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Abstract 

MacDonald, R.L. 2012. Influence of riparian harvesting on boreal understory vegetation. 112 
pp. 

 
In the boreal forest, understory vegetation accounts for the majority of floristic diversity and 
affects overstory succession and productivity, nutrient cycling, and wildlife habitat. In 
riparian forests, understory vegetation also plays an important functional role by reducing 
erosion, stabilizing the stream channel, and regulating water quality and quantity. Despite this 
critical importance, effects of harvesting on understory plant communities in riparian forests 
are still poorly understood. This study uses data from two boreal ecozones in Canada to 
quantify how overstory harvesting affects understory vegetation communities and how 
disturbance-response relationships vary from stream edge to uplands.   
 
Using data collected during the summer before harvesting (Yr 0), and three summers after 
harvesting (Yrs 1, 5 and 7) from headwater stream sites on the Boreal Plain study area 
(Central Alberta), compositional stability (i.e., the measure of change in community 
membership and abundance) was measured following disturbance. Non-metric 
multidimensional scaling was used to ordinate vegetation plots using species cover, and then 
measured vector length in the ordination space to quantify floristic dissimilarity (i.e., inverse 
of compositional stability) of each sample plot. Streamside understory plant communities 
were compositionally more stable relative to upland communities following clearcut 
harvesting. Compositional stability was positively related to pre-harvest species richness and 
negatively related to pre-harvest bryoid cover.  Changes in species diversity, abundance and 
turnover following harvesting were also examined. Streamside communities harvested with or 
without a 30 m riparian buffer, were maintained to a condition similar to uncut forests. 
However, upland communities were less resistant to overstory harvest, relative to streamside 
communities, and subsequently colonized by grasses, forbs, and tall shrubs; many of which 
were present in pre-harvest riparian plots.  
 
Mechanical site preparation (i.e., scarification) exacerbates environmental changes following 
overstory harvest by destroying above- and below-ground plant parts and coarse woody debris 
and removing more of the forest floor. The response of boreal understory plant communities 
to overstory harvesting with and without scarification was examined on 24 small stream sites 
on Boreal Shield (Northwestern Ontario) watersheds. Species composition was not strongly 
affected by harvesting when forest floor and soil disturbance is minimal; but it was following 
scarification. However, this effect varied with habitat. First, the riparian and upland plots that 
were harvested and scarified diverged from the uncut plant communities; however this effect 
was stronger in the upland communities. Second, changes within the community following 
scarification were not detectable in the transitional communities; these communities retain 
species of both riparian and upland communities and thus their flora has lower site fidelity 
and likely tolerates a wider range of environmental conditions. Scarification profoundly alters 
the substrate by breaking up coarse woody debris and decreasing the depth of organic matter, 
which destroys forest floor feathermosses and creates a habitat suitable for early colonizing 
species (i.e., grasses). 
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This study indicates that streamside understory plant communities are inherently more 
resilient to stand-replacing disturbance than upland assemblages. I attribute this to the higher 
moisture availability and shading from tall shrubs associated with riparian habitat that buffers 
the effect of harvesting on shade-tolerant species in streamside plots. Thus, the response to 
harvesting is not as marked as it is in the uplands. This study highlights that understory 
disturbance response relationships can differ within a small spatial scale (i.e., 30 m) based on 
habitat characteristics, imparted by hydrological processes and disturbance regimes that drive 
community composition.  
 

Keywords: boreal forest; community ecology; compositional stability; disturbance; diversity; 
diversity-stability hypothesis;  logging; riparian buffer; riparian forests; species composition; 
species richness; understory vegetation 
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CHAPTER 1 : GENERAL INTRODUCTION 

Riparian forests (Fig 1) are diverse, dynamic and complex systems, in which the flora plays 

an essential role in ecosystem functioning. In addition to providing critical habitat and 

corridors for terrestrial wildlife (Naiman et al. 1993), riparian vegetation affects surface water 

quality and quantity through the provision of a variety of ecological services. Sediment and 

nutrient pollution of streams may be decreased as water moving from upland areas to the 

stream channel interacts with riparian vegetation (Lee et al. 2003, Hefting et al. 2005, Luke et 

al. 2007, Sovik and Syversen 2008). The riparian forest canopy shades and controls the 

temperature of the stream, while the roots provide bank stability (Naiman and Décamps 1997, 

Naiman et al. 2005). The physiology of riparian plants influences fluvial processes through 

stream discharge, hydraulic lift and evapotranspiration (Brown and Krygier 1970, Norris 

1993). Also, organic inputs to the stream ecosystem from riparian vegetation (including 

woody debris and leaf litter) create habitat and provide nutrients to stream organisms, 

dissipate energy and trap moving materials (Vannote et al. 1980, Naimen and Decamps 1997). 

Despite the critical importance of vegetation in riparian forest ecosystems and across the 

landscape, dynamics of riparian plant communities are still poorly understood, particularly in 

the context of anthropogenic perturbation. 

With increased resource extraction over the last several decades, forest harvesting has 

become an important stand-replacing disturbance in the fire-driven North American boreal 

forest. Logging exerts strong controls on understory plant communities which, despite being 

small in stature in comparison with overstory trees, accounts for the majority of floristic 

diversity (Halpern and Spies 1995, Roberts and Gilliam 2003) and affects overstory  
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and Wardle 2005, Hart and Chen 2008), which may be intolerant to overstory harvesting. The 

effect of disturbance on a community is a direct reflection of the traits of its members (Noble 

and Slatyer 1980), and thus understory plant communities in riparian forests may not respond 

to logging in the same manner as those in upland forests.  

Inclusion of riparian buffers in forest management plans is a standard practice across North 

America, albeit with variations among provinces, states, and agencies. Although riparian 

buffers were devised initially to protect aquatic organisms and habitat, they have more 

recently been included as an element in terrestrial conservation initiatives. However, buffers 

may not be justified in the context of emulating fire disturbance (Buttle 2002, Macdonald et 

al. 2004, Braithwaite and Mallik 2012), which is the major driver of the boreal forest 

(Johnson 1992) and widely assumed to sustain forest dynamics and biodiversity (Palik et al. 

2002, Fenton et al. 2009). Moreover, buffers, specifically those with a fixed width, may 

restrict the extent of habitat heterogeneity across managed forest landscapes (Darveau et al. 

2001). Using intentional disturbance (e.g., harvesting) in riparian habitats may be an effective 

management tool to maintain ecosystem functioning and biodiversity (Sibley et al. 2012). The 

main objective of this thesis is to examine early successional dynamics of the diversity, 

abundance, and composition of understory flora following forest harvesting, with and without 

a streamside buffer, and to test whether these disturbance-response relationships differ with 

respect to distance from stream (i.e., streamside versus upland). I aim to elucidate the 

different mechanisms structuring plant communities along this latitudinal gradient from the 

stream channel and how they may contribute to the relative stability of understory flora to 

overstory harvesting. Data which contribute to our understanding of how forest harvesting 
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affects understory plant communities in riparian forests is vital to address concerns for 

biodiversity conservation, and both surface water and forest management 

1.1 Study area 

 Within this dissertation, each chapter is written as a discrete manuscript to facilitate 

publication. Therefore, study areas are described in-depth within each chapter. However, it is 

important to note that to improve pattern detection and widen the inference space, data were 

collected from two distinct boreal ecozones of Canada.  Data from chapters two to four were 

collected on the relatively dry Boreal Plain (Central Alberta), while data from chapter five 

were collected on the moister Boreal Shield (Northwestern Ontario). Utilizing two ecozones 

with distinct moisture regimes enhances the contribution of this thesis as the contrast between 

streamside and uplands may be more pronounced in areas where moisture is a stronger 

limiting factor on understory vegetation.  Although ecozones differ in both climate and 

geomorphology (for example, the Boreal Plain study area has fine-textured soils, whereas the 

Boreal Shield study area has coarse but shallow soils), all study streams were space-

constrained headwater streams (i.e., 0.5  1 m wide) lacking distinct floodplains with narrow 

riparian zones usually constrained by the upslope and having nearly complete canopy closure. 

Since disturbance-response relationships are system dependent, the results from this 

dissertation should be most applicable to similar headwater, or small, stream forest 

ecosystems. 
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CHAPTER 2 : RELATIONSHIP BETWEEN ABOVEGROUND 

BIOMASS AND PERCENT COVER OF GROUND VEGETATION IN 

CANADIAN BOREAL PLAIN RIPARIAN FORESTS1 

2.1 Abstract 

Vegetation biomass is the ideal variable to estimate vegetation abundance and productivity, 

and is necessary for studies of community structure. However, biomass data are difficult and 

destructive to collect, unlike areal cover data. Currently, equations to predict biomass from 

percent cover have been developed for upland ground flora; however, these equations are 

lacking for riparian forests. I quantified relationships between aboveground biomass and 

percent cover of eight ground floristic growth forms (short forbs, tall forbs, ferns, clubmosses, 

horsetails, graminoids, dwarf shrubs and bryoids) in riparian forests of the Canadian Boreal 

Plain and tested whether relationships differ for ground plants growing in two different 

nutrient environments (early and late seral stage). Without exception, linear relationships were 

identified with percent cover (P < 0.001) that explained 61 93% of the variation in biomass. 

Slopes of these lines depended on growth form, but not on successional stage. When direct 

biomass measurements are not appropriate or possible, the relationships presented can be used 

to rapidly and non-destructively estimate biomass in the Boreal Plain riparian forests. 

                                                 
1 This chapter is published. MacDonald, R.L., H.Y.H. Chen, J.M. Burke and E.E. Prepas. 2012. Relationship 
between aboveground biomass and percent cover of ground vegetation in Canadian Boreal Plain Forests. Forest 
Science: 58, 47-53. 
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2.2 Introduction 

In forests, ground flora (the component of the understory that is < 1.5 m tall) affects tree 

regeneration and canopy succession (Kuusipalo 1983, Messier et al. 1998), nutrient cycling 

(Zavitkovski 1976, Weber and Vancleve 1981, Brumelis and Carleton 1989, Knops et al. 

1996) and wildlife habitat (Johnson et al. 2003, Payer and Harrison 2003, Gunnarsson et al. 

2004). In addition, ground flora is sensitive to environmental change, thus serving as a 

bioindicator of forest disturbance (Kern et al. 2006, Hart and Chen 2008). To estimate the 

aboveground abundance of ground flora, biomass is the ideal metric: it approximates 

productivity, is the basis to which other resources (e.g., soil nutrients) are related and is an 

important component of many hydrologic and ecosystem models (Kiniry et al. 2008). 

However, biomass data are difficult, time consuming and destructive to collect and thus may 

be inappropriate for temporal studies requiring repeated measures on the same plot. Rapid and 

non-destructive methods to estimate aboveground biomass of ground flora are needed to 

facilitate studies at the ecosystem level. 

Studies in boreal forests in Alaska, Sweden and Finland have demonstrated that 

relationships exist between aboveground biomass and cover of many plant species growing in 

uplands (Alaback 1986, Jonasson 1988, Muukkonen et al. 2006). Percent cover analysis is 

typically used to estimate abundance of ground vegetation (Mueller-Dombois and Ellenberg 

1974, Chiarucci et al. 1999) and is relatively simple to conduct. Since ground plant 

communities often exhibit high species richness (Zavitkovski 1976, Qian et al. 1998), 

modelling the biomass versus cover relationship of each species would be difficult and 

tedious. Species of a particular growth form (e.g., all species that are graminoids) should have 

similar biomass to cover ratios, given that this relationship is dependent on morphology and 
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growth characteristics (Rottgermann et al. 2000, Muukkonen et al. 2006, Porté et al. 2009). 

Modelling ground flora biomass according to growth form simplifies model development and 

provides a sound link between physiological strategies and ecosystem processes (Chapin 

1993).  

Riparian zones represent a unique setting to examine the relationship between plant 

biomass and cover because they often exhibit a wide range of physical variability, including 

open and closed canopy conditions. The canopy is generally less dense than in the adjacent 

upland (Pabst and Spies 1999, Nierenberg and Hibbs 2000, Palik et al. 2003) and may exert 

less control on ground vegetation. Unlike upland vegetation, flora that grows in the active 

channel and floodplain is greatly influenced by hydrological disturbance events of varying 

frequencies and intensities (Naiman and Décamps 1997). This relationship is reciprocal as 

riparian vegetation affects surface water quality and quantity through the provision of 

ecological services including shading and controlling water temperature, stabilizing the bank, 

decreasing inputs of sediment and nutrient pollution and creating aquatic habitat through the 

input of organic matter (Brown and Krygier 1970, Vannote et al. 1980, Naiman and Décamps 

1997, Hefting et al. 2005). Although relationships between biomass and percent cover have 

been developed for boreal uplands and peatlands (Alaback 1986, Muukkonen et al. 2006), 

there are no data documenting relationships between aboveground biomass and percent cover 

of understory vegetation in boreal riparian forests either in early or late seral stage forests. 

The objective of this study is to quantify relationships between aboveground biomass and 

percent cover of ground flora growing in early and late seral stage boreal riparian forests. 
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2.3 Materials and methods 

2.3.1 Study Area 

The Boreal Plain forest and is located in 

central and northern Alberta, extending west into British Columbia and east through central 

Saskatchewan and southern Manitoba. The study area is located in the Lower Foothills sub-

region of the Boreal Plain, approximately 20 km northwest of Whitecourt, Alberta. The 

climate is sub-humid and the precipitation is variable; long-term (1978 to 2009) mean annual 

precipitation recorded at a weather station at Whitecourt (elevation 782 m) ranged from 364 

to 786 mm (Environment Canada 2010). The topography is undulating and occurs on 

moderately fine to fine-textured till or glaciolacustrine parent material. The typical canopy is 

dominated by lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm), white 

spruce (Picea glauca (Moench) Voss), trembling aspen (Populus tremuloides Michx) and 

balsam poplar (Populus balsamifera L.) in well-drained sites, and black spruce (Picea 

mariana (Mill.) BSP) and tamarack (Larix laricina (DuRoi) K. Koch) in poorly drained sites. 

Common understory species on the Boreal Plain are -

Rosa acicularis Lindl), 

bunchberry (Cornus canadensis L.), wild sarsaparilla (Aralia nudicaulis L.), dewberry (Rubus 

pubescens RAF), big red stem moss (Pleurozium schreberi (Brid.) Mitt) and plume moss 

(Ptilium crista-castrensis (Hedw.) De Not.). In general, overstory and understory vegetation 

communities are less diverse relative to the central boreal forest in Canada (Qian et al. 1998). 

All sites originate from stand replacing fire circa 1940; early seral stage sites (> 80% canopy 

removal) were harvested during January to March 2004.  
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2.3.2 Vegetation Sampling 

One hundred and fifty three - 1 m2 ground vegetation sampling plots (64 and 89 from early 

and late seral stage, respectively) were established at 0, 5, 10, 15, 20, 25 and 30 m along 

randomly selected 30 m linear transects directly adjacent to the defined channels of streams 

draining seven headwater stream watersheds. Seven quadrats were placed along 21 transects, 

and six quadrats were placed along one transect due to the presence of a slash pile. Sampling 

was conducted during July 2010, when annual plant cover and biomass was at or near its 

maximum. Ocular estimations of cover were made in each sampling plot based on growth 

form  short forbs (< 50 cm), tall forbs (> 50 cm), ferns, clubmosses, horsetails, graminoids, 

dwarf shrubs and bryoids (bryophytes and lichens)  and then each plant was harvested by 

hand clipping at the root collar. If the cover of a particular growth form was > 10% in a 

sampling plot, then a random sub-sample (1 to 10%) of that growth form was taken, so that 

samples were manageable in the field. Harvested aboveground samples were stored in paper 

bags for up to 24 h at ambient temperature (5 33°C) until they could be processed in the 

laboratory. Plant material was then dried at 70 C for 48 h and weighed. For sub-samples, all 

biomass measurements were expressed as g m-2. A total of 630 samples (269 and 361 samples 

from early and late seral stage sites, respectively) were used in this study.  

2.3.3 Statistical Analyses 

Data normality was tested using the Shapiro-Wilk test using SPSS version 18. Aboveground 

biomass and percent cover data for all growth forms were normally distributed; thus 

tests. A one-way analysis of variance was used to compare mean percent cover and biomass 

data between the two seral stages for each of the eight growth forms. Simple linear regression 
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analysis was performed on each of the eight growth forms to compare relationships between 

aboveground biomass and percent cover in early and late seral stages. Slopes were compared 

between the two seral stages with a two-tailed t-test (Zar 1996). If slopes did not differ, data 

for that particular growth form from both seral stages were pooled to fit the final regression. 

To evaluate the models, adjusted R-squared values were used. A two-tailed t-test was also 

used to compare among growth forms to determine if a coarser grouping could be used.  

2.4 Results 

In early seral stage plots, mean percent cover of graminoids was higher (P < 0.001) than in 

late seral stage plots, whereas mean percent cover of short forbs, ferns, clubmosses and 

bryoids was lower (P = 0.028, 0.008, 0.01 and < 0.001, respectively) than in late seral stage 

plots. By comparison, mean percent cover of tall forbs, horsetails and dwarf shrubs did not 

differ between the two seral stages (P > 0.18) (Table 1). Similarly, the mean biomass of 

graminoids was higher (P = 0.01) in the early than in late seral stage plots, and the mean 

biomass of ferns, clubmosses and bryoids was lower (P = 0.022, 0.007 and < 0.001, 

respectively) than in late seral stage plots (Table 2). However, the mean biomass of dwarf 

shrubs was higher (P = 0.032) in the early than late seral stage plots (Table 2), but percent 

cover of dwarf shrubs did not differ between early and late seral stages (P = 0.18) (Table 1). 

Mean biomass of short forbs, tall forbs and horsetails did not differ between the two seral 

stages (P > 0.14) (Table 2). 

The slopes of regression lines describing biomass to percent cover relationships did not 

differ between the early and late seral stages for any of the growth forms (horsetails P = 

0.060; graminoids P = 0.112; bryoids P = 0.167; clubmosses P = 0.737; ferns P = 0.755; short 

forbs and dwarf shrubs P = 0.758; tall forbs P = 0.955). Therefore early and late seral stage 
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data were pooled for each growth form. Aboveground biomass was linearly related to percent 

cover for all eight growth forms (Table 3). Since the intercept did not differ from zero in the 

growth form data sets except for short forbs and horsetails (Table 3), and the regression 

function is known to pass through 0,0 (i.e., 0 g m-2 biomass will always equal 0% cover), all 

data sets were modelled with the intercept forced through the origin (Fig. 2). Percent cover 

explained 61% (ferns) to 93% (horsetails) of the variation in aboveground biomass (P < 0.001 

in all cases). The pooled slopes of all growth forms differed (P < 0.05), including 

pteridophytes (ferns, clubmosses and horsetails) and therefore I retained eight growth forms. 

 

Table 2.1 Mean (± 1 Standard Error) percent cover of eight understory growth forms in 
Canadian Boreal Plain riparian forests in early and late seral stages. (*P < 0.05, **P < 0.01, 
and ***P <0.001). 

Growth Form Early  S.E. Late S.E. 

Short forbs* 10.73 1.18 16.58 1.42 

Tall forbs 5.25 1.16 6.69 7.61 

Ferns** 4.67 1.76 6.59 0.76 

Clubmosses** 3.00 1.00 10.00 1.24 

Horsetails 5.45 1.32 10.51 2.79 

Graminoids*** 16.70 2.77 7.15 1.56 

Dwarf shrubs 14.98 1.96 10.24 1.42 

Bryoids*** 7.46 2.09 32.50 4.42 
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Figure 2.1 Simple linear regression of pooled early and late seral stage aboveground 
understory biomass versus percent cover based on eight growth forms in Canadian Boreal 
Plain riparian forests. 
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Table 2.2 Mean (± 1 Standard Error) aboveground biomass (g m-2) of eight understory growth 
forms in Canadian Boreal Plain riparian forests in early and late seral stages. (*P < 0.05, **P 
< 0.01, and ***P <0.001). 

Growth Form Early S.E. Late S.E. 

Short forbs 9.50 1.23 13.46 1.51 

Tall forbs 14.79 3.41 14.82 5.83 

Ferns* 1.65 0.58 1.77 0.26 

Clubmosses** 8.90 1.15 17.66 2.22 

Horsetails 3.44 1.27 10.52 3.27 

Graminoids*** 33.24 5.93 13.72 3.67 

Dwarf shrubs* 33.82 4.81 18.58 3.24 

Bryoids*** 29.61 9.97 175.83 27.7 

 

Table 2.3 Outputs from simple linear regressions between aboveground biomass and percent 
cover for eight understory growth forms from early and late seral stage Canadian boreal 
riparian forests; where B1 is the slope factor and B0 is the intercept.  

Growth Form B1 PB1 B0 PB0 n r2 

Short Forbs 0.926 <0.001 -1.393 0.048 136 0.81 

Tall Forbs 2.463 <0.001 0.383 0.806 38 0.88 

Ferns 0.265 <0.001 0.080 0.813 20 0.61 

Clubmosses 1.574 <0.001 2.258 0.152 22 0.76 

Horsetails 1.113 <0.001 -1.940 0.002 66 0.93 

Graminoids 1.855 <0.001 0.268 0.857 97 0.88 

Dwarf Shrubs 2.769 <0.001 -1.692 0.157 127 0.84 

Bryoids 5.634 <0.001 -7.174 0.479 103 0.83 
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2.5 Discussion 

In these Boreal Plain riparian ground flora samples, variation within growth forms coinciding 

with successional stage was reflected in the one-way analysis of variance. Total biomass of 

vascular plants was higher in early seral plots (105 g m-2) than late seral plots (91 g m-2). In 

contrast, total biomass of non-vascular plots was lower in early seral plots (27 g m-2) than in 

late seral plots (176 g m-2). The observed trends associated with succession are similar to 

previous reports (Zavitkovski 1976, MacLean and Wein 1977, Giese et al. 2003). Percent 

cover and biomass of graminoids were higher in early seral stage plots than late seral stage 

plots. Tall herbaceous plants like graminoids are expected to dominate in resource abundant 

environments, such as the sites in early seral stage, due to their greater competitive ability 

(rapid growth) to exploit light and nutrient resources (Tilman 1985, Caldwell 1987, Grime 

2001). Mean biomass of dwarf shrubs was also higher in early than late seral plots; however 

their percent cover differed at lesser extent. This could be attributed to the tendency for low 

(~10 50 cm tall) spreading evergreen shrubs (e.g., Ledum groenlandicum, Vaccinium vitis-

idaea) to be the most common dwarf shrubs in late seral stage plots. These spreading 

evergreen shrubs would have high percent cover per unit biomass. Conversely, the tall (~ 1 m 

tall) erect perennial shrubs (e.g., , Lonicera involucrata) common in early seral stage 

plots would have a low percent cover per unit biomass.  

Mean percent cover and biomass of ferns, clubmosses and bryoids were lower in early than 

late seral stages. In addition, mean percent cover of short forbs was also lower in early plots. 

In an early seral stage forest, light levels, soil temperatures and organic debris are high 

relative to the period before canopy removal, which stimulates nutrient release (Gholz et al. 

1985a, Hart and Chen 2006). This creates an environment favourable to ruderal species, or 



 

15 
 

species specialized at exploiting productive habitats. Most ferns, clubmosses, bryoids and 

short forbs are able to tolerate stressful conditions, such as inhabiting resource poor 

environments, at the expense of being less competitive in productive habitats (Tilman 1985).   

Allometric equations obtained from regression analysis clearly indicate a linear 

relationship between aboveground biomass and percent cover of ground plants in the riparian 

vegetation plots. Ferns had the smallest increase in biomass per unit cover, the lowest 

proportion of explained variance (r2 = 0.61) and the smallest sample size (n = 20). The most 

commonly observed ferns in this study (i.e., Athyrium filix-femina, Dryopteris spp. and 

Gymnocarpium dryopteris) were morphologically highly variable and sparse thus contributing 

to the lower proportion of biomass explained by percent cover. A. filix-femina have rather 

large erect leaves, while Dryopteris spp. and G. dryopteris have small, fairly thin, horizontally 

oriented leaves. Short forbs (< 50 cm) had the second smallest increase in biomass with 

increasing percent cover, probably because the most common species observed in the plots 

(e.g., C. canadensis, A. nudicaulis and R. pubescens) tend to be relatively short with 

horizontal leaves. Although bryoids grow relatively low to the ground, they had the highest 

biomass to cover ratio. This relationship is likely due to the propensity of pleurocarpous 

mosses (e.g., P. schreberi, P. castris-canadensis and Hylocomium splendens) to form dense 

mats and thus often dominate the depauperate understory of late seral stage northern boreal 

forests (Carleton 1979, Alaback 1982, Nieppola and Carleton 1991). As expected, tall forbs (> 

50 cm) had the second highest increase in aboveground biomass with increasing percent 

cover. Epilobium angustifolium, a tall plant with many stalkless, slightly vertically oriented 

leaves on the stem, was the most common species in this growth form. Surprisingly, dwarf 

shrubs had the third largest increase in biomass with increasing percent cover. Common dwarf 
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shrub species used in this study (e.g., Vaccinium vitis-idaea, V. caespitosum, Gaultheria 

hispidula and L. groenlandicum) were fairly low spreading shrubs.  

Linear regression models developed by Muukkonen et al. (2006) to predict biomass based 

on percent cover of upland dwarf shrubs in Finnish boreal pine forests had identical slopes as 

those developed for riparian dwarf shrubs in the present study (B1 = 2.1). Muukkonen et al. 

(2006) found that the relationship between aboveground biomass and cover for bryoids was 

curvilinear, whereas I identified a linear relationship between the same variables. This 

divergence is most likely due to a distinct change in species composition with increasing 

cover in the input data used in the Finnish study. In contrast, the dominant species in my 

riparian bryoid samples remained constant throughout the entire range of my input data and 

included both pleurocarpous mosses (e.g., P. schreberi and H. splendens), as well as 

acrocarpous mosses (e.g., Plagiomnium spp. and Polytrichium commune). In upland 

conditions, only a few moss species form extensive mats (i.e., dominant pleurocarpous 

mosses), whereas in riparian conditions, many moss species can dominate. Therefore the 

bryoid composition and abundance of each riparian plot varied widely in the present study.   

Canopy in upland communities has been shown to be a driver of understory species 

abundance and composition (Økland and Eilerston 1996, Hart and Chen 2008). Given that 

there is a lack of evidence for coupling of the canopy and understory strata in riparian flora 

(Korol 1996, Lyon and Sagers 1998, Decocq 2002) canopy type was not included in this 

study. For example, Korol (1996) compared 134 boreal riparian vegetation plots, under 

differing canopy types approximately 650 km east of my study area and reported a large 

amount of overlap and little differentiation between understory communities, likely because 
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the riparian understory community is more driven by hydrological processes than canopy 

composition.  

The strong allometric relationships between biomass and percent cover reported in this 

study present a way to approximate understory biomass when a large number of sample plots 

are needed. In most ground vegetation studies, hundreds to thousands of plots are sampled; 

harvesting biomass measurements at all of these plots can be incredibly difficult. Depending 

on the study objective, understory biomass may need to be harvested at maximum annual 

growth. In the boreal forest, this occurs between July and August, thus temporally 

constraining field sampling. From the present study, the time needed for one person to obtain 

biomass measurements for sampling a square meter plot was approximately 60 minutes in the 

field, as well as an additional 30 minutes in the laboratory. In contrast, sampling percent cover 

in the same plot took the same person approximately 20 minutes in the field and no time in 

the laboratory, and therefore required less than 25% of the time. A study in Finland that 

modelled understory biomass as a function of percent cover and height reported that the two 

factors accounted for 80% of the variation in biomass; however cover alone accounted for 

70% of the variation in biomass (Kuusipalo 1983). Measuring heights of individual plants 

requires a large time investment and likely is not warranted as height data may not vastly 

improve the model.  

2.6 Conclusion 

This study developed allometric equations from destructively sampled biomass measurements 

for eight ground-layer growth forms (short forbs, tall forbs, ferns, clubmosses, horsetails, 

graminoids, dwarf shrubs and bryoids). While percent cover and biomass for each given life 

form generally differed between the early and late seral stages, allometric functions did not 
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differ, resulting in common, linear relationships between biomass and cover. My models 

using percent cover as the predictor explained 61 to 93% of the variation in biomass, 

representing a promising approach to estimate biomass when large sample plots are studied 

direct biomass measurements are not appropriate, the relationships presented here can be used 

to rapidly and non-destructively estimate ground vegetation aboveground biomass from 

percent cover. 

 

  



 

19 
 

CHAPTER 3 : COMPOSITIONAL STABILITY OF BOREAL RIPARIAN 

UNDERSTORY VEGETATION AFTER CLEARCUT HARVESTING 

3.1 Abstract 

Understanding factors that contribute to the compositional stability of a community following 

clearcut harvesting is central to predict how boreal forests respond to altered disturbance 

regimes in the Anthropocene. I hypothesized that streamside plant communities would have 

higher compositionally stability following disturbance than upland communities due to their 

inherently higher plant species richness and less abundant bryoid species. I sampled 

understory vegetation at eight Canadian boreal headwater stream sites: four were winter 

harvested to the stream and four were unharvested. Species cover were measured during the 

summer 2003 (Yr 0), 2004(Yr 1), 2008 (Yr 5) and 2010 (Yr 7) along the streams. Non-metric 

multidimensional scaling was used to ordinate vegetation plots using species cover, and then 

measured vector length in the ordination space to quantify floristic dissimilarity (FD) of each 

sample plot between Yr 0 and Yrs 1, 5, and 7, an inverse measure of compositional stability. 

FD increased with distance from stream in harvested sites, but not in unharvested sites. In 

harvested sites, FD was negatively related to pre-harvest species richness and positively 

related to pre-harvest bryoid cover, explaining 12% and 49% of the variation in FD, 

respectively. Results demonstrate that streamside understory plant communities were 

compositionally more stable relative to upland communities following clearcut harvesting. 

Although my results support the diversity-stability hypothesis, the strong predictive power of 

bryoid cover indicates that plant functional group composition prior to disturbance is a major 

factor determining plant compositional stability across boreal riparian ecotones.  
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3.2 Introduction 

Species diversity is critical for maintaining ecosystem services (Isbell et al. 2011), and may 

also play an important role in the capacity of ecological communities to cope with 

environmental changes (Tilman and Downing 1994). Increased anthropogenic perturbation 

and continued loss of biodiversity have raised concerns regarding sustainability of ecosystem 

functioning worldwide (Goldberg and Barton 1992, Isbell et al. 2011). In the boreal forest, 

understory flora is an important driver of nutrient cycling and overstory succession (Nilsson 

and Wardle 2005), and accounts for the majority of plant diversity (Gilliam 2007). 

Understanding factors that contribute to the stability of understory flora following clearcut 

harvesting is a critical component in assessing how boreal forests respond to altered 

disturbance regimes in the Anthropocene (Paquette and Messier 2010).  

For over half a century, ecologists have been ensnared by the concept that greater 

biodiversity leads to increased ecosystem stability (e.g., Elton 1958, May 1974, Pimm 1984, 

Frank and McNaughton 1991, Tilman et al. 2006). Prominent in these investigations is the 

(Walker 1992, Naeem et al. 1994, Tilman and Downing 1994, Yachi 

and Loreau 1999), i.e., communities with higher biodiversity are more likely to contain 

species that can survive a given environmental perturbation. Thus, high biodiversity impedes 

or prevents the establishment of non-resident colonizing species and diverse communities are 

more able to resist community change. However, this theory has been widely debated, both 

theoretically (May 1974, King and Pimm 1983) and empirically (Macarthur 1955, 

McNaughton 1977, Frank and McNaughton 1991, Tilman 1996, Tilman et al. 2006). These 

divergent results are likely a result of the many definitions of stability, inherently different 

dynamics among systems, and perturbation types (Ives and Carpenter 2007). Positive stability 
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and diversity relationships are common for aggregate ecosystem properties (i.e., biomass, 

productivity, and nutrient cycling) of grassland or herbaceous plant communities, in which 

diversity is directly manipulated (Ives and Carpenter 2007). Compositional stability, the 

measure of change in community membership and abundance following a disturbance, has 

also been studied under manipulated grassland experiments (e.g., McCann 2000, Foster et al. 

2002, Wang et al. 2010) and in natural communities undergoing natural or man-made 

disturbances (e.g., O'Neil 1976, Frank and McNaughton 1991, De Grandpré and Bergeron 

1997) with contrasting results. Positive relationships between diversity and compositional 

stability result if diversity reduces extinction and colonization rates, but this facilitation would 

likely be the result of extrinsic factors such as resource availability and disturbance regime.  

Thus, understanding compositional stability and diversity relationships remains elusive, 

particularly in the context of press perturbations (McCann 2000, Ives and Carpenter 2007).  

Species or functional group composition within the vegetation community is also an 

important factor in predicting ecosystem responses to disturbance (Wardle et al. 2000, 

Lavorel and Garnier 2002, Haddad et al. 2008, Hart and Chen 2008). For example, 

herbaceous species in boreal forests may respond differently to stand replacing disturbances 

than many bryoid (bryophytes and lichens) species. Following canopy removal, light levels, 

air and soil temperatures and soil resource availability increase, creating an environment that 

is generally more favourable for vascular plants (Gholz et al. 1985b, Hart and Chen 2006). 

These conditions, as well as high pH and low moisture content in the thin organic layer 

following canopy removal, exceed the tolerance of many non-vascular plants (Fenton and 

Frego 2005, Hylander 2005, Åström et al. 2007). Therefore, bryoid cover typically declines 

following clearcut harvesting (Fenton and Frego 2005, Nelson and Halpern 2005, Frego 2007, 
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Hart and Chen 2008). In systems like the boreal forest, where bryoid species contribute a 

major proportion to understory diversity and productivity, compositional stability may be 

strongly influenced by the abundance of bryoid species, irrespective of overall species 

diversity.  

Headwater stream riparian ecosystems often represent a high to low diversity gradient 

(Naiman et al. 1993), as well as distinct shifts in species composition from stream edge to 

upland (Lamb and Mallik 2003, Dynesius et al. 2009). The diversity and compositional 

gradients reflect hydrological disturbance events, the ability of fluvial systems to act as 

conduits for the dispersal of propagules (Thebaud and Debussche 1991, Pysek and Prach 

1993), and the decrease of understory resource availability (i.e., light and soil moisture) with 

lateral distance from the active channel (Gregory et al. 1990, Pabst and Spies 1999, 

Nierenberg and Hibbs 2000, Goebel et al. 2003). Ruderal species (adapted to high disturbance 

and low resource stress) like graminoids and tall forbs are more likely to dominate near the 

stream, whereas cover of stress tolerant species (adapted to low disturbance and high resource 

stress) like short forbs and bryophytes increase in dominance with distance from the stream. 

Thus understory plant assemblages growing further into the upland may be less tolerant to 

stand replacing disturbance events than streamside communities (Dynesius et al. 2009).  

 Here, I measure the compositional stability of understory plant communities across boreal 

riparian ecotones following clearcut harvesting. The objectives of this study are to (1) 

compare compositional stability following clearcut harvesting between streamside and upland 

understory communities; (2) test whether compositional stability is related to pre-harvest 

species diversity; and (3) determine whether pre-harvest total bryoid cover affects 

compositional stability. I hypothesize that compositional stability following clearcut 
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harvesting decreases from stream edge to upland along the gradient of decreasing diversity 

and increasing bryoid cover.  

3.3 Materials and methods 

3.3.1 Study Areas 

The study was conducted in the Lower Foothills sub-region of the Boreal Plain, 

approximately 20 km northwest of Whitecourt, Alberta, Canada. The climate is sub-humid 

and the precipitation is variable: long-term (1978 to 2009) total annual precipitation recorded 

at Whitecourt (elevation 782 m) ranged from 364 to 786 mm (Environment Canada 2011a). 

The rolling topography occurs on moderately fine to fine-textured till or glaciolacustrine 

parent material. The characteristic forest canopy is dominated by lodgepole pine (Pinus 

contorta Dougl. ex Loud. var. latifolia Engelm), white spruce (Picea glauca (Moench) Voss), 

trembling aspen (Populus tremuloides Michx) and balsam poplar (Populus balsamifera L.) on 

well-drained sites, and black spruce (Picea mariana (Mill.) BSP) and tamarack (Larix 

laricina (DuRoi) K. Koch) on poorly drained sites. Understory vegetation is depauperate 

relative to central Canadian boreal systems (Qian et al. 1998). Forest of the study area 

originated from stand replacing fire in 1940.  

3.3.2 Experimental Design and Data Collection 

Four headwater stream sites were clearcut to the stream during January to March 2004. 

Chemical site preparation consisted of aerial application of Vision® (Monsanto Co., St. Louis, 

Mo.) in August 2004, which was applied >30 m away from the stream, and thus did not 

directly influence my study plots. I also sampled four headwater stream reference sites that 

were not harvested to monitor temporal understory vegetation dynamics without disturbance. 
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At each site, three randomly located, 30-m long transects were established running 

perpendicular from the stream to the upland transition zone. Two 1-m2 understory (the 

component of the understory < 1.5 m tall) vegetation plots were randomly located within each 

of the following distance ranges from the stream channel bank: 0 to 5 m, 5 to 10 m, 10 to15 

m, 15 to 20 m, 20 to 25 m and 25 to 30 m, for a total of 12 plots per transect and 36 plots per 

site. Transects and permanent vegetation plots were marked with GPS, as well as physically 

marked with corner and center posts.  

 Vegetation sampling was conducted during the periods of peak vegetation cover in the 

summer (July through August) in 2003 (Yr 0) and the summers of 2004 (Yr 1), 2008 (Yr 5) 

and 2010 (Yr 7). I attempted to identify all plants to species in the field; however some plants, 

e.g., Carex spp., were identified only to genus due to the difficulty for their identification 

without flowers or fruits. Percent cover (0-100%) of each plant species or genus in each plot 

was estimated by eye following the procedure described by Mueller-Dombois and Ellenberg 

(1974).  

3.3.3 Statistical Analyses 

We quantified temporal compositional stability by measuring changes in species composition 

after disturbance relative to before disturbance (or Yr 0) (sensu  Halpern 1988). Within each 

site, species-specific percent cover of the 6 1-m2 plots within each distance range at each 

sampling time (Yr 0, 1, 5, or 7) were averaged to represent mean response of a sampling unit, 

i.e., a specific distance range within each site, prior to statistical analysis . Trends in the 

compositional data were examined using nonmetric multidimensional scaling (NMS). NMS is 

well suited for community data, because it uses non-metric rank ordering to perceptually map 

data; NMS avoids assumptions of normality and homogeneity of variance that are required in 
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traditional ordination techniques (McCune and Grace 2002). NMS was carried out using PC-

ORD version 5 (McCune and Grace 2002, McCune and Mefford 2005) set to the slow and 

thorough auto-pilot mode to select the optimal solution (i.e., dimensionality). Floristic 

dissimilarity (FD) from Yr 0 to Yrs 1, 5 and 7 of each sampling unit was measured as 

Euclidian distance in NMS ordination space. Compositional stability is inversely related to the 

Euclidian distance (sensu Halpern 1988): stability is at maximum when the sample unit 

maintains its initial position in ordination space (i.e., Euclidian distance = 0).  

To test the effects of harvesting, distance from stream, and Yr 0 attributes (i.e., species 

richness and bryoid cover) on FD, I conducted two repeated measures general linear models 

(rGLM) with type III sums of squares. I used harvesting as a categorical fixed factor, distance 

from stream as a continuous fixed factor, one of the two Yr 0 attributes as a continuous fixed 

factor for each model, FD as the response variable, and sampling year as the repeated 

measure. Because of multicollinearity between distance from stream and Yr 0 attributes (i.e., 

species richness and bryoid cover) the full factorial model was modified to eliminate 

interaction terms between the correlated explanatory variables and thus enhance the reliability 

and interpretation of the rGLM (Odum and Pinkerton 1955). Each model was expressed as:   

)(

)(

ijkmnjkmkmijmjmimm

ijklikkijjiijklmn

HCTCTHDTDTHTT
HCCHDDHY

                             [3.1] 

where Yijkl is FD; µ is the overall mean; Hi (i = 1, 2) is harvesting; Dj is distance from stream; 

Ck l(ijk) is the error term associated 

with between-subjects; Tm is  sampling year; n(ijklm) is the error term associated with within-

subjects. Species richness is a measurement of the total number of vascular and non-vascular 
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species in each sample unit. Total bryoid cover was the summation of percent cover of all 

non-vascular species in each sampling unit. 

 Floristic dissimilarity was natural log-transformed to satisfy linear model assumptions of 

normality and homogenous variances. For each rGLM, I tested the sphericity (i.e., symmetry 

of the covariance matrix) with -Feldt 

correction to my results if the assumption was violated (Huynh and Feldt 1976). I calculated 

the effect size ( 2) to estimate the proportion of the total variance attributed to an effect 

(Reeves et al. 2006).  

3.4 Results 

NMS ordination identified a three-dimensional solution with a stress of 6.32. Axes 1, 2 and 3 

had r2 values of 0.40, 0.21 and 0.17, respectively, and therefore the resultant model accounted 

for 78% of the total variability of the understory flora species (see Appendix 1). 

 FD between Yr 0 and the following periods was greater in harvested than unharvested sites 

for all three sampling years (P 002; Figs. 1a-c). In harvested sites, FD increased with 

distance from stream (P -c), but not in the unharvested sites (Figs. 1a-c). Total 

species richness in Yr 0 communities decreased (P = 0.007; r2 = 0.15), and bryoid cover 

increased (P < 0.001; r2 = 0.21) with increasing distance from stream. 

 The effect of distance to stream was not detectable when Yr 0 attributes (species richness 

and bryoid cover) were added to the full models (P 

strongly with harvesting and Yr 0 species richness with the species richness related variables 

explaining approximately 12% of the variation in FD, but not with sampling year (Table 1). In 

harvested sites, FD was negatively related to Yr 0 species richness in all post-harvest years 
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(Table 1; Fig. 2a). However, there was no relationship between FD and Yr 0 species richness 

in unharvested communities (Fig 2b).  

 FD was strongly related to Yr 0 total bryoid cover with the bryoid cover related variables 

explaining 49% of the variation in FD (Table 2). In harvested sites, FD was positively related 

to Yr 0 bryoid cover (Fig. 2c). Conversely, FD was negatively related to bryoid cover in 

unharvested sites (Fig. 2d). Similar to the analysis using Yr 0 species richness as a predictor, 

there were no differences in FD among sampling years (P = 0.11, Table 2). 
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Table 3.1 Floristic dissimilarity (natural log transformed vector length between Yr 0 and Yrs 
1, 5, and 7 in NMS ordination space) in relation to harvesting, distance from stream, species 
richness, and sampling year. 

Source df F P 2 

Between subjects     

Harvesting (Hi) 1 11.61 0.001 0.22 

Distance from stream (Dj) 1 2.45 0.13 0.06 

Harvesting x distance from stream (HDij) 1 1.80 0.19 0.04 

Species richness (Ck)  1 0.13 0.73 <0.01 

Harvesting x species richness (HCik) 1 5.40 0.03 0.11 

 l(ijk)) 42    

Within subjects     

Sampling year (Tm) 2 1.64 0.20  0.04 

Harvesting x sampling year (HTim) 2 0.66 0.52  0.02 

Distance from stream x sampling year (DTjm) 2 0.66 0.52  0.02 

Harvesting x distance from stream x sampling year (HDTijm) 2 0.04 0.96  <0.01 

Species richness x sampling year (CTkm) 2 3.36 0.06  0.07 

Harvesting x species richness x sampling year (HCTikm) 2 0.32 0.72  0.01 

   n(ijklm)) 84    

 Huynh-Feldt correction was applied to correct for sphericity 
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Figure 3.1 Floristic dissimilarity in relation to distance from stream in harvested and 
unharvested sites between Yr 0 and (a) Yr 1, (b) Yr 5, and (c) Yr 7. 
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Table 3.2 Floristic dissimilarity (natural log transformed vector length between Yr 0 and Yrs 
1, 5, and 7 in NMS ordination space) in relation to harvesting, distance from stream, bryoid 
cover and sampling year. 

Source df F P 2 

Between subjects     

Harvesting (Hi) 1 10.99 0.002 0.21 

Distance from stream (Dj) 1 3.53 0.07 0.08 

Harvesting x distance from stream (HDij) 1 0.24 0.63 0.01 

Bryoid cover (Ck)  1 3.53 0.07 0.08 

Harvesting x bryoid cover (HCik) 1 28.51 <0.001 0.41 

 l(ijk)) 42    

Within subjects     

Sampling year (Tm) 2 2.31 0.11  0.05 

Harvesting x sampling year (HTim) 2 0.96 0.38  0.02 

Distance from stream x sampling year (DTjm) 2 0.66 0.52  0.02 

Harvesting x distance from stream x sampling year (HDTijm) 2 0.14 0.87  <0.01 

Bryoid cover x sampling year (CTkm) 2 2.36 0.10  0.05 

Harvesting x bryoid cover x sampling year (HCTikm) 2 0.08 0.92  <0.01 

   n(ijklm)) 84    

 Huynh-Feldt correction was applied to correct for sphericity 
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Figure 3.2 Floristic dissimilarity in relation to distance from stream and Yr 0 community 
attributes: understory species richness in (a) harvested and (b) unharvested sites; and bryoid 
cover in (c) harvested and (d) unharvested sites. 
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Across boreal riparian ecotones, understory plant communities following harvesting tended to 

shift. The lower compositional stability after harvesting is consistent with previous understory 

vegetation studies in boreal and temperate forests (O'Neil 1976, Halpern 1988, De Grandpré 

and Bergeron 1997). Furthermore, my study represents one of the first to demonstrate that 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
5

10
15

20
25

30

0
20

40
6080

F
lo

ris
tic

 d
is

si
m

ila
rit

y

Dist
an

ce
 fr

om
 s

tre
am

 (m
)

Bryoid cover (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
5

10
15

20
25

30

0
20

40
6080

F
lo

ris
tic

 d
is

si
m

ila
rit

y

Dist
an

ce
 fr

om
 s

tre
am

 (m
)

Bryoid cover (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
5

10
15

20
25

30

0
10

20
3040

F
lo

ris
tic

 d
is

si
m

ila
rit

y

Dist
an

ce
 fr

om
 s

tre
am

 (m
)

Species richness (m-2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
5

10
15

20
25

30

0
10

20
3040

F
lo

ris
tic

 d
is

si
m

ila
rit

y

Dist
an

ce
 fr

om
 s

tre
am

 (m
)

Species richness (m-2)

Yr 1
Yr 5
Yr 7

c)

a) b)

d)



 

32 
 

compositional stability after harvesting decreases from stream to upland in boreal forests (see 

Dynesius et al. 2009). My results provide direct evidence for a lateral pattern of compositional 

stability across riparian ecotones; however, mechanisms for the higher compositional stability 

near the stream are complex, involving multi-causalities.  

 First, compositional stability is positively correlated with pre-harvest species richness 

along the streams. This result generally supports the diversity-stability hypothesis (Elton 

1958, Pimm 1984, Frank and McNaughton 1991, Tilman et al. 2006, Ives and Carpenter 

2007), and it is consistent with the positive relationship between understory compositional 

stability following gap creation and initial species diversity observed in the eastern boreal 

forest of Canada (De Grandpré and Bergeron 1997). In contrast, empirical studies in both 

natural (McCann 2000) and experimentally manipulated grasslands (Foster et al. 2002, Wang 

et al. 2010) have reported negative relationships between compositional stability and diversity 

following disturbance events typical of their native environment. The contrasting diversity-

stability relationships may be attributed to different mechanisms structuring communities in 

canopy versus understory systems. Competition exerts strong controls on the structure of 

communities in canopy systems (Goldberg and Barton 1992, Gurevitch et al. 1992). However, 

tolerating low resource availability (i.e., light), rather than competition, may have a stronger 

influence on the understory communities in the boreal forest (Hart and Chen 2008). It appears 

that compositional stability and diversity relationships remain open for further investigation.  

Second, compositional stability following harvesting was strongly negatively related to 

total bryoid cover that increased from stream to upland. The most frequent and abundant 

upland bryophyte species (i.e., Pleurozium schreberi, Hylocomium splendens, and Ptilium 

crista-castrensis) in our study prior to disturbance are generally intolerant of the 
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environmental conditions of early seral systems and declined in abundance, and in some 

sample plots, they were extirpated, following harvesting. Similar observations were made 

previously in boreal forests (Bock and Van Rees 2002, Fenton and Frego 2005). These results 

indicate that the difference in plant functional group composition along my boreal forest 

streams prior to disturbance is a strong driver for compositional stability when disturbed 

(McCann 2000).  

 Third, there are multiple causes for the gradients of diversity and dominance of bryoid 

species along the streams. The higher pre-harvest species richness and the lower bryoid cover 

near the streams are a result of higher resource availability and more frequent hydrological 

disturbances compared to upland (Naiman et al. 1993). Species closer to the stream are 

generally adapted to grow in a resource rich environment highly influenced by stream 

hydrology. In upland conditions, the forest canopy drives the composition of the understory 

strata by exerting strong controls on resource availability (e.g., light, nutrients and water) 

(Gurevitch et al. 1992, Hart and Chen 2008), as well as providing detritus inputs (Whitney 

and Foster 1988, Saetre et al. 1997). In contrast, there may not be as strong a coupling of the 

canopy and understory strata in streamside plant assemblages as there is in the upland (Lyon 

and Sagers 1998, Decocq 2002). This suggests that streamside communities may be primarily 

driven by stream hydrology rather than the canopy, and therefore may be better able to cope 

with canopy replacing perturbations. However, it is not my intent (nor possible) to partition 

the relative contributions of inherently correlated species richness or bryoid cover and 

resource availability, microclimate, and disturbance regime from stream to upland. Future 

work may consider decoupling these factors for a better understanding of the mechanisms 

driving understory compositional stability following harvesting.  
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3.6 Conclusions 

I showed that compositional stability of understory vegetation, including vascular and bryoid 

species, after harvesting decreases from stream to upland in boreal forests. Compositional 

stability was related positively to pre-harvest species richness and negatively to bryoid cover, 

with the former decreasing and the latter increasing from stream to upland. While my results 

provide support for the diversity-stability hypothesis, the strong predictive power of bryoid 

cover indicates that plant functional group composition prior to disturbance is a major factor 

determining compositional stability of plant communities along boreal riparian ecosystems. 

However, the coupling influence of stream hydrology that drives community characteristics 

such as diversity and plant functional group composition from stream to upland makes it 

difficult to draw strong conclusions regarding relationships between compositional stability, 

diversity, and plant functional group composition.  
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CHAPTER 4 : INFLUENCE OF HARVESTING ON BOREAL 

RIPARIAN UNDERSTORY VEGETATION 

4.1 Abstract 

Harvesting has become a globally significant stand-replacing disturbance event. In the boreal 

forest, understory vegetation accounts for the majority of floristic diversity and affects 

overstory succession and productivity, nutrient cycling, and wildlife habitat. In riparian 

forests, understory vegetation also plays an important functional role by reducing erosion, 

stabilizing the stream channel, and regulating water quality and quantity. Despite this critical 

importance, effects of harvesting on understory plant communities in riparian forests are still 

poorly understood. Using pre- and post-harvest data, I quantified how riparian harvesting 

affects understory vegetation species diversity, abundance, turnover, and composition and 

how disturbance-response relationships vary from stream edge to uplands. I predicted that 

changes in the plant community following logging disturbance will be greater with increasing 

distance from the stream channel. I found that streamside communities harvested with or 

without a 30 m riparian buffer, were maintained to a condition similar to uncut forests. 

However, upland communities were less resistant to overstory harvest, relative to streamside 

communities, and subsequently colonized by grasses, forbs, and tall shrubs; many of which 

were present in pre-harvest riparian plots. My results indicate that streamside understory 

vegetation is inherently more resilient to stand-replacing disturbance than upland 

assemblages. Higher moisture availability and shading from tall shrubs associated with 

riparian habitat buffers the effect of harvesting on shade-tolerant species in streamside plots 

and thus the response to harvesting is not as marked as it is in the uplands. My results 
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highlight that understory disturbance response relationships can differ within a small spatial 

scale (i.e., 30 m) based on habitat characteristics, such as moisture regime, that drive 

community composition.  

4.2 Introduction 

Understanding mechanisms that control understory (i.e., ground and shrub strata) plant 

diversity and composition is important for sustainable forest management since understory 

vegetation, despite being small in stature in comparison with overstory trees, accounts for the 

majority of floristic diversity (Halpern and Spies 1995, Roberts and Gilliam 2003) and affects 

overstory succession and productivity(Connell and Slatyer 1977, Royo and Carson 2006, 

Ilisson and Chen 2009), nutrient cycling (Weber and Vancleve 1981, Johnson and Curtis 

2001, Nilsson and Wardle 2005) and wildlife habitat (Johnson et al. 2003, Payer and Harrison 

2003).In the fire-driven North American boreal forest, with increased resource extraction, 

forest harvesting has become an important stand-replacing disturbance for the past several 

decades. Overstory harvesting and associated ground disturbance may alter understory plant 

communities directly through increasing mortality of individuals, propagules, local 

populations or groups of species, or indirectly by varying environmental conditions, habitat 

heterogeneity, and resource availability(Halpern and Spies 1995, Roberts and Gilliam 1995, 

Bergeron and Harvey 1997, Scheller and Mladenoff 2002). Both direct and indirect processes 

result in well documented directional shifts in understory plant communities affecting both 

species diversity and composition (e.g., Halpern 1988, Reich et al. 2001, Hart and Chen 

2008).Despite the critical importance of understory vegetation in boreal forest ecosystems, 

how forest harvesting affects understory species diversity, abundance, turnover and 

composition in riparian forests is still poorly understood.  
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 The contribution of understory vegetation in riparian forests to overall diversity and 

productivity greatly exceeds their spatial extent across the landscape. Hydrological 

disturbance  events (i.e., erosion of the soil surface and abrasion by suspended sediment and 

debris) and the ability of fluvial systems to acts as conduits for the dispersal of propagules 

result in dynamic streamside communities that are highly heterogeneous in space and time 

(Naiman and Décamps 1997). Laterally, frequency and severity of flood disturbance typically 

decline with increased distance from the active channel, paralleled by an increase in ground-

water depth. Along this same gradient, understory light availability generally decreases as tree 

density increases (Nierenberg and Hibbs 2000, Lamb and Mallik 2003, Palik et al. 2003). 

Resource quantity and heterogeneity of streamside habitats, imparted by hydrological 

processes and disturbance regimes, is reflected in the life-history strategies, productivity, and 

diversity of the plant community (Naiman et al. 1993). In the boreal forest, streamside 

communities harbor a variety of species and functional groups, including generalist plant 

species (which also inhabit the uplands), specialized species adapted to streamside habitats 

(riparian obligates), and early successional species adapted to productive habitats at the trade-

off of being less competitive in resource stressed environments (Lamb et al. 2003, Dynesius et 

al. 2009, Biswas and Mallik 2010); whereas, boreal upland understory communities are more 

commonly dominated by shade tolerant species (Nilsson and Wardle 2005, Hart and Chen 

2008)

(Noble and Slatyer 1980), understory plant communities in riparian forests may not respond 

to logging in the same manner as those in upland forests.  

 Through a carefully controlled field experiment using pre- and post-harvest data, I quantify 

how harvesting treatments (i.e., cut to shore, riparian buffers and uncut) affect understory 
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species diversity, composition, and turnover over seven years. I also test if the treatment 

effects change with distance from the stream channel (i.e., from stream edge to uplands). 

Based on the different processes that drive understory communities among habitats, I predict 

that changes in the plant community following logging disturbance will be greater with 

increasing distance from the stream channel.  

4.3 Methods and Materials 

4.3.1 Study Area 

The study is located in the Lower Foothills sub-region of the Boreal Plain, approximately 20 

km northwest of Whitecourt, Alberta. The climate is sub-humid with a mean annual 

precipitation of 577 mm recorded at a weather station at Whitecourt (elevation 782 m) 

(Environment Canada 2010). Rolling topography is a common feature of the study area. Soils 

originated from moderately fine to fine-textured till or glaciolacustrine parent material. The 

characteristic canopy is dominated by lodgepole pine (Pinus contorta Dougl. ex Loud. var. 

latifolia Engelm), white spruce (Picea glauca (Moench) Voss), trembling aspen (Populus 

tremuloides Michx) and balsam poplar (Populus balsamifera L.) in well-drained sites, and 

black spruce (Picea mariana (Mill.) BSP) and tamarack (Larix laricina (DuRoi) K. Koch) in 

poorly drained sites (Ecological Stratification Working Group, 1996). Understory vegetation 

is depauperate relative to other areas of the Canadian boreal forest (Qian et al. 1998). 

4.3.2 Experimental Design and Data Collection 

Twelve headwater stream sites, ranging in 0.5 to 1 m in width, were randomly selected in the 

study region to receive the following treatments; uncut (reference), riparian buffer, and cut-to-

shore, each with four replicates. All selected sites originated from stand replacing fire in 
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1940.Uncut sites were undisturbed (i.e., no forestry activity in the adjacent upland). Buffer 

sites were clearcut with a   30 m wide un-harvested forest strip adjacent to the stream channel. 

Cut-to-shore sites were clearcut to the edge of the stream channel. Tree-length harvesting, i.e., 

trees were felled, topped, and delimbed at the stump before being dragged to roadside, was 

conducted during January to March 2004. 

 At each site, three randomly located, 30-m long transects were established running 

perpendicular from the stream to the upland. Along each transect, two 1-m2understory 

vegetation plots were randomly located within each of the following distance ranges from the 

stream bank: 0 to 5 m, 5 to 10 m, 10 to15 m, 15 to 20 m, 20 to 25 m and 25 to 30 m, for a total 

of 12 plots per transect and 36 plots per site. Percent cover (0-100%) of each vascular and 

non-vascular plant species in each plot was estimated by eye (Mueller-Dombois and 

Ellenberg 1974). All plants were identified to species with an exception of a few that were 

identified to genus, since it was not feasible to identify them to species in the field without 

flowers or fruits (e.g., Carex spp., Salix spp. and Viola spp.). Vegetation sampling was 

conducted during the periods of peak vegetation cover in the summer (July through August) 

prior to treatment, i.e., Yr 0 (2003) and the summers of Yrs 1 (2004), 5 (2008) and 7 (2010) 

after treatment. Within each site, species cover data of the 6 plots at each distance range were 

averaged to derive a mean. 

4.3.3 Statistical Analyses 

Species Richness, Abundance and Turnover 

Species richness (S) was used as a measurement of diversity, which is the total number of 

species in each sample plot.  Abundance was quantified through a summation of total species 

percent cover in each sample plot. To quantify species dynamics among multiple 
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measurements, a species turnover rate index (T) for each sampling plot that includes both 

colonization and local extirpation from two successive measurements was calculated as 

Bakker et al. (2003): 

T = 1- (number of species present at both t and t+1)/[(St+St+1)/2]                       [4.1] 

Where St and St+1 are species richness at time t and t+1, respectively. T can range from 0 to 1, 

indicative of no species turnover to a complete change in community composition, between 

two successive measurements.  

 To test the effects of harvesting and distance from stream on total, vascular and non-

vascular species richness, abundance and turnover, the following repeated measures general 

linear models (rGLM) with type III sums of squares: 

(ijl)mijljlill(ij)kijjiijklm + T  D H +T D + T  H + T +  + DH + D + H +  µ= Y  [4.2] 

where Yijklm is species richness, total abundance or turnover; µ is the overall mean; Hi (i = 1, 2, 

3) is the effect of harvesting, Dj is distance from stream (ij)k is the error term associated with 

between-subjects; Tl is the effect of the sampling year; (ijkl)m is the error term associated with 

within-subjects.  For each rGLM, in addition to  testing data normality and homogeneity of 

variances, I assessed 

criterion test and applied the Huynh-Feldt correction to the results if the assumption was 

violated at P = 0.05 (Huynh and Feldt 1976). I 2) to estimate the 

proportion of the total variance attributed to an effect (Tabachnick and Fidell 1989).  
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Species Composition 

Trends in successional pathways of understory vegetation were evaluated using non-metric 

carried out using PC-ORD version 5 (McCune and Grace 2002, McCune and Mefford 2005) 

set to the slow and thorough auto-pilot mode to select the optimal solution (i.e., 

dimensionality). NMS is well suited for community data because it uses non-metric rank 

ordering to perceptually map data; NMS avoids assumptions of the underlying structure of the 

data (i.e., normality and homogeneity of variance) made by traditional ordination techniques 

(McCune and Grace 2002)

inverse measure of fit to the data (McCune and Grace 2002), a lower stress value represents a 

better fit. An acceptable stress value for community ecology data is generally in the range of 

10 to 20 (Clarke 1993).  Data were first relativized by species maximum, to lessen, but not to 

eliminate the influence of dominant species on the patterns and trends identified by NMS 

ordination. This procedure reduces the skew and overall coefficient of variation of the data, 

and lessens sampling error in ocular estimations (McCune and Grace 2002). All plant species 

were used in the ordination analysis, with the exception of species occurring in < 5% of 

sampling units (McCune and Grace 2002). Successional vectors were created to connect sites 

through time. 

I used a Multiple Response Permutation Procedure (MRPP) with Sørens

measure (Bray and Curtis 1957) to test for differences in species composition and abundance 

among treatments and distance ranges. Pairwise comparison was used to assess differences 

among harvesting treatments.  I ran separate MRPPs for Yrs 1, 0, 5 and 7 to examine if 

compositional differences among treatments were detected at each sampling period. MRPP is 
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a non-parametric analog to discriminant function analysis and is thus not limited by 

assumptions of normally-distributed data or homogenous variances (Mielke and Berry 2001, 

McCune and Grace 2002). The procedure produces a P value as well as an agreement statistic 

(A) value. The latter describes within-group homogeneity compared to random expectation 

and has a range of   -1 to 1. If all samples in a group are identical, A = 1. When agreement 

within group equals expectation by chance, A = 0. If there is more within-group heterogeneity 

than expected by chance, then A < 0 (McCune and Grace 2002).  

Finally, I used indicator species analysis (ISA) (Dufrêne and Legendre 1997) with 

combinations of site group extension (De Caceres and Legendre 2009, De Caceres et al. 2010) 

to assess habitat associations (i.e., distance from the stream channel and harvesting treatment) 

of understory species and how these associations vary with time. I chose this extension 

method rather than the original ISA procedure because the latter fails at detecting species 

related to conditions prevailing in two or more a priori groups of sites and it is likely that 

 requirements are met in more than one group. Where the original ISA method 

looked for the group that the species was maximally associated, the extension method retains 

the combination of groups showing the strongest association with the target species (De 

Caceres et al. 2010).I used the point-biserial correlation coefficient (rpb) association index, 

which is the Pearson correlation between species abundance data (quantitative variable) and 

site membership to a site-group combination (binary variable) (See De Caceres and Legendre 

2009 for details).Statistical significance of the association was evaluated with a permutation 

test of 1000 iterations. Due to computation limitations, sites were grouped by riparian (0-10 

m), transition (10-20 m) and upland (20-30 m) communities in addition to harvesting 

treatment (uncut, buffer, cut-to-shore). Species occurring at less than two sites were removed 
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from the analyses to not confuse statistical artifact with a meaningful biological response. 

MRPP and ISA were run with R version 2.15 (R Development Core Team 2010) with 

packages vegan 2.0-2 (Oksanen et al. 2011) and indicspecies (De Caceres et al. 2010). For 

MRPP and ISA, P-values were corrected with the Holm test for multiple comparisons.  

4.4 Results 

Species Richness, Abundance and Turnover 

One hundred and nine vascular and non-vascular species were identified in this study. The 

responses of species richness of total, vascular and non-vascular understory vegetation to 

treatment differed significantly among the distance ranges to stream and with year of 

measurement (Table 1). Total species richness decreased with distance to stream in Yrs 0, 1, 

and 5, but this overall trend changed for cut-to-shore treatment in Yr 7 (Fig. 1). Furthermore, 

total species richness was significantly higher for cut-to-shore treatment than uncut and buffer 

treatments on transition and upland sites at Yr 7, but not for other years or sample plots close 

to the stream (Fig. 1). Vascular species richness tracked similarly to total species richness 

across the distance ranges and over time (Table 1). Non-vascular species richness decreased 

in all distance ranges, except for the streamside plots, in Yr 1 following both buffer and cut-

to-shore treatments, relative to pre-harvest (Yr 0) levels. In Yr 5, non-vascular richness was 

still lower in cut-to-shore treatments relative to Yr 0, but was similar in buffer and uncut 

treatments at all distance ranges. Finally, non-vascular richness did not differ with treatment 

in Yr 7. Distance related variables accounted for 57%, 58%, and 35% of the variation in total, 

vascular and non-vascular species richness (Table 1), respectively.  
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 Percent cover of total understory vegetation strongly differed with sampling year that 

accounted for 66% of its variation, and with treatment and distance from stream (Table 2). 

Total understory cover strongly decreased at Yr 1 from Yr 0 for both buffer and cut-to-shore 

treatments, but not for the uncut treatment (Fig. 2). The cover, however, increased in Yrs 5 

and 7. Among treatments, cut-to-shore had the lowest total cover at Yr 1; buffer had the 

highest total cover at Yr 5, whereas at Yr 7, total cover was higher for cut-to-shore on uplands 

(Fig. 2). Vascular species percent cover had similar patterns to those of total understory cover 

except a more pronounced difference among treatments at Yr 5 (Fig. 2). By contrast, non-

vascular species cover was generally lower after cut-to-shore treatment; but the difference 

among treatments was far less in the streamside plots relative to further upland (Fig 2).  

 Total, vascular and non-vascular species turnover was strongly related to harvesting 

treatments across all distance ranges and sampling years (Table 3). Total species turnover was 

generally highest in the cut-to-shore sites, whereas similar species turnover occurred in the 

uncut and buffer sites (Fig 3). Vascular species turnover more or less followed the patterns in 

total species turnover, but the turnover did not differ among treatments in the riparian and 

transition plots (Fig 3). Non-vascular species turnover was considerably higher in the cut-to-

shore treatment than uncut and buffer, particularly in Yrs 5 and 7.  



 
 

 
 

Table 4.1 Repeated measures general linear model relating species richness (m-2) of total, vascular and non-vascular understory 
vegetation to harvesting treatment and distance from stream over time in Central Alberta, Canada. 

Source d.f. 
Total Vascular Non-vascular 

P 2 P 2 P 2 

Between subjects 
       

Harvest (Hi) 2 0.87 0.01 0.55 0.02 0.11 0.08 

Distance (Dj) 5 0.02 0.22 0.04 0.19 0.65 0.06 

Harvest x distance (HDij) 10 0.99 0.05 0.98 0.05 0.99 0.03 

Error ( k(ij)) 54 
      

Within subjects 
       

Year (Tl) 3 <0.001  0.28 <0.001  0.25 <0.001 0.13 

Year x harvest (HTil) 6 <0.001  0.24 <0.001  0.21 <0.001 0.29 

Year x distance (DTjl) 15 0.03  0.15 0.04  0.16 0.14 0.12 

Year x harvest x distance (HDTijl) 30 0.13  0.20 0.05  0.23 0.37 0.17 

m(ijkl)) 162 
      

 Huynh-Feldt epsilon was applied to correct for sphericity. Significant effects are shown in boldface type.  
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Table 4.2  Repeated measures general linear model relating abundance (i.e., percent cover) of total, vascular and non-vascular 
understory vegetation to riparian harvesting treatment and distance from stream over time in Central Alberta, Canada. 
 

Source d.f. 
Total Vascular Non-vascular  

P 2 P 2 P 2 

Between subjects 
       

    Harvest (Hi) 2 0.01 0.15 0.09 0.09 0.01 0.16 

    Distance (Dj) 5 0.12 0.15 0.001 0.32 0.25 0.11 

    Harvest x distance (HDij) 10 0.52 0.15 0.87 0.09 0.98 0.03 

Error ( k(ij)) 54 
      

Within subjects   
       

Year (Tl) 3 <0.001  0.66 <0.001  0.65 <0.001  0.38 

    Year x harvest (HTil) 6 <0.001  0.26 <0.001  0.30 <0.001  0.27 

    Year x distance (DTjl) 15 0.53  0.08 0.57  0.08 0.003  0.18 

    Year x harvest x distance (HDTijl) 30 0.91  0.10 0.99  0.07 0.61  0.14 

    m(ijkl)) 162 
      

 Huynh-Feldt epsilon was applied to correct for sphericity. Significant effects are shown in boldface type. 
 Variable was square-root transformed. 

  





 
 

 
 

Species Composition 

NMS ordination identified a 3-dimensional solution with a final stress of 8. 45. Although only 

ordination was performed, sites were separated by treatment to aid interpretation (Fig 4). Axes 

1, 2, and 3 correspond to 39%, 39%, and 17% of understory floristic variability, respectively 

(Fig 4). Axis 1 represented a gradient of common boreal riparian species (e.g., the leafy 

mosses Plagiomnium cuspidatum and Climacium dendroides) to common upland species 

(e.g., the ericaceous shrubs Vaccinium myrtilloides and Rhododendron groenlandicum, and 

the feather mosses Ptilium crista-castrensis and Pleurozium schreberi). Axis 2 represented a 

gradient of shade-tolerant feather mosses (P. crista-castrensis, P. schreberi, and Hylocomium 

splendens) to shade-intolerant vascular species (e.g., Calamagrostis canadensis and Salix 

spp.). Axis 3 was positively correlated to tall shrubs (e.g., Alnus rugosa and Vibernum edule). 

Study sites lined up along Axis 1 according to distance from stream, but compositionally 

shifted over time depending on harvesting treatment. Uncut sites remained relatively stable in 

each sampling year, particularly in the 20 to 30 m from shore range. Upland sites in the cut-

to-shore treatment experienced the most drastic changes in position in the ordination space 

relative to Yr 0, through an increase in grasses, forbs and willows, and decrease in 

feathermosses.  



 
 

 
 

Table 4.3 Repeated measures general linear model relating species turnover (i.e., colonization and extirpation) of total, vascular and 
non-vascular understory vegetation to riparian harvesting treatment and distance from stream over time in Central Alberta, Canada. 

Source d.f. 
Total Vascular Non-vascular  

P 2 P 2 P 2 

Between subjects 
       

    Harvest (Hi) 2 <0.001 0.37 <0.001  0.25 <0.001 0.48 

    Distance (Dj) 5 0.16 0.13 0.11 0.15 0.43 0.13 

    Harvest x distance (HDij) 10 0.54 0.14 0.19 0.21 0.97 0.09 

Error ( k(ij)) 54 
      

Within subjects   
       

Year (Tl) 3 <0.001 0.56 <0.001  0.38 0.001  0.19 

    Year x harvest (HTil) 6 <0.001 0.24 0.002  0.15 0.22  0.08 

    Year x distance (DTjl) 15 0.43 0.09 0.88  0.04 0.89  0.07 

Year x harvest x distance (HDTijl) 30 0.08 0.22 0.51  0.15 0.38  0.25 

    m(ijkl)) 162 
      

 Huynh-Feldt epsilon was applied to correct for sphericity. Significant effects are shown in boldface type. 
 Variables were ln-transformed. 
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Table 4.4  MRPP comparing understory composition among harvesting treatment over time. 
The value of the Agreement within group (A) and the significance of the association (P-value) 
after Holm correction are presented. Significant effects are shown in boldface type. 

Site Classification 
Yr 0 Yr 1 Yr 5 Yr 7 

A P A P A P A P 
0 to 5 m 

 
 

  
      Uncut vs. Buffer -0.03 0.70 -0.01 0.60 0.01 0.32 0.00 0.38 

Buffer vs. Cut-to-shore -0.03 0.85 -0.01 0.58 0.02 0.23 0.03 0.10 

Uncut vs. Cut-to-shore 0.01 0.36 0.05 <0.01 0.05 0.08 0.03 0.16 

5 to 10 m 
 

Uncut vs. Buffer -0.03 0.75 0.01 0.32 -0.01 0.63 0.00 0.37 

Buffer vs. Cut-to-shore -0.02 0.63 -0.01 0.60 0.02 0.19 0.07 0.09 

Uncut vs. Cut-to-shore -0.04 0.84 0.03 0.08 0.01 0.25 0.08 0.11 

10 to 15 m 
 

Uncut vs. Buffer 0.01 0.32 0.00 0.45 0.01 0.37 -0.01 0.54 

Buffer vs. Cut-to-shore 0.01 0.32 -0.03 0.70 0.04 0.05 0.05 0.03 

Uncut vs. Cut-to-shore -0.04 0.84 0.01 0.32 0.08 0.02 0.05 0.04 

15 to 20 m 
 

 

Uncut vs. Buffer 0.00 0.49 0.00 0.41 0.06 0.07 -0.02 0.73 

 

Buffer vs. Cut-to-shore -0.04 0.90 0.02 0.25 0.01 0.30 0.02 0.23 

 

Uncut vs. Cut-to-shore -0.04 0.86 0.01 0.32 0.07 0.02 0.06 0.01 

20 to 25 m 
 

         
 

Uncut vs. Buffer -0.05 0.77 -0.02 0.58 0.01 0.35 0.01 0.33 

 

Buffer vs. Cut-to-shore -0.04 0.75 0.07 0.06 0.01 0.37 0.01 0.34 

 

Uncut vs. Cut-to-shore -0.04 0.74 0.10 0.01 0.08 0.04 0.08 0.03 

25 to 30 m 
 

         
 

Uncut vs. Buffer -0.03 0.66 0.01 0.31 0.00 0.49 0.00 0.48 

 

Buffer vs. Cut-to-shore -0.07 0.89 0.01 0.37 0.05 0.04 0.03 0.16 

 

Uncut vs. Cut-to-shore 0.00 0.45 0.10 0.02 0.08 0.02 0.08 0.02 
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 As expected, compositional differences among harvesting treatments were not detected 

using MRPP for Yr 0 at any of the distance ranges (Table 4). At streamside (0-5 m), 

composition only differed between uncut and cut-to-shore treatment at Yr 1, but it became 

similar for all treatments at Yrs 5 and 7. At the distance range of 5-10 m, composition was 

similar among all treatments during each sampling period. Composition consistently differed 

between uncut and cut-to-shore treatments at Yrs 1, 5, and 7 for uplands (20-25 m and 25-30 

m), whereas this difference was only observed at Yrs 5 and 7 for the transitional zone.  

 Forty-six indicator species (IS) were identified as having an affinity for one or more habitat 

group in at least one sampling year (Table 5). Twenty-two IS were identified in Yr 0, of 

which two-thirds were associated with riparian (0 to10 m) habitat. Many of these riparian 

species (i.e., Calamagrostis canadensis, Equisetum spp., Galium triflorum, Lonicera 

involucrata, Mitella nuda, Plagiomnium spp., and Rubus pubescens) had fidelity for the 

riparian habitat regardless of the sampling year or treatment. However, all IS associated with 

upland (20 to 30 m) communities in Yr 0 (i.e., Cornus canadensis, Lathyrus ochroleucus, 

Pleurozium schreberi, Ptilium crista-castrensis, and Vaccinium vitis-ideae) were no longer 

associated with the cut-to-shore treatment in Yrs 1, 5 or 7. Similar to Yr 0, most of the Yr 1 IS 

were associated with riparian habitat; however, none of the 31 indicator species identified in 

Yr 1 were associated with the upland community in the cut-to-shore treatment. The trends in 

Yrs 5 and 7 were similar. Species associations increased in the transition and upland 

communities in Yrs 5 and 7, relative to Yrs 0 and 1. As expected, most of these IS (e.g., 

Epilobium angustifolium, Salix spp., and Polytrichium juniper) have ruderal characteristics, 

such as highly dispersive propagules.  



 
 

 
 

Table 4.5 Species-habitat association patterns of understory vegetation on managed boreal watersheds over 7 sampling years based on 
indicator species analysis. For each indicator species, the site-group combination that obtained the highest correlation and the value of 
the correlation (rpb) are presented. Significance at *P< 0.05, ** P< 0.01, *** P<0.001 

Species Life-
form 

Reproductive 
strategy 

Yr 0 Yr 1 Yr 5 Yr 7 

Habitat rpb Habitat rpb Habitat rpb Habitat rpb 
Achillea millefolium FORB INV - - - - CT/U 0.42* CU 0.57* 

Arnica cordifolia FORB INV - - - - BT/U CU 0.46** - - 

Aster ciliolatus FORB INV - - - - - - CU 0.57*** 

Brachythecium spp. BRYO AVO - - UR/T/U 0.64*** UR BR 0.47** UR BR CR 0.43* 

Calamagrostis canadensis GRAM INV/END UR BR CR 0.49** CR 0.48** CR 0.57*** CR 0.51* 

Carex spp. GRAM INV CR 0.51* - - - - CR/T/U 0.42* 

Climacium dendroides BRYO AVO - - UR 0.38* BR 0.38* - - 

Delphinium glaucum FORB INV - - - - UR 0.53* UR 0.50* 

Cornus candensis FORB END UT/U  BT/U CT/U 0.56*** UT UU 0.76*** UT/U BT/U 0.56*** UT/U BT 0.59*** 

Dicranum polysetum. BRYO AVO - - UTUU 0.53** UT/U BU 0.43* UT/U 0.44* 

Epilobium angustifolium FORB INV/END - - - - BT/U CT/U 0.49** CT CU 0.56*** 

Equisetum spp. PTER END BR CR 0.46** UR BR 0.51** UR BR CR 0.55*** UR BR CR 0.46* 

Erysimum cheiranthoides FORB INV - - BR CR 0.45* - - - - 

Fragaria vesca FORB INV - - - - UT BR CU 0.43* UT CU 0.41* 

Galium triflorum FORB END/INV UR BR CR 0.59*** BR 0.51** - - UR BR CR 0.43* 
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Geum rivale FORB END - - UR BR CR 0.53** - - UR BR CR 0.48** 

Gymnocarpium dryopteris PTER END - - UR 0.64*** UR 0.64*** UR 0.62*** 

Heracleum lanatum FORB END/INV UR/T 0.48** UR/T 0.51** - - - - 

Hylocomium splendens BRYO AVO - - - - UT/U BT/U 0.40* UT/U BT/U 0.50* 

Impatiens capensis FORB INV UR 0.53* UR 0.49** - - - - 

Lathyrus ochroleucus FORB END BR/T CT/U 0.45* BR/T /U CR/T 0.42* BT 0.52** BR/T/U CT 0.41* 

Linnea borealis DWSH AVO BT 0.47* UTUU BT 0.62*** UU BT 0.43* BT 0.43* 

Lonicera involucrata SHRU AVO CR 0.59** UR 0.51** URBR CR 0.42* UR CR 0.53** 

Lycopodium annotinum PTER END - - - - - - UTUU BT 0.41* 

Lycopodium complanatum PTER END - - BT/U CT 0.45* BT BU 0.54** - - 

Maianthemum canadense FORB END - - - - UR BT 0.46** - - 

Mertensia paniculata FORB END UR 0.42* UR/T 0.56** UR/T BR CU 0.46* UR 0.60*** 

Mitella nuda FORB AVO UR BR CR 0.56** UR BR CR 0.61*** UR BR CT 0.45* UR BR CR 0.45* 

Petasites palmatus FORB END - - - - BR BU CT 0.56*** - - 

Plagiomnium spp. BRYO AVO UR BR CR 0.55** UR BR 0.46** UR BR 0.61** UR BR CR 0.45* 

Pleurozium schreberi BRYO AVO UT/U BT/U CT/U 0.42* UT/U BT/U 0.45* UTUUBT BU 0.41* UT/U BT/U 0.45* 

Polytrichium juniper BRYO INV - - - - CU 0.39* CU 0.41** 

Ptilium crista-castrensis BRYO AVO BT BU CU 0.50** UU BR BT 0.42* BT 0.48** UU BT 0.46* 

Ribes oxyacanthoides SHRU EVA/INV UR/T BR CR/T 0.44* - - URUT BR 0.50** UT BR 0.50** 

Ribes triste SHRU EVA UR 0.54** UR BR 0.68*** - - - - 
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Rosa acicularis SHRU END/INV - - UT BT 0.40* - - - - 

Rubus pubescens FORB END UR CR 0.52** UR 0.44* - - UR CR 0.48** 

Rubus pedatus FORB END - - - - - - UTUU 0.44* 

Salix spp. SHRU INV/END - - - - CR CU 0.51** CR 0.66*** 

Streptopus amplexifolius FORB EVA UR 0.48** UR BR 0.42* - - - - 

Thalictrum venulosum FORB END UR CR 0.49* UR 0.55** UR 0.45* - - 

Urtica diocia FORB INV UR 0.41* URUT 0.43* URUT 0.41* URUT 0.43* 

Vaccinium caespitosum DWSH END UR BT/U CT/U 0.49** UT/U BT/U 0.52** B/U CT 0.63*** B/U CT 0.57*** 

Vaccinium vitis-ideae DWSH END CU 0.45* UT/U BT/U  0.52* BT/U 0.44* - - 

Vicea americana FORB INV - - - - - - BR 0.54* 

Viola spp. FORB END - - UR/T BR CR 0.49** - - - - 

Life-forms are: bryoids (BRYO), dwarf shrubs (DWSH), forbs (FORB), graminoids (GRAM), pteridophytes (PTER), and shrubs 
(SHRU). 

(1983) classification; invaders (INV) and evaders (EVA) are both pioneer species; 
however the former has highly dispersive, short-lived propagules, whereas the latter regenerates through soil or canopy seed banks. 
Avoiders (AVO) are late-successional species that also colonize through seed dispersal. Resistors (RES) and endurers (END) 
withstand disturbance through the survival of above-ground and below-ground plant parts, respectively. 

Habitat classes are defined by disturbance treatment (U uncut, B buffer and C cut-to-shore) and community type based on distance 
from stream (R riparian; 0 to 10 m, T transition; 10 to 20 m, and U upland; 20 to 30 m). First letter in habitat class indicates 
disturbance; second letter in habitat class indicates community. 
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4.5 Discussion 

Disturbance severity from harvesting exerted strong controls on the dynamics of understory 

vegetation in boreal riparian forests, which was still evident seven years after the disturbance 

event. However, the dynamic responses strongly differed with the distance from the stream 

channel. Furthermore, vascular and non-vascular plants exhibited contrasting responses in 

their richness, abundance, turnover, and composition.  

 After an initial decrease, vascular species richness and abundance of understory vegetation 

was highest in the cut-to-shores sites, relative to the less disturbed treatments (i.e., buffer and 

uncut), but only in the transition and upland sites (10 to 30 m from shore). Along disturbance 

gradients, plant diversity is predicted to peak at intermediate levels of disturbance (sensu 

intermediate disturbance hypothesis; IDH) because competitive exclusion is slowed through 

physical alteration of the environment and the requirements of more species are liable to be 

met (Connell 1978). Cut-to-shore treatment was clearcut without site preparation, which has 

been defined as an intermediate disturbance in other Canadian boreal studies (Haeussler et al. 

2002, Biswas and Mallik 2010). Vascular richness conformed to the IDH in upland plots, but 

did not in the streamside communities. It is generally accepted that resource availability is 

higher in riparian than upland forests and there is some evidence that vascular species 

growing in sites with higher resource availability are more resilient to disturbance (Hamilton 

and Haeussler 2008, Slocum and Mendelssohn 2008). However, I attribute the diverging 

disturbance-diversity relationships, to differing processes driving the communities from 

streamside to upland. In upland forests, the canopy exerts strong controls on the understory 

community composition, predominantly by limiting resource quantity (Hart and Chen 2008). 

However, there is a lack of evidence for as strong a coupling of the canopy and understory in 
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streamside communities relative to upland plant assemblages (Lyon and Sagers 1998, Decocq 

2002), suggesting that hydrology, rather than the canopy drives understory riparian 

communities, and thus may be able to better cope with stand-replacing disturbances as long as 

hydrological processes are not significantly altered.  

 Specific microclimatic conditions are vital for growth and reproduction of non-vascular 

species (Rydgren et al. 2006). For the dominant boreal upland bryophytes (i.e., Pleurozium 

schreberi, Hylocomium splendens and Ptilium crista-castrensis), the altered environment 

following stand-replacing disturbance, such as increased soil temperatures and decreased soil 

moisture, exceeds their tolerance, resulting in a decrease in their cover (Fenton and Frego 

2005, Hylander 2005, Åström et al. 2007). In my study, richness and abundance of non-

vascular species did decrease following cut-to-shore treatment. Similar to studies from the 

Swedish boreal forest (Dynesius and Hylander 2007, Dynesius et al. 2009), this response was, 

however, much less pronounced in the streamside communities. I speculate that high moisture 

availability and shading from tall shrubs associated with riparian habitat (Table 5) buffers the 

effect of harvesting on bryophytes in streamside plots, and thus their response to harvesting is 

not as marked as it is in the uplands.  

 Species turnover was consistently higher in the cut-to-shore treatment than both buffer and 

uncut plots, and the disturbance effect on turnover was greater in non-vascular than vascular 

species. Although shifts in richness and abundance following cut-to-shore treatment were 

greater in the upland than the streamside plots, I found that neither vascular nor non-vascular 

species turnover was mediated by distance from the stream channel. Immigration processes in 

streamside communities are enhanced because of hydrochory (i.e., flow facilitated propagules 

distribution) and better conditions for establishment, such as abundance of bare substrate 
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(Planty-Tabacchi et al. 1996, Brown and Peet 2003, Dynesius et al. 2009). However, lateral 

colonization from streamside into the upland is also highly probable as species associated 

with upland habitat are able to tolerate low resource levels (i.e., light) at the trade-off of being 

less competitive in more productive habitats (Tilman 1985). For example, sedges (Carex spp.) 

were only associated with riparian habitat in Yr 0, but seven years after cut-to-shore they were 

associated with all distance ranges. Therefore, it is not surprising that turnover was similar 

among habitats.   

 Clear patterns emerged in understory species composition along the riparian ecotone and 

over time. After five years following the disturbance event, and still evident in Yr 7, cut-to-

shore plots in the 10 to 30 m from stream diverged from a feathermoss and ericaceous shrub 

dominated community to one characterized by grasses, forbs and tall shrubs. However, all 

three treatments (uncut, buffer and cut-to-shore) had similar understory vegetation 

communities in the streamside plots (0 to 10 m from stream). Many of the species that 

increased in abundance in the cut-to-shore treatment were present before harvesting in the 

streamside plots. For example, Calamagrostis canadensis, is a widely distributed perennial 

rhizomatous grass common in Canadian boreal riparian forests (Lamb and Mallik 2003), 

which may impede the colonization of invading species. Through both seed dispersal and 

clonal expansion, C. canadensis rapidly expands following timber harvesting (Lieffers et al. 

1993). Most indicator species of the cut-to-shore riparian habitat in Yr 0 were still positively 

associated with the same habitat over time, whereas no species associated with cut-to-shore 

upland habitat in Yr 0, were associated with that habitat after harvesting. The alteration on the 

environment following timber harvesting disturbance had greater consequences on the growth 

and mortality of species associated with the upland plots relative to those growing streamside. 
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These results were similar to a study comparing bryophyte communities before and after 

clearcutting in riparian and upland communities. However, there are no studies, in any forest 

system, comparing the entire understory community before and after forest harvesting along a 

riparian ecotone. 

 Despite the difference in community composition in uncut and cut-to-shore plots, they 

were both similar to buffer plots in the 15 to 30 m range; indicating that these buffer plots 

contained both early and late seral species that characterize the cut-to-shore and uncut plots, 

respectively. My results were comparable to a study in the central portion of the Canadian 

boreal forest that reported an increase in early seral vascular species into 15 m of the riparian 

buffer (Braithwaite and Mallik 2012). These edge effects (i.e., detectable changes in the 

community reflective of abiotic and biotic processes at forest edges) from the adjacent 

clearcut may be related to microclimatic (i.e., canopy gap size, light transmittance, vapour 

pressure deficit, air temperature and soil temperature) changes within the buffer (Chen et al. 

1995, Brosofske et al. 1997, Dong et al. 1998, Dignan and Bren 2003); which have been 

reported to have negative effects on boreal upland bryophytes (Stewart and Mallik 2006, 

Braithwaite and Mallik 2012), facilitating colonization of vascular species.  

 An inherent difficulty with field studies is untangling confounding effects caused by 

abiotic factors (Lawton et al. 1998, Gilliam and Roberts 2003). My study area suffered from a 

severe drought from 2002 to 03 (Government of Alberta 2003), which was the pre-harvest 

(i.e., Yr 0) sample period and may have affected the growth and resilience of post-harvest 

plant communities. Increased moisture availability to streamside plants, relative to those 

growing in the upland, may have buffered this effect. However, I used both pre-harvest and 
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uncut sites as a control to compensate for abiotic fluctuations, and so it is unlikely that this 

limited my ability to interpret effects of harvesting across the riparian ecotone.  

 

4.6 Conclusion 

Overstory harvesting exerted stronger controls on non-vascular species than vascular species, 

as abundance and species turnover of non-vascular species shifted considerably. My 

prediction that shifts in the plant community following logging disturbance will be greater 

with increasing distance from the stream channel was supported. Overall my results suggest 

that riparian vegetation is not strongly affected by overstory harvesting, with or without a 30 

m streamside buffer. 

entirely unexpected. Hydrological processes and disturbance regimes that drive riparian 

ecosystems impede competitive exclusion, enhance vascular diversity, and create an 

environment liable to meet the competitive and resource requirements of more species; 

including robust perennials able to tolerate disturbance through the survival of belowground 

plant parts (Hughes and Fahey 1991, Økland 1995, Schimmel and Granstrom 1996).
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CHAPTER 5 : EFFECT OF DISTURBANCE SEVERITY ON RIPARIAN 

AND UPLAND BOREAL UNDERSTORY PLANT COMMUNITIES 

5.1Abstract  

Overstory harvesting and associated ground disturbance affects understory plant communities 

through increasing mortality of individuals or propagules, or by varying environmental 

conditions and resource availability. Mechanical site preparation (i.e., scarification) 

exacerbates environmental changes following overstory harvest by destroying above- and 

below-ground plant parts and coarse woody debris and removing more of the forest floor. 

However, the capacity to absorb a disturbance event should also vary depending on habitat 

type.  Here, I compare the response of boreal understory plant communities to overstory 

harvesting with and without scarification on 24 small stream sites on Boreal Shield 

watersheds. The disturbance-response relationship was also tested among habitats (i.e., 

riparian, transition and upland). The effects of forest harvesting, with or without scarification, 

on boreal understory species diversity were not detectable nine years following harvesting. 

Species composition was not strongly affected by harvesting when forest floor and soil 

disturbance is minimal; but it was following scarification. However, this effect varied with 

habitat. The riparian and upland plots that were harvested and scarified diverged from the 

uncut plant communities, but the transitional communities did not. Transitional communities 

retain species of both riparian and upland communities and thus the constitute flora has lesser 

site fidelity, and likely tolerates a wider range of environmental conditions. Overall, 

scarification profoundly altered the substrate by breaking up coarse woody debris and 
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decreasing the depth of organic matter, which destroyed forest floor feathermosses and 

created a habitat suitable for early colonizing species (i.e., grasses). 

5.2 Introduction 

In the boreal forest, harvesting is an important stand-replacing disturbance shaping the forest 

landscape with biotic responses to harvesting depending on size, frequency and severity of the 

event (Halpern 1988, Roberts and Gilliam 1995, Seymour et al. 2002, Roberts 2007, Hart and 

Chen 2008). Severity of overstory harvesting and associated ground-disturbance is generally 

defined as the amount of vegetation removed and the degree to which the forest floor and 

soils are disrupted (Oliver and Larson 1996). Harvesting and ground disturbance affects 

understory plant communities through increasing mortality of individuals or propagules (i.e., 

seed sources or vegetative plant parts), or by varying environmental conditions and resource 

availability (Halpern and Spies 1995, Roberts and Gilliam 1995, Bergeron and Harvey 1997, 

Scheller and Mladenoff 2002, Bartels and Chen 2010). For example, following canopy 

removal, light levels, soil temperatures and soil resource availability may increase (Gholz et 

al. 1985c, Hart and Chen 2006). These conditions are favourable for some understory vascular 

plants, specifically species with ruderal characteristics, such as rapid growth. Conversely, 

high light levels and soil temperatures, and low soil moisture content and pH levels following 

canopy removal (Bormann and Likens, 1979) exceed the tolerance of many bryophytes. 

Mechanical site preparation (i.e., scarification) exacerbates environmental changes following 

overstory harvest by destroying above- and below-ground plant parts and coarse woody debris 

and removing more of the forest floor (Vanha-Majamaa and Jalonen 2001, Roberts and Zhu 

2002). 
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  The capacity to cope with disturbance should vary depending on specific habitat 

characteristics. Habitat variability has historically been treated as background noise, but it is 

now well established that environmental variation among communities affects mechanisms of 

species diversity (Shea et al. 2004). Therefore, an interaction between habitat variability and 

the disturbance-response relationship is anticipated. For example, riparian communities may 

be more resistant to disturbance events than upland communities based on different 

characteristics that define the two habitats. Life-history strategies, productivity, and diversity 

of riparian plant communities are a reflection of the hydrological processes and disturbance 

regimes that shape riparian forests (Naiman et al. 1993). In the boreal forest, streamside 

communities are comprised of variety of species including generalist plant species (which 

may inhabit the uplands), riparian obligates specialized to survive in streamside habitats, and 

early successional species adapted to productive habitats (Lamb et al. 2002, Dynesius et al. 

2009, Biswas and Mallik 2010); whereas, boreal upland understory communities are more 

commonly dominated by shade tolerant species (Nilsson and Wardle 2005, Hart and Chen 

2008). Thus, understory plant communities in riparian forests may be able to better tolerate 

overstory harvesting than communities growing in upland forests. 

  Many boreal understory plants (i.e., herbaceous species) are robust perennials adapted to 

survive moderate disturbance through the survival of above- or belowground plants parts 

(Økland 1995), however, species that reproduce through the soil seed bank are most likely to 

colonize following severe ground disturbance (Nguyen-Xuan et al. 2000). Understory species 

most commonly found in the seed bank are ruderal and often not present in the extant 

vegetation community (Fyles 1989, Qi and Scarratt 1998), and there is some evidence that 

soil seed banks are even less developed in riparian ecosystems with respect to uplands 
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(Schneider and Sharitz 1988, Manders 1990). This is not surprising in the context of natural 

disturbance regimes, as wildfires in riparian areas often do not disturb the forest floor or 

remove the ground vegetation (Swanson 1994, Petit and Naimen 2007) as they may in 

uplands. Therefore, it is difficult to predict if the effects of overstory harvesting in 

conjunction with ground disturbance will be mediated by habitat. With this uncertainty in 

mind, the objective of this study is to compare the recovery of understory vegetation 

following contrasting soil disturbance due to harvesting impacts on the forest floor and soil in 

relation to habitat (i.e., from stream channel to upland). I also test if environmental variables 

(i.e., soil moisture content, coarse woody debris and depth of organic matter) are related to 

harvesting, with and without ground disturbance, and how they vary with respect to habitat. I 

hypothesize that shifts in species diversity and composition will be greater, relative to uncut 

condition, in harvested sites with more severe ground disturbance.  

 5.3 Materials and Methods 

5.3.1 Study Area 

I conducted this study in two watersheds on the Boreal Shield ecozone of Canada. The 

Mackenzie (MK) and Dog river (DR) watersheds are approximately 30 km northeast and 60 

km northwest of the city of Thunder Bay, Canada, respectively. This area is characterized by 

low to moderate relief and podzol/spodosol soils over discontinuous till, glaciofluvial or 

aeolian deposits (Soil Classification Working 1998). The mean an

annual precipitation is 547 mm and the annual snowfall is 196 cm (Environment Canada 

2011b). The canopy is dominated by boreal conifers (i.e. Picea mariana, Pinus banksiana, 

Abies balsamea and Picea glauca) or boreal mixedwoods (i.e., conifers mixed with Populus 
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tremuloides, Populus balsamea and/or Betula papyrifera). The understory vegetation is rich 

relative to other parts of the Canadian boreal forest (Qian et al. 1998).  

5.3.2 Experimental Design and Data Collection  

Harvesting in the DR watershed was during the winter months of 2001 (i.e., when the ground 

was frozen) and the area did not receive any subsequent site preparation following canopy 

removal. Harvesting in the MK watershed was conducted during 2002 when the ground was 

not frozen and the sites were scarified following canopy removal. Therefore the harvesting 

treatment in DR represents overstory harvesting without ground disturbance, whereas the 

treatment in MK represents overstory harvesting with ground disturbance. Eight headwater 

stream sites were located in each watershed, for a total of sixteen sites that represented the 

following treatments; uncut (reference), and cut-to-shore, each with four replicates per 

watershed. Uncut sites were undisturbed (i.e., no forestry activity in the riparian or adjacent 

upland area). Cut-to-shore sites were clearcut to the edge of the stream channel. At each site, 

two randomly located ~50 m long transects were established running perpendicular from 

either side of the stream channel to the upland. Length of riparian, transition and upland 

habitats were determined along each transect based on compositional shifts (i.e., riparian and 

upland obligates) and topographical features (i.e., slope).  Along each transect, 1-m2 

understory (i.e., ground and shrub strata) vegetation plots were placed consecutively within 

the riparian area (i.e., at every meter), and five were randomly located within both the 

transition and upland areas (Fig 5.1). Percent cover (0-100%) of vascular and non-vascular 

plant species in each plot was visually estimated (Mueller-Dombois and Ellenberg 1974). 

Vegetation sampling was conducted during the periods of peak vegetation cover in the 
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5.3.3 Statistical Analyses 

Species diversity 

Species richness (S measurements of diversity. Species 

richness (S) is the total number of species in each sample plot. To calculate evenness, we used 

the (Pielou 1969) index ( ): 

      =  S)-1     [5.1] 

Where S is species richness of the sample unit and is the Shannon-Weiner diversity, 

defined as:  

 = -  Pi i                                                            [5.2] 

Where Pi is the proportion made up by the ith species.  

A general linear model was run for each watershed to test the effects of habitat and 

disturbance on total, vascular and non-vascular species richness and evenness: 

   + DH + D + H +  µ= Y (ij)kijjiijk                               [5.3] 

where Yijk is species diversity (richness or evenness); µ is the overall mean; Hi (i = 1, 2, 3) is 

the effect of habitat (i.e., riparian, transition or upland), Dj   (j = 1, 2) is the effect of 

harvesting; (ij)k is the error term.   

Species composition 

Trends in successional pathways of understory vegetation were evaluated using non-metric 

carried out using PC-ORD version 5 (McCune and Grace 2002, McCune and Mefford 2005) 
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set to the slow and thorough auto-pilot mode to select the optimal solution (i.e., 

dimensionality). NMS is uses non-metric rank ordering to map data, thus relaxing 

assumptions regarding the structure of the data (i.e., normality and homogeneity of variance) 

made by traditional ordination techniques (McCune and Grace 2002). All plant species were 

used in the ordination analysis, with the exception of species occurring in < 5% of sampling 

units (McCune and Grace 2002). The association of ordination axes with dominant species 

was evaluated with  rank correlation (tau); associations of ± 0.4 were considered 

strong.  A 

measure (Bray and Curtis 1957) was used to test for differences in species composition and 

abundance among habitats, disturbance levels, and watersheds. MRPP is a non-parametric 

analog to discriminant function analysis and is thus not limited by assumptions of normally-

distributed data or homogenous variances (Mielke and Berry 2001, McCune and Grace 2002). 

In addition to a P value, the procedure produces a test statistic (T) as well as an agreement 

statistic (A) value. The former (i.e., T) describes the separation among groups (the more 

negative the value, the greater the separation among groups), and the latter (i.e., A) describes 

within-group homogeneity compared to random expectation and has a range of -1 to 1. If all 

samples in a group are identical, A = 1. When agreement within group equals expectation by 

chance, A = 0. If there is more within-group heterogeneity than expected by chance, then A < 

0 (McCune and Grace 2002).   

Environmental variables 

To correlate vegetation patterns with environmental variables (i.e., soil moisture content, 

CWD and depth of organic matter), an NMS biplot with a secondary data matrix containing 
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three ordination axes was calculated. Additionally, equation [5.2] was used to test for effects 

of harvesting and habitat on environmental variables, where Yijk  is soil moisture content, 

-hoc test was used to evaluate 

differences among habitats. 

5.4 Results 

I identified 223 understory species in this study, including 176 and 47 vascular and non-

vascular species, respectively. In the watershed that was not scarified, total, vascular and non-

vascular species richness was not related to treatment or habitat (Table 5.1). In the scarified 

watershed, species richness was also not related to harvesting, but total and vascular species 

richness were higher in the riparian plots, in both uncut and cut-to-shore treatments, relative 

to transition and upland communities, but non-vascular richness was similar in all habitats 

(Table 5.1, Figure 5.2).  

Habitat accounted for 38% of the variation in vascular species evenness in non-scarified 

sites, and 43% of the variation in scarified sites (Table 5.2). In both watersheds, evenness was 

not related to harvesting treatment (Table 5.2). Vascular evenness increased from the stream 

channel into the uplands (Fig 5.3c-d), and non-vascular species richness decreased along that 

same gradient but only in the non-scarified sites (Fig 5.3e).  

Soil moisture content was higher in riparian sites than transition and upland communities 

(P  0.04) in both watersheds and harvesting treatments (Fig. 5.4a-b). In the non-scarified 

watershed, soil moisture content was higher following harvesting in all habitats than in uncut 

sites (Fig. 5.4a). However, harvesting did not affect soil moisture content in the scarified 

watershed (P = 0.3). Coarse woody debris (Fig 5.4c) and depth of organic matter (Fig 5.4e) 
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was neither related to habitat nor harvesting in the non-scarified sites (P  0.1). Both coarse 

woody debris and depth of organic matter decreased following harvesting in the scarified sites 

(Fig 5.4d-f; P  0.02). Habitats x disturbance interaction terms were not significant for any 

variable in either watershed (see Appendix 2 and 3 for complete GLM tables for scarified and 

non-scarified watersheds, respectively). 
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Figure 5.2 Mean (± 1 Standard Error) species richness (S) of total, vascular and non-vascular 
plant species in relation to riparian, transition, and upland habitat and harvesting treatment 
(uncut and cut-to-shore boreal) in non-scarified (left panels) and scarified (right panels) 
Boreal Shield watersheds.  
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Table 5.1  Total, vascular and non-vascular species richness in relation to habitat and 
harvesting on Boreal Shield watersheds.  

Source d.f. F P 2 

Non-scarified     

Total Species richness� (r2 = 0.22)     
Habitat (Hi) 2 2.06 0.16 0.19 
Disturbance (Dj) 1 0.65 0.43 0.04 
Habitat x disturbance (HDij) 2 0.09 0.92 0.01 

(ij)k) 18    
Vascular Species richness� (r2 = 0.24)     

Habitat (Hi) 2 1.46 0.26 0.14 
Disturbance (Dj) 1 2.53 0.13 0.12 
Habitat x disturbance (HDij) 2 0.09 0.92 0.01 

(ij)k) 18    
Non-vascular Species richness� (r2 = 0.39)     

Habitat (Hi) 2 1.17 0.33 0.12 
Disturbance (Dj) 1 4.00 0.06 0.18 
Habitat x disturbance (HDij) 2 0.19 0.83 0.02 

(ij)k) 18    
     

Scarified     

Total Species richness (r2 = 0.29)     
Habitat (Hi) 2 3.5 0.05 0.28 
Disturbance (Dj) 1 0.9 0.77 <0.01 
Habitat x disturbance (HDij) 2 0.06 0.94 <0.01 

(ij)k) 18    
Vascular Species richness (r2 = 0.32)     

Habitat (Hi) 2 3.96 0.04 0.31 
Disturbance (Dj) 1 0.0. 0.87 0.01 
Habitat X disturbance (HDij) 2 0.29 0.76 0.03 

(ij)k) 18    
Non-vascular Species richness (r2 = 0.16)     

Habitat (Hi) 2 1.35 0.28 0.13 
Disturbance (Dj) 1 0.28 0.59 0.02 
Habitat x disturbance (HDij) 2 0.26 0.77 0.03 

(ij)k) 18    
 Variables are ln-transformed
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Figure 5.3 Mean (± 1 Standard Error) species evenness ( ) of total, vascular and non-vascular 
plant species in relation to riparian, transition, and upland habitat and harvesting treatment 
(uncut and cut-to-shore boreal) in non-scarified (left panels) and scarified (right panels) 
Boreal Shield watersheds.  
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Table 5.2 Total, vascular and non-vascular species evenness in relation to habitat and 
harvesting on Boreal Shield watersheds. 

Source d.f. F P 2 

Non-scarified     

Total evenness (r2 = 0.13)      
Habitat (Hi) 2 0.68 0.52 0.07 
Disturbance (Dj) 1 0.89 0.36 0.05 
Habitat x disturbance (HDij) 2 0.19 0.83 0.02 

(ij)k) 18    
Vascular evenness (r2 = 0.43)     

Habitat (Hi) 2 5.47 0.01 0.38 
Disturbance (Dj) 1 2.43 0.13 0.12 
Habitat x disturbance (HDij) 2 0.01 0.99 <0.01 

(ij)k) 18    
Non-vascular evenness (r2 = 0.36)     

Habitat (Hi) 2 4.89 0.02 0.35 
Disturbance (Dj) 1 0.12 0.74 0.01 
Habitat x disturbance (HDij) 2 0.16 0.86 0.02 

(ij)k) 18    
     

Scarified     

Total evenness (r2 = 0.10)     
Habitat (Hi) 2 0.25 0.79 0.03 
Disturbance (Dj) 1 1.29 0.27 0.07 
Habitat x disturbance (HDij) 2 0.14 0.87 0.02 

(ij)k) 18    
Vascular evenness (r2 = 0.47)     

Habitat (Hi) 2 6.65 0.01 0.43 
Disturbance (Dj) 1 0.08 0.79 <0.01 
Habitat x disturbance (HDij) 2 1.35 0.29 0.13 

(ij)k) 18    
Non-vascular evenness (r2 = 0.31)     

Habitat (Hi) 2 2.71 0.09 0.23 
Disturbance (Dj) 1 0.99 0.33 0.05 
Habitat x disturbance (HDij) 2 0.88 0.43 0.09 

(ij)k) 18    
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A three-dimensional NMS ordination was identified with a final stress of 11.87 (Fig 5.5). 

Although the ordination was only done once, both watersheds were separated in the graph to 

aid interpretation.  Axes 1, 2 and 3 account for 23%, 32%, and 29% of the understory 

variability, respectively.  The first axis was positively associated with fire weed (Epilobium 

angustifolium), and other species associated with open canopies (Rubus idaeus, Solidago 

canadensis, Calamagrostis canadensis) and moist ground, including rushes (Juncus spp.) and 

sedges (Carex spp.); and negatively associated with tall shrubs, including mountain maple 

(Acer spicatum) and beaked hazelnut (Corylus cornuta), and the forbs wild sarsaparilla 

(Aralia nudicaulis) and blue bead lily (Clintonia borealis).  The second axis is positively 

associated with grasses such as bluejoint (Calamagrostis canadensis) and false melic 

(Schizachne purpurascens) and pin cherry (Prunus pensylvanica); and negatively associated 

with feathermosses (i.e., Pleurozium schreberi, Ptilium crista-castrensis, and Hylocomium 

splendens). The third axis represents a gradient of riparian species, including speckled alder 

(Alnus rugosa) and ferns (i.e., Athyrium filix-femina and Thelypteris phegopteris) to common 

upland species including ericaceous shrubs, such as Labrador tea (Rhododendron 

groenlandicum), forbs, such as bunchberry (Cornus canadensis), and forest floor mosses (i.e., 

P. schreberi and Dicranum polysetum). Axis 1 of the NMS ordination was positively 

correlated with soil moisture content (r2 = 0.05), and axis 2 was negatively correlated with 

coarse woody debris (r2 = 0.15) and depth of organic matter (r2 = 0.60) (Figure 5.5b). 
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Sites in the non-scarified watershed are ordinated in species space based on habitat, but not 

disturbance; sites are grouped from riparian to upland along the third axis. Conversely, sites in 

the scarified watershed are strongly grouped by harvesting disturbance (i.e., cut or uncut) 

along the second axis; from grasses to feathermosses. The MRPP supports the results of the 

ordination; there was not a detectable difference in the understory vegetation among 

harvesting treatments in the non-scarified watershed, but there was in the scarified riparian 

and upland sites (Table 5.3). However, separation among harvested and uncut sites was 

greater in the upland than the riparian sites, as indicated by the T value.  

 

Table 5.3 MRPP comparing understory composition among uncut and harvested treatments in 
riparian, transition and upland habitats in two Boreal Shield watersheds. The value of the test 
statistic (T), agreement within group (A) and the significance of the association (P-value) are 
presented. Significant effects are in boldface.  

Site Classification T A P 

Scarified 
Riparian -1.85 0.07 0.04 
Transition -1.12 0.05 0.10 

Upland -2.20 0.09 0.03 

     Non-scarified 
    Riparian -0.69 0.02 0.24 

Transition -0.31 0.02 0.29 
Upland -0.70 0.02 0.22 
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Figure 5.5 NMS ordination of average site data from a) non-scarified, and b) scarified watersheds in species space. Axes 1, 2, and 3 
account for 23%, 32%, and 29% of the understory variability, respectively. Species and environmental associations with ordination 

nations is 
identical and axes gradients apply to both figures.  
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 5.5 Discussion 

Regardless of disturbance severity, vascular and non-vascular diversity (species richness and 

evenness) was not related to harvesting. Moreover, the diversity-disturbance relationship did 

not differ detectably among habitats. My results correspond to another study from the central 

Boreal Shield, which found similar patterns of diversity, in both riparian and upland habitats, 

following clearcutting with and without scarification (Biswas and Mallik 2010). Changes in 

the understory plant communities are rapid immediately following disturbance, followed by a 

gradual return to a condition similar to pre-disturbance (Halpern 1988). I suspect that nine 

years after the disturbance event, extirpation events of disturbance sensitive species, such as 

bryophytes, are likely to be similar to initial colonization events, thus balancing species 

diversity.  

The changes to community membership following harvesting were more complex. 

Differences in understory species composition were not discernible nine years following 

harvest, in all habitats, in the non-scarified watershed, suggesting these boreal plant 

communities are resilient to stand-replacing disturbance events that leave the forest floor and 

soil relatively intact.  As found in other studies (Halpern 1988, Nguyen-Xuan et al. 2000), 

harvesting following by mechanical site preparation had a profound effect on the understory 

vegetation community. However, in my study this effect varied with habitat. The riparian and 

upland plots that were harvested and scarified diverged from the uncut plant communities, but 

the transitional communities did not. Transitional communities retain species of both riparian 

and upland communities and thus the constitute flora has lesser site fidelity, and likely 

tolerates a wider range of environmental conditions. Unlike upland communities, transitional 

communities contain riparian species that are generally tolerant of stand-replacing disturbance 
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(Lamb et al. 2003, Dynesius et al. 2009), but are not as directly influenced by flow-facilitated 

propagules distribution, and subsequent colonization, as streamside communities. Riparian 

plots in the harvested sites of the scarified watershed retained their position along axis 3 of the 

ordination, which represented the gradient of riparian to upland species, but they did increase 

in abundance of grasses as indicated by a positive move along the second axis.  Grasses are 

early colonizing species in riparian forests, which exhibit rapid growth through wind and 

water dispersed seeds and multiple tillers (Lamb and Mallik 2003).  Upland plots in the 

scarified watershed had the greatest shift in species composition (Fig 5.4). Boreal upland 

forests are often dominated by bryophyte communities, which are generally intolerant to 

stand-replacing disturbance (Frego and Carleton 1995, Fenton and Frego 2005). Furthermore, 

scarification reduced coarse woody debris and depth of organic material, which is positively 

correlated with the growth of bryophytes (He and Barclay 2000), thus exacerbating the effects 

of harvesting on upland boreal communities.  

In conclusion, I report two key findings from this study. First, effects of forest harvesting 

on boreal understory species diversity were not detectable nine years following harvesting 

regardless of level of soil disturbance. Second, understory boreal community composition was 

not strongly affected by harvesting when forest floor and soil disturbance in minimal. 

Scarification profoundly altered the substrate by breaking up coarse woody debris and 

decreasing the depth of organic matter, which destroyed forest floor feathermosses and 

created a habitat suitable for early colonizing species (i.e., grasses). 
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CHAPTER 6 CONCLUSION 

Over the past two decades, there has been a substantial increase in our understanding of the 

value of riparian areas as unique components across the landscape (Richardson et al. 2005).  

While it is clear that the stream is strongly linked with the adjacent riparian areas, how this 

s elusive. 

Moreover, what is known about riparian vegetation dynamics is largely a result of studies of 

medium to large stream systems. Managing ecological values provided by small stream 

riparian ecosystems continue to be a focus of debate. Current management prescriptions (i.e., 

static width buffers) have no natural analogue and appear to have little scientific basis. 

Although it is not my intent, nor possible given the specific objectives of this thesis, to 

reconcile how small stream riparian systems are managed, the data presented within this 

dissertation contribute to filling the gap of knowledge of understory vegetation dynamics 

within small stream systems.  

6.1 Effects of harvesting across the riparian ecotone 

The main findings of this dissertation support my prediction that disturbance-response 

relationships vary among habitat type.  Specifically, in small stream systems, overstory 

harvesting exerts stronger controls on understory vegetation with increasing distance from the 

stream channel. Direct evidence of this was presented in chapter three, as compositional 

stability of understory vegetation after harvesting decreased from stream to upland. Moreover, 

shifts in the understory plant diversity, abundance, and species turnover were greater in the 

upland than in streamside communities. This finding is a direct reflection of the different 

mechanisms structuring understory flora along a riparian to upland gradient. Riparian flora 

bordering small stream ecosystems are driven by hydrological processes and frequent 
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flooding regimes, whereas upland flora is driven primarily by the canopy and its strong 

controls on resource availability. Along the gradient from the stream channel into the upland 

in the boreal forest, understory species shift from a diverse community of riparian obligates 

(hydrophilous species), ruderals and generalist understory species to a community dominated 

by shade-tolerant species adapted to survive in resource-stressed environments at the trade-off 

of being less competitive in productive habitats. In my boreal study areas, this gradient also 

included a shift in dominance from vascular species in the streamside communities to non-

vascular species in the upland. As indicated in other boreal studies (e.g., Fenton et al. 2003, 

Hart and Chen 2008), vascular species are more resilient to overstory harvesting than non-

vascular species as I found a strong negative relationship between compositional stability 

following harvesting and pre-harvest non-vascular cover. Moreover, changes in non-vascular 

species abundance and turnover were greater than those in vascular species following 

harvesting. Therefore assumptions on effects of overstory harvesting on understory 

communities derived from upland forests likely do not extrapolate to riparian systems.   

6.2 Effect of scarification 

Streamside communities did not have detectable changes in community diversity, 

abundance or composition following overstory harvesting without mechanical site 

preparation.  However, boreal understory communities, in both riparian and upland habitats, 

were profoundly affected by harvesting when forest floor and soil disturbance is severe. 

Scarification altered the substrate by breaking up coarse woody debris and decreasing the 

depth of organic matter, which destroyed forest floor flora, such as feathermosses, and created 

a habitat suitable for early colonizing species (i.e., grasses). 
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6.3 Management implications 

This study provides evidence of higher resilience of streamside than upland communities 

in small stream boreal forests; however there are three caveats for management applications 

stemming directly from these results. First, this study illustrates early seral responses (less 

than 10 years) and therefore it is possible that that there continues to be changes in riparian 

communities as directional shifts in species composition and diversity have been shown to last 

for more than a decade (Thomas et al. 1999, Halpern et al. 2005, Belote et al. 2012). Longer 

term investigation into riparian dynamics following disturbance harvesting is recommended. 

Second, in the main Boreal Plain study and one watershed (i.e., Dog River) in the Boreal 

Shield study, ground disturbance was minimal to not confound effects of overstory removal. 

Specifically, harvesting was done during the winter months, when the ground was frozen, to 

minimize soil compaction, and mechanical site preparation (e.g., scarification) was restricted 

to be outside of 30 m from the stream channel. Extirpation and colonization processes may be 

exaggerated when ground disturbance is more severe. Third, vegetation responses may not 

parallel responses in other ecosystem processes such as nutrient leaching, soil erosion, 

changes to water quality and quantity, or other negative effects from harvesting. Future 

studies focused on changes in riparian vegetation should be linked with our evolving 

knowledge of watershed processes following disturbance, such as patterns in surface and sub-

surface hydrology (e.g., Parratt 2012).  

 Finally, although streamside communities were similar among harvesting treatments, the 

understory communities diverged among harvesting treatments with increasing distance from 

the stream channel. In other words, communities harboured different species following 
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contrasting levels of harvesting treatments. If increasing diversity across the landscape is a 

goal of forest managers, than using a variety of riparian management prescriptions to increase 

habitat heterogeneity, thus meeting the resource and competitive requirements of more 

species, is recommended.  
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Appendix B. Soil moisture content, coarse woody debris and depth of organic matter in 
relation to habitat and harvesting in Boreal Shield watersheds. 

Source d.f. F P 2 

Non-scarified     

Soil moisture content (r2 = 0.62)     
Habitat (Hi) 2 7.10 0.005 0.44 
Disturbance (Dj) 1 15.03 0.001 0.46 
Habitat x disturbance (HDij) 2 0.13 0.88 0.01 

(ij)k) 18    
Coarse woody debris  (r2 = 0.13)     

Habitat (Hi) 2 0.09 0.91 0.01 
Disturbance (Dj) 1 2.52 0.13 0.12 
Habitat x disturbance (HDij) 2 0.03 0.97 0.01 

(ij)k) 18    
Depth of organic matter (r2 = 0.21)     

Habitat (Hi) 2 0.86 0.44 0.09 
Disturbance (Dj) 1 2.99 0.10 0.14 
Habitat x disturbance (HDij) 2 0.02 0.98 <0.01 

(ij)k) 18    

Scarified     

Soil moisture content (r2 = 0.39)     
Habitat (Hi) 2 5.00 0.02 0.36 
Disturbance (Dj) 1 1.32 0.27 0.07 
Habitat x disturbance (HDij) 2 0.18 0.84 0.02 

(ij)k) 18    
Coarse woody debris  (r2 = 0.32)     

Habitat (Hi) 2 1.05 0.37 0.10 
Disturbance (Dj) 1 6.38 0.02 0.26 
Habitat x disturbance (HDij) 2 0.02 0.98 <0.01 

(ij)k) 18    
Depth of organic matter (r2 = 0.66)     

Habitat (Hi) 2 0.07 0.94 0.01 
Disturbance (Dj) 1 34.19 <0.001 0.66 
Habitat x disturbance (HDij) 2 0.02 0.98 0.01 

(ij)k) 18    
 Variable was ln-transformed. 
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Vegetation change-over-time following harvesting in an upland permanent plot dominated by 

feathermosses and ericaceous shrubs before disturbance in Central, Alberta. 
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Vegetation change-over-time following harvesting in an upland permanent plot dominated by 

herbaceous species before disturbance in Central, Alberta. 
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