
Boosting Feature Extraction Performance on the
aspect of Representation Learning efficiency

by

Haojin Deng

Lakehead University

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTERS

in the Department of Computer Science

Lakehead University

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Boosting Feature Extraction Performance on the
aspect of Representation Learning efficiency

by

Haojin Deng

Lakehead University

Supervisory Committee

Dr. Yimin Yang, Supervisor

(Department of Electrical and Computer Engineering, Western University, Canada)

Dr. Ruizhong Wei, Co-supervisor

(Department of Computer Science, Lakehead University, Canada)

Dr. Amin Safaei, Departmental Examiner

(Department of Computer Science, Lakehead University, Canada)

Dr. Thangarajah Akilan, External Examiner

(Department of Software Engineering, Lakehead University, Canada)

iii

ABSTRACT

Machine learning is famous for its automatic data handling. While there is a

slow growth in the performance of the state-of-the-art models in the most recent

well-known learning frameworks, the number of parameters and training complex-

ity rise unaware. Motivated by the present situation, we proposed two efficient

methods to enhance the automation on some manual tasks and the efficiency of

handling data, respectively. Emotion is one of the main psychological factors that

affect human behaviour. A neural network model trained with Electroencephalog-

raphy (EEG)-based frequency features have been widely used to recognize human

emotions accurately. However, utilizing EEG-based spatial information with popu-

lar two-dimensional kernels of convolutional neural networks (CNN) has rarely been

explored in the extant literature. We address these challenges by proposing an EEG-

based Spatial-frequency-based framework for recognizing human emotion, resulting in

fewer human-interaction parameters with better generalization performance. Specif-

ically, we propose a two-stream hierarchical network framework that learns features

from two networks, one trained from the frequency domain while another trained from

the spatial domain. Our approach is extensively validated on the SEED, SEED-V,

and DREAMER datasets. The experiments directly support that our motivation of

utilizing the two-stream domain features significantly improves the final recognition

performance. The experimental results show that the proposed spatial feature ex-

traction method obtains valuable spatial features with less human interaction. Image

classification is a classic problem in deep learning. As the state-of-the-art models

became more profound and broader, fewer studies were devoted to utilizing data ef-

ficiently. Inspired by contrastive self-supervised learning frameworks, we proposed

a supervised multi-label contrastive learning framework to improve the backbone

model’s performance further. We verified our procedure on CIFAR10 and CIFAR100

datasets. With similar hyperparameters and the number of parameters, our approach

outperformed the backbone and self-supervised learning models.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Dedication x

Publications xi

Acknowledgements xii

1 Introduction 1

1.1 Overview . 2

1.2 Background . 2

1.2.1 Machine Learning Categories 2

1.2.2 Electroencephalogram . 4

1.2.3 Self-supervised learning on Image Classification 4

1.2.4 Scope of the Study . 5

1.3 Related work . 5

1.3.1 Multi-layer Perception . 6

1.3.2 Support Vector Machine . 6

1.3.3 Convolutional Neural Network 6

1.3.4 Extreme Learning Machine . 6

1.3.5 Deep Learning . 7

1.3.6 Generative Adversarial Networks 7

v

1.3.7 Transfer Learning . 8

1.4 Research Objective . 8

1.5 Contribution . 9

1.6 Organization of Thesis . 9

2 Classifying EEG Emotions: A Hierarchical Representation Learn-

ing Framework with both Frequency and Spatial Domains 11

2.1 Introduction and Related Work . 12

2.2 Method . 14

2.2.1 Preprocess and Feature Extraction 14

2.2.2 First General Layer: Feature Extraction 16

2.2.3 Second General Layer: Classifier with Sub-network Nodes . . . 19

2.2.4 Third General Layer: Late fusion 21

2.2.5 Theoretical Analysis of DCNet Computational Complexity . . 21

2.2.6 Dataset . 23

2.3 Experiments . 23

2.3.1 Experiment Setup . 25

2.3.2 Experiment for SEED Dataset 26

2.3.3 Experiment for SEED-V dataset 28

2.3.4 Experiment for DREAMER dataset 34

2.4 Discussion . 37

2.5 Conclusion . 38

3 Bidirectional self-supervised learning representation 39

3.1 Introduction . 40

3.1.1 background . 40

3.1.2 Related works . 41

3.1.3 Motivation and difficulties . 47

3.2 Method . 47

3.2.1 Background . 47

3.2.2 Framework . 48

3.2.3 Loss Functions . 49

3.2.4 Theoretical Analysis of the Loss Function 51

3.3 Experiment . 54

3.3.1 Experiment Setup . 54

vi

3.3.2 Performance Comparison . 55

3.4 Ablation Study . 56

3.4.1 Remove multi-positive loss . 56

3.4.2 Softmax versus Sigmoid for multilabel loss 58

3.4.3 Projection head and Shallower Backbone 58

3.4.4 Batch size . 61

3.4.5 Compare with Supervised Backbone 61

3.5 Discussion . 61

3.6 Conclusion . 63

4 Conclusion & Future Work 65

4.1 Overview . 65

4.2 Main Contributions . 65

4.3 Conclusion . 66

4.4 Future Work . 67

A List of Abbreviations 68

B Softwares Used 70

B.1 Overview . 70

B.2 Package Used . 70

B.3 software and tools used . 71

C Values of Properties 73

vii

List of Tables

Table 2.1 Network Configuration 26

Table 2.2 Mean Accuracy of Subject Dependent Cross Session

Test on SEED dataset 29

Table 2.3 Cross Session Mean Accuracy of Each Stream and Two-

stream Fusion Approaches 29

Table 2.4 Mean Accuracy of Subject Dependent Test on SEED-V

dataset . 31

Table 2.5 DREAMER dataset Cross Session Test Mean Accuracy 34

Table 3.1 Accuracy comparison. The SupCLR w/o positive and

SupCLR w/ sigmoid will be introduced in Ablation

Study 3.4.1 and 3.4.2 55

Table C.1 System Properties for the EEG SEED, SEED-V

datasets and SupCLR projection head experiment 73

Table C.2 System Properties for the DREAMER datasets

and SupCLR all other experiments 74

viii

List of Figures

Figure 1.1 Timeline of machine learning related works. 5

Figure 2.1 Proposed framework, 1) 1st general layer: feature ex-

traction. 2) 2nd general layer: classifier with subnet-

work nodes. 3) 3rd general layer: late fusion. 15

Figure 2.2 Our proposed DCNet structure. For the encoder part,

we used unfolding transposed convolutional layers to

prevent artifacts due to overlap. We used well-known

2D convolutional layers for the decoder part to extract

the spatial feature. Both the encoder and decoder

could preserve location information. 19

Figure 2.3 SEED Experiment protocol. 24

Figure 2.4 The confusion matrix of our proposed method on SEED

dataset. 28

Figure 2.5 Feature visualization by the t-SNE algorithm. Differ-

ent colors represent different emotion classes. 30

Figure 2.6 The confusion matrix of our proposed method on SEED-

V dataset. 32

Figure 2.7 Feature visualization by the t-SNE algorithm. Differ-

ent colours represent different emotion classes. Three

columns represent different folds. The first row is the

DE feature and the second row is the DCNet feature. 33

Figure 2.8 Ten-fold cross-validation accuracy and loss on the DREAMER

dataset. X-axis: the number of fold; y-axis(left):

validation accuracy; y-asix(right): validation loss. . 35

Figure 2.9 Comparison of the DREAMER dataset accuracy in

each epoch between transfer learning from Imagenet

(TF) and learning from scratch (FS). 36

ix

Figure 3.1 MoCo Framework. x∼
q and x∼

k are two different aug-

mentations of the same image. The memory bank

saves several mini-batch representations that output

from the momentum encoder. 41

Figure 3.2 SimCLR Framework 42

Figure 3.3 BYOL Framework . 43

Figure 3.4 SimSiam Framework 44

Figure 3.5 SimCLR loss function. From left to right, the labels are

cat, dog, cat, dog. The x-axis and y-axis represent two

different augmentations of a mini-batch image. The

value in the table represents the pseudo-labels. 45

Figure 3.6 SupCLR loss function. From left to right, the labels are

cat, dog, cat, dog. The x-axis and y-axis represent two

different augmentations of a mini-batch image. The

value in the table represents the pseudo-labels. 48

Figure 3.7 Batch size experiment 56

Figure 3.8 Comparison between operating multi-positive labels in

contrastive loss function and not using multi-positive

labels in the contrastive loss function 57

Figure 3.9 Comparison between Softmax Cross-Entropy and Sig-

moid Cross-Entropy in the multilabel loss function . . 59

Figure 3.10 Pretrain and finetune performance on projection head

experiment. SupCLR w/o projection is the original

method. In SupCLR w/ projection, the finetuning

process preserved the projection head as part of the

framework. 60

Figure 3.11 Batch size experiment 62

Figure 3.12 Supervised training from scratch performance on ResNet-

50 . 63

x

DEDICATION

I would like to dedicate this thesis to,

My parents, who support me spiritually and financially. For always providing me

advice from their experience. For letting me concentrate on research without any

worries

My girlfriend, who always encourages me when I have difficulties, reminds me to

cherish this opportunity and believes in my ability to overcome challenges.

I would also like to dedicate this thesis to my two cats, Owne and Pumpkin,

and my chinchilla for being part of my family, always accompanying me while I am

working from home and reminding me to eat on time.

xi

Publications

Haojin Deng, Shiqi Wang, W. G. Will Zhao, Hui Zhang, Ruizhong Wei, Q. M.

Jonathan Wu, Bao-Liang Lu, Yimin Yang. Classifying EEG Emotions: A Hierarchi-

cal Representation Learning Framework with both Frequency and Spatial Domains,

under review of IEEE Transactions on Cognitive and Developmental Systems, 2022.

Wandong Zhang, Q. M. Jonathan Wu, W. G. Will Zhao, Haojin Deng, Yimin Yang.

Hierarchical One-Class Model With Subnetwork for Representation Learning and

Outlier Detection, in IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2022.3166349,

2022.

xii

ACKNOWLEDGEMENTS

I would like to thank:

First of all, Dr. Yimin Yang, as my supervisor providing me with a chance to

become familiar with academia and work under his supervision through all the tough

times during COVID-19. His guidance on my work, passion for academics, and cau-

tious attitude encourage me to learn and pursue being a researcher. It is a pleasure

to work with him on the research.

Dr. Ruizhong Wei, as my co-supervisor guidance and help in overcoming some

difficulties during my study.

Faculty of Graduate Studies & Faculty of Computer Science for their financial

support. As an international student, this research would not have been possible

without it.

Chapter 1

Introduction

1.1 Overview . 2

1.2 Background . 2

1.2.1 Machine Learning Categories 2

1.2.2 Electroencephalogram . 4

1.2.3 Self-supervised learning on Image Classification 4

1.2.4 Scope of the Study . 5

1.3 Related work . 5

1.3.1 Multi-layer Perception . 6

1.3.2 Support Vector Machine . 6

1.3.3 Convolutional Neural Network 6

1.3.4 Extreme Learning Machine . 6

1.3.5 Deep Learning . 7

1.3.6 Generative Adversarial Networks 7

1.3.7 Transfer Learning . 8

1.4 Research Objective . 8

1.5 Contribution . 9

1.6 Organization of Thesis . 9

2

1.1 Overview

Machine learning has been famous since the 1950s. IBM developed a computer pro-

gram for playing checkers against human. In the same decades, Rosenblatt imple-

mented the perception [56] by built a machine. However, due to the performance

was not promising compared to Symbolic Artificial Intelligence at that time; the per-

ception was not famous. In the late 1950s and 1960s, symbolic AI was able to solve

algebra word problems or prove geometry theorems. In 1986, Rumelhart et al. de-

scribed back-propagation learning procedure [57], which is the cornerstone of many

modern machine learning models nowadays. Multi-layer perception(MLP) was a pop-

ular machine learning solution in the 1980s. However, the support vector machine

(SVM) [5] was invented similarly to last time. As a competitor, SVM is simpler and

more efficient. In recent years, because of the reduction of cost of data sample collec-

tion and the rapid growth of computing power, MLP and back-propagation became

famous due to the success of deep learning [35]. Compared to SVM, neural networks

can be composited by different numbers of layers and different types of structures

such as CNN (Convolutional Neural Network) [36], LSTM (Long Short Term Mem-

ory) [26], Transformers, GAN (Generative Adversarial Networks) [67], etc. to handle

various problems.

1.2 Background

This study aimed to efficiently use underlying features from one-dimensional elec-

troencephalogram(EEG) data and image data to enhance the performance of classi-

fication tasks.

1.2.1 Machine Learning Categories

Nowadays, self-supervised learning became popular in machine learning. The relation-

ship between self-supervised learning with unsupervised learning supervised learning

and especially semi-supervised learning could be confusing. Since our thesis study in-

volved self-supervised learning materials, we want to discuss their relationship before

moving on to the next step.

3

Supervised Learning

Supervised learning is the traditional method used in specific tasks that involved

labels such as classification and regression.

Unsupervised Learning

Unsupervised learning needs fewer human interactions compared to supervised learn-

ing. It does not require human labels. Unsupervised learning could be utilized to

discover data patterns or analyze data by clustering or Principal component analy-

sis (PCA). It can also use generative adversarial networks [67] to generate data or

enhance resolution.

Semi-supervised Learning

Semi-supervised learning used a small amount of labelled data and a large amount of

unlabelled data during training. The model is first trained by the labelled data, then

uses the underlying distribution in data to label the unlabelled data. After that, the

model was trained with both labelled data and pseudo-labelled data.

Self-supervised Learning

Similar to semi-supervised learning, self-supervised learning is combined with un-

supervised learning and supervised learning. There are two steps in self-supervised

learning: pretraining and finetuning. The pretraining step learns data representations

without labels (unsupervised learning). The finetuning step is similar to supervised

learning, training the backbone model by labels. Based on different researches [10,30],

self-supervised learning with 10% of labelled data and 90% of unlabelled data could

reach similar performance as supervised learning with 100% labelled data. We would

introduce more about self-supervised learning in Chapter 3.

Difference between Self-supervised Learning and Semi-supervised Learn-

ing

These two categories are easy to get confused with because both of them involved

unsupervised learning and supervised learning. However, that is the one common

between these two categories. The Essential difference is that semi-supervised learning

required a small amount of labels to train the model initially. Self-supervised learning

4

pretraining tasks do not require any labels and they learn based on the underlying

structures of data.

1.2.2 Electroencephalogram

Emotion recognition has been a popular research topic recently [13,16,38,46,70,72].

The most common emotion recognition method is through human physical signals

such as facial expressions, posture, etc., but also through physiological signals. Phys-

iological signals are more reliable and largely involuntarily activated compared to

physical signals [63]. Valenza et al. [68] adopted electrocardiogram (ECG) signals to

recognize emotions. Wen et al. [71] used galvanic skin response (GSR), fingertip blood

oxygen saturation (OXY) and heart rate (HR) to classify five emotions. Khadidja et

al. [20] classify emotions based on electromyogram signal (EMG), respiratory volume

(RV), skin temperature (SKT), skin conductance (SKC), blood volume pulse (BVP)

and heart rate (HR). Different from physiological signals above, electroencephalogram

(EEG) reflects the emotional stimulus in the brain [34].

Since 1985 [1], the EEG has been widely used because of its stability and easy

accessibility than other biological signals [48]. Due to the rapid development of ma-

chine learning algorithms in recent years, the use of machine learning to analyze EEG

signals for emotion analysis has achieved good results [29].

In the neuroscience field, EEG signals usually contain five frequency bands, such

as delta (δ: 1–3 Hz), theta (θ: 4–7 Hz), alpha (α: 8–13 Hz), beta (β: 14–30 Hz), and

gamma (γ: 31–50 Hz) [50] to examine their relationship with the emotional states.

Alpha power asymmetry is a common indicator for evaluating emotional states, and

there are spectral differences in asymmetric pairs of electrodes in the anterior regions

of the brain [28]. Emotion states were also associated with spectral changes in other

parts of the cerebral cortex, such as right parietal alpha changes, theta power changes

in the right parietal [59], frontal-midline (FM) theta power [58], power asymmetry in

the beta-parietal region, and gamma spectrum changes in the right parietal region [3].

1.2.3 Self-supervised learning on Image Classification

Before the contrastive learning framework came out in self-supervised learning, pre-

text tasks were the primary choices to learn image representations without any labels.

For example, Zhang et al. input a grey-scaled image and use a model to restore the

colour of the image [78]. Gidaris et al. rotate the input image and use the model to

5

1958 1986

1976 1992Perception

Transfer
Learning

Back-
propagation

SVM

1998

Convolutional
Neural Network
1995

Long Short
Term Memory

2004

Extreme
Learning
Machine

2014

Generative
Adversarial
Networks
 2015

Deep Learning

ResNet
Residual neural network

2017

Transformer 2019

MoCo
Momentum Contrast for

Unsupervised Visual
Representation Learning

2020

SimCLR

A Simple Framework for

Contrastive Learning of Visual
Representations

Figure 1.1: Timeline of machine learning related works.

predict the rotation angle [18]. Noroozi cropped the input image into several differ-

ent blocks and trained the model to predict the correct location of each block(Jigsaw

puzzles) [54]. To prevent the model learns the shortcut, the author removed the

boundaries between the blocks. Pathak et al. removed pixels from the image and

trained the model to predict the pixels. The contrastive learning framework is differ-

ent from pretexts. It normally augmented one image with the stacking of different

processing methods such as cropping, rotating, resizing, colour distorting, blurring

etc. The contrastive learning model augmented the original image with different

random augmentations and learnt the underlying similarities based on two augmen-

tations.

1.2.4 Scope of the Study

Our studies explored the spatial feature and feature fusion of emotional recognition

EEG datasets and contrastive learning in self-supervised learning area.

1.3 Related work

With the development of technology (data collection, computing power) nowadays,

machine learning could be applied to different types of data, such as signal data,

image data, and time series data with different structures effectively. This section

introduces some famous structures related to our studies and different applications

seniors in machine learning.

6

1.3.1 Multi-layer Perception

Multi-layer perception (MLP or ”vanilla” neural networks) contains one or more

hidden layers. Sometimes MLP layers in deep learning are also called fully-connected

layers because each layer’s neurons are connected to all the neurons in next layer.

MLP model could be trained iteratively. The model updates the weight in each

layer by back-propagation [57]. Due to the MLP being compatible with nonlinear

activation, it could solve nonlinear separable problems. However, when researches

start to explore the computer vision tasks, MLP efficiency appears to be very low.

First, flatten image pixels as the input of MLP model would require a much larger

number of parameters in the model. Second, the flatten step and the fully connection

step could destroy the spatial representations in a image.

1.3.2 Support Vector Machine

Support Vector Machine(SVM) was first introduced in 1992 [25]. SVM has a higher

speed and good generalization. Compared to MLP, SVM has better performance with

limited training samples. SVM assumes there exists at least one hyperplane that could

separate different category data with a linear or nonlinear decision boundary. The

goal for SVM is to find that hyperplane and also find the decision boundary that

maximizes the margins on both sides.

1.3.3 Convolutional Neural Network

To address the above challenges in computer vision tasks, CNN [36] was invented

in 1998 to learn two-dimensional image semantics. Similar to MLP, CNN updates

the parameter weights by back-propagation. However, CNN used a small kernel to

learn local features by convolution. Each layer output could preserve the spatial

information, and the number of the parameter is undersized compared to MLP. The

convolutional neural network is famous and wins ImageNet competitions. As a trade-

off for fewer parameters, convolutional layers need more calculations and training

iteratively also slows down the training process.

1.3.4 Extreme Learning Machine

Huang et al. proposed ELM (Extreme Learning Machine) [27] in 2004. This method

has good generalization performance and promising efficiency. It is a single-layer feed-

7

forward neural network(SLFN). However, there are some differences between ELM

and vanilla neural network. The traditional vanilla neural network contains weight,

bias and an activation function in each layer so this calculation step would process at

least three times depending on the number of layers. After the model calculates the

loss between predicted output and true labels in the vanilla neural network, it uses

back-propagation to update weights and the process takes several iterations. ELM is

much efficient. It only contains one hidden layer and the feedforward process is much

faster. More significantly, ELM used Moore-Penrose generalized inverse to calculate

the weight based on the true label and the predict output. Back-propagation and

iterative training process is not required for ELM.

1.3.5 Deep Learning

Deep learning is not a new framework or machine learning structure, it is more likely a

natural result or stage as our computing power increases to a certain point. Normally,

if we add more layers in CNN, for example, 30 layers then it is called DCNN(deep

convolutional neural network) just because it has more layers and more parameters.

However, the gradients resemble white noise as the model became deeper, in other

words, it’s the shattered gradients problem [4]. ResNet [24] is one of the solutions to

this problem. It kept the gradient more efficient during Back-propagating.

1.3.6 Generative Adversarial Networks

As more complex frameworks’ training processes can be completed in an acceptable

time, different types of the framework became popular. Benefiting from deep learning,

GANs(Generative Adversarial Networks) could generate vivid images and videos as

a generative model. This framework contains two models. One is a generator model

and the other one is a discriminator model. In a training step, the generator model

generates a sample and the discriminator model tries to distinguish the real one

between this generated sample and the real data sample. This is a clever framework,

the two models designed to be conflict with each other. The generator model could

learn useful representations even without labels.

8

1.3.7 Transfer Learning

Transfer learning technique was founded dating back to 1976 [6]. It became popular as

training a deep learning model from scratch takes a lot of time. If we pretrain a model

in a large dataset, then finetune the model in our target dataset, the convergence

speed would likely be faster. Usually, the large dataset and the target dataset should

be similar, such as the ImageNet dataset and the CIFAR10 dataset. However, we

believe transfer learning still works across different types of datasets (image and

signal datasets). The detailed experiment would be given in Chapter 2.

1.4 Research Objective

In recent years, more studies proposed deeper neural networks. As the number of

parameters and layers grows promptly, the model’s performance increases insignifi-

cantly. Are deeper networks better? We do not know the answer yet. Nowadays,

many researchers aim to increase the performance of the neural network by adding

more parameters to the model. Although the large models such as GPT-3 [7] (175B),

BERT [14] (110M), and Transformers [69](86M, Vision Transformer) have outstand-

ing performance and generalization, the required computational power limited their

usage on many applications such as smartphones and other smart devices. Zhang et

al. proposed OPT [79] that only required 1/7 of GPT-3’s training carbon footprint

while preserving similar performance. However, due to the size and computation re-

sources required to train these models, these technologies are difficult to apply on

existed works.

Therefore, we aimed to propose new training patterns that could be compatible

and boost existing technologies. Our training patterns could enhance representa-

tion learning efficiency without needing extensive computational resources or large

amounts of training parameters. CNN replaced MLP in computer vision due to higher

performance and fewer parameters. ResNet encouraged feature reuse and prevented

the vanishing gradient problem with lower complexity than other studies. Based on

the above facts, we reasonably hypothesize that the classification problem still has

room to gain performance by optimizing the learning patterns of data representation.

9

1.5 Contribution

Based on the hypothesis, we proposed optimizing patterns to boost the feature ex-

traction performance in one-dimensional EEG data and two-dimensional image data.

Based on the characteristic of EEG data, we proposed DCNet to extract spatial fea-

tures efficiently. Inspired by SimCLR [10], we proposed a multi-label bidirectional

contrastive learning framework with a similar amount of parameters but significant

higher generalization ability compared to SimCLR. Below are the main contributions

of this thesis work.

1. We presented a two-stream hierarchical network framework (HNSN-DCNet) and

reached state-of-the-art performance in the SEED dataset.

2. We applied DCNet for spatial feature extraction. This method is more efficient

than traditional spatial feature extraction methods due to less human-made

inference. Similar to the perception, DCNet has better adaptability and flexi-

bility.

3. We proposed a supervised contrastive learning representation framework (Sup-

CLR). SimCLR [10] claimed they have better performance than similar back-

bone supervised learning methods. With similar parameters and backbone, our

proposed method performs better on CIFAR10 and CIFAR100 than SimCLR.

4. We analyzed SupCLR in Chapter III. Ablation Study section. Our experiment

reflects projection head is not a necessary part during training compared to

SimCLR. Even with fewer parameters, our framework has faster convergence

speed and better performance compared to SimCLR.

5. Our proposed representation learning patterns could be used in different tasks to

improve generalization and overall performance by gaining more comprehensive

underlying representation features.

1.6 Organization of Thesis

This section was all about the introduction and the rest of the thesis proceeds as

follows,

Chapter 2 provides the detail of the two-stream hierarchical network framework

10

(HNSN-DCNet), including the complexity analysis and our framework’s experiments

on the SEED, SEED-V and DREAMER Dataset.

Chapter 3 introduced the recent self-supervised learning frameworks and their differ-

ences. This chapter also presents the SupCLR framework, the proposed loss function

and the theoretical analysis of the upper bound of the loss function compared to

NT-Xent [10] loss function. After that, the experiment and ablation study sections

explained the robustness and performance of our framework.

Chapter 4 is the last chapter in this thesis, which concludes the whole work done in

this thesis and further explains the future prospects of our studies.

11

Chapter 2

Classifying EEG Emotions: A

Hierarchical Representation

Learning Framework with both

Frequency and Spatial Domains

2.1 Introduction and Related Work . 12

2.2 Method . 14

2.2.1 Preprocess and Feature Extraction 14

2.2.2 First General Layer: Feature Extraction 16

2.2.3 Second General Layer: Classifier with Sub-network Nodes . . . 19

2.2.4 Third General Layer: Late fusion 21

2.2.5 Theoretical Analysis of DCNet Computational Complexity . . 21

2.2.6 Dataset . 23

2.3 Experiments . 23

2.3.1 Experiment Setup . 25

2.3.2 Experiment for SEED Dataset 26

2.3.3 Experiment for SEED-V dataset 28

2.3.4 Experiment for DREAMER dataset 34

2.4 Discussion . 37

2.5 Conclusion . 38

12

2.1 Introduction and Related Work

Machine learning methods has been used in emotion recognition and went well. Early

machine learning methods methods (single-layer feed-forward network, fuzzy k-means

and support vector machine (SVM)) achieved moderate results in the emotional clas-

sification of multiple emotional (two or more) states in experiments [22, 45, 53]. For

example, Lin et al. [44] used the f-score index, based on the ratio of emotion recogni-

tion between and within classes. By classifying four emotion states at 26 electrodes,

they achieved an average accuracy of 82.29%. Chanel et al. [9] used time-frequency

data to identify three emotions, obtaining 63% accuracy, and fused different features

and samples, achieving 80% mean accuracy. Zheng et al. [87] preprocessed EEG sig-

nals by the differential entropy (DE) [15] method, grouped all electrodes, selected the

characteristic data of 12 electrodes and classified them by SVM. They obtained the

best accuracy of 86.65%. Later, Yang et al. [76] proposed a neural network (NN)-

based emotion recognition with subnetwork nodes and got mean accuracy of 91.37%

on DE features from full channels.

Recently, deep neural networks have achieved good results in various fields, es-

pecially image and video processing [83]. Gong suggested deep learning has overall

better performance compared to conventional methods because deep learning model

do not require specific knowledge and expertise [19]. For example, Zheng et al. [86]

used DE features to train a deep belief network (DBF) and achieved a mean accuracy

of 87.62%. Unsupervised learning methods, such as auto-encoder, are also used for

extracting deep features from EEG signals. Most recently, Li et al. [39] proposed the

Fast Online Instance Transfer(FOIT) to avoid time consuming iterations and com-

plex optimizations by training various non-iterative models. Li et al. [38] designed

a 3-D Feature Representation and Dilated Fully Convolutional Networks (3DFR-

DFCN) to fully capture prior knowledge into the 3-D array and use spectral norm

regularization (SNR) to reduce the sensitivity for improvement of the generalization

performance of DFCN. Their classification accuracy on the DREAMER dataset is

93.15%, 91.30% and 92.04% for valence, arousal and dominance, respectively. Wang

et al. [70] used short-time Fourier transform (STFT) to convert 1 dimensional EEG

signal to 2-dimensional signal and processed by CNN with residual block to avoid

gradient disappearance and gradient explosion. Wu et al. [72] proposed an emotion-

relevant critical subnetwork selection algorithm to remove the remaining noise and

used Pearson’s correlation coefficient and spectral coherence to find the correlation

13

between signals. They got the state-of-the-art classification performance in several

EEG datasets. On the other aspect, many studies reflect that pairwise learning could

benefit EEG emotion recognition tasks [30,40,88]. Li proposed an effective joint dis-

tribution adaptation (JDA) method [40] by contrasting the similarity of pairs of data

samples with adversarial training. Zhou et al. also proposed a novel pairwise learn-

ing method (PR-PL) [88] to learn the inherent relationship between different pairs of

samples, and between sample features and prototype features. Kan et al. proposed

a self-supervised contrastive learning framework (SGMC) to learn representations of

EEG data samples [30]. They proposed the Meiosis augmentation method based on

EEG 1D-signal data. The Meiosis method cross-exchanged part of a pair of data

samples corresponding to the same stimuli. The result 89.65% on the SEED dataset

is promising in the finetuning task even with 1% labelled data.

Yang et al. [76] selected signal data of special regions of the cerebral cortex and

used these data for emotion recognition, and obtained positive results, further proving

that the cerebral cortex has different reflection regions for different emotions, i.e., a

spatial relationship exists between different electrode channels. However, in most

existing studies [37, 43, 52], EEG spatial features are extracted manually based on

specific dataset channels and the location according to the International 10-20 system.

For example, the authors proposed the Pearson correlation coefficient (PCC), phase

locking value (PLV), and transfer entropy (TE) to extract spatial features in [52].

Their framework required the geometry of electrodes for ordering, which restricted

the number and position of channels in the application. This reliance on manual

treatment makes it questionable if many existing spatial feature extraction methods

could be applied to another dataset with guaranteed performance. Furthermore, low

signal-to-noise ratio and difficulty improving accuracy are still significant difficulties

with EEG datasets [82].

Motivated by above identified shortcomings in existing research, this paper pro-

posed a novel spatial feature extraction framework (DCNet) with preprocessed 1-D

EEG data. As Abdullah et al.’s found [2], convolutional layers as locally-adaptive

thresholding procedures can prevent the noise between channels during training. We

hypothesize that the deconvolution-convolution structure can focus on local features

and extract spatial feature. We provide feature visualization experiments to verify

this hypothesis. To further represent the advantage of our spatial feature extraction

method, we combined it with Yang’s frequency domain feature extraction method [76]

(HNSN) as Fig. 2.1.

14

This framework is suitable for any EEG dataset with different channel numbers

and does not require any spatial domain preprocessing step. From experiments result,

the framework improves generalization performance from different stream features.

With the fewer human-interaction parameters advantage, the backbone of DCNet

layers could be used to transfer learning to other EEG datasets.

In particular, this paper makes the following contributions.

1. We proposed a spatial feature extraction method (DCNet) to convert 1-D EEG

signal data into 2-D latent space and then use CNN structure to extract local

spatial features. The feature visualization experiments on different datasets

reflect that the performance of our spatial feature is promising.

2. We propose a two-stream hierarchical network framework (HNSN-DCNet) learn-

ing representations of features combined from multiple networks. The different

streams can extract the frequency and spatial features, significantly improv-

ing accuracy. Evaluated by three widely selected datasets (SEED, SEED-V

and DREAMER), the accuracy of our proposed framework outperforms other

state-of-the-art methods. Furthermore, due to less human-made inference on

the spatial feature extraction method, this framework has better robustness and

stability when applied to other EEG datasets.

3. The high portability of DCNet allows our framework to enhance the generalize

ability by transfer learning. Based on our experiment (Fig. 2.9), the perfor-

mance improved significantly with transfer learning from the Imagenet dataset.

This could reduce the high variance caused by small training samples in EEG

datasets.

2.2 Method

2.2.1 Preprocess and Feature Extraction

Preprocess on SEED and SEED-V dataset

First, the sampling rate of SEED and SEED-V raw data was downsampled from 1000

Hz to 200Hz. Then both datasets were processed by a bandpass filter between 0- 75

Hz.

15

Figure 2.1: Proposed framework, 1) 1st general layer: feature extraction. 2) 2nd

general layer: classifier with subnetwork nodes. 3) 3rd general layer: late fusion.

Differential Entropy Features on SEED and SEED-V dataset

Duan [15] proposed the effective features called differential entropy (DE) extend the

concept of Shannon entropy and are used to measure the complexity of continuous

random variables. Since EEG data has high low-frequency energy in high-frequency

energy, DE can distinguish the EEG mode between low-frequency and high-frequency

energy. Li [40] also suggests that using DE to extract features performs better than

power spectral density (PSD).

The original calculation formula of differential entropy is defined as

H(x) = −
∫
x

f(x)log(f(x))dx. (2.1)

If the time series X obeys the Gauss distribution N(µ,δ), the DE features can be

obtained by

H(x) = −
∫ +∞

−∞

1√
2πδ2

e−
(x−µ)2

2δ2 log

(
1√

2πδ2
e−

(x−µ)2

2δ2

)
dx

=
1

2
log 2πδ2,

(2.2)

where the time series x obeys the Gauss distribution N(µ, σ2). Experiments show

that for fixed-length EEG signal sequences, DE is equivalent to the logarithm energy

spectrum in a certain frequency band [61]. We use this method to extract the DE

features of 5 corresponding frequency bands.

DE features can be converted to 5 different frequency bands (delta: 1-4 Hz, theta:

4-8 Hz, alpha: 8-13 Hz, beta: 13-30 Hz, gamma: 30-50 Hz) with time complexity

16

O(KN logN) where N is the size of samples, and K is the number of electrodes.

Then, we use the linear dynamic system (LDS) method to further filter out irrel-

evant components, and consider the temporal dynamics of emotional state [62].

Preprocessing on DREAMER dataset

For each participant, the DREAMER dataset contains baseline signals recorded with-

out any stimulation and stimulated signals evoked by watching the video clips. Here

is the preprocessing steps for each participant.

Step-1: Separate the current participant’s baseline signal Xb into one-second

trials Xb1, Xb2, Xb3 · · ·Xbn.

Step-2: Calculate the mean Xbµ of the participant’s all one-second trials to get

the average baseline signal.

Xbµ =

∑n
i=1 Xbi

n
.

Step-3: Separate the current participant’s stimulated signal Xs into one-second

trials Xs1, Xs2, Xs3 · · ·Xsn.

Step-4: Use each stimulated signal to subtract the baseline average trail to re-

move the mean and standardize the feature by scaling to unit variance σ.

X
′

sj = (Xsj −Xbµ)/σ.

Step-5:After all, we merge all the preprocessed one-second trails together to get

X
′
s which has the same shape as Xs.

2.2.2 First General Layer: Feature Extraction

Hierarchical Network With Subnetwork Nodes

A two-layer autoencoder has been introduced [75] where only the encoding layer

weight has been generated randomly, based on which the decoding layer weight has

been calculated. The autoencoder aims are to minimize the reconstruction loss, which

is the squared error between the input X and the neural network output Ŷ .

In this paper, we use Hierarchical Network with Subnetwork Nodes (HNSN) [76] as

our frequency feature extraction method. Zhang et al. [81] also proved the convergence

of this algorithm. We briefly describe the Autoencoder algorithm in the algorithm 1.

Step-1: Given M arbitrary distinct training samples (xk,yk)Mk=1,xk ∈ Rn are

17

sampled from a continuous system. Randomly initialize the entrance layer subnetwork

node:

Hc
f = g(âc

f , b̂
c

f ,x), (âc
f)T · âc

f = 1, (b̂
c

f)T · âc
f = 1, (2.3)

where âf ∈ Rd×n, b̂f ∈ R is the orthogonal random weight and bias of the entrance

mapping layer. Hc
f is the c-th subspace features. c represents subnetwork node index

and initial index c = 1.

Step-2: Given an invertible activation function g, obtain the subnetwork node

of the exit feature layer (âc
h, b̂

c

h) by

âc
h = g−1(un(y)) · (Hc

c)
−1, âc

h ∈ Rd×m,

b̂
c

h =
√

mse(âh ·Hc
f − g−1(un(y))), b̂

c

h ∈ R,
(2.4)

where H−1 = HT (C1/I + +HHT)−1;C1 > 0 is a regularization value; un is a nor-

malized function un(y) : R→ (0, 1]; g−1 and u−1
n represent their reverse function.

Step-3: Update the output error ec as

ec = y− u−1
n g(Hc

f , â
c
h, b̂

c

h). (2.5)

We can get error feedback data Pc = g−1(un(ec)) · (âc
h)−1.

Step-4: Update the subnetwork node âc
f , b̂

c

f in the entrance layer

âc
f = g−1(uj(Pc−1)) · x−1, âc

f ∈ Rn×d,

b̂
c

f =
√

mse(âc
f · x−Pc−1), b̂

c

f ∈ R.
(2.6)

Step-5: obtain the c-th subspace feature data

Hc
f = g(x, âc

f , b̂
c

f). (2.7)

Step-6: Set c = c+ 1, add a new subnetwork node âc
f , b̂

c

f in the feature mapping

layer with orthogonal random initialization.

Step-7: Repeat steps 2 to 6 L − 1 times, then obtain the L subspace features

[H1
f , ...,H

L
f].

18

Deconvolution and Convolution Network

To ensure that manual intervention is avoided, we chose to use DCNet(Deconvolution-

and-convolution Network) [77] to extract spatial features from EEG signals. This

end-to-end architecture can perfectly train any different channel size 1D signal data.

The DCNet is an asymmetric framework. The encoding part of DCNet automatically

converts the 1D input signal into a 2D matrix. Then the decoding part of DCNet

uses 2D CNN for classification.

The input dimension is 1D EEG signal data. The encoder reshapes the input

data (reducing channels and increasing dimensionality) into 32 × 32 × 3 matrix by

five transposed convolution layers. For the input Y l−1 (the output from the last

layer) and the kernel k with size (M,N), we define the transposed convolution layer

as follows:

T l(i + a, j + b) =
M−1∑
a=0

N−1∑
b=0

k(a, b) ∗ Y l−1(i, j), (2.8)

where i, j, a, b are the index of the input and the index of the kernel respectively.

Then decoder converted the matrix back to 1D-shape data by four convolution layers

with the max-pooling layer that extracts the spatial feature from the matrix. For the

input Y l−1 (the output from the last layer) and the kernel k with size (M,N), we

define the convolution layer as follows:

C l(i, j) =
M−1∑
a=0

N−1∑
b=0

k(a, b) ∗ Y l−1(i + a, j + b). (2.9)

Unlike other resize techniques, deconvolution or transposed convolution layer con-

tains trainable parameters. Most existing processes need human-made inference to

convert the 1D signal to spatial features. In contrast, the parameters in deconvolution

layers could be updated during model training. The promising performance of this

framework on 1D datasets has been proved by Dr. Yang [77] by 12 different datasets.

Normally the input data shape is (sample, channelNumber). To compatible with

trasposeConv2d layer, we reshape the data input to (minibatchSize, 1, 1, channel-

Number). The feature extraction output is the first dense layer(minibatchSize, 1,

1, 80) in Fig. 2.2. We have made some modifications to adapt the DCNet to our

framework. In both deconvolution and convolution layers, we used Selu [32] acti-

vation function because it can effectively prevent vanishing and exploding gradient

19

Figure 2.2: Our proposed DCNet structure. For the encoder part, we used unfolding
transposed convolutional layers to prevent artifacts due to overlap. We used well-
known 2D convolutional layers for the decoder part to extract the spatial feature.
Both the encoder and decoder could preserve location information.

problems.

selu(x) =

{
x x > 0,

aex − a x ≤ 0.
(2.10)

Then we also added an alpha-dropout layer against the overfitting problem while

training the model. In addition, we made some changes to the DCNet framework.

After several tests, we found unlapping subregions within the larger receptive fields

has a faster convergence speed and best performance while training. Therefore, we

set stride to 2 and kernel size to 2 in the encoder. We set stride to 2 and kernel size

to 3 in the decoder.

2.2.3 Second General Layer: Classifier with Sub-network Nodes

We adopted our previous classifier [74] as our final classifier. Given M distinct feature

samples combined from combination operator (H,t). u(x) : R→ (0, 1] is a normalized

function; g is a sigmoid or sine activation function, and then for any continuous

outputs t, we have limn→+∞∥t− ((g(a1
p,b

1
p,H)) · β1

p + · · ·+ (g(ac
p,b

c
p,H)) · βc

p)∥ = 0

20

Algorithm 1 The proposed method

Given a large training dataset (xk,yk)Mk=1, xk ∈ Rn, an invertible activation function
g , number of hidden nodes in each subnetwork node d (d equals number of targeted
dimensionality of the subspace features), regularization coefficient C, and the number
of subnetwork nodes L:
First general layer: Subspace feature extraction:
Step 1: Extract frequency features. Set c = 1, randomly generate the subnetwork
node for entrance feature layer by equation (3).

1: while c < L do
2: Calculate the subnetwork node for exit feature layer by equation (4)
3: Calculate the output error and error feedback data by equation (5)

4: Update the subnetwork node âc
f , b̂

c

f in the entrance layer by equation (6)
5: Obtain the c-th subspace feature data by equation (7)

6: Set c = c+ 1, add a new subnetwork node âc
f , b̂

c

f in the feature mapping layer
with orthogonal random initialization (equation (3)).

7: Repeat L− 1 times, obtain the L subspace features H1.
8: end while

Step 2: Train DCNet by EEG preprocessed data and extract spacial features H2.
Second general layer: Pattern learning:
Given combined feature H, set c = 1, e1 = t.

1: while c ¡ L do
2: Step 1: Calculate the cth subnetwork node (acp, b

c
p), and output weights βc

p as
equation(2.11);

3: Step 2: Calculate parameters as equation(2.12).
4: end while

Third general layer: Feature combination
Combined features Ŷfre and Ŷspa from equation(2.13)

holds with probability one if

ac
p = g−1((ec−1)) ·HT

(
C

I
+ HHT

)−1

,

bcp = sum(ac
p ·H− h−1((ec−1)))/N, bcp ∈ R,

(2.11)

g−1(·)

{
arcsin (·) if g(·) = sin (·)
− log

(
1
(·) − 1

)
if g(·) = 1/(1 + e−(·)) ,

ec = t− u−1
n g(H, ac

p,b
c
p),

βc
p =
⟨ec−1, u

−1(g(ac
p ·H + bcp))⟩

∥u−1(g(ac
p ·H + bcp))∥2

,

(2.12)

21

where [·]−1 represents its inverse function.

2.2.4 Third General Layer: Late fusion

In last layer, we extracted the predict feature from both frequency and spatial stream

respectively.

Ŷfre = g(a1
p,b

1
p,Hfre) · β1

p + · · ·+ g(ac
p,b

c
p,Hfre) · βc

p,

Ŷspa = g(a1
p,b

1
p,Hspa) · β1

p + · · ·+ g(ac
p,b

c
p,Hspa) · βc

p.
(2.13)

Then we fuse the Ŷfre and Ŷspa together and make the final prediction. Fur-

thermore, different structures of autoencoder and DCNet can be used in our method.

Other classifiers can be used, such as SVM or ELM. The proposed algorithm could

be summarized in the following Algorithm 1.

2.2.5 Theoretical Analysis of DCNet Computational Com-

plexity

VC-Dimension

Statistical learning theory established a relation to represent the lower bound of model

generalization in terms of training error and testing error:

ϵtrue = ϵemp + Φ(h,N), (2.14)

where h is the VC-dimension of the model, N is the number of data samples and

ϵemp, ϵtrue are the empirical risk (training error) and true risk (true error) to some

loss function respectively. Since true error is not predictable, minimize ϵemp and the

function Φ(h,N) is the key for better performance. The function Φ(h,N) is referred

as VC-confidence [66] and is defined as

Φ(h,N) =

√
h(ln(2N/h) + 1)− ln(η/4)

N
. (2.15)

It represents the generalization of the model with probability 1− η. In other words,

the difference between true and training errors would be more negligible as VC-

confidence become smaller. As mentioned in [66, 74], this confidence is proportional

to h/N . Goldberg and Jerrum [33] proved the upper bound of the neural network

22

is O(k2) where k = θ(W) and W is the number of parameters. We calculated the

upper bound of the number of parameters in the following sections to prove the

generalization ability of DCNet.

Transposed convolutional part

For transposed convolution part of DCNet, we convert the 1D signal from (1, 1, 310)

to shape (32, 32, 3). For each convolution or transposed convolution layer with (m,n)

shape kernel(filter), dp number of filters in the previous layer and dc number of filters in

the current layer, the number of trainable parameters can be represented as equation

below:

((m× n× dp) + 1)× dc. (2.16)

The number of parameter DCNet transposed convolution part with layer L is

Wtrans =
L∑

j=1

((m× n× dj−1) + 1)× dj, (2.17)

where d0 is the number of channel for the input signal. As we can see in Fig. 2.2,

there are six layers in transposed convolution part as we want to reshape the input

from (20, 20, channelsignal) to (25, 25, 3). Since the number of filters di ≤ di−1, the

parameter number upper bound could be further expressed as

Wtrans = O(L× ((m× n× d0) + 1)× d0), (2.18)

where number of layer L, shape of the kernel (m,n) are constant, therefore

Wtrans = O(d20). (2.19)

Convolutional part

In the convolutional part, the input shape is (32, 32, 3) and the output is also in

constant shape (1, 1, 310).

Wbni
= di × 4,

Wconv =
L∑

j=1

((m× n× dj−1) + 1)× dj + dj × 4.
(2.20)

23

Since the number of filters di−1 ≤ di, shape of the kernel (m,n) are constant and the

number of filter in last layer dL = 310, we can rewrite the upper bound to:

Wconv = O(L× ((m× n× dL) + 1)× dL + L× dL × 4),

Wconv = O(L× c + L× c) = O(L).
(2.21)

Generalization Analysis

Therefore, the upper bound of DCNet is O(d + L) where d is the channel number of

the input signal, and L is the number of layer in the convolutional part. Szymanski

and McCane find a similar upper bound on their deep neutral network model [66].

Our original model proposed an asymmetric framework on the SEED and SEED-V

datasets. Since there are only five layers in the convolutional part and the channel

numbers are the same as the corresponded transposed convolutional layer, the pa-

rameters in the convolutional part are less than the transposed convolutional part.

So our DCNet model has O(d) parameters. As we mentioned in the VC dimension

part, the VC-confidence is proportional to h/N where VC-dimension h = O(W 2) only

related to the number of trainable parameters, and N is the number of samples in

the dataset. Since trainable parameters’ upper bound in our model is only dependent

on the channel of input, the generalization of our model is promising as long as the

number of samples is much larger than the number of channels.

On the other hand, we still need a larger model with more parameters to fit a large

dataset better to reduce ϵemp. For a larger dataset such as the DREAMER dataset,

we prefer to increase the number of layers in the convolutional part to guarantee

training accuracy while maintaining generalization performance.

2.2.6 Dataset

2.3 Experiments

Previous studies have shown that raising human emotions through movie clips is

reliable [15] [86]. In this paper, we adopted the SEED [87], SEED-V [41] and

DREAMER [31] dataset, one of the largest datasets, which has been popularly used

for EEG-based emotion recognition. Video clips with audio were used to elicit specific

emotions of the subjects’ emotions. The SEED dataset experiment could prove the

overall performance of our framework. In contrast, the SEED-V dataset has fewer

24

Trail K - 1 Trail K Trail K + 1

5 sec
Hint of Start

4 min 45 sec 15 sec
Movie Clip Self Assessment Rest

Figure 2.3: SEED Experiment protocol.

samples and two more emotion classes. The SEED-V dataset experiment was pro-

posed to demonstrate the generalization of our framework. DREAMER dataset has

relatively imbalanced data in each category and a different number of channels. We

proposed a DREAMER dataset experiment to show the stability and robustness of

our spatial feature extraction method.

SEED and SEED-V Dataset

Each film clip is about four minutes long, and carefully selected important clips

enable it to create coherent emotions, which can well trigger the corresponding human

emotions. There are 15 clips in both SEED dataset and SEED-V dataset. Each clip

has 5 to 15 seconds of prompts before and 15 to 30 seconds of rest after each clip [see

Fig. 2.3]. All movie clips are sorted according to different emotions to ensure that the

same emotional movie clips are displayed discontinuously. To test the stability of EEG

signals for sentiment analysis over time and the performance of cross-session emotion

recognition, all experimental participants were required to conduct 3 trials, each trial

being more than 3 days. To ensure the accuracy of emotional records, each subject

was asked to complete an Eysenck Personality Questionnaire (EPQ) before the start of

each trial. Extroverts who proved stable were selected as subjects. Therefore, subjects

who reported themselves as normal participated in the experiment. According to the

international 10-20 system, the EEG NeuroScan system was used to record EEG

signals at a sampling rate of 1000 Hz. There are 62 active AgCl electrode channels

for recording EEG signals. The impedance of each channel in the cap was controlled

to less than 5 KΩ.

25

SEED dataset contains three different classes (positive, neutral and negative).

SEED-V included five emotion classes (happy, sad, fear, disgust, and neutral). SEED-

V also contains eye movement signals. However, since our model only focuses on

EEG data, eye movement signals are not considered in this experiment. For the

SEED Dataset, we used the first 9 trails for each subject in each session as a training

dataset (84420 samples) and all the last 6 trails as a testing dataset (58128 samples).

For the SEED-V Dataset, we proposed a 3-fold cross-validation method to split the

training and testing dataset. Each fold is guaranteed to have five different trails

representing five different emotions in random order. Since the trails’ lengths are

different, the number of training samples (19184; 18492; 20656) and testing samples

(9984; 10672; 8512) in each fold are also different. From the above information, the

SEED-V Dataset is a smaller dataset containing more emotion categories.

DREAMER Dataset

DREAMER dataset has 18 film clips. The length of these film clips was between 65

to 393s. There are 23 subjects in this dataset, 14 male and 9 female. Unlike the

SEED dataset, DREAMER dataset EEG contains 14 channels at a sampling rate

of 128 Hz. DREAMER dataset also contains ECG signals, but we only use EEG

data in this experiment. DREAMER dataset is a multimodal dataset. The rating

scales for the DREAMER dataset are valence, arousal and dominance. Twenty-three

participants watched these film clips, and each participant conducted 477,184 data

samples. After preprocessing, the data shape is 23 × 477184 × 14 with 14 channels.

The corresponding label shape is 23× 477184× 3 with three different labels. We use

10-fold cross-validation to separate the training and validation data similar to Cheng

et al. [13] dataset division method. The rating range for each class is 1 to 5. As

the experiments from the baseline method [31], we use DREAMER dataset as three

binary classification schemes. We set a threshold in the middle of rating scales and

changed the rating value from 5 point scale to two classes(low and high). We consider

rating value smaller or equal to 3 to low and greater than 3 to high.

2.3.1 Experiment Setup

We set up three different experiments for different datasets to test the robustness of

our proposed method. In each experiment, we systematically compared the perfor-

mance of our method and the most recent methods. All the experiments are done in

26

Python and the framework of DCNet is implemented using Tensorflow.

2.3.2 Experiment for SEED Dataset

Performance Comparison

Table 2.1: Network Configuration

Methods parameter details

SVM Linear Kernel, search space 2[−10,10] with a step of one.
KNN Baseline k equals 5.
ELM 1000 hidden neurons, search space 2[−10,10] with a step of one.

H-ELM N1=N2=300, N3=1000, search space for C1 and C2 is 2[−10,10] with a
step of one.

GELM the number of hidden layer neurons is fixed as 10 times of the dimensions
of input and we adopt a 5-fold cross-validation scheme.

DBN first and second layer of DBN is selected from the ranges of [200, 200]
and [150, 500], respectively.

HNSN search space for C1 and C2 is 2[−10,10] with a step of one. Three subnet-
work nodes.In each subnetwork node, 500 hidden nodes are used.

OURS DCNet part: we use 30 epochs, learning rate of 0.01. HNSN part: search
space for C1 and C2 is 2[−10,10] with a step of one. Three subnetwork
nodes.In each subnetwork node, 500 hidden nodes are used.

For SEED dataset, we compared the performance of 13 different methods for emo-

tion recognition: 1) Support Vector Machine (SVM); 2) Extreme Learning Machine

(ELM); 3) Logistic Regression (LR); 4) Deep Belief Networks (DBNs) [84]; 5) Adap-

tive Subspace Feature Matching (ASFM) [8]; 6) Dynamical Convolutional Neural Net-

works (DGCNN) [65]; 7) Bimodal Deep AutoEncoder (BDAE) [47]; 8) Bi-hemispheres

Domain Adversarial Neural Network (BiDANN) [42]; 9) Graph Regularized Extreme

Learning Machine (GELM) [85]; 10) Hierarchical Network with Subnetwork Nodes

(HNSN) [76]; 11) Electrode-frequency Distribution Maps (EFDMs) [70]; 12) Channel-

fused Dense Convolutional Network (CDCN) [16]; 13) the proposed method.

These methods use DE feature as input. For SVM and ELM, parameters are set

up from space [2−10, 2−9,· · · , 210] in each experiment. For GELM, we set the number

of hidden layer neurons to 10 times the input data dimension, and adopted the cross-

validation scheme [85]. We used 300 hidden neurons in the first and second layers and

1000 hidden neurons in the third layer for H-ELM(N1 = N2 = 300, N3 = 1000). In

27

DBN, two hidden layers are used. We trained 1000 epochs with batch size of 201. We

set unsupervised and supervised learning rates of 0.1 and 0.5. In each experiment, the

number of neurons in the first layer of the DBN network was selected from [200, 500],

and the number of neurons in the second layer was selected from the range of [150,

500]. For HNSN, to compare fairly with ELM/SVM, we selected the same values of

C1 and C2, which all choose regularization parameters from space [2−10, 2−9, · · · , 210].

For our method, in the DCNet part, we use 30 epochs with a learning rate of 0.01. For

the HNSN part, in order to be consistent with other methods mentioned above, we

choose the same parameters C1 and C2. Our proposed method includes late fusion.

Table 2.1 shows the specific settings for different methods.

We used subject dependent test to evaluate our proposed method. Subject de-

pendence means using a person’s emotional responses, stimulated from different film

clips, to predict this person’s emotions. Table 2.2 shows the performance of each

stream and our method. For emotion recognition using the DE feature, we obtain an

average accuracy of 94.84%, which is almost 3% higher than [76] method.

From the confusion matrix in Fig. 2.4 we can obtain the following observations:

• Our method performs great on neutral and positive emotions. The accuracy

almost achieves 99% on these two classes.

• From the related research, the negative class on the SEED dataset is likely to be

more confused than other classes. Our proposed method ensured positive and

neutral emotions recognizing accuracy and simultaneously boosted the negative

class’s accuracy.

We compared the accuracy of our proposed methods with other state-of-the-art

methods to show the advantages of our proposed method. Table 2.2 shows the results

of comparative experiments. From the table, we can see that the accuracy of our pro-

posed method is significantly higher than that of other recent methods. In addition,

our results are consistent with previous studies [84] [15] that our proposed method

with DE features has the best performance in EEG-based emotional recognition.

DCNet Feature Analyze

We used the t-SNE algorithm the analyze the feature distribution and compared it

to the original DE feature as Fig. 2.5. We used three different colours to represent

different emotion classes. From the original DE feature, data are closer to their

28

Negative Neutral Postive
Predicted label

Negative

Neutral

Postive

Tr
ue

 la
be

l

0.87 0.11 0.024

0.012 0.99 0

0 0.012 0.99

0.0

0.2

0.4

0.6

0.8

Figure 2.4: The confusion matrix of our proposed method on SEED dataset.

centroid, and data from three different classes are clustered together. Most data

are lapping together rather than constructing distinct sequences. In contrast, the

distribution of DCNet spatial features is more evenly. It also gradually separates

different emotions and clusters the data by sequences of the same emotion. The

comparison shows that the performance of our spatial feature extraction method is

significant.

2.3.3 Experiment for SEED-V dataset

In order to show our framework generalization performance and test how our network

performs on datasets with more emotional categories, we adopt the SEED-V dataset

including five emotion statuses, disgust, fear, sad, neutral and happy. In the experi-

ment, carefully selected film clips are used as the stimuli, which have been explored

to have reliability in eliciting emotions [60].

Sixteen healthy subjects (6 males and ten females) participated in the experiments,

29

Table 2.2: Mean Accuracy of Subject Dependent Cross Session Test on SEED dataset

Methods Mean Std

SVM 89.99 -
ELM 82.92 -
LR 82.70 -
DBNs [84] 86.08 -
ASFM [8] 83.51 -
DGCNN [65] 90.40 8.5
BDAE [47] 91.01 8.9
BiDANN [42] 83.28 -
GELM [85] 91.06 -
HNSN [76] 91.67 9.91
EFDMs [70] 90.59 -
CDCN [16] 90.63 -
DCCA [46] 94.6 9.2
SGMC [30] 94.04 -
PR-PL [88] 93.18 6.55
JDA [46] 88.28 11.44
FOIT [39] 87.36 12.87
OURS 94.84 9.38

and each subject was required to perform the experiments for three sessions at an

interval of one week or longer. EEG signal is collected simultaneously when the

subjects are watching the film clips.

We use the cross-validation method to generate three train/test splits. We first

compared each stream features approach accuracy [see Table 2.3]. As we can see,

fusing multi-stream features achieves the best performance.

Table 2.3: Cross Session Mean Accuracy of Each Stream and Two-stream Fusion
Approaches

Methods DE

Frequency Stream 64.31
Spatial Stream 64.79
Two-Stream 68.61

30

Figure 2.5: Feature visualization by the t-SNE algorithm. Different colors represent
different emotion classes.

Performance Comparison

To further review our result, we depict the confusion matrices for each fold and the

overall result of our proposed method. Fig. 2.6 shows the confusion matrices of five

emotions on SEED-V dataset.

• From the overall confusion matrix, our method can ideally recognize fear and

happy classes. The average accuracy is more than 75%.

• The sad and neutral classes get 68% and 65%, after by fear and happy tasks. It

is worth noting that both these two classes have 15% misclassified samples with

each other. This explains the sad and neutral emotions are easier to confuse on

our method.

• Recognizing the disgust emotion was the most challenging task in the previous

study [41]. We can observe that the disgust emotion performs very stable in all

three folds, very easy to confuse with other emotions, especially with other neg-

ative emotions (fear and sad). Maybe disgust emotion stimulus cause resonance

in participants and evoke other negative emotions.

Table 2.4 subject-dependent test compares the accuracy of our proposed methods

with SVM, ELM, BDAE and HNSN

DCNet Feature Analyze

To see the benefits of deep features extracted by our proposed method, we run an

at-distributed stochastic neighbouring embedding algorithm (t-SNE) to find two-

31

Table 2.4: Mean Accuracy of Subject Dependent Test on SEED-V dataset

Methods Mean Std

ELM 33.69 -
SVM 57.52 -

BDAE [41] 69.50 -
HNSN [76] 64.31 13.52

OURS 68.61 13.98

32

Figure 2.6: The confusion matrix of our proposed method on SEED-V dataset.

dimensional embeds of high-dimensional feature space and plot them as coloured

points, according to semantic categories in a particular hierarchy. Fig. 2.7 shows the

visualization of the DE original feature and the DCNet feature in three different folds.

As we can see from Fig. 2.7, the disparity in different emotions classes is not obvious.

The connections between the same class emotion are fragile, especially in this five-

emotion classification task. After we extracted the spatial feature from DCNet, it is

clearer to see different emotions cluster the samples than the original feature before

we processed. Furthermore, the same class data samples clustered together with more

robust connections. These differences are sufficient to demonstrate the superiority of

the DCNet feature.

33

Figure 2.7: Feature visualization by the t-SNE algorithm. Different colours represent
different emotion classes. Three columns represent different folds. The first row is
the DE feature and the second row is the DCNet feature.

34

Table 2.5: DREAMER dataset Cross Session Test Mean Accuracy

Methods Valence Arousal Dominance Total Average

DT 75.53 75.74 76.40 75.89
SVM 87.14 87.03 87.18 87.12

VGG-16 [64] 78.99 79.23 54.83 71.02
DGCNN [65] 89.59 88.93 88.63 85.26

Deep Forest [13] 89.03 90.41 89.89 89.78
BDAE [47] 88.57 86.64 89.52 88.24

Deep CCA [46] 90.57 88.99 90.67 90.08
3DFR-DFCN [38] 93.15 91.30 92.04 92.16

Our proposed 93.01 92.04 91.74 92.26

2.3.4 Experiment for DREAMER dataset

DREAMER dataset is a larger multimodal dataset. Since the DREAMER dataset

has three different labels (valence, arousal, dominance), it is a suitable dataset to test

the generalization of our proposed method. Compared to 5 × 62 channels in SEED

and SEED-V datasets, the DREAMER dataset only has 1× 14 channels. Unlike the

previous experiments, the DREAMER dataset has imbalanced data samples in each

category. To further discuss the contribution and robustness of DCNet on spatial

feature extraction, we keep the encoding structure precisely the same as the previous

two experiments. On the decoder part, we proposed a DCResNet framework that

combined DCNet with ResNet50 [24] using ImageNet pre-trained weight.

Due to the characteristic of our spatial feature extractor, we can connect any image

classifier model after the mid-layer of DCNet (shape of 32×32×3). This experiment

explains the performance of DCNet without the symmetrical model structure.

For this time, we combine pre-trained ResNet50 on our DCNet as DCResNet.

Since the output of the last transposed convolution layer in DCNet is 32× 32× 3 as

Fig. 2.2, we directly connect it as the input of the ResNet50. This experiment was

completed on 4 RTX6000 GPUs in python, and the model was implemented using

Tensorflow. The DCResNet used Adam as the optimizer and trained in 100 epochs

and 4096 batch sizes.

35

0 2 4 6 8

89

90

91

92

93

Valence Accuracy
Arousal Accuracy
Dominance Accuracy

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Valence Loss
Arousal Loss
Dominance Loss

Figure 2.8: Ten-fold cross-validation accuracy and loss on the DREAMER dataset.
X-axis: the number of fold; y-axis(left): validation accuracy; y-asix(right): vali-
dation loss.

Subject dependent Experiment Results

After we perform the subject-dependent experiment, the result sufficiently proves the

generalization, robustness and flexibility. From Fig. 2.8, most validation set has above

90% accuracy on all three labels. We also compared five recent related works and

two baseline methods. We used Decision Tree Classifier (DT) and Support Vector

Machine classifier (SVM) as baseline classifiers. We compared our proposed method

result with VGG-16 [64], DGCNN [65], Deep Forest [13], Deep CCA [46] and 3DFR-

DFCN [38].

From Table 2.5, the result shows we have comparable accuracy with one of the

best performance state-of-the-art methods, 3DFR-DFCN [38]. It is worth noting

that the advantage of DCNet is less human manual interaction and extracting of

spatial features efficiently without additional information such as channel location.

36

As a comparison, although 3DFR-DFCN [38] has a similar performance, they man-

ually converted the one-dimensional EEG signal into the two-dimensional matrix to

preserve channel location information. Moreover, the total average accuracy of our

proposed method is the best. The best overall accuracy proves the robustness of the

DCNet structure in the multimodal dataset experiment.

Flexibility Analyze

We mentioned earlier that the DCNet structure could be compatible with different

image classification models in terms of flexibility. The advantages of deep image

classification models are not only the robustness of architecture but also the pre-

trained weights of these models. To further discuss the usefulness of the ’flexibility,’

we compared the performance of DCResNet with transfer learning from Imagenet

weights and DCResNet with learning from scratch. From Fig. 2.9, the superiority of

the transfer learning method is clear at a glance. The overall accuracy of the transfer

learning method with the same training and testing set is 3% higher than learning

from scratch. Furthermore, there is no apparent relation between one-dimension EEG

signal data and the two-dimension Imagenet dataset. So we can conclude that various

types of the one-dimension dataset can use this transfer learning framework to boost

accuracy and efficiency further.

0 20 40 60 80 100
70

75

80

85

90

95

100

Epoch

A
cc

u
ra

cy

Transfer learning comparison

TL Training
TL Validation
FS Training

FS Validation

Figure 2.9: Comparison of the DREAMER dataset accuracy in each epoch between
transfer learning from Imagenet (TF) and learning from scratch (FS).

37

2.4 Discussion

In this paper, we assumed that DCNet could extract spatial features. We provided

feature visualization by the t-SNE algorithm in the experiment to prove our assump-

tion. Zhang et al. introduced that combining or fusing spatial domain features

with frequency domain features is more effective [82]. Our cross-session experiments

on different datasets also evidence this argument. Compared to the original HNSN

method, our combined framework boosted 3.17% and 7.11% on the SEED and SEED-

V datasets, respectively.

As mentioned in the motivation section, most previous studies manually extract

spatial features based on the specific EEG dataset channel orders and preprocessing

method. However, different datasets have various sampling methods and could bene-

fit from different preprocessing techniques. Ensuring the quality of extracted spatial

domain features across different datasets has always been a hot topic. We aimed

to propose an adaptive spatial feature extraction method to solve this issue. Using

deconvolution(transposed convolution) as an encoder could reserve local information.

The iterative training pattern automatically adapted the encoder to different prepro-

cess methods and datasets. We experimented with the same deconvolution encoder

structure across different preprocessing methods (downsampling and DE feature on

the SEED and SEED-V dataset, removing the mean and standardized baseline on

the DREAMER dataset) and a large span on the number of channels (62*5 on the

SEED and SEED-V datasets, 14*1 on the DREAMER dataset). Compared to the

recent studies, the performance confirmed our hypothesis and reflected the robustness

of our framework in different application scenarios. As a trade-off for fewer human-

interaction and higher compatibility, the complexity of DCNet is higher than the

traditional spatial domain feature extraction methods due to more parameters and

iterative training. The DCNet structure converting each EEG signal sample into a

more extensive two-dimension latent space also needs more GPU memory. For ex-

ample, the DCNet structure we used to train the SEED dataset contains 1,070,435

trainable parameters. Training the SEED dataset on Colab with Tesla P100 takes

about 1 second per epoch(20ms/step). In our experiment, the time of training the

model for 30 epochs is acceptable.

Based on the transfer learning in the last experiment, we unexpectedly found

that transfer learning from ImageNet could converge faster and boost performance

significantly in limited epochs, which gives us more flexibility in application. Here we

38

briefly discuss the benefit of transfer learning in EEG datasets. Due to the limited

number of subjects in EEG datasets, the model directly trained EEG data could

contain high variance. Transfer learning from the image dataset may improve the

generalization and reduce the variance.

2.5 Conclusion

Overall, we demonstrate 1) decomposing and transforming one-dimensional EEG sig-

nals into spatial and frequency features as more effective for emotion recognition,

2) the promising performance of our framework on small-scaled, medium-scaled and

large-scaled signal datasets, and 3) the generalization and flexibility of DCNet com-

pare to other feature extraction methods on extracting 1D signal data. The next

chapter presents a contrasting framework that boosts representation learning effi-

ciency.

39

Chapter 3

Bidirectional self-supervised

learning representation

3.1 Introduction . 40

3.1.1 background . 40

3.1.2 Related works . 41

3.1.3 Motivation and difficulties . 47

3.2 Method . 47

3.2.1 Background . 47

3.2.2 Framework . 48

3.2.3 Loss Functions . 49

3.2.4 Theoretical Analysis of the Loss Function 51

3.3 Experiment . 54

3.3.1 Experiment Setup . 54

3.3.2 Performance Comparison . 55

3.4 Ablation Study . 56

3.4.1 Remove multi-positive loss . 56

3.4.2 Softmax versus Sigmoid for multilabel loss 58

3.4.3 Projection head and Shallower Backbone 58

3.4.4 Batch size . 61

3.4.5 Compare with Supervised Backbone 61

3.5 Discussion . 61

3.6 Conclusion . 63

40

3.1 Introduction

3.1.1 background

The supervised learning method has made promising progress in recent years [24,35,

36, 69]. However, the promising progress of supervised learning cannot leave high-

quality data samples, human-labelled data labels, more parameters (more profound

and wider) in the model, bigger batch size or more training epochs to train the

model. Nowadays, many studies have started to pay attention to model performance

efficiency, such as providing carbon footprint as an indispensable part of model per-

formance [80] or evaluating performance with smaller batch size [12]. Compared to

unsupervised learning and self-supervised learning(SSL), adequate resources are the

bottleneck for supervised learning. As we expect models to have better robustness and

generalization performance, one direction is not heavily dependent on human-labelled

labels. Self-supervised learning has attracted attention lately for its generalization

ability and efficiency in data utilization. Compared to unsupervised learning, the SSL

framework learns representation from ”labels” created by the content of the train-

ing samples. Based on this specific framework, SSL could be more appropriate for

training low-quality data, less labelled or hard-to-label data or even unbalanced data.

In supervised learning, it is hard to tell which part of the neural network corre-

sponds to learning the task’s representation and to what extent the label could influ-

ence the training process rather than the semantic information of training samples.

Unlike supervised learning, self-supervised learning further subdivided the training

steps into upstream and downstream tasks. The upstream task is used to train the

model to learn semantic information from data samples unsupervised, and the down-

stream finetunes the model with provided labels. The upstream task enables learning

from data representations, and people can directly evaluate the performance, which

gives us an efficient pipeline to learn the relationship between representation learning

efficiency and different self-supervised learning framework. We will introduce these

evaluation methods in the related work section. Self-supervised learning also needs

fewer epochs of training in downstream tasks. Some frameworks also have outstand-

ing performance with smaller batch size [12] [11]. In this study, we are focusing on

the contrastive learning framework and contrastive loss function.

41

image

momentum update Momentum Encoder

Memory Bank queue

Encoder

similarity &

dissimilarity

gradient

✕

stop gradient

Figure 3.1: MoCo Framework. x∼
q and x∼

k are two different augmentations of the
same image. The memory bank saves several mini-batch representations that output
from the momentum encoder.

3.1.2 Related works

Nowadays, many self-supervised learning methods propose frameworks with con-

trastive learning. At first, people proposed an ”end-to-end” framework to contrast

two similar structures with two different inputs and compute their contrastive loss. At

this stage, a contrastive learning framework needs a large batch size to keep enough

positive and negative samples to obtain enough contrast information. In other words,

the ”end-to-end” framework requires large GPU memory as computation resources.

Then the memory bank was proposed by [73] to reduce batch size and save each

batch’s output feature into a memory bank. The memory bank feature can be used

as additional data samples to feed in contrastive loss function with current batch

features. However, there is a disadvantage to this framework. The features stored in

the memory bank are encoded during training, and each feature vector is generated

with different parameters. Thus, the features in the memory bank lack consistency.

42

image

Encoder

similarity &

dissimilarity

(NT-Xent loss function)

weight sharing Encoder

Projection head Projection head

gradient gradient

Figure 3.2: SimCLR Framework

MoCo

MoCo [23] applied unsupervised representation learning in computer vision and out-

performed many datasets on supervised pretraining performance. Compared to the

memory bank [73], MoCo proposed a momentum encoder to avoid feature inconsis-

tency. The MoCo framework contains two encoders, a typical encoder and a momen-

tum encoder. The loss function contrasts the similarity and dissimilarity between the

output feature of both encoders (as Fig. 3.1). The typical encoder updates the param-

eters from the loss function gradient. To keep the consistency of momentum encoder

Ek, Ek only updates parameters from the typical encoder Eq with a momentum as

equation below:

θq ←− mθk + (1−m)θq.

Moco saved the encoded keys from momentum encoder as queue with n batch. Then

the keys could be represented as large amount negative samples to further boost the

contrast loss function efficiency. Algorithm. 2 explains how MoCo works.

43

image

momentum update Momentum EncoderEncoder

similarity only

gradient

Projection head Projection head

Prediction head
✕

stop gradient

Figure 3.3: BYOL Framework

SimCLR

SimCLR [10] proposed a different type of framework as Fig. 3.2. Compared to MoCo,

there is only one encoder in the framework. The encoder updates parameters by

contrast loss function gradient, so there is no lack of consistency problem. Com-

pared to the end-to-end framework, SimCLR adds a non-linear projection head after

the encoder. The authors found that adding a non-linear projection head works

better than a linear projection head or directly putting the encoded feature vectors

into the contrastive loss function. The model needs to shorten the distance between

two same images in the latent space with different augmentations. However, the

encoder should not learn this information because it conflicts with learning image

representation. Therefore Chen et al. use a non-linear projection head to ”remove”

the differences between different augmentations. The authors also proved that the

non-linear projection head could improve the representation quality [10].

44

image

Momentum EncoderEncoder

similarity only

gradient

Projection head Projection head

Prediction head
✕

stop gradient

Figure 3.4: SimSiam Framework

The author proposed the NT-Xent loss as the contrastive loss. In a mini-batch

with size n, the purpose of the NT-Xent loss function is to maximize the agreement

of one of the input x̃0q with the only positive sample x̃0k and minimum the similarity

from all other samples in the same batch x̃1k...x̃nk as Fig. 3.5.

Although SimCLR and MoCo have different frameworks, they both use negative

samples to prevent collapse in latent space. The following studies explore more pos-

sibilities to avoid collapse.

BYOL

BYOL [21] is different from previous methods. It does not require negative samples to

keep enough distance in latent space. Similar to MoCo [23], BYOL has two networks

(because BYOL networks contain a projection head and prediction head, we cannot

call them ”encoder”) and one network update parameter with momentum. Based on

45

Algorithm 2 MoCo

As a new batch data xn input to the framework

1: while pretrain do
2: x̃ni ←− augmentation(xn)
3: x̃nj ←− augmentation

′
(xn)

4: q ←− Eq(x̃ni)
5: kn ←− Ek(x̃nj)
6: remove the oldest batch k0 from the queue k
7: add kn at the end of queue k
8: calculate contrastive loss of q and k
9: update parameters of encoder Eq by the gradient of loss function
10: update parameters of encoder Ek by above equation
11: end while

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 3.5: SimCLR loss function. From left to right, the labels are cat, dog, cat, dog.
The x-axis and y-axis represent two different augmentations of a mini-batch image.
The value in the table represents the pseudo-labels.

the practical results by Chen et al. [10], the authors added projection head into both

networks. As Fig. 3.3, the network with gradient update is named online network

46

and the network with momentum update is named target network.

online(x) = qθ(gθ(fθ(t(x)))),

target(x) = sg(gξ(fξ(t
,(x)))).

The goal for BYOL framework is using online network to predict the output from

target network. For this propose, the author add a prediction head to online network.

The framework optimize as:

min(Lθ,ξ(online(x), target(x))).

The author claims that BYOL does not require negative pairs for contrasting be-

cause the framework is learnt from the previous version’s output. They also proposed

that the prediction header is essential to prevent representational collapse, and it

needs to be near-optimal at all the time [21]. Some studies also mentioned that batch

normalization is critical in the projection head and prediction head. As pseudo code

that BYOL provided, they used batch normalization in the MLP(multilayer percep-

tron) blocks. The batch normalization layer would potentially involve information

from negative samples and BYOL still using negative pairs to avoid collapse. In

other words, they believe BYOL is an implicit contrastive learning method. However,

Richemond et al. refute this hypothesis by proposing an alternative method without

batch statistics [55]. They proved that batch normalization could be replaced by

group normalization(GN) and weight standardization(WS), and the performance is

almost the same as using batch normalization.

SimSiam

After BYOL proposed a framework without contrasting with negative pairs, Chen et

al. further explored the method to avoid collapsing. They further simplified the self-

supervised learning structure and proposed a Siamese network named SimSiam [12].

SimSiam removed the momentum encoder and the projection head. Two encoders

directly share the weights, as Fig. 3.4. Compared to SimCLR, SimSiam does not need

negative samples in the loss function, so a large batch size is also not necessary for

SimSiam. SimSiam further shrunk the essential condition to prevent collapse. Similar

as BYOL, SimSiam has a prediction head on the online encoder and stop gradient

on the target encoder(the network without predictor). The online network update

47

parameters by the gradient from loss function. The author proposed stop-gradient

and the predictor are the essentials to avoid collapse on SimSiam.

3.1.3 Motivation and difficulties

There are still many areas worth exploring, especially the efficiency of learning rep-

resentation and how to prevent collapsing during training. Both MoCo [23] and

SimCLR [10] indicated that the increment of the number of the negative sample

could improve the learning efficiency of sample representation. However, there is only

one positive sample in the whole batch for each training sample. Even though these

self-supervised learning frameworks already outperformed the supervised version, we

believe the additional positive label information could be used to unrestricted the

potential learning ability in latent space. This study will discuss the feasibility of

increasing the number of positive samples in loss function to further improve the

representation learning efficiency. Overall, our contributions are listed as follows:

• We proposed a supervised contrastive learning representation framework. Our

proposed framework contrast multi-positive label at the same time.

• The convergence speed of our proposed multi-positive loss function is much

more faster than SimCLR and supervised model and the upper bound of the

proposed loss function is lower than the NT-Xent (SimCLR loss function).

• In the structure part, we challenged a common technique used in most SSL

recent works – projection head. After experiments, we found that the projection

head is unnecessary for our framework.

3.2 Method

3.2.1 Background

SimCLR [10] proposed a simple, efficient framework to learn representations by con-

trasting positive and negative samples. This framework outperformed the supervised

version on many datasets by both linear evaluation and finetuned. We proposed a sim-

ilar framework for learning representations based on similarities and dissimilarities.

The significant difference is that our framework considers learning from multi-positive

labels. SimCLR provides an idea to learn representations not only on self-supervised

48

learning methods it can also improve the efficiency of supervised learning. This leads

us to think that even SimCLR outperformed the same supervised model, can we prop-

erly use the label information to provide additional information for the framework to

learn the representations only?

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

Figure 3.6: SupCLR loss function. From left to right, the labels are cat, dog, cat, dog.
The x-axis and y-axis represent two different augmentations of a mini-batch image.
The value in the table represents the pseudo-labels.

To provide useful information for contrastive learning, we only provide addi-

tional similar label information to the loss function. In other words, the NT-Xent

loss(Fig. 3.5) only selects the image with different augmentation as the only pair of

positive samples in the mini-batch. Our proposed method assigns all the images with

the same true labels as positive samples as Fig. 3.6.

3.2.2 Framework

In our framework, we proposed a supervised contrastive learning method (SupCLR).

Here are the training steps:

49

The augmentation function t generate two different augmented images x∼
q and x∼

k

by:

x∼
q = t(x),

x∼
k = t′(x).

Then encode the augmented images by weight sharing encoder E to generate repre-

sentations hq and hk:

hq = E(x∼
q),

hk = E(x∼
k).

SimCLR [10] found the projection head is beneficial to preventing the encoder from

learning unrelated features based on the contrastive loss function, such as the frame-

work needing to resume the similarities from the same image with different augmen-

tations x∼
q and x∼

k . The projection head will learn these features, and the projection

head will be removed in downstream tasks. We also added the weight-sharing pro-

jection head in our framework named Proj. We use 3-layer MLP as a non-linear

projection head, which comes with ReLU as an activation function.

zq = Proj(hq),

zk = Proj(hk).

Finally, we want to minimize the contrastive loss function L. The next section

will introduce the loss function in detail.

3.2.3 Loss Functions

The contrastive loss function will compare the final output zq and zk. The purpose

of the NT-Xent (SimCLR contrastive loss function) with an input sample a is:

max(sim(zqa, zka)), (3.1)

min(
n∑
b

1[b̸=a]sim(za, zb)), (3.2)

where 1[b ̸=a] is an indicator function equals to 1 only if b ̸= a and n is the batch size.

To simplify the expressions, we will omit the q and k for the similarity between dif-

ferent original images(index). For example, sim(zqa, zkb)+sim(zqb, zka) ≡ sim(za, zb).

50

Inspired by the NT-Xent we proposed a multi-positive label contrastive loss func-

tion. Given m classes label corresponding to the input data with batch size n. In

the loss function, all samples with index 1...n belong to one of the label sets L1...Lm.

The objective of our loss function corresponding to input sample a is:

max(
∑
c∈Li

sim(za, zc) a ∈ Li), (3.3)

min(
n∑
b

1[b/∈Li]sim(za, zb) a ∈ Li), (3.4)

where 1[b/∈Li] indicate za and zb have different labels and there are in total |Li| elements

in the class set Li. In the loss function, we want to maximize the similarity between

all samples belonging to the same label and minimize the similarity of all samples

between different labels. Overall, the loss function for an input sample a is defined

as:

L(a) = − log

∑
c∈Li

exp(sim(za, zc)/τ)∑2n
b 1[b/∈Li] exp(sim(za, zb)/τ)

a ∈ Li. (3.5)

In the loss function Li is the label set of sample a. There are two steps in the

contrastive loss function. First, we need to convert labels into relationship matrix

Mat between different sample labels as Fig. 3.6. This matrix define as

Matij = Matji =

0 labeli ̸= labelj

1 labeli = labelj
. (3.6)

with shape batchsize∗batchsize. Then we use zq, zk and the matrix Mat to calculate

the loss as Algorithm 3.

We used two different label matrices in the algorithm to calculate the loss. One is

for the positive part, and the other one is for the negative part. Note that the positive

and negative labels do not represent the similarity or dissimilarity between samples.

The positive label matrix (Mat) is the label for logitabandlogitab. We expect only

the contrast of positive sample pairs to be 1. The negative label matrix (negLabel)

is the label for logitaaandlogitbb. After removing all positive pairs, we expect all the

rest of the sample pairs in logitaaandlogitbb to be 0.

51

Algorithm 3 Multilabel Contrastive Loss

Input latent space features zq, zk and matrix similarity label Mat

1: logitaa = zq ◦ zTq /τ ▷ calculate logit from same augmentation
2: logitaa = logitaa −Mat ∗ 109 ▷ remove positive samples
3: logitbb = zk ◦ zTk /τ
4: logitbb = logitbb −Mat ∗ 109

5: logitab = zq ◦ zTk /τ ▷ calculate logit from different augmentation
6: logitba = zk ◦ zTq /τ
7: sima = [logitab, logitaa]
8: simb = [logitba, logitbb]
9: negLabel = zerosLike(masks) ▷ all-zero negative label, same shape as Mat
10: multilabel = [Mat, negLabel] ▷ combine positive and negative labels together
11: lossa = softmaxCrossEntropy(multilabel, sima) ▷ calculate contrastive loss
12: lossb = softmaxCrossEntropy(multilabel, simb)
13: losstotal = mean(lossa, lossb)
14: return losstotal

3.2.4 Theoretical Analysis of the Loss Function

This section discusses how well our loss function could learn from multi-positive con-

trastive learning compared to the NT-Xent (SimCLR loss function).

Discussion

SimCLR proposed NT-Xent as their contrastive loss function. NT-Xent used one pair

of samples as positive and the rest samples from batch size as negative. The advantage

is this loss function could benefit from a larger batch size because it would have more

negative samples to contrast. However, the efficiency is acceptable but not promising

enough because the loss function could arrange all same downstream-label samples

as negative and extend the distance on latent space. To address the following issue,

we systematically analyzed the upper bound of the NT- Xent loss function and our

proposed loss function. We hypothesize our proposed loss function could benefit from

multi-positive pairs and hence gain more information in larger batch size compare to

SimCLR.

Lemma 1. At least two positive pairs correspond to one representation in a mini-

batch exist if the batch size n is larger than the number of label classes m.

Proof. If the batch size n = m, the worst case is that all label L1, . . . Lm exist in

one sample. However, if n = m + 1 one subset in {L1, . . . Lm} must exists more

52

than one sample which means in at least one subset Li there exists two positive pairs

{(xaq, xak), (xaq, xbk)} correspond to a single representation.

Upper Bound

According to Lemma 1, we will analyze the upper bound of our proposed loss function

when the mini-batch size is larger than the number of label classes. Based on our loss

function equation (3.5), the total loss for all samples in batch size n could be present

as:

L = − 1

n

n∑
a

log

∑
c∈Li

exp(sim(za, zc)/τ)∑2n
b 1[b/∈Li] exp(sim(za, zb)/τ)

a ∈ Li, i ∈ m, (3.7)

where Li represents one of the label sets in m classes that always contains the index of

the same label samples as a. Based on the logarithmic rules we can rewrite Equation

(3.7) to

L =− 1

n

n∑
a

log(
∑
c∈Li

exp(sim(za, zc)/τ))

+
1

n

n∑
a

log(
2n∑
b

1[b/∈Li] exp(sim(za, zb)/τ)) a ∈ Li, i ∈ m,

(3.8)

and based on the previous studies on the NT-Xent loss [21, 89], the parts inside the

log could be convert to the LogSumExp(LSE) term:

LSE(x1, . . . , xn) = log(exp(x1), . . . , exp(xn)), (3.9)

where xa,b could be denoted as sim(za, zb)/τ . Then we can rewrite the loss function

as

L =− 1

n

n∑
a

log(
∑
c∈Li

exp(xa,c))

+
1

n

n∑
a

log(
2n∑
b

1[b/∈Li] exp(xa,b)) a ∈ Li, i ∈ m.

(3.10)

Since there exists at least one positive pair of sample, and only the negative pairs

53

(1[b/∈Li]) exist in the second term in loss function

log(
2n∑
b

1[b/∈Li] exp(xa,b)) < LSE(xa,1, . . . , xa,N). (3.11)

Based on the properties of the LogSumExp function

max{x1, . . . , xn} ≤ LSE(x1, . . . , xn) ≤ max{x1, . . . , xn}+ log(n), (3.12)

we can simplify the upper bound of our proposed loss function by

L <− 1

n

n∑
a

LSE(xa,Li1
, . . . , xa,Lil

)

+
1

n

n∑
a

LSE(xa,1, . . . , xa,N) a ∈ Li, i ∈ m,

<− 1

n

n∑
a

(max(xa,Li1
, . . . , xa,Lil

) + log(|Li|))

+
1

n

n∑
a

(max(xa,1, . . . , xa,N) + log(N)) a ∈ Li, i ∈ m,

=− 1

n

n∑
a

(max(xa,Li1
, . . . , xa,Lil

))− log(|Li|)

+
1

n

n∑
a

(max(xa,1, . . . , xa,N)) + log(N) a ∈ Li, i ∈ m,

(3.13)

where l = |Li| is the number of postive pairs related to xa. Based on Agren’s study

[89], the upper bound of the NT-Xent loss function could be represent as

LNT−Xent = − 1

n

∑
i,j∈MB

xi,j + log(N) +
1

n

n∑
i

max(xi,1, . . . , xi,N), (3.14)

where MB refers to the current mini-batch of data and xi,j represents the only positive

pair in the NT-Xent. We will compare our loss function expression with the NT-Xent

term by term. In the first term of equation(3.13), max(xa,Li1
, . . . , xa,Lil

) already

54

included the only positive pair from NT-Xent xi,j. Therefore,

max(xa,Li1
, . . . , xa,Lil

) ≥ xi,j,

− 1

n

n∑
a

(max(xa,Li1
, . . . , xa,Lil

)) ≤ − 1

n

∑
i,j∈MB

xi,j.
(3.15)

Furthermore, since the number of positive pairs in the set Li must be positive. Based

on Lemma 1, when there exists more than one positive pair, |Li| > 0 and

− log(|Li|) +
1

n

n∑
a

(max(xa,1, . . . , xa,N)) + log(N)

≤ log(N) +
1

n

n∑
i

max(xi,1, . . . , xi,N).

(3.16)

Based on the two parts of proof(3.15, 3.16), our loss function has lower upper

bound compare to the NT-Xent if and only if there exists more than one positive

sample pair(|Li|) in the current mini batch. More information is gained in contrasting

if there are more positive pairs in a mini-batch. Based on equation (3.15), if there

exists a pair xa,Li
larger than the original positive pair xi,j in the NT-Xent, the upper

bound could be further reduced.

3.3 Experiment

In this section, we focus on study the innovation of SupCLR and the contributions

on multi-positive labels loss function.

3.3.1 Experiment Setup

We access the performance of our proposed methods by CIFAR10, CIFAR100 and

ImageNet datasets, respectively. All the experiments are running on 4 RTX6000

GPUs. All our experiments were implemented using Tensorflow 2.8.0 with ResNet-

50(1X) architecture as our backbone encoder. We used 3 MLP-layers as nonlinear

projection head and 1 MLP layer as linear evaluation output layer. In both the

pretraining and finetuning step, the hyperparameters of our methods are the same

as the SimCLR baseline method. On CIFAR10 and CIFAR100, we first evaluate

the performance on pretraining linear evaluation with mini-batch sizes as 1024 and

55

1000 training epochs. Then we evaluate the finetuning result with 100% labels with

mini-batch size as 1024 and 1000 training epoch.

Table 3.1: Accuracy comparison. The SupCLR w/o positive and SupCLR w/ sigmoid
will be introduced in Ablation Study 3.4.1 and 3.4.2

Methods CIFAR10 CIFAR100
- Pretrain Finetune Pretrain Finetune

ResNet-56 (result from paper [24]) - 93.03 - -

ResNet-50 backbone - 83.81 - 52.32

SimCLR [10] 92.89 94.6 71.56 76.64

SupCLR w/o positive 93.89 94.82 72.81 77.08

SupCLR w/ sigmoid 94.61 95.08 73.36 77.64

Our proposed (SupCLR) 95.09 95.1 74.15 78.27

3.3.2 Performance Comparison

In this section, we compared the performance of our proposed model with SimCLR.

Similar to SimCLR’s method, we used a linear layer to evaluate the pretraining per-

formance in the pretraining step. The parameters in this layer would be trained by the

training data labels. However, the label information would stop the gradient on this

layer and not affect the model pretraining. Our proposed framework significantly out-

performed the original SimCLR framework with a similar training environment and

hyperparameters (Table 3.1). In the pretraining part, our proposed method performs

better because we involved similar labels as additional information in the loss func-

tion. The notable gap in the finetuning part reflects the differences in representation

learning efficiency between the two methods. To further illustrate the comprehensive

learning ability of our proposed framework, we analyzed the finetuning process on the

CIFAR10 experiment. From Fig.3.7a, our proposed method’s evaluation accuracy has

inconspicuously increased during 100 epochs, which also shows our proposed method

learnt the majority of meaningful representations without categorical labels in the

pretraining step.

56

0.924

0.926

0.928

0.93

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k 6k

step

ac
cu

ra
cy

finetuning on CIFAR10 Dataset

SupCLR

SimCLR

(a) CIFAR10 finetune comparison between SimCLR and SupCLR

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k

ac
cu

ra
cy

step

finetuning on CIFAR100 Dataset

SupCLR

SimCLR

(b) CIFAR100 finetune comparison between SimCLR and SupCLR

Figure 3.7: Batch size experiment

3.4 Ablation Study

We present ablations on SupCLR to provide a deeper understanding of its perfor-

mance.

3.4.1 Remove multi-positive loss

As we mentioned in the method part (Algorithm 3), our loss function contains a

positive and negative part. To estimate if the multi-positive labels could help our

framework to gain representation learning efficiency, we removed the multi-positive

labels and used only one pair of positive labels, similar to SimCLR (Fig. 3.5). To

57

keep all other conditions the same as our proposed method, we preserved multilabel

information in the negative part.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

step

ac
cu

ra
cy

SupCLR w/ Postive multilabel

SupCLR w/o Postive multilabel

SimCLR

(a) training accuracy comparison

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

step

ac
cu

ra
cy

SupCLR w/ Postive multilabel

SupCLR w/o Postive multilabel

SimCLR

(b) linear evaluation accuracy comparison

Figure 3.8: Comparison between operating multi-positive labels in contrastive loss
function and not using multi-positive labels in the contrastive loss function

Fig.3.8 presents the result of pretraining and linear evaluation accuracy. From

both the training and linear evaluation process, the SupCLR without positive labels

and SimCLR have similar trends during the training process. In comparison, Sup-

CLR with a multi-positive label achieves better accuracy, especially in the first 5k

steps. The result displayed that multilabel loss could boost the convergence speed.

Furthermore, it is worth noting that even if we involved multi-positive labels in the

loss function, there is no overfitting problem in the whole pretraining stage (Fig.3.8a,

Fig.3.8b).

58

3.4.2 Softmax versus Sigmoid for multilabel loss

Using softmax cross entropy in multilabel classification tasks has always been counter-

intuitive compared to the sigmoid binary cross entropy loss function. The reason is

that people encourage each output prediction to be an independent possibility, such

as the sigmoid binary cross entropy loss function. The softmax cross entropy is

precisely the opposite of what we expect. If the possibility of one label is higher, the

others would be lower. However, as Mahajan et al.’s study [49], the softmax cross

entropy loss performs much better than the sigmoid binary cross entropy loss. We

also involved multi-positive labels in our loss function (Fig. 3.6). In this experiment,

we compared the performance of these two functions in the same environment.

Similar to the last experiment, we first compared the pretraining process between

softmax, sigmoid and softmax SimCLR (Fig.3.9a). Unlike removing the positive la-

bels, the sigmoid and softmax versions keep similar trends in this comparison. The

accuracy is also remarkably close. In this situation, we performed two runs on finetun-

ing stage to see if there were any apparent differences. In Fig.3.9b, the performance

looks unstable, but the difference between the four runs is only around 0.001%. There-

fore, there is no obvious difference between softmax and sigmoid cross entropy loss

with a batch size of 1024.

3.4.3 Projection head and Shallower Backbone

Most previous self-supervised learning studies [10–12,21] used projection head as part

of the pretraining framework and withdrew it during finetuning stage. The reason is

that the non-linear MLP projection head learns to handle different augmentations,

and a similar image will be projected to a shorter distance in latent space. However,

handling augmentation tasks became a counterproductive part during finetuning.

Different from previous studies, we hypothesize the projection head could benefit

the classification task during the finetuning stage based on the multilabel loss func-

tion. Here is the reason why we made this assumption. The normal contrastive loss

function only involves two feature inputs into the loss function. As the loss decreases,

the projection head is trained to ignore the augmentations. The essential difference

between our loss function is that we involved two features and the true label (Mat)

as the input. Thus, the projection head could be trained to ignore augmentation

and learn the true label information synchronously. In addition, we want to com-

pare both methods with a shallower encoder and fewer pretraining epochs. Unlike

59

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5k 10k 15k 20k 25k 30k 35k 40k 45k 50k

step

ac
cu

ra
cy SupCLR w/ Softmax CE

SupCLR w/ Sigmoid CE

SimCLR w/ Softmax CE

(a) pretrain training accuracy comparison

0.948

0.949

0.949

0.95

0.95

0.951

0.951

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k

step

ac
cu

ra
cy

SupCLR w/ Softmax CE 1

SupCLR w/ Sigmoid CE 2

SupCLR w/ Softmax CE 2

SupCLR w/ Sigmoid CE 1

(b) finetuning evaluation accuracy comparison

Figure 3.9: Comparison between Softmax Cross-Entropy and Sigmoid Cross-Entropy
in the multilabel loss function

previous experiments, this used ResNet-18(1X) as the backbone. Both pretraining

and finetuning stages are 100 epochs with batch size of 512. This experiment trained

with one RTX 3080 Ti GPU (12 GB Memory). From Fig.3.10, the ’SupCLR w/o

projection’ and ’SimCLR w/o projection’ are the original frameworks we used in pre-

vious experiments. The linear evaluation layer is directly connected to the backbone

encoder. The ’SupCLR w/ projection’ and ’SimCLR w/ projection’ preserved the

projection head in both the pretraining linear evaluation and the finetuning stage.

Based on the result(Fig.3.10), we can verify that the projection head is redundant

in both SimCLR finetuning and pretraining evaluation stages. However, the SupCLR

has the opposite result as we hypothesized. In both stages, the projection head

60

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

step

ac
cu

ra
cy

ac
cu

ra
cy

step

SupCLR w/ projection

SupCLR w/o projection

Pretrain evaluation accuracy

Finetune evaluation accuracy

SimCLR w/ projection

SimCLR w/o projection

SupCLR w/ projection

SupCLR w/o projection

SimCLR w/ projection

SimCLR w/o projection

Figure 3.10: Pretrain and finetune performance on projection head experiment. Sup-
CLR w/o projection is the original method. In SupCLR w/ projection, the finetuning
process preserved the projection head as part of the framework.

involved leads to better performance. The difference in finetuning stage is more

significant than SimCLR. It is worth noting that there is a 10% accuracy gap between

SupCLR and SimCLR under similar conditions.

Overall, we proved that preserving the projection head could benefit our frame-

work. In other words, the property of the projection head does not exist anymore

since it is a part of the encoder. Our framework also has a more promising convergence

speed than SimCLR.

61

3.4.4 Batch size

SimCLR [10] reported that the model could benefit from a larger batch size due to

larger negative sample size in one iteration. Similarly, we proved that our method

could also profit from a larger batch size due to the increase of positive pairs. In this

experiment, we would compare both pretraining and finetuning evaluation accuracy

on both methods with different batch sizes (128, 256, 512, 1024) on CIFAR100. Due

to computational resource limitations, our largest batch size is 1024.

In this experiment, our proposed method outperformed SimCLR in all different

batch size (Fig.3.11b). Based on the finetuning result, the accuracy of SimCLR boosts

when the batch size grows. In addition, the gap between the SimCLR finetuning result

and the SupCLR finetuning result also expands as the batch size grows, which con-

firms our theoretical analysis of the multilabel loss function. An unexpected finding is

that the pretrained linear evaluation accuracy on SupCLR decreases as the batch size

increase. The specific batch size finetuning stage is trained based on the same batch

size pretrained model. For example, batch size 256 finetuning result trained based on

batch size 256 pretrained model. It denotes that the downtrend in the pretraining

stage does not affect the uptrend in finetuning stage.

3.4.5 Compare with Supervised Backbone

We used similar finetuning parameters to run the ResNet-50 supervised learning ex-

periment from scratch. To ensure relative fairness, we trained the supervised ResNet-

50 for 1100 epochs because we ran 1000 epochs for pretraining and 100 epochs for

finetuning on other models. However, the accuracy is very low and severely overfit-

ting was found on CIFAR100(Fig.3.12). We conclude that the self-supervised learning

parameter may not suitable for supervised training. Therefore we cited the CIFAR10

performance in Table 3.1. The result came from [24]. The result from original paper

still cannot keep up with contrastive learning result.

3.5 Discussion

In our experiments, we illustrate the advantage of our framework from several aspects.

With similar parameters and environments, our proposed method outperformed Sim-

CLR in both CIFAR10 and CIFAR100 datasets. The performance gap after remov-

ing multi-positive label loss reflected the significance of our multilabel contrastive

62

(a) Pretraining comparison between SimCLR and SupCLR

(b) Finetuning comparison between SimCLR and SupCLR

Figure 3.11: Batch size experiment

63

0.4

0.5

0.6

0.7

0.8

0 10k 20k 30k 40k 50k

0.4

0.5

0.6

0.7

0.8

0 10k 20k 30k 40k 50k

Training Accuracy Evaluation Accuracy

ac
cu

ra
cy

step step

CIFAR10

CIFAR100

Figure 3.12: Supervised training from scratch performance on ResNet-50

loss function. Furthermore, the batch size experiment proved our hypothesis and

theoretical analysis that our framework could gain more information as batch size

increases compared to the NT-Xent loss function. The batch size experiment did

not include the projection head in the evaluation. There is one reasonable suspect

based on the conclusion of the projection head experiment. As the batch size grows,

more label-based information could be learnt by the projection head, and the encoder

would learn more feature representation-based information. So in the linear evalu-

ation result is decreasing, but as long as the encoder is finetuned with true labels,

the evaluation performance still increases. The projection head experiment is also

an essential innovation in our method. Withdrawn the projection head in finetun-

ing stage could cause information loss because the projection head and encoder are

pretrained together based on contrastive function. This challenge existed in most re-

cent self-supervised learning studies. Benefiting from our loss function, the projection

head could be trained with label-related features, further boosting our performance.

One unexpected finding is that the softmax cross-entropy loss could lead to unstable

pretraining in the earlier stage (Fig.3.8a), especially if the batch size is larger than

1000. We did not test if the sigmoid cross-entropy loss could overcome this issue due

to computational resource limitation.

3.6 Conclusion

The chapter concludes by arguing the efficiency and differences of the multilabel con-

trastive loss function based on traditional methods. Our experiments and theoretical

analysis systematically analyzed the characteristic of our loss function. We conclude

64

that multilabel contrast loss function is feasible and worth exploring. In application

scenarios, this framework could be applied on different backbones to replace any su-

pervised learning task. More work could be conducted on stabilizing the softmax

cross-entropy on the multilabel task.

65

Chapter 4

Conclusion & Future Work

4.1 Overview . 65

4.2 Main Contributions . 65

4.3 Conclusion . 66

4.4 Future Work . 67

4.1 Overview

We introduced our proposed frameworks of this thesis in Chapter 2 and Chapter 3.

In both these chapters, we designed many experiments to prove our hypothesises and

test the robustness of the frameworks.

4.2 Main Contributions

As Menghani suggested in the efficient deep learning project [17] and efficient deep

learning survey [51], training efficiency and interface efficiency are two main aspects

that we can boost in a task. From the interface perspective, we illustrated a less

human interface spatial feature extraction method for EEG emotional classification

task in Chapter 2. We innovated a multilabel contrastive loss function from the

training efficiency perspective to reach similar performance in previous studies with

less training time.

66

There are three key contributions of this thesis:

• First Most EEG spatial features manually select channel locations or use the

1D-CNN layers for extraction. However, manually selecting channel methods

are not durable across different datasets. The result on 1D-CNN is also not

promising. We presented a DCNet structure to solve this challenge. Our frame-

work converts 1D signal data into a 2D structure that preserves spatial infor-

mation. After that, we used well-known 2D CNN layers to extract the spatial

features.

• Second DCNet has outstanding transfer learning flexibility due to the applica-

tion of the 2D-CNN part. We proved that even ImageNet pretrained 2d-CNN

structure could benefit on EEG classification task.

• Third We proposed a multilabel contrastive loss function to explore the repre-

sentation learning area. Previous self-learning structures only learn similarities

from the same samples. Although the SSL methods perform better than su-

pervised learning, we applied multi-positive contrasting to guide the framework

learning similarities between small categories but different samples. This inno-

vation further intensified the representation learning efficiency.

4.3 Conclusion

In this thesis, we proposed two deep learning frameworks for improving efficiency on

two tasks (EEG emotional classification and image classification).

Chapter 2 presents an idea to extract spatial features without additional prepro-

cessing techniques. Even though our promising performance is essential to prove the

efficiency of our spatial and frequency features combination framework, the high scal-

ability(transfer learning) and compatibility(fewer human-interaction) of our frame-

work are more significant in the future application scenario. Although we dealt with

emotional classification tasks in this study, we believe that applying the proposed

framework to other EEG signal data or multimodal data could be successful.

Chapter 3 provided a new contrastive learning structure. It presents that even

with a similar structure and the same hyperparameters, the backbone encoder still

has the potential to learn more representation features and boost performance. This

framework could be applied with other supervised frameworks as the backbone and

boost their performance.

67

4.4 Future Work

Future research can be conducted to verify the effectiveness of the DCNet on the

one-dimension dataset from more areas. As a next step, researchers could also con-

sider constructing a new 3D-DCNet framework to include both spatial and temporal

features from EEG signal data. We expect that the 3D model would significantly

reduce the time required for training and preserve as much temporal information as

possible. It would be interesting to apply our DCNet to transfer learning between

different EEG datasets or the DCNet framework to self-supervised learning.

In the SupCLR framework, more experiments on softmax cross-entropy multilabel

loss for larger batch size (4096) and larger categorical datasets is necessary. Another

interesting direction is applying multilabel loss function with no labels(self-supervised

learning). Next step, we will use DCNet to convert the 1D signal to 2D feature space

and then use SupCLR to train 1D data.

68

Appendix A

List of Abbreviations

SSL self-supervised Learning

LSE log sum exponent

MLP multilayer perceptron

t-SNE t-distributed stochastic neighbor embedding

EEG electroencephalogram

ECG electrocardiogram

GSR alvanic skin response

OXY oxygen saturation

HR heart rate

EMG electromyogram

RV respiratory volume

SKT skin temperature

SKC skin conductance

BVP blood volume pulse

FM frontal-midline

PCC Pearson correlation coefficient

PLV phase locking value

TE transfer entropy

CNN convolutional neural network

69

SVM support vector machine

DE differential entropy

PSD power spectral density

LDS linear dynamic system

DCNet deconvolution-and-convolution Network

ELM extreme learning machine

70

Appendix B

Softwares Used

B.1 Overview . 70

B.2 Package Used . 70

B.3 software and tools used . 71

B.1 Overview

This section presents the python modules and essential tools used to perform this

thesis’s research.

B.2 Package Used

Some important python modules are given below

numpy

This module is used to process and organize some primary data and matrix cal-

culations by CPU.

71

scikit-learn

This module is used as a toolbox for traditional statistics and machine learning.

We used it to calculate the confusion matrix, normalize the EEG signal and calculate

the T-SNE algorithm.

keras

This module is used to build more sample deep learning structures compared to

Tensorflow (high-level API of Tensorflow). We used this module to build DCNet.

matplotlib

This module is a plotting library in python. We used it to generate some experi-

ment results.

tensorflow

This library is a software library for machine learning (lower level than keras). It

included keras library. We used this library to implement SupCLR.

tensorflow datasets

This is a dataset collection in tensorflow. This library automatically load tensor-

flow supported datasets for the experiments. We used this library to load CIFAR10

and CIFAR100 in chapter 3.

B.3 software and tools used

Some important software or tools are listed below.

72

tensorboard

Tensorboard is a visualization tool that allows us to see Tensorflow experiment

results on the webpage. We also used this tool to output our results, such as Fig. 3.8,

Fig. 3.10, Fig. 3.11, etc.

Google colab

The google colab is a web-based interactive python platform with built-in machine

learning modules configured. We used it to implement EEG preprocess stage step-

by-step.

Github

We used Github to fork SimCLR [10] source code and implement SupCLR based

on that. We also use Github to update our local code on remote server.

Vim

Vim is a powerful text editor we used on remote server. We used it to edit remote

experiment scripts and make small changes on the code.

PyCharm

PyCharm is the IDE we used to develop and debug our code.

73

Appendix C

Values of Properties

System Properties Value

System Windows 10 & Windows 11 Pro

Processor Intel i7-11700K

Random Access

Memory (RAM)
32 GB

System Type
64-bit OS,

x64-based processor

GPU NVIDIA GeForce RTX 3080 Ti

Graphic Memory 12 GB

Table C.1: System Properties for the EEG SEED, SEED-V datasets and
SupCLR projection head experiment

74

System Properties Value

System Ubuntu 18.04.6 LTS

Processor Intel Xeon Processors

Random Access

Memory (RAM)
32 GB

System Type
64-bit OS,

x64-based processor

GPU 4 * NVIDIA GeForce RTX 6000

Graphic Memory 4 * 24 GB

Table C.2: System Properties for the DREAMER datasets and SupCLR all
other experiments

75

Bibliography

[1] Geoffrey L Ahern and Gary E Schwartz. Differential lateralization for positive

and negative emotion in the human brain: EEG spectral analysis. Neuropsy-

chologia, 23(6):745–755, 1985.

[2] Abdullah H. Al-Shabili and Ivan Selesnick. Positive sparse signal denoising:

What does a cnn learn? IEEE Signal Processing Letters, 29:912–916, 2022.

[3] Michela Balconi and Claudio Lucchiari. Consciousness and arousal effects on

emotional face processing as revealed by brain oscillations, a gamma band anal-

ysis. International Journal of Psychophysiology, 67(1):41–46, 2008.

[4] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and

Brian McWilliams. The shattered gradients problem: If resnets are the answer,

then what is the question? 2017.

[5] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. Training al-

gorithm for optimal margin classifiers. Proceedings of the Fifth Annual ACM

Workshop on Computational Learning Theory, pages 144–152, 1992.

[6] Stevo Bozinovski. Reminder of the first paper on transfer learning in neural

networks, 1976. Informatica, 44:291–302, 9 2020.

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-

jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,

Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Ad-

vances in Neural Information Processing Systems, 2020-December, 5 2020.

76

[8] Xin Chai, Qisong Wang, Yongping Zhao, Yongqiang Li, Dan Liu, Xin Liu,

and Ou Bai. A fast, efficient domain adaptation technique for cross-domain

electroencephalography(EEG)-based emotion recognition. Sensors, 17(5), 2017.

[9] Guillaume Chanel, Joep J. M. Kierkels, Mohammad Soleymani, and Thierry

Pun. Short-term emotion assessment in a recall paradigm. International Journal

of Human-Computer Studies, 67(8):607–627, Aug 2009.

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A

simple framework for contrastive learning of visual representations, 2020.

[11] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines

with momentum contrastive learning. 3 2020.

[12] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.

11 2020.

[13] Juan Cheng, Meiyao Chen, Chang Li, Yu Liu, Rencheng Song, Aiping Liu, and

Xun Chen. Emotion recognition from multi-channel EEG via deep forest. IEEE

Journal of Biomedical and Health Informatics, 25(2):453–464, 2021.

[14] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. NAACL

HLT 2019 - 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies - Proceedings of

the Conference, 1:4171–4186, 10 2018.

[15] R. Duan, J. Zhu, and B. Lu. Differential entropy feature for EEG-based emo-

tion classification. In 2013 6th International IEEE/EMBS Conference on Neural

Engineering (NER), pages 81–84, Nov 2013.

[16] Zhongke Gao, Xinmin Wang, Yuxuan Yang, Yanli Li, Kai Ma, and Guanrong

Chen. A channel-fused dense convolutional network for eeg-based emotion recog-

nition. IEEE Transactions on Cognitive and Developmental Systems, 13:945–954,

12 2021.

[17] Naresh Singh Gaurav Menghani. Efficientdl. https://github.com/

EfficientDL/book, 2021.

https://github.com/EfficientDL/book
https://github.com/EfficientDL/book

77

[18] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised represen-

tation learning by predicting image rotations. 6th International Conference on

Learning Representations, ICLR 2018 - Conference Track Proceedings, 3 2018.

[19] Shu Gong, Kaibo Xing, Andrzej Cichocki, and Junhua Li. Deep learning in eeg:

Advance of the last ten-year critical period. IEEE Transactions on Cognitive

and Developmental Systems, 14:348–365, 6 2022.

[20] Khadidja Gouizi, Fethi Bereksi Reguig, and Choubeila Maaoui. Analysis physio-

logical signals for emotion recognition. 7th International Workshop on Systems,

Signal Processing and their Applications, WoSSPA 2011, pages 147–150, 2011.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-

han Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu,

Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to

self-supervised learning. 6 2020.

[22] S. K. Hadjidimitriou and L. J. Hadjileontiadis. Toward an EEG-based recognition

of music liking using time-frequency analysis. IEEE Transactions on Biomedical

Engineering, 59(12):3498–3510, Dec 2012.

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum

contrast for unsupervised visual representation learning. 11 2019.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. CoRR, abs/1512.03385, 2015.

[25] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector

machines. IEEE Intelligent Systems and their Applications, 13(4):18–28, 1998.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735–80, 12 1997.

[27] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning ma-

chine: a new learning scheme of feedforward neural networks. 2:985–990 vol.2,

2004.

78

[28] John J.B.Allen, James A.Coan, and Maria Nazarian. Issues and assumptions

on the road from raw signals to metrics of frontal EEG asymmetry in emotion.

Biological Psychology, 67(1):183–218, 2004.

[29] R. Jenke, A. Peer, and M. Buss. Feature extraction and selection for emotion

recognition from EEG. IEEE Transactions on Affective Computing, 5(3):327–

339, July 2014.

[30] Haoning Kan, Jiale Yu, Jiajin Huang, Zihe Liu, and Haiyan Zhou. Self-supervised

group meiosis contrastive learning for eeg-based emotion recognition. 7 2022.

[31] Stamos Katsigiannis and Naeem Ramzan. Dreamer: A database for emotion

recognition through EEG and ecg signals from wireless low-cost off-the-shelf

devices. IEEE Journal of Biomedical and Health Informatics, 22(1):98–107, 2018.

[32] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

Self-normalizing neural networks. 2017.

[33] Pascal Koiran and Eduardo D Sontag. Neural networks with quadratic vc di-

mension. Journal of Computer and System Sciences, 54(1):190–198, 1997.

[34] D. D. Langleben, L. Schroeder, J. A. Maldjian, R. C. Gur, S. McDonald, J. D.

Ragland, C. P. O’brien, and A. R. Childress. Brain activity during simulated

deception: An event-related functional magnetic resonance study. NeuroImage,

15:727–732, 3 2002.

[35] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature 2015

521:7553, 521:436–444, 5 2015.

[36] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recogni-

tion with gradient-based learning. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), 1681:319–345, 1999.

[37] Seung Bo Lee, Hyun Ji Kim, Hakseung Kim, Ji Hoon Jeong, Seong Whan Lee,

and Dong Joo Kim. Comparative analysis of features extracted from eeg spa-

tial, spectral and temporal domains for binary and multiclass motor imagery

classification. Information Sciences, 502:190–200, 10 2019.

79

[38] Dongdong Li, Bing Chai, Zhe Wang, Hai Yang, and Wenli Du. EEG emo-

tion recognition based on 3-d feature representation and dilated fully convolu-

tional networks. IEEE Transactions on Cognitive and Developmental Systems,

13(4):885–897, 2021.

[39] Jinpeng Li, Hao Chen, and Ting Cai. Foit: Fast online instance transfer for

improved eeg emotion recognition. Proceedings - 2020 IEEE International Con-

ference on Bioinformatics and Biomedicine, BIBM 2020, pages 2618–2625, 12

2020.

[40] Jinpeng Li, Shuang Qiu, Changde Du, Yixin Wang, and Huiguang He. Domain

adaptation for eeg emotion recognition based on latent representation similar-

ity. IEEE Transactions on Cognitive and Developmental Systems, 12:344–353, 6

2020.

[41] T. Li, W. Liu, W. Zheng, and B. Lu. Classification of five emotions from EEG

and eye movement signals: Discrimination ability and stability over time. In

2019 9th International IEEE/EMBS Conference on Neural Engineering (NER),

pages 607–610, March 2019.

[42] Yang Li, Wenming Zheng, Zhen Cui, Tong Zhang, and Yuan Zong. A novel neu-

ral network model based on cerebral hemispheric asymmetry for EEG emotion

recognition. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,

Stockholm, Sweden, pages 1561–1567. ijcai.org, 2018.

[43] Yang Li, Wenming Zheng, Lei Wang, Yuan Zong, and Zhen Cui. From regional to

global brain: A novel hierarchical spatial-temporal neural network model for eeg

emotion recognition. IEEE Transactions on Affective Computing, 13:568–578,

2022.

[44] Y. Lin, C. Wang, T. Jung, T. Wu, S. Jeng, J. Duann, and J. Chen. EEG-

based emotion recognition in music listening. IEEE Transactions on Biomedical

Engineering, 57(7):1798–1806, July 2010.

[45] Yuan Pin Lin, Chi Hong Wang, Tien Lin Wu, Shyh Kang Jeng, and Jyh Horng

Chen. Eeg-based emotion recognition in music listening: A comparison of

schemes for multiclass support vector machine. ICASSP, IEEE International

80

Conference on Acoustics, Speech and Signal Processing - Proceedings, pages 489–

492, 2009.

[46] Wei Liu, Jie Lin Qiu, Wei Long Zheng, and Bao Liang Lu. Comparing recognition

performance and robustness of multimodal deep learning models for multimodal

emotion recognition. IEEE Transactions on Cognitive and Developmental Sys-

tems, 14:715–729, 6 2022.

[47] Wei Liu, Wei-Long Zheng, and Bao-Liang Lu. Multimodal emotion recognition

using multimodal deep learning. CoRR, abs/1602.08225, 2016.

[48] Yifei Lu, Wei-Long Zheng, Binbin Li, and Bao-Liang Lu. Combining Eye Move-

ments and EEG to Enhance Emotion Recognition. International Joint Confer-

ences on Artificial Intelligence, pages 1170–1176, 2015.

[49] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar

Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring

the limits of weakly supervised pretraining. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 11206 LNCS:185–201, 5 2018.

[50] D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, and M. Corbetta.

Electrophysiological signatures of resting state networks in the human brain.

Proceedings of the National Academy of Sciences, 104(32):13170–13175, 2007.

[51] Gaurav Menghani. Efficient deep learning: A survey on making deep learning

models smaller, faster, and better; efficient deep learning: A survey on making

deep learning models smaller, faster, and better.

[52] Seong Eun Moon, Chun Jui Chen, Cho Jui Hsieh, Jane Ling Wang, and

Jong Seok Lee. Emotional eeg classification using connectivity features and

convolutional neural networks. Neural Networks, 132:96–107, 12 2020.

[53] Klaus Robert Müller, Michael Tangermann, Guido Dornhege, Matthias Kraule-

dat, Gabriel Curio, and Benjamin Blankertz. Machine learning for real-time

single-trial eeg-analysis: from brain-computer interfacing to mental state moni-

toring. Journal of neuroscience methods, 167:82–90, 1 2008.

81

[54] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations

by solving jigsaw puzzles. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

9910 LNCS:69–84, 3 2016.

[55] Pierre H Richemond, Jean-Bastien Grill, Florent Altché, Corentin Tallec, Florian

Strub, Andrew Brock, Samuel Smith, Soham De, Razvan Pascanu, Bilal Piot,

and Michal Valko. Byol works even without batch statistics. 2020.

[56] F Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain 1. Psychological Review, 65:19–27, 1958.

[57] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature 1986 323:6088, 323:533–536,

1986.

[58] Daniela Sammler, Maren Grigutsch, Thomas Fritz, and Stefan Koelsch. Music

and emotion: Electrophysiological correlates of the processing of pleasant and

unpleasant music. Phychopysiology, 44(2):293–304, 2007.

[59] Michela Sarlo, Giulia Buodo, Silvia Poli, and Daniela Palomba. Changes in

EEG alpha power to different disgust elicitors: the specificity of mutilations.

Neuroscience Letters, 382(3):291–296, 2015.

[60] Alexandre Schaefer, Frédéric Nils, Xavier Sanchez, and Pierre Philippot. Assess-

ing the effectiveness of a large database of emotion-eliciting films: A new tool

for emotion researchers. Cognition and Emotion, 24(7):1153–1172, 2010.

[61] L. Shi, Y. Jiao, and B. Lu. Differential entropy feature for EEG-based vigi-

lance estimation. In 2013 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pages 6627–6630, July

2013.

[62] L. Shi and B. Lu. Off-line and on-line vigilance estimation based on linear dy-

namical system and manifold learning. In 2010 Annual International Conference

of the IEEE Engineering in Medicine and Biology, pages 6587–6590, Aug 2010.

[63] Lin Shu, Jinyan Xie, Mingyue Yang, Ziyi Li, Zhenqi Li, Dan Liao, Xiangmin Xu,

and Xinyi Yang. A review of emotion recognition using physiological signals.

Sensors, 18(7), 2018.

82

[64] Siddharth Siddharth, Tzyy-Ping Jung, and Terrence J. Sejnowski. Utilizing deep

learning towards multi-modal bio-sensing and vision-based affective computing.

IEEE Transactions on Affective Computing, pages 1–1, 2019.

[65] T. Song, W. Zheng, P. Song, and Z. Cui. EEG emotion recognition using dy-

namical graph convolutional neural networks. IEEE Transactions on Affective

Computing, pages 1–1, 2018.

[66] Lech Szymanski and Brendan McCane. Deep networks are effective encoders

of periodicity. IEEE Transactions on Neural Networks and Learning Systems,

25(10):1816–1827, 2014.

[67] Ilya Tolstikhin, Olivier Bousquet, Bernhard Schölkopf, Konstantin Thierbach,

Pierre Louis Bazin, Walter de Back, Filippos Gavriilidis, Evgeniya Kirilina,

Carsten Jäger, Markus Morawski, Stefan Geyer, Nikolaus Weiskopf, Nico Scherf,

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Elon Musk, Neuralink,

Martin A Hjortsø, Peter Wolenski, Sebastian Ruder, Will Grathwohl, Ricky

T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, David Duvenaud, and Carl Do-

ersch. Generative adversarial networks. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 11046 LNCS:1–9, 6 2014.

[68] Gaetano Valenza, Luca Citi, Antonio Lanatá, Enzo Pasquale Scilingo, and Ric-

cardo Barbieri. Revealing real-time emotional responses: a personalized assess-

ment based on heartbeat dynamics. Scientific Reports 2014 4:1, 4:1–13, 5 2014.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in Neural Information Processing Systems, 2017-December:5999–6009,

6 2017.

[70] Fei Wang, Shichao Wu, Weiwei Zhang, Zongfeng Xu, Yahui Zhang, Chengdong

Wu, and Sonya Coleman. Emotion recognition with convolutional neural network

and EEG-based efdms. Neuropsychologia, 146:107506, 2020.

[71] Wanhui Wen, Guangyuan Liu, Nanpu Cheng, Jie Wei, Pengchao Shangguan,

and Wenjin Huang. Emotion recognition based on multi-variant correlation of

83

physiological signals. IEEE Transactions on Affective Computing, 5:126–140,

2014.

[72] Xun Wu, Wei-Long Zheng, and Bao-Liang Lu. Investigating EEG-based

functional connectivity patterns for multimodal emotion recognition. ArXiv,

abs/2004.01973, 2020.

[73] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature

learning via non-parametric instance discrimination.

[74] Y. Yang and Q. M. J. Wu. Extreme learning machine with subnetwork hid-

den nodes for regression and classification. IEEE Transactions on Cybernetics,

46(12):2885–2898, Dec 2016.

[75] Y. Yang, Q. M. J. Wu, and Y. Wang. Autoencoder with invertible functions for

dimension reduction and image reconstruction. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 48(7):1065–1079, July 2018.

[76] Y. Yang, Q. M. J. Wu, W. Zheng, and B. Lu. EEG-based emotion recogni-

tion using hierarchical network with subnetwork nodes. IEEE Transactions on

Cognitive and Developmental Systems, 10(2):408–419, June 2018.

[77] Yimin Yang, Wandong Zhang, Jonathan Wu, Will Zhao, and Ao Chen.

Deconvolution-and-convolution networks, 2021.

[78] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization.

Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics), 9907 LNCS:649–666, 3

2016.

[79] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui

Chen, Christopher Dewan, Mona Diab, Xian Li, Victoria Lin, Todor Mihaylov,

Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Singh Koura, Anjali Srid-

har, Tianlu Wang, Luke Zettlemoyer, and Meta Ai. Opt: Open pre-trained

transformer language models. 5 2022.

[80] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui

Chen, Christopher Dewan, Mona Diab, Xian Li, Victoria Lin, Todor Mihaylov,

84

Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Singh Koura, Anjali Srid-

har, Tianlu Wang, Luke Zettlemoyer, and Meta Ai. Opt: Open pre-trained

transformer language models. 5 2022.

[81] Wandong Zhang, Q. M. Jonathan Wu, Yimin Yang, and Thangarajah Akilan.

Multimodel feature reinforcement framework using moore–penrose inverse for big

data analysis. IEEE Transactions on Neural Networks and Learning Systems,

32(11):5008–5021, 2021.

[82] Yue Zhang, Weihai Chen, Chun Liang Lin, Zhongcai Pei, Jianer Chen, and Zuob-

ing Chen. Boosting-lda algriothm with multi-domain feature fusion for motor

imagery eeg decoding. Biomedical Signal Processing and Control, 70:102983, 9

2021.

[83] Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. Object detection

with deep learning: A review. IEEE Transactions on Neural Networks and

Learning Systems, 30(11):3212–3232, 2019.

[84] W. Zheng and B. Lu. Investigating critical frequency bands and channels for

EEG-based emotion recognition with deep neural networks. IEEE Transactions

on Autonomous Mental Development, 7(3):162–175, Sep. 2015.

[85] W. Zheng, J. Zhu, and B. Lu. Identifying stable patterns over time for emotion

recognition from EEG. IEEE Transactions on Affective Computing, pages 1–1,

2018.

[86] W. Zheng, J. Zhu, Y. Peng, and B. Lu. EEG-based emotion classification using

deep belief networks. In 2014 IEEE International Conference on Multimedia and

Expo (ICME), pages 1–6, July 2014.

[87] Wei-Long Zheng and Bao-Liang Lu. Investigating critical frequency bands and

channels for EEG-based emotion recognition with deep neural networks. IEEE

Transactions on Autonomous Mental Development, 7(3):162–175, 2015.

[88] Rushuang Zhou, Zhiguo Zhang, Hong Fu, Li Zhang, Linling Li, Gan Huang,

Yining Dong, Fali Li, Xin Yang, and Zhen Liang. Pr-pl: A novel transfer learning

framework with prototypical representation based pairwise learning for eeg-based

emotion recognition. 2 2022.

85

[89] Wilhelm Ågren wagren. The nt-xent loss upper bound an upper bound for

average similarity. 2022.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Dedication
	Publications
	Acknowledgements
	Introduction
	Overview
	Background
	Machine Learning Categories
	Electroencephalogram
	Self-supervised learning on Image Classification
	Scope of the Study

	Related work
	Multi-layer Perception
	Support Vector Machine
	Convolutional Neural Network
	Extreme Learning Machine
	Deep Learning
	Generative Adversarial Networks
	Transfer Learning

	Research Objective
	Contribution
	Organization of Thesis

	Classifying EEG Emotions: A Hierarchical Representation Learning Framework with both Frequency and Spatial Domains
	Introduction and Related Work
	Method
	Preprocess and Feature Extraction
	First General Layer: Feature Extraction
	Second General Layer: Classifier with Sub-network Nodes
	Third General Layer: Late fusion
	Theoretical Analysis of DCNet Computational Complexity
	Dataset

	Experiments
	Experiment Setup
	Experiment for SEED Dataset
	Experiment for SEED-V dataset
	Experiment for DREAMER dataset

	Discussion
	Conclusion

	Bidirectional self-supervised learning representation
	Introduction
	background
	Related works
	Motivation and difficulties

	Method
	Background
	Framework
	Loss Functions
	Theoretical Analysis of the Loss Function

	Experiment
	Experiment Setup
	Performance Comparison

	Ablation Study
	Remove multi-positive loss
	Softmax versus Sigmoid for multilabel loss
	Projection head and Shallower Backbone
	Batch size
	Compare with Supervised Backbone

	Discussion
	Conclusion

	Conclusion & Future Work
	Overview
	Main Contributions
	Conclusion
	Future Work

	List of Abbreviations
	Softwares Used
	Overview
	Package Used
	software and tools used

	Values of Properties

