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Abstract 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of infecting 

the lungs and causing severe pulmonary disease in immunocompromised individuals. 

During the infectious process, P. aeruginosa provokes a potent inflammatory response 

and induces the release of reactive oxygen species (ROS).  Cells undergo oxidative stress 

when cellular antioxidants are unable to effectively scavenge and detoxify ROS resulting 

in lung damage. Resveratrol (3,5,4‟-trihydroxystilbene) is a natural polyphenolic 

compound with recognized antioxidant effects. In this study we have tested the 

hypothesis that the antioxidant activities of resveratrol can attenuate an inflammatory 

response in P. aeruginosa-infected cells. Human lung epithelial (A549) cells were pre-

treated with resveratrol for 5 hours followed by infection with P. aeruginosa in vitro.  

Intracellular ROS generation measured with CM-H2DCFDA was used as an indicator of 

P. aeruginosa-induced oxidative stress. Surface expression of Fas/CD95 and activation of 

caspases-3 and -7 were used as indicators of cellular apoptosis. To further study the 

effects of resveratrol we also measured protein expression of intercellular adhesion 

molecule (ICAM)-1 and gene expression of pattern recognition receptors and enzymes 

related to inflammation and redox signaling. Resveratrol significantly reduced ROS 

generation, ICAM-1 expression, human beta-defensin-2 expression, and markers of 

apoptosis in A549 cells infected with P. aeruginosa, and up-regulated levels of 

glutathione peroxidase, suggesting that this compound may play an important therapeutic 

role in protecting the lungs against the deleterious effects of P. aeruginosa infection. 
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Lay Summary 

The Lakehead University Department of Biology lists its mission statement as: 

“Faculty and students in the Department of Biology are bound together by a common 

interest in explaining the diversity of life, the fit between form and function, and the 

distribution and abundance of organisms.”  This research project, centered in the realm of 

the human sciences, aims to understand the mechanisms behind Pseudomonas 

aeruginosa infection of immunocompromised lungs using an in vitro model, and suggests 

that resveratrol, an antioxidant component of several fruits, nuts, and red wines, is a 

natural therapeutic agent capable of protecting the lungs against damage during infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 iv 

Acknowledgements 

As a first year Biology student walking onto campus for the first time I could not 

have imagined how important becoming involved with research would be to both my 

personal and professional development. My experiences in the Lakehead Biology 

Department, and most recently at the Northern Ontario School of Medicine (NOSM), 

have taught me many life lessons and awarded me many friends among my colleagues. 

First and foremost I would like to thank my supervisor, Dr. Marina Ulanova, for 

her profound support and guidance throughout this entire process.  She has been both a 

mentor and a friend, and has not only imparted onto me the virtues of working hard, but 

has inspired an unquenchable thirst for knowledge, and most importantly, instilled the 

significance of professional integrity.  I could not have asked for a more thoughtful and 

encouraging supervisor, and I look forward to our continued collaboration throughout the 

next phase of my academic journey. 

 A true acknowledgment of the major influences that have helped me during this 

time would not be complete without the heartfelt recognition of thesis committee member 

Dr. Neelam Khaper. Her time and patience in instructing me has been greatly 

appreciated, and was paramount in building a solid foundation from which I could build 

my project on. 

I would also like to thank Dr. Heidi Schraft who, in addition to being my third 

committee member, took me under her wing during my first foray into research as an 

undergraduate student. My experiences with Dr. Schraft opened many doors and were 

important in preparing me for my future research endeavors. For this I am eternally 

grateful. 



 

 v 

 We have a good team of people here in the NOSM lab, and I wish to thank both 

the current and previous lab members that I have had the privilege of working with for 

their lively encouragement and patient troubleshooting sessions. These are the friendships 

that have helped to make these past two years a rewarding and enriching experience. A 

special thanks also goes out to the newest faculty member to join the NOSM team, Dr. 

Simon Lees, for his support and instruction in the lab. Finally, I would like to thank my 

family for their support, patience, and love.  I also gratefully acknowledge the Natural 

Sciences and Engineering Research Council of Canada (NSERC), NOSM, and the 

Lakehead University Faculty of Graduate Studies and Department of Biology for 

funding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vi 

Abbreviations 

 

·OH    Hydroxyl radical 

AP-1    Activator protein-1 

ATP   Adenosine triphosphate 

BALF    Bronchoalveolar lavage fluid 

BSA   Bovine serum albumin 

CD   Cluster of differentiation 

cDNA   Complementary deoxyribonucleic acid 

CF   Cystic Fibrosis 

CM-H2DCFDA 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, 
acetyl ester 

COPD    Chronic obstructive pulmonary disease 

ddH2O   Double-distilled water 

EPO   Eosinophil peroxidase 

FBS   Fetal bovine serum 

FLICA   Fluorochrome inhibitors of caspases 

GPx   Glutathione peroxidase 

GSH   Reduced glutathione 

GSR   Glutathione reductase 

GSSG   Glutathione disulphide (oxidized  glutathione) 

H2O2   Hydrogen peroxide 

HSLs   Homoserine lactones 

IL   Interleukin 

LPS   Lipopolysaccharide 



 

 vii 

MPO   Myeloperoxidase 

mRNA   Messenger ribonucleic acid 

NADPH  Nicotinamide adenine dinucleotide phosphate 

NF-κB   Nuclear factor-kappaB 

NLR   Nucleotide binding and oligomerization domain-like receptor 

O2·-    Superoxide anion 

PAK   Pseudomonas aeruginosa strain K 

PBS   Phosphate buffered saline 

qPCR  Quantitative real-time polymerase chain reaction 

QS  Quorum sensing  

RNS   Reactive nitrogen species 

ROS   Reactive oxygen species 

SEM   Standard error of the mean 

SOD   Superoxide dismutase 

TNF   Tumour necrosis factor 

TNF-α   Tumour necrosis factor-alpha 

TNFR   Tumour necrosis factor receptor 

γ-GCS    Gamma-glutamylcysteine synthetase 

γ-GT   Gamma-glutamyl transpeptidase 

 

 

 

 



 

 viii 

Table of Contents 

 

LIST OF TABLES ..................................................................................................................... X 

LIST OF FIGURES .................................................................................................................... X 

1 –INTRODUCTION .................................................................................................................1 

1.1 –PSEUDOMONAS AERUGINOSA & DISEASE ...................................................................................... 1 

1.2 – THE ROLE OF BACTERIAL VIRULENCE FACTORS .............................................................................. 1 

1.3 – THE LUNG, RESPIRATORY DISEASE & INFLAMMATION .................................................................... 5 

1.3.1 – The Innate Immune & Inflammatory Response ........................................................... 6 

1.3.2 – The Role of Nod-like Receptors .................................................................................... 7 

1.3.3 – Oxidant generation in the Airspace.............................................................................. 8 

1.4 – CELLULAR REDOX BALANCE ....................................................................................................... 9 

1.4.1 – Reactive Oxygen Species .............................................................................................. 9 

1.4.2 – Oxidative Stress .......................................................................................................... 10 

1.4.3 – Apoptosis .................................................................................................................... 10 

1.4.4 – Antioxidants ............................................................................................................... 11 

1.4.5 – Glutathione ................................................................................................................ 12 

1.5 – RESVERATROL ........................................................................................................................ 14 

1.5.1 – Structure & Synthesis ................................................................................................. 14 

1.5.2 – Pharmacokinetics & Bioavailability ............................................................................ 16 

1.5.3 – Antioxidant Properties ............................................................................................... 17 

1.5.4 – Anti-inflammatory Properties .................................................................................... 18 

2 – OBJECTIVES .................................................................................................................... 19 

3 – MATERIALS AND METHODS ............................................................................................ 21 

3.1 – CELL LINES AND BACTERIAL STRAINS ......................................................................................... 21 

3.2 – PREPARATION OF P. AERUGINOSA FOR EXPERIMENTS ................................................................... 21 

3.3 – PRE-TREATMENT WITH RESVERATROL ........................................................................................ 22 

3.4 – TRYPAN BLUE EXCLUSION ASSAY OF CELL VIABILITY ..................................................................... 22 

3.5 – REACTIVE OXYGEN SPECIES INDICATOR ASSAY ............................................................................. 23 

3.6 – MEASUREMENT OF ICAM-1 EXPRESSION .................................................................................. 24 



 

 ix 

3.7 – ACTIVE CASPASES-3/7-BASED APOPTOSIS DETECTION ASSAY ....................................................... 25 

3.8 – MEASUREMENT OF FAS RECEPTOR EXPRESSION .......................................................................... 25 

3.9 – TOTAL RNA ISOLATION ........................................................................................................... 26 

3.10 – RNA QUANTIFICATION AND PURITY ANALYSIS .......................................................................... 27 

3.11 – CDNA SYNTHESIS................................................................................................................. 27 

3.12 – QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION ......................................................... 27 

3.13 – STATISTICAL ANALYSIS .......................................................................................................... 29 

4 – RESULTS ......................................................................................................................... 30 

4.1 – RESVERATROL HAS NO EFFECT ON A549 CELL VIABILITY, BUT IS SENSITIVE TO SERUM ......................... 30 

4.2 – RESVERATROL DOWN-REGULATES P. AERUGINOSA-INDUCED OXIDATIVE STRESS ................................ 30 

4.3 – RESVERATROL DOWN-REGULATES P. AERUGINOSA-INDUCED APOPTOSIS IN A549 CELLS .................... 31 

4.4 – RESVERATROL REGULATES ICAM-1 SURFACE EXPRESSION ON A549 CELLS INFECTED WITH P. 

AERUGINOSA .................................................................................................................................. 32 

4.5 – RESVERATROL UP-REGULATES MRNA EXPRESSION OF GLUTATHIONE PEROXIDASE ............................. 32 

4.6 – RESVERATROL DOWN-REGULATES MRNA EXPRESSION OF ANTIMICROBIAL PEPTIDES ......................... 33 

4.7 – RESVERATROL UP-REGULATES MRNA EXPRESSION OF INTRACELLULAR PATHOGEN RECOGNITION 

RECEPTORS .................................................................................................................................... 33 

5 – DISCUSSION ................................................................................................................... 46 

6 – CONCLUSION .................................................................................................................. 52 

8 – REFERENCES ................................................................................................................... 53 

 

 

 

 

 

 

 



 

 x 

List of Tables 
Table 1. Quantitative real-time PCR primers ................................................................................. 29 

 

 

List of Figures 
Figure 1. The Intrinsic and Extrinsic Pathways of Apoptosis ........................................................ 13 

Figure 2. Structure of resveratrol in both of its isometric forms. ................................................... 15 

Figure 3. Effect of resveratrol on A549 cell viability. ................................................................... 34 

Figure 4. Effect of resveratrol on A549 cell viability .................................................................... 35 

Figure 5. Effect of serum on the antioxidant capacity of resveratrol ............................................. 36 

Figure 6. Effect of resveratrol on intracellular ROS levels in A549 cells infected with P. 
aeruginosa ............................................................................................................................. 37 

Figure 7. Effect of resveratrol pre-treatment on intracellular levels of bacteria-induced ROS ..... 38 

Figure 8. Effect of resveratrol on FasR/CD95 expression ............................................................. 39 

Figure 9. Effect of resveratrol on P. aeruginosa-induced apoptosis .............................................. 40 

Figure 10. Effect of resveratrol on ICAM-1 expression ................................................................ 41 

Figure 11. Effect of resveratrol on GPx mRNA expression in A549 cells infected with P. 
aeruginosa ............................................................................................................................. 42 

Figure 12. Effect of resveratrol on HBD-2 mRNA expression in A549 cells infected with P. 
aeruginosa ............................................................................................................................. 43 

Figure 13. Effect of resveratrol on Nod1 mRNA expression in A549 cells infected with P. 
aeruginosa ............................................................................................................................. 44 

Figure 14. Effect of resveratrol on Nod2 mRNA expression in A549 cells infected with P. 
aeruginosa ............................................................................................................................. 45 

 



 

 1 

1 –Introduction 

1.1 –Pseudomonas aeruginosa & Disease  
Pseudomonas aeruginosa is a Gram negative, aerobic, rod-shaped bacterium 

responsible for a variety of acute and chronic infections. Infection by P. aeruginosa is 

predominantly seen in immunocompromised individuals, including patients with Cystic 

Fibrosis, HIV/AIDS, burn wound victims, transplant recipients, and patients undergoing 

chemotherapy (Kipnis et al. 2006; Sadikot et al. 2005). Its presence in nature is 

ubiquitous, and P. aeruginosa is capable of inhabiting almost any aqueous environment 

including soil, surface water, sewage, plants, and various foods including fruit and 

vegetables (Bonten et al. 1999). Found also within the sinks and humidifiers of health 

care settings, P. aeruginosa can be easily transferred to patients by hospital staff (Nseir et 

al. 2002) and as a result has become a common cause of nosocomial, or hospital-

acquired, pneumonia, second only to Staphylococcus aureus (Santucci et al. 2003).  

Indeed, P. aeruginosa infection accounts for 10% of all hospital-acquired infections 

(Diekema et al. 1999) and approximately 25% of all ventilator-associated pneumonia 

(VAP), leading to a 69% mortality rate primarily due to septic shock following lung 

infection (Chastre et al. 2002; Crouch Brewer et al. 1996).  Lung injury due to P. 

aeruginosa infection results from the direct destructive effects of the organism on the 

lung tissue and the potent host immune response (Sadikot et al. 2005). 

1.2 – The Role of Bacterial Virulence Factors 
To aid in its pathogenicity, P. aeruginosa is equipped with multiple virulence 

factors that allow it to adhere, invade, infect, and destroy human cells.  P. aeruginosa can 

also form anaerobic bacterial communities called biofilms, which restrict the entry of 
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antimicrobial compounds and provide a platform for the bacteria to produce virulence 

factors (Lau et al. 2004). This resourcefulness coupled with an easily mutable nature 

make P. aeruginosa an important pathogen capable of developing resistance against 

therapeutic agents targeting it. Indeed, P. aeruginosa is particularly difficult to eradicate 

(Kipnis et al. 2006; Lau et al. 2004). 

P. aeruginosa utilize surface appendages, which play an important role in 

adhesion to cellular surfaces. A single monotrichous flagella serves to propel bacteria via 

corkscrew motions (Kipnis et al. 2006). These thick, hair-like protein structures also 

mediate adhesion by binding to glycoprotein asialo-GM1 (Kipnis et al. 2006). Flagella 

also interact with toll-like receptors (TLRs) 5 and 2 to stimulate pro-inflammatory 

cytokine production critical in initiating the inflammatory response. In the lung 

environment, P. aeruginosa adapts to its surroundings and loses some virulence factors 

(i.e. flagella), resulting in aflagellar mutants that are more adept at avoiding host innate 

immune response during chronic infection (Kipnis et al. 2006; Sadikot et al. 2005). Pili 

are smaller finger-like surface appendages that facilitate movement using a “twitching” 

movement to sweep over cellular surfaces. Pili also use the same asialo-GM1-dependant 

mechanism to adhere to cells, and both flagella and pili are under study as potential 

targets for specific therapy (Kipnis et al. 2006). 

 Within the outer membrane of P. aeruginosa lies lipopolysaccharide (LPS). 

Found in all Gram-negative bacteria, LPS is composed of a hydrophobic domain, Lipid 

A, located in the phospholipid bilayer and a complex consisting of a core polysaccharide 

and an O-specific polysaccharide (O-antigen), which together form the hydrophilic tail. 

LPS maintains structural integrity within the bacterial cell wall and protects against the 
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effects of chemical attack (Kipnis et al. 2006). In particular, the O-antigen can be used to 

both distinguish between P. aeruginosa serotypes and to make vaccines. These vaccines, 

however, are of limited value because of the rate of genomic recombination and the high 

adaptability of the pathogen (Holloway 1955; Kipnis et al. 2006). It has also been 

observed that Lipid A composition changes in the process of airway colonization in CF 

patients. LPS is crucial to bacterial survival, and its removal leads to death of the 

pathogen (Ernst et al. 2003; Kipnis et al. 2006). 

 P. aeruginosa also utilizes a Type III secretion system (TTSS) to inject colonized 

cells with a variety of exotoxins. A syringe-like structure on the bacterial surface serves 

to inject effector proteins through the host cell membrane into the cytoplasm. Exotoxins 

of P. aeruginosa include ExoY, ExoS, ExoT, and ExoU, and while differing in their 

specific effects all are implicated in inflammation and cell death (Kipnis et al. 2006). 

ExoY compromises host membrane integrity by increasing cytoplasmic cAMP and host 

membrane permeability. ExoU possesses phospholipase A2 activity to destroy the host 

membrane and cause rapid necrotic death (Engel et al. 2009). ExoS and ExoT disrupt the 

structure of cytoplasm using N-terminal GTPase activating protein (GAP) domains that 

inhibit actin polymerization. ExoS also prevents normal cytoskeletal protein function by 

inhibiting interaction of Erzin-Radixin-Moesin, and ExoT prevents wound healing by 

inhibiting the Rac/integrin healing pathway (Kipnis et al. 2006).  

 Persistent inflammation is common in chronic P. aeruginosa infection of CF 

patients, and is partially caused by the Type II Secretion System (T2SS), which releases 

toxins and extracellular enzymes into the extracellular milieu. Including elastase and 
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pyocyanin, these secretins are commonly implicated in pathogen invasion and tissue 

damage (Durand et al. 2003; Kipnis et al. 2006).  

 Pyocyanin is a blue/green-pigmented secondary metabolite secreted via T2SS, 

which plays a distinct role in the pathogenicity of P. aeruginosa. Effects of pyocyanin 

include the recruitment of neutrophils to the airway epithelia, prevention of apoptotic cell 

engulfment by macrophages, depression of host immune responses, and it also acts to 

increase production of interleukin (IL)-8 by host cells (Bianchi et al. 2008; Lau et al. 

2004). Pyocyanin is also an oxireducer and inflicts oxidative-stress-related damage on 

host epithelial cells by oxidizing host antioxidants like glutathione (Kipnis et al. 2006). 

 Large volumes of pyocyanin are commonly seen in sputum samples from infected 

CF patients, however the impact of pyocyanin alone is difficult to determine as numerous 

virulence factors play different roles in P. aeruginosa pathogenicity (Kipnis et al. 2006). 

In vitro studies using purified pyocyanin demonstrated an extensive amount of cellular 

damage resulting from an inhibition of normal ciliary function, epidermal cell growth, 

and cell respiration.  While antioxidant therapy has been shown to improve lung function 

in CF patients, inhibiting pyocyanin production is also a potential therapeutic strategy 

(Kipnis et al. 2006).  In addition, increased levels of IL-8 are also seen when human 

airway epithelial cells undergo oxidative stress (Lau et al. 2004). This increase in IL-8 

recruits pro-inflammatory cells through a chemical gradient, perpetuating inflammation 

(Lau et al. 2004; Vlahopoulos et al. 1999).  

 Quorum sensing (QS) is a sophisticated form of communication between bacterial 

cells and is found in both acute and chronic P. aeruginosa infections. QS recognizes low-

weight signaling molecules called homoserine lactones (HSLs) (Winstanley et al. 2009). 
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HSLs are secreted by P. aeruginosa and accumulate in the external environment as the 

pathogen persists and multiplies. Depending on the extracellular concentrations, P. 

aeruginosa can effectively coordinate the expression of other virulence factors like 

pyocyanin. Biofilm production is also cued via QS (Winstanley et al. 2009).  

1.3 – The Lung, Respiratory Disease & Inflammation 
Composed of over 40 different cell types, the human lung is an organ responsible 

for respiration and is an active player in innate immunity and front-line defense against 

pathogens (Hippenstiel et al. 2006; Shek et al. 1994).The terminal ends of the respiratory 

tree are composed to alveolar epithelial cells, which are divided further into type I and 

type II cells(Evans et al. 2010; Hippenstiel et al. 2006).Type I cells are responsible for 

gas exchange in the lung between the air space and the capillaries, and while making up 

only 33% of the total number of alveolar epithelial cells, cover 93% of the alveolar 

surface area. Alveolar type II cells, on the other hand, are the precursors for type I cells 

and account for 67% of the total number of epithelial cells present in the lung, but cover 

only 7% of the alveolar surface area (Dinis-Oliveira et al. 2008; Evans et al. 2010). These 

cells facilitate water and ion transport, and the surfactant proteins secreted by type II cells 

act as a chemical barrier against foreign environmental particulates and help prevent lung 

collapse (Dinis-Oliveira et al. 2008; Shek et al. 1994). 

The respiratory epithelium represents an important mucosal barrier and provides 

mucociliary clearance via tiny cilia that brush bacteria and debris upwards via wave-like 

motions where material can be diverted to the gastrointestinal tract and digested (Evans et 

al. 2010; Knowles et al. 2002).  During lung infection, however, inflammatory responses 

can lead to severe impairment and dysfunction of the barrier properties within the 
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endothelium and epithelium, leading to a disseminated, or systemic, response (Chow et 

al. 2003). 

1.3.1 – The Innate Immune & Inflammatory Response 

An effective host response against P. aeruginosa infection requires a variety of 

cell types and mediators in order to recognize, respond, and clear the bacteria from the 

airways (Sadikot et al. 2005). Almost immediately upon infectious insult, activation of 

the pulmonary endothelium and epithelium leads to the secretion of low-molecular 

weight signaling molecules, called cytokines (i.e. TNF-α, IL-1β, IL-6), which facilitate 

the activation of alveolar and interstitial macrophages; while a special class of cytokines 

with chemoattractant properties, called chemokines (i.e. IL-8), direct the transmigration 

of the activated macrophages into the alveolar space and sequester large amounts of 

neutrophils within the pulmonary microvasculature (Chow et al. 2003; Sadikot et al. 

2005). Once recruited, these cells release a battery of cytotoxic and pro-inflammatory 

agents including proteolytic enzymes, reactive oxygen species, cationic proteins, lipid 

mediators, and more inflammatory cytokines (Chow et al. 2003). 

The up-regulation of adhesion molecules is a step imperative to the inflammatory 

response, and allows activated macrophages and neutrophils to adhere tightly to the 

endothelial wall and move throughout the pulmonary epithelium (Chow et al. 2003; 

Sadikot et al. 2005). Currently, there are three recognized classes of adhesion molecules: 

integrins (α- and β- integrins), selectins (L-, P- and E-selectin), and the immunoglobulin 

superfamily of cell surface proteins (ICAM-1, VCAM-1) (Cavallaro et al. 2003). More 

specifically, intercellular adhesion molecule-1 (ICAM-1; CD54) is a transmembrane 

glycoprotein expressed constitutively on epithelial, endothelial and immune cells (Hogg 

et al. 1991); however, its expression increases during inflammation in response to 
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cytokines such as TNF-α, INF-γ, and IL-1(Dustin et al. 1988; Look et al. 1992). ICAM-1 

is a ligand for the integrin LFA-1 (CD11a,b/CD18), that both facilitates leukocyte 

transmigration into tissues during inflammation and intercellular interactions (Krunkosky 

et al. 2000). 

Responses to P. aeruginosa also involve innate chemical epithelial defense via the 

induction of low molecular weight antimicrobial peptides (Schroder et al. 1999), which 

demonstrate antimicrobial activity with a preference towards Gram-negative bacteria and 

yeasts (Schroder et al. 1999). These peptides are expressed almost immediately following 

contact with human epithelial cells, and function independently from leukocyte-mediated 

immune defense mechanisms (Schroder et al. 1999). In particular, human beta-defensin-2 

(HBD-2) is a 5 kDa, highly cationic antimicrobial peptide produced on the surface of 

airway epithelial cells and within phagolysosomes in phagocytes, and functions to kill 

bacteria and fungi (Schroder et al. 1999). 

1.3.2 – The Role of Nod-like Receptors 

 In addition to TLRs, the innate immune system also includes a class of pathogen 

recognition receptors called nucleotide binding and oligomerization domain-like 

receptors (NLRs) (Geddes et al. 2009).   The human NLR family contains 23 known 

members to date, and is a large family of intracellular receptors that regulate both 

inflammation and apoptosis (Travassos et al. 2005).  However, studies have only recently 

highlighted the importance of Nod1 and Nod2 in innate immune response and as a result 

they have become the best characterized members in the NLR family (Inohara et al. 

2005). Where Nod1 recognizes diaminopimelic acid found in the peptidoglycan of many 

Gram-negative bacteria, Nod2 is more of a general sensor of bacteria and detects 

muramyl dipeptide present in the peptidoglycan of both Gram-positive and -negative 
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bacteria (Girardin et al. 2003).  As well, recognition of P. aeruginosa during infection has 

been traditionally associated with TLRs, however, following internalization P. 

aeruginosa still elicits an inflammatory response supporting the idea that the cell would 

be equipped with an internal sensor (Plotkowski et al. 1999). This is believed to be due to 

activation of Nod1, which has been shown to play a critical role in the TLR-independent 

activation of NF-κB during infection with Gram-negative bacteria like P. aeruginosa 

(Travassos et al. 2005), however, the role of Nod2 during infection remains unknown.   

1.3.3 – Oxidant generation in the Airspace 

Large evidence supports the role of oxidants and oxidative injury in the 

pathogenesis of lung infections (Chow et al. 2003). Following migration into the lungs, 

macrophages and neutrophils generate reactive oxygen species (ROS) in response to 

inflammatory mediators (Chow et al. 2003; Rahman et al. 2006). In particular, leukocyte 

activation generates the O2
·- radical via the (NADPH) oxidase system; O2

·- is quickly 

converted into O2 and H2O2 by superoxide dismutase (SOD) enzymes (Chow et al. 2003; 

Rahman et al. 2006). Phagocytic cells may also make use of other enzymes to produce 

ROS including myeloperoxidases (MPO) and eosinophil peroxidase (EPO) (Rahman et 

al. 2006). Eosinophils contribute to the oxidant burden significantly because these cells 

possess a greater capacity for O2
·- and H2O2 production compared to neutrophils, and the 

amount of EPO in eosinophils is 3 to 10 times higher than the amount of MPO present in 

neutrophils. Another potent oxidant of considerable importance, ·OH, is formed non-

enzymatically in the presence of free iron (Fe2+) via the Fenton reaction and immediately 

reacts with surrounding target molecules (Rahman et al. 2006). A diverse array of stimuli 

including LPS, cytokines, chemokines, complement fragments and lipid mediators are 

elevated during airway stress and stimulate neutrophil-produced ROS. 
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During the infectious process, P. aeruginosa induces ROS production within 

epithelial cells in a few ways. Following its secretion into the microenvironment, 

pyocyanin permeates the epithelial cell membrane and directly oxidizes intracellular 

pools of NADPH and glutathione, producing superoxide and downstream ROS (Rada et 

al. 2011). Recognition of P. aeruginosa LPS by the epithelial cells leads to ROS 

production through protein kinase C (PKC)-NADPH oxidase signaling pathway in human 

epithelial cells (Yan et al. 2008). Other potential sources of ROS are derived from the 

activated epithelium itself via induction of the mitochondrial electron transport chain, 

cytochrome P450, and xanthine oxidase. In case of mechanical ventilation, the 

introduction of excess oxygen can also fuel the production of ROS (Chow et al. 2003). In 

acute lung injury, however, stimulated phagocytes produce the majority of ROS (Ward 

2010). Overwhelming oxidant injury may lead to alveolar collapse and extensive fibrotic 

scarring, impairing gas exchange between the affected airways and the capillary system 

(Ward 2010). 

 

1.4 – Cellular Redox Balance 

1.4.1 – Reactive Oxygen Species 

Reactive oxygen and nitrogen species (ROS, RNS) refer to a large group of free 

radicals derived from superoxide (O2·-) or nitric oxide (NO), respectively, and include 

O2·- and NO, as well as hydrogen peroxide (H2O2), the hydroxyl radical (·OH), 

hypochlorous acid (HOCl), peroxynitrite (ONOO), and ozone (O3) (Park et al. 2009). 

Within the airway epithelium, ROS are formed endogenously through the reduction of 

molecular oxygen to water following mitochondrial electron transport as part of cellular 
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respiration (Ciencewicki et al. 2008; Gram 1997; Mak 2008; Rahman et al. 2006). As 

well, cellular enzymes including cyclooxygenases, lipoxygenases, peroxidases, 

cytochrome P450 oxidase and xanthine oxidase can be released by activated 

inflammatory cells (Ciencewicki et al. 2008; Gram 1997; Mak 2008; Rahman et al. 

2006). At moderate levels ROS, however, are essential for maintaining cellular 

homeostasis and play an important role in regulating many signal transduction pathways, 

often acting as second messengers (Bilska et al. 2005; Droge et al. 1994; Winrow et al. 

1993). 

 

1.4.2 – Oxidative Stress 

Oxidative stress refers to an imbalance in the redox status of the cell favouring an 

oxidizing environment.  Extensive ROS production leads to the depletion of antioxidants 

and results in cellular damage.  In particular, ROS can damage DNA strands by reacting 

with base pairs and the deoxyribose phosphate backbone of DNA, a main target of radical 

damage (Gram 1997). Without the protection of antioxidants, ROS can also initiate lipid 

peroxidation of polyunsaturated fatty acid components of cell membrane phospholipids, 

affecting cellular integrity (Rahman et al. 2006). Amino acids can also be damaged by 

ROS, leading to protein denaturation and enzyme deactivation (Gram 1997; Rahman et 

al. 2006). When left unmanaged, oxidative stress can eventually lead to cell death. 

 

1.4.3 – Apoptosis 

Apoptosis refers to programmed cell death essential for the natural process of 

clearing unwanted or excess cells and can occur via one of two pathways, i.e. the Type I 

(extrinsic) and Type II (intrinsic) pathways (Kuribayashi et al. 2006) (Figure 1). The 
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intrinsic pathway becomes activated following the loss of mitochondrial membrane 

potential causing the release of pro-apoptotic factors, like cytochrome c, from the inner 

membrane space into the cytoplasm. Upon the release of cytochrome c, intracellular 

cysteine proteases called caspases are activated which lead to the activation of 

downstream effector caspases-3 and -7 (Kuribayashi et al. 2006).  

Similarly, activation of the death receptor Fas (FasR, CD95) also leads to 

apoptosis.  Following activation, Fas/CD95 aggregates with the FADD adaptor protein, 

where procaspase-8 is recruited and cleaved in a signaling cascade ultimately leading to 

the activation of caspases-3 and -7 (Barnhart et al. 2003).  

 

1.4.4 – Antioxidants 

In order to cope with oxidant attack, intricately equipped antioxidant systems 

provide a mechanism to detoxify and maintain lung redox balance in vivo. Currently, 

there are two recognized classes of antioxidants: enzymatic and non-enzymatic. 

Enzymatic antioxidants degrade ROS to less toxic molecules, and include catalase, 

superoxide dismutase, glutathione peroxidase, glutathione reductase, and the thioredoxins  

(Mak 2008; Rahman et al. 2006). Non-enzymatic antioxidants can interact directly with 

ROS to regulate their levels, and are regulated by feedback mechanisms such that 

balanced levels of both antioxidants and ROS are maintained in the cell (Mak 2008; 

Rahman et al. 2006). Examples include ascorbic acid, α-tocopherol, β-carotene, 

melatonin, and low molecular-weight thiol-containing compounds (i.e. the reduced form 

of glutathione) (Mak 2008; Rahman et al. 2006). 
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Figure 1. The Intrinsic and Extrinsic Pathways of Apoptosis.  The extrinsic apoptosis 

pathway is triggered by the activation of death receptors which initiate caspase-8 

activation. Caspase-8, in turn, activates caspases-3 and -7leading to apoptosis. In the 

intrinsic apoptosis pathway, apoptotic stimuli trigger the release of cytochrome c from 

the mitochondria independent of caspase-8, leading to the formation of the apoptosome 

complex and activate caspases-3 and -7. 

 

1.4.5 – Glutathione 

Glutathione (GSH), a ubiquitous thiol-containing tripeptide (ʟ-γ-glutamyl-ʟ-

cysteinyl-glycine), is the most important antioxidant in terms of ROS detoxification and 

plays a vital role in protecting the airspaces and epithelial cells against oxidants in the 

extracellular milieu (Droge et al. 1994; Rahman et al. 2000). Compared to plasma levels 
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that typically range from 1-10 mM, GSH is present in greater concentration in the 

epithelial lining fluid and is also involved in maintaining lung epithelial cell membrane 

integrity against the deleterious effects of ROS (Haddad 2004; Rahman 2005; Rahman et 

al. 2000). Depletion of GSH in epithelial cells is associated with loss of barrier function 

and increased permeability (Li et al. 1994; Li et al. 1996). 

The synthesis of GSH requires the enzymes γ-glutamylcysteine synthetase (γ-

GCS) and GSH synthetase as well as the amino acids glycine, cysteine, and glutamic 

acid.  The GSH tripeptide is formed by the consecutive actions of γ-GCS and GSH 

synthetase (Rahman et al. 2000). Acting either intra- or extracellularly, GSH scavenges 

lipid peroxidases, H2O2, and other radicals in a reaction catalyzed by glutathione 

peroxidase (GPx).  Ultimately, this reaction generates an oxidized form of GSH called 

glutathione disulphide (GSSG).  Once formed, GSSG can then be reduced back into GSH 

by the enzyme GSH reductase (GSR) as part of the GSH redox couple. Alternatively, 

resynthesis of GSH may also take place on the outer cell surface via γ-glutamyl 

transpeptidase (γ-GT), an enzyme found in the plasma membrane and, in particular, on 

lung epithelial cells. γ-GT cleaves extracellular GSH into a γ-glutamyl moiety along with 

its constituent amino acids and is transferred to an appropriate amino acid receptor where 

they are transported into the cell and salvaged into reformed GSH.  It has also been 

suggested that plasma GSH may undergo direct uptake into type II epithelial cells but the 

mechanism remains controversial (Deneke et al. 1989; Rahman et al. 1996). 
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1.5 – Resveratrol 
Resveratrol (trans-3,4‟,5-trihydroxystilbene) is a non-flavanoid, polyphenolic 

compound found in a variety of plant species present in the human diet, and specifically 

can be found in relatively at high concentrations in grapes (Vitis spp.), berries (Vaccinium 

spp.), and peanuts (Arachis spp.) (Wood et al. 2010).  Known to be an active constituent 

in at least 72 plant species, resveratrol is also a phytoalexin, synthesized in response to  

fungal, viral, and bacterial attacks, and/or exposure to ultraviolet (UV) radiation 

(Ignatowicz et al. 2001; Pervaiz 2003; G. J. Soleas et al. 2001; Wood et al. 2010). 

Recently, resveratrol has been of intense focus in a number of studies, demonstrating an 

array of beneficial effects in diseases of nervous, gastrointestinal, and respiratory 

systems, and it has also been shown to have cardio-protective and anti-cancer properties 

(Fremont 2000; Pervaiz 2003). 

1.5.1 – Structure & Synthesis 

 Resveratrol is made up of two phenol rings linked by a styrene double bond, with 

cis- and trans-isomersization facilitated by UV exposure (Figure 2) (Wood et al. 2010). 

Of these two isomers, trans-resveratrol displays greater steric stability when protected 

from high pH and light, and for this reason much less is known about the 

pharmacological effects of the cis-resveratrol isomer (Leiro et al. 2004).  
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as the “French paradox”, which suggests that moderate amounts of red wine (consuming 

150-300 mL/day) is the root of this paradox (Renaud et al. 1992). The possible 

mechanisms for resveratrol cardioprotective activity involve its effect on lipid 

metabolism and platelet function, and the inflammatory mediators, alteration of 

eicosanoid synthesis, or inhibition of activated immune cells, such as neutrophils and 

monocytes/macrophages (Hao et al. 2004; Ignatowicz et al. 2001). 

1.5.2 – Pharmacokinetics & Bioavailability 

To date, much of the information surrounding the pharmacokinetics and 

bioavailability of resveratrol is inconclusive and contradictory. In vivo studies using 

mice, rats, and dog models, however, suggest that resveratrol is absorbed satisfactorily in 

the gastrointestinal tract, with significant concentrations being found in the blood and a 

number of internal organs (Bertelli et al. 2001).  The molecule itself has a relatively short 

half-life of approximately 8-14 minutes (Baur et al. 2006; Marier et al. 2002) and is 

rapidly metabolized by extensive first-pass metabolism where it becomes sulphated in the 

liver and intestinal epithelial cell (Bertelli et al. 2001; Goldberg 1995; Soleas et al. 2001; 

Vitrac et al. 2003; Yu et al. 2009). Indeed, this process may be important for the 

biological effects of resveratrol as studies by Kaldas et al. (2003), which showed that 

sulphate conjugation was imperative for resveratrol transport in the human intestinal 

epithelial cell line Caco-2.  Moreover, resveratrol administered intravenously was found 

to be converted into a sulphate conjugate within 30 minutes in humans (Walle et al. 

2004).  The same study also found that the serum half-life of total resveratrol was ~9.2 

hours, suggesting that exposure to modified forms of resveratrol may be higher compared 

to the original molecule.  
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In another study of resveratrol oral bioavailability an average of 77.6 µM 

resveratrol was measured in the urine of healthy volunteers following the intake of a 

25mg (110 µM) resveratrol supplement (Walle et al. 2004), suggesting that much of the 

resveratrol taken up orally is excreted from the body. Therefore, it is more reasonable to 

suggest that in terms of our study, and at a clinical level, the doses of resveratrol needed 

to exert the effects here would require alternate routes of administration. 

New therapeutic strategies are currently under development to help bypass 

metabolic breakdown of resveratrol. Resveratrol-containing lozenges, for example, have 

been found to increase buccal absorption of resveratrol (Asensi et al. 2002), and 

administration of resveratrol via injection may be another potential therapeutic tool in 

bypassing intestinal metabolism (Lu et al. 2009). Nanoparticles and liposome use are also 

being investigated as potential carriers of resveratrol (Santos et al. 2011). 

1.5.3 – Antioxidant Properties 

As previously discussed, an important relationship exists between ROS and the 

development of oxidative stress. Polyphenolic compounds are known to boast a variety of 

antioxidant effects stemming the redox properties associated with their phenolic hydroxyl 

groups and the resulting potential for electron delocalization within the chemical 

structure (Alarcon de la Lastra et al. 2007; Lopez-Velez et al. 2003).  Current evidence 

suggests that in addition to acting as a free radical scavenger (Soleas et al. 1997a), 

resveratrol promotes the activity of several endogenous antioxidant defense enzymes. 

Indeed, in the non-small-cell lung carcinoma cell line, A549, resveratrol was shown to 

induce transcription of GPx, thioredoxin reductase (TrxR), and mitochondrial SOD (Hu 

et al. 2007).  
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1.5.4 – Anti-inflammatory Properties 

Many of the beneficial effects reported for resveratrol are attributed to an anti-

inflammatory effect observed in relation to a variety of inflammatory diseases. During 

inflammation, vascular permeability allows for the extravasation of leukocytes and 

inflammatory mediators out of capillaries and into the tissue. Resveratrol, however, has 

been shown to reduce vascular leakage induced by TNF-α (Fulgenzi et al. 2001).  

Resveratrol has also been found to down-regulate cytokine release in lung epithelial 

A549 cells, including IL-8 and GM-CSF (Donnelly et al. 2004). This is partially due to 

the fact that resveratrol can modulate activity of specific transcription factors, including 

nuclear factor-kappa (NF-κB) and activator protein (AP)-1, associated with inflammation 

(Donnelly et al. 2004; Wood et al. 2010). 

Other potential anti-inflammatory effects of resveratrol include inhibition of 

synthesis and release of pro-inflammatory mediators, modification of eicosanoid 

synthesis, inhibition of active immune cells, and inflammatory enzymes such as iNOS 

and COX-2 through its inhibitory effect on NF-κB and AP-1 (Alarcon de la Lastra et al. 

2007).  Although the effects of resveratrol have been studied in several models of 

inflammation including LPS stimulation (Ferrero et al. 1998; Manna et al. 2000), viral 

infections, and allergies (Wood et al. 2010), no studies have explored its effects on 

inflammation in a model of bacterial infection. 
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2 – Objectives 
 

Rationale: 

 Pseudomonas aeruginosa causes serious lung infection in immunosuppressed 

patients. 

 Infection with P. aeruginosa will increase ROS production and inflammatory 

markers in infected lung epithelial cells in vitro. 

 During the infectious process, oxidative stress and inflammation are interrelated 

and therefore a decrease in ROS levels by antioxidants will have an inhibitory 

effect on inflammatory pathways. 

 

 

 

Research Hypothesis 

Resveratrol  will demonstrate anti-inflammatory effects in a model of inflammation 

caused by P. aeruginosa as a result of its antioxidant properties. 
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Objectives: 
 

1. Determine an appropriate range of resveratrol pre-treatment conditions for an 

epithelial cell line to assess its effect in an in vitro model of P. aeruginosa 

infection. This can be done by measuring cell viability following pre-treatment 

with resveratrol. 

2. Determine which concentration of resveratrol demonstrates the strongest 

antioxidant effect by the assessing intracellular ROS-production resulting from P. 

aeruginosa-induced oxidative stress. 

3. Examine the anti-apoptotic effect of resveratrol. 

4. Examine the anti-inflammatory effect of resveratrol. 

5. Examine the effect of resveratrol on select molecular markers of the cellular 

antioxidant and innate immune systems. 
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3 – Materials and Methods 

3.1 – Cell Lines and Bacterial Strains 
 The A549 human type II alveolar cell line (ATCC # CCL-185) was used between 

passage numbers of 5-15. A549 cells were maintained in Dulbecco‟s modified Eagle‟s 

medium (DMEM) nutrient mixture F-12 Ham (Sigma-Aldrich, Oakville, ON, Canada) 

supplemented with 10% heat inactivated fetal bovine serum (FBS, SAFC Biosciences, 

Lenexa, KS) and 1% L-glutamine (Gibco, Carlsbad, CA) without antibiotics.  Cells were 

grown at 37°C with 5% CO2 and seeded every 2-3 days when confluency neared 80%. 

A549 cells were seeded in T-25 cm2 flasks (Corning Incorporated, NY, USA) for 48 

hours, which corresponded approximately to 2.4 × 106 cells/flask, unless otherwise 

stated.   

 Pseudomonas aeruginosa strain K (PAK) was kindly provided by Dr. RJ Irvin, 

University of Alberta, Edmonton.  Bacterial cultures were maintained on sterile Luria 

Burtani (LB) medium (Fischer Scientific, Fair Lawn, NJ) with 1% agar (LBA).  Unless 

otherwise stated, infection times were used based on experimental conditions previously 

optimized in our lab.  Generally, shorter infection times (i.e. 4 hours or less) were used 

when measuring markers involved in cellular signaling, while longer infection times (i.e. 

18 hours) were needed when measuring protein structures that required more time for 

actual assemblage. 

3.2 – Preparation of P. aeruginosa for experiments 
 A single colony of PAK was grown overnight in sterile LB medium at 37°C on a 

shaking platform at 150 rpm.  Cultures were diluted by a factor of 20 into fresh LB 

medium and allowed to grow for approximately 1 hour or until mid-log phase when 

optical density at 600 nm (OD600) reached 0.3.  Bacteria were then centrifuged at 3500 × 
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g, for 20 minutes at 4°C and washed twice in sterile phosphate-buffered saline (PBS, pH 

7.4). Following the final resuspension, bacteria were diluted to an OD600 of 0.30 in sterile 

serum-free DMEM F-12 Ham corresponding approximately to 2 × 108 CFU/mL as 

confirmed by serial dilutions and drop plating on LBA.  From this stock, bacteria were 

added to cells at a multiplicity of infection (MOI) of either 50:1 or 100:1. 

3.3 – Pre-treatment with resveratrol 
A549 cells were grown in sterile serum-supplemented media for 48 hours to 

achieve 80% confluency.  The medium was removed and the cells were washed with 

sterile PBS.  Trans-Resveratrol (Sigma-Aldrich, Oakville, ON) was dissolved in 95% 

ethanol to produce a 60 mM stock solution and then was added to adherent A549 cells in 

serum-free media to achieve 100 µM, which was deemed to exert the strongest 

antioxidant effect after preliminary optimizational studies.  The cells were incubated in 

the presence of resveratrol for the indicated time (37°C, 5% CO2), and then washed twice 

with PBS, and used for experiments.  Treatment with resveratrol did not have an effect on 

cell viability as determined using the Trypan blue exclusion assay run either with the 

ViCell XR Cell Viability Analyzer (Beckman Coulter, Mississauga, ON, CA) or by 

manual counting using a Nikon eclipse 50i phase-contrast microscope (Nikon Canada, 

Winnipeg, CA) and a Phase Micro 3200 Bright-Line hemocytometer (Hausser Scientific, 

Horsham, PA, USA). Resveratrol stock solutions were stored at -20°C in the dark.  

3.4 – Trypan Blue Exclusion Assay of Cell Viability 
The Trypan blue exclusion method was used to measure both viability and 

number of A549 cells; it is based on the principle that in dead or dying cells a loss of 

membrane integrity allows for entry of the stain. Viable cells are seen in a microscope 
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with a clear cytoplasm while membrane-compromised cells have a distinct blue colour in 

the cytoplasm. Viable cell counts were performed via the Trypan Blue Exclusion assay 

using a Vi-Cell XR Cell Viability Analyzer (Beckman Coulter), wherein 0.6 mL of 

diluted cell suspensions were mixed with Trypan Blue reagent. Cell counts were 

automatically assessed via 50 individual sub-samples measured using the Vi-Cell XR 

Cell Viability Analyzer software, and the total viable cell count was used when passaging 

or standardizing cell samples for experimentation. 

3.5 – Reactive oxygen species Indicator Assay 
  To detect intracellular ROS, we used CM-H2DCFDA (5-(and-6)-chloromethyl-

2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester), a fluorescent due that diffuses 

passively through the cell membrane and is retained in viable cells. As oxidation occurs 

in the cell, esterase cleavage of the lipophilic blocking groups yields a charged form of 

the dye that is more effectively retained in the cell compared to the parent compound.  As 

well, the thiol-reactive chloromethyl deriviative of H2DCFDA used here boasts enhanced 

covalent binding to intracellular components, permitting even longer retention of the 

fluorescent adduct within the cell (as described by Invitrogen). 

To measure intracellular ROS production, A549 cells were seeded onto flat-

bottom 6 well plates (Corning) and grown until 80% confluency. Adherent cells were 

pre-treated with resveratrol as previously described and/or infected with P. aeruginosa at 

a MOI of 50:1 or 100:1 for 1 hour as these conditions had been previously optimized in 

our lab (Hawdon et al. 2010).  Cells were washed and stained with 500 μL of 100 μM 

CM-H2DCFDA (Invitrogen Molecular Probes, Eugene, OR), and incubated for 30 

minutes at 37°C in the dark, following the manufacturer‟s protocol.  After incubation, 
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cells were washed with sterile 37°C PBS and 1 mL of fresh serum-free media was added, 

followed by another incubation for 30 minutes at 37ºC in the dark.  Stained cells were 

detached from the plate surface using disposable sterile cell scrapers (Fisher Scientific), 

washed twice, and resuspended in 500 μL PBS followed by flow cytometric analysis. The 

BD FACSCalibur Flow Cytometer (BD Biosciences) together with BD CellQuest Pro 

Software were used in the assessment of fluorescent probes via flow cytometry.  For each 

experiment a minimum of 10,000 gated events were acquired per trial. The mean 

fluorescent intensity (MFI) in the FL-1 Channel was deemed to be directly proportional 

to levels of intracellular ROS. 

3.6 – Measurement of ICAM-1 Expression 
  Confluent A549 cells were pre-treated with resveratrol as described, and either 

stimulated for 18 hours with 10 ng/mL TNF-α or infected with P. aeruginosa at a MOI of 

50:1 for 1 hour followed by incubation with medium containing 10 μg/mL polymyxin B 

(Sigma-Aldrich) for 17 hours to kill the bacteria as per previously established methods 

(Hawdon et al. 2010).  The expression of ICAM-1 was determined using immunostaining 

with phycoerythrin (PE)-conjugated monoclonal antibody (mAb) against ICAM-1 

(Mouse anti-human CD54, BD Pharmingen, Mississauga, ON).  After 18-hour long 

incubation, cells were washed and detached using 0.5% Trypsin-EDTA (Gibco, Eugene, 

OR).  The cells were resuspended in 100 μL of 0.1% BSA-PBS containing antibodies at a 

dilution of 1:50 and incubated for 1 hour at 4°C.  Following incubation, cells were 

washed twice with PBS and analyzed by flow cytometry (FL-2 channel).  The data were 

expressed as relative mean fluorescence intensity (MFI), which was calculated by 

normalizing all fluorescence values to the untreated, labeled control. 
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3.7 – Active Caspases-3/7-Based Apoptosis Detection Assay 
  For analysis of apoptosis, adherent A549 cells were infected with P. aeruginosa 

at an MOI of 50:1 for 2 hours, then detached and washed as described above.  Apoptosis 

was measured by the presence of active caspase-3 and caspase-7, detected by the 

CaspaTag caspase-3,7 in situ assay kit (Chemicon International, Temecula, CA) 

according to the manufacturer‟s protocol and previously established methods (Hawdon et 

al. 2010).  In this approach, a cell-permeable, carboxyfluorescein-labeled fluoromethyl 

ketone peptide inhibitor, fluorochrome inhibitors of caspases (FLICA), covalently binds 

to a reactive cysteine residue that resides on the large subunit of the active caspase 

heterodimer, thereby inhibiting further enzymatic activity. The bound labeled reagent is 

retained within the cell, while any unbound reagent diffuses out of the cell and is washed 

away. The resulting green fluorescent signal is measured via flow cytometry on the FL-1 

channel.  The data were expressed as % caspase-positive cells, with gating of cell 

populations based on their forward and side scatter properties. 

3.8 – Measurement of Fas Receptor Expression 
Confluent cells were infected with P. aeruginosa at a MOI of 50:1 for 1 hour 

followed by incubation with medium containing 10 μg/mL polymyxin B (Sigma-Aldrich) 

for 17 hours to kill the bacteria, following the infection conditions outlined above.  The 

cell-surface expression of FasR was determined using immunostaining with FITC mAb 

against FasR (Mouse anti-human CD95, BD Pharmingen, Mississauga, ON).  After 

infection, cells were washed and detached using 0.5% Trypsin-EDTA (Gibco, Eugene, 

OR).  The cells were resuspended in 100 μL of 0.1% BSA-PBS containing antibodies at a 

dilution of 1:50 and incubated for 18 hours at 4°C.  Following incubation, cells were 

washed twice with PBS and analyzed by flow cytometry (FL-1 channel).  The data were 
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expressed as relative mean fluorescence intensity (MFI), which was calculated by 

normalizing all fluorescence values to the untreated, labeled control. 

3.9 – Total RNA Isolation 
A549 cells were seeded onto T-25 cm2  tissue culture flasks, grown for 48 hours 

to ~80% confluency, and incubated in serum- and antibiotic-free medium in the presence 

of 100 µM resveratrol for 5 hours, followed by infection with P. aeruginosa at a MOI of 

50:1 in serum-free media for 3 hours.  This infection time for our model was based on 

optimization studies showing a stronger effect on gene expression levels compared to 

longer or shorter infection times. Adherent cells were washed once with sterile 37°C PBS 

and detached via trypsinization. Cells were collected and centrifuged at 1000 × g for 5 

min at 4°C, resuspended in 1.5 mL PBS and placed on ice. RNA isolation was performed 

using the Aurum Total RNA Mini kit (Bio-Rad) in accordance with the manufacturer‟s 

instructions using certified RNase-free barrier tips (Ambion, Foster City, CA, USA). 

Cells were lysed using the provided lysis buffer and total RNA was extracted using a 

silica membrane spin column placed within RNase-free microfuge tubes.  To avoid 

contamination by genomic DNA, salts, and other cellular protein components, DNase I 

digest was added to the columns at room temperature followed by several washes.  A 

volume of 40 µL of low ionic strength elution buffer was used to collect the pure RNA 

from the column. Of the total extracted volume, 5µL was placed into RNase-free 100µL 

tubes and used immediately to quantify extracted RNA while the remaining aliquots were 

stored at -80°C for further use. 
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3.10 – RNA Quantification and Purity Analysis  
The concentration and integrity of extracted RNA was assessed using the 

Experion RNA StdSens kit (Bio-Rad) on an Experion Automated Electrophoresis Station 

(Bio-Rad) supported by Experion software (Bio-Rad) in accordance with the 

manufacturer‟s instructions. Briefly, 1µL aliquots of denatured RNA samples and ladder 

were loaded onto an Experion RNA StdSens chip where 18 and 28 S rRNA peaks were 

measured.  Only high-quality (i.e. 9+ RNA quality index, as per automatic Experion 

software calculation) RNA samples were used for subsequent gene expression analysis. 

3.11 – cDNA Synthesis 
First strand complementary DNA (cDNA) synthesis reactions were performed 

using the RevertAid H Minus First Strand cDNA Synthesis kit (Fermentas, Flamborough, 

ON, Canada) in accordance with the manufacturer‟s instructions. To help preserve the 

quality of the RNA during cDNA synthesis the kit contained two important features: a 

reverse transcriptase with a point mutation that prevents RNA hydrolysis by RNase H, 

and RNase inhibitor to further protect against RNA degradation. Briefly, RNA samples 

were mixed with oligo(dT)18 primers and the other kit components and incubated at 

42°C for 1 hour before terminating the reaction by heating at 70°C for 5 minutes. The 

resultant products were either stored on ice and used immediately or placed at -20°C for 

short-term storage. 

3.12 – Quantitative Real-Time Polymerase Chain Reaction 
Quantitative real-time PCR (qPCR) was performed using primers for several 

genes as noted in Table 1 (SABiosciences, Frederick, MD, USA) and SYBR Green RT2 

qPCR Master Mix (SABiosciences) with iQ5 Multicolor Real-Time PCR Detection 

System (Bio-Rad) in accordance with the manufacturer‟s instructions. Briefly, 8 µL of 
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nuclease-free ddH2O was pipetted into the wells of a sterile 96-well PCR plate (Bio-Rad), 

followed by 1 µL of primer, and 1 µL of cDNA template. Due to its photosensitive 

nature, 10 μL of the 2× Master Mix was added to the wells last and the plate was sealed 

using Microseal „B‟ Film (Bio-Rad). Following iQ5 calibration, qPCR analysis of 

triplicate samples was performed using a two-step cycling program involving an initial 

single cycle of 95°C for 10 minutes to activate the DNA polymerase, followed by 40 

cycles of 95°C for 15 seconds and 60°C for 1 minute. Following the qPCR reaction, a 

first derivative dissociation curve was performed as a quality control measure. Briefly, 

the reaction was heated to 95°C for 1 min, cooled to 65°C for 2 min, then ramped from 

65 to 95°C at a rate of 2°C per minute. The formation of a single peak at temperatures 

greater than 80°C indicated the presence of a single PCR product in the reaction mixture. 

Gene expression was normalized to the reference gene GAPDH, which was found to be 

more consistent than β2-microglobulin. 
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Gene name  UniGene #  RefSeq 
Accession #  

Band Size 
(bp)  

Reference 
Position  Source  

NOD1 Hs.405153 NM_006092 144 4060 SABiosciences 

NOD2 Hs.592072 NM_022162  141 4424 SABiosciences 

Human β-defensin 2 Hs.105924 NM_004942 92 170 SABiosciences 

Human Glutathione 
peroxidase 1 Hs.76686 NM_000581 169 772 SABiosciences 

Human GAPDH Hs.592355 NM_002046 175 1287 SABiosciences 

β2-microglobulin Hs.534255 NM_004048 114 381 SABiosciences 

Table 1.Quantitative real-time PCR primers. These primer sets were used as per 

manufacturer‟s instructions, as described above. 

 
 

3.13 – Statistical Analysis 
 Data were presented as mean ± standard error of the mean (SEM) and are 

representative of n ≥ 3 independent experiments.  In studies involving gene expression 

analysis, comparison of sample means was completed using one-way ANOVA with post 

hoc Tukey‟s test, otherwise one-tailed Student‟s t-test was applied.  A p-value < 0.05 was 

considered significant.  GraphPad Prism 5.01 (GraphPad Software Inc, San Diego, CA) 

was used for the analysis. The use of asterisks denotes significant according to the 

following scheme: * p < 0.05; ** p < 0.01; *** p < 0.001. 
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4 – Results 

4.1 – Resveratrol has no effect on A549 cell viability, but is sensitive to 

serum 
To optimize the conditions of resveratrol pretreatment, A549 cells were treated 

with 5, 10, 50, 100 µM resveratrol for 1, 4, 5, 12, and 24 hours.  Following the treatment, 

cell viability was assessed using the Trypan blue exclusion assay either through 

automated trypan blue staining (Figure 3) or manual hemocytometer counting (Figure 4) 

to ensure accuracy of both techniques.  For all time points and concentrations used, 

viability of A549 cells remained above 90% suggesting that resveratrol exerted no 

harmful or cytotoxic effects. 

To further optimize our model, A549 cells were pre-treated with resveratrol in 

serum-containing and serum-free media (Figure 5). In our experiments, we observed a 

significant increase in intracellular ROS levels in A549 cells following 1 hour of PAK 

infection.  Resveratrol pre-treatment in serum-containing media caused a significant 

decrease in ROS produced by A549 cells, while cells pre-treated in serum-free media 

displayed an even stronger decrease in ROS production.  Indeed, serum-free pre-

treatment with resveratrol resulted in a 50% decrease in ROS produced by A549 cells.  

For this reason subsequent pre-treatments were carried out in serum-free conditions.  

4.2 – Resveratrol down-regulates P. aeruginosa-induced oxidative stress 
ROS production by infected cells have been implicated in both inflammation and 

tissue damage during P. aeruginosa infection (Ciofu et al. 2005).  In agreement with 

previous findings in our lab (Hawdon et al. 2010), we observed a significant increase in 

ROS levels in A549 cells (Figures 6 & 7) following 1 hour of PAK infection. 

Resveratrol pre-treatment for 4 hours at concentrations of 100 µM and 200 µM, but not 
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10 µM caused a significant decrease in post-infection ROS production in A549 cells 

(Figure 6). A stronger inhibitory effect towards ROS production, however, was noted 

after 5 hours of resveratrol pre-treatment (Figure 7).  As well, an increased MOI of 100:1 

was found to yield increased resolution in terms of ROS production. These findings 

suggest that under the conditions of P. aeruginosa infection, resveratrol pre-treatment 

was able to protect A549 cells from oxidative stress.  

4.3 – Resveratrol down-regulates P. aeruginosa-induced apoptosis in 

A549 cells 
P. aeruginosa can induce apoptosis of infected airway epithelial cells via 

activation of the pro-apoptotic death receptor Fas/CD95 (Grassme et al. 2000) in a 

caspase-8 dependent mechanism culminating in the activation of executioner caspases-3 

and -7 (Lakhani et al. 2006; Mizuta et al. 2008). Thus, surface expression of the death 

receptor Fas/CD95,and levels of active caspases-3 and -7 were used as measures of 

apoptosis. Following methods previously optimized in our lab (Hawdon et al. 2010), 

surface expression of Fas/CD95 was up-regulated after 1 hour of PAK infection with a 17 

hour polymyxin B co-incubation (Figure 8).  After 2 hours, infected A549 cells 

contained significant levels of active caspases-3/7 (Figure 9).  Resveratrol pre-treatment 

prior to infection caused a significant decrease in both Fas/CD95 surface expression 

(Figure 8) and caspase activity (Figure 9). Hence, our results show that pre-treatment of 

A549 cells with resveratrol can decreased apoptosis of cells caused by P. aeruginosa. 
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4.4 – Resveratrol regulates ICAM-1 surface expression on A549 cells 

infected with P. aeruginosa 
Under conditions of inflammation and oxidative stress during P. aeruginosa 

infection, airways epithelial cells increase the expression of cellular adhesion molecules, 

like ICAM-1, that can facilitate leukocyte adhesion (Aldallal et al. 2002; Hawdon et al. 

2010). In our experiments, 1 hour P. aeruginosa infection with 17 hour polymyxin B co-

incubation caused a significant increase in surface ICAM-1 expression on A549 cells 

(Figure 10). As a positive control, A549 cells were also stimulated with TNF-α, a known 

inducer of ICAM-1 expression on airway epithelial cells (Krunkosky et al. 2000), at a 

concentration of 10 ng/mL for 18 hours. Resveratrol pre-treatment prior to P. aeruginosa 

infection or TNF-α stimulation caused a significant decrease in ICAM-1 expression. 

These findings suggest that infection with P. aeruginosa may stimulate inflammatory 

responses, like ICAM-1 expression, following a similar mechanism as TNF-α and that 

resveratrol down-regulates these inflammatory responses. 

4.5 – Resveratrol up-regulates mRNA expression of glutathione 

peroxidase 
 Oxidative stress has been shown to retard antioxidant activity of enzymes like 

glutathione peroxidase (GPx), which is used by glutathione to catalyze the reaction of 

hydrogen peroxide into water (Rahman et al. 2000).  Thus, our next goal was to 

determine if resveratrol could indirectly boost cellular antioxidant defense via the effect 

on GPx gene expression.  No change in GPx expression was observed in A549 cells 

infected for 3 hours with P. aeruginosa (Figure 11).  However, GPx gene expression was 

significantly up-regulated in both untreated control and resveratrol-pre-treated cells.  

Hence, our data indicate that pre-treatment of P. aeruginosa-infected A549 cells with 

resveratrol can increase cellular antioxidant defense. 
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4.6 – Resveratrol down-regulates mRNA expression of antimicrobial 

peptides 
Expression of the antimicrobial peptide, human beta-defensin-2 (HBD-2), can be 

rapidly induced during a PAK-stimulated inflammatory response (Diamond et al. 2000; 

Harder et al. 2000; Huang et al. 2007; Wehkamp et al. 2006). Indeed, we observed a 

significant increase in HBD-2 mRNA expression in A549 cells following 3 hours of 

infection with P. aeruginosa (Figure 12).  Resveratrol pre-treatment caused significant 

decrease in HBD-2 mRNA transcription post-infection in A549 cells, suggesting that 

resveratrol may also impact innate immunity during infection. 

4.7 – Resveratrol up-regulates mRNA expression of intracellular 

pathogen recognition receptors 
Nod-like receptors, including Nod1 and Nod2, are intracellular pattern 

recognition receptors that regulate inflammatory and innate immune responses by 

responding to specific peptidoglycan motifs present in the bacterial cell wall (Delbridge 

et al. 2007). Nod1 and Nod2 respond to specific peptidoglycan motifs within the bacterial 

cell in a fashion similar to Toll-like receptor (TLR)-mediated cellular activation.  

In our experiments, infection with P. aeruginosa did not have any noticeable 

effect on Nod1 and Nod2 mRNA expression (Figure 13 & 14).  Pre-treatment with 

resveratrol prior to infection was found to induce increases in both Nod1 and Nod2 

mRNA expression. While the effect of resveratrol on Nod-like receptor activity had not 

been reported previously, it appears that resveratrol may modulate the expression of these 

receptors during P. aeruginosa infection. 
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Figure 3. Effect of resveratrol on A549 cell viability. Viability of A549 cells was 

assessed via automated Trypan blue assay and counting.  Cells were seeded onto 6-well 

plates, grown overnight to ~80% confluence, and incubated in serum- and antibiotic-free 

medium in the presence of resveratrol for 1, 4, 12 or 24 hours. Bars represent mean ± 

SEM of 3 independent experiments.  No statistical significance between samples was 

found. 
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Figure 4. Effect of resveratrol on A549 cell viability. Viability of A549 cells was 

assessed via Trypan blue assay and manual counting with a haemocytometer. Cells were 

seeded onto 6-well plates, grown overnight to ~80% confluence, and incubated in serum-

free medium in the presence of resveratrol for 1, 4, 12 or 24 hours. Bars represent mean ± 

SEM of 3 independent experiments.  No statistical significance between samples was 

found. 
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Figure 5. Effect of serum on the antioxidant capacity of resveratrol. Intracellular 

ROS levels in A549 cells were assessed using the CM-H2DCFDA assay.  Cells were 

seeded onto 6-well plates, grown overnight to ~80% confluence, and pre-treated with 100 

µM resveratrol in either serum-containing or serum-free media for 4 hours followed by 

infection with P. aeruginosa MOI 50:1 for 1 hour. Cells were then incubated with the 

fluorescent label for 30 minutes in order to ascertain the final redox environment of the 

cells, and a minimum of 1 × 104 gated events were analyzed via flow cytometry (FL-1 

Channel). Bars represent mean ± SEM of 3 independent experiments.  

(* p<0.05, *** p<0.001; MFI, mean fluorescence intensity) 
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Figure 6. Effect of resveratrol on intracellular ROS levels in A549 cells infected with 

P. aeruginosa. Intracellular ROS levels in A549 cells were assessed using the CM-

H2DCFDA assay.  Cells were seeded onto 6-well plates, grown overnight to ~80% 

confluence, and pre-treated with 10 or 100 µM resveratrol in serum-free media for 4 

hours followed by infection with P. aeruginosa MOI 50:1 for 1 hour. Cells were then 

incubated with the fluorescent label for 30 minutes, and a minimum of 1 × 104 gated 

events, as determined using forward and side scatter properties, were analyzed via flow 

cytometry (FL-1 Channel). Bars represent mean ± SEM of 3 independent experiments.  

(* p<0.05, *** p<0.001; MFI, mean fluorescence intensity) 
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Figure 7. Effect of resveratrol pre-treatment on intracellular levels of bacteria-

induced ROS. Intracellular ROS levels in A549 cells were assessed using the CM-

H2DCFDA assay.  Cells were seeded onto 6-well plates, grown overnight to ~80% 

confluence, and pre-treated with 10, 100, or 200 µM resveratrol in serum-free media for 5 

hours followed by infection with P. aeruginosa MOI 100:1 for 1 hour. Cells were then 

incubated with the fluorescent label for 30 minutes, and a minimum of 1 × 104 gated 

events were analyzed via flow cytometry (FL-1 Channel). Bars represent mean ± SEM of 

3 independent experiments. (* p<0.05, ** p<0.01, *** p<0.001; MFI, mean fluorescence 

intensity) 
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Figure 8. Effect of resveratrol on FasR/CD95 expression. Analysis of cell surface 

expression of Fas/CD95 was assessed via immunostaining with fluorescein 

isothiocyanate-conjugated mAb to CD95 (DX2) and analyzed via flow cytometry.  A549 

cells were seeded onto T-25cm2 flasks for 48 hours to ~80% confluence, and incubated in 

serum-free media in the presence of 100 µM resveratrol for 5 hours, followed by a 1 hour 

infection with P. aeruginosa MOI 50:1 and a 17 hour co-incubation with 50 mg/mL 

polymyxin B. Cells were then immunostained with antibodies against CD95 and a 

minimum of 1 × 104 gated events were analyzed via flow cytometry (FL-1 Channel). 

Bars represent mean ± SEM of 3 independent experiments. (*** p<0.001; FasR, Fas 

receptor; MFI, mean fluorescence intensity). 
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Figure 9. Effect of resveratrol on P. aeruginosa-induced apoptosis. The effect of 

resveratrol on apoptosis in A549 cells infected with P. aeruginosa was assessed via 

fluorescent detection of active caspases-3 and -7 (CaspaTag Caspase 3,7 In Situ Assay 

Kit).  Cells were seeded onto T-25cm2 flasks for 48 hours to ~80% confluence, and 

incubated in serum-free media in the presence of 100 µM resveratrol for 5 hours followed 

by infection with P. aeruginosa MOI 50:1 in serum-free media for 2 hours. Cells were 

incubated with fluorescent inhibitors of caspases (FLICA) for 1 hour, and a minimum of 

1 × 104 gated events were analyzed via flow cytometry (FL-1 Channel). Bars represent 

mean ± SEM of 3 independent experiments. (*** p<0.001). 
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Figure 10. Effect of resveratrol on ICAM-1 expression. Analysis of cell surface 

expression of ICAM-1 was assessed via immunostaining with phycoerythrin-conjugated 

mAb to ICAM-1 (HA58) and analyzed via flow cytometry.  A549 cells were seeded onto 

T-25cm2 flasks for 48 hours to ~80% confluence, and incubated in serum-free media in 

the presence of 100 µM resveratrol for 5 hours, followed by either an 18 hour stimulation 

with 10 ng/mL TNF-α or 1 hour infection with P. aeruginosa MOI 50:1 and a 17 hour 

co-incubation with 50 mg/mL polymyxin B. Cells were then incubated with antibodies 

against ICAM-1 and a minimum of 1 × 104 gated events were analyzed via flow 

cytometry (FL-2 Channel). Bars represent mean ± SEM of 3 independent experiments.  

(* p<0.05, *** p<0.001; MFI, mean fluorescence intensity) 
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Figure 11. Effect of resveratrol on GPx mRNA expression in A549 cells infected 

with P. aeruginosa. The effect of resveratrol on GPx mRNA expression in A549 cells 

infected with P. aeruginosa was assessed via qPCR.  A549 cells were seeded onto T-25 

cm2 tissue culture flasks, grown for 48 hours to ~80% confluency, and incubated in 

serum-free medium in the presence of 100 µM resveratrol for 5 hours, followed by 

infection with P. aeruginosa MOI 50:1 in serum-free media for 3 hours.  Cells were lysed 

and their RNA was isolated via silica membrane spin column. RNA quantity and integrity 

was assessed via automated electrophoresis. cDNA was generated via oligo-dT-primed 

reverse transcription.  Real-time PCR was performed via a two-step cycling program in 

accordance with the DNA polymerase and primer specifications. Results were 

normalized to GAPDH.  Bars represent mean ± SEM of 3 independent experiments.   

(* p<0.05, *** p<0.001; MOI, multiplicity of infection; qPCR, quantitative PCR) 
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Figure 12. Effect of resveratrol on HBD-2 mRNA expression in A549 cells infected 

with P. aeruginosa. The effect of resveratrol on HBD-2 mRNA expression in A549 cells 

infected with P. aeruginosa was assessed via qPCR.  A549 cells were seeded onto T-25 

cm2 tissue culture flasks, grown for 48 hours to ~80% confluency, and incubated in 

serum-free medium in the presence of 100 µM resveratrol for 5 hours, followed by 

infection with P. aeruginosa MOI 50:1 in serum-free media for 3 hours.  Cells were lysed 

and RNA was isolated via silica membrane spin column. RNA quantity and integrity was 

assessed via automated electrophoresis. cDNA was generated via oligo-dT-primed 

reverse transcription.  Real-time PCR was performed via a two-step cycling program in 

accordance with the DNA polymerase and primer specifications. Results were 

normalized to GAPDH.  Bars represent mean ± SEM of 3 independent experiments.  (*** 

p<0.001; # resveratrol control = 0.05430 ± 0.001577; MOI, multiplicity of infection; 

qPCR, quantitative PCR) 
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Figure 13. Effect of resveratrol on Nod1 mRNA expression in A549 cells infected 

with P. aeruginosa. The effect of resveratrol on Nod1 mRNA expression in A549 cells 

infected with P. aeruginosa was assessed via qPCR.  A549 cells were seeded onto T-25 

cm2 tissue culture flasks, grown for 48 hours to ~80% confluency, and incubated in 

serum- and antibiotic-free medium in the presence of 100 µM resveratrol for 5 hours, 

followed by infection with P. aeruginosa MOI 50:1 in serum-free media for 3 hours.  

Cells were lysed and their RNA was isolated via silica membrane spin column. RNA 

quantity and integrity was assessed via automated electrophoresis. cDNA was generated 

via oligo-dT-primed reverse transcription.  Real-time PCR was performed via a two-step 

cycling program in accordance with the DNA polymerase and primer specifications. 

Results were normalized to GAPDH.  Bars represent mean ± SEM of 3 independent 

experiments. (** p<0.01; MOI, multiplicity of infection; qPCR, quantitative PCR) 
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Figure 14. Effect of resveratrol on Nod2 mRNA expression in A549 cells infected 

with P. aeruginosa. The effect of resveratrol on Nod2 mRNA expression in A549 cells 

infected with P. aeruginosa was assessed via qPCR.  A549 cells were seeded onto T-25 

cm2 tissue culture flasks, grown for 48 hours to ~80% confluency, and incubated in 

serum- and antibiotic-free medium in the presence of 100 µM resveratrol for 5 hours, 

followed by infection with P. aeruginosa MOI 50:1 in serum-free media for 3 hours.  

Cells were lysed and their RNA was isolated via silica membrane spin column. RNA 

quantity and integrity was assessed via automated electrophoresis. cDNA was generated 

via oligo-dT-primed reverse transcription.  Real-time PCR was performed via a two-step 

cycling program in accordance with the DNA polymerase and primer specifications. 

Results were normalized to GAPDH.  Bars represent mean ± SEM of 3 independent 

experiments. (*** p<0.001; MOI, multiplicity of infection; qPCR, quantitative PCR) 



 

 46 

5 – Discussion 
Respiratory tract infections caused by P. aeruginosa provoke a robust 

inflammatory response in the lung leading to severe tissue damage.  Many of these 

cellular responses are the result of important pathogen-host interactions, which when 

triggered, signal the activation of pro-inflammatory transcription factors (i.e. NF-κB and 

AP-1) that in turn initiate the transcription and release of pro-inflammatory mediators.  

As a consequence, activated immune cells swarm the inflamed tissue and release 

proteases, myeloperoxidase, and reactive oxygen species leading to oxidative stress and 

contributing to lung parenchymal tissue damage seen in CF (Doring et al. 1986; Hull et 

al. 1997), COPD (Murphy et al. 2008; Stockley 2002), and acute lung injury (Chabot et 

al. 1998). It is not surprising then that a great focus has been placed on understanding the 

underlying mechanisms between oxidative stress and inflammation. 

Resveratrol, an antioxidant compound currently believed to be at least partly 

responsible for the beneficial properties attributed to red wine, has been shown to exert 

anti-inflammatory properties in a variety of in vitro and in vivo models. To our 

knowledge, however, the protective effect of resveratrol in a model of P. aeruginosa lung 

infection has never been addressed.  Therefore, in this study, we examined whether lung 

epithelial cellular responses induced by interactions with P. aeruginosa could be 

mitigated or even prevented with resveratrol pre-treatment in vitro.  Indeed, we observed 

that infection of A549 lung adenocarcinoma cells with P. aeruginosa led to an up-

regulation of intracellular ROS production. Several virulence factors are believed to 

contribute to this, including the redox-active compound pyocyanin (Lau et al. 2004; 

Schwarzer et al. 2008) and the exotoxin (Exo)U (Saliba et al. 2006), as well as pili, LPS, 

and flagella, which are known to be critical inducers of inflammation (Feldman et al. 
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1998; Pier 2007; Saiman et al. 1993). We have also found that pre-treatment with 

resveratrol successfully decreased ROS production.  Interestingly, we also found that the 

presence of serum inhibited the antioxidant effect of resveratrol.  This is likely due to the 

binding of resveratrol to some serum proteins.  In agreement with our findings, 

resveratrol can be bound by protein carriers in the blood and transported in the circulation 

to its target tissue where it can then exert its biological effect (Jannin et al. 2004; Lancon 

et al. 2004).  

ROS has been shown to play a critical role in the regulation of apoptosis (Simon 

et al. 2000), as have pro-inflammatory cytokines including TNF-α and IL-1β(Manna et al. 

2000; Rath et al. 1999; Shakibaei et al. 2005).In the case of P. aeruginosa infection, 

airway epithelial cells undergo apoptosis via both death-receptor associated (extrinsic) 

and mitochondrial (extrinsic) pathways (Grassme et al. 2000; Jendrossek et al. 2001). By 

detecting expression levels of the death receptor Fas/CD95, involved in the extrinsic 

pathway, and the detection of active executioner caspases-3 and -7, involved in both 

pathways, we found that P. aeruginosa induced apoptosis in infected cells, and that pre-

treatment with resveratrol decreased both markers of apoptosis post-infection.  The anti-

apoptotic effect may be due to up-regulation of pro-survival Bcl-2 family members 

(Shakibaei et al. 2008), and a decrease in nuclear translocation of NF-κB as a result of 

inhibited IkBa degradation and p65 activity (Csaki et al. 2009). These reports are in stark 

contrast to several studies that have found resveratrol to be an inducer of both caspase-3/7 

activation (Dorrie et al. 2001), and Fas ligand/CD95L pathway activation (Clement et al. 

1998; Ko et al. 2011; Tsan et al. 2000).  However, these studies used longer resveratrol 

pre-treatment times and different models including acute lymphoblastic leukemia cells, 
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breast carcinoma cells, human monocytes, and anaplastic large-cell lymphoma cells, 

respectively. 

Indeed, the intrinsic apoptosis pathway involves ROS-induced depolarization of 

the mitochondria followed by the release of cytochrome c (Alaoui-El-Azher et al. 2006).  

In the extrinsic pathway, Fas/CD95 activation triggers aggregation the FADD adapter 

resulting in membrane raft clustering and receptor internalization and activation of the 

caspase cascade (Barnhart et al. 2003; Delmas et al. 2003; Guicciardi et al. 2009). 

Previous work in our lab demonstrated a significant correlation between ROS generation 

and active caspase-3/7 expression levels in infected A549 cells (Hawdon et al. 2010). 

While evidence supports the role of ROS in P. aeruginosa-induced apoptosis (Alaoui-El-

Azher et al. 2006), our results suggest a protective role of resveratrol in cell death. 

Acute lung infection caused by P. aeruginosa causes a rapid and severe 

inflammatory response characterized by increased surface expression of the cell-surface 

adhesion molecule ICAM-1, which is critical in the recruitment of inflammatory cells to 

the infected tissue, and pro-inflammatory mediator release (i.e. cytokines and 

antimicrobial peptides) (Harder et al. 2000; Sadikot et al. 2005; Wehkamp et al. 2006).  

Thus, we chose to examine the effect of resveratrol on inflammation caused by P. 

aeruginosa infection by measuring ICAM-1 and human beta-defensin-2 (HBD-2) 

expression.  In agreement with the literature, we found that both ICAM-1 (Aldallal et al. 

2002) and HBD-2 (Harder et al. 2000; Wehkamp et al. 2006) expression were induced by 

P. aeruginosa in A549 cells. Studies with resveratrol demonstrated a decrease in both 

ICAM-1 and HBD-2, confirming that resveratrol possesses anti-inflammatory properties 

in our model of acute lung infection. 
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Indeed, promoter regions for the antimicrobial peptide, HBD-2, have been found 

to contain binding sites for pro-inflammatory transcription factors, including NF-κB and 

AP-1(Harder et al. 2000).  As a part of the innate immune response, HBD-2 is released 

by airway epithelial cells infected with P. aeruginosa, and works on either epithelial cell 

surfaces or synergistically within phagocyte phagolysosomes to kill bacteria (Harder et 

al. 2000; Schroder et al. 1999). Despite the inflammatory properties of HBD-2, 

antimicrobial peptide suppression may increase the likelihood of sustained infection 

(Schroder et al. 1999). Thus, in relation to our findings, we suggest here that resveratrol 

may decrease the innate immune response to P. aeruginosa infection. 

Nod proteins (nucleotide binding, oligomerization domains) act as intracellular 

sentinels of bacterial products and can activate NF-κB directly (Martin et al. 2005). 

While Nod1 is ubiquitously expressed and recognizes muramyl tripeptides in the cell 

walls of Gram-negative bacteria, Nod2 expression is more cell-type specific and 

recognizes muramyl dipeptides found in both Gram-positive and Gram-negative bacterial 

cell walls (Franchi et al. 2008). In our experiments, however, P. aeruginosa had no effect 

on Nod1 or Nod2 gene expression levels, however pre-treatment with resveratrol caused 

an increase in these receptors. Further study is needed to clarify the effect of antioxidants, 

like resveratrol, on NLRs. 

Emerging evidence implicates resveratrol as an inducer of antioxidant enzymes, 

conferring mostly indirect cellular protection against oxidative stress (Hu et al. 2007; 

Kode et al. 2008; Robb et al. 2008). Currently, studies by others suggest that resveratrol 

can up-regulate levels of catalase, thioredoxin, thioredoxin reductase, and mitochondrial 

superoxide dismutase (MnSOD), as well as glutathione (GSH) and glutathione 
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peroxidase (GPx) (Hu et al. 2007; Kode et al. 2008; Robb et al. 2008; Ungvari et al. 

2007). Indeed, GSH is widely considered the master antioxidant of the cell and works in 

concert with GPx to convert lipid peroxides, H2O2, and other radicals into less toxic 

forms (Rahman et al. 2000). In our results, expression levels of GPx in A549 cells 

infected with P. aeruginosa remained unchanged compared to control.  Resveratrol pre-

treatment, however, initiated a sharp increase in GPx mRNA expression correlating with 

the previously mentioned studies.  This is interesting because expression of the death 

receptor Fas/CD95 is regulated by intracellular GSH levels (Chiba et al. 1996), and 

Fas/CD95 has been found to decrease cellular GSH levels (van den Dobbelsteen et al. 

1996).  These studies also suggest that resveratrol can exert beneficial antioxidant effects 

earlier than 18 – 24 hours as previously reported (Donnelly et al. 2004; Kode et al. 2008; 

Ungvari et al. 2007). 

Our study is limited, however, by the scope of our model. First and foremost, one 

must be careful in interpreting data from an in vitro model, as in vivo there are many 

more cell types involved in the pathophysiology of lung inflammation and bacterial 

infection.  As well, while the signaling pathways explored in our model (i.e. apoptosis 

and inflammation) may be activated independently, their signaling pathways are not 

mutually exclusive, and can often feedback into each other.  Moreover, P. aeruginosa 

infection may activate inflammatory pathways in microenvironments not yet 

experiencing oxidative stress.  It is this convergence, however, which leads to a vicious 

cycle of tissue damage and runaway inflammation. 

With this in mind there are still many avenues of study needed to expand the ideas 

presented here.  An important question left unaddressed is the direct effect of resveratrol 
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on P. aeruginosa viability.  As a phytoalexin, resveratrol can be produced in several plant 

species as a part of a defensive strategy during bacterial or fungal attack (Donnelly et al. 

2004), and while it was reported that resveratrol (ranging at concentrations of 171-342 

µg/ml) inhibited the growth of Enterococcus faecalis, Staphylococcus aeurus, 

Pseudomonas aeruginosa, and several dermatophyte species (Chan 2002), it remains to 

be seen if and/or how resveratrol retains these microbicidal effects in the in vitro and in 

vivo settings. An interesting way to measure this with respect to our model would be to 

determine the effect of resveratrol on the internalization of P. aeruginosa into the lung 

epithelial cell. Alive or not, P. aeruginosa virulence factors may still initiate 

inflammatory responses mediated through TLR-activation (Sadikot et al. 2005), thus in 

terms of our findings it is unlikely that resveratrol exerts its anti-inflammatory effects via 

only antibacterial means.  

To confirm the anti-apoptotic properties of resveratrol it would be helpful to 

measure any changes in mitochondrial membrane potential.  As well, measuring levels of 

active caspase-9 would help clarify the mechanism used by resveratrol to prevent cell 

death. Continuing downstream, measuring the direct activation of both NF-κB and AP-1 

would also be pivotal markers in confirming the effect of resveratrol in this model.  

Lastly, while the use of immortalized cell lines like A549 are both invaluable and 

practical, a natural improvement would be to test the anti-inflammatory and anti-

oxidative effects of resveratrol in primary human lung epithelial cells.  Such studies 

would help pave the way for clearer clinical interpretations. 
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6 – Conclusion 
 To summarize, we have established that the antioxidant resveratrol can protect 

against pathogen-induced potentially damaging cellular responses during infection of 

type II lung epithelial A549 cells with P. aeruginosa in vitro by unburdening the cell 

from oxidative stress, decreasing inflammatory responses implicated in tissue damage, 

and possibly influencing innate immune responses.  Despite intense focus on the putative 

mechanisms underlying the diverse activities of resveratrol in different tissues, 

contradictory results emerge, making complete understanding of underlying mechanisms 

difficult.  Regardless, understanding the preventative and therapeutic relationships 

between natural antioxidants and bacterial-induced inflammation remains a worthwhile 

endeavor.  
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