-�-D-galactopyranosyloxy]-propyl}-amine 

(53): 

 
To a solution of 50 (500 mg, 0.63 mmol) in CH2Cl2 (4 mL), trifluoroacetic acid (2 mL) 

was added and the mixture was stirred at room temperature for 1 hr before being 

concentrated. The resulting residue was dissolved in MeOH (3 mL) and water (0.5 mL), 

and Et3N (1 mL), and a solution of Boc2O (205 mg, 0.94 mmol) in MeOH (3 mL) was 

added drop wise over 3 minutes. The resulting solution was allowed to stir at room 

temperature for 2 hours before being concentrated. The resulting residue was dissolved in 

pyridine (4 mL) and acetic anhydride (4 mL) was added. The solution was stirred 

overnight, concentrated, and purified by flash column chromatography 

(CH2Cl2/hexane/EtOAc/MeOH, 1 : 1 : 1 : 0.2) to afford 53 (388 mg, 82%) as a white 

fluffy solid. Rf 0.38 (CH2Cl2/hexane/EtOAc/MeOH, 1 : 1 : 1 : 0.2); [�]
22
D  +33.4 (c 1.0, 
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CHCl3); 
1H NMR (500 MHz, CDCl3): � 6.43 (d, 1H, J 8.5 Hz, NHAc), 5.33-5.37 (m, 1H, 

H-4'), 5.10-5.14 (m, 1H, H-4), 4.94-4.97 (m, 1H, H-2'), 4.81-4.85 (m, 1H, H-3'), 4.70-

4.76 (br m, 2H, H-1, NHBoc), 4.60 (d, 1H, J 8.0 Hz, H-1'), 4.54-4.58 (m, 1H, H-2), 4.09-

4.26 (m, 6H, H-5, H-6A, H-6B, H-6A', H-6B'), 3.87-3.96 (m, 2H, H-3, H-5'), 3.68-3.73 

(m, 1H, ROCHHCH2CH2NHBoc), 3.44-3.48 (m, 1H, ROCHHCH2CH2NHBoc), 3.31-

3.37 (m, 1H, ROCH2CH2CHHNHBoc), 3.19-3.23 (m, 1H, ROCH2CH2CHHNHBoc), 

1.97-2.17 (m, 21H, NHC(O)CH3, 6 x C(O)CH3), 1.74-1.77 (m, 2H, 

ROCH2CH2CH2NHBoc), 1.44 (s, 9H, C(CH3)3);
 13C NMR (125 MHz, CDCl3): � 171.25 

(C=O, Ac), 170.68 (C=O, Ac), 170.45 (C=O, Ac), 170.34 (C=O, Ac), 170.25 (C=O, Ac), 

169.69 (C=O, Ac), 156.31 (C=O, Boc), 100.88 (C-1'), 97.51 (C-1), 79.48 (C(CH3)3), 

73.28 (C-5'), 70.78 (C-3'), 70.60 (C-3), 69.09 (C-4'), 68.56 (C-2'), 67.29 (C-5), 66.76 (C-

4), 64.09 (ROCH2CH2CH2NHBoc), 62.85 (C-6), 61.04 (C-6'), 48.80 (C-2), 36.77 

(ROCH2CH2CH2NHBoc), 29.78 (ROCH2CH2CH2NHBoc), 28.34 (C(CH3)3), 23.12 

(NHC(O)CH3), 21.02 (C(O)CH3), 20.88 (C(O)CH3), 20.77 (C(O)CH3), 20.74 (C(O)CH3), 

20.67 (C(O)CH3), 20.65 (C(O)CH3); MALDI-MS (m/z) Calcd for C34H52N2O19 [M + 

Na]+: 815.3062, found: 815.4035. 

 

 

4.4.13 N-(tert-butyloxycarbonyl)-N-{3-[2-acetamido-4,6-diaceto-2-deoxy-3-O-

(2,3,4,6-tetra-aceto-�-D-galactopyranosyl)-�-D-galactopyranosyloxy]- propyl}-3,6,9-

trioxaundecanamide (54): 

 
To a solution of 53 (140 mg, 0.19 mmol) in CH2Cl2 (2 mL), trifluoroacetic acid (1 mL) 

was added and the resulting solution was stirred at room temperature for 1 hour before 
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being concentrated. The remaining residue was dissolved in DMF (1 mL) and added to a 

solution of 36 (75 mg, 0.24 mmol), HBTU (138 mg, 0.36 mmol), and (iPr)2NEt (0.1 mL, 

0.36 mmol) in DMF (2 mL). The resulting solution was stirred at room temperature 

overnight and then concentrated. Purification via flash column chromatography 

(CHCl3/hexane/acetone/MeOH, 1 : 1 : 1 : 0.2) afforded 54 (117 mg, 64%) as a white 

fluffy solid. Rf 0.36 (CHCl3/hexane/acetone/MeOH, 1 : 1 : 1 : 0.2); [�]
22
D  +9.2 (c 1.0, 

CHCl3); 
1H NMR (500 MHz, CDCl3): � 7.22-7.24 (br m, 1H, 

ROCH2CH2CH2NHC(O)R'), 7.11 (d, 1H J 8.5 Hz, NHAc), 5.23-5.28 (m, 2H, H-4, H-4'), 

5.09-5.13 (br m, 1H, NHBoc), 4.98-5.02 (m, 1H, H-2', 4.84-4.87 (m, 1H, H-3'), 4.67 (d, 

1H, J 3.5 Hz, H-1), 4.60 (d, 1H, J 8.0 Hz, H-1'), 4.44-4.49 (m, 1H, H-2), 3.98-4.09 (m, 

5H, H-5', H-6A, H-6B, H-6A', H-6B'), 3.78-3.94 (m, 4H, H-3, H-5, 

ROCH2CH2CH2NHC(O)CH2R'), 3.52-3.63 (m, 9H, ROCHHCH2CH2NHC(O)R', OCH2 x 

4), 3.42-3.44 (m, 3H, ROCH2CH2CHHNHC(O)R', ROCH2CH2NHBoc), 3.31-3.35 (m, 

1H, ROCHHCH2CH2NHC(O)R'), 3.17-3.23 (m, 3H, ROCHHCH2CH2NHC(O)R', 

ROCH2CH2NHBoc), 1.85-2.04 (m, 21H, NHC(O)CH3, 6 x C(O)CH3), 1.63-1.68 (m, 2H, 

ROCH2CH2CH2NHC(O)R'), 1.32 (s, 9H, C(CH3)3);
 13C NMR (125 MHz, CDCl3): � 

170.61 (C=O), 170.48 (C=O), 170.44 (C=O), 170.41 (C=O), 170.35 (C=O), 170.23 

(C=O), 170.11 (C=O), 169.68 (C=O), 155.97 (C=O, Boc), 100.99 (C-1'), 97.65 (C-1), 

79.38 (C(CH3)3), 73.18 (C-5'), 70.97 (ROCH2CH2CH2NHC(O)CH2R'), 70.81 (C-3'), 

70.50 (C-3), 70.31 (OCH2), 70.14 (OCH2), 70.06 (OCH2), 70.03 (OCH2), 69.18 (C-4'), 

68.51 (C-2'), 67.42 (C-5), 66.78 (C-4), 63.96 (ROCH2CH2CH2NHC(O)R'), 62.82 (C-6), 

60.92 (C-6'), 48.68 (C-2), 40.27 (ROCH2CH2NHBoc), 34.67 

(ROCH2CH2CH2NHC(O)R'), 29.06 (ROCH2CH2CH2NHC(O)R'), 28.39 (C(CH3)3), 23.07 
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(NHC(O)CH3), 20.80 (C(O)CH3), 20.71 (C(O)CH3), 20.68 (C(O)CH3), 20.57 (C(O)CH3); 

MALDI-MS (m/z) Calcd for C42H67N3O22 [M + K]+: 1004.3853, found: 1004.5851. 

 

 

4.4.14 N-{N-3-(2-acetamido-2-deoxy-3-O-(�-D-galactopyranosyl)-�-D-

galactopyranosyloxy]-propyl)-3,6,9-trioxaundecan-11-amide}-N-{2-[6-Obenzyl-2-

deoxy-4-O-(di-O-benzylphosphono)-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-

((R)-3-tetradecanoyloxytetradecanamido)-�-D-glucopyranosyloxy]-ethyl}-(R)-3-

tetradecanoyloxytetradecanamide (55): 

 

A solution of NaOMe in MeOH (0.5M, 0.1 mL) was added to a solution of 54 (124 mg, 

0.128 mmol) in MeOH (5 mL), and the resulting solution was stirred at room temperature 

for 3 hours. The reaction was then neutralized with weak acid resin IRC-64. Solids were 

filtered off, and the resulting solution concentrated. The remaining residue was then 

dissolved in a solution of H3PO4 in MeOH (0.15 M, 2.0 mL) and allowed to stir at room 

temperature for a further 3 hours, upon which it was neutralized with Et3N (0.2 mL) and 

concentrated. The resulting amine was combined with 28 (210 mg, 0.128 mmol) and 

dissolved in DMSO (2 mL). To the resulting solution, DIC (25 mg, 0.192 mmol) was 

added and the mixture allowed to stir overnight at room temperature. The mixture was 

then concentrated and purified via flash column chromatography (hexane/EtOAc/MeOH, 

3 : 1 : 0.1) to afford 55 (209 mg, 64%) as a colorless syrup. Rf 0.33 

(hexane/EtOAc/MeOH, 3 : 1 : 0.1); [�]
22
D  +8.4(c 1.0, CHCl3); 

1H NMR (500 MHz, 

CDCl3): � 7.87 (d, 1H J 8.5 Hz, NHAc), 7.22-7.45 (m, 17H, C(O)NH x 2, Ar-H), 6.49-
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6.54 (m, 1H, NH from lipid A mimic), 5.55 (dd, 1/3 H, J 9.5, 9.5 Hz, H-3 from one 

isomer of lipid A mimic), 5.43 (dd, 2/3 H, J 9.5, 9.5 Hz, H-3 from one isomer of lipid A 

mimic), 5.14-5.19 (m, 3H, H-3L x 3), 4.85-4.92 (m, 5H, H-1 from lipid A mimic, 

(PhCH2O)2P(O)), 4.39-4.54 (m, 6H, PhCH2, H-4 from lipid A mimic, H-1, H-1', H-2), 

3.93-4.16 (m, 19H, OCH2 from lipid A mimic, NCH2C(O)NHR from lipid A mimic, H-

2', H-3, H-3', H-4, H-4', H-5, H-5', H-6A, H-6B, H-6A', H-6B', H-5, CH2C(O)NHR x 2), 

3.44-3.79 (m, 26H, H-2 from lipid A mimic, H-5 from lipid A mimic, H-6A from lipid A 

mimic, H-6B from lipid A mimic, CH2N from lipid A mimic, 5 x OCH2, OH x 6, 

ROCH2CH2CH2NHC(O)R'), 2.14-2.72 (m, 12H, H-2L x 6, H-2L' x 6), 1.47-1.61 (br m, 

17H, H-4L x 6, H-3L' x 6, ROCH2CH2CH2NHC(O)R', NHC(O)CH3, 1.17-1.36 (br m, 

114H, 57 x CH2), 0.88 (t, 18H, J 6.5 Hz, 6 x CH3); 
13C NMR (125 MHz, CDCl3): � 

173.56 (C=O), 173.32 (C=O), 173.22 (C=O), 171.47 (C=O), 170.40 (C=O), 170.18 

(C=O), 168.29 (C=O), 153.60 (NHC(O)CH3), 138.02 (C-Ar), 135.58 (C-Ar), 135.53 (C-

Ar), 128.56 (CH-Ar), 128.54 (CH-Ar), 128.31 (CH-Ar), 128.11 (CH-Ar), 128.07 (CH-

Ar), 127.98 (CH-Ar), 127.58 (CH-Ar), 100.61 (CH), 99.91 (CH), 74.08 (CH), 73.35 

(CH2), 72.78 (CH), 72.28 (CH), 72.19 (CH), 71.74 (CH), 74.39 (CH),70.63 (CH), 70.32 

(CH), 70.09 (CH), 69.91 (CH), 69.67 (CH2), 69.63 (CH2), 69.54 (CH2), 69.50 (CH2), 

68.48 (CH2), 68.21 (CH2), 67.74 (CH2), 67.61 (CH2), 60.38 (CH2), 55.19 (CH), 52.05 

(CH), 50.04 (CH2), 49.52 (CH2), 47.30 (CH), 42.99 (CH), 41.43 (CH2), 40.88 (CH2), 

39.25 (CH2), 39.09 (CH2), 37.86 (CH2), 34.55 (CH2), 34.45 (CH2), 34.42 (CH2), 34.29 

(CH2), 31.95 (CH2), 29.73 (CH2), 29.71 (CH2), 29.65 (CH2), 29.59 (CH2), 29.53 (CH2), 

29.49 (CH2), 29.42 (CH2), 29.39 (CH2), 29.32 (CH2), 29.24 (CH2), 29.21 (CH2), 25.49 

(CH2), 25.25 (CH2), 25.13 (CH2), 25.05 (CH2), 25.02 (CH2), 22.71 (CH2), 22.32 
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(NHC(O)CH3), 14.14 (CH3); MALDI-MS (m/z) Calcd for C140H240N5O33P [M + Na]+: 

2573.6891, found: 2573.6724. 

 

 

4.4.15 N-{N-3-(2-acetamido-2-deoxy-3-O-(�-D-galactopyranosyl)-�-D-

galactopyranosyloxy]-propyl)-3,6,9-trioxaundecan-11-amide}-N-{2-[2-deoxy- 4-O-

phosphono-3-O-((R)-3-tetradecanoyloxytetradecanoyl)-2-((R)- 3-

tetradecanoyloxytetradecanamido)-�-D-glucopyranosyloxy]-ethyl}-(R)-3- 

tetradecanoyloxytetradecanamide (38): 

 

A solution of 55 (35 mg, 0.013 mmol) and palladium on charcoal (5% , 20 mg) in freshly 

distilled THF (45 mL) and acetic acid (5 mL) was stirred under a hydrogen atmosphere 

for 24 h. The solution was then filtered, concentrated, and purified by flash column 

chromatography (CHCl3/MeOH, 8 : 1) to afford 38 (27 mg, 88%) as a white fluffy solid 

after being freeze dried from dioxane. Rf 0.41 (CHCl3/MeOH, 8 : 1); [�]
22
D  +6.3 (c 0.5, 

CHCl3); 
1H NMR (500 MHz, CDCl3): 5.32-5.45 (br m, 4H, H-3 from lipid A mimic, H-

3L x 3), 4.41-4.92 (br m, 5H, H-1 from lipid A mimic,H-4 from lipid A mimic, H-1, H-1', 

H-2), 3.93-4.28 (br m, 19H, OCH2 from lipid A mimic, NCH2C(O) from lipid A mimic, 

H-2', H-3, H-3', H-4, H-4', H-5, H-5', H-6A, H-6B, H-6A', H-6B', H-5, CH2C(O)R x 2), 

3.36-3.84 (br m, 26H, H-2 from lipid A mimic, H-5 from lipid A mimic, H-6A from lipid 

A mimic, H-6B from lipid A mimic, CH2N from lipid A mimic, 5 x OCH2, OH x 6, 

ROCH2CH2CH2NDC(O)R'), 2.09-2.73 (br m, 12H, H-2L x 6, H-2L' x 6), 1.49-1.61 (br m, 

17H, H-4L x 6, H-3L' x 6, ROCH2CH2CH2NDC(O)R', NDC(O)CH3, 1.19-1.35 (br m, 



 175 

114H, 57 x CH2), 0.87 (t, 18H, J 6.5 Hz, 6 x CH3) � ; MALDI-MS (m/z) Calcd for 

C119H222N5O33P [M + Na]+: 2303.5483, found: 2303.5316. 
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5 SUMMARY 

In relation to the primary goal of the current study, which was the design and synthesis of 

novel molecular frameworks to mimic the disaccharide structure of natural lipid A in the 

activation of the TLR4 receptor complex, significant strides have been made. Two novel 

lipid A mimic families were investigated, namely diethanolamine-containing and 

aromatic based lipid A mimics. In terms of the diethanolamine-containing lipid A mimic 

family, several structural variants were obtained and evaluated in vitro as 

immunostimulatory ligands of the TLR4 receptor complex. A direct correlation between 

the functionalization of the terminal ethanol hydroxyl and immunostimulatory potency 

was observed, with maximal potency noted with a terminal carboxylic acid as a 

phosphate bioisostere. The two members of the aromatic-based lipid A mimic family 

obtained were evaluated in vivo and display TLR4 stimulatory based adjuvant properties.  

Future studies will aim at generating further structural variants of these family of lipid A 

mimics, and ultimately examine their therapeutic potential. 

 

In relation to the secondary goal of the current study, which was the construction of 

synthetic self-adjuvanting carbohydrate antigens, the adjuvant properties of the 

diethanolmine-containing lipid A mimic family were employed and a synthetic construct 

containing the TF-carbohydrate and a diethanolamine-containing lipid A mimic was 

obtained. Future studies will examine the ability of the antigen to induce an 

immunological response and its potential use in therapeutic cancer vaccines. 
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7 Appendix: Spectral Analyses 
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242 ESI-MS Spectrum of 16 

 
243 1H Spectrum of 17 

 
244 13C Spectrum of 17 

 
245 13C-DEPT Spectrum of 17 
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247 1H Spectrum of 18 

 
248 13C Spectrum of 18 
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251 1H Spectrum of 20 
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256 MALDI-MS Spectrum of 20 

 
257 1H Spectrum of 21 

 
258 13C Spectrum of 21 

 
259 13C-DEPT Spectrum of 21 

 
260 gCOSY Spectrum of 21 

 
261 gHSQC Spectrum of 21 
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262 MALDI-MS Spectrum of 21 

 
263 1H Spectrum of 22 

 
264 13C Spectrum of 22 

 
265 13C-DEPT Spectrum of 22 

 
266 gCOSY Spectrum of 22 

 
267 gHSQC Spectrum of 22 

 
268 MALDI-MS Spectrum of 22 

 
269 1H Spectrum of 23 

 
270 13C Spectrum of 23 
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274 MALDI-MS Spectrum of 23 

 
275 1H Spectrum of 24 

 
276 13C Spectrum of 24 
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278 gCOSY Spectrum of 24 

 
279 gHSQC Spectrum of 24 

 

280 MALDI-MS Spectrum of 24 
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1H Spectrum of 25 
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13C Spectrum of 25 

 
283 13C-DEPT Spectrum of 25 

 
284 gCOSY Spectrum of 25 
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285 gHSQC Spectrum of 25 

 
286 MALDI-MS Spectrum of 25 

 
287 1H Spectrum of 26 

 
288 13C Spectrum of 26 

 
289 13C-DEPT Spectrum of 26 

 
290 gCOSY Spectrum of 26 

 
291 gHSQC Spectrum of 26 

 
292 MALDI-MS Spectrum of 26 

 
293 1H Spectrum of 27 

 
294 13C Spectrum of 27 
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298 MALDI-MS Spectrum of 27 

 
299 1H Spectrum of 28 

 
300 13C Spectrum of 28 
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302 gCOSY Spectrum of 28 

 
303 gHSQC Spectrum of 28 

 
304 MALDI-MS Spectrum of 28 

 
305 1H Spectrum of 13 
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308 MALDI-MS Spectrum of 14 

 
309 1H Spectrum of 31 

 
310 13C Spectrum of 31 

 
311 ESI-MS Spectrum of 31 

 
312 1H Spectrum of 32 

 
313 13C Spectrum of 32 

 
314 ESI-MS Spectrum of 32 

 
315 1H Spectrum of 33 

 
316 13C Spectrum of 33 
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321 1H Spectrum of 35 

 
322 13C Spectrum of 35 
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334 gCOSY Spectrum of 35 

 
335 gHSQC Spectrum of 35 

 

336 MALDI-MS Spectrum of 35 

 
337 1H Spectrum of 36 

 
338 13C Spectrum of 36 

 
339 13C-DEPT Spectrum of 36 

 
340 gCOSY Spectrum of 36 
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341 gHSQC Spectrum of 36 

 
342 MALDI-MS Spectrum of 36 

 
343 1H Spectrum of 37 

 
344 13C Spectrum of 37 

 
345 13C-DEPT Spectrum of 37 

 
346 gCOSY Spectrum of 37 

 
347 gHSQC Spectrum of 37 

 
348 MALDI-MS Spectrum of 37 

 
349 1H Spectrum of 29 
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1H Spectrum of 39 
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MALDI-MS Spectrum of 39 
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1H Spectrum of 41 
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13C Spectrum of 41 
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MALDI-MS Spectrum of 41 
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1H Spectrum of 43 
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13C Spectrum of 43 
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MALDI-MS Spectrum of 43 
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1H Spectrum of 44 
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13C Spectrum of 44 
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364 
 

MALDI-MS Spectrum of 44 
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1H Spectrum of 45 
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13C Spectrum of 45 
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MALDI-MS Spectrum of 45 
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1H Spectrum of 48 
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13C Spectrum of 48 
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gCOSY Spectrum of 48 
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gHSQC Spectrum of 48 
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MALDI-MS Spectrum of 48 
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1H Spectrum of 49 
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13C Spectrum of 49 
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gCOSY Spectrum of 49 
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gHSQC Spectrum of 49 
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MALDI-MS Spectrum of 49 
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1H Spectrum of 50 
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13C Spectrum of 50 

 
383 

 

13C-DEPT Spectrum of 50 
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gCOSY Spectrum of 50 

 
385 

 
gHSQC Spectrum of 50 
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MALDI-MS Spectrum of 50 
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1H Spectrum of 53 
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13C Spectrum of 53 
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13C-DEPT Spectrum of 53 
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gCOSY Spectrum of 53 
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gHSQC Spectrum of 53 
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MALDI-MS Spectrum of 53 
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1H Spectrum of 54 

 
394 

 

13C Spectrum of 54 
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gCOSY Spectrum of 54 
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gHSQC Spectrum of 54 
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MALDI-MS Spectrum of 54 
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1H Spectrum of 55 
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13C Spectrum of 55 
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13C-DEPT Spectrum of 55 
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gCOSY Spectrum of 55 
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gHSQC Spectrum of 55 
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MALDI-MS Spectrum of 55 
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1H Spectrum of 38 
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MALDI-MS Spectrum of 38 
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HRESI-MS (m/z) Calcd for C32H63NO5Na [M+Na]+: 564.4587, found: 564.4588. 
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HRESI-MS (m/z) Calcd for C90H146Cl3N2O17P [M+Na]+ : 1685.9282, found: 1685.9339. 
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HRESI-MS (m/z) Calcd for C148H229Cl6N3O29P2 [M+Na]+ : 2807.3979, found: 2807.4086. 
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ESI-MS (m/z) Calcd for C91H154N2O16P [M+H]+ : 1563.1, found: 1563.1. 
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HRESI-MS (m/z) Calcd for C115H197N2O18P [M+Na]+ : 1948.4144, found: 1948.4183. 
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HRESI-MS (m/z) Calcd for C143H249N2O21P [M+Na]+ : 2384.8047, found: 2384.8032. 
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HRESI-MS (m/z) Calcd for C94H178N2O18P [M-H]- 1654.2843, found: 1654.2837. 
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ESI-MS (m/z) Calcd for C98H186N2O19P [M-H]- 1726.3, found: 1726.3. 
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HRESI-MS (m/z) Calcd for C122H230N2O21P [M-H]- : 2090.6746, found: 2090.6758. 
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ESI-MS (m/z) Calcd for C7H12Cl3NO4 [M + Na]+ : 301.9, found: 302.0. 
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ESI-MS (m/z) Calcd for C10H13Cl6NO6 [M + Na]+ : 475.9, found: 475.9. 
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ESI-MS (m/z) Calcd for C23H30Cl3NO4Si [M - C4H9]
+ : 460.0, found: 460.4. 
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ESI-MS (m/z) Calcd for C39H48Cl3NO4Si2 [M - C4H9]
+ : 698.2, found: 698.5. 
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MALDI-MS (m/z) Calcd for C38H48Cl6N2O13Si  [M + Na]+ : 1001.09, found: 1001.08. 
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MALDI-MS (m/z) Calcd for C32H42Cl6N2O10Si  [M + Na]+ : 875.06, found: 875.05. 
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MALDI-MS (m/z) Calcd for C39H46Cl6N2O10Si [M + Na - C4H9]
+: 906.06, found: 906.12. 
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MALDI-MS (m/z) Calcd for C67H98Cl6N2O13Si  [M + Na]+ : 1399.49, found: 1399.50. 
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MALDI-MS (m/z) Calcd for C67H100Cl6N2O13Si  [M + Na]+ : 1401.50, found: 1401.45. 
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MALDI-MS (m/z) Calcd for C81H113Cl6N2O16PSi  [M + Na]+ : 1661.56, found: 1661.48. 
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MALDI-MS (m/z) Calcd for C131H215N2O18PSi  [M + Na]+ : 2186.54, found: 2186.48. 
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MALDI-MS (m/z) Calcd for C115H195N2O19P  [M + Na]+ : 1962.39, found: 1962.30. 
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MALDI-MS (m/z) Calcd for C94H180N2O21P2  [M + Na]+ : 1758.24, found: 1758.20. 
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MALDI-MS (m/z) Calcd for C94H177N2O19P  [M + Na]+ : 1692.25, found: 1692.17. 
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HRESI-MS (m/z) Calcd for C8H11NO2 [M+H]+: 154.0868, found: 154.0858. 
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HRESI-MS (m/z) Calcd for C24H29NO2Si [M+H]+: 392.2047, found: 392.2033. 
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HRESI-MS (m/z) Calcd for C52H81NO5Si [M+H]+: 828.5963, found: 828.5926. 
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HRESI-MS (m/z) Calcd for C36H63NO5 [M+H]+: 590.4785, found: 590.4752. 
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MALDI-MS (m/z) Calcd for C94H146Cl3N2O17P [M + Na]+ : 1733.9325, found: 
1733.9720. 
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MALDI-MS (m/z) Calcd for C119H197N2O18P [M + Na]+ : 1996.4199, found: 1996.4117. 
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MALDI-MS (m/z) Calcd for C133H210N2O21P2 [M + Na]+ : 2256.4801, found: 2256.5198.. 
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MALDI-MS (m/z) Calcd for C98H179N2O18P [M + Na]+ : 1726.2790, found: 1726.2794. 
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MALDI-MS (m/z) Calcd for C98H180N2O21P2 [M + Na]+ : 1806.2458, found: 1806.2502. 
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MALDI-MS (m/z) Calcd for C15H24O6S [M + K]+: 371.0931, found: 371.0740. 
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MALDI-MS (m/z) Calcd for C24H35N3O4Si [M + Na]+: 480.2295, found: 480.2538. 
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MALDI-MS (m/z) Calcd for C29H45NO5Si [M + Na]+: 554.2914, found: 554.3565. 
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MALDI-MS (m/z) Calcd for C13H27NO5 [M + Na]+: 316.1736, found: 316.1674. 
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MALDI-MS (m/z) Calcd for C13H25NO6 [M + Na]+: 330.1529, found: 330.1417. 
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MALDI-MS (m/z) Calcd for C30H38N2O9 [M + Na]+: 593.2475, found: 593.3215. 
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MALDI-MS (m/z) Calcd for C23H34N2O5 [M + Na]+: 489.2213, found: 489.2520. 
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MALDI-MS (m/z) Calcd for C37H52N2O17 [M + Na]+: 819.3164, found: 819.4091. 
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MALDI-MS (m/z) Calcd for C34H52N2O19 [M + Na]+: 815.3062, found: 815.4035. 
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MALDI-MS (m/z) Calcd for C42H67N3O22 [M + K]+: 1004.3853, found: 1004.5851. 
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MALDI-MS (m/z) Calcd for C140H240N5O33P [M + Na]+: 2573.6891, found: 2573.6724. 
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MALDI-MS (m/z) Calcd for C119H222N5O33P [M + Na]+: 2303.5483, found: 2303.5316. 
 

 

 
 

 

 

 

 

 
 


