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Abstract

Motion planning for autonomous navigation in unknown environments cluttered with
obstacles is a fundamental challenge in robotics, requiring efficient, safe, and reliable
strategies for path planning. This thesis introduces two novel autonomous navigation
strategies for vehicles operating in static, unknown n-dimensional environments clut-
tered with convex obstacles. The first strategy proposes a continuous feedback controller
that steers a vehicle safely to a target destination in a quasi-optimal manner within a
“sphere world,” where each obstacle is enclosed by a sphere-shaped boundary. Under this
approach, the robot avoids obstacles by navigating along the shortest path on the sur-
face of the cone enclosing the obstacle and proceeds directly toward the target when no
obstacles obstruct the line of sight. This controller guarantees almost global asymptotic
stability in two-dimensional (2D) environments under specific obstacles configurations.
An extension of this method is also developed for real-time navigation in unknown, static
2D environments with sufficiently curved convex obstacles, maintaining the same stability
guarantees. Simulation and experimental results demonstrate the practical effectiveness
of this approach in navigating real-world environments.
While the first strategy ensures almost global asymptotic stability only under specific
conditions related to the obstacles configuration and for 2D environments, the second
strategy aims to provide a more robust solution with stronger stability guarantees. This
second strategy introduces a hybrid feedback controller designed to navigate a vehicle in
static n-dimensional Euclidean spaces cluttered with spherical obstacles. This approach
ensures safe convergence to a predefined destination from any initial position within the
obstacle-free workspace while optimizing obstacle avoidance. A novel switching mecha-
nism is proposed to alternate between two operational modes: the motion-to-destination
mode and the obstacle-avoidance mode, ensuring global asymptotic stability regardless
of the obstacles’ configuration. Numerical simulations in both known and unknown 2D
and 3D environments, along with experimental validation in a 2D setting, demonstrate
the effectiveness the proposed approach.

These strategies provide robust solutions for autonomous navigation in static, un-
known environments, contributing to the advancement of safe, efficient, and optimal
motion planning techniques for robotic systems in complex, obstacle-laden spaces.
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Chapter 1

Introduction

1.1 Motivation

Autonomous robots have become an integral part of modern technology, permeating a
variety of domains, from daily life tasks (Yamazaki et al., 2012) and industrial operations
(Czimmermann et al., 2022) to more specialized fields such as commercial applications
(Noh et al., 2024), aerial surveillance (Savkin and Huang, 2022), underwater exploration
(Vidal et al., 2017), space exploration (Guzzetti and Baoyin, 2019), and ground mobility
(Jiang et al., 2022). In the medical field, these robots are also increasingly utilized in crit-
ical procedures such as surgery and drug administration through microrobots (Haidegger,
2019; Jang et al., 2019). The transformative impact of these technologies is evident in
sectors like healthcare, where autonomous systems have enhanced the precision of mini-
mally invasive surgeries, and in industries where robots are streamlining production and
logistics.

The widespread adoption of autonomous robots across various environments empha-
sizes the need for robust control systems and advanced planning algorithms. In aerial
and underwater robotics, for example, real-time path planning is essential for ensuring
safe navigation, while in ground mobility and spacecraft exploration, dynamic adaptation
to unstructured environments is crucial. In rescue missions, the shortest path is another
necessity for successful navigation. Furthermore, microrobots used in drug delivery must
precisely navigate the human body to administer medication at targeted locations. Each
of these robotic tasks requires sophisticated control schemes and planners to ensure that
robots can navigate unknown environments, perform tasks accurately, and satisfy opti-
mality criteria. Whether it is a drone surveying a vast landscape, a robot exploring the
depths of the ocean, or a microrobot delivering medication into a patient’s bloodstream,
the success of these operations hinges on advanced algorithms that optimize task execu-
tion while guaranteeing safety and reliability.

1
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1.2 Literature review

The development of robotic autonomous navigation began in the mid-20th century,
spurred by advancements in computing and control systems. Early research focused
on basic mobile robots such as “Shakey” robot in the 1960s, which could navigate and
make decisions based on tactile sensors and a camera. In the 1970s and early 1980s,
several basic algorithms for path planning and collision avoidance have been developed,
relying on ultrasonic range finders. The 1980s saw the introduction of Oussama Khatib’s
groundbreaking Artificial Potential Field (APF) approach, which transformed the robotic
navigation. This reactive navigation approach represented a shift from traditional nav-
igation methods. Several extensions and modifications to the APF approach have been
introduced over the years and new sophisticated autonomous navigation techniques have
emerged due to the advancements in processing and sensors technologies, intelligent al-
gorithms and control theory.

The autonomous robot navigation strategies can mainly be grouped into two ap-
proaches; the plan-and-track approach and the feedback-based approach. The plan-and-
track approach is a two-stage process in which a collision-free path is first generated based
on a geometric model of the workspace and then tracked by a low-level control. The gen-
erated path is eventually refined to satisfy differential constraints in order to design a
trajectory that can be tracked by feedback control. Path optimality is another inter-
esting problem frequently considered when generating paths with this approach, where
the shortest path problem has received the most attention. On the other hand, the
feedback-based approach is a reactive (sensor-based) approach allowing to directly de-
sign a feedback control input (low-level control) that steers the robot to a target location
along a collision-free trajectory without any a priori path planning.

1.2.1 Plan-and-track approach

Path planning is the most crucial phase in the plan-and-track approach. In this phase,
a roadmap of the obstacle-free configuration space is constructed, and then search algo-
rithms such as Dijkstra (Dijkstra, 1959) or A* (A star) (Hart et al., 1968) determine the
shortest feasible path connecting a valid initial/final goal pair. Path planners adopt two
methods for constructing configuration space roadmaps: combinatorial and sampling-
based (LaValle, 2006). The combinatorial methods rely on an exact and explicit repre-
sentation of the configuration space, leading to complete algorithms and exact shortest
paths. One of the earliest combinatorial methods is the visibility graph (VG) approach
(Nilsson, 1969), designed for two-dimensional environments cluttered with polygonal ob-
stacles. It connects every two visible vertices between all possible pairs of obstacles (the
line segment connecting the vertices must belong to the obstacle-free space), thereby
forming a graph. By connecting a valid initial/final goal pair to the resulting graph, it is
possible to determine the shortest path, shown to belong to the VG (Nilsson, 1969), using
search algorithms. An optimized version of the VG was proposed in (Rohnert, 1986),
called the tangent visibility graph (TVG), where the graph is reduced to the minimal
sub-graph containing the shortest path (Kamon et al., 1998).
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In this optimized graph, only the common tangents (also called bitangents) between
each pair of obstacles are taken into account. The TVG was extended in (Laumond,
1987; Liu and Arimoto, 1992) to solve the shortest path problem in two-dimensional en-
vironments with curved obstacles, as illustrated in Fig. 1.1. Unfortunately, this approach
is limited to 2D environments (LaValle, 2006; Latombe, 2012). It was shown in (Canny
and Reif, 1987) that the shortest path problem in 3D environments with polyhedral ob-
stacles is NP-hard, and the best that can be obtained is an approximation to the shortest
path (Latombe, 2012). The sampling-based methods do not require an explicit repre-
sentation of the obstacle regions but use a sampling scheme to explore the configuration
space (LaValle, 2006), resulting in weaker notions of completeness, such as probabilistic
completeness in the sense that the probability that the planner fails to return a solution,
if one exists, decays to zero as the number of samples approaches infinity (Barraquand
et al., 1996). In this category, we find single-query planning algorithms, such as the
rapidly exploring random trees (RRTs) (LaValle, 1998), which gradually construct a
search tree for a pair (initial position/final position), or multiple-query algorithms, such
as the probabilistic roadmaps (PRMs) (Kavraki et al., 1996), which connect several (ini-
tial position/final position) pairs to a configuration space roadmap and then search for a
feasible path. The path planning algorithms such as RRTs, PRMs, expansive space trees
(Hsu et al., 1997; Phillips et al., 2004), Lazy-PRM (Bohlin and Kavraki, 2000), sampling-
based roadmap of trees (Plaku et al., 2005), or rapidly exploring roadmap (Alterovitz
et al., 2011) guarantee the probabilistic completeness but generally provide non-optimal
paths. The variants RRT* and PRM* (Karaman and Frazzoli, 2011), RRT# (Arslan and
Tsiotras, 2013), or the fast marching tree (FMT*) (Janson et al., 2015) are asymptot-
ically optimal, that is, the cost (often the arc length function) of the returned solution
converges probabilistically to the optimum (Janson et al., 2018). Reactive path planners
are local approaches that rely on sensors to plan local paths in real-time. Bug algorithms
are examples of reactive planners that operate in 2D environments under two modes of
motion: motion towards the target and boundary following. The first two bug algo-
rithms, Bug1 and Bug2, introduced in (Lumelsky and Stepanov, 1986), rely on contact
sensors. Other variants have appeared since then using range sensors, such as VisBug
(Lumelsky and Skewis, 1990) and TangentBug (Kamon et al., 1998). The performance
of the different bug algorithms depends strongly on the geometry of the workspace, as
shown in the comparative study in (Ng and Bräunl, 2007).

1.2.2 Feedback-based approach

A popular approach in the feedback-based category is the artificial potential field (APF)
approach proposed by Khatib in (Khatib, 1986). The idea of this approach is to consider
that the robot is moving in a force field where the target location generates an attractive
force and the obstacles generate repulsive forces. The superposition of the potential of the
respective forces (attractive and repulsive forces) constitutes the APF of the workspace.
The negative gradient of the APF steers the robot safely to reach its target (at the min-
imum of the APF) as shown in Fig. 1.2-(a). Unfortunately, local minima are generated
in some APF constructions due to the superposition of different potentials, resulting in
convergence to the target not being guaranteed, as shown in Fig. 1.2-(b).
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(a) (b)

Figure 1.1: The shortest path in a tangent visibility graph from two different initial
positions. The initial positions are represented by red squares, and the destination is
represented by a red dot. The blue trajectories correspond to the shortest path to the
destination.

The problem of local minima was solved by the navigation function (NF) approach

(a) (b)

Figure 1.2: Navigation under APF-based control. In the left figure (a), the robot, starting
from the initial position (green dot), converges safely to the destination (red dot). In the
right figure (b), the robot is trapped in a local undesired minimum of the APF.

proposed by Rimon and Koditcheck (Koditchek and Rimon, 1990) to navigate sphere
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worlds1. The NF is a polar potential function (i.e., it has a unique minimum at the
target location) if a tuning parameter is large enough. The negative gradient of a well
tuned NF, taken as a control input, makes the destination as a unique minimum of the
NF. The example in Fig. 1.3 shows the contour plot of a NF with two different tuning
parameters. In Fig. 1.3-(a), the NF is well-tuned, and the destination (red dot) is its
unique minimum. In Fig. 1.3-(b), the tuning parameter is not large enough to make the
NF polar, where one can observe the generation of three local minima illustrated by pink
crosses. Although well-tuned NFs do not generate local minima, their negative gradient
must generate at lest as many saddle points as obstacles in the workspace. The stable
manifolds associated to these unstable saddle points are of zero Lebesgue measure. This
topological obstruction induced by the motion space involving time-invariant continuous
vector fields prevents global navigation, where, at best, almost global asymptotic stabil-
ity2 (AGAS) of the target location is achieved (Koditchek and Rimon, 1990). Therefore,
NFs ensure that the target can be reached safely from any initial position in the free space
except from a set of zero Lebesgue measure associated to the saddle points (undesired
equilibria). These saddle points and their attraction sets are represented, respectively,
by the blue dots and the red segments in Fig. 1.4. In (Rimon and Koditchek, 1992), a
tunable diffeomorphism was proposed for navigation in star worlds3 by mapping these
complicated spaces to sphere worlds in which the NF was initially designed. Figure 1.5 is
an example of a star world with five obstacles diffeomorphic to its model sphere world in
Fig. 1.3-(a). Although the existence of a threshold for the tuning parameters of both the
NF and the diffeomorphism is theoretically guaranteed, their calculation is not simple
(Loizou, 2017). In (Loizou, 2011b; Loizou, 2017), a tuning-free navigation function was
proposed in point worlds4. The navigation is accomplished with AGAS guarantees by
diffeomorphically mapping sphere worlds to point worlds using the proposed tuning-free
“Navigation Transformation”. Given the simplicity of the point world model, a time-
abstracted solution to the motion-planning problem is guaranteed. Recently, a one-step
tuning-free navigation transformation from star worlds to point worlds was proposed in
(Constantinou and Loizou, 2020), achieving AGAS of a target location in star worlds.

Based on the extension of the NFs to multi-robot NFs presented in (Loizou and
Kyriakopoulos, 2002), a decentralized version was proposed in (Dimarogonas and Kyri-
akopoulos, 2007) for multi-agent systems with a limited sensing range. A tuning-free and
locally computable NF was proposed in (Lionis et al., 2007) to navigate sphere worlds by
restricting the influence of every obstacle to its neighborhood. Similarly, a local polyno-
mial NF was designed in (Lionis et al., 2008) followed by a local diffeomorphism to map
spaces with convex obstacles to sphere worlds. This NF is local in the sense that it only

1A sphere world is a ball of dimension n punctured by a finite number of n-dimensional disjoint
smaller balls (Koditchek and Rimon, 1990).

2An equilibrium point is almost globally asymptotically stable if it is stable and attractive from all
initial conditions except from a set of zero Lebesgue measure.

3A star world is a ball of dimension n punctured by a finite number of star-shaped sets possessing
a distinguished “center point” from which rays cross their boundary once and only once (Rimon and
Koditchek, 1992).

4The n-dimensional Euclidean space (or an n-dimensional ball of infinite radius) punctured by a finite
number of points (Loizou, 2017).
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(a) (b)

Figure 1.3: Contour plot of a NF in a sphere world with five internal obstacles. In the
left Figure (a), the contour plot shows the polarity of the NF with the target (red dot) as
the unique minimum. In the right figure (b), the contour plot shows three local minima
(pink crosses).

Figure 1.4: Generation of saddle points (blue dots) by the negative gradient of a NF in
a sphere world. The attraction regions of the saddle points are represented by the red
segments and the target by the red dot.
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Figure 1.5: Contour plots of a NF in a star world with five internal obstacles.

requires complete information on current and adjacent obstacles. An explicit formulation
of the lower bound on the tuning parameter of the Rimon-Koditcheck NF has been pro-
posed in (Filippidis and Kyriakopoulos, 2011), followed by an automatic tuning algorithm
solving the navigation problem in unknown sphere worlds. The Rimon-Koditchek NF
was shown in (Filippidis and Kyriakopoulos, 2012; Filippidis and Kyriakopoulos, 2013;
S. Paternain and Ribeiro, 2018) to be valid for more general worlds than sphere worlds,
in particular, sufficiently curved worlds. In these worlds, the target is sufficiently far
apart from the borders of the obstacles relative to their flatness (i.e., the ball centered
on the target, whose radius is the distance between the target and the farthest point of
any given obstacle in the workspace, fully encompasses that obstacle). This curvature
condition was relaxed in (Kumar et al., 2022; Kumar et al., 2020) by correcting the
NF gradient so that the world appears spherical to the robot using the Hessian of the
obstacle functions (functions describing the geometry of the obstacles) and the objective
function (usually the Euclidean distance between the robot position and the target posi-
tion). In (S. Paternain and Ribeiro, 2018), a switched controller is used for sensor-based
navigation, where the NF is updated each time an obstacle is detected. However, the
complete shapes of the obstacles are assumed to become known once the obstacles are
detected, and the absence of local minima is not guaranteed. A stochastic extension of
the NFs was proposed in (Paternain and Ribeiro, 2020) to navigate the same worlds as
in the deterministic case when local and noisy sensor information of the environment is
available. Recently, a tuning-free NF based on harmonic potentials has been proposed in
(Loizou and Rimon, 2021) to navigate worlds topologically equivalent to sphere worlds,
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using symmetric sectors range scanners. These worlds are assumed to be unknown, but
the complete shape of their obstacles becomes known once detected.

Another solution to the local minima problem is the use of harmonic potential func-
tions. The authors of (Connolly et al., 1990; Connolly, 1992) drew an analogy between
the navigation problem and charge distribution and fluid flow, and proposed a numerical
construction of a harmonic potential function using the superposition of Dirichlet and
Neumann solutions. Another construction of harmonic potential functions has been pro-
posed in the context of real-time obstacle avoidance in (Kim and Khosla, 1992), based on
the panel method, which approximates obstacles of arbitrary shape by polygonal shapes
by surrounding the obstacles with virtual panels. In the same context but in dynamic
environments, the solution of (Feder and Slotine, 1997) uses a global model of the en-
vironment but does not always guarantee safety and convergence. However, in static
environments, safety and convergence are always guaranteed. The use of the harmonic
potential functions has been extended in (Pimenta et al., 2008) to the multi-robot case.
The swarm is modeled as an incompressible fluid based on smoothed particle hydrody-
namics, where the global function solves the pattern generation task in the presence of
static obstacles. The construction of a navigation function based on harmonic potential
functions in a two-dimensional space was proposed in (Loizou, 2011a). An adaptive law
is designed for a tuning parameter that ensures non-degeneracy of the critical points. In
addition, this navigation function enjoys the properties of harmonic functions that allow
a natural decoupling of the effects of the obstacles and the goal, but most importantly,
it frees the navigation function from the offline tuning phase required in (Koditchek and
Rimon, 1990). The author considered both kinematic and dynamic holonomic systems
and provided almost global convergence results. In (Loizou, 2012), a navigation function
based on harmonic functions has been proposed to navigate complex 3-D workspaces,
wherein no systematic and constructive approach was given. Recently, the construction
of a harmonic-based artificial potential field, similar to the one in (Loizou, 2011a), re-
lying on a harmonic transformation from an arbitrary bounded 2D space to a punched
disk, was proposed in (Vlantis et al., 2018). Moreover, unlike in (Loizou, 2011a), the
target location can be on the boundary of the workspace. To deal with a large and
complex workspace, the author partitions it into rooms where each room is associated
with a transformation, and the transition from one room to another is smooth. Further-
more, all these transformations form an Atlas of harmonic maps. Although free of local
minima, harmonic potentials are extremely difficult to construct in a navigation context
(Vlantis et al., 2018). Indeed, the only well-structured harmonic-based artificial potential
fields are not themselves harmonic, and only solve the problem of motion planning in 2D
spaces (Loizou, 2011a; Vlantis et al., 2018). For the 3D case, no systematic construction
has been proposed for the transformations, but only a case study has been presented in
(Loizou, 2012).

In (Arslan and Koditschek, 2016), the authors proposed a reactive navigation ap-
proach by constructing a convex obstacle-free local set around the robot using the hy-
perplanes separating the robot from the neighboring obstacles, as shown by the green
polygonal shape in Fig. 1.6-(a), and then steering the robot towards the projection of
the target location onto the boundary of this convex set. The proposed feedback control
ensures safe navigation in a sphere world and convergence to the destination from almost
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everywhere except from a set of zero Lebesgue measure. This work was extended in
(Arslan and Koditschek, 2019) to navigate in environments similar to those in (S. Pa-
ternain and Ribeiro, 2018) containing sufficiently curved obstacles as illustrated in Fig.
1.7, using obstacle sensors (see Fig. 1.6b for an illustration). An extension of this work
was carried out in (Vasilopoulos and Koditschek, 2018), where the workspace contains
unknown convex obstacles and a class of geometrically known obstacles whose numbers
and locations are unknown. Obstacles in the latter class have the shape of a non-convex
star and are called “familiar obstacles”. Once the familiar obstacles are detected and
identified, they are transformed by diffeomorphism into disks, unlike the unknown con-
vex obstacles, which retain their shape as detected. A new challenge was brought to
the workspace in (Vasilopoulos et al., 2020), where non-convex obstacles are replaced by
polygonal obstacles with possible overlap. A hybrid feedback control is then designed to
safely steer the robot to the target. As a further challenge in (Vasilopoulos et al., 2021),
authors considered a moving target.

(a) (b)

Figure 1.6: Local obstacle-free space (green) of a point robot (blue) obtained by the
maximum margin separating hyperplanes of the robot body (blue) and obstacles (grey).
The metric projection of the red target onto the local obstacle-free space is represented
by a black dot. In the left figure (a), the robot assumes knowledge of adjacent obstacles
to construct a local obstacle-free space. In the right figure (b), the robot has an onboard
LiDAR that scans a limited region (orange) and then can build a local obstacle-free space
from the detected obstacles portions.

Another sensor-based autonomous navigation approach, relying on Nagumo’s the-
orem (Nagumo, 1942), was proposed in (Berkane, 2021; Lyes and Soulaimane, 2024)
to navigate in environments with sufficiently curved obstacles similar to those consid-
ered in (S. Paternain and Ribeiro, 2018; Arslan and Koditschek, 2019). This approach
mimics the Bug algorithms, more precisely the DistBug algorithm (Kamon and Rivlin,



10

Figure 1.7: Illustration of the obstacle curvature condition in (Arslan and Koditschek,
2019, Assumption 2) with elliptical obstacles. The condition is that the obstacle must
be entirely contained within the ball whose center is the target (red) and whose radius
is equal to the distance between the target and the stationary point (blue). Obstacle O1

satisfies the condition, while obstacle O2 does not.

1997), by smoothly switching between a target stabilizing controller and an obstacle
avoidance controller. As a result, safety and AGAS are guaranteed, which we illustrate
through the example in Fig. 1.8. In (Prajna and Jadbabaie, 2004; Prajna, 2003), a
new variant of Nagumo’s theorem was introduced in the form of barrier certificates to
guarantee the safety of nonlinear and hybrid systems. By analogy to Control Lyapunov
Functions (CLFs), Control Barrier Functions (CBFs) have been introduced in (Wieland
and Allgöwer, 2007) to design feedback controllers with safety guarantees for dynam-
ical systems. CBFs and CLFs were unified in (Ames et al., 2014; Ames et al., 2017)
through quadratic programs (QPs) for the design of navigation controllers guaranteeing
the stabilization of a desired target location with safety guarantees. Although elegant
and efficiently combining safety and stabilization, the QP-based framework, proposed in
(Ames et al., 2014; Ames et al., 2017), suffers from the generation of stable undesired
equilibria (Reis et al., 2021; Tan and Dimarogonas, 2024). A modified version of the
QP-based control was proposed in (Reis et al., 2021; Tan and Dimarogonas, 2024) to
eliminate certain types of undesired equilibria while ensuring local asymptotic stability
of the target location.

None of the aforementioned works has achieved global asymptotic stability5 (GAS) of
the target using time-invariant continuous state feedback due to the topological obstruc-
tion pointed out in (Koditchek and Rimon, 1990). As an alternative, hybrid feedback

5An equilibrium point is globally asymptotically stable if it is stable and attractive from all initial
conditions.
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Figure 1.8: A DistBug-like trajectory in a workspace cluttered with elliptical obstacles.

controllers have been proposed in the literature to achieve GAS of the target location. A
hybrid state feedback control providing robust global asymptotic stabilization of a target
location while avoiding a single obstacle was proposed in (Sanfelice et al., 2006). This
approach was extended in (Poveda et al., 2018) to autonomously navigate a group of
vehicles to an unknown source, emitting a signal of measurable intensity in an environ-
ment containing a single obstacle. Hybrid state feedback, guaranteeing robust GAS of
a target location while avoiding the neighborhood of a point obstacle, was proposed in
(Braun et al., 2018) and extended in (Braun et al., 2021) to the case of multiple ob-
stacles. The work in (Berkane et al., 2019) achieves GAS of a desired target location
in n-dimensional Euclidean spaces with a single spherical obstacle. Similar to the Bug
strategy, the proposed hybrid scheme switches between two navigation modes, namely,
stabilization and avoidance modes, generating a discontinuous control input. An exten-
sion was proposed in (Berkane et al., 2022) for n-dimensional Euclidean spaces cluttered
with sufficiently disjoint ellipsoidal obstacles. The strategy of this hybrid approach is
illustrated in Fig. 1.9 by a trajectory that safely connects an initial position (black dot)
to a final destination (red dot) while avoiding three elliptical obstacles, with the black
portion of the trajectory representing the stabilization mode and the orange portion of
the trajectory representing the avoidance mode. Recently, a similar hybrid strategy was
proposed in (Sawant et al., 2023) to safely navigate in a priori unknown two-dimensional
environments with arbitrary convex obstacles using onboard range scanners. The pro-
posed hybrid feedback control guarantees GAS of the target location and generates con-
tinuous control input. This approach was further extended in (Sawant et al., 2024a)
to navigate in two-dimensional environments with non-convex obstacles. Although the
above-mentioned hybrid feedback-based approaches provide GAS results, the generated
trajectories are not optimal in terms of length.
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Figure 1.9: Safe navigation under a hybrid Bug-like strategy in a 2D workspace cluttered
with elliptical obstacles. The black portions of the trajectory represent the stabilization
mode, the orange portions of the trajectory represent the avoidance mode, the black dot
represents the initial position, and the red dot represents the target.

1.3 Thesis contributions

In this dissertation, we aim to bridge the gap between the plan-and-track approaches,
which generally prioritize path-length optimality, and feedback-based approaches, which
are favored for their practicality and robustness. By integrating the principles of path-
length optimization into feedback-based strategies, this work seeks to improve the effi-
ciency of navigation systems while retaining their practicality. In particular, we address
the problem of autonomous navigation in n-dimensional workspaces cluttered with con-
vex obstacles using continuous and hybrid feedback controllers. Below, we summarize
the main contributions of the present thesis.

Chapter 3 presents a continuous feedback control strategy for autonomous navigation in
n-dimensional sphere worlds, and two-dimensional environments with arbitrary convex
and sufficiently curved obstacles. A sensor-based implementation of our control approach
in a priori unknown 2D environments with arbitrary convex and sufficiently curved ob-
stacles is also proposed and experimentally validated. The main contributions of the
proposed approach are summarized as follows:

1. The proposed continuous feedback control generates quasi-optimal trajectories in
terms of length. The generated trajectories are often the shortest, as illustrated
through extensive simulation results.

2. Except for the restrictions imposed by the standard separation conditions of As-
sumptions 3.1 and 3.2, the environment can be highly dense, and the destination
can be located arbitrarily close to the boundaries of the obstacles.
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3. The reactive (sensor-based) version of our approach applies to a priori unknown 2D
environments with arbitrary convex and sufficiently curved obstacles, and ensures
almost global asymptotic stabilization of the target location.

4. A successful implementation of the reactive autonomous navigation approach on a
Turtlebot 4 platform, exclusively relying on onboard sensors.

The results presented in this chapter have been published in (Cheniouni et al., 2023b;
Cheniouni et al., 2024c).
Chapter 4 proposes a hybrid feedback control strategy for safe autonomous navigation
in n-dimensional Euclidean spaces with spherical obstacles. The proposed strategy relies
on two different modes of operation: the motion-to-destination mode, where the robot
moves directly toward the target when it has a clear line-of-sight, and the locally-optimal
obstacle-avoidance mode when the robot does not have a clear line-of-sight to the target
location. The main contributions of the proposed approach are summarized as follows:

1. The proposed hybrid feedback control strategy ensures safe navigation in n-dimensional
Euclidean spaces with spherical obstacles while providing GAS guarantees for the
target location.

2. The proposed hybrid feedback controller produces continuous vector fields.

3. The proposed approach enables the robot to optimally avoid obstacles (i.e., via the
shortest path) when they block the path to the target.

4. Navigation under the proposed control strategy applies to a priori unknown 2D and
3D environments, relying solely on range scanners. A successful implementation of
the proposed approach on a Turtlebot 4 platform, exclusively relying on onboard
sensors, further validates its practicability.

The results presented in this chapter are reported in (Cheniouni et al., 2024a) and (Che-
niouni et al., 2024b).
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1.4 Thesis outline

This thesis is organized as follows:

Chapter 2 presents the notations, background and preliminaries used throughout the
thesis. Section 2.1 provides the general notations used in this thesis. Section 2.2 presents
the projection maps used throughout the thesis. Section 2.3 provides the mathematical
definitions of several geometrical subsets of Rn used throughout this work. Finally, Sec-
tion 2.4 presents the hybrid systems framework used in this dissertation.

Chapter 3 tackles the autonomous navigation problem in environments with con-
vex obstacles considering continuous feedback-based controllers. Section 3.4 presents the
design of the proposed feedback controller for autonomous navigation in n-dimensional
sphere worlds. Safety and stability properties are studied in Section 3.5. The feedback
controller proposed in Section 3.4 is extended in Section 3.6 to a priori unknown pla-
nar environments with convex obstacles relying on onboard range scanners. Section 3.7
presents numerical simulation results. Section 3.8 reports the experimental results.

Chapter 4 is dedicated to the design and stability analysis of a hybrid feedback con-
troller solving the autonomous navigation problem with local optimal obstacle avoidance
maneuvers in n-dimensional Euclidean spaces cluttered with spherical obstacles. Section
4.3 is devoted to the design of the proposed hybrid controller and the analysis of the
properties of the resulting closed-loop system. The analyzed properties include forward
invariance, stability, and optimality. Section 4.4 presents a sensor-based implementation
of the proposed hybrid feedback control presented in Section 4.3 for autonomous nav-
igation in two- and three-dimensional environments using range scanners. Simulation
results follow in Section 4.5. Experimental results are presented in Section 4.6.

Chapter 5 summarizes the findings of this thesis and presents some possible future
directions.

Appendices A and B contain the detailed proofs of the lemmas and theo-
rems stated throughout this thesis.



Chapter 2

Background and Preliminaries

2.1 General notations

Throughout the thesis, N, R, R≥0 and R>0 denote the set of natural numbers, real num-
bers, non-negative real numbers and positive real numbers, respectively. The Euclidean
space and the unit n-sphere are denoted by Rn and Sn, respectively. The Euclidean
norm of x ∈ Rn is defined as ∥x∥ :=

√
x⊤x and the angle between two non-zero vectors

x, y ∈ Rn is given by ∠(x, y) := cos−1(x⊤y/∥x∥∥y∥). The identity matrix is denoted by
In ∈ Rn×n. The interior, the boundary, and the closure of a set A ⊂ Rn are denoted by
Å, ∂A, and A, respectively. The relative complement of a set B ⊂ Rn with respect to
a set A ⊆ Rn is denoted by A \ B. The distance of a point x ∈ Rn to a set A ⊂ Rn is
defined as d(x,A) := inf

q∈A
∥q − x∥.

2.2 Projection maps

Projection maps are essential tools in linear algebra for transforming vectors relative to
specific subspaces, and are useful to develop our proposed navigation strategies in this
thesis. In particular, we recall here three types–elementary reflector, elementary parallel
projection, and elementary orthogonal projection–each with distinct properties relevant
to our proposed approaches.

• The elementary reflector
Let v ∈ Sn−1 be a unit vector, we define the elementary projection map as (Meyer,
2000):

πr(v) := In − 2vv⊤. (2.1)

Then, for any vector x ∈ Rn, the vector πr(v)x represents the reflection of x about
the hyperplane orthogonal to v.

• The elementary parallel projection
Given a unit vector v ∈ Sn−1, then the elementary parallel projection map is defined

15
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as (Meyer, 2000):

π∥(v) := vv⊤. (2.2)

Consequently, for any vector x ∈ Rn, the vector π∥(v)x represents the projection
of x onto the line generated by v.

• The elementary orthogonal projection
Let v ∈ Sn−1 be a unit vector, then the elementary orthogonal projection map is
defined as (Meyer, 2000):

π⊥(v) := In − vv⊤. (2.3)

Therefore, for any vector x ∈ Rn, the vector π⊥(v)x represents the projection of x
onto the hyperplane orthogonal to v.

Each of the above projection maps has unique properties that make them useful in
different contexts. Given a unit vector v ∈ Sn−1, the following relationships hold:

πr(v)v = −v, πr(v)πr(v) = In, (2.4)

π∥(v)v = v, π∥(v)π∥(v) = π∥(v), (2.5)

π⊥(v)v = 0, π⊥(v)π⊥(v) = π⊥(v). (2.6)

These properties highlight the idempotent nature of projection operators, as well as their
ability to maintain or cancel out specific vector components relative to v.

2.3 Subsets of the Euclidean space

In this section, we define sets that will help model the workspace and rigorously formulate
our navigation problem. These sets are also necessary for the design of the navigation
strategies proposed in this thesis.

• Ball
Given x ∈ Rn and r ∈ R>0, a ball centered at x with radius r is given by

B(x, r) := {q ∈ Rn| ∥q − x∥ ≤ r} . (2.7)

• Line
Let x ∈ Rn and y ∈ Rn where x ̸= y, then a line passing through the points x and
y is defined as

L(x, y) := {q ∈ Rn|q = x+ λ(y − x), λ ∈ R} . (2.8)

• Half line
Let x ∈ Rn and v ∈ Rn \ {0}, then the half line starting from x with direction v is
defined as

Lh(x, v) := {q ∈ Rn|q = x+ λv, λ ≥ 0} . (2.9)
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• Line segment Let x ∈ Rn and y ∈ Rn where x ̸= y, then a line segment joining
the points x and y is given by

Ls(x, y) := {q ∈ Rn|q = x+ λ(y − x), λ ∈ [0, 1]} . (2.10)

• Hyperplane
Given x ∈ Rn and v ∈ Rn \ {0}, the hyperplane passing through x and orthogonal
to v is defined as

P=(x, v) =
{
q ∈ Rn|v⊤(q − x) = 0

}
. (2.11)

P=(x, v). The closed negative half-space (resp. open negative half-space) is denoted
by P≤(x, v) (resp. P<(x, v)) and the closed positive half-space (resp. open positive
half-space) is denoted by P≥(x, v) (resp. P>(x, v)).

• Cone
Given x ∈ Rn, v ∈ Rn, and φ ∈ (0, π

2
], a conic subset of A ⊆ Rn, with vertex x,

axis v, and aperture 2φ is defined as

C∆A (x, v, φ) :=
{
q ∈ A|∥v∥∥q − x∥ cos(φ)∆v⊤(q − x)

}
, (2.12)

where ∆ ∈ {≤, <,=, >,≥}, with “ = ”, representing the surface of the cone, “ ≤ ”
(resp. “ < ”) representing the interior of the cone including its boundary (resp.
excluding its boundary), and “ ≥ ” (resp. “ > ”) representing the exterior of the
cone including its boundary (resp. excluding its boundary). The set of vectors
parallel to the cone C=Rn(x, v, φ) is defined as follows:

V(v, φ) :=
{
w ∈ Rn| w⊤v = ∥w∥∥v∥ cos(φ)

}
. (2.13)

In what follows, we state a property of cones sharing the same vertex (Berkane
et al., 2019, Lemma 1).

Lemma 2.1 Let c, v−1, v1 ∈ Rn such that ∠(v−1, v1) = ψ where ψ ∈ (0, π]. Let
φ−1, φ1 ∈ [0, π] such that φ−1 + φ1 < ψ < π − (φ−1 + φ1). Then

C≤Rn(c, v−1, φ−1) ∩ C≤Rn(c, v1, φ1) = {c}. (2.14)

Lemma 2.1 limits the angular aperture of two cones with the same vertex such
that they do not intersect (their interior, including the boundaries) except at their
common vertex.

• Bouligand’s tangent cone
Given a closed set1 K, the tangent cone to K at x is defined as (Georges, 1932)

TK(x) := {z : lim
τ→0

inf τ−1d(x+ τz,K) = 0}. (2.15)

1A closed set is a set that contains its limit points.
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Bouligand’s Tangent cone represents all possible directions from x that keep us
close to the set K when an infinitesimally small step is taken. For example, if x
is in the interior of the set K, Boulogand’s tangent cone will be the whole space
(the Euclidean space in our case). Another example is when x is on the boundary
of K and K has a smooth boundary, Bouligand’s tangent cone is then the tangent
space ofK at x. Bouligand’s tangent cone has expanded the notion of tangency from
tangency to smooth boundaries to tangency to nonsmooth and irregular boundaries,
which helped show sets’ invariance of broader geometrical classes.

Although some of these sets belong to basic geometrical classes, they play an essential
role in a clear and rigorous representation of the robot’s environment and simplify the
design and proof of the results in this dissertation.

2.4 Hybrid dynamical systems

Hybrid systems are dynamic systems that combine continuous evolution and discrete
jumps of the state, allowing a better representation of physical systems, such as me-
chanical systems with impacts. The hybrid model used in this thesis is the framework
of hybrid systems developed in (Goebel et al., 2009; Goebel et al., 2012) that describes
the continuous evolution with differential inclusions and discrete jumps with difference
inclusions. Consider a manifold X embedded in Rn and its tangent space TX . A general
model for hybrid systems takes the form:{

ẋ ∈ F(x) x ∈ F
x+ ∈ J(x) x ∈ J

(2.16)

where

• F ⊂ X is the flow set where the continuous evolution of the state is allowed,

• J ⊂ X is the jump set where the discrete state evolution is allowed,

• The flow map F : X ⇒ TX governs the continuous flow on F ,

• The jump map J : X ⇒ X governs the discrete jumps on J .

Note that ⇒ denotes a set-valued mapping, and x+ denotes the value of x after an
instantaneous jump. The hybrid system (2.16) is defined by its data and denoted as
H = (F ,F,J , J). It is worth noting that the hybrid system framework (2.16) is generic
in the sense that it can represent purely continuous dynamics when the flow set equals
the state space X and the jump set is empty, or vice versa to represent purely discrete
dynamics.

Solutions of a hybrid system are parameterized by the time t ∈ R≥0 spent in the
flow set and the number of jumps j ∈ N of the state. The structure that represents



19

this parameterization, known as a hybrid time domain, is denoted by E ⊂ R≥0 × N and
defined as follows

E =
J−1⋃
j=0

([tj, tj+1], j)

for some finite sequence of time 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ with the last interval, if
existent, being possibly of the form [tJ−1, T ) × {J} and T finite or T = +∞. For any
(t, j) and (t′, j′) belonging to a hybrid time domain, one has (t, j) ≤ (t′, j′) if and only if
t ≤ t′ and j ≤ j′.

Definition 2.1 (Goebel et al., 2012) A hybrid arc is a function x : dom x → X , where
dom x is a hybrid time domain, for each fixed j, t → x(t, j) is a locally absolutely
continuous function on the the interval

Ij = {t : (t, j) ∈ E}

The hybrid arc x is a solution to the hybrid system H, given in (2.16), if x(0, 0) ∈ F ∪J
and the following conditions are satisfied (Goebel et al., 2012):

• Flow condition: for each j ∈ N such that Ij has nonempty interior with

ẋ(t, j) ∈ F(x(t, j)), for almost all t ∈ Ij, (2.17)

x(t, j) ∈ F , for all t ∈ [min Ij, sup Ij). (2.18)

• Jump condition: for each (t, j) ∈ dom x such that (t, j + 1) ∈ dom x with

x(t, j + 1) ∈ J(x(t, j)), (2.19)

x(t, j) ∈ J . (2.20)

The following definitions characterize the nature of a hybrid system solution:

Definition 2.2 (Goebel et al., 2012) A solution x to H is said to be maximal if there
is no other solution x∗ to H such that dom x is a proper subset of dom x∗ and x(t, j) =
x∗(t, j) for all (t, j) ∈ dom x.

Definition 2.3 (Goebel et al., 2012) A solution x to H is said to be complete if its
domain, namely dom x, is unbounded.

Definition 2.4 (Goebel et al., 2012) A solution x to H is said to be precompact if it is
complete and bounded.

Remark 2.1 It follows from the above definitions that every complete solution of H is
maximal, but the opposite is not necessarily true.

Three basic conditions/assumptions were introduced for the framework (2.16) to guar-
antee the existence of solutions, the robustness of stability in the presence of small per-
turbations, and other important properties (Goebel et al., 2012, Assumption 6.5). These
hybrid basic conditions are satisfied by the hybrid system H if
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• the flow set F and the jump set J are closed sets in X ,

• the flow map F : X ⇒ TX is outer semicontinuous 2 and locally bounded3 relative
to F , and the set F(x) is nonempty and convex for every x ∈ F .

• The jump map J : X ⇒ X is outer semicontinuous and locally bounded relative to
J , and J nonempty for every x ∈ J .

2This means that for every x0 ∈ X , one has lim supx→x0
F(x) ⊆ F(x0).

3This means that for each x0 ∈ F , there exists a neighborhood Nx0 of x0 such that all sets in the
range of F (i.e., F(x) for x ∈ Nx0

) are bounded sets.



Chapter 3

Safe and Quasi-Optimal
Autonomous Navigation in
Environments with Convex
Obstacles

3.1 Introduction

In this chapter, we address the problem of autonomous robot navigation in environments
cluttered with convex obstacles. Most existing feedback-based navigation approaches
focus mainly on safety and stability guarantees without paying much attention to the
lengths of the generated trajectories. The NF-based approach is an example of a feedback-
based autonomous navigation strategy that guarantees AGAS of a target location in
sphere worlds (Koditchek and Rimon, 1990), star worlds (Rimon and Koditchek, 1992)
and sufficiently curved convex worlds (Filippidis and Kyriakopoulos, 2012; S. Paternain
and Ribeiro, 2018). Other extensions of the NF-based approach dealing with multi-robot
navigation (Loizou and Kyriakopoulos, 2006; Dimarogonas et al., 2006) or sensor-based
navigation (Loizou and Rimon, 2021) have also been proposed in the literature. Unfortu-
nately, path-length optimality was not among the various extensions except the Optimal
Navigation Function based approach proposed for navigation in 2D polygonal environ-
ments without internal obstacles (LaValle, 2006). This approach generates discontinuous
vector fields and does not extend to 3D environments. Another example of a feedback-
based approach is the purely reactive sensor-based controller proposed in (Arslan and
Koditschek, 2016) for navigation in sphere worlds from almost all initial positions in the
obstacle-free space. This approach was extended to deal with sufficiently curved con-
vex obstacles (Arslan and Koditschek, 2019) and non-convex obstacles (Vasilopoulos and
Koditschek, 2018; Vasilopoulos et al., 2020), but again, path-length optimality is not
addressed by this approach. The same remark applies to the hybrid feedback navigation
approaches that guarantee GAS of the target in n-dimensional Euclidean spaces with
ellipsoidal obstacles (Berkane et al., 2022) or in two-dimensional environments with con-
vex (Sawant et al., 2023) or non-convex obstacles (Sawant et al., 2024b). The generated
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trajectories of these hybrid feedback approaches are not length optimal and are similar
to those generated by the Bug algorithms. These approaches operate under the move-
to-target mode (i.e., move straight to the target) until the robot hits the boundary of
an obstacle (or is in close vicinity of the obstacle). Then, the control switches to the
obstacle-avoidance mode, where the robot moves along the obstacle boundary (left or
right direction) until it has a clear line of sight to the target location. On the other
hand, some plan-and-track approaches solve the autonomous navigation problem with
the generation of the shortest path as the main objective, such as the TVG-based ap-
proach (Rohnert, 1986). The TVG is a graph containing the shortest path, which can
be determined by running search algorithms such as Dijkstra’s algorithm on the graph.
Initially designed for two-dimensional environments cluttered with polygonal obstacles,
it was subsequently extended to curved obstacles (Laumond, 1987; Liu and Arimoto,
1992). Unfortunately, the TVG is limited to two-dimensional environments (LaValle,
2006; Latombe, 2012) and requires an additional step to track the determined shortest
path from the search phase by a low-level controller. Other plan-and-track approaches,
such as RRT* and PRM* (Karaman and Frazzoli, 2011), provide approximate shortest
paths.

In this chapter, we propose a continuous feedback control strategy for safe autonomous
navigation, in n-dimensional sphere worlds and two-dimensional environments with arbi-
trary convex and sufficiently curved obstacles, that generates quasi-optimal trajectories,
as per Definition 3.1 that will be provided in subsection 3.4.3. The proposed approach
relies on an iterative optimization process that projects the nominal feedback controller
on the obstacles’ enclosing cones. We also propose a sensor-based implementation of our
approach in a priori unknown 2D environments with arbitrary convex and sufficiently
curved obstacles, which has been experimentally validated on a differential-drive robot.
The main contributions of the proposed approach are summarized as follows:

• Quasi-optimal trajectory generation: The generated trajectories are often the
shortest, as illustrated through extensive simulation results.

• Navigation in arbitrarily dense environments: The environments considered
can be arbitrarily dense, provided the obstacles are strictly disjointed and entirely
contained within the workspace. The destination can be located arbitrarily close
to the obstacle boundaries.

• Navigation in a priori unknown environments: Our approach’s reactive (sensor-
based) version handles sufficiently curved convex obstacles in a priori unknown 2D
environments with AGAS guarantees. This approach is experimentally validated
through implementation on a differential-drive robot.

The results presented in this chapter have been published in one conference paper (Che-
niouni et al., 2023b) and one journal paper (Cheniouni et al., 2024c).
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3.2 Problem formulation

Consider a robot at position x ∈ Rn moving inside a spherical workspace W ⊂ Rn

centered at the origin 0 and punctured by m ∈ N balls Oi such that:

W := B(0, r0), (3.1)

Oi := B(ci, ri) ⊂ W , i ∈ I := {1, . . . ,m}, (3.2)

where r0 > ri > 0 for all i ∈ I. The free space is, therefore, given by the closed set

F :=W \
m⋃
i=1

O̊i. (3.3)

For F to be a valid sphere world, as defined in (Koditchek and Rimon, 1990), the obstacles
Oi must satisfy the following assumptions:

Assumption 3.1 The obstacles are completely contained within the workspace and sep-
arated from its boundary, i.e.,

min
a∈Oi,b∈∂W

∥a− b∥ > 0, ∀i ∈ I. (3.4)

Assumption 3.2 The obstacles are disjoint, i.e.,

min
a∈Oi,b∈Oj

∥a− b∥ > 0, ∀i, j ∈ I, i ̸= j. (3.5)

Consequently, the boundary of the free space F is given by

∂F := ∂W
⋃( m⋃

i=1

∂Oi
)
. (3.6)

Consider the following first-order dynamics

ẋ = u, (3.7)

where u is the control input. The objective is to determine a Lipschitz continuous state-
feedback controller u(x) that safely steers the vehicle from almost all initial positions
x(0) ∈ F to any given desired destination xd ∈ F̊ . In particular, the closed-loop system

ẋ = u(x), x(0) ∈ F (3.8)

must ensure forward invariance of the set F , almost global asymptotic stability of the
equilibrium x = xd, and generates quasi-optimal trajectories that will be rigorously de-
fined later in subsection 3.4.3.
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3.3 Sets definition

In this section, we define the subsets of the free space that are needed for our proposed
control design in Section 3.4. These are depicted in Fig. 3.1 and given as follows:

• The hat of a cone inside the workspace W , enclosing an obstacle Oi, of vertex
x ∈ Rn and aperture θi is defined as follows:

H(x, ci) :=
{
q ∈ C≤W(x, ci − x, θi(x))|(ci − q)⊤(x− q) ≤ 0

}
, (3.9)

where the angle θi(x) = arcsin (ri/∥ci − x∥) ∈ (0, π
2
].

• The shadow region of obstacle Oi, which is the area hidden by obstacle Oi, from
which there is no line of sight to the destination, is defined as follows:

D(xd, ci) :=
{
q ∈ C≤F (xd, ci − xd, φi)|(ci − q)

⊤(xd − q) ≥ 0
}
, (3.10)

where the angle φi = arcsin (ri/∥ci − xd∥) ∈ (0, π
2
].

• The exit set of obstacle Oi separates the set D(xd, ci) and its complement with
respect to F and is defined as follows:

S(xd, ci) :=
{
q ∈ C=F (xd, ci − xd, φi)|(ci − q)⊤(xd − q) ≥ 0

}
. (3.11)

• The blind set is a subset of F where there is no line of sight to the destination, and
is defined as follows:

BL := {q ∈ F|Ls(q, xd) ∩ Ok ̸= ∅, k ∈ I} , (3.12)

:=
⋃
i∈I

D(xd, ci). (3.13)

• The visible set is the complement of the blind set with respect to the free space

VI := BLcF . (3.14)

• The set of blocking obstacles between two given positions x and y is the set of
obstacles crossed by the line-segment Ls(x, y), and is defined as follows:

LO(x, y) := {k ∈ I|Ok ∩ Ls(x, y) ̸= ∅}. (3.15)
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(a) (b)

Figure 3.1: 2D representation of the sets in Section IV.

3.4 Control design

3.4.1 Single obstacle case

We design a preliminary control law for the single obstacle case, which will be used as
a baseline in the multiple obstacle case. Let us start by considering a single obstacle Oi
and ignoring all others. In the case where the path is clear (i.e., x belongs to the visible
set VI), the vehicle follows a straight line to the destination under the nominal control
law ud(x) = γ(xd − x) where γ ∈ R>0. In the case where the path is not clear (i.e.,
x ∈ D(xd, ci)), we generate a control input (vehicle’s velocity) that is in the direction
of the cone C=F (x, ci − x, θi) enclosing the obstacle. In particular, the direction of the
control input should minimize the angle between the nominal control direction, given by
(xd − x), and the set of all vectors parallel to the enclosing cone, that is

u(x) ∈ U(x) := arg min
vi∈V(ci−x,θi)

∠(xd − x, vi), x ∈ D(xd, ci). (3.16)

Moreover, to ensure continuity of the control input, we impose further that the control
is equal to ud(x) at the exit set S(xd, ci) ⊂ D(xd, ci), i.e.,

∀x ∈ S(xd, ci), u(x) = ud(x), (3.17)

The following lemma provides the solution of the optimization problem (3.16)-(3.17) and
shows its uniqueness.

Lemma 3.1 The solution of the optimization problem (3.16)-(3.17) is unique and is
given by

u(x) = ξ(ud(x), x, i), (3.18)
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where ξ : Rn × Rn × N→ Rn is given by

ξ(u, x, i) :=
sin(βi(u, x)) sin

−1(θi(x))

cos(θi(x)− βi(u, x))
π∥(ξ̄i)u, (3.19)

with ξ̄i ∈ V(ci − x, θi),

ξ̄i :=
sin(θi(x))u

sin(βi(u, x))∥u∥
− sin(θi(x)− βi(u, x))

sin(βi(u, x))

(ci − x)
∥ci − x∥

,

βi(u, x) := ∠(u, ci − x) ≤ θi(x).

Proof See Appendix A.1.

Lemma 3.1 shows that, when x ∈ D(xd, ci), the control u(x) is a scaled parallel projection
of the nominal controller ud(x) in the direction of ξ̄i which represents a unit vector on
the cone enclosing the obstacle.
The continuous control strategy in the case of a single obstacle is given by

u(x) =

{
ud(x), x ∈ VI,
ξ(ud(x), x, i), x ∈ D(xd, ci).

(3.20)

The trajectory of the closed-loop system (3.7)-(3.20) is length-optimal as shown in the
following lemma.

Lemma 3.2 The path generated by the closed-loop system (3.7)-(3.20) is the short-
est path to the destination xd from every initial condition x(0) ∈ F \ Ld(xd, ci) where
Ld(xd, ci) := D(xd, ci) ∩ Lh(ci, ci − xd).

Proof See Appendix A.2.

3.4.2 Multiple obstacles case

The objective in this subsection is to extend the controller (3.20) to the multiple obstacle
case. The robot moves under the nominal control ud(x) when the robot has a clear
line of sight to the destination (i.e., x ∈ VI). When there is no clear line of sight
to the destination (i.e., x ∈ BL), one proceeds with multiple projections as described
hereafter. As per (3.12), at every position x ∈ BL, the blocking obstacles between
x and xd are represented by the set LO(x, xd) ̸= ∅. Among the set LO(x, xd), we
select the one closest to destination

(
i.e., i = arg{min d(xd,Ok), k ∈ LO(x, xd)}

)
, where

ud(x) is projected onto the enclosing cone of the selected obstacle Oi using (3.19), as in
the case of a single obstacle. The resulting control vector is denoted by u1(x). The next
obstacle to be considered is selected from the set of blocking obstacles LO(x, ĉi(x)), where
ĉi(x) := x+ π∥(u1(x)/∥u1(x)∥)(ci − x) is the point at which the line directed by u1(x) is
tangent to obstacle Oi. One chooses the closest obstacle to Oi among the set LO(x, ĉi) in
terms of the Euclidean distance. If LO(x, ĉi(x)) = ∅, the path is free. Otherwise, u1 will
be considered as ud for the newly selected obstacle and the same approach is followed to
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obtain u2. Obstacle Oi is called an ancestor to the selected obstacle and the selection
and projection are repeated until the path is free (see Fig. 3.2). The obstacles selected
during the successive projections at a position x, are grouped in an ordered list I(x) ⊂ I
from the first obstacle

(
Oi, such that i = arg{min d(xd,Ok), k ∈ LO(x, xd)}

)
to the last

one (obstacle involved in the last projection). Let h(x) = card(I(x)) be the number
of required projections at position x. Define the map ιx : {1, . . . , h(x)} → I(x) which
associates to each projection p ∈ {1, . . . , h(x)} the corresponding obstacle ιx(p) ∈ I(x).
The set of positions involving obstacle k in the successive projections is called active
region and defined as ARk := {q ∈ BL|k ∈ I(q)}. To sum up, the intermediary control
at a step p ∈ {1, . . . , h(x)} and position x ∈ ARιx(p) is given by the recursive formula

up(x) = ξ(up−1(x), x, ιx(p)), (3.21)

with u0(x) = ud(x) and ξ(·, ·, ·) as defined in Lemma 3.1. The point at which
the line directed by up(x) is tangent to obstacle Oιx(p) is given by ĉιx(p)(x) := x +
π∥(up(x)/∥up(x)∥)(cιx(p)−x). Finally, the proposed control law is obtained by performing
h(x) successive projections and is given by

u(x) =

{
ud(x), x ∈ VI,
uh(x)(x), x ∈ BL.

(3.22)

The implementation of the control strategy (3.22) is summarized in Algorithm 1.

Remark 3.1 It is worth pointing out that the successive projections, involved in the
control design, start from the closest obstacle to the destination. This approach enables
our controller to enjoy the following features: 1) generates quasi-optimal trajectories; 2)
guarantees the continuity of the control input.

3.4.3 Characterization of the generated trajectories

The proposed control strategy steers the robot from an initial location x0 ∈ F to a
final destination xd ∈ F̊ by tracking a position-dependant virtual destination. A virtual
destination at a position x ∈ BL is given by P (x) := Ph(x)(x), where Ph(x)(x) is the last in
a list of successive intermediary destinations Pp(x) := x+ up(x), with p ∈ {1, . . . , h(x)},
h(x) = card(I(x)) and P0(x) = xd. The point Pp(x) lies on the surface of the cone
enclosing the obstacle of index ιx(p) ∈ I(x). The intermediary destinations are designed
to guarantee a minimum deviation between (Pp−1(x) − x) and (Pp(x) − x) for all p ∈
{1, . . . , h(x)}. This deviation represented by the angle ∠((Pp−1(x) − x), (Pp(x) − x)) =
∠(up−1(x), up(x)) is the smallest possible since up(x) = ξ(up−1(x), x, ιx(p)), where the
operator ξ(·, ·, ·), defined in Lemma 3.1, minimizes the angle ∠(up−1(x), up(x)) such that
up(x) ∈ V(cιx(p) − x, θιx(p)(x)). Recall that the set V(cιx(p) − x, θιx(p)(x)) is the set of
vectors parallel to the cone C=Rn(x, cιx(p) − x, θιx(p)(x)) enclosing obstacle Oιx(p). The
virtual destination P (x), at a position x ∈ BL, is the final intermediary destination
obtained through the following recursive minimization process:

Pp(x) := arg min
y∈C=

Rn (x,cιx(p)−x,θιx(p)(x))\{x}
∥y−x∥=up(x)

∠(y − x, Pp−1(x)− x),

P0(x) = xd, p ∈ {1, . . . , h(x)}.
(3.23)
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Figure 3.2: Successive projections of the control ud in a two-dimensional sphere world
with four obstacles. At step zero, the nominal control u0 = ud is projected onto the
cone enclosing obstacle O2, where obstacle O2 is the closest blocking obstacle to the
destination xd among the set LO(x, xd) of blocking obstacles between the position x and
the destination xd. The resultant intermediary control u1 is considered for the projection
at step 1 where ĉ2, the point at which the line directed by u1 is tangent to O2, plays
the role of the destination. The same operation is repeated until step 3 where the set
of blocking obstacles LO(x, ĉ4) is empty. The velocity control will be then u = u3. The
sets Li represent the unstable undesired equilibria associated with each obstacle.

The virtual destination coincides with the final destination (i.e., P (x) := xd) when
x ∈ VL.
Throughout this dissertation, the trajectories generated with our optimized succe‘ssive
projections approach are referred to as quasi-optimal trajectories, and are defined as
follows:

Definition 3.1 Given an initial position x0 ∈ F and a final destination xd ∈ F̊ , a
continuously differentiable trajectory connecting x0 and xd is said to be quasi-optimal if
it has the shortest length when x0 ∈ VI and when x0 ∈ BL, the tangent vector to the



29

Algorithm 1 Implementation of the control law (3.22)

Initialization: : xd, ec;
1: while true do
2: Measure x;
3: if ∥x− xd∥ ≤ ec then
4: Break;
5: else
6: if x ∈ BL then
7: i← arg min

k∈LO(x,xd)
d(xd,Ok);

8: while i ̸= {∅} do
9: Update u using (3.21);
10: if LO(x, ĉi(x)) = ∅ then
11: i← {∅};
12: else
13: i← arg min

k∈LO(x,ĉi(x))
d(ĉi(x),Ok);

14: end if
15: end while
16: else
17: u← ud;
18: end if
19: Execute u in (3.8);
20: end if
21: end while

trajectory, at each x, points towards the virtual destination P (x) obtained by the recursive
minimization process (3.23).

A quasi-optimal trajectory, as per Definition 3.1, is a trajectory along which the vehicle’s
velocity, at a given location x, always points to a virtual destination (depending on x).
The virtual destination, at position x on the trajectory, is a result of a series of minimized
deviations from the nominal direction (the direction from x to xd) with respect to the
blocking obstacles, starting from the closest to the destination xd. An example of a
quasi-optimal trajectory is shown in Fig. 3.3 in blue color. Figure 3.3(a) and Fig. 3.3(b)
illustrate the characteristics of a quasi-optimal trajectory where at each position x on
the trajectory, the tangent to the trajectory points toward the green virtual destination.
This green virtual destination P (x) at position x, for example, in Fig. 3.3(a), is obtained
after three iterations of the recursive minimization process (3.23). Initially, the robot’s
velocity points to the destination xd (red dot). The first step is to deviate this velocity
vector with a minimum angle from its initial direction to be tangent to the blocking
obstacle O4. The obtained velocity vector will point to an intermediary destination
P1(x) (orange point). The next step is to deviate the obtained velocity vector from
the direction pointing to P1(x) with a minimum angle to be tangent to the blocking
obstacle O1. The resultant velocity vector will point to the intermediary destination
P2(x). In the last step, we deviate the newly obtained velocity vector with a minimum
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angle from the direction pointing to P2(x) to be tangent to the last blocking obstacle
O5. The velocity vector then points to the virtual destination P (x). A simulation video
highlighting the characteristics of a quasi-optimal trajectory can be found online.1 The
generated quasi-optimal trajectory shown in Fig. 3.3(c) coincides with the shortest path
(green curve). However, it is not always the case, as shown in Fig. 3.4, where one can
observe that, for the initial position x20, the quasi-optimal trajectory (blue) coincides with
the shortest path (green), while for the initial position x10, it does not. The following
remark provides some additional interesting features of quasi-optimal trajectories in two-
dimensional environments.

Remark 3.2 In two-dimensional environments, the quasi-optimal trajectories are
length-optimal between any two successive avoided obstacles. They are generated by
smoothly connected lines (common tangents to pairs of obstacles) and arcs of obstacles’
boundaries. These trajectories belong to the tangent visibility graph (TVG) (also known
as the reduced visibility graph) that was introduced in (Rohnert, 1986) for two-dimensional
environments with polygonal obstacles and shown to contain the shortest path, then ex-
tended to two-dimensional environments with curved obstacles (Laumond, 1987; Liu and
Arimoto, 1992).

(a) (b) (c)

Figure 3.3: Quasi-optimal trajectory in 2D workspace.

3.5 Safety and stability analysis

In this section, the safety and stability properties of the closed-loop system (3.7)-(3.22)
will be analyzed. Nagumo’s theorem ((Nagumo, 1942; Blanchini and Miani, 2007)), offers

1[Online]. Available: https://youtu.be/CzIjtsy6HBA

https://youtu.be/CzIjtsy6HBA
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Figure 3.4: Optimal and quasi-optimal trajectories shown in green and blue, respectively.

an important tool to prove safety. One of the statements of this theorem is the one based
on Bouligand’s tangent defined in (2.15). In our case, when x ∈ F̊ , the tangent cone is
the Euclidean space (TF(x) ≡ Rn), and since the free space is a sphere world (smooth
boundary), the tangent cone at its boundary is a half-space (see Fig. 3.5). Nagumo’s
theorem guarantees, in a navigation problem, that the robot stays inside the free space
F . For Nagumo’s condition to be satisfied, the velocity vector u(x) must point inside
(or is tangent to) the free space (Berkane, 2021). In what follows, we rely on Nagumo’s
theorem to prove the safety of the trajectories generated by our closed-loop system.

Lemma 3.3 (Safety) Consider the closed set F described in (3.3) and the kinematic
system (3.7) under the control law (3.22). Then, the closed-loop system (3.7)-(3.22)
admits a unique solution for all t ≥ 0 and the set F is forward invariant.

Proof See Appendix A.3.

Let us look for the equilibria of the closed-loop system (3.7)-(3.22) by setting u(x) = 0
in (3.22). Then, from the first equation of (3.22), the equilibrium point is xd. From
(3.21), one can rewrite the control at step p ∈ {1, . . . , h(x)} and position x ∈ ARιx(p),
as up = sin(βi) sin

−1(θi)∥up−1∥ξ̄i2 where ιx(p) = i. In the case where up−1 ̸= 0, and since
ξ̄i ∈ Sn−1, up = 0 if and only if βi = 0. The set of positions leading to βi = 0 is the
segment (or segments) of the line, tangent to the ancestor obstacle k = ιx(p−1), crossing
the center of obstacle i, within the active region of obstacle i. When βi = 0, the control
input, at step p − 1, is aligned with (ci − x), which is also tangent to the ancestor of
obstacle i. This set, referred to as the set of undesired equilibria generated by obstacle
i, is shown in Fig. 3.2 and defined as follows:

Li :=
{
q ∈ ARi| βi(up−1(q), q) = 0, p = ι−1

q (i)
}
. (3.24)

Note that the destination xd is the only desired equilibrium point and that all other
equilibria are undesired. The central half-line generated by obstacle i in the workspace,
starts from the center ci and extends the set of undesired equilibria Li (as shown in
Fig. 3.6), and is defined as Lei := Lh(ci, y − ci), where y ∈ Li. Some obstacles may not

2For simplicity, the arguments (x, u) for the angles βi and θi are omitted whenever clear from context.
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Figure 3.5: Two-dimensional illustration of Bouligand’s tangent cones in a sphere world.
The pink regions represent Boulgand’s tangent cones TF(x) at position x. Inside the
workspace, the Bouligand tangent cone is the Euclidean space, and on the boundary of
the workspace, it is a half-space.

generate undesired equilibria, in specific configurations, as will be shown later, and in
this case Li and Lei are empty sets. Therefore, u(x) = 0 if x ∈ Li where i ∈ Z and Z is
the set of obstacles generating undesired equilibria. Finally, one can conclude that the
set of equilibrium points of the system (3.7)-(3.22) is given by ζ := {xd}∪ (∪i∈ZLi). The
previous developments can be summarized in the following lemma:

Lemma 3.4 All trajectories of the closed-loop system (3.7)-(3.22) converge to the set
ζ = {xd} ∪ (∪i∈ZLi). □

The indices of obstacles crossed by the central half-line Lei of obstacle Oi are grouped
in the set defined as Mi := {j ∈ I \ {i}∥Lei ∩ Oj ̸= ∅} and Ni = card(Mi). Define
the map κi :Mi → {1, . . . , Ni} that associates to each index k ∈ Mi the corresponding
order of the obstacle Ok according to its proximity with respect to obstacle Oi among the
obstacles of indices in the setMi, where the order goes from the closest to the farthest
obstacle. The set Mp

i := {κ−1
i (1), . . . , κ−1

i (p)}, p ≤ Ni, contains the indices of the set
Mi representing the p first obstacles in increasing order of their distance from obstacle i,
andM0

i := ∅. In the following lemma, we show that under certain conditions, obstacles
in the setMi do not generate undesired equilibria.

Lemma 3.5 Let i ∈ I such that Mi ̸= ∅. Obstacles of indices in the set Mp
i , where

p ≤ Ni, do not generate undesired equilibria if, for all k ∈ Mp
i , the following conditions

are satisfied:

1. ck ∈ H̊(x∗k,i, ci) ∪ (∪j∈Mp−1
i
H̊(x∗k,i, cj)),
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2. (H̊(x∗k,i, ci) ∪ (∪j∈Mp−1
i
H̊(x∗k,i, cj))) ∩ Ol = ∅ for all l ∈ I \ (Mp

i ∪ {i}),

where x∗k,i = arg max
q∈Le

i∩∂Ok

||ci − q||. Moreover, if p = Ni, or (p < Ni and the obstacle of

index k = κ−1
i (p + 1) does not satisfy conditions 1) and 2)), the set Mi is said to be of

order N̄i = p which is the total number of obstacles, of indices in the setMi, that do not
generate undesired equilibria and the setMN̄i

i groups them.

Proof See Appendix A.4.

Lemma 3.5 provides sufficient conditions so that the first p obstacles, with indices in the
set Mi and ordered according to their proximity with respect to obstacle Oi, do not
generate undesired equilibria. If p = Ni, or (p < Ni and the (p + 1) − th obstacle does

not satisfy these conditions), the set MN̄i
i groups all the obstacles, with indices in the

setMi, that do not generate undesired equilibria, where N̄i = p is the number of these
obstacles and the order of the setMi. Condition (1) requires the center of each obstacle
k ∈Mp

i to be inside the union of the hats of the cones, of vertex x∗k,i, enclosing obstacle
i and the obstacles of the list Mp

i closer to obstacle i than obstacle k. Condition (2)
requires that the union of hats considered in condition (1) does not intersect any obstacle
other than those considered in condition (1) (i.e., obstacles i, k, and the obstacles closer
to obstacle i than obstacle k among the list Mp

i ). Let us use obstacle 1 in Fig. 3.6 to
verify (visually) the two conditions. The union of the hats of cones enclosing obstacles
3 and 4 (blue and green conic subsets in the left figure) includes the center of obstacle
1 and does not intersect with any obstacle other than obstacles 3, 1, and 4. Obstacle
4 satisfies the conditions, but obstacle 2 does not, as its center is outside the union of
the hats enclosing obstacles 3, 4, and 1 (red, blue, and green conic subsets in the right
figure).

One of the main results of this chapter is stated in the following theorem.

Theorem 3.1 Consider the free space F ⊂ Rn described in (3.3), for n ≥ 2, and the
closed-loop system (3.7)-(3.22). Under Assumptions 3.1 and 3.2, the following statements
hold:

i) The set F is forward invariant.

ii) All trajectories converge to the set ζ = {xd} ∪ (∪i∈ZLi).

iii) The set of equilibrium points ∪i∈ZLi is unstable.

iv) The equilibrium point xd is locally exponentially stable on F .

v) The generated trajectories are quasi-optimal.

Proof See Appendix A.5.

Theorem 3.1 shows that the desired equilibrium point xd is locally exponentially stable
and that all trajectories converging to it are safe and quasi-optimal, in the sense of Def-
inition 3.1. The region of attraction of the desired equilibrium is characterized in the
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Figure 3.6: Illustration of obstacles that generate, and those that do not generate, unde-
sired equilibria. Obstacles 2 and 3 generate undesired equilibria, but obstacles 1 and 4 do
not. Unlike obstacles 1 and 4, obstacle 2 does not satisfy the conditions in Lemma 3.5,
where although obstacle 2 is crossed by the central half-line Lei associated with obstacle
3, its center is not included in the hats of the cones enclosing the obstacles preceding it
(i.e., obstacle 4, 1 and 3).

next section for two-dimensional workspaces. Unfortunately, a complete characterization
of the region of attraction has not been proved for higher dimensions n ≥ 3. Neverthe-
less, our insights and extensive simulations in three-dimensional environments led us to
conjecture that the equilibrium point xd is almost globally asymptotically stable, at least
for n = 3.

Invariant sets in two-dimensional spaces (n = 2)

Let Ri := {k ∈ Z|Lek ∩ Oi ̸= ∅, Lk ∩ ARi ̸= ∅} be the set of indices of central half-
lines crossing obstacle i and their set of undesired equilibria intersecting with its active
region ARi, and note that Ri ̸= ∅ for all i ∈ I. Obstacles crossed by more than
one central half-line are represented by the set of indices L := {k ∈ I|card(Rk) ≥ 2}.
For every i ∈ L, we select the out-most line segments Lk, k ∈ Ri, and we determine
their intersection with the boundary of obstacle i, the left and right intersections being
denoted by yli,0 and yri,0 respectively. We go through the two out-most line segments
separately until they intersect with one of the line segments having an index in the
set Ri, or with the boundary of the workspace. We denote the left and right intersec-
tions by yl1 and yr1, respectively. If the workspace has yet to be reached and (yl1 ̸= yr1),
we continue in the same way with the new line segments up to the intersection with
the workspace boundary or up to the intersection between the left and right line seg-
ments (i.e., ylk = yrj , k, p > 0). We group the intersection points obtained on the left
and right into two lists, Y l

i = {yli,0, yli,1, . . . } and Y r
i = {yri,0, yri,1, . . . }, respectively (see

Fig. 3.7). For every two successive points {yli,p, yli,p+1} of Y l
i (resp. {yri,p, yri,p+1} of

Y r
i ), we generate the right (resp. left) half-plane bounded by the line passing through
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these two points. The intersection of the union of the half-planes of each list forms an
area that, when restricted to the active region, gives a characteristic region defined as

χi :=
(
∪card(Y

r
i )−2

p=0 P≥

(
yri,p, R(y

r
i,p − yri,p+1)

))
∩
(
∪card(Y l

i )−2
p=0 P≤

(
yli,p, R(y

l
i,p − ylp+1)

))
∩ARi

where R =
(

0 1
−1 0

)
. Finally, we create a cell, deleting the characteristic regions of

other obstacles inside the characteristic region of obstacle i, and define it as follows
Celli := χi \ ∪k∈Li

χ̊k where Li := {k ∈ L|χi ∩ χk ̸= ∅;∀x ∈ χi ∩ χk, ι−1
x (k) > ι−1

x (i)}.
Note that these cells are constructed so that their boundaries are formed by the undesired
equilibria and the boundary of the free space, which endows them with the invariance
property stated in the following lemma.

Lemma 3.6 Let i ∈ L. The cell Celli is forward invariant for the closed-loop system
(3.7)-(3.22).

Proof See Appendix A.6.

Figure 3.7: Illustration of invariant cells and nests. The figure on the left shows an
example of four cells associated with four obstacles, where the boundaries of each cell
are formed by the boundary of the free space (blue arcs) and the undesired equilibria
(red segments). The figure on the right shows the nests obtained from the cells in the
figure on the left. Nest1 and Nest2 are equal to Cell3 and Cell1, respectively. Nest3
is the union of the two adjacent cells, Cell2 and Cell4, and Nest0 is a special nest that
includes all the undesired equilibria not included in the other nests.

Two cells are adjacent if they share undesired equilibria on their boundary, which is true
only if ∂Celli∩∂Cellk∩(∪i∈ZLi) ̸= ∅. We construct nests by the union of adjacent cells,
where each cell has at least one adjacent cell among the cells in that nest. Cell2 andCell4
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in Fig. 3.7 are examples of adjacent cells forming a nest, the union of which constitutes
Nest3. Cells without adjacent cells form a nest with a single element, as illustrated by
Cell1 forming Nest2 and Cell3 forming Nest1 in Fig. 3.7. We also construct a special
nest whose cells are segments of undesirable equilibria that belong to no other regular
cell, as illustrated by Nest0 in Fig. 3.7. Since nests are the union of invariant cells or
of undesired equilibria (the special nest), nests are invariant and are denoted by Nestk
where Nest0 := ∪i∈ZLi \ ∪k∈LCellk is the special nest. Unfortunately, a nest can form
a barrier around the workspace, reducing the navigable area of the free space. Such a
nest can be generated by creating a circular band of adjacent cells, as shown in Fig. 3.8.
In the following lemma, nests are shown to be the attraction region of the undesired
equilibria.

Lemma 3.7 The set ∪kNestk is the region of attraction of the undesired equilibria
∪i∈ZLi.

Proof See Appendix A.7.

Figure 3.8: Quasi-non-navigable two-dimensional space.

Now, to ensure almost global asymptotic stability of the equilibrium point xd in two-
dimensional spaces, we reduce the nests to the set of undesired equilibria by imposing
the following assumption:

Assumption 3.3 For any i ∈ I and k ∈ Z where i ̸= k, Lek ∩Oi = ∅, or (Lek ∩Oi ̸= ∅
and i ∈MN̄i

k .)
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Assumption 3.3 rules out the possibility of creating the invariant cells by imposing obsta-
cle configurations such that L = ∅ making the undesired equilibria repellers. In addition
to the results of Theorem 3.1, the next theorem characterizes the attraction region of
the undesired equilibria and shows almost global asymptotic stability of the destination
under Assumption 3.3.

Theorem 3.2 Consider the free space F ⊂ Rn described in (3.3), for n = 2, and the
closed-loop system (3.7)-(3.22). Let Assumptions 3.1 and 3.2 hold. Then, items i), ii),
iii), iv) of Theorem 3.1, and the following statements hold:

i) The equilibrium point xd is attractive from all x(0) ∈ F \ ∪kNestk.

ii) From any initial position x(0) ∈ F \ ∪kNestk, the trajectory x(t) is quasi-optimal.

iii) Under Assumption 3.3, ∪kNestk = ∪i∈ZLi and the destination xd is almost globally
asymptotically stable.

Proof See Appendix A.8.

Theorem 3.2 shows that the target location is attractive from any position in the free
space, except from the nests (region of attraction of the undesired equilibria), which
reduces, under Assumption 3.3, to the undesired equilibria ∪i∈ZLi having zero Lebesgue
measure. Fortunately, the nests will naturally disappear in the sensor-based case as we
will see in the next section.

3.6 Sensor-based navigation using a 2D LiDAR

range scanner

We now present a version of our approach, using a LiDAR range scanner, in an unknown
two-dimensional sphere world. Assume that the robot is equipped with a sensor of 360◦

angular sensing range, a resolution dθ > 0, and a radial sensing range R > 0. The
measurements of the sensor, at a position x, are modeled by the polar curve ρ(x, θ) :
F × Â → [0, R], where Â := {0, dθ, 2dθ, . . . , 360− dθ} is the set of scanned angles,
defined as follows:

ρ(x, θ) := min

(
R, min

y∈∂F
atan2(y−x)=θ

∥x− y∥,
)
, (3.25)

where atan2(v) = atan2(v(2), v(1)) for v ∈ R2.
The Cartesian coordinates of the scanned points are modeled by the mapping δ(x, θ) :
F × Â → F defined as follows:

δ(x, θ) := x+ ρ(x, θ)[cos(θ) sin(θ)]⊤. (3.26)

Let Gx(δ) be the graph of the mapping δ at a position x (red curve in Fig. 3.9). The set
Ix ⊂ I of the detected obstacles is defined as Ix := {i ∈ I|d(x,Oi) ≤ R}. Assume that
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at each position x, the sensor returns a list of arcs LA(x) :=
{
L1, L2, . . . , Lτ(x)

}
from

the detected obstacles corresponding to the intersection of the graph Gx(δ) and obstacles
of the set Ix, where τ(x) = card(Ix) as shown in Fig. 3.9(a) by the magenta arcs.
Since the available information about the environment is limited by the graph Gx(δ),
successive projections are impossible to apply. Therefore, we apply the single obstacle
control strategy given by

u(x) =

ud(x), x ∈ VI,

ud(x)− ∥ud(x)∥
sin(θi − βi)

sin(θi)
Vci, x ∈ D(xd, ci),

where θi and Vci = (ci − x)/∥ci − x∥ are, respectively, the aperture and the axis of the
enclosing cone, βi is the angle between ud and (ci − x), and D(xd, ci) is the shadow
region. To adapt the above control strategy to the sensor-based case, one proceeds as

(a) (b)

Figure 3.9: The sensor-based control strategy. Figure (a) shows the (purple) arcs returned
by the sensor from the obstacles detected at position x. Figure (b) shows the extended
version of the detected arcs (blue arcs) and the virtual cone enclosing the active extended
arc (green arc) with the necessary practical parameters for the sensor-based control law.

follows. At each position x, the detected arcs LA(x) are considered as obstacles. The arc
crossed by the segment L(x, xd) will help to create a virtual enclosing cone onto which
the projection is performed. However, due to the practical model of the sensor (LiDAR),
which may have low resolutions, safety is not always guaranteed when the robot is in
the neighborhood of the obstacles where the velocity vector (projection of ud onto the
virtual enclosing cone) may point inside the obstacle (see Fig. 3.10(a)). To overcome

this problem, a list of extended arcs LAe(x) :=
{
L̃1, L̃2, . . . , L̃τ(x)

}
is defined, where the

endpoints of an arc Li are moved through the graph Gx(δ) until they have a radial polar
coordinate equal to R or they meet the endpoints of the neighboring arcs, as shown in
Fig. 3.9(b). Among the extended arcs of the list LAe(x), the active extended arc crossed
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by the segment L(x, xd) is selected and denoted by L̃∗. The active extended arc serves
as an obstacle enclosed by a virtual cone (see Fig. 3.9(b)) from which we extract the
following practical parameters:

• The virtual center

c̃ := arg min
y∈L̃∗
∥x− y∥, (3.27)

which gives the direction (c̃− x).

• The virtual aperture

θ̃ := ∠(c̃− x, c̃∗ − x), (3.28)

where c̃∗ is the endpoint of L̃∗ such that ud is between the directions (c̃ − x) and
(c̃∗ − x).

• The angle

β̃ := ∠(c̃− x, ud). (3.29)

(a) (b)

Figure 3.10: Safety consideration in a sensor-based case. In Fig. (a), the projection u of
(xd − x) onto the cone enclosing the arc L1 of the list LA(x) fails to satisfy the safety
condition where u crosses the obstacle. In Fig. (b), the projection lies on the active arc
L̃∗ of the list LAe(x) and meets the safety condition.

Before defining the new blind and visible sets, let us define the truncated shadow region
by

Dt(xd, ci) := D(xd, ci) \
⋃

j∈PRi

D(xd, cj), (3.30)
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where PRi :=
{
j ∈ I|D(xd, ci) ∩ D(xd, cj) ̸= ∅, d(xd,Oi) < d(xd,Oj)

}
is the progeny of

obstacle i (see Fig. 3.11(a)). Since the visibility of the robot is limited to the scanning
range of the sensor, let us define the practical shadow region of an obstacle i as follows:

D̃(xd, ci, R) := Dt(xd, ci) ∩ B(ci, ri +R). (3.31)

Therefore, the practical blind set is defined as follows:

B̃L :=
⋃
i∈I

D̃(xd, ci, R), (3.32)

The practical visible set is then defined as ṼL := B̃L
c

F (see Fig. 3.11(b)). Finally, the
control is given by

u(x) =


ud(x), x ∈ ṼI,

ud(x)− ∥ud(x)∥
sin(θ̃ − β̃)
sin(θ̃)

c̃− x
∥c̃− x∥

, x ∈ B̃L.
(3.33)

The implementation of the sensor-based control strategy is summarized in Algorithm 2

(a) (b)

Figure 3.11: Illustration of the workspace for the sensor-based case. Fig. (a) shows the
truncated shadow regions of each obstacle where obstacles {2, 3, 4} are the progeny of
obstacle 1, and obstacle {5} is the progeny of obstacle 4. Fig. (b) highlights the practical
shadow regions of each obstacle in pink where the union of theses regions represents the
practical blind set while the white region represents the practical visible set.

(see also Fig. 3.9).
The sensor-based control strategy (3.33) can be seen as a special case of the control

strategy in the map-based scenario (a priori known environments) if each obstacle is
considered as the unique obstacle in the workspace. In this way, the active regions become
the disjoint practical shadow regions that will limit the undesired equilibria generated
by each obstacle to its own practical shadow region excluding the possibility of creating
invariant cells. The following lemma determines the equilibria of the closed-loop system
(3.7)-(3.33) shown in Fig. 3.11(b).
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Algorithm 2 Implementation of the control law (3.33) in the closed-loop (3.8)

Initialization: xd, ec;
1: while true do
2: Measure x, Gx(δ), and LA(x).
3: if ∥x− xd∥ ≤ es then
4: Break;
5: else
6: if LA(x) ̸= ∅ then
7: Construct LAe(x).
8: if L(xd, x) crosses one of the extended arcs of LAe(x) then
9: Identify L̃∗.
10: Determine c̃, θ̃ and β̃ using equations (3.27), (3.28) and (3.29), respectively.

11: u← ud(x)− ∥ud(x)∥ sin(θ̃−β̃)sin(θ̃)
c̃−x

∥c̃−x∥ ;

12: else
13: u← ud;
14: end if
15: else
16: u← ud;
17: end if
18: Execute u in (9);
19: end if
20: end while

Lemma 3.8 All trajectories of the closed-loop system (3.7)-(3.33) converge to the set

ζ = {xd} ∪
(
∪i∈IL̃d(xd, ci, R)

)
where L̃d(xd, ci, R) := Lh(ci, ci − xd) ∩ D̃(xd, ci, R).

Proof See Appendix A.9.

Lemma 3.8 shows that the set of undesirable equilibria of the closed-loop system (3.7)-
(3.33), associated with an obstacle Oi, is the line segment starting from the antipodal
point of the destination on obstacle Oi to the boundary of the practical shadow region.
The next theorem states formally the properties of the sensor-based control strategy in
two-dimensional sphere worlds.

Theorem 3.3 Consider the free space F ⊂ Rn described in (3.3), for n = 2, and the
closed-loop system (3.7)-(3.33). Under Assumptions 3.1 and 3.2, the following statements
hold:

i) The set F is forward invariant.

ii) All trajectories converge to the set ζ = {xd} ∪
(
∪i∈IL̃d(xd, ci, R)

)
.

iii) The set of undesired equilibria ∪i∈IL̃d(xd, ci, R) is unstable.
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iv) The equilibrium point xd is almost globally asymptotically stable on F .

Proof See Appendix A.10.

Theorem 3.3 provides the stability results obtained with the reactive sensor-based feed-
back control strategy, relying only on local information provided by the sensor, which is
more practical and realistic than the global approach which requires a priori knowledge
of the entire workspace. Almost global asymptotic stability is guaranteed without impos-
ing restrictions on the obstacle configurations as in Assumption 3.3. However, the control
continuity and quasi-optimality of the generated trajectories are no longer guaranteed.
Fig. 3.12 shows an example of a discontinuity in our control at time t = t′ when the
active arc L̃∗ passed from one obstacle to another, resulting in a sudden change in the
control’s direction to follow the tangent of the new obstacle.

Figure 3.12: A scenario of a discontinuity occurrence in a 2D workspace populated by
two obstacles at time t = t′. Initially, the active arc is the arc detected from obstacle 1,
but arriving at position x(t′), it switches to the arc detected from obstacle 2, changing
the robot’s heading abruptly from the tangent to obstacle 1 to the tangent to obstacle 2
(pointing towards the endpoint c̃∗), creating a discontinuity in the control.

3.6.1 Convex obstacles

We consider convex sets with smooth boundaries Õi as obstacles. The free space must
satisfy the separation conditions of Assumptions 3.1 and 3.2. We also assume that the
following curvature condition (see, e.g., (Arslan and Koditschek, 2019)) is satisfied.

Assumption 3.4 Obstacles are sufficiently curved at their farthest point from the target
location xd ∈ F , i.e.,

Õi ⊂ B(xd, ∥xd − xi∥), ∀i ∈ I, (3.34)
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where xi ∈
{
q ∈ ∂Õi|dsi(q)⊤(xd − q)/∥xd − q∥ = 1

}
, and dsi(q) ∈ Sn−1 is the inward-

directed gradient of the surface of obstacle Õi at position q ∈ ∂Õi.

Assumption 3.4 somewhat limits the flatness of an obstacle at its farthest point from
the target, as illustrated in Figure 3.13.
The shadow region for a convex obstacle is redefined as D(xd, i) :={
q ∈ F|L(xd, q) ∩ Õi ̸= ∅

}
, where the center is replaced by the index of the ob-

stacle as a parameter (see Fig. 3.13). The practical shadow region is then defined as

D̃(xd, i, R) :=
{
q ∈ Dt(xd, i)|d(q, Õi) ≤ R

}
, where Dt(xd, i) is the truncated shadow

region defined in (3.30), substituting the center with the obstacle’s index. The practical
parameters and the control are the same as in (3.33). The next lemma provides the set
of equilibria of the closed-loop system (3.7)-(3.33) in the case of convex obstacles.

Lemma 3.9 All trajectories of the closed-loop system (3.7)-(3.33) converge to the set

ζ̃ = {xd} ∪
(
∪i∈IL̃d(xd, xi, R)

)
, where L̃d(xd, xi, R) := Lh(xi, xi − xd) ∩ D̃(xd, i, R).

Proof See Appendix A.11.

In addition to the destination, Lemma 3.9 shows that the equilibrium points are the
positions aligned with their projection c̃ and the destination. The same sensor-based

Figure 3.13: Representation of the shadow region and the practical shadow region of a
convex obstacle. In the figure on the left, the obstacle satisfies the curvature condition,
while in the figure on the right, the obstacle does not satisfy this condition.

procedure applied in sphere worlds is used, except that the elements of the list of arcs are
not arcs but convex portions of the detected obstacles. In the case of convex obstacles
with non-smooth boundaries, the procedure is modified where the endpoints of each
detected portion are dilated with a ball of radius r > 0, and the cone enclosing the
segment crossed by L(x, xd) is enlarged, as shown in Fig. 3.14. The objective of dilating
the endpoints is to smooth the corners of the obstacles. When an endpoint coincides with
a non-smooth corner of an obstacle, the dilated endpoint will help to generate a smooth
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trajectory. If the endpoint dilation is applied all around the boundary of an obstacle, a
dilated version of this obstacle, given by Õri = Õi⊕B(0, r), will be generated. Therefore,
the new free space will be Fr := W \

m⋃
i=1

˚̃Ori and the minimum separation distance will

be greater than 2r.

Figure 3.14: Smoothing of polygonal obstacle corners.

Theorem 3.4 Consider the free space F ⊂ Rn described in (3.3), in the case of convex
obstacles and n = 2 , and the closed-loop system (3.7)-(3.33). Under Assumptions 3.1,
3.2, and 3.4, the following statements hold:

i) The set F is forward invariant.

ii) All trajectories converge to the set ζ̃ = {xd} ∪
(
∪i∈IL̃d(xd, xi, R)

)
.

iii) The set of undesired equilibria ∪i∈IL̃d(xd, x̃i, R) is unstable.

iv) The equilibrium point xd is almost globally asymptotically stable on F .

Proof See Appendix A.12.

Theorem 3.4 shows that the sensor-based strategy designed for sphere worlds extends to
convex worlds with obstacles satisfying the curvature condition of Assumption 3.4, and
the results are preserved. For convex obstacles with non-smooth boundaries, we consider
their dilated version Õri and the free space Fr which amounts to the case of obstacles
with smooth boundaries.

3.7 Numerical simulations

To explore the extent of what our quasi-optimal trajectories can offer in terms of the
shortest path in the multiple obstacle case, we compare the trajectories generated by



45

our approach with the shortest paths obtained with Dijkstra’s algorithm (DA) on a tan-
gent visibility graph (TVG). We used 10 different and highly congested two-dimensional
environments and 100 randomly selected initial positions in each environment. The per-
centage of perfect matches of the paths is reported in Table 3.1, which shows a high
rate of success. Fig. 3.15 shows a sample of 10 trajectories generated from 10 randomly
selected initial positions in two of the ten environments used in our simulations. A simu-
lation video can be found online.3 The effect of successive projections on the optimality
of the path generated by our approach is illustrated in Fig. 3.16, where one can see that
the path generated by our approach coincides with the shortest path in a single-obstacle
workspace, while it does not in a two-obstacle workspace.

Table 3.1: Number of perfect matches between the paths generated by our approach
(Algorithm 1) and those found by DA in tangent visibility graphs, for 100 runs with 100
randomly selected initial positions.

Space 1 Space 2 Space 3 Space 4 Space 5
100% 98% 100% 100% 81%

Space 6 Space 7 Space 8 Space 9 Space 10
96% 99% 94% 94% 99%

Remark 3.3 The combination TVG-DA has been used as a benchmark to test the op-
timality of the paths generated by our approach. The advantages of our approach w.r.t.
the TVG-DA are as follows:

• We solve the problem from a control perspective, as our solution is feedback-based,
allowing us to solve the navigation problem in one go, whereas TVG-DA only gives
the shortest path to be tracked by another feedback controller.

• We propose a closed-form solution (3.22) to the autonomous navigation problem,
which is more suitable for real-time implementations (computationally efficient)
than searching tangent visibility graphs.

• We solve the navigation problem in n-dimensional sphere worlds while the TVG-DA
is limited to paths in two-dimensional sphere worlds as the TVG is infinite in three
and higher-dimensional environments.

To visualize the properties of our approach, we consider two different scenarios. In the
first scenario, we assume that the robot evolves in R2 where the workspace contains
twenty-six obstacles, and the destination is xd = [0 0]⊤. We run the simulation from
fifteen different initial positions. In the second scenario, the considered space is R3, where
the workspace contains eighteen obstacles, and the goal is xd = [0 0 0]⊤. We run the
simulation from eighteen different initial positions. A comparison of our approach with
the navigation function approach (NF) (Koditchek and Rimon, 1990) and the separating

3[Online]. Available: https://youtu.be/SE8w8vabxVE

https://youtu.be/SE8w8vabxVE
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 3.15: Trajectories generated by our approach, Algorithm 1, (black solid trajecto-
ries) and the optimal path found by DA in tangent visibility graphs (blue dashed tra-
jectories), in 10 different environments. The target location is indicated with a red dot.
Only 10 trajectories among 100 starting from randomly selected initial positions were
plotted, while the summary of the complete experiments is reported in Table 3.1, where
each subfigure illustrates the results in the corresponding space in Table 3.1. Spaces
(5), (6), and (8) show examples where the quasi-optimal trajectories do not match the
shortest path obtained by the DA.
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(a) (b)

Figure 3.16: Effect of the nested projections on the optimality of the generated trajectory.
In Fig. (a), a single obstacle is considered, and the trajectory generated by our approach
corresponds to the DA trajectory (shortest path). In Fig. (b), a second obstacle is
considered. The trajectory generated by our approach differs from the DA trajectory
(shortest path).

hyperplane approach with the Voronoi-adjacent obstacle sensing model (SH) (Arslan and
Koditschek, 2019) is established in the two-dimensional space. The simulation results in
Fig. 3.17 and 3.18 show that all the trajectories generated by our control strategy are
safe and converge to the red target. In addition, Fig. 3.17 shows the superiority of our
approach over the two other methods in terms of the length of the generated collision-free
paths where it generates the same paths as DA. Moreover, Table 3.2 reports the relative
length difference of the paths generated by the NF and SH approaches with respect to
our approach. For each initial position pi, i ∈ {1, . . . , 15}, in Fig. 3.17, we computed the
relative length difference RLDa

i = 100(lai − l0i )/l0i , a ∈ {NF, SH}, where lNFi (resp. lSHi )
is the length of the ith path generated by the NF approach (resp. SH approach), and
l0i is the length of the path generated by our approach. The positive numbers in Table
3.2 indicate that, for all 15 initial conditions, our approach generated shorter paths than
the NF and SH approaches. This superiority is mainly due to the uncontrolled repulsion
exerted by the obstacles on the robot in the NF and SH approaches. It becomes clear
in the single obstacle case where the robot is repelled even if it has a clear line-of-sight
to the destination, which is shown in the simulation result in Fig. 3.19, where the pink
initial positions are in the visible set while the green initial positions are in the shadow
region. The trajectories generated by our approach are the shortest in terms of distance,
as shown in Lemma 3.1. The simulation video of Fig. 3.18 can be found online.4

To test our control in a two-dimensional space that does not satisfy Assumption 3.3,

4[Online]. Available: https://youtube.com/shorts/yJCdRLdQHnc

https://youtube.com/shorts/yJCdRLdQHnc
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Figure 3.17: Trajectories generated by our approach, SH, NF and DA in a two-
dimensional sphere world.

Table 3.2: The relative length difference of the paths, shown in Fig. 3.17, generated by
the NF and SH approaches with respect to our approach.

Paths RLDNF (%) RLDSH (%)
p1 1.18 0.27
p2 11.36 7.59
p3 8.6 5.2
p4 5.93 7.23
p5 6.57 3.64
p6 4.26 2.43
p7 13.35 7.15
p8 6.6 3.79
p9 11.34 5.47
p10 6.63 2.98
p11 9.79 3.91
p12 14.08 5.05
p13 9.24 4.24
p14 7.23 4.31
p15 4.65 6.96
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Figure 3.18: Robot safe navigation from
eighteen different initial positions in a
three-dimensional sphere world.

Figure 3.19: Comparison of paths gen-
erated by our approach, SH, and NF in
a single two-dimensional sphere world.

We consider six different initial positions. Three are inside the nests, and the remaining
three are outside but in the vicinity of their boundaries (undesired equilibria). The results
of the simulation are shown in Fig. 3.20. The trajectories starting from the nests stay
inside, while the three remaining trajectories reach their destination safely. We can see
that nests are indeed the attraction region of the undesired equilibria.

Figure 3.20: Invariance of the nests.
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3.7.1 Sensor-based implementation in a priori unknown envi-
ronments

3.7.1.1 MATLAB simulation

We tested our sensor-based strategy (3.33) in a sphere world, as shown in Fig. 3.21,
where we used a 360◦ LiDAR model with 1◦ resolution and two radial ranges R = 2m
and R = 4m. We plotted the trajectories generated by Algorithm 1 and Algorithm 2.
The results in Fig. 3.21, clearly show a decrease in performance, in terms of path length,
when navigating in an a priori unknown environment relying on a sensor. This is ex-
pected since, in the sensor-based approach, the information available about the workspace
is limited to the sensor’s detection zone. It is, therefore, impossible to predict a priori
the obstacles to be avoided before the sensor detects them. In fact, under control (3.22),
where global information on the environment is available, after avoiding an obstacle, the
robot already knows the next obstacle to avoid, resulting in a quasi-optimal trajectory.
Overall, the sensor-based approach provides a local optimal solution in the sense that
each local avoidance maneuver is optimal when the robot is close enough to the detected
obstacle. The simulation video can be found online.5

We also performed simulations in environments with convex obstacles satisfying the

Figure 3.21: Navigation in 2D sphere world.

5[Online]. Available: https://youtu.be/cnWoxi-lGvw

https://youtu.be/cnWoxi-lGvw
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Table 3.3: The relative length difference of the paths, shown in Fig. 3.21, generated
by Algorithm 2, with two sensor radial ranges (R = 2m and R = 4m), with respect to
Algorithm 1.

Paths RLD1 (%) RLD2 (%)
p1 0 0.02
p2 1.37 2.37
p3 0.12 0.8
p4 0 0
p5 0.72 1.49
p6 0 0.72
p7 0.43 1.24
p8 0.69 1.37
p9 0 0.68
p10 0.7 1.4
p11 0.94 1.84
p12 0 0

curvature condition in Assumption 3.4. The first simulation was performed in an envi-
ronment with ellipsoidal obstacles and the second one in an environment with polygonal
obstacles. The results in Fig. 3.22 show the effectiveness of the proposed approach in
convex worlds with smooth and non-smooth boundaries where all the trajectories con-
verge safely to the target (red dot). Note that the robot’s navigation was successful in
the environment shown in Fig. 3.22(b), although it contains an L-shaped non-convex
obstacle. In fact, in view of the position of the target and during all the avoidance ma-
neuvers, only a convex curve is detected from the boundary of this L-shaped obstacle.
Simulation videos can be found online.6

3.7.1.2 Gazebo simulation

We used the meta-operating system ROS (Noetic) running on Ubuntu (20.04.6) to imple-
ment the sensor-based control strategy (3.33) on a Turtlebot3 model and simulate real-
world scenarios with Gazebo (3D dynamic simulator). Our code is written in Python,
and the data analysis is performed in MATLAB. The Turtlebot model includes a 360◦

LiDAR with a resolution of 1◦, a maximum range R = 3.4m, and a minimum range of
0.12m. The robot’s position and orientation are obtained by subscribing to the odometry
topic provided by ROS. Zero mean Gaussian noise is added to the sensors’ data where
the standard deviation for the LiDAR is 0.02m, the standard deviation for the position
is 0.03m, and for the orientation, the standard deviation is 0.035 rd. As the Turtle-
bot has a disk-shaped base of radius rb = 0.14m, we consider the eroded workspace
Wr :=W \ (∂W ⊕B(0, r)), and the dilated obstacles Õri . The eroded free space is then

6[Online]. Available: https://youtu.be/Y5dho-ptkm8 and https://youtu.be/FZ0qxx6Gsog

https://youtu.be/Y5dho-ptkm8
https://youtu.be/FZ0qxx6Gsog
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(a) Convex world with elliptical obstacles. (b) Convex world with polygonal obsta-
cles.

Figure 3.22: Sensor-based navigation in unknown 2D convex worlds.

defined as Fr := Wr \ ∪i∈IÕri and for all x ∈ Fr, B(x, rb) ⊂ F . Considering that x (the
center of the robot’s base) evolves in the eroded free space Fr, and choosing the dilation
parameter r = rb + rs, where rs = 0.11m is a safety margin, the robot is guaranteed
to evolve in the free space F . Turtlebot 3 is a differential drive robot whose kinematic
model is represented by {

ẋ = v[cos(ψ) sin(ψ)]⊤,

ψ̇ = ω,
(3.35)

where ψ ∈ (−π, π] is the robot’s orientation, and v ∈ R and ω ∈ R are, respectively, the
robot’s linear and angular velocity inputs. As the control law (3.33) was designed for fully
actuated robots, a transformation is required to generate adequate velocity inputs for our
robot. The principal idea is to rotate the robot so that its orientation coincides with the
direction of u(x) obtained from (3.33), and then translate the robot with a linear velocity
equal to the magnitude of u(x). The direction of u(x) is denoted by ψd = atan2(u(x)),
and the difference between the robot’s orientation and the direction of u(x) is denoted
by ∆ψ = ψ − ψd ∈ (−π, π]. We transform the velocity input of a fully actuated robot
to the velocity inputs of a nonholonomic mobile robot with smooth switching between
the rotation and translation using the following transformation (inspired from (Sawant
et al., 2024b)): {

v = min
(
vmax, kv∥u(x)∥

(
cos(∆ψ

2
)
)2p)

,

ω = ωmax sin(
∆ψ
2
),

(3.36)

where kv > 0, p ≥ 1, vmax = 0.26m/s and ωmax = 1.82 rd/s are the maximum supported
velocities by the robot’s actuators. Larger p values lead to small velocities when the
robot’s heading is misaligned with the direction of the control u(x) (i.e., ∆ψ ̸= 0). This
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minimizes the linear displacements when the robot orients its heading to match u(x).
This procedure allows to generate trajectories closer to the ones generated by the control
u(x). We created a Gazebo environment with obstacles whose dilated versions adhere to
Assumption 3.4. We implemented the transformed control law (3.36) on the Turtlebot
3, where we set the gain to kv = 0.8 and the exponent p = 3. The results are shown in
Fig. 3.23, and the simulation video can be found online.7

(1) (2) (3)

(4) (5) (6)

Figure 3.23: Time-stamped shots of Turtlebot 3 navigating a Gazebo world.

3.8 Experimental validation

In this section, we use the Turtlebot 4 platform shown in Fig. 3.24(left) to implement
the sensor-based control strategy (3.33) with the transformation from the fully-actuated

7[Online]. Available: https://youtu.be/g1Ya9RFSgJc

https://youtu.be/g1Ya9RFSgJc
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model to the differential-drive model (3.35)-(3.36).

3.8.1 Experimental settings

Our implementation is based on a ROS 2 (Humble) setup on Ubuntu 22.04, integrating
the two main components of the TurtleBot 4, the Create 3 and the Raspberry Pi 4B
(RPi4B), and a User PC (an external computer), with communication realized through
a simple discovery mode. This networking mode is a multicast configuration enabling
peer-to-peer communication between the various devices connected to the Wi-Fi network.
The RPi4B acts as the main host of the robot’s ROS 2 node and as a network gateway.
It receives LiDAR data and transmits it to the network, publishing it in the /scan topic.
It also relays the robot pose information supplied by Create 3 to the network, publishing
it in the /odom topic, and receives the velocity commands sent by the PC user and
transmits it to Create 3. The Create 3 is the mobile base equipped with essential onboard
actuators and sensors such as wheel encoders and IMU for odometry and cliff sensors
for safety. It is also responsible for the low-level control. The user PC receives LiDAR
ranges and robot pose to execute the control algorithm and send velocity commands
(linear velocity v and angular velocity ω) to the RPi4B, publishing them in the /vel cmd
topic. The network and data communication flow are shown in Fig. 3.25. For obstacle
detection, we rely on the onboard RPLiDAR-A1MS shown in Fig. 3.24. The Lidar has a
resolution of 1 deg, an angular range of 360 deg, a minimum radial range Rmin = 0.15m
and a maximum radial range Rmax = 12m. The LiDAR provides measurements in its
own frame (LiDAR frame), which is displaced by −4cm along the x-axis and rotated by
90 deg with respect to the robot frame as illustrated in Fig. 3.24(right). Therefore, we
first limit the measurement radial range to Rmax = 2m (due to the workspace limitation),
then transform the LiDAR data from the LiDAR frame to the robot frame so we can
correctly localize the detected obstacles with respect to the robot frame. The parameters
of the control (3.33) and (3.36) used in the experiment are summarized in Table 3.4.

Figure 3.24: RPLIDAR-A1M8 onboard of Turtlebot 4. The figure on the left shows the
Turtlebot 4 and the RPLIDAR-A1M8. The figure on the right illustrates the robot frame
and the LiDAR frame.



55

Figure 3.25: A schematic representation of the network and data communication flow in
our experimental setup.

Table 3.4: Experimental setup and control parameters.

Parameter Value
Robot’s radius rb = 0.17m
Safety margin rs = 0.13m

Dilation parameter r = rb + rs = 0.3m
Maximum radial range measurement Rmax = 2m

Gain of the control u(x) γ = 1.5
Gain used in (3.36) kv = 0.1

Tuning parameter used in (3.36) p = 1
Maximum linear velocity vmax = 0.31m/s
Maximum angular velocity ωmax = 1.9rd/s

3.8.2 Experimental results

We set up a 6m× 4.25m workspace with four boxes and four punching bags as obstacles.
The robot is initially at the origin with its heading aligned with the x-axis (ψ = 0), and
the target is set at the position xd = [5.3 0]⊤. The experimental results are shown in
Fig. 3.26 and in a video that can be found online.8 The top figure of Fig. 3.26 shows the
workspace configuration with the initial and final positions. In the bottom figure, the
trajectory of the robot is plotted in an orthographic projection top view of the workspace.
The obtained results illustrate the safe navigation of the robot from the initial position
to the final destination.

8[Online]. Available: https://youtu.be/Z2AWva6DYgs

https://youtu.be/Z2AWva6DYgs
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Figure 3.26: Safe navigation of Turtlebot 4 in an environment with four boxes and four
punching bags as obstacles. The top figure shows the configuration of the workspace
with a highlighted initial and final positions. The bottom figure is a plot of the robot’s
trajectory in an orthographic projection top view of the workspace.



Chapter 4

Hybrid Feedback Control for Global
Navigation with Locally Optimal
Obstacle Avoidance in
n-Dimensional Spaces

4.1 Introduction

This chapter deals with the problem of autonomous navigation in n-dimensional Eu-
clidean spaces cluttered with a finite number of spherical obstacles. We propose a hybrid
navigation scheme, with locally optimal obstacle avoidance, leading to global asymptotic
stability of the target location. A reactive sensor-based version of the proposed approach
is also presented for autonomous navigation in a priori unknown environments.
The approach proposed in (Berkane et al., 2022) is an example of a hybrid feedback
control that guarantees GAS of a target location in n-dimensional Euclidean spaces with
elliptical obstacles. However, this approach does not generate length-optimal trajecto-
ries, does not generate continuous control inputs and does not extend easily to a priori
unknown environments. Another example is the sensor-based hybrid feedback navigation
strategy with GAS guarantees and continuous vector field generation in two-dimensional
environments with convex obstacles (Sawant et al., 2023). Unfortunately, path-length
optimality is not considered in this approach, and in its recent extensions to non-convex
obstacles (Sawant et al., 2024a) and to three-dimensional convex obstacles (Sawant et al.,
2024c). The proposed hybrid feedback-based approach proposed in this chapter is also
distinguished from continuous feedback-based approaches by the fact that the latter ones
achieve, at best, AGAS results (Koditchek and Rimon, 1990) and generate non-optimal
paths in terms of length. One can take the example of the NF approach (Koditchek and
Rimon, 1990) with its various extensions (Rimon and Koditchek, 1992; Filippidis and
Kyriakopoulos, 2013; Loizou and Kyriakopoulos, 2006; Dimarogonas et al., 2006) and the
QP-based control barrier functions (Reis et al., 2021; Tan and Dimarogonas, 2024) for a
priori known environments, or the SH approach (Arslan and Koditschek, 2016) and its
different extensions (Arslan and Koditschek, 2019; Vasilopoulos and Koditschek, 2018;
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Vasilopoulos et al., 2020; Vasilopoulos et al., 2021) for a priori unknown environments.
The main contributions of the proposed approach in this chapter are summarized as

follows:

• Safety and global asymptotic stability: The proposed control strategy en-
sures safe navigation in n-dimensional spaces with spherical obstacles while pro-
viding global asymptotic stability (GAS) guarantees for the target location, i.e.,
convergence from all initial conditions in the workspace.

• Continuous control input: Unlike many hybrid strategies, the proposed hybrid
feedback controller produces continuous velocity inputs, enabling smooth robot
motion and ensuring practical feasibility for real-world applications.

• Local optimal avoidance maneuvers: By dynamically generating shortest-path
maneuvers around obstacles, the controller achieves locally optimal navigation with-
out sacrificing global stability guarantees.

• Navigation in unknown environments: The proposed obstacle-avoidance
mechanism is fully implementable using range sensors alone, allowing navigation
in both 2D and 3D environments without requiring prior global knowledge. Ex-
perimental validation on a TurtleBot 4 platform demonstrates its effectiveness in a
priori unknown settings, as illustrated in Fig. 4.14.

• Scalability and computational efficiency: The control strategy is computation-
ally lightweight and scalable to higher-dimensional spaces, making it well-suited for
autonomous systems with limited onboard resources.

Compared to the quasi-optimal approach in Chapter 3, this approach ensures safe nav-
igation from any initial position in the obstacle-free space. It does not suffer from the
problem of existence of undesired equilibria regardless of the dimension of the workspace
or whether it is a priori known or unknown.
The results presented in this chapter are based on our conference paper (Cheniouni et al.,
2024a) and a submitted journal paper (Cheniouni et al., 2024b).

4.2 Problem formulation

Autonomous navigation in cluttered environments remains a fundamental challenge in
robotics, particularly when requiring safety, efficiency, and smooth motion in high-
dimensional spaces. We consider the position x ∈ Rn of a point mass vehicle evolving in
the Euclidean space of dimension n ≥ 2 punctured by b ∈ N \ {0} balls Ok := B(ck, rk)
of radius rk > 0 and center ck ∈ Rn where k ∈ I := {1, . . . , b}. The obstacle-free space
is, therefore, given by the closed set

X := Rn \
⋃
k∈I

O̊k. (4.1)
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In practical applications, obstacle disjointness is a standard requirement to avoid over-
lapping regions, which could lead to navigation ambiguities or infeasible maneuvers.
Therefore, we impose the following assumption to preserve the spherical nature of obsta-
cles:

Assumption 4.1 The obstacles are pairwise disjoint, that is,

∥ck − cj∥ > rk + rj, ∀k, j ∈ I, i ̸= j. (4.2)

We consider a velocity-controlled vehicle such that ẋ = u, where u represents the control
policy designed to generate trajectories in constrained n−dimensional spaces. This model
assumes full actuation, which is a common abstraction for theoretical exploration, though
practical implementations may incorporate actuation constraints. The primary objective
is to design a feedback control policy for u that ensures safe and efficient navigation while
addressing the following challenges:

• Global Goal Reaching: Steer the vehicle from any initial position x(0) ∈ X to
a predefined destination xd ∈ X̊ , ensuring the robot consistently reaches the goal
regardless of the initial conditions.

• Obstacle Avoidance: Prevent collisions with all obstacles Ok, leveraging the
obstacle-free space X to navigate safely.

• Locally Optimal Maneuvers: Achieve locally shortest feasible paths around
obstacles, reflecting efficiency in navigation and minimizing unnecessary detours.

• Smoothness: At each time t, the control input u(t) is continuous, leading to
continuously differentiable trajectories suitable for practical deployment.

The proposed problem addresses a critical gap in existing navigation frameworks. Many
approaches either rely on constructing explicit or local representations of the environ-
ment, which may not be feasible in real-time, or fail to guarantee smooth, optimal, and
globally converging trajectories in n-dimensional spaces. By focusing on disjoint spherical
obstacles, we establish a mathematically tractable yet practically relevant scenario that
enables rigorous analysis of the control strategy. The emphasis on continuous control
inputs ensures compatibility with robotic systems where abrupt changes can destabilize
dynamics or degrade performance. This problem formulation sets the stage for develop-
ing a novel hybrid feedback strategy that overcomes these limitations, providing a robust
solution for autonomous navigation in high-dimensional obstacle-filled environments.

4.2.1 Sets definition

In this subsection, we define the subsets of the free space that will be used in the design
of our control proposed in Section 4.3. These subsets are illustrated in Fig. 4.1 and
presented as follows:
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• The shadow region of obstacle Ok is the area hidden by obstacle Ok from which
the vehicle does not have a clear line of sight to the target. It is defined as follows:

Sk(xd) :=
{
q ∈ C≤X (xd, ck − xd, θ(xd, k))|(ck − q)

⊤(xd − q) ≥ 0
}
, (4.3)

where the function θ(q, k) : X → (0, π
2
], q 7→ θ(q, k) := arcsin(rk/∥q − ck∥) assigns

to each position q of the free space, the half aperture of the cone enclosing obstacle
Ok.

• The active region of obstacle Ok is defined as follows:

Ak(xd) := Sk(xd) ∩ B(ck, rk + r̄k), (4.4)

where r̄k ∈ (0, r̂k), r̂k = min
j∈Ik(xd)

(∥ck − cj∥ − rk − rj), and Ik(xd) := {j ∈ I|Sk(xd)∩

∂Oj ̸= ∅} is the set of obstacles hidden (fully or partially) from the destination xd
by obstacle Ok. Note that when Ik(xd) = ∅, r̂k =∞ and Ak(xd) = Sk(xd).

• The exit set of obstacle Ok is the lateral surface of the active region and is defined
as follows:

Ek(xd) := C=X (xd, ck − xd, θ(xd, k)) ∩ Ak(xd). (4.5)

• The hat of obstacle Ok is the upper part of the surface of the cone of vertex xd
enclosing obstacle Ok and is defined as follows:

Hk(xd) := C=X (xd, ck − xd, θ(xd, k)) \ Ek(xd). (4.6)

• The active free space is defined as

V(xd) :=
⋃
k∈I

Ak(xd). (4.7)

4.3 Main results

In this section, we present the design of our hybrid controller, demonstrating the forward
invariance of the obstacle-free space and the stability of the target location under the
proposed control scheme. Furthermore, we establish the continuity of the control input
and substantiate the optimality of the obstacle-avoidance maneuvers.

4.3.1 Control design

The proposed hybrid control strategy consists of two operation modes: the motion-
to-destination mode and the obstacle-avoidance mode. We make use of a mode selector
m ∈M := {−1, 0, 1} which refers to the motion-to-destination mode if m = 0, and to the
obstacle-avoidance mode ifm = ±1. Each mode of operation is activated and deactivated
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Figure 4.1: 2D representation of the sets in Section 4.2.1.

in specific regions–referred to as flow sets and jump sets–based on a carefully designed
switching strategy. The proposed hybrid feedback control depends on the current position
x ∈ Rn, the considered obstacle k ∈ I, and the operation mode m, and is defined as
follows:

u(x, k,m) = m2α(x, k)µ(x, k,m)κ(x, k,m) + (1−m2α(x, k))ud(x), (4.8a){
k̇ = 0,

ṁ = 0,
(x, k,m) ∈ F , (4.8b){

k+ ∈ K(x, k,m),

m+ ∈M(x, k,m)
(x, k,m) ∈ J , (4.8c)

where ud(x) := γ(xd − x) is the nominal control for the motion-to-destination mode,
γ > 0, κ(x, k,m) is the control for the obstacle-avoidance mode that will be defined in
Subsection 4.3.1.2. The scalar functions α and µ, which will be defined in Subsection
4.3.1.3, ensure smooth transitions between the operation modes. The dynamics of the
obstacle and mode selectors are described in (4.8b)-(4.8c) where K(·) is the jump map of
the obstacle selector andM(·) is the jump map of the mode selector that will be designed
in Subsection 4.3.1.3. The sets

F :=
⋃
m∈M

(Fm × {m}) , J :=
⋃
m∈M

(Jm × {m}) (4.9)

are, respectively, the flow and jump sets of the hybrid system where Fm and Jm are,
respectively, the flow and jump sets of the operation modem ∈M that will be constructed
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in Subsections 4.3.1.1, 4.3.1.2. In the following, we define the control in each mode and
its associated flow and jump sets, and then we define the jump maps that govern the
transitions between these modes.

4.3.1.1 Motion-to-destination mode (m = 0)

In this mode, the robot moves straight to the target under the nominal control ud(x).
Considering obstacle k ∈ I, the flow and jump sets associated with obstacle Ok, depicted
in Fig. 4.2, are defined as follows:

F0
k := X \ Ak(xd), J 0

k := Ak(xd). (4.10)

where A(xd) is the active region defined in (4.4). The flow and jump sets for the mode
m = 0, considering all obstacles, are defined as:

F0 := F̃0 × I, J0 := J̃0 × I, (4.11)

where the motion-to-destination mode is selected at each position x within the inter-
section of the flow sets, F̃0 := ∩k∈IF0

k , for all obstacle indices k ∈ I. Additionally, at
each position x in the union of the jump sets J̃0 := ∪k∈IJ 0

k = V(xd), where V(xd) is the
active free space defined in (4.7), a jump to the obstacle-avoidance mode can occur for
any obstacle index k ∈ I.

Figure 4.2: 2D illustration of the flow and jump sets for the motion-to-destination mode
associated with obstacle Ok, k ∈ I.

4.3.1.2 Obstacle-avoidance mode (m = ±1)

In this mode of operation, the robot will engage in a local optimal obstacle avoidance
maneuver. To this end, we consider two virtual destinations, x1k and x−1

k , which are
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designed to be on the hat Hk(xd), defined in (4.6), of obstacle Ok and symmetrical with
respect to the hat axis (ck − xd), as shown in Fig. 4.3. The introduction of two virtual
destinations is motivated by the observation that each virtual destination generates a
distinct set of undesired equilibria. By appropriately selecting the virtual destination
during the avoidance maneuver (via hybrid feedback), the vehicle is prevented from
becoming trapped at these undesired equilibria, see (Berkane et al., 2022). Moreover, by
projecting the nominal control κ̄(x, k,m) := γ(xmk −x) onto the surface of the cone, with
vertex at x, enclosing obstacle Ok, we aim to avoid the obstacle with minimal deviation
from the nominal direction, as illustrated in Fig. 4.3, thereby generating optimal obstacle
maneuvers, see also (Cheniouni et al., 2023a). These virtual destinations are chosen as
follows:

x1k ∈ Hk(xd) ∩ P≥(pk, xd − pk), (4.12a)

x−1
k = xd − πr

(
ck − xd
∥ck − xd∥

)
(x1k − xd) (4.12b)

where pk := ck + rk
xd−ck

∥xd−ck∥
and ∥xd − xmk ∥ =: ek > 0. Note that the choice of x1k is

not unique and can be any point on the hat Hk(xd) of the enclosing cone within the
half-space P≥(pk, xd − pk), and satisfying ∥xd − xmk ∥ = ek. The term κ(x, k,m) used in
(4.8a), which is the control in the obstacle-avoidance mode (i.e., m = ±1), is given as
follows:

κ(x, k,m) = κ̄(x, k,m)− τ(x, k,m)
ck − x
∥ck − x∥

, (4.13)

where τ(x, k,m) = ∥κ̄(x, k,m)∥ sin(θ(x, k) − β(x, k,m)) sin−1(θ(x, k)), β(x, k,m) =
∠(ck − x, κ̄(x, k,m)), and θ(x, k) = arcsin(rk/∥x − ck∥) ∈ (0, π/2] with k ∈ I and
m ∈ {−1, 1}. The control law (4.13) is a scaled parallel projection of the nominal
controller κ̄(x, k,m), with respect to the virtual destination xmk , onto the line tangent to
obstacle Ok, ensuring a minimal angle with κ̄(x, k,m) and the continuity of κ(x, k,m) at
the exit set. The optimization problem with solution κ(x, k,m) is given in the following
lemma.

Lemma 4.1 Consider obstacle Ok, a virtual destination xmk and their associated ac-
tive region Ak(xmk ) where k ∈ I and m ∈ {−1, 1}. For each (x, k,m), the control law
κ(x, k,m), given in (4.13), is the unique solution of the optimization problem given by

min
u

∠(xmk − x, v), (4.14a)

s.t. v ∈ V(ck − x, θ(x, k)), if x ∈ Sk(xmk ), (4.14b)

v = κ̄(x, k,m), if x ∈ Ek(xmk ). (4.14c)

where Sk(xmk ) and Ek(xmk ) are defined in (4.3) and (4.5) respectively.

The proof of Lemma 4.1 is the same as the proof in Appendix A.1 when the virtual des-
tination xmk is considered instead of the actual destination xd. Note that the constraint
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(4.14c) ensures the uniqueness of the solution to the optimization problem (4.14) and the
continuity of κ(x, k,m) at the exit set Ek(xmk ). The control law (4.13) steers the robot tan-
gentially to the obstacle, providing a more efficient path compared to approaches like the
bug algorithms, which initiate obstacle avoidance only upon contact or in close proximity
to the obstacle, as seen in hybrid approaches such as (Berkane et al., 2022; Sawant et al.,
2023; Sawant et al., 2024a). The equilibrium points generated by the control input (4.13)
in the obstacle-avoidance mode can be obtained by setting κ(x, k,m) = 0 for x ∈ Ak(xmk ),
m ∈ {−1, 1}, and k ∈ I. It is clear that κ(x, k,m) = 0 holds only if β(x, k,m) = 0. The
set of equilibria is then the line passing through the center ck and the virtual destination
xmk limited by the active region Ak(xmk ). It is given by Lk(xmd ) := L(xmk , ck) ∩ Ak(xmk ).
The flow and jump sets of the obstacle-avoidance mode, considering obstacle Ok, k ∈ I,
are illustrated in Fig. 4.4 and defined as follows:

Fmk := Ak(xmk ) \ C<X (ck, vmk , φmk ),Jm
k := X \ Fmk , (4.15)

where vmk := ck − xmk . To ensure that the jump from the motion-to-target mode to the
obstacle-avoidance mode is valid everywhere in J0 (i.e., ∀(x, k) ∈ J0, M(x, k, 0) ̸= ∅),
we design the angles φ1

k, φ
−1
k in (4.15) as per Lemma 2.1 as follows:

φ1
k = φ−1

k = φ < min

{
∠(v1k, v

−1
k )

2
,
π − ∠(v1k, v

−1
k )

2

}
. (4.16)

Note that a conic subset is subtracted from the active region for the modes m = ±1 in
(4.15), which excludes the equilibria from the flow set, leaving the system with a unique
equilibrium point at the target location for the mode m = 0. The flow and jump sets for
mode m ∈ {−1, 1} and considering all the obstacles are defined as follows:

Fm :=
⋃
k∈I

(Fmk × {k}) , Jm :=
⋃
k∈I

(Jm
k × {k}) . (4.17)

Figure 4.3: Construction of the control in the obstacle-avoidance mode for a 2D case.
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Figure 4.4: 2D illustration of the flow and jump sets for the obstacle-avoidance mode
associated with obstacle Ok, k ∈ I.

4.3.1.3 Operation mode switching scheme

The jump maps are designed to effectively switch between the operation modes to attain
the following objectives:

• Avoid every encountered obstacle through local optimal maneuvers.

• Avoid obstacles one by one to ensure safety and offer the possibility of sensor-based
implementation.

• Converge to the destination xd from any initial position in the obstacle-free space.

We first define the smoothing functions as follows:

µ(x, k,m) :=

(
1 +

ek
∥x− xmk ∥

β(x, k,m)

θ(x, k)

)
, (4.18)

α(x, k) :=


1 d(x,Ok) < r̄k − ϵ,
r̄k−d(x,Ok)

ϵ
r̄k − ϵ ≤ d(x,Ok) ≤ r̄k,

0 d(x,Ok) > r̄k,

(4.19)

with 0 < ϵ ≤ ϵ̄ and ϵ̄ := min
k∈I

r̄k. In fact, the scalar function α(x, k) ensures a smooth

transition from the motion-to-destination mode to the obstacle-avoidance mode. The
scalar function µ(x, k,m), together with the modified switching scheme of the mode m
that will be designed in Subsection 4.3.3, ensures a smooth transition from the obstacle-
avoidance mode to the motion-to-destination mode.
Now, we define the jump map K(·) of the obstacle selector as

K(x, k,m) :=

{
k x ∈ Jm

k , m ∈ {−1, 1},
k′ x ∈ J k′

0 , m = 0,
(4.20)
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and the jump map M(·) of the mode selector as

M(x, k,m) :=

{
0 x ∈ Jm

k , m ∈ {−1, 1},
B(x, k) x ∈ J k

0 , m = 0,
(4.21)

where B(·) is defined as:

B(x, k) :=


1 x ∈ C1k ,
−1 x ∈ C−1

k

{−1, 1} x ∈ Ck,
(4.22)

with C1k = C≥Rn(c, v1k, φ
1
k) \ C

≥
Rn(c, v−1

k , φ−1
k ), C−1

k = C≥Rn(c, v−1
k , φ−1

k ) \ C≥Rn(c, v1k, φ
1
k), and

Ck = C≥Rn(c, v1k, φ
1
k) ∩ C

≥
Rn(c, v−1

k , φ−1
k ). Note that the construction of the flow and jump

sets (4.15) of the obstacle-avoidance mode are such that the set of undesired equilibria
belongs to the jump set of the corresponding obstacle-avoidance mode (m = ±1).

4.3.2 Safety and stability analysis

In this subsection, we establish the safety and stability properties of our hybrid closed-
loop system. To this end, we define the augmented state vector as

ξ := (x, k,m) ∈ Rn × I×M, (4.23)

and the overall flow and jump maps as

ξ 7→ F (ξ) := (u(ξ), 0, 0), (4.24)

ξ 7→ J(ξ) := (x,K(ξ),M(ξ)). (4.25)

Then, the resulting hybrid closed-loop system can be written as{
ξ̇ = F (ξ) ξ ∈ F ,
ξ+ ∈ J(ξ) ξ ∈ J ,

(4.26)

and its representation with the hybrid data is given by H := (F ,F,J , J). To analyze
our closed-loop system, we first establish its well-posedness by showing that it complies
with the hybrid basic conditions (Goebel et al., 2012, Assumption 6.5), as shown in the
next lemma.

Lemma 4.2 The hybrid closed-loop system (4.26) represented by its data H, satisfies the
following hybrid basic conditions:

i) The flow set F and the jump set J , defined in (4.17), are closed subsets of K.

ii) The flow map F, defined in (4.24), is outer semicontinuous and locally bounded
relative to F , F ⊂ dom(F ), and F(ξ) is convex for every ξ ∈ F .

iii) The jump map J, defined in (4.25), is outer semicontinuous and locally bounded
relative to J , and J ⊂ dom(j).
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Proof See Appendix B.1.

Now, let us define the augmented free space and the desired equilibrium set as follows:

K := X × I×M, A := {xd} × I×M. (4.27)

Robot navigation is said to be safe if the state x evolves in the obstacle-free space X
at all times. For the hybrid closed-loop system (4.26), this is equivalent to showing
forward invariance (Chai and Sanfelice, 2019) of the augmented obstacle-free space K.
The following theorem will present our results concerning safe and global navigation
under the proposed hybrid controller.

Theorem 4.1 Consider the augmented state space K, described in (4.27), and the hybrid
closed-loop system (4.26). Then, the following statements hold:

i) The augmented state space K is forward invariant.

ii) The set A is globally asymptotically stable.

Proof See Appendix B.2.

Theorem 4.1 states that the robot with position x reaches the destination xd safely from
any initial condition of the obstacle-free space X . In addition to the safety and GAS
of the target location, our control strategy ensures the continuity of the control input
(4.8a) and optimality of the local obstacle avoidance maneuvers as demonstrated in the
next subsection.

4.3.3 Continuity and optimality

To ensure continuity of the control input and optimality of the avoidance maneuvers when
implementing the hybrid control (4.8), two properties of the proposed hybrid system will
be utilized. In fact, the closed-loop hybrid system defined in (4.26) offers a flexibility
in choosing the virtual destinations (see (4.12a)) as well as the operation mode m (set-
valued map in (4.22)). In this section, we show that, for a given obstacle k ∈ I, the virtual
destinations in (4.12) can be selected to guarantee a two-dimensional motion. Moreover,
when the robot is in the hysteresis region (i.e., x ∈ J 0

k ∩ Ck), the mode m can be forced
in (4.22) to the value that ensures the virtual destination xmk is the closest to the robot.
In the following, we present the detailed design process that guarantees continuity of the
control input and local optimality of the obstacle avoidance maneuver.
The proposed control strategy generates planar trajectories during the time interval in
which a given obstacle Ok is being avoided, as stated in the following lemma:

Lemma 4.3 Let the plane spanned by two non-colinear vectors (q1 − y) ∈ Rn and (q2 −
y) ∈ Rn be denoted by PL(q1, q2, y). Consider the closed-loop hybrid system (4.26). For
a given obstacle index k ∈ I, if the virtual destinations x−1

k and x1k belong to the plane
PL(xd, ck, x(tk0, jk0 )) when the destination xd, the obstacle’s center ck and the position
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x(tk0, j
k
0 ) are not aligned, the motion takes place in the plane PL(xd, ck, x(tk0, jk0 )) where

(tk0, j
k
0 ) is the hybrid time at which obstacle k is selected. If the points xd, ck and x(tk0, j

k
0 )

are aligned, the motion takes place in the plane PL(xd, ck, y) for a given y ∈ Rn\L(xd, ck)
such that xmk ∈ PL(xd, ck, y) and m ∈ {−1, 1}.

Proof See Appendix B.3.

The result of Lemma 4.3 requires selecting the virtual destinations associated with ob-
stacle k ∈ I depending on the robot’s position when it first enters the jump set J k

0

of obstacle k. Suppose the virtual destinations, defined in (4.12), belong to the two-
dimensional plane PL(xd, ck, x(tk0, jk0 )) when x(tk0, jk0 ) ∈ J 0

k \ L(xd, ck). In this case, the
motion generated by the closed-loop system (4.26), while obstacle k is selected, is two-
dimensional and takes place on the plane PL(xd, ck, x(tk0, jk0 )). It is clear that in the
case where x(tk0, j

k
0 ) ∈ J 0

k ∩L(xd, ck), the plane of motion can be any plane PL(xd, ck, y)
such that y ∈ Rn \ L(xd, ck) and x±1

d ∈ PL(xd, ck, y). We should also mention that the
case where the robot is initially in the set F̃0 is omitted since the robot will operate in
the motion-to-destination mode until it enters the active region of an obstacle or con-
verges to the destination if the line of sight to the destination is clear for the robot.
The generated trajectory is then a line segment. An example illustrating the effect of
selecting the virtual destinations as per Lemma 4.3 is shown in Fig. 4.5. In Fig.4.5(a),
the virtual destinations belong to the two-dimensional plane PL(xd, ck, x(tk0, jk0 )), which
results in a two-dimensional motion that takes place in the plane PL(xd, ck, x(tk0, jk0 )) for
both modes considering obstacle k (obstacle-avoidance mode represented by the orange
curve and motion-to-destination mode represented by the blue curve). In Fig. 4.5(b),
the virtual destinations do not belong to the plane PL(xd, ck, x(tk0, jk0 )). The motion in
the two modes occurs in two different planes, as shown in Fig. 4.5(c), where the orange
curve represents the obstacle-avoidance mode, and the blue curve represents the motion-
to-destination mode.
When the robot’s position belongs to the region

(
J 0
k ∩Ck

)
, the jump maps (4.21)-(4.22)

enable the mode m to take the value 1 or −1 (indistinguishably) when switching from the
motion-to-destination mode to the obstacle-avoidance mode (i.e., avoid the obstacle con-
sidering, indistinguishably, the virtual destination x1k or x−1

k ). Leveraging this property
together with the fact that robot’s motion, during every obstacle avoidance maneuver,
is planar (as per Lemma 4.3), one can force the jump from the motion-to-destination
mode, when x ∈

(
J 0
k ∩ Ck

)
, to the obstacle-avoidance mode corresponding to the virtual

destination closest to the robot’s position. This will ensure a smooth transition from the
obstacle-avoidance mode to the motion-to-destination mode, while guaranteeing locally
optimal obstacle avoidance maneuvers as it will be shown later in Proposition 4.1. Fig-
ure 4.6(a) clearly shows that the green trajectory, generated by switching to the closest
virtual destination, x−1

k , to the robot’s position when first entering the hysteresis region(
J 0
k ∩ Ck

)
(pink region), is shorter than the blue trajectory generated by selecting x1k.

Figure 4.6(b) also shows that when selecting x−1
k , the mode switches back to the motion-

to-destination mode earlier than when selecting x1k, as x
−1
k becomes visible to the robot

before x1k does. Another observation from Fig. 4.6(b) is that when switching back to
the motion-to-destination mode, the robot’s position, the destination xd, and the virtual
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(a) (b) (c)

Figure 4.5: Illustration of the property in Lemma 4.3 in a 3D space. In the left figure
(a), the virtual destinations x±1

k belong to the plane PL(xd, ck, x(tk0, jk0 )), resulting in a
trajectory belonging to the same plane for the obstacle Ok, where the obstacle-avoidance
mode is represented by the orange curve and the motion-to-destination mode is repre-
sented by the blue curve. In the middle figure (b), the virtual destinations x±1

k do not
belong to the plane PL(xd, ck, x(tk0, jk0 )), resulting in a trajectory that does not belong to
the plane PL(xd, ck, x(tk0, jk0 )). The right figure (c) shows that the trajectory generated
in figure (b) does not belong to a single plane but to two different planes, as the virtual
destinations are not on the plane PL(xd, ck, x(tk0, jk0 )).

destination x−1
k are aligned, which ensures the continuity of the velocity. As per the

discussion above, we propose a modified version of the jump map B(·), defined in (4.22),
as follows:

B̂(x, k) :=


1 x ∈ C1k ∪

(
Ck ∩ P<(ck, x−1

k − x1k)
)
,

−1 x ∈ C−1
k ∪

(
Ck ∩ P>(ck, x−1

k − x1k)
)
,

{−1, 1} x ∈ Ck ∩ P=(ck, x
−1
k − x1k).

(4.28)

Note that by considering the modified jump map B̂(·) in the mode switching scheme, the
hysteresis region

(
J 0
k ∩ Ck

)
, when switching from the motion-to-destination mode to the

obstacle-avoidance mode, reduces to a line segment (shown in red in Fig. 4.6) in the 2D
case, thus losing the robustness of the hybrid system. The updating scheme of the mode
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m in the jump set of the motion-to-destination mode, considering the modified jump
map (4.28), and the design of the virtual destinations in Lemma 4.3 are summarized in
Algorithm 3, and the obtained result is stated in the following proposition.

Proposition 4.1 If the virtual destinations are designed as in Lemma 4.3 and the mod-
ified operation mode switching scheme (4.21)-(4.28) is considered, the hybrid closed-loop
system (4.26) generates continuous velocity control inputs and locally optimal obstacle
avoidance maneuvers.

Proof See Appendix B.4.

Algorithm 3 Mode selector updating scheme in the jump set of the motion-to-
destination mode

Initialization: x, xd, k, ck, rk, ek, r̄;
Ensure: m.
1: if x /∈ L(xd, ck) then
2: y → x;
3: else
4: Pick y ∈ Rn \ L(xd, ck);
5: end if
6: Select the virtual destinations such that
x1k ∈ Hk(xd) ∩ P≥(pk, xd − pk) ∩ PL(xd, ck, y)
∥xd − x1k∥ = ek
x−1
k → xd − πr( ck−xd

∥ck−xd∥
)(x1k − xd);

7: if x ∈ Ck then
8: if x ∈ P<(ck, x−1

k − x1k) then
9: m→ 1;
10: else if x ∈ P>(ck, x−1

k − x1k) then
11: m→ −1;
12: else
13: m→ {−1, 1};
14: end if
15: else
16: m→ B(x, k) using (4.22);
17: end if
18: return m;

The implementation of the hybrid control (4.8) is summarized in Algorithm 4, where
the steps colored in blue are only required for the sensor-based implementation. For
compactness, we write the workspace’s data and design parameters as follows:

c := [c1, . . . , cb], r := [r1, . . . , rb]
⊤, r̄ := [r̄1, . . . , r̄b]

⊤, e := [e1, . . . , eb]
⊤.
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(a) (b)

Figure 4.6: Effects of selecting the navigation mode according to Proposition 4.1. In the
left figure (a), when first entering the jump set J 0

k through the hysteresis region (pink
region), the mode m switches to obstacle-avoidance mode where the blue trajectory is
generated by selecting the virtual destination x1k and the green trajectory is generated by
selecting the closest virtual destination x−1

k to the robot’s position. Both trajectories are
smooth, but the blue trajectory is longer than the green trajectory. In the right figure
(b), the blue trajectory is longer and non-smooth. The green (blue resp.) region in the
jump set J 0

k is where, if the robot operates in the motion-to-destination mode, the mode
m can only jump to m = −1 (m = 1 resp.).

4.4 Sensor-based implementation

Since the workspace is assumed to contain spherical obstacles, one can reconstruct the
obstacles from their detected portions obtained via a range scanner that covers a region
B(x,R), R > 0, around the robot. As the detection region is limited to the sensor’s range
R, we redefine the range of the active region of obstacle k ∈ I, defined in (4.4), by

r̄k ∈ (0, r̃k), r̃k := min(r̂k, R). (4.29)

Next, we implement our hybrid strategy in two and three-dimensional spaces using 2D
and 3D LiDAR range scanners (e.g., LEICA, BLK, ARC scanning modules).

4.4.1 Two-dimensional spaces

Consider a two-dimensional workspace, and assume that the robot is equipped with a
LiDAR of resolution dψ > 0, a maximum radial range R > 0, and an angular range of
360◦. We model the measurements of the sensor, at a position x, by the polar curve
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Algorithm 4 General implementation of the hybrid control (4.8)

Initialization: xd, ec, c, r, r̄, e, ϵ, es, x(0, 0) ∈ X , k(0, 0) ∈ I, and m(0, 0) = 0;
1: while true do
2: Measure x;
3: if ∥x− xd∥ ≤ ec then
4: Break;
5: else
6: Measure R(x);
7: Reconstruct obstacles using (4.32)-(4.34);
8: Dilate obstacles radii: ri ← ri + es, i ∈ Sx;
9: Update r̄;
10: if (x,m) ∈ J̊0 × {0} then
11: Update k using (4.20);
12: Update m using Algorithm 3;
13: else
14: Update k and m using (4.8b)-(4.8c);
15: end if
16: Execute u(x, k,m) using (4.8a);
17: end if
18: end while

ρ(x, ψ) : X × G → [0, R] defined as follows:

ρ(x, ψ) := min

(
R, min

y∈∂X
atan2(y(2)−x(2),y(1)−x(1))=ψ

∥y − x∥
)
, (4.30)

where G := {0, dψ, 2dψ, . . . , 360− dψ} is the set of scanned angles. The Cartesian coor-
dinates of the scanned points are modeled by the mapping δ(x, ψ) : X × G → X defined
as follows:

δ(x, ψ) := x+ ρ(x, ψ)[cos(ψ) sin(ψ)]⊤. (4.31)

Let Gx(δ) be the graph of the mapping δ at a position x. The set Ix ⊂ I of the detected
obstacles, at position x, is defined as Ix := {i ∈ I|d(x,Oi) ≤ R}. Assume that at each
position x, the sensor returns a list of arcs R(x) :=

{
A1, A2, . . . , Aι(x)

}
from the detected

obstacles corresponding to the intersection of the graph Gx(δ) and obstacles of the set
Ix, as shown in Fig. 4.7, where ι(x) = card(Ix). Using the arcs of the list R(x), at a
position x, one can reconstruct the obstacles by determining their centers and radii. Due
to the LiDAR’s radial sweep, at positions where some obstacles are partially hidden by
other obstacles, the detected arcs of partially hidden obstacles may be asymmetrical with
respect to the projection of the robot’s position on these obstacles. These asymmetrical
arcs are ignored as they imply that the robot is outside the active region of their associated
obstacles since, according to definitions (4.4) and (4.29), the active region must be free
of any other obstacles (see also Fig. 4.7). The indices of obstacles associated with the
symmetrical arcs, detected at position x, are grouped in the set Sx ⊂ Ix. Consider a
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symmetrical arc Ai ∈ R(x) associated with obstacle Ok where i ∈ {1, . . . , ι(x)} and
k ∈ Sx. The center ck and the radius rk can be obtained, as illustrated in Fig. 4.7,
through the following steps:

• Determine the projection of x onto the arc Ai (i.e., the closest point of obstacle k
to the robot) as follows:

ĉi := argmin
y∈Ai

∥x− y∥. (4.32)

• Determine the radius rk as follows:

rk :=
b2

2
√
b2 − a2

, (4.33)

where a = ∥c+i − c−i ∥, b = ∥c+i − ĉi∥ = ∥c−i − ĉi∥, and c+i , c−i are the endpoints of
arc Ai.

• Determine the center ck as follows:

ck := ĉi + rk
ĉi − x
∥ĉi − x∥

. (4.34)

Since the centers and radii of the detected obstacles in the vicinity of the robot can be
determined, the hybrid control (4.8) can be implemented in an unknown two-dimensional
workspace with disc-shaped obstacles, as described in Algorithm 4 considering the steps
colored in blue.

4.4.2 Three-dimensional spaces

Consider a three-dimensional workspace, and assume that the robot is equipped with a
3D-LiDAR of polar resolution dϑ > 0, polar angular range of 180◦, azimuthal resolution
dψ > 0, azimuthal angular range of 360◦, and a maximum radial range R > 0. We model
the measurements of the sensor, at a position x, by the curve ρ̄(x, ϑ, ψ) : X × U × G →
[0, R] defined as follows:

ρ̄(x, ϑ, ψ) := min

(
R, min

y∈∂X
atan2(y(2)−x(2),y(1)−x(1))=ψ
arccos(∥y−x∥/(y(3)−x(3)))=ϑ

∥y − x∥
)
, (4.35)

where U := {0, dϑ, 2dϑ, . . . , 360 − dϑ} and G := {0, dψ, 2dψ, . . . , 180− dψ} are, respec-
tively, the set of scanned polar angles and the set of scanned azimuthal angles. The
Cartesian coordinates of the scanned points are modeled by the mapping δ̄(x, ϑ, ψ) :
X × G × U → X defined as follows:

δ̄(x, ϑ, ψ) := x+ ρ̄(x, ϑ, ψ)[cos(ψ) sin(ϑ) sin(ψ) sin(ϑ) cos(ϑ)]⊤. (4.36)

Similar to the two-dimensional case, Gx(δ̄) represents the graph of the mapping δ̄ at
a position x and Ix ⊂ I the set of detected obstacles at position x. Assume that at
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Figure 4.7: Obstacle reconstruction from sensor data.

each position x, the sensor returns a list of spherical caps R̄(x) :=
{
Ā1, Ā2, . . . , Āι(x)

}
from the detected obstacles corresponding to the intersection of the graph Gx(δ̄) and
obstacles of the set Ix, where ι(x) = card(Ix). The intersection of two spheres is a circle
if the distance between their centers is less than the sum of their radii and if neither
sphere is enclosed by the other. As a result, the detected spherical caps are formed
by a bump with a circular base. At certain positions, some obstacles may be partially
hidden from the sensor by other obstacles. The detected parts of the partially hidden
obstacles may be asymmetrical with respect to the projection of the robot’s position
onto these obstacles. At positions where asymmetrical spherical caps are detected, the
robot is certainly outside the active regions of obstacles associated with the asymmetrical
caps since, as per definition (4.4)-(4.29), the active region of an obstacle should not
contain any other obstacle. Consequently, we ignore the asymmetrical spherical caps
as their associated obstacles are not required for the control. The indices of obstacles
associated with the symmetrical spherical caps, detected at position x, are grouped in the
set Sx ⊂ Ix. Consider a symmetrical spherical cap Āi ∈ R̄(x), detected at position x ∈ X ,
associated with obstacle Ok where i ∈ {1, . . . , ι(x)} and k ∈ Sx. The reconstruction of
obstacle Ok from its detected spherical cap Āi can be obtained as follows:

• Determine the projection of x onto the spherical cap Āi (i.e., the closest point of
obstacle Ok to the robot)

c̃i := argmin
y∈Āi

∥x− y∥. (4.37)
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• Determine the radius of obstacle Ok

rk :=
b2

2
√
b2 − a2

, (4.38)

where a is the radius of the circular basis C̄i of the portion Āi, and b = d(c̃i, C̄i).

• Determine the center of obstacle Ok

ck := c̃i + rk
c̃i − x
∥c̃i − x∥

. (4.39)

Now, with the information of neighboring obstacles to the robot available through the
sensor’s output, the hybrid control (4.8) can be implemented in unknown spherical three-
dimensional spaces as summarized in Algorithm 4, considering the steps colored in blue
and replacing R(x) in step 6 of the algorithm with R̄(x).

Remark 4.1 For safer navigation, the numerical errors and low resolution of the LiDAR
should be considered. Therefore, a security margin es > 0 can be added to the radius of
the detected obstacles where the separation between every pair of obstacles has to be larger
than 2es (i.e., ∀i, k ∈ I, i ̸= k, ∥ck − ci∥ − rk − ri > 2es.)

4.5 Numerical simulations

4.5.1 Implementation with global knowledge of the environ-
ment

In order to visualize the performance of our proposed hybrid approach, we compare it
with another hybrid approach that considers a single integrator model and guarantees
safety and GAS in n-dimensional Euclidean spaces, proposed in (Berkane et al., 2022).
We performed simulations starting from 10 different initial conditions in two different
workspaces. The first experiment is done in a two-dimensional environment, as shown
in Fig. 4.8, where we plotted the trajectories obtained by our approach along with the
trajectories generated by the approach proposed in (Berkane et al., 2022). We also report
the relative length difference of the paths generated by the approach proposed in (Berkane
et al., 2022) with respect to ours in Table 4.1. For each initial position pi, i ∈ {1, . . . , 10},
in Fig. 4.8, we computed the relative length difference RLDi = 100(Li−li)/li, where Li is
the length of the ith path generated by the approach proposed in (Berkane et al., 2022),
and li is the length of the path generated by our approach. The trajectories plotted in Fig.
4.8 show clearly that our approach generates a continuous control input (robot’s velocity)
while the approach proposed in (Berkane et al., 2022) generates a discontinuous control
input. We can also observe that our trajectories are shorter than the ones generated
by the approach proposed in (Berkane et al., 2022), which is confirmed by the positive
relative difference reported in Table 4.1. This difference in length is mainly due to the fact
that our approach starts the obstacle-avoidancemode, with local optimal maneuvers, once
in the active region of an obstacle and switches back to the motion-to-destination once
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the avoided obstacle is no longer blocking the view of the destination xd. In contrast, the
approach proposed in (Berkane et al., 2022) starts the obstacle-avoidance mode in close
vicinity of the obstacle, performing a boundary-following motion on a helmet covering
the obstacle. It does not switch back to the motion-to-destination mode once the avoided
obstacle stops blocking the view of the destination xd, but once it exits the helmet. To
ensure that the performance of our approach is preserved regardless of the dimension of
the workspace, we repeated the same experiment in a three-dimensional environment and
reported the results in Fig. 4.9 and Table 4.2. The same observations can be drawn from
this experiment as in the 2D case, concluding the efficiency of our approach in higher
dimensions. Notably, the approach proposed in (Berkane et al., 2022) considers a more
general class of obstacles, namely ellipsoids, whereas our approach only considers spheres.
Nevertheless, our approach can be implemented in a priori unknown environments using
only on-board range scanners as illustrated in the simulations in Subsection 4.5.2.

We repeat the same two comparison experiments in the same environments as in

Figure 4.8: Robot navigation trajectories from ten different initial positions in a 2D
workspace cluttered with circular obstacles. The blue trajectories are generated by our
hybrid approach and the black trajectories are generated by the hybrid approach proposed
in (Berkane et al., 2022). The target is represented by the red dot.

Fig. 4.8 and 4.9 but with the continuous quasi-optimal approach proposed in Chapter
3 to clearly discern the gains and losses in terms of performance when switching from
the continuous scheme to the hybrid scheme. For the 2D case, the trajectories of our
hybrid approach and the quasi-optimal approach are shown in Fig. 4.10. The relative
length difference of the paths generated by our hybrid approach with respect to the quasi-
optimal approach is reported in Table 4.3. For each initial position pi, i ∈ {1, . . . , 10},
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Table 4.1: The relative length difference of the paths, shown in Fig. 4.8, generated by the
hybrid approach proposed in (Berkane et al., 2022) with respect to our hybrid approach
in a 2D workspace.

Paths p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

RLD (%) 7.36 4.39 1.76 7.33 10.68 9.97 11.2 3.95 6.08 5.14

Figure 4.9: Robot navigation trajectories from ten different initial positions in a 3D
workspace cluttered with spherical obstacles. The blue trajectories are generated by
our hybrid approach and the black trajectories are generated by the hybrid approach
proposed in (Berkane et al., 2022). The target is represented by the red dot.

Table 4.2: The relative length difference of the paths, shown in Fig. 4.9, generated by the
hybrid approach proposed in (Berkane et al., 2022) with respect to our hybrid approach
in a 3D workspace.

Paths p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

RLD (%) 6.38 4.91 4.18 8.78 5.02 5.71 5.12 4.9 7.15 5.25

in Fig. 4.10, The relative length difference RLDi = 100(lhi − li)/li is computed for the
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ten initial positions pi, i ∈ {1, . . . , 10}, illustrated in Fig. 4.10, where lhi is the length of
the ith path generated by our hybrid approach and li is the length of the path generated
by the quasi-optimal approach. Paths starting from the initial conditions p1 and p9
are not taken into account in Table 4.3 since p1 is an undesirable equilibrium point for
the controller of the quasi-optimal approach, and p9 lies in the attraction region (nests)
of undesirable equilibria of the controller of the quasi-optimal approach, as shown in
Fig. 4.10. The positive relative length differences in Table 4.3 indicate that our hybrid
approach generated slightly longer paths in some cases and identical ones in others. One
can observe the reduction of performance in terms of path length optimality for the
hybrid approach with respect to the quasi-optimal approach, which can be justified by
the fact that the hybrid approach starts the avoidance maneuver once the robot enters the
active region and must pass through the motion-to-destination mode before it can avoid
another obstacle. In contrast, the avoidance maneuvers of the quasi-optimal approach
are not limited by the active regions of the obstacles and proceed consecutively until
the target is in the robot’s line of sight. Nevertheless, the hybrid approach solves the
global navigation problem where the robot can navigate from all initial positions in the
free space, whereas the quasi-optimal approach suffers from undesired equilibria with
attraction regions of non-zero measure in 2D workspaces. The results for the 3D scenario
are reported in Fig. 4.11 and Table 4.4. The same observations as in the 2D scenario can
be made concerning the path length optimality but finding nests in this case (3D) was
not feasible as was conjectured in Chapter 3 that the quasi-optimal approach guarantees
AGAS of the target location when the dimension of the space n = 3.

Table 4.3: The relative length difference of the paths, shown in Fig. 4.10, generated by
the hybrid approach with respect to the quasi-optimal approach in a 2D workspace.

Paths p2 p3 p4 p5 p6 p7 p8 p10

RLD (%) 0 0 0.09 0.41 1.42 0.74 0.17 0.67

Table 4.4: The relative length difference of the paths, shown in Fig. 4.11, generated by
the hybrid approach with respect to the quasi-optimal approach in a 3D workspace.

Paths p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

RLD (%) 0 0.02 0 0.04 0 0 0 0 0.05 0.03

4.5.2 Sensor-based implementation

To test the practicality of our approach, we simulated the sensor-based implementation
in the same spaces as in the general implementation section 4.5.1. For the 2D case,
we used a 360◦-LiDAR model with 0.5◦ resolution and 2m radial range. For the 3D
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Figure 4.10: Robot navigation trajectories from ten different initial positions in a 2D
workspace cluttered with circular obstacles. The trajectories generated by our hybrid
approach are represented by the blue trajectories, the trajectories generated by the
quasi-optimal approach are represented by the green dashed curves, and the target is
represented by the red dot. The red dash-dotted line segments represent the sets of un-
desired equilibria of the quasi-optimal control and the red areas represent the attraction
regions of the undesired equilibria (nests).

case, we used a 3D-LiDAR with 1◦ polar and azimuthal resolutions, 180◦ polar angular
range, 360◦ azimuthal angular range, and 2m radial range. We considered a security
margin es = 0.1m for the obstacles radii. We plotted the trajectories obtained through
the sensor-based implementation along with the ones generated when the environment
is a priori known in Fig. 4.12 (resp. Fig. 4.13) for the 2D case (resp. for the 3D
case). As the sensor’s range is limited, the active regions have been redefined in (4.29),
which explains the fact that the sensor-based implementation generates paths that are,
in some cases, longer than the general implementation. Nevertheless, the sensor-based
implementation generally reproduces the same trajectories as the implementation with
a global knowledge of the environment. Simulation videos for the 2D case and 3D case
showing the sensor-based navigation can be found online.1.

1[Online]. Available: https://youtube.com/shorts/bL0dOl7W9Ms?feature=share and https://

youtu.be/oJqpUW8Blb4

https://youtube.com/shorts/bL0dOl7W9Ms?feature=share
https://youtu.be/oJqpUW8Blb4
https://youtu.be/oJqpUW8Blb4
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Figure 4.11: Robot navigation trajectories from ten different initial positions in a 3D
workspace cluttered with spherical obstacles. The trajectories generated by our hybrid
approach are represented by the blue trajectories, the trajectories generated by the quasi-
optimal approach are represented by the green dashed trajectories, and the target is
represented by the red dot.

4.6 Experimental validation

Under the same experimental settings as in Section 3.8.1 and using the parameters in
Table 3.4, we set up a 6.65m×4.2m workspace with four obstacles. The robot is initially
at the origin with its heading aligned with the x-axis of the workspace (Φ = 0), and the
target is set at the position xd = [6.1 3.6]⊤. The experimental results are shown in Fig.
4.14 and in a video that can be found online2. The top figure of Fig. 4.14 shows the
workspace configuration with the initial and final positions. In the bottom figure, the

2https://youtu.be/rQc062EDYts

https://youtu.be/rQc062EDYts
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Figure 4.12: Robot navigation trajectories from ten different initial positions in a 2D
workspace cluttered with circular obstacles. The blue trajectories are generated by the
sensor-based implementation of our hybrid approach, and the orange trajectories are
generated by our hybrid approach when the environment is a priori known. The red dot
represents the target.

trajectory of the robot is plotted in an orthographic projection top view of the workspace.
The obtained results illustrate the safe navigation of the robot from the initial position to
the final destination. We also carried out a comparative experimental study with respect
to some popular reactive feedback-based autonomous navigation algorithms, namely,
the separating hyperplane approach (SH) (Arslan and Koditschek, 2019), the vector
field histogram approach (VFH) (Borenstein and Koren, 1991), and the quasi-optimal
navigation approach (QO) (Cheniouni et al., 2024c). Under the same settings as in the
previous experiment, the robot starts from the origin of the workspace with its heading
aligned with the x-axis and navigates towards the target xd = [6.6− 3] as shown in Fig.
4.15a. The generated trajectories with the four different algorithms are shown in Fig.
4.15a and the video of the experiment can be found online3. The execution time and
path length of each algorithm are reported in Table 4.15b. One can notice that the quasi-
optimal approach developed in our previous work (Cheniouni et al., 2023a) generates the
shortest path and has the lowest execution time. Although the performance of our
previously proposed quasi-optimal navigation approach is slightly better than that of the
proposed hybrid feedback navigation approach, the former, unlike the latter, does not
guarantee global asymptotic stability of the target location. Indeed, if the robot starts

3https://youtu.be/KzUNLwQ5lMo

https://youtu.be/KzUNLwQ5lMo
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Figure 4.13: Robot navigation trajectories from ten different initial positions in a 3D
workspace cluttered with spherical obstacles. The blue trajectories are generated by the
sensor-based implementation of our hybrid approach, and the orange trajectories are
generated by our hybrid approach when the environment is a priori known. The red dot
represents the target.

from the set of undesired equilibria, it can get stuck and have difficulty getting out, as
shown in the video available online4. For the VFH approach, selecting an appropriate
threshold5 depends on the workspace, which is crucial for safety and performance. In our
experiment, the threshold was taken as 70000. The four implemented algorithms can be
found online6.

4https://youtu.be/1gDqVkkAU0Y
5The lower bound of the polar histogram values, indicating the presence of obstacles.
6https://github.com/IshakChen9/navigate_TBT4_pkg.git

https://youtu.be/1gDqVkkAU0Y
https://github.com/IshakChen9/navigate_TBT4_pkg.git
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Figure 4.14: The top figure shows the workspace configuration with initial and final posi-
tions highlighted. The bottom figure is a plot of the robot’s trajectory in an orthographic
projection of the workspace’s top view.
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(a)

Algorithm SH VFH QO Hybrid approach
Execution time 13.21ms 1.69ms 0.43ms 0.88ms
Path length 7.8405m 8.1877m 7.4541m 7.5584m

(b)

Figure 4.15: a) Example navigation scenario in a priori unknown environment, show-
ing the robot’s trajectory generated by the proposed hybrid feedback control approach
(blue) compared to alternative methods. (b) Performance comparison highlighting the
path length and computational efficiency of the proposed approach. The proposed ap-
proach generates paths similar to our previously proposed quasi-optimal (QO) approach
(Cheniouni et al., 2023a) while avoiding the issue of undesired equilibria in QO approach.
The details of this experiment are reported in Section 4.6. The complete experiment can
be visualized in the video available online https://youtu.be/KzUNLwQ5lMo.

https://youtu.be/KzUNLwQ5lMo


Chapter 5

Conclusions

5.1 Summary

In this thesis, we proposed two solutions for autonomous navigation in n-dimensional
environments with convex obstacles. The first solution is a continuous feedback con-
troller that guarantees safe and quasi-optimal navigation with AGAS guarantees. A
sensor-based version of this solution is implemented in two-dimensional convex worlds
under certain curvature conditions. The second solution is a hybrid feedback controller
ensuring safe navigation with locally optimal obstacle avoidance and GAS guarantees.

In Chapter 3, a continuous feedback control strategy for the autonomous navigation
problem in an n-dimensional sphere world has been proposed, with safety guarantees and
quasi-optimal trajectory generation. The proposed strategy consists in steering the robot
tangentially to the blocking obstacles through successive projections of the nominal con-
trol onto the obstacles’ enclosing cones. Consequently, the deviations from the nominal
direction to the target are minimized with respect to each blocking obstacle, resulting in
a quasi-optimal overall collision-free trajectory. The price to pay for the almost global
asymptotic stability result, in two-dimensional sphere worlds, is a somewhat restrictive
assumption on the configuration of the obstacles (Assumption 3.3) that has been lifted
in the sensor-based version, where the robot can navigate to the target location from
almost everywhere in the free space without prior knowledge of environment containing
sufficiently curved convex obstacles. An experimental validation is also conducted, show-
ing the effectiveness of the sensor-based approach.

In Chapter 4, an autonomous robot navigation scheme is proposed for navigation
in n-dimensional Euclidean spaces with an arbitrary number of ball-shaped obstacles.
The target location is proved to be globally asymptotically stable for the closed-loop
system under the proposed hybrid feedback controller that switches between two modes
of operation, namely, the obstacle-avoidance mode and the motion-to-destination mode.
The proposed control scheme, besides guaranteeing global asymptotic stability of the
target location, generates continuous control inputs and locally optimal obstacle avoid-
ance maneuvers. Notably, the proposed scheme is implementable using only local sen-
sor information, such as from LiDAR or vision systems. Experimental validation using
the TurtleBot4 platform confirmed the effectiveness and practicality of the proposed ap-
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proach. This approach can also be implemented in environments cluttered with obstacles
of arbitrary shape by enclosing them in spheres. However, this could be a conservative
approach, as some valid obstacle-free regions would not be navigable.

5.2 Perspectives

The contributions presented in this thesis offer a preliminary glimpse into the potential of
integrating path optimality with feedback-based navigation approaches. Some possible
extensions of our work and future directions are provided below.

The quasi-optimal approach of Chapter 3 guarantees almost global asymptotic sta-
bility in 2D spaces under Assumption 3. Although no proof of AGAS was provided for
higher dimensions (n ≥ 3), extensive simulations in 3D spaces have led us to conjecture
that AGAS holds at least in the 3D case. This conjecture is reinforced by the observation
that nests are only formed when all obstacles involved in successive projections within a
specific region have their centers in the same plane as the target. In this case, the prob-
lem reduces to a local 2D configuration, and nests are generated when the conditions
discussed in Section 3.5 are met. Figure 5.1 shows an example of two obstacles whose
centers and the target are coplanar, where the green region represents the nest formed by
the equilibria associated with these two obstacles. Since this nest is planar, it has zero
Lebesgue measure. The worst case observed is similar to the 2D case shown in Fig. 3.8,
where the generated nest forms a 2D barrier with a Lebesgue measure zero, as illustrated
in Fig. 5.2 by the alternating green and red regions. A rigorous proof establishing AGAS
of the target location for n ≥ 3 would be a valuable contribution, further strengthening
our quasi-optimal navigation approach.

Another promising avenue for future work is extending the proposed approach to
handle arbitrarily shaped obstacles. This would involve adopting the concept of a conic
hull instead of a regular enclosing cone. However, defining an appropriate projection that
minimizes the velocity deviation (robot’s heading) from the nominal direction becomes
a challenging task when the projection cone is not circularly symmetric around an axis.

Improving the recursive minimization process is another key area for enhancement.
In the current framework, successive projections depend on the previous ones, and con-
sequently, the final projection, which defines the robot’s velocity, may not provide the
optimal direction due to its dependence on earlier projections and the obstacles consid-
ered at each step. This issue is illustrated in Fig. 3.16, where the generated path do not
necessarily reflect the shortest possible trajectory.

Moreover, the proposed navigation strategies in this dissertation are designed for
velocity-controlled vehicles (first-order kinematic system). These navigation strategies
could be extended to second-order dynamics through the reference governor approach
(Arslan and Koditschek, 2017; İşleyen et al., 2022). Although our proposed hybrid
approach solves the autonomous navigation problem with safety and global asymptotic
stability guarantees, it only provides local optimal avoidance maneuvers and does not gen-
erate quasi-optimal trajectories. Designing autonomous navigation schemes with safety,
global asymptotic stability, and path-length optimality guarantees is a challenging open
problem that would be an interesting future work.
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Figure 5.1: Nest generation (green region) in a 3D sphere world with two obstacles.

Figure 5.2: Generation of the largest nest (union of the colored planar regions representing
cells) in a 3D sphere world with multiple obstacles.
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İşleyen, A., van de Wouw, N., and Arslan, O. (2022). From low to high order motion
planners: Safe robot navigation using motion prediction and reference governor.
IEEE Robotics and Automation Letters, 7(4):9715–9722.



Appendix A

Proofs of Chapter 3

A.1 Proof of Lemma 3.1

Minimizing the angle ∠(xd − x, vi) is equivalent to minimizing the cost function g(vi) =

1− V ⊤
d

vi
∥vi∥ with Vd = (xd − x)/∥xd − x∥ under the constraint Γ(vi) = v⊤i Vci

∥vi∥ − cos(θi) = 0

with Vci = (ci−x)/∥ci−x∥. Define the Lagrangian associated to the optimization problem
(3.16) by Lλ(vi) = g(vi) − λΓ(vi) where λ is the Lagrange multiplier. The optimum is
the solution of

∇viLλ(vi) = 0,∇λLλ(vi) = 0,

which gives

π⊥(vi)(Vd + λVci) = 0,
v⊤i Vci
∥vi∥

− cos(θi) = 0. (A.1)

From the first equation, one has vi = α(Vd+λVci) for some α ∈ R. Substituting this into
the second equation, one gets

α(cos(βi) + λ) = cos(θi)∥α(Vd + λVci)∥. (A.2)

Squaring (A.2) and substituting ∥α(Vd+λVci)∥2 = α2(λ2 +2λ cos(βi)+ 1), one can solve
for λ

λ1,2 = −
sin(θi ± βi)

sin(θi)
. (A.3)

Consequently, one can obtain v1i and v2i as follows:

v1,2i = ±|α|
(
Vd −

sin(θi ± βi)
sin(θi)

Vci

)
. (A.4)

The value of g at the two solutions is as follows:

g(v1i ) = 1 + cos(θi + βi), g(v
2
i ) = 1− cos(θi − βi),
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and g(v1i )− g(v2i ) = 2 cos(θi) cos(βi) ≥ 0 which implies that

U(x) = {ᾱ(Vd − sin−1(θi) sin(θi − βi)Vci)| ᾱ ≥ 0}. (A.5)

When x ∈ S(xd, ci), ud(x) ∈ V(ci − x, θi) which implies that θi = βi, and ud(x) ∈ U .
Therefore, for all x ∈ S(xd, ci), u(x) ∈ U implies that u(x) = ᾱVd, and if in addition
u(x) = ud(x), then ᾱ = γ∥xd − x∥. One can conclude that the solution is unique and is
given by

u(x) = γ∥xd − x∥
(
Vd −

sin(θi − βi)
sin(θi)

Vci

)
= ξ(ud(x), x, i),

where the last equation is obtained after some straightforward manipulations.

A.2 Proof of Lemma 3.2

Let x(0) ∈ F \ Ld(xd, ci). Then, one has two situations. First, when x(0) ∈ VI,
the trajectory x(t) is a line segment which is the closest path. Now, when x(0) ∈
D(xd, ci), there are two types of possible trajectories: trajectories inside the enclos-
ing cone C≤F (x(0), ci − x(0), θi) and trajectories outside this cone. One can show that
the trajectory generated by the closed-loop system (3.7)-(3.20), on the enclosing cone
C=F (x(0), ci − x(0), θi), has minimum length. For the first type of trajectory, one only
considers the ones between the line segment Ls(x(0), xd) and the closest tangent to it
(blue segment in Fig. A.1) among the cone enclosing the obstacle (the red trajectory in
Fig. A.1 is an example). All these trajectories will merge with our trajectory, which is
on the closest tangent (as shown in Lemma 3.1), at the intersection point of the tangent
with the obstacle. Since, before the intersection point, our trajectory is a line segment,
one can conclude that it is the shortest path. The best that can be achieved outside
the cone for a smooth trajectory is a dilated version of our trajectory (larger radius of
curvature) which is longer than ours (black path in Fig. A.1).

Figure A.1: Shortest path in a single-obstacle sphere world.
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A.3 Proof of Lemma 3.3

First, we prove that the closed-loop system admits a unique solution. The control is
Lipschitz on VI since u(x) = ud(x) is continuously differentiable. When x ∈ BL, for
simplicity, sin(θιx(p)(q) − βιx(p)(up−1(x), q)) is denoted by ssιx(p)(q) and

sin(βιx(p)(up−1(x),q))

sin(θιx(p)(q))

by sdιx(p)(q), where p ∈ {1, . . . , h(x)}. After manipulation, the control (3.22) can be

expressed as u(x) = ud(x)− γ∥x− xd∥
h(x)∑
p=1

p−1∏
k=1

sdιx(k)(x)
ss
ιx(p)

(x)

rιx(p)
(cιx(p) − x), which is shown

to be one-sided Lipschitz as follows:

(u(x)− u(y))⊤ (x− y) = −γ∥x− y∥2

− γ∥xd − x∥
h(x)∑
p=1

p−1∏
k=1

sdιx(k)(x)
ssιx(p)(x)

rιx(p)
(cιx(p) − x)⊤(x− y)

+ γ∥xd − y∥
h(y)∑
p=1

p−1∏
k=1

sdιx(k)(y)
ssιx(p)(y)

rιx(p)
(cιx(p) − y)⊤(x− y),

≤ −γ∥x− y∥2

γ + ∥xd − x∥∥x− y∥
h(x)∑
p=1

p−1∏
k=1

sdιx(k)(x)
ssιx(p)(x)

rιx(p)
∥cιx(p) − x∥

+ γ∥xd − y∥∥x− y∥
h(y)∑
p=1

p−1∏
k=1

sdιx(k)(y)
ssιx(p)(y)

rιx(p)
∥cιx(p) − y∥.

Note that ∀x ∈ BL and ∀p ∈ {1, . . . , h(x)}, 0 ≤ sdιx(p)(x) ≤ 1, 0 ≤ ssιx(p)(x) ≤ 1,

∥cιx(p)−x∥ ≤ 2r0− rιx(p) and ∥xd−x∥ ≤ 2r0, which implies that there exists M > 0 such

that ∥xd − x∥
∑h(x)

p=1

∥cιx(p)−x∥
rιx(p)

≤M∥x− y∥. Therefore,

(u(x)− u(y))⊤ (x− y) ≤ −γ∥x− y∥2 + γM1∥x− y∥2 + γM2∥x− y∥2

≤ γ(−1 +M1 +M2)∥x− y∥2

≤ L∥x− y∥2.

One can take L = γ(−1+M1+M2) whereM1 > 0,M2 > 0 andM1+M2 > 1. The control
(3.22) is one-sided Lipschitz (Cortes, 2008) when x ∈ BL, and is Lipschitz when x ∈ VI.
Thus, according to (Cortes, 2008, Proposition 2), the closed-loop system (3.7)-(3.22) has
a unique solution for all x(0) ∈ F . Now, we prove forward invariance using Nagumo’s
theorem. We only need to verify Nagumo’s condition at the free space boundary as it
is trivially met when x ∈ F̊ where TF(x) = Rn. Since the free space is a sphere world,
the tangent cone on its boundary is the half-space C≤Rn(x,−x, π2 ) when x ∈ ∂W and

C≥Rn(x, ci − x, π2 ) when x ∈ ∂Oi (see Fig. 3.5). Let us consider an obstacle Oi and verify
Nagumo’s condition in three regions of the free space.
In the first region, When x ∈ ∂W , TF(x) = C≤Rn(x,−x, π2 ) and two sub-regions must be
considered.
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• x ∈ ∂W∩∂BL (brown arc in Fig. 3.5): Since u(x) ∈ C=F (x, ci−x, θi) and C=F (x, ci−
x, θ) ⊆ C≤Rn(x,−x, π2 ), one concludes that u(x) ∈ TF(x).

• x ∈ ∂W \ ∂BL (grey arc in Fig. 3.5): Since ud(x) ∈ F and F ⊆ C≤Rn(x,−x, π2 ), one
concludes that u(x) = ud(x) ∈ TF(x).

In the second region, x ∈ ∂Oi∩ARi (green arc in Fig. 3.5) and TF(x) = C≥Rn(x, ci−x, π2 ).
Since u(x) ∈ C=Rn(x, ci − x, π

2
) ⊂ C≥Rn(x, ci − x, π

2
), one concludes that u(x) ∈ TF(x).

Finally, in the last region, x ∈ ∂Oi \ ARi (blue arc in Fig. 3.5) and TF(x) = C≥Rn(x, ci −
x, π

2
). Since x /∈ ARi, ∀p ∈ {0, · · · , h(x)}, obstacle Oi is not selected in the successive

projections (ιx(p) ̸= i) and up(x) /∈ C≤Rn(x, ci − x, π
2
). Therefore, u(x) must be in the

complement of the enclosing cone to the obstacle Oi. Thus, one can conclude that
u(x) ∈ C≥Rn(x, ci − x, π2 ) = TF(x). Since ∀x ∈ F , u(x) ∈ TF(x) and the solution of the
closed-loop system (3.7)-(3.22) is unique, it follows that the free space F is positively
invariant and the closed-loop system (3.7)-(3.22) is safe.

A.4 Proof of Lemma 3.5

Let Lei be the central half-line associated to obstacle Oi, and let y ∈ Lei \ Oi. Since
the control is tangent to the obstacle, for any x ∈ ARi \ H̊(y, ci) the control, at a step
p, can never point inside the hat H(y, ci), i.e., there is no position q ∈ ARi ∩ H̊(y, ci)
such that ∠(q − x, up(x)) = 0, where p = ι−1

x (i). Assume that Mi ̸= ∅ and consider

an obstacle k ∈ Mi such that k = κ−1
i (1), ck ∈ H̊(y, ci), and x∗k,i = y. Assume that

H̊(x∗k,i, ci) ∩ Ol = ∅ for all l ∈ I \ {i, k}, which ensures that no other obstacle interferes

and changes the direction of the control up towards the hat H̊(x∗k,i, ci). Consequently,
there is no x ∈ ARk ∩ARi such that ∠(ck − x, up) = β(ck − x, up) = 0 where p = ι−1

x (i).
Thus, obstacle k does not generate a set of undesired equilibria Lk (see Fig. A.2).
Following the same reasoning, one can show that obstacle j = κ−1

i (2) will not generate
a set of undesired equilibria by considering the obstacles Oi and Ok as single obstacle
whose hat is the union H̊(x∗j,i, ci) ∪ H̊(x∗j,i, ck) and Lei as its single central half-line since

obstacle k = κ−1
i (1) is free of undesired equilibria. These considerations reduce to the

first case where if cj ∈ H̊(x∗j,i, ci)∪H̊(x∗j,i, ck) and (H̊(x∗j,i, ci)∪H̊(x∗j,i, ck))∩Ol = ∅ for all
l ∈ I \ {i, k}, obstacle j does not generate undesired equilibria. The same can be applied
up to obstacle κ−1

i (p) by considering the union of the hat of obstacle i and obstaclesMp−1
i ,

and the central half-line Lei . Therefore, the obstacles of indices in the set Mp
i are free

of undesired equilibria if, for all j ∈ Mp
i with p ∈ {1, . . . , Ni}, 1) cj ∈ ∪l∈Mp−1

i
H̊(x∗j,i, cl)

and 2) ∪l∈Mp−1
i
H̊(x∗j,i, cl) ∩Oz = ∅ for all z ∈ I \ (Mj

i ∪ {j}). If, in addition, p = Ni, or

obstacle κ−1
i (p + 1), with p < Ni = card(Mi), does not satisfy conditions 1) and 2), we

say that N̄i = p is the order of the setMi and the number of obstacles free of undesired
equilibria with indices grouped in the setMN̄i

i , which concludes the proof.
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Figure A.2: The left figure shows that for all position x ∈ AR1 \ H̊(y, c1), the control
cannot point inside H(y, c1). In the right figure, obstacle 2 is placed such that c2 ∈
H̊(y, c1), the intermediary control u1 cannot point inside H(y, c1) and y = x∗2,1. Then,
the intermediary control u1 cannot point into the center c2 at any position x ∈ AR2

which implies that L2 is an empty set.

A.5 Proof of Theorem 3.1

Item i) and item ii) follow directly from lemma 3.3 and lemma 3.4 respectively. Now let
us prove item iii). Consider the set of undesired equilibria Li, i ∈ Z. Define the tube
surrounding Li inside the free space T U i := {x ∈ F|d(x,Li) ≤ ei} where ei is small such
that T U i ⊂ ARi, and ei < ri. Let V (x) = 1

2
d2(Li, x) = 1

2
(x − ci)⊤π⊥(v̄i)(x − ci) where

v̄i = (x̄i−ci)/∥x̄i−ci∥, x̄i ∈ Li, V (x) = 0 for all x ∈ Li, and V (x) > 0 for all x ∈ T U i\Li.
Let U := T U i ∩P≤(x̄i, v̄i) \Li where x̄i ∈ Li is such that U ∩Lk = ∅ for all k ∈ Z \ {i},
and U ⊂ ARh

i with ARh
i := {q ∈ ARi|ι−1

q (i) = h(x)}. Note that V (x) > 0 for all

x ∈ U . The time-derivative of V (x) is given by V̇ (x) = ∂V (x)
∂x

⊤
ẋ = (x − ci)⊤π⊥(v̄i)u(x).

Since ei < ri and for all x ∈ U , u(x) lies on the cone enclosing obstacle Oi ⊂ P≤(x̄i, v̄i),
0 < ∠(v̄i, x−ci) < π/2 and π/2 < ∠(v̄i, u(x)) < π. Therefore, V̇ (x) > 0 for all x ∈ U . As
U is a compact set, V (x) is increasing on U , and V (x) = 0 on Li (the axis of the tube), x(t)
must leave the set U . The set U is bounded on top by obstacle i, its lateral boundary is the
surface of the tube, and is bounded from the bottom by the hyperplane P=(x̄i, v̄i). Due to
the safety of the system, as per Lemma 3.3, x(t) can not leave U from the upper boundary
(the boundary of obstacle i), and since π/2 < ∠(v̄i, u(x)) < π, x(t) can only leave U from
the surface of the tube. Now, let us prove item iv). Since xd ∈ VI, there exists rd > 0 such
that B(xd, rd) ⊂ VI. As the closed-loop system (3.7)-(3.22) reduces to ẋ = −γ(x − xd)
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on the visible set VI, the equilibrium x = xd is locally exponentially stable. Finally,
let us prove item v). Consider a trajectory starting from x(0) ∈ VL generated by the
closed-loop system (3.7)-(3.22). Since the control on the visible set VL is the nominal
one ud(x) = γ(xd−x), the generated trajectory is the line segment connecting x(0) to xd,
which has the shortest length. Now consider a trajectory with initial condition x(0) ∈ BL,
generated by the closed-loop system (3.7)-(3.22). The velocity of a vehicle moving along
the considered trajectory at an instant t ∈ [0,∞) is given by ẋ(t) = uh(x(t))(x(t)) where
h(x(t)) = card(I(x(t))). Since the virtual destination at position x(t) is the point given
by P (x(t)) = x(t) + uh(x(t))(x(t)), then, the direction from x(t) to the virtual destination
is the vehicle’s velocity P (x(t))−x(t) = uh(x(t))(x(t)) = ẋ(t). Therefore, one can conclude
that for x(0) ∈ BL, the tangent to the trajectory generated by the closed-loop system
(3.7)-(3.22), at any position x(t), points to the virtual destination P (x(t)).

A.6 Proof of Lemma 3.6

Let i ∈ L. Since Celli is bounded by line segments of undesired equilibria (∪k∈ZLk) and
the free space boundary, u(x) points inside the cell when x ∈ ∂Celli∩∂F , as per Lemma
3.3, and u(x) = 0 when x ∈ ∂Celli ∩ (∪k∈ZLk). Consequently, Celli is forward invariant
for the closed-loop system (3.7)-(3.22).

A.7 Proof of Lemma 3.7

Since the nests are invariant, as per Lemma 3.6, and all the undesired equilibria are
contained inside the nests, it remains to show that if we start outside nests, we will
never get back in. We begin with the special nest (Nest0 = ∪i∈ZLi \ ∪j∈LCellj) formed
by segments of undesired equilibria and show their repellency. These segments can be
defined as CLi := {q ∈ Li|q /∈ ∪k∈LCellk} ⊂ Nest0 for i ∈ Z.
Consider obstacle i ∈ Z and segment CLi in the following three possible cases illustrated
in (Fig. A.3):
Case 1: Consider the region ARh

i :=
{
q ∈ ARi|ι−1

q (i) = h(q)
}
where obstacle i is the

last on the list of projections. Define the tube T U i := {x ∈ F|d(x, CLi) ≤ ei} where
ei is small enough to have T U i ∩ Lj = ∅ for all j ∈ Z \ {i} and T U i ⊂ ARi. Let

V (x) = 1− (x̄i−ci)⊤
∥x̄i−ci∥

(x−ci)
∥x−ci∥ where x̄i ∈ CLi ∩ARh

i . Note that V (x̄i) = 0, and V (x) > 0 for

all x ∈ T U i \ CLi. Define the set U := (T U i ∩ARh
i ) \ CLi. The time-derivative of V (x)

is given by

V̇ (x) =
∂V (x)

∂x

⊤

ẋ,

= −(x̄i − ci)⊤

∥x̄i − ci∥
Jx

(
(x− ci)
∥x− ci∥

)
u(x),

= −KV̄ ⊤
ci π

⊥(Vci)ξ̄i,

where K = ∥u(x)∥
∥x−ci∥ > 0, Vci =

(ci−x)
∥ci−x∥ , V̄ci =

(x̄i−ci)
∥x̄i−ci∥ and ξ̄i =

sin(θi)uh(x)−1

sin(βi)∥uh(x)−1∥
− sin(θi−βi)

sin(βi)
Vci.
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The segment CLi divides the set ARh
i into two symmetric regions, a left-side

P<(ci, R1V̄ci)∩ARh
i , and a right-side P>(ci, R1V̄ci)∩ARh

i . On the right side, the control
is on the right tangent to obstacle i, while on the left, the control is on the right tangent to
obstacle i. Therefore, the control can not point inside the region enclosed by the vectors
V̄ci, Vci (i.e., ∀x ∈ ARh

i \ CLi, u(x) /∈ {v ∈ Rn|v = aV̄ci + bVci, a > 0, b > 0}). Thus, for
all x ∈ U , V̄ ⊤

ci ξ̄i = cos(σi+θi) where 0 < σi = ∠(V̄ci, Vci) < π and 0 < θi = ∠(Vci, ξ̄i) ≤ π
2
.

Then,

V̇ (x) = −K (cos(σi + θi)− cos(σi) cos(θi)) ,

= K sin(σi) sin(θi).

Therefore, V̇ (x̄i) = 0 and V̇ (x) > 0 for all x ∈ U .
Case 2: Consider the region ARh

k where k ∈ MN̄i
i . Define the tube T U i := {x ∈

F|d(x, CLi) ≤ ei} where ei is small such that T U i ∩ Lj = ∅ for all j ∈ Z \ {i}, and
T U i ⊂ ARk. Let V (x) = 1 − (x̄i−x∗k,i)

⊤

∥x̄i−x∗k,i∥
(x−x∗k,i)
∥x−x∗k,i∥

where x̄i ∈ CLi ∩ ARh
k and x∗k,i =

arg max
q∈Le

i∩∂Ok

||ci− q||. Note that V (x̄i) = 0, and V (x) > 0 for all x ∈ (T U i ∩ARh
k) \ CLi.

Define the set U := (T U i ∩ ARk
h) \ CLi. The time-derivative of V (x) is given by

V̇ (x) =
∂V (x)

∂x

⊤

ẋ,

= −
(x̄i − x∗k,i)⊤

∥x̄i − x∗k,i∥
Jx

(
(x− x∗k,i)
∥x− x∗k,i∥

)
u(x),

= −KV̄ ⊤
k,iπ

⊥(Vk,i)ξ̄k,

where K = ∥u(x)∥
∥x−x∗k,i∥

> 0, Vk,i =
(x∗k,i−x)
∥x∗k,i−x∥

, V̄k,i =
(x̄i−x∗k,i)
∥x̄i−x∗k,i∥

and ξ̄k =
sin(θk)uh(x)−1

sin(βk)∥uh(x)−1∥
−

sin(θk−βk)
sin(βk)

Vck. Similar to the previous case, segment CLi divides set ARh
k into two regions,

a left-side P<(ci, R1V̄k,i)∩ARh
k and a right-side P>(ci, R1V̄k,i)∩ARh

k. On the right side,
the control is on the right tangent to obstacle k, while on the left, the control is on the
left tangent to obstacle k. Therefore, by considering Vk,i instead of Vck where Vk,i =
aV̄k,i + bVck, a > 0, b > 0, 0 < σk,i = ∠(V̄k,i, Vk,i) < π, and θk < θ∗k = ∠(V̄k,i, ξ̄k) < π, we
can write V̄ ⊤

k,iξ̄k = cos(σk,i + θ∗k) for all x ∈ U . Then,

V̇ (x) = −K (cos(σk,i + θ∗k)− cos(σk,i) cos(θ
∗
k)) ,

= K sin(σk,i) sin(θ
∗
k),

Therefore, V̇ (x̄i) = 0 and V̇ (x) > 0 for all x ∈ U .
Case 3: Consider the region ARh

k where Lei ∩ Ok = ∅ and CLi ∩ ARh
k ̸= ∅. Let

Ω̄i = Rb(ci− x̄i) where x̄i ∈ CLi∩ARh
k, Rb =

(
0 b
−b 0

)
, and b ∈ {−1, 1} is chosen such that

Ω̄⊤
i (ck − x̄i) > 0. Since ck ∈ P>(x̄i, Ω̄i) and Lei ∩ Ok = ∅, Ok ⊂ P>(x̄i, Ω̄i). Define the

tube T U i := {x ∈ F|d(x, CLi) ≤ ei} where ei is small such that T U i∩P>(x̄i, Ω̄i)∩Lj = ∅
for all j ∈ Z \ {i}, and Ω̄⊤

i u(x) > 0 for all x ∈ T U i ∩P>(x̄i, Ω̄i). Let V (x) = Ω̄⊤
i (x− x̄i)
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where V (x̄i) = 0 and V (x) > 0 for all x ∈ P>(x̄i, Ω̄i). Define the set U := T U i ∩
P>(x̄i, Ω̄i) ∩ ARh

k.

V̇ (x) =
∂V (x)

∂x

⊤

ẋ = Ω̄⊤
i u(x),

where V̇ (x) > 0 for all x ∈ U and V̇ (x) = 0 for x ∈ CLi.
In the three treated cases, U is compact, V (x) = 0 on the undesired equilibria CLi, and
V is increasing on U . Therefore, x(t) must leave U .
Now, we will show that if we start outside a given nest Nestk, k > 0, we will never get

Figure A.3: Illustration of the nests (attraction regions of the undesired equilibria.)

inside any nest.
Consider the nest Nestk, obstacle j ∈ L, and the set of undesired equilibria Li such that
k > 0, i ∈ Rj, and ∂Nestk ∩ Li ∩ ARh

j ̸= ∅ (i.e., segment (or segments) of Li forms
a portion of the boundary of the nest Nestk when the last projection involves obstacle
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j). Define the tube T U i := {x ∈ F|d(x,Li ∩ ARh
j ) ≤ ei} where ei is small such that

(T U i \Nestk)∩Lp = ∅ for all p ∈ Z \ {i}, and T U i ⊂ ARj. This case amounts to case
2) with U := (T U i \Nestk) ∩ ARh

j . Since the nests are invariants, ∪i∈ZLi ⊂ ∪kNestk,
and for all x(0) /∈ ∪kNestk, limt→+∞ x(t) /∈ Nestk, the set of nests ∪kNestk, is the
attraction region of the undesired equilibria.

A.8 Proof of Theorem 3.2

Item i) follow directly from Lemma 3.7. According to item v) of Theorem 3.1, all trajec-
tories converging to xd are generated by a quasi-optimal obstacle avoidance maneuver,
and item i) states that xd is attractive from all x(0) ∈ F \ ∪kNestk, which proves item
ii). Since Assumption 3.3 imposes that L = ∅, no cell will be created, which implies
that only the special nest exists. Therefore, ∪kNestk = Nest0 = ∪i∈ZLi is the region
of attraction of the undesired equilibria ∪i∈ZLi, as per Lemma 3.7, and has Lebesgue
measure zero, which shows the almost global asymptotic stability of xd.

A.9 Proof of Lemma 3.8

Let us look for the equilibria of the closed-loop system (3.7)-(3.33) by setting u(x) = 0.
Then, from the first equation of (3.33), the equilibrium point is xd. From the second

equation of (3.33), one gets ud(x) = ∥ud(x)∥ sin(θ̃−β̃)sin(θ̃)
c̃−x

∥c̃−x∥ which is true if and only if

β̃ = 0 (i.e.,∠(ud, (c̃ − x)) = 0). As B̃L is the union of the disjoints practical shadow

regions, there exists a unique i ∈ I such that if x ∈ B̃L, x ∈ D̃(xd, ci, R), and since
c̃ is the projection of x onto obstacle i, c̃−x

∥c̃−x∥ = ci−x
∥ci−x∥ . Therefore, u(x) = 0 for all

x ∈ L̃d(xd, ci, R) := Ld(xd, ci) ∩ D̃(xd, ci, R) where Ld(xd, ci) is defined in Lemma 3.2.
Finally, one can conclude that the set of undesired equilibria for the closed-loop system

(3.7)-(3.33) is ζ = {xd} ∪
(
∪i∈IL̃d(xd, ci, R)

)
.

A.10 Proof of Theorem 3.3

Since the sensor-based case is a special case of the map-based scenario when each obstacle
is considered as a unique obstacle in the workspace, item i) follows from item i) of
Theorem 3.1. Item ii) follows directly from Lemma 3.8. Now, let us prove item iii).
Consider obstacle i ∈ I and the set of equilibrium points L̃d(xd, ci, R). Define the tube
T U i := {x ∈ D̃(xd, ci, R)|d(x, L̃d(xd, ci, R)) ≤ ei} surrounding L̃d(xd, ci, R) inside the
practical shadow region where ei is small such that c̃ = arg min

y∈Oi

∥x − y∥. Let V (x) =

1 − (x̃i−ci)⊤
∥x̃i−ci∥

(x−c̃)
∥x−c̃∥ where x̃i ∈ L̃d(xd, ci, R). Note that V (x̃i) = 0 and V (x) > 0 for all

x ∈ T U i \ L̃d(xd, ci, R). Define the set U := {x ∈ T U i|V (x) > 0}. The time-derivative
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of V (x) on T U i is given by

V̇ (x) =
∂V (x)

∂x

⊤

ẋ,

= −(x̃i − ci)⊤

∥x̃i − ci∥
Jx

(
(x− c̃)
∥x− c̃∥

)
u(x),

=
−1

∥x̃i − ci∥∥x− c̃∥
(x̃i − ci)⊤π⊥

(
(x− c̃)
∥x− c̃∥

)
u(x),

=
−γ

∥x̃i − ci∥∥x− c̃∥
(x̃i − ci)⊤π⊥

(
(x− c̃)
∥x− c̃∥

)
(xd − x),

= −K(x̃i − ci)⊤π⊥(Vci)(xd − x),

where K = γ
∥x̃i−ci∥∥x−c̃∥ , and as c̃ is the projection of x onto obstacle i for all x ∈ T U i,

Vci =
(ci−x)
∥ci−x∥ = (c̃−x)

∥c̃−x∥ . Since x̃i = ci + δ ci−xd
∥ci−xd∥

with δ ≥ ri, one gets

V̇ (x) = − δK

∥ci − xd∥
(ci − xd)⊤π⊥(Vci)(xd − x),

= − δK

∥ci − xd∥
(
(ci − x) + (x− xd)

)⊤
π⊥(Vci)(xd − x),

=
δK

∥ci − xd∥
(xd − x)⊤π⊥(Vci)(xd − x).

where we used the fact that (ci − x)⊤π⊥(Vci)(xd − x) = 0. It is clear that V̇ (x) > 0 for
all x ∈ U , and V̇ (x) = 0 for all x ∈ L̃d(xd, ci, R) over the set T U i. Since U is a compact
set, V (x) is increasing on U , and V (x) = 0 on L̃d(xd, ci, R) (the tube axis), x(t) must
leave the set U . Note that the set U is bounded by the free space boundary and the
lateral surface of tube T U i. Due to the safety of the system, as per item i), x(t) can
not leave U from the free space boundary and can only leave it from the surface of the
tube for all x(0) ∈ U . Therefore, the set of equilibria L̃d(xd, ci, R) is unstable. Lastly,
we prove item iv). Consider the equilibrium point xd and the positive definite function
V1(x) =

1
2
||x− xd||2 whose time-derivative is given by

V̇1(x) =
∂V1(x)

∂x

⊤

ẋ,

= (x− xd)⊤u(x),

=

{
−γ∥x− xd∥2, x ∈ ṼI
−γ∥x− xd∥2 + γ∥x− xd∥ sin(θ̃−β̃)sin(θ̃)

(xd−x)⊤(c̃−x)
∥c̃−x∥ , x ∈ B̃L

=

{
−γ∥x− xd∥2, x ∈ ṼI
−γ∥x− xd∥2 + γ∥x− xd∥2 sin(θ̃−β̃)sin(θ̃)

cos(β̃), x ∈ B̃L

=

{
−γ∥x− xd∥2, x ∈ ṼI
−γ∥x− xd∥2 sin(β̃)sin(θ̃)

cos(θ̃ − β̃), x ∈ B̃L
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where we used the fact that sin(θ̃)− sin(θ̃− β̃) cos(β̃) = sin(β̃) cos(θ̃− β̃), 0 < θ̃ ≤ π
2
and

0 ≤ β̃ ≤ θ̃. Therefore, V̇1(x) = 0 only for x ∈ ζ and V̇1(x) < 0 for all x ∈ F \ ζ. Since
the practical shadow regions are disjoint by construction, and the undesired equilibria
L̃d(xd, ci, R) are limited to the shadow regions as per Lemma 3.8, L = ∅ and Celli = ∅
for all i ∈ I. Thus, for all i ∈ I, the attraction region of the set of undesired equilibria
L̃d(xd, ci, R) reduces to the line segment Ld(xd, ci)∩Dt(xd, ci). Since the attraction region
of the undesired equilibria is a set of measure zero, the equilibrium point xd is almost
globally asymptotically stable in F .

A.11 Proof of Lemma 3.9

Following the same procedure as in A.9, u(x) = 0 if and only if x = xd or x ∈ L̃d(xd, xi, R),
where for all x ∈ L̃d(xd, xi, R), c̃ = xi and

(c̃−x)⊤
∥c̃−x∥

(xd−x)⊤
∥xd−x∥

= 1. Therefore, one can conclude

that the set of equilibria is ζ̃ = {xd} ∪
(
∪i∈IL̃d(xd, xi, R)

)
.

A.12 Proof of Theorem 3.4

Since the considered convex obstacles have smooth boundaries, the tangent cone on the
boundaries of the obstacles are half-planes, which is similar to the spherical obstacles
case. Therefore, item i) follows from item i) of Theorem 3.3. Item ii) follows directly
from Lemma 3.9. Now, let us prove item iii). Consider obstacle i ∈ I and the equilibrium
point x̄i ∈ L̃d(xd, xi, R). Define the tube T U i := {x ∈ D̃(xd, i, R)|d(x, L̃d(xd, xi, R)) ≤ ei}
surrounding L̃d(xd, xi, R) inside the practical shadow region where ei is small such that

c̃ = arg min
y∈Õi

∥x − y∥. Let V (x) = 1 − (x̄i−xd)⊤
∥x̄i−xd∥

(x−c̃)
∥x−c̃∥ where x̄i ∈ L̃d(xd, xi, R). Note that

V (x̄i) = 0 and V (x) > 0 for all x ∈ T U i \ L̃d(xd, xi, R). Define the set U := {x ∈
T U i|V (x) > 0}. The time-derivative of V (x) on T U i is given by

V̇ (x) =
∂V (x)

∂x

⊤

ẋ = −(x̄i − xd)⊤

∥x̄i − xd∥
Jx

(
(x− c̃)
∥x− c̃∥

)
u(x),

=
−1
∥x− c̃∥

(x̄i − xd)⊤

∥x̄i − xd∥
π⊥
(
(x− c̃)
∥x− c̃∥

)
u(x),

=
γ

∥x− c̃∥
(x̄i − xd)⊤

∥x̄i − xd∥
π⊥
(
(x− c̃)
∥x− c̃∥

)
(x− xd),

= K(cos(φd)− cos(φ̃) cos(β̃)),

where K = γ ∥x−xd∥
∥x−c̃∥ , φ̃ = ∠(x̄i − xd, x − c̃), 0 < φd = ∠(x̄i − xd, x − xd) ≤ φmaxd , and

φmaxd = arcsin(ei/∥x− xd∥) ∈ (0, π/2]. Since obstacle i satisfies the curvature condition,
as per Assumption 3.4, and c̃ is the projection of x onto obstacle i, 0 < φ̃ = φd + β̃ < π,
where 0 ≤ β̃ = ∠(c̃− x, xd − x) ≤ π

2
. Thus, V̇ (x) = K sin(φ̃) sin(β̃). It is clear that, over

the set T U i, V̇ (x) = 0 for x ∈ L̃d(xd, xi, R)(i.e., β̃ = 0), and V̇ (x) > 0 for all x ∈ U .
Since U is a compact set, V (x) is increasing on U , and V (x) = 0 on L̃d(xd, xi, R) (the
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tube axis), x(t) must leave the set U . Note that the set U is bounded by the free space
boundary and the lateral surface of tube T U i. Due to the safety of the system, as per
item i), x(t) can not leave U from the free space boundary and can only leave it from
the surface of the tube for all x(0) ∈ U . Therefore, the set of equilibria L̃d(xd, xi, R) is
unstable. Finally, proof of item iv) is similar to that of item iv) in Appendix A.10.



Appendix B

Proofs of Chapter 4

B.1 Proof of Lemma 4.2

The sets F and J , defined in (4.9), are by construction closed subsets of Rn × I ×M,
which shows that condition i) is satisfied.
Since the flow map F, given in (4.24), is defined for all ξ ∈ F , single-valued and
continuous on F , then F ⊂ dom(F), F is outer semicontinuous and bounded relative to
F , and convex for every ξ ∈ F . Therefore, condition ii) is fulfilled.
The jump map J, given in (4.25), is single-valued on Jm × {m}, m ∈ {−1, 1}. Since
the angles φ1

k, φ
−1
k are selected according to Lemma 2.1, we have C≤Rn(ck, v

1
k, φ

1
k) ∩

C≤Rn(ck, v
−1
k , φ−1

k ) = {ck}, which implies that C≥Rn(ck, v
1
k, φ

1
k) ∩ C

≥
Rn(ck, v

−1
k , φ−1

k ) = Rn.
Therefore, given (4.22), B(x, k) ̸= ∅ for all (x, k) ∈ Rn × I, then M(ξ) ̸= ∅ for all
ξ ∈ J0 × {0}, and hence J(ξ) ̸= ∅ for all ξ ∈ J0 × {0}. Thus, J ∈ dom(J). Moreover,
J has a closed graph relative to J0 × {0} as B is allowed to be set-valued whenever
x ∈ ∩m=−1,1C≤Rn(ck, v

m
k , φ

m
k ). Then, according to (Goebel et al., 2012, Lemma 5.10), J is

outer semicontinuous relative to J . Furthermore, the jump map J is locally bounded
relative to J since M and K take values over finite discrete sets I and M, and the
remaining component of J is a single-valued continuous function on J , which shows the
satisfaction of condition iii) and completes the proof.

B.2 Proof of Theorem 4.1

Item i): First, we prove that F ∪J = K, which boils down to show that for each k ∈ I,
and m ∈ {−1, 1},

F̃0 ∪ J̃0 = Fmk ∪ Jm
k = X , (B.1)

since the satisfaction of (B.1), along with (4.11), (4.17), and (4.9), implies that F ∪J =
X × I×M = K. We start by showing F̃0 ∪ J̃0 = X in (B.1). Recall that F̃0 := ∩k∈IF0

k ,

J̃0 := ∪k∈IJ 0
k , and for each k ∈ I, F0

k := X \ Ak(xd), J 0
k := Ak(xd), as defined in (4.10),
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and hence, (⋂
k∈I

F0
k

)
∪

(⋃
k∈I

J 0
k

)
=

(⋂
k∈I

X \ Ak(xd)

)
∪

(⋃
k∈I

Ak(xd)

)

=
⋂
k∈I

{
X \ Ak(xd) ∪

(⋃
i∈I

Ai(xd)

)}
=
⋂
k∈I

X = X ,

where X is a closed set as defined in (4.1). Now we prove that for each k ∈ I, and m ∈
{−1, 1}, Fmk ∪ Jm

k = X . Note that from (4.15), Fmk := Ak(xmk ) \ C<X (ck, vmk , φmk ),Jm
k :=

X \ Fmk , and thus, Fmk ∪ Jm
k = Fmk ∪ (X \ Fmk ) = X .

Let us define the set MH(K) of all maximal solutions to the hybrid system (4.26)
represented by its data H with ξ(0, 0) ∈ K. Each solution ξ ∈ MH(K) has range
rge ξ ⊂ K = F ∪J . The augmented state space K is forward invariant for H if, for each
ξ(0, 0) ∈ K, there exists one solution, and every ξ ∈ MH(K) is complete and has range
rge ξ ⊂ K as per (Chai and Sanfelice, 2019, Definition 3.3). The forward invariance of
K is then shown by the completeness of the solutions ξ ∈ MH(K) which we prove us-
ing (Goebel et al., 2012, Proposition 6.10). We start by showing the following viability
condition

F(ξ) ∩ TF(ξ) ̸= ∅,∀ξ ∈ F \ J , (B.2)

where TF(ξ) is Bouligand’s tangent cone of the set F at ξ as defined in (2.15). Inspired
by (Berkane et al., 2022, Appendix 1), we proceed as follows. Let ξ = (x, k,m) ∈ F \J ,
which implies by (4.9) that (x, k) ∈ Fm \ Jm for some m ∈ M. Consider the two cases
(modes) m = 0 and m ∈ {−1, 1}. For m = 0, as per definition (4.11), there exists k ∈ I
such that x ∈ F̃0 \ J̃0. When x ∈ ˚̃F0 \ J̃0, then x is in the interior of the set F̃0, and
hence, TF(ξ) = Rn×{0}×{0} and (B.2) holds. When x ∈ ∂F̃0 \J̃0, it is clear, according
to (4.4) and (4.10), that x must be on the boundary of one of the obstacles and does not
belong to the active region (i.e., ∂F̃0 \ J̃0 ⊆

⋃
k∈I(∂Ok \ Ak(xd)). Then, TF(x, k, 0) =

P≥(x, x − ck) × {0} × {0}. Since u(x, k, 0) = −γ(x − xd), u(x, k, 0)⊤(x − ck) > 0 and
(B.2) holds. Now, when m ∈ {−1, 1}, according to (4.15), there exists k ∈ I such that
x ∈ F̊km \ Jm

k . For x ∈ F̊km \ Jm
k , TF(x, k,m) = Rn × {0} × {0} and (B.2) holds. When

x ∈ ∂Fmk \ Jm
k , it is clear, according to (4.15), that x must be on the boundary of

obstacle Ok and belongs to the active region (i.e., ∂Fmk \ Jm
k ⊆ ∂Ok ∩ Ak(xmk )). Thus,

TF(x, k,m) = P≥(x, x−ck)×{0}×{0}. From (4.13) and (4.8a), and since x ∈ ∂Ok, then
θ(x, k) = π

2
and u(x, k,m) = −γµ(x, k,m)

(
xmk − x− ∥xmk − x∥ cos(β(x, k,m)) ck−x

∥ck−x∥

)
where β(x, k,m) = ∠(ck − x, xmk − x) and µ(x, k,m) =

(
1 + ek

∥x−xmk ∥
β(x,k,m)
θ(x,k)

)
> 0. Hence,

u(x, k,m)⊤(x− ck) = γµ(x, k,m)((xmk − x)⊤(x− ck)

− ∥x
m
k − x∥
∥ck − x∥

cos(β(x, k,m))(ck − x)⊤(x− ck))
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= γµ(x, k,m)((xmk − x)⊤(x− ck) + ∥xmk − x∥∥ck − x∥ cos(β(x, k,m))

= γµ(x, k,m)((xmk − x)⊤(x− ck) + (xmk − x)⊤(ck − x))
= 0,

and (B.2) holds for m ∈ {−1, 1}. Therefore, according to (Goebel et al., 2012, Propo-
sition 6.10), since (B.2) holds for all ξ ∈ F \ J , there exists a nontrivial solution to the
hybrid system H for every initial condition in K. Finite escape times can only occur via
the flow. They cannot occur for x ∈ F−1

k ∪ F1
k , as the sets F−1

k and F1
k are bounded

by their definition 4.15, nor for x ∈ F̃0 since they would make (x − xd)⊤(x − xd) grow
unbounded, which would contradict the fact that d

dt
((x − xd)⊤(x − xd)) ≤ 0 by the

definition of u(x, k, 0). Therefore, all maximal solutions do not have finite escape times.
Moreover, according to (4.26), x+ = x, and from the definitions (4.21), (4.22), and (4.25),
it follows that J(J ) ⊂ K. Thus, solutions of the hybrid system (4.26) cannot leave K
through jumps and, as per (Goebel et al., 2012, Proposition 6.10), all maximal solutions
are complete.
Item ii): Using (Goebel et al., 2012, Definition 7.1), we first show the stability of
A, and then its global attractivity. Since xd ∈ X̊ , there exists ε̄ > 0 such that
B(xd, ε̄)∩Ok = ∅, ∀k ∈ I. As per the sets definitions in (4.10) and (4.11), B(xd, ε) ⊂ F̃0

for all ε ∈ [0, ε̄]. Thus, B(xd, ε) ∩ J̃0 = ∅, and x evolves under ẋ = −γ(x − xd), which
implies forward invariance of the set B := B(xd, ε) × I × M. Therefore, according to
(Goebel et al., 2012, Definition 7.1), the set A is stable for the hybrid system (4.26).
Now, let us prove the global attractivity of A, but first, we need the following lemma.

Lemma B.1 For a given obstacle index k ∈ I, the obstacle-avoidance mode m ∈ {−1, 1}
is active for a finite hybrid time interval [tk,m0 , tk,mf ] × [jk,m0 , jk,mf ] where (tk,m0 , jk,m0 ) and

(tk,mf , jk,mf ) are, respectively, the activation and deactivation hybrid times of mode m for
the obstacle with index k.

Proof: Consider an obstacle index k ∈ I and the positive definite function Vm(x) =
1
2
||x− xmk ||2, for m ∈ {−1, 1} and x ∈ Fmk . The time derivative of Vm(x) is given by

V̇m(x) =
∂Vm(x)

∂x

⊤

ẋ = (x− xmk )⊤
(
α(x, k)µ(x, k,m)κ(x, k,m) + (1− α(x, k))ud(x)

)
,

= −(xmk − x)⊤
{
K1

(
γ(xmk − x)− τ(x, k,m)

ck − x
∥ck − x∥

)
+ γK2(xd − x)

}
,

= −
{
K1

(
γ∥xmk − x∥2 − τ(x, k,m)

(xmk − x)⊤(ck − x)
∥ck − x∥

)
+ γK2(x

m
k − x)⊤(xd − x)

}
,

= −γ
{
K1

(
∥xmk − x∥2 −

∥xmk − x∥
∥ck − x∥

sin(θ(x, k)− β(x, k,m))

sin(θ(x, k))
(xmk − x)⊤(ck − x)

)
+K2(x

m
k − x)⊤(xd − x)

}
,

= −γ
{
K1

(
∥xmk − x∥2 − ∥xmk − x∥2

sin(θ(x, k)− β(x, k,m))

sin(θ(x, k))
cos(β(x, k,m))

)
+K2(x

m
k − x)⊤(xd − x)

}
,
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= −γ
(
K1∥xmk − x∥2

sin(β(x, k,m))

sin(θ(x, k))
cos(θ(x, k)− β(x, k,m)) +K2(x

m
k − x)⊤(xd − x)

)
,

where K1 = α(x, k)µ(x, k,m) ≥ 0, K2 = 1 − α(x, k) ≥ 0, and we used the fact
that sin(θ(x, k))− sin(θ(x, k)− β(x, k,m)) cos(β(x, k,m)) = sin(β(x, k,m)) cos(θ(x, k)−
β(x, k,m)). Since 0 < θ(x, k) ≤ π

2
and 0 ≤ β(x, k,m) ≤ θ(x, k), one can deduce that

K1∥xmk − x∥2
sin(β(x, k,m))

sin(θ(x, k)
) cos(θ(x, k)− β(x, k,m)) ≥ 0, (B.3)

for all (x, k,m) ∈ Fm × {−1, 1}. Next, we prove that (xmk − x)⊤(xd − x) ≥ 0. The
following fact will be needed in the rest of the proof.

Fact 1 ∀(k,m) ∈ I× {−1, 1}, Fmk ⊂ P≤(pk, xd − pk).

Proof: Since pk ∈ ∂Ok and xmk ∈ P≤(pk, ck − pk)
(
i.e., (ck − pk)⊤(xmk − pk) ≤ 0

)
, then

pk ∈ C≤X (xmk , ck − xmk , θk(xmk )) \ Sk(xmk ). Therefore, Sk(xmk ) ⊂ P≥(pk, ck − pk). Moreover,
since Fmk ⊂ Sk(xmk ) (see definitions (4.9), (4.4)) and pk = ck + rk(xd − ck)/∥xd − ck∥,
one can deduce that Fmk ⊂ P≤(pk, xd− pk) for (k,m) ∈ I×{−1, 1}, which concludes the
proof of Fact 1.
According to (4.17), (x, k) ∈ Fm implies that x ∈ Fmk , and hence, according to (4.15),

(ck − x)⊤(xmk − x) ≥ 0. (B.4)

Moreover, since xmk ∈ Hk(xd) ∩ P≥(pk, xd − pk), one has

(xd − pk)
⊤(xmk − pk) ≥ 0, (B.5a)(

xd − ck − rk
xd − ck
∥xd − ck∥

)⊤(
xmk − ck − rk

xd − ck
∥xd − ck∥

)
≥ 0, (B.5b)(

1− rk
∥xd − ck∥

)
(xd − ck)

⊤
(
xmk − ck − rk

xd − ck
∥xd − ck∥

)
≥ 0, (B.5c)

(xd − ck)
⊤(xmk − ck)− rk∥xd − ck∥ ≥ 0, (B.5d)

(xd − ck)
⊤(xmk − ck) ≥ rk∥xd − ck∥. (B.5e)

In addition, as per Fact 1, for all x ∈ Fmk , one has

(xd − pk)
⊤(x− pk) ≤ 0, (B.6a)(

xd − ck − rk
xd − ck
∥xd − ck∥

)⊤(
x− ck − rk

xd − ck
∥xd − ck∥

)
≤ 0, (B.6b)(

1− rk
∥xd − ck∥

)
(xd − ck)

⊤
(
x− ck − rk

xd − ck
∥xd − ck∥

)
≤ 0, (B.6c)

(xd − ck)
⊤(x− ck)− rk∥xd − ck∥ ≤ 0, (B.6d)

(xd − ck)
⊤(x− ck) ≤ rk∥xd − ck∥. (B.6e)

From (B.5e) and (B.6e), one gets

(xd − ck)⊤(xmk − ck)− (xd − ck)⊤(x− ck) ≥ 0,
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(xd − ck)⊤(xmk − x) ≥ 0,

(xd − x)⊤(xmk − x) + (x− ck)⊤(xmk − x) ≥ 0,

(xd − x)⊤(xmk − x) ≥ (ck − x)⊤(xmk − x),

and according to (B.4), one can show that

(xd − x)⊤(xmk − x) ≥ 0. (B.7)

Therefore, V̇m(x) ≤ 0 for all (x, k,m) ∈ Fmk × I× {−1, 1}. Moreover, V̇m(x) = 0 only if
x ∈ Lk(xmk ), which is excluded from the set Fmk for m ∈ {−1, 1}, then one can conclude
that Vm(x) < 0 for all (x, k,m) ∈ Fmk × I × {−1, 1}. Thus, as xmk /∈ Fmk , k ∈ I, there
exists a hybrid time tk,mf > 0, jk,mf ∈ N \ {0}, such that x(tk,mf , jk,mf ) leaves Fmk and the

mode m(jk,mf , jk,mf ) jumps to the motion-to-destination mode. Therefore, if the obstacle-

avoidance mode (m ∈ {−1, 1}) is activated at (tk,m0 , jk,m0 ), the hybrid time interval for
this mode m is given by [tk,m0 , tk,mf ] × [jk,m0 , jk,mf ], which concludes the proof of Lemma
B.1.
Lemma B.1 shows that during the avoidance of any obstacle Ok, k ∈ I, the obstacle-
avoidance mode remains active for a finite hybrid time interval [tk,m0 , tk,mf ] × [jk,m0 , jk,mf ],
and the mode jumps to the motion-to-destination mode (i.e., m ∈ {−1, 1}) and x leaves
the flow set Fmk to the flow set F0

k of the motion-to-destination mode. Therefore, since
the number of obstacles is finite, there exists a finite sequence of obstacles to avoid for
every x(0, 0) ∈ X , and after the last avoidance in this sequence, the mode m jumps to
the motion-to-destination mode where the flow ẋ = −γ(x − xd) guarantees the global
attractivity of the equilibrium set A.

B.3 Proof of Lemma 4.3

For the hybrid time interval [tk0, t
k
f ] × [jk0 , j

k
f ] where obstacle k is selected for avoidance,

the robot, according to the jump maps K(·) and M(·) defined in (4.20)-(4.21), has
to first operate in the obstacle-avoidance mode (m = ±1) and then in the motion-
to-destination mode (m = 0). Let (tks , j

k
s ) be the hybrid time at which the mode

selector jumps from m = ±1 to m = 0. Let us consider the first case where
x(tk0, j

k
0 ) ∈ J k

0 \L(xd, ck). In the first mode (m±1), the velocity vector u(x, k,m), defined
in (4.13), is a function of three vectors (ck − x), (xd − x), and (xmk − x). Thus, if xmk ∈
Hk(xd)∩P≥(pk, xd−pk)∩PL

(
xd, ck, x(t

k
0, j

k
0 )
)
, then the points xd, ck, x(t

k
0, j

k
0 ), x

m
k are con-

tained in the two-dimensional plane PL
(
xd, ck, x(t

k
0, j

k
0 )
)
, and the vectors (ck−x(tk0, jk0 ))

and (xd−x(tk0, jk0 )) are linearly independent. Therefore, x(t, j) ∈ PL
(
xd, ck, x(t

k
0, j

k
0 )
)
for

all (t, j) ∈ [tk0, t
k
s ]× [jk0 , j

k
s ]. In the second mode (m = 0), the velocity vector is given by

u(x, k, 0) = γ(xd−x), which implies that the resultant trajectory is the line segment join-
ing x(tks , j

k
s ) and x(t

k
f , j

k
f ) where

(
x(tkf , j

k
f )− x(tks , jks )

)
and

(
xd − x(tks , jks )

)
are collinear.

Therefore, since xd, x(t
k
s , j

k
s ) ∈ PL

(
xd, ck, x(t

k
0, j

k
0 )
)
, as shown in the previous mode, then

x(t, j) ∈ PL
(
xd, ck, x(t

k
0, j

k
0 )
)
for all (t, j) ∈ [tks , t

k
f ] × [jks , j

k
f ]. Finally, one can conclude

that x(t, j) ∈ PL
(
xd, ck, x(t

k
0, j

k
0 )
)
for all (t, j) ∈ [tk0, t

k
f ] × [jk0 , j

k
f ]. In the second case

where x(tk0, j
k
0 ) ∈ J k

0 ∩ L(xd, ck), the points xd, ck, x(t
k
0, j

k
0 ) are aligned. Therefore, we
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take any point y of the free space not aligned with points xd, ck
(
i.e., y ∈ Rn \ L(xd, ck)

)
so that we can consider the two-dimensional plane PL(xd, ck, y) and select the virtual
destination xmk ∈ Hk(xd)∩P≥(pk, xd− pk)∩PL(xd, ck, y). The proof becomes similar to
that of the first case when considering the plane PL(xd, ck, y).

B.4 Proof of Proposition 4.1

We first start by proving the continuity of the velocity control law u(x, k,m). Since
u(x, k,m) is continuous during the flow, we only need to verify its continuity at the
switching instances, which corresponds to jumps between the two modes, the motion-to-
destination mode (m = 0), and the obstacle-avoidance mode (m = ±1).
Case 1 (m = 0→ ±1): The jump from the motion-to-destination mode to the obstacle-
avoidance mode occurs when the robot enters the jump set J 0

k through the boundary(
∂J 0

k ∩ ∂B(ck, r̄k)
)
. The control law for both modes is given by u(x, k, 0) = γ(xd − x)

and u(x, k,m) = α(x, k)µ(x, k,m)um(x, k) + γ(1 − α(x, k))(xd − x) for m = ±1. Since,
for all x ∈ ∂J 0

k ∩ ∂B(ck, r̄k), d(x,Ok) = r̄k, then α(x, k) = 0 and u(x, k,m) = u(x, k, 0).
Case 2 (m = ±1 → 0): Let Ok, k ∈ I, be the obstacle selected for the avoid-
ance. Since the virtual destinations are selected as in Lemma 4.3, the motion during
obstacle-avoidance and motion-to-destination modes, while obstacle Ok is selected, is
two-dimensional. The motion takes place on the plane PL

(
xd, ck, x(t

k
0, j

k
0 )
)
if x(tk0, j

k
0 ) /∈

L(xd, ck)
(
resp. PL(xd, ck, y), where y ∈ Rn \ L(xd, ck), if x(tk0, jk0 ) ∈ L(xd, ck)

)
where

(t0, j0) is the hybrid time at which the mode variable m jumps to the obstacle-avoidance
mode. Therefore, the navigation problem, while obstacle Ok is selected, is reduced to
the two-dimensional case. According to the jump maps defined in (4.21)-(4.28), the
mode variable m jumps to 1 when x ∈

(
J 0
k ∩ C1k

)
∪
(
J 0
k ∩ Ck ∩ P<(ck, x−1

k − x1k)
)
=

J 0
k ∩ P<(ck, x−1

k − x1k). Similarly, m jumps to −1 when x ∈ J 0
k ∩ P>(ck, x−1

k − x1k).
When x ∈ J 0

k ∩ P=(ck, x
−1
k − x1k), m can jump to 1 or −1. Thus, one can deduce

that the variable m always jumps to the obstacle-avoidance mode in which the as-
sociated virtual destination is the closest to x. Furthermore, as the virtual destina-
tions belong to the cone hat Hk(xd) of vertex xd enclosing obstacle Ok, the jump will
occur when x ∈ E(xd) ∩ E(xmk ) ∩ PL

(
xd, ck, x(t

k
0, j

k
0 )
)
if x(tk0, j

k
0 ) /∈ L(xd, ck)

(
resp.

x ∈ E(xd) ∩ E(xmk ) ∩ PL(xd, ck, y), where y ∈ Rn \ L(xd, ck), if x(tk0, jk0 ) ∈ L(xd, ck)
)

for m = ±1. Thus, (xd−x)⊤
∥xd−x∥

(xmk −x)
∥xmk −x∥ = 1 and ∥xd − x∥ = ∥xmk − x∥ + ∥xd − xmk ∥ (i.e., the

points x, xmk , and xd are aligned). In addition, β(x, k,m) = ∠(ck − x, xmk − x) = θ(x, k)

when x ∈ E(xmk ). Therefore, τ(x, k,m) = 0 and µ(x, k,m) =
∥x−xmk ∥+ek
∥x−xmk ∥ . Hence,

u(x, k,m) = γα(x, k)
∥x−xmk ∥+ek
∥x−xmk ∥ (xmk −x)+γ(1−α(x, k))(xd−x), and since ek = ∥xd−xmk ∥,

one has u(x, k,m) = γα(x, k)∥xd − x∥
xmk −x

∥xmk −x∥ + γ(1 − α(x, k))(xd − x) = γα(x, k)(xd −
x) + γ(1− α(x, k))(xd − x) = γ(xd − x) = u(x, k, 0).
Now we prove that the obstacles are avoided through local optimal obstacle-avoidance
maneuvers. We use the result of (Cheniouni et al., 2023a, Lemma 1), stating that, in the
case of a single spherical obstacle, the shortest path is obtained if the obstacle-avoidance
maneuver is optimal (i.e., the velocity vector is tangent to the obstacle and minimizes the
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deviation with respect to the nominal control ud(x) in the shadow region) and the motion-
to-destination is performed under the nominal control ud(x). According to Lemma 4.3,
the control κ(x, k,m) of the obstacle-avoidance mode, defined in (4.13), satisfies the opti-
mality conditions of the obstacle-avoidance maneuver with respect to a given virtual des-
tination xmk and a given obstacle Ok in the active region Ak wherem ∈ {−1, 1} and k ∈ I.
Since u(x, k,m) = α(x, k)µ(x, k,m)κ(x, k,m)+(1−α(x, k))ud(x) for m = ±1, and α = 1
when d(x,Ok) ≤ r̄k − ϵ, u(x, k,m) = µ(x, k,m)κ(x, k,m) where µ(x, k,m) is a positive
scalar function. Therefore, the hybrid control law u(x, k,m) satisfies the optimality con-
ditions of the obstacle-avoidance maneuver with respect to a given virtual destination xmk
and a given obstacle Ok for all x ∈ Fmk ∩B(ck, rk+ r̄k−ϵ), m ∈ {−1, 1} and k ∈ I. Now we
show that the optimality conditions of the obstacle-avoidance maneuver are also satisfied
with respect to the destination xd by the hybrid control law u(x, k,m) in the obstacle-
avoidance mode. The first condition (i.e., the velocity vector is tangent to the considered
obstacle) is satisfied by construction for m = ±1 since κ(x, k,m) ∈ V(ck − x, θ(x, k)), as
defined in Lemma 4.3. Let us show that the second condition is met by the hybrid control
law u(x, k,m) with respect to xd for m ∈ {−1, 1} and k ∈ I

(
i.e., u(x, k,m) minimizes

the deviation with respect to the nominal direction (xd − x)
)
. Since the velocity vector

u(x, k,m) ensures a minimum angle with the nominal direction to the virtual destination

(xmk − x) given by ∠(xmk − x, u(x, k,m)) = arccos( κ(x,k,m)⊤(ck−x)
∥κ(x,k,m)∥∥ck−x∥

) = θ(x, k)− β(x, k,m),

then one has to show that ∠(xd − x, u(x, k,m)) = θ(x, k) − β(x, k, 0)
(
or equiva-

lently κ(x,k,m)⊤(xd−x)
∥κ(x,k,m)∥∥xd−x∥

= cos(θ(x, k) − β(x, k, 0))
)
where β(x, k, 0) = ∠(xd − x, ck − x).

Hence, κ(x,k,m)⊤(xd−x)
∥κ(x,k,m)∥∥xd−x∥

= sin(θ(x,k))
sin(β(x,k,m))

( (xmk −x)⊤(xd−x)
∥xmk −x∥∥xd−x∥

− sin(θ(x,k)−β(x,k,m))
sin(θ(x,k))

(ck−x)⊤(xd−x)
∥ck−x∥∥xd−x∥

)
. Since

xmk ∈ PL(xd, ck, x(tk0, jk0 )) if x(tk0, j
k
0 ) /∈ L(xd, ck)

(
resp. xmk ∈ PL(xd, ck, y), where

y ∈ Rn \ L(xd, ck), if x(tk0, j
k
0 ) ∈ L(xd, ck)

)
, and the obstacle-avoidance mode is se-

lected such that the associated virtual destination is the closest to the position x,

then ∠(xmk − x, xd − x) = β(x, k,m) − β(x, k, 0) ≥ 0. Thus, κ(x,k,m)⊤(xd−x)
∥κ(x,k,m)∥∥xd−x∥

=
sin(θ(x,k))

sin(β(x,k,m))

(
cos(β(x, k,m) − β(x, k, 0)) − sin(θ(x,k)−β(x,k,m))

sin(θ(x,k))
cos(β(x, k, 0)

)
= cos(θ(x, k) −

β(x, k, 0)). The velocity vector u(x, k,m) is tangent obstacle Ok and ensures a minimum
angle with the nominal direction (xd−x) for all x ∈ Fmk ∩B(ck, rk+ r̄k− ϵ), m ∈ {−1, 1}
and k ∈ I. Therefore, one can conclude that the control u(x, k,m) generates local optimal
obstacle avoidance maneuvers.
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