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Abstract 
Functional medical imaging is unique in its ability to visualize molecular interactions and 

pathways in the body. Organ-targeted Positron Emission Tomography (PET) is a 

functional imaging technique that has emerged to meet the demands of precision 

medicine and has shown advantages in terms of sensitivity and image quality compared 

to whole-body (WB) PET. A common application for organ-targeted PET is oncology, 

particular breast cancer imaging. In this work we present the application of Graphics 

Processing Unit (GPU) to significantly accelerate reconstruction of clinical breast images 

acquired with an organ-targeted PET camera and reconstructed using the Maximum 

Likelihood Estimation Maximization (MLEM) algorithm. The PET camera is configured 

with two planar detector heads with a sensing area of 232mm×174mm. Acquired raw 

image data are converted into list mode format and reconstructed by a GPU-based 3D 

MLEM algorithm that was developed specifically for the limited-angle capabilities of the 

planar PET geometry. The algorithm applies corrections including attenuation and scatter 

to provide clinical grade image quality. We demonstrate that a transition from originally 

developed Central Processing Unit (CPU) to newly developed GPU-based algorithm 

improves single iteration speed by more than 400 times, while preserving image quality. 

The latter has been assessed on clinical data and through phantom tests performed 

according to the National Electrical Manufacturers Association (NEMA) NU-4 standards. 

The gain in reconstruction speed is expected to result in improved patient throughput 

capabilities of the clinical organ-targeted PET. Indeed, GPU-based image reconstruction 

reduces time needed for a typical breast image reconstruction to less than 5 minutes thus 

making it shorter than the image acquisition time. This is of particular importance in 

improving patient throughput and clinical adaptation of the PET system. 
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1 Introduction 
Breast cancer, like others, is a disease which is most successfully treated with early 

diagnosis. The most common tool for breast cancer screening in women over 40 is x-ray 

mammography. It has been shown that x-ray mammography is most effective in entirely 

fatty breasts, while it performs poorly in heterogeneous and extremely dense breasts [1] 

which are associated with nearly 50% of women in certain populations [2]. Increased 

breast density is associated with reduced sensitivity in mammography and is a strong risk 

factor in the development of breast cancer [1]. It has been recognized as the greatest 

contributor to the failure of mammography, resulting in false-negative findings delay 

diagnosis towards advanced stage cancers and result in poorer outcomes. These factors 

define a need to provide women with dense breasts with a supplemental screening 

technique which addresses the shortcomings of other modalities. The most widely used 

supplemental tests are digital breast tomosynthesis (DBT), whole breast ultrasound (US), 

and breast Magnetic Resonance Imaging (MRI). The best results in terms of sensitivity 

and specificity are shown by the breast MRI method, however this method is also prone 

to disadvantages such as high false-positive rate, high sensitivity to hormonal changes, 

and large associated cost.  

The domain of functional medical imaging provides additional breast screening methods 

which allow observation of molecular interactions and pathways within the patient’s body 

rather than relying on morphological differences. Organ-targeted Positron Emission 

Tomography (PET) with fluorodeoxyglucose (18F-FDG/FDG) for breast, sometimes 

referred to as Positron Emission Mammography (PEM), offers greater specificity, lower 

associated cost, and a smaller list of contraindications compared to breast MRI. A 

summary of peer-reviewed studies illustrates the ability of PEM to reliably detect early 

forms of cancer with high specificity and independent of breast density [3]. PET relies on 

the properties of radioactive positron decay and annihilation which may be detected by 

groups of detectors surrounding a region of interest. With the development of technology 

various capabilities of PEM were investigated in several clinical studies and has shown 

great promise in preoperative evaluation [4] and treatment planning. However, more 
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widespread clinical adaptation is limited due to high associated radiation dose and limited 

standardization of the technology. 

These challenges are currently being addressed by Dr. Reznik and her research team as 

they develop and investigate a novel solid-state technology for organ-targeted PET with 

improved sensitivity, capable of significant dose reduction (factor of 10) in comparison to 

commercial whole-body (WB) PET scanners and with a potential reduction of the dose to 

the DBT level or even x-ray mammography level. The technology is commercialized by 

Radialis, Thunder Bay, Ontario, and is now called Radialis organ-targeted PET camera. 

The initial application of the Radialis system is in breast imaging. The first system 

prototype has been built and is currently used in clinical trials at University Health 

Network-Princess Margaret Cancer Centre (UHN-PMCC) in Toronto, Ontario. The 

second system is currently being finalized in Thunder Bay, Ontario and will undergo 

clinical trials at the University of Pittsburgh Medical Center (UPMC), Pittsburg USA. 

Radialis PET camera is a state-of-the art device that has shown great results in terms of 

system sensitivity and spatial resolution, thus allowing imaging with reduced dose and 

lower acquisition duration while still producing high-quality images. The goal of Radialis 

PET is to ensure that these improvements can progress from theoretical research to a 

widely used clinical tool.  

Despite the hardware technology and imaging performance, a primary bottleneck 

associated with Radialis system workflow is the image reconstruction speed. In a clinical 

setting, reconstruction of image data should not take longer than the data acquisition in 

order to ensure a high rate of patient throughput. Clinical protocols often dictate that a 

patient cannot be released until all images are produced. Image reconstruction speed is 

a common bottleneck due to the high computational intensity of the iterative algorithms 

most commonly used in PET. The most common iterative reconstruction algorithm for 

PET is Maximum Likelihood Expectation Maximization (MLEM) and its subsets version: 

Ordered Subsets Expectation Maximization (OSEM). They have proven to be able to 

accurately enough solve PET image reconstruction problem. In its current 

implementation, the Radialis system uses a Central Processing Unit-based (CPU) MLEM 

reconstruction that is optimized for the detector geometry and adopted data format. It can 



10 
 

produce clinical images of good quality, but for a price of high reconstruction time (20 

minutes – up to hours). Iterative reconstruction speedup has been an active research 

area. The Graphics Processing Unit-based (GPU) reconstruction acceleration methods 

have become a gold standard for various PET systems. Slow CPU-based image 

reconstruction in Radialis system must be addressed to comply with high patient 

throughput requirements of the clinical environment. 

1.1 Contributions 
In this work, we present our effort in addressing this issue by reformulating the clinically 

suitable MLEM image reconstruction algorithm from CPU to GPU architecture. In doing 

this, a special consideration had to be taken for the nature of the intrinsically parallel GPU 

hardware and its thread and memory organization. We show our incremental progress 

and implemented optimizations that include reducing data transfer overhead, coalesced 

global memory access, effective shared memory use, and other methods to maximize 

GPU utilization, that were employed to make a successful transition to GPU. We 

emphasize that making such transition shall enhance the reconstruction throughput and 

shall not result in any deterioration in clinical imaging performance. The resulting GPU-

based algorithm is compared to the CPU counterpart and evaluated using both clinical 

images and standardized phantom tests performed according to National Electrical 

Manufacturers Association (NEMA) NU-4 [5]. Results reported in this thesis demonstrate 

the superiority of the GPU-based algorithm in terms of reconstruction speed, thus 

ensuring improved patient throughput capability of the Radialis PET system. The novelty 

of this method lies in the analysis of its application to the system as a whole, considering 

the effects of this work onto clinical operation, and specific system characteristics. 

1.2 Thesis Organization 

The content of this dissertation is organized in the following way. Chapter 2 introduces 

underlying physics of PET, different types of PET devices, and a short literature overview 

on the topic of PET image reconstruction and current developments in the field. Chapter 

3 dives deep into Radialis PET system and various techniques for building a modern 
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clinical organ-targeted PET system. The main research problem is formulated at the end 

of the Chapter 3. In Chapter 4, we propose a fast and efficient GPU-based image 

reconstruction method for dual-head planar PET. Finally, Chapters 5 & 6 conclude the 

thesis and provide an insight into the future work that can be applied in the area, 

respectively. 
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2 Background and Related Works 

2.1 General Overview of Positron Emission Tomography 

Positron Emission Tomography (PET) is a functional medical imaging technique that 

allows to observe molecular interactions and pathways within the patient body [1]. This 

makes PET more specific for a wide range of diseases than anatomical imaging 

techniques such as Magnetic Resonance Imaging (MRI), X-Ray, and Computed 

Tomography (CT). In basic terms, one may look at anatomical imaging as something 

providing an information on the structure of organs [2] whereas PET gives an access to 

the functional, or molecular, processes happening inside the organs. It is important to 

mention that it is very common to combine PET with anatomical imaging techniques such 

as CT or MRI in dual-modality scanners to improve the diagnostic capabilities. In fused 

PET/CT or PET/MRI images, CT or MRI provides anatomical landmarks and morphologic 

information while PET pin-points abnormal functioning of an organ. 

The specificity of PET arises from the range of positron-emitting radioisotopes which can 

be easily substituted directly into biomolecules without changing (or significantly 

disturbing) their biological function thus making a radioactive tissue biomarker. PET 

imaging provides a quantitative information on the distribution of tissue biomarkers (or 

PET radiopharmaceuticals, or PET tracers) in the body. Among the currently used 

radioisotopes 18F takes a special place as it is used to substitute a hydroxyl group in a 

glucose molecule producing a FDG for identifying the regions of abnormal glucose 

metabolism. 18F-FDG is currently the most widely used PET radiopharmaceutical 

because of its use in clinical oncology as well as in cardiology and neurology [3]. Although 

newest studies show the applicability of PET in the diagnosis of parkinsonism, drug 

discovery, and many other fields [4], [5], the most common clinical application for PET 

remains in cancer diagnosis and treatment in particular in detection of primary tumors; 

accurate staging of the disease and detection of lymph node metastases; treatment 

planning and assessment of the effectiveness of the therapy. 
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2.2 Basic Physics of PET 

Being a nuclear imaging technique, PET relies on the physical properties of radioactive 

decay. PET imaging procedure starts from intravenously administration of PET 

radiopharmaceutical that binds to a targeted tissue or is up-taken in a lesion thus making 

this tissue or lesion more radioactive than surrounding areas of patient body. This 

excessive radioactivity can be detected with PET scanner as outlined below. 

A radioisotope within a PET tracer decays emitting a positron (β+). A positron has only a 

transient existence: after traveling short distance called positron range, and losing its 

kinetic energy, positron annihilates with an electron from the surrounding tissue emitting 

two 511 KeV photons in the opposite directions (at roughly 180°) [6].  A PET scanner is 

developed to detect and localize the simultaneous back-to-back annihilation photons. 

Detecting both photons from a single annihilation event simultaneously (within a very 

short time interval which is referred to as a “coincidence window”) is called a “true 

coincidence” or a “true event” detection.  

PET scanner consists of large number of detectors surrounding the object to be imaged. 

It is very common to place the surrounding detectors in a ring-like shape that encircles 

the patient (refer to Figure 2.1). The coincident photons are collected over many angles 

around the body axis of the patient allowing to draw multiple “lines of response” (LORs) 

that are lines connecting coordinates of two detected photons. Since 18F’s positrons have 

a short range (<1 mm), the point of positron emission can be approximated with the 

position of the annihilation event. Therefore, it is safe to assume that an annihilation event 

occurs along a LOR. Therefore, LOR data can be used to reconstruct the image of the 

activity distribution in slice or tomographic form.     

In addition to a ring detector design shown in Figure 2.2, that is used in WB PET scanners, 

there are alternative designs with planar detector geometries which are employed mainly 

in organ-targeted imaging systems. 
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Figure 2.1 - Positron annihilation 

2.2.1 Event Types 

The positron annihilation detection becomes even more complex when we consider that 

there is happening hundreds of thousands of annihilations per second in-between PET 

scanner detectors. The rapid pace of the annihilations creates additional challenges for 

data collection in PET. 

One of the consequences of this effect is that some of the detected coincidences might 

not be the desired “true” events thus affecting quantitative accuracy and the resulting 

image quality of the system [6]. Figure 2.2 schematically shows different event types. In 

case of the “true” events, it is a fact that a LOR for such event passes through the location 

where the annihilation of a positron occurred. On the other hand, if two gamma photons 

from two different annihilations reach detectors within the same coincidence window such 

event is categorized as random coincidence. Random coincidences do not possess any 

spatial information about the activity distribution, are hard to filter out and make a 

significant contribution to image noise. The other type of undesirable coincidences are 

scatter coincidences that involve scattering of one of the photons mainly via Compton 

scatter; Compton scatter reduces photon energy and deflect a photon from its initial 
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direction. In conventional PET reconstruction algorithms, the scattered data cause the 

blurring of images and thus should be estimated and filtered out using an energy filtering 

of the events based on a concept of “energy window”. Finally, the last common event type 

we are going to discuss is multiple coincidences when more than 2 photons are detected 

within a coincidence window, in this case, we would normally discard such events. 

 

Figure 2.2 - Event types 

2.3 Data Format 

There are 2 commonly used data formats for PET: sinogram and list mode. In sinogram 

format every acquired coincidence is histogrammed into a 2-D matrix where each element 

is equal to the number of events detected in a particular LOR (between a pair of 

detectors). This matrix is arranged in the following way: each column corresponds to the 

radial offset from the center of the field of view (FOV) and each row is a projection of the 

coincidence at a particular angle. The visual representation of a sinogram is presented in 

Figure 2.3. Although sinogram format remains the most commonly used in conventional 

WB PET/CT, list mode format is more suitable for newer Time-of-Flight (ToF) PET 

technology since it provides a new aspect to use time of flight and energy information of 

each coincidence in the reconstruction. Specifically, list mode format records each event 
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individually including information on the two locations (coordinates), where annihilation 

photons were detected, energy, and time when the coincidence happened. List mode 

format is easily extendable to include any additional details associated with the events 

which is especially important for the ToF PET/CT scanners. Because of its ability to 

preserve all available information some of the data corrections can be efficiently 

implemented only on the list mode data, for example the respiratory motion correction for 

cardiac PET [7]. 

 

Figure 2.3 - Sinogram representation for a simple object that would result from generating projection views around it. 

Used with permission from [8] 

2.4 Whole-body vs Organ-targeted PET 

When dealing with 18F-FDG PET examinations involving systemic injection of 

radiopharmaceuticals into the patient, the issue of radiation exposure is becoming one of 

the most important aspects limiting molecular imaging procedures for use in undiagnosed 

patients and the pediatric population. Significant dose reduction can be achieved with the 

development and clinical use of PET technology with an increased sensitivity capable to 

work at a fraction of the standard FDG dose. Improvement in sensitivity is possible with 

dedicated PET scanners with optimized geometry, that attains the highest possible 

angular coverage of the dedicated organ. This provides more efficient gamma-ray 

detection than with WB ring detector design permitting a lower dosage of the radiotracer. 
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Other advantages of dedicated systems over WB PET scanners include reduced signal 

from elsewhere in the body that improves image contrast recovery and further increases 

the sensitivity in the organ of interest; lower cost; and higher spatial resolution allowing 

small lesion detection. Indeed, use of small field-of-view (FOV) organ-targeted PET 

detectors rather than large WB rings allow the use of finer pitch segmentation of the 

scintillator (used to convert gamma-photons into light, which is subsequently converted 

into a measurable signal by front-end electronics) without increasing the number of 

elements. This helps to achieve higher spatial resolution due to reduced light dispersion. 

Table 2.1 summarizes major advantages and disadvantages of WB and organ-targeted 

PET technologies.  

Table 2.1 - Organ-targeted vs Whole-body PET 

Modality Advantages Disadvantages 

Whole-body PET ● Whole-body coverage ● Higher radiation dosage 

● Lower sensitivity 

● Higher cost 

 

Organ-targeted 

PET 

● Better sensitivity 

● Better image quality 

● Lower cost of the system 

● Close proximity to the 

organ under study 

● Use cases related to 

assisting during other 

medical procedures (such 

as biopsy, surgery, etc...) 

● Single organ examination 

● Dedicated detector geometry 

design and technology 

development required 

 

 

Organ-targeted systems emerge for imaging in breast, brain, heart, and prostate [2]. 

However, widespread clinical adaptation of the organ-targeted technology requires 
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advances in data acquisition and image reconstruction techniques to drive improvements 

in PET diagnostic capabilities and reduce the dose associated with PET imaging. 

2.4.1 Positron Emission Mammography 

One of the most successful clinical applications for organ-targeted PET nowadays is in 

breast cancer detection and treatment planning. A special term was created for breast-

dedicated PET systems - Positron Emission Mammography (PEM). A recent summary of 

peer-reviewed studies illustrates the ability of PEM to reliably detect early forms of cancer 

with high specificity independent of breast density [9] and hormonal changes. PEM has 

been shown to have a higher sensitivity than MRI for the smallest cancers (in part since 

it is not angiogenesis-dependent) and can be used to screen high-risk women at any age 

[9] [10]. 

Clinical PEM has come a long way: from its invention and the first feasibility studies in 

1994 [11]–[13] to the first commercially available PEM scanner (PEM Flex, CMR 

Naviscan Corporation, San Diego, CA), which was declared a "Leader in the Future of 

Molecular Breast Imaging" by Frost & Sullivan [14]. The success of the Naviscan PEM 

system is in its pioneering breast-dedicated, compact design, as opposed to general 

purpose, large footprint, WB PET systems. Figure 2.4 (left) shows the commercially 

available Naviscan PEM-FLEX Solo II system with two planar PET detector heads, 

Figure 2.4 - Left: Naviscan PEM-FLEX Solo; Right: Naviscan’s two detector heads with strip 
detectors inside 
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positioned on both sides of the slightly compressed breast. In comparison with WB PET 

scanners, the detector heads are located much closer to the imaged organ, thus 

improving the sensitivity in the area under investigation. As this is evident from Figure 2.4 

(left), the breast-dedicated design makes gamma-ray detection more efficient since a 

greater solid angle is subtended and the collection efficiency is improved. In addition, 

Figure 2.4 (left) demonstrates that because the detector heads are placed around the 

breast, they only detect signal from that part of the body, thereby increasing the signal-

to-noise ratio and improving image contrast. Because of finer pitch segmentation of the 

detector components spatial resolution and detection of smaller lesion are better than in 

current WB systems. The Naviscan system can detect lesions with resolution down to 

around 1.6 mm. Figure 2.4 (right) shows Naviscan’s two detector heads; as shown, each 

head consists of a clear casing containing a gamma-photon sensor in the form of a strip. 

Images are acquired by scanning the two strip sensors simultaneously within these 

casings across the breast. Each strip sensor employs scintillators (to convert gamma 

photons into visible light) optically coupled to vacuum photomultiplier tubes (PMTs) (to 

convert scintillation light into a measurable electrical signal). PMT-based technology does 

not allow the construction of a planar detector head large enough to cover the entire 

breast; this in turn requires the use of a scanning technique, which reduces the amount 

of time that the sensors are exposed to a particular breast region. Since moving detectors 

collect less of the injected radiation at a given time, this method results in longer 

acquisition times, decreased sensitivity and higher dose exposures. As a result, Naviscan 

technology limits the clinical use of PEM to cancer staging and treatment follow up. Also, 

scanning detectors require precise coordination between the movements of the two 

detectors or motion artifacts will be introduced into the image. 

Overall, widespread PEM application requires significant improvement in PEM 

technology to reduce radiation dose during PEM imaging (while keeping high spatial 

resolution) and to suppress radiation-induced cancer risk to that of digital mammography 

[15], [16].  

Typically, breast imaging protocols with a dedicated PET system (including Naviscan 

PEM-FLEX Solo) require an injection of 370 MBq (10 mCi) of 18F-FDG [17], resulting in 
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an effective dose to the breast of 3.4 mGy and an effective whole-body dose of up to 6.2–

7.1 mSv [15], [18]. This effective dose is more than 10 times the average effective dose 

of 0.5 mSv for digital mammography [15], [18] and poses a significant risk of radiation-

induced cancer from annual PET scans. From radiation-induced cancer risk standpoint, 

the activity of the administered 18F-FDG must be reduced to 70 MBq or less for a nuclear 

medicine scanner to be considered for applications in screening or in other procedures 

that involves undiagnosed patients [18]. These issues are addressed in the Radialis 

organ-targeted PET technology reported below. 

2.5 PET Image Reconstruction 

The goal of PET studies is to produce a quantitatively accurate image visualizing 

radiotracer distribution in an object of interest from which diagnostic decision or 

computable characteristics can be found. From high-level application point of view, a PET 

system works in 3 steps (refer to Figure 2.5).  

In this work, we are focusing on the image reconstruction part of the PET process. Once 

a coincidence is detected a dedicated electronics unit computes actual coordinate of the 

coincidence and saves them for future reconstruction either in the form of list mode data 

or sinogram. To get an image a further processing of the coincidence coordinates data 

are needed. The role of image reconstruction is to convert these measurements into a 2-

D or 3-D image that would quantitatively correspond to the distribution of the radiotracer. 

There are two primary approaches to image reconstruction: mathematical and statistical. 

Mathematical algorithms aim to utilize mathematics of the PET process and find a 

mathematical connection that would relate measured data and activity distribution. They 

Figure 2.5 - High level overview of PET work process 
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are often called “Analytical”, common examples are filtered back projection (FBP) and 

Fourier reconstruction. The statistical approach uses iterative methods to find the most 

accurate image representing the measured data. A short summary for both approaches 

is present below, more detailed discussion on reconstruction methods in PET can be 

found in [19]. 

Analytical image reconstruction for PET has the advantage of less computational burden 

on the system thus generating resulting images faster as well as simpler implementation 

relying on well-known mathematical constructs. The most popular algorithm in this group 

is FBP that has gained a lot of popularity for various tomographic reconstructions and is 

still often used in a clinical setting. However, there are a couple of limitations related to 

the inability to account for various degrading factors present in any PET scanner such as 

photon scattering, positron range, etc. In addition, statistical characteristics of the 

acquired data are not taken into consideration. Some of the shortcomings can be 

improved using a reconstruction filter; however, such methods normally result in 

decreasing the overall image resolution. 

2.5.1 Iterative Solutions 

The second common approach to PET image reconstruction are iterative reconstruction 

methods. In the first step we need to make an initial guess for the radioactivity distribution. 

Then we compare the measured distribution with the initial guess using an appropriate 

cost function and update the initial guess based on the result of the comparison using a 

dedicated update function. Then the process is repeated until our estimate does not 

match closely the true image. Due to limits imposed on the data quality usually it is very 

hard to reach the exact true distribution and in practice iterative algorithms have a stop 

condition based on the number of iterations to run. Most of the iterative solutions differ in 

either the cost function, the update function or both. The most widely used approach is 

MLEM method proposed in [20]. Nowadays, iterative algorithms have become a gold 

standard for clinical image reconstruction in PET systems [21], [22]. A common limitation 

with iterative reconstruction is their higher computational intensity compared to analytical 
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solutions. This is caused by the repetitive nature of the computations and the need to 

perform forward and back projection operations in each iteration.  

2.5.2 Maximum Likelihood Expectation Maximization (MLEM) 

Among different iterative algorithms for PET image reconstruction, the MLEM and its 

faster approximation version, the OSEM [23], stand out as the most common solution for 

clinical and research systems. Maximum likelihood is a statistical function which is 

maximized when we minimize the difference between the measured and estimated data. 

The Expectation Maximization (EM) algorithm maximizes likelihood using a Poisson data 

model [24]. It assumes that the measured data has a Poisson distribution identified by the 

counting statistics in each LOR hence considers the statistical noise in the data. Each 

iteration update of the MLEM algorithm for PET can be written as: 

 

𝜆𝑗
(𝑘+1)

=
𝜆𝑗

𝑘

∑ 𝐴𝑖,𝑗𝑖
∑ 𝐴𝑖𝑗

𝑖

𝑦𝑖

∑ 𝐴𝑖𝑗𝜆𝑗
𝑘

𝑖

(2.1) 

where the voxel value 𝜆 in a voxel 𝑗 for the iteration 𝑘 + 1 is calculated using the previous 

voxel value 𝜆𝑗
𝑘, measured projection data 𝑦𝑖, and the matrix  𝐴𝑖𝑗 that corresponds to the 

probability that a positron emission in a voxel 𝑗 will be detected in the projection 𝑖. Matrix 

𝐴 is often referred to as System Matrix (SM) or System Response Matrix (SRM). The 

algorithm works in the following way: the estimate image 𝜆𝑘 is forward projected into the 

projection space. Then the ratio between measured and estimated projections is 

calculated to see how well the estimate describes the measured data. This ratio is back 

projected back to the image space and is known as a correction term. Finally, the 

correction term is multiplied by the estimate (𝜆𝑗
𝑘) and normalized by the sensitivity matrix 

∑ 𝐴𝑖,𝑗𝑖  generating a new estimate 𝜆𝑗
(𝑘+1). These steps are repeated until either the 

algorithm converges, or the stop condition is met. It is important to mention that the initial 

estimate 𝜆0is required to start computations. Normally a uniform image with values > 0 is 

selected as an initial estimate. Figure 2.6 shows a basic flowchart describing internal work 

of the MLEM algorithm. 
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Figure 2.6 - Iterative PET reconstruction flow chart. Used with permission from [8] 

There are a couple of limitations that had to be addressed for the MLEM algorithm. First, 

the resulting images end up being rather noisy due to the bad conditioning of the problem 

[20]. Therefore, in practice the algorithm is stopped before convergence, different 

stopping rules were developed [25], [26]. Another solution to the image noise might be 

applying a smoothing filter [27]. Long reconstruction time of the MLEM algorithm due to 

high computational complexity and slow convergence rates (normally MLEM requires 30 

- 100 iterations for a practical result) has led to a lot of research on possible optimizations. 

For example, the OSEM algorithm[23] is an acceleration of the MLEM that uses only a 

subset of measured data in each iteration. OSEM can be described as: 

𝜆𝑗
(𝑘+1,𝑏)

=
𝜆𝑗

(𝑘,𝑏−1)

∑ 𝐴𝑖,𝑗𝑖∈𝑆𝑏

∑ 𝐴𝑖𝑗

𝑖∈𝑆𝑏

𝑦𝑖

∑ 𝐴𝑖𝑗𝜆𝑗
𝑘

𝑖

(2.2) 
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where 𝐵 denotes the number of subsets, and 𝑆𝑏 is the current subset in processing. As 

the result image updates are happening roughly 𝐵 times more often than in the traditional 

MLEM algorithm. It is an important condition to carefully choose B size and good data 

sampling is required. One downside of the OSEM algorithm is that it does not guarantee 

convergence into an ML solution. 

Overall, in order to make computational complexity of MLEM feasible for the clinical 

devices a shift from Central Processing Unit (CPU) to Graphics Processing Unit (GPU) 

architecture had to happen. What made PET image reconstruction a perfect candidate 

for General-Purpose computing on Graphics Processing Units (GPGPU) is the easily 

parallelizable and the most time-consuming operations of forward and back projection 

that are repeated on every iteration of MLEM. It turned out that they can be implemented 

extremely efficiently on the GPU architecture [28]. First attempts in adopting GPU for the 

iterative image reconstruction for PET started as early as 2003 by accelerating OSEM 

algorithm [29]. With the development of the GPU hardware a numerous development in 

GPU-based iterative PET image reconstruction were made. Transition to GPU allowed 

researchers not only to significantly improve reconstruction speed, sometimes up to 200 

times [30], but also to investigate and adopt more sophisticated physical models such as 

shift variant point spread function (PSF) [31], made use symmetry characteristics of 

imaging systems [32] and even attempts on image guided intervention using a PEM 

system [33].  

2.5.3 General-purpose Computing on Graphics Processing Units 

Graphics processing unit is a great example of a massively parallel architecture. GPUs 

were specifically designed to handle image processing and 3-D graphics related 

computations. With the advancement of GPU technology, it was soon realized that the 

same hardware can be used efficiently to for many scientific computational problems that 

fall under Single Instruction Multiple Data (SIMD) or similar Single Instruction Multiple 

Thread (SIMT) paradigm where the same set of instructions is executed on different data 

inputs or by different threads. The usage of GPUs for general computations was later 

named as GPGPU. At first, general-purpose usage of the GPU hardware required 
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problems to be rewritten using graphics primitives. Luckily, everything changed when 

Compute Unified Device Architecture [34] (CUDA) and OpenCL frameworks were 

developed to simplify problem reformulation and accessibility of GPUS as general-

purpose processing units. CUDA is now by far the most popular framework for GPU 

programming, it has a downside of only working with NVIDIA GPUs. However, the great 

thing about CUDA code is once it is written it can be utilized on the future GPUs without 

requiring code reformulation thus inherently taking advantage of the developing 

technology. 

Computing on GPUs has been successfully applied in medical imaging for different 

applications including CT, MRI, PET [35] to name a few. What makes GPGPU so powerful 

are some architectural choices made along the way of development of the hardware 

technology. 

Figure 2.7 visualizes architectural differences between CPU and GPU. The GPU 

emphasis on parallel processing is clearly visible comparing the number of cores or 

arithmetic logic units (ALU) between CPU and GPU. This allows GPUs to run order of 

magnitude more threads than a typical CPU. It is also clear that each individual CPU core 

has more control over its execution and memory resources available. A high-level 

comparison between features of CPU vs GPU architectures is present in the Table 2.2. It 

becomes apparent that CPUs win in terms of programmability and single core processing, 

Figure 2.7 - CPU vs GPU architecture 
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and that the key difference is how GPU makes use of high number of available cores. In 

our work we are utilizing CUDA framework for GPU programming and therefore further 

descriptions will closely relate to NVIDIA GPU programming approach, even though basic 

principles will remain the same and would not depend on a particular GPU manufacturer. 

Table 2.2 - CPU vs GPU architecture comparison 

CPU GPU 

Tens of cores in parallel Thousands of cores in parallel 

Good programmability Bad programmability (but there are tools: 
CUDA, OpenCL) 

Extremely fast single thread Single thread is on a slower side and not 
very capable 

Very well optimized Requires a lot of manual optimizations 

2.5.4 CUDA Thread & Memory Hierarchy 

CUDA is a GPU parallel computing platform developed by NVIDIA to provide a C/C++ 

like language extension with an appropriate application programming interface (API) for 

the GPU hardware. It is important to mention here a couple of key concepts that are 

natural for CUDA programming model. A GPU can run thousands of threads, these 

threads are organized in blocks and blocks are executed in parallel by the Streaming 

Multiprocessors (SM). All threads within a block share limited resource, there is a cap of 

maximum 1024 threads per block. There is another useful abstraction that organizes 

blocks on the programmer’s side which is grid. Figure 2.8 summarizes thread hierarchy 

in CUDA. 
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The second important resource on the GPU is memory, there are 5 primary memory types 

summarized in the Table 2.3.  

Table 2.3 - GPU Memory Hierarchy 

Memory type Scope Speed 
Register Thread Very Fast 

Local Thread Slow 
Shared Block Fast 
Global Grid Slow 

Constant Grid Fast Read 

Memory usage is a common place for optimization since speed for different memory types 

vary significantly. The fastest memory available is register memory, however it’s 

characterized by very limited size and programmers do not have control over register 

memory allocation. Second fastest memory is shared memory it is physically located on-

chip that allows it to have high bandwidth and extremely low latency. The size of the 

shared memory is configurable up to 96 KB per block on the latest GPU devices. Shared 

memory is shared between every thread running within a common block. Main bulk of 

GPU memory is also referred to as global memory is the place where any input data is 

copied from the host computer. Global memory is much slower than the shared memory 

Figure 2.8 - GPU thread hierarchy 
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and register memory therefore we aim to maximize coalescing of data access operations. 

Local memory is just an abstraction on top of the global memory that is only accessible 

on a single thread level. Finally, constant memory resides together with the global 

memory but provides a faster read access because it is cached in a constant cache. 
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3 Radialis PET - State-of-the-art Clinical Organ-
Targeted System 

After covering general PET information as well as making an introduction to the image 

reconstruction algorithms used in PET, I would like to introduce the Radialis PET Camera 

as a state-of-the-art clinical organ-targeted PET system. 

3.1 System Characteristics 

Dr. Reznik and her research team invented and patented a novel solid-state technology 

for organ-targeted PET with improved sensitivity, capable of significant dose reduction 

(factor of 10) in comparison to commercial WB PET scanners. The improvement was 

made possible by the development of a new type of four-side tillable sensor modules 

shown in Figure 3.1 (left). Each module employs an advanced scintillation crystal, Cerium 

doped Lutetium Yttrium Orthosilicate (LYSO), in combination with a matching array of 

high-gain photodetectors - Silicon Photomultipliers (SiPMs). LYSO and SiPMs are 

optically coupled through a specially designed light guide with slightly slanted edges so 

that the front face and the back face of the light guide have the exact dimensions of the 

scintillating crystal array and the photodetector layer, respectively. All the modules’ 

components and front-end electronics are mounted in such a way that none of the 

components is larger than a specially designed scintillating crystal. As a result, the 

scintillating crystal has an overhang over the photosensor array to maintain 100% 

tileability: all four sides of the modules are tiled against each other so that they can be 

seamlessly combined into a sensor area of the needed size. Figure 3.1 (right) shows an 

Figure 3.1 - Left: Schematic presentation of the cross-section of three tiled detector blocks; Right: the photo of a 
block detector with an electronic board underneath. 
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actual detector block with the slanted-edge light-guide mounted onto a PCB board with 

the front-end electronics.  

The technology is commercialized by Radialis, Thunder Bay, Ontario, and is now called 

Radialis organ-targeted PET camera. The first application of the Radialis organ-targeted 

PET camera is in a breast imaging. The breast-targeted design is similar to that of PEM 

(Figure 3.2 left). For breast imaging, 12 sensor modules are arranged in a 4x3 array to 

make a planar detector head (Figure 3.2 right).  For image acquisition, two detector heads 

are positioned on either side of the immobilized breast. The size of an individual module 

is 58×58 mm2, which results in a sensor area of 232x174 mm2 that provides a sufficient 

field-of-view (FOV) to cover the entire breast. The developed breast-targeted system has 

been tested with a comprehensive set of standardized experiments outlined in the NEMA 

NU-4 standards [36]. These tests demonstrated an in-plane spatial resolution of 2.3 ± 0.1 

mm that is comparable to best-in-class organ-targeted PET scanners, combined with a 

peak sensitivity of 3.5%, which is much better than the sensitivity of any WB or organ-

targeted PET scanner on the market or in clinical trials. 

Another parameter that characterizes the efficiency of activity detection in PET imaging 

is Noise Equivalent Count Rate (NECR). NECR describes the true coincidence rate that 

would give the observed signal to noise ratio (SNR), or the same level of statistical noise, 

if there were no randoms and no scattered events. NECR performance is normally 

Figure 3.2 - Left: Clinical prototype of PEM camera with two planar detector heads; Right: 3×4 array of sensor 
modules inside a detector head (bottom). 
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evaluated over a clinically relevant activity range using a specialised phantom filled with 
18F solution, and efficiency at peak noise equivalent count rate is determined as the peak 

NECR normalized to the activity at the peak. Table 3.1 presents the efficiency at peak 

count rate for several PET systems including organ-targeted, whole-body, and total-body 

systems. It can be seen that the Radialis PET camera exhibits much higher efficiency at 

peak count rate when compared to current WB systems. The SiPM-based total body PET 

technology of uExplorer also provides superior sensitivity in comparison to the WB 

systems, achieved with detectors that completely cover the axial length of a patient’s 

body. Radialis’ SiPM-based organ-targeted technology uses the same approach: the 

coverage of the Radialis system is larger than the organ being imaged and improves the 

sensitivity from the increased axial extent of the detectors. 

Table 3.1 - Values for efficiency at peak count rate are calculated from the peak NECR data reported for each 
system. 

PET System Efficiency at 
Peak Count 
Rate (cps/MBq) 

Peak 
NECR 
(kcps) 

Concentration at 
Peak NECR 
(kBq/mL) 

Phantom 
Volume 
(mL) 

Activity at 
Peak 
NECR 
(MBq) 

Radialis PET 
Camera (NU-4) 

5,650 17.8 10.5 300 3.15 

uExplorer [37] (NU-
2) (Total Body) 

3,790 1440 16.8  22,600 380 

Oncovision Mammi 
PEM Dual Ring 
(NU-4) [38] (PEM) 

1,260 34.0 31.2 866 27.0 

GE Discovery IQ 
[39] (PET/CT) 

618 123.6 9.1 22,000 200 

GE Discovery MI 
(NU-2) [40] 
(PET/CT) 

581 266 20.8 22,000 458 

Phillips Vereos (NU-
2) [41](PET/CT) 

556 646 52.8 22,000 1,160 

GE Signa PET [42] 
(PET/MR) 

524 218 17.8 22,600 402 
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Siemens Biograph 
Vision (NU-2) [43] 
(PET/CT) 

435 306 32 22,000 704 

Naviscan PEM Flex 
Solo II [44] (NU-4) 
(PEM) 

393 10.6 90 300 27.0 

In the clinical setting, the higher sensitivity, and the fact that the counting rate peaks at 

relatively low activity values allow the activity of the administered radiopharmaceutical to 

be reduced. In fact, clinical demonstration with imaging in breast revealed that the 

Radialis PET technology is well-suited to identifying cancers even at a 10-fold dose 

reduction in comparison with standard WB PET dose (see the selected results from the 

clinical trials (ClinicalTrials.gov ID: NCT03520218) at the UHN-PMCC in Figure 3.3). An 

injection of 37 MBq (1 mCi) of 18F-FDG corresponds to an effective radiation dose of less 

than 1 mSv, which is estimated to be equivalent to the effective dose from the standard 

breast screening procedures with Full-Field Digital Mammography (FFDM) or Digital 

Breast Tomosynthesis (DBT) [18]. 

 

Figure 3.3 - Images of the same breasts. Left: full-field digital mammography (FFDM); B: Radialis PEM image acquired 

with 37 MBq of activity that is 10 times lower than the standard dose used in WB PET imaging. The focal uptakes on 

PEM image (arrow and arrowhead in right image) corresponds to one mass (arrow in left image) detected on FFDM, 

however the other mass that was also histopathology proven was detected only in PEM images despite using a low 

dose [45]. 

The demonstrated capability for imaging at low dose of administered radiotracer suggests 

that Radialis organ-targeted PET technology could be used in low-dose clinical 

applications such as breast and prostate cancer screening, the multiple examinations 

required for prostate cancer patients on active surveillance, and neuro degenerative 
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examinations. High-quality organ-targeted imaging may also be particularly well-suited to 

applications with emerging targeted radiotracers.  

3.2 Radialis Imaging Process 

Being a clinical system brings more complexity into Radialis PET’ imaging process. The 

Figure 3.4 provides a high-level overview of all the steps involved in generating a clinical 

image. The operation starts with a coincidence detection; a dedicated electronics unit is 

responsible for detector signal readout and event/coincidence coordinates reconstruction. 

Once coordinates for the coincidence are reconstructed, they are being transferred, along 

with energy and time information, to the main computer via UPD connection in a binary 

format. More in-depth discussion of the acquisition process and data type generated by 

electronics is out of scope of this work. During a patient scan the main computer is 

constantly monitoring the UDP connection and saving all the incoming data. As soon as 

the amount of saved data passes a certain threshold the system starts to generate a 

series of preview images (top branch on the Figure 3.4) using a small subset of events 

acquired thus far in order to ensure correctness of patient’s position and monitor any 

patient’ movements during scan. Once the acquisition is over (a typical acquisition 

duration is 5 – 10 minutes) the main computer stops saving the coincidence information 

to disk. Immediately after that a separate pipeline for image reconstruction is started in 

the background (bottom branch on the Figure 3.4). 
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It starts with transforming the raw data into the list mode format suitable for reconstruction. 

Then, the first image reconstruction is made to get preliminary image that is later used in 

the attenuation and scatter corrections. Scatter correction is needed to reduce image blur 

while attenuation correction (AC) is required for quantification of PET images in terms of 

an accurate correlation between image counts and true tissue activity. Before a Digital 

Imaging and Communications in Medicine (DICOM) file can be generated the system 

needs to perform image segmentation map and use it to apply attenuation correction 

during 2 more reconstruction runs one with upper energy window and one with regular 

parameters. Then the results of the reconstructions can be combined to apply scatter 

correction. Finally, a 3D image is converted into a DICOM file which ultimately is the result 

of the procedure. Each image reconstruction is a separate 15 iteration Radialis MLEM 

run. Such approach yields great results for clinical image quality; however, it makes any 

inefficiencies in the image reconstruction to propagate 3 times affecting the overall 

performance. 

Figure 3.4 - Hight level overview of the imaging process used by Radialis PET. 
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A single patient scan consists of multiple data acquisitions for different detector positions. 

For each acquisition a separate 3D image is generated. This and the need to generate 

preview images would not allow to allocate all the system’s resources to the image 

reconstruction task. Image reconstruction is by far the most time-consuming part of the 

imaging process. Ideally the time needed to reconstruct an image should not be longer 

than acquisition, so it is very important to make sure that reconstruction is fast. Currently, 

image reconstruction time by far exceeds image acquisition time. 

3.3 List Mode Reconstruction 

The traditional MLEM algorithm had to be reworked to be suitable for the data in list mode 

format that differs from projection data of sinograms that the MLEM was initially designed 

to work with. The required modifications were straightforward [46], [47]. The updated 

MLEM algorithm can be formulated by replacing 𝑦𝑖 in Equation 2.1 with the sum over all 

recorded events (see Equation 3.1). 

𝜆𝑗
(𝑘+1)

=
𝜆𝑗

𝑘

∑ 𝐴𝑖,𝑗𝑖
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1

∑ 𝐴𝑖𝑤𝑗𝜆𝑗
𝑘

𝑗

(3.1) 

The main difference with the sinogram based MLEM is that instead of evaluating the sum 

on the right-hand side over the whole set of projections we do it only for the list of 

measured coincidences. Thus, in practice we no longer need to process every possible 

LOR in the FOV that comes handy for high-resolution systems. In case of Radialis PET 

list mode reconstruction was beneficial also due to a limited angle coverage of the dual-

head planar detectors. If we were to construct sinograms based on measured data, we 

would not be able to cover every angle therefore leaving parts of it empty. Additional 

advantages of the list mode data were discussed in the Data Format section. 

A highly optimized CPU-based implementation of the List mode MLEM was developed. 

Some of the key features included: computation of the SM on-the-fly, single pass through 

the list of events, Forward projection and Back projection combined within the main 

events processing loop for a single iteration. Due to the nature of the algorithm each event 
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could be processed independently. OpenMP API was used to utilize multiple CPU cores 

for the events processing part of the algorithm.  

Apart from OpenMP for computations parallelization, OSEM algorithm was considered at 

first; but after comparing potential gains from OSEM and GPU-based implementation 

approaches, we decided to focus on the GPU-based approach with an ability to extend 

MLEM implementation to OSEM in case further speedup would be needed. The potential 

gains from OSEM are normally 5-10 times faster than MLEM counterparts whereas GPU-

based solutions demonstrate 100+ times speedup for image reconstruction speed. In 

addition, the implementation of OSEM would have required additional elaborate image 

quality testing to ensure that clinical system’s performance would remain intact. 

To improve image quality and quantitative accuracy of radioactivity distribution 

determination in reconstructed PET images two data corrections are applied: attenuation 

and scatter as mentioned in Section 3.2. 

It is typical to use anatomical imaging (i.e., CT transmission scan data) to estimate 

attenuation of photons in WB PET/CT [48]. However, being a standalone PET device, we 

do not have access to the anatomical data, so an alternative approach is used. 

Attenuation correction in Radialis PET is similar to the one proposed in [49]. Knowing 

which organ is under study we know an approximation of the attenuation coefficient in 

tissue of the given organ. Then we build a segmentation map based on the preliminary 

reconstruction (See Figure 3.4). The map contains linear attenuation coefficients that are 

used in the next reconstructions to adjust weight for each LOR. 

The scatter correction is performed by the Estimation of Trues Method (ETM). This 

method was proposed in [50]. The general concept behind this method is that the 

percentage of scattered events in high energy window is negligible relative to this 

percentage in the standard energy window. We implement it by first reconstructing an 

image with standard energy filter (0.35 MeV – 0.7 MeV), then the second image is 

reconstructed but only considering events with higher energy (0.5 MeV – 0.7 MeV). 

Second image is scaled to match the number of unscattered events in the first image. 

Scaled second image is subtracted from the first image, essentially leaving only the image 
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of scattered events. Scattered events image is smoothed and subtracted from the first 

image. 

The result of the image reconstruction is a so-called raw image containing the 3D 

distribution of calculated voxel values. The final step is to convert such 3D image into a 

DICOM file that can be assessed by medical professionals. 

3.3.1 Image Examples 

The following images in Figure 3.5 represent various steps of the Radialis imaging 

process. The data was acquired and reconstructed using Radialis PET camera. A series 

of preview images (Figure 3.5 top-right) are generated during image acquisition. Then a 

basic reconstruction with no corrections is applied (Figure 3.5 bottom-right). Finally, once 

both attenuation and scatter corrections are applied a final image is reconstructed (Figure 

3.5 bottom-left).  
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Figure 3.5 - Different steps in Radialis imaging process 

 

3.4 Problem Formulation 

Organ-targeted PET is novel in its clinical implementation, and ensuring widespread 

adoption requires addressing several key issues. These include device performance in 

terms of sensitivity, spatial resolution and image quality, standardization of image quality 

quantification methods, clinical trial protocol development and adjustment for lower dose 

imaging, high patient throughput requirements. Radialis PET is a clinical organ-targeted 

PET system that successfully addresses the needs for imaging performance and 
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sensitivity to radiotracers. There are two key components which determine the rate of 

patient throughput: acquisition duration and image reconstruction speed. Radialis PET 

was able to successfully lower the acquisition time 3 - 6 times (compared to WB systems) 

by improving overall system sensitivity, however image reconstruction speed remains 

less than desirable. At present, an average image reconstruction takes between 20 

minutes to a couple of hours to generate an image, which is significantly more than the 

acquisition time of 5-10 minutes. The goal of this work is to address the issue of image 

reconstruction speed by identifying bottlenecks in the current implementation and to 

develop a novel formulation of highly optimized MLEM algorithm for PET image 

reconstruction on GPU that would be suitable for the clinical setting of the dual-head 

planar organ-targeted Radialis PET Camera. 
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4 Application of GPU-based Reconstruction for a 
Clinical Organ-Targeted PET Scanner 

4.1 Introduction 

Clinical and laboratory evaluation of the organ-targeted Radialis PET Camera indicate 

that it is a promising technology for high-image-quality, low-dose PET imaging. High-

efficiency radiotracer detection also offers an opportunity to reduce administered doses 

of radiopharmaceuticals and, therefore, patient exposure to radiation. However, 

widespread clinical use of the Radialis PET camera imposes new requirements in terms 

of patient throughput. Patient throughput is directly correlated with both the acquisition 

duration and time needed to reconstruct an image that depends on image reconstruction 

speed. Higher sensitivity allows Radialis PET to successfully lower the acquisition time to 

about 5 min (to be compared with about 30 minutes needed to complete a WB PET/CT 

scan), however, currently developed CPU-based image reconstruction takes too much 

time to be effectively used in a clinical setting. The current reconstruction method 

produces desirable image quality while requiring tens of minutes and up to hours to 

reconstruct a typical clinical image using multiple CPU cores.  A clinical scan is 

considered complete when both image acquisition and reconstruction have concluded, at 

which point the patient can be released.  Therefore, image reconstruction should not take 

longer than the time required to acquire the image data. Minimizing image reconstruction 

time for improved patient throughput with the Radialis PET system is the motivating factor 

for our research.  

An obvious candidate for the reconstruction speedup is a GPU-based approach. It has 

been shown [35] that reformulation of tomographic reconstruction using GPUs in nuclear 

medicine and medical imaging enables ultrafast image reconstruction. For PET this 

creates possibilities for adaptation of interactive reconstruction parameters adjustments 

for noise/resolution balancing [51], [52], intra-operative imaging for tumor localization [33], 

and even attempts at dynamic motions correction in cardiac PET [7]. And, of course, 

speeding up image reconstruction addresses the problem of patient throughput for clinical 

PET procedures. GPU usage has already become a “gold standard” for image 
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reconstruction in PET. Our goal is to complement the advanced hardware technology with 

a GPU-based image reconstruction to enhance processing speed.  

From a high-level view, computational work associated with forward and back projection 

operations (the most time-consuming component of the MLEM algorithm) is highly 

parallelizable as each LOR can be processed independently. Due to specifics of the GPU 

architecture a complete reformulation of a typical CPU-based reconstruction solutions is 

required to achieve maximum performance increase. There has been a lot of research in 

terms of MLEM algorithm adaptation for GPU, however, due to the significant number of 

parameters that characterize a PET system (detector geometry, data format, application 

domain, presence of other imaging modalities, etc.) it becomes hard to find a one-fits-all 

solution for a specific system’s requirements. In particular, [32] proposed exploiting 

symmetry properties of the dual-head planar PET during GPU-based reconstruction in 

order to reduce system matrix (SM) size. The proposed solution works well for the 

sinogram data; however, it is not efficient for the sparce list mode data. Ref [30] proposed 

a CUDA algorithm utilizing several unique GPU properties for list-mode OSEM 

implementation. They exploited LOR partitioning according to predominant direction, 

image slice caching in fast shared memory for slice-by-slice processing of the measured 

events, and Tube of Response (TOR) approach to accurately model the SM. Then, [53] 

expanded on their work utilizing a double-GPU hardware setup. In addition, [53]  improved 

on slice-by-slice processing by further splitting the image into cubes and processing these 

cubes independently on GPU using a faster resolution blurring algorithm (RBL) version 

of the OSEM algorithm. Both [30] and [53] were used as a foundation for the algorithm 

we propose in the current work, however, both works target ring detector geometry and 

have specific assumptions and optimizations based on this. Moreover, some of the 

existing CPU-based image reconstruction features must be incorporated to ensure 

stability of the image quality. A great emphasis was placed on further parallelization of 

the iterative reconstruction algorithms for multiple GPU devices [53]–[55] considering 

different solutions for device synchronization and iterative image update schemes. The 

Radialis scanner has a single NVIDIA GTX 1070 GPU available, which limits the solutions 

that are suitable for this scanner. However, the multiple GPU approach is a 

straightforward extension and can be explored for future systems. 
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In this chapter, we present our gradual process on reformulating a clinical 3D list-mode 

MLEM image reconstruction algorithm from CPU to GPU architecture using CUDA 

framework. The process involves step-by-step transition from CPU-based reconstruction 

to naïve GPU-based implementation, later expanding it with a complete reformulation to 

take advantage of the GPU architecture. This work is based on previously developed best 

practices which are optimized for the Radialis PET and aimed at improving patient 

throughput. We emphasize that such reformulation shall enhance the reconstruction 

throughput and should not result in any deterioration in clinical imaging performance. To 

evaluate this, the resulting GPU-based algorithm was compared to the CPU counterpart 

and evaluated in terms of speed, clinical image quality and system performance indicators 

obtained with standardized tests performed according to NEMA NU-4. It should be 

specified that Radialis PET is a non-ToF scanner [45], and therefore our proposed 

implementation does not include ToF reconstruction. 

4.2 Methods & Tools 

This section introduces methods and tools that are applied to reformulate MLEM 

reconstruction algorithm for the GPU architecture. Outlined are details on the Radialis 

PET scanner including its coordinate system, in addition to key GPU programming 

principles. The primary focus of this section is a progressive description of the algorithm 

reformulation process. Naïve GPU-based solution without any optimizations was 

developed initially as a baseline for future improvements. 

4.2.1 Radialis PET Detectors 

Sensor modules in Radialis PET detectors use high segmentation of the LYSO scintillator 

to achieve the required spatial resolution: LYSO is pixilated to make a 24 × 24 grid with 

each pixel being 2.32 mm × 2.32 mm × 13 mm. Schematics of the detector heads along 

with the adopted coordinate system is presented in Figure 4.1. 
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Figure 4.1 - Radialis PET detectors high-level schematics and coordinate system 

The total size of the detector FOV is 232 mm × 174 mm. Dedicated acquisition electronics 

allow data to be saved on the primary computer as a binary file for further processing by 

the reconstruction software. Reconstruction generates results as a 3D DICOM image with 

default resolution 577 x 433 x 24 voxels. Individual voxel size is 0.4 mm x 0.4 mm and z 

dimension is calculated based on the detector heads separation by dividing the distance 

between detectors by the default number of Z slices. Radialis detectors design is 

described in detail in [45].  

4.2.2 List Mode MLEM 

The iterative list mode MLEM algorithm [46] can be summarized as 

𝜆𝑗
(𝑘+1)

=
𝜆𝑗

𝑘

∑ 𝐴𝑖,𝑗𝑖
∑ 𝐵𝑃𝑤

𝑤 ∈ 𝑒𝑣𝑒𝑛𝑡𝑠

1

𝐹𝑃𝑤𝜆𝑗
𝑘 (4.1) 

where  𝜆𝑗
𝑘 is a voxel value of voxel 𝑗 of the 3D image 𝜆 at iteration 𝑘, FP and BP 

correspondingly represent forward and back projection operations over the list of all 

detected coincidences. FP computes contribution of every voxel to every LOR and BP 

counts contributions of every measured LOR to every voxel. The system matrix 𝐴 

corresponds to a distribution of probability that a particular line of response (LOR) 𝑖 is 
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detected in a voxel 𝑗. In practice, the size of the SA is significant [56]. Considering high 

resolution of Radialis PET it would be very computationally demanding and impractical to 

precompute the system matrix. Therefore, other methods for computing SM on-the-fly 

were proposed in [57] and [58]. Radialis PET utilizes a custom algorithm based on [59] 

and [57] to calculate system matrix on-the-fly. The 1

∑ 𝐴𝑖,𝑗𝑖
 is a so-called normalization term 

or a sensitivity matrix. Initially, Radialis PET MLEM was implemented as highly optimized 

CPU-based solution. To improve the performance, the FP and BP were computed serially 

for each event within a single pass over the list of events. A high-level flow chart of the 

steps involved in CPU-based implementation is shown in Figure 4.2. 

 

Figure 4.2 – High-level flow chart for CPU implementation of MLEM 

The program starts with reading the configuration file and the list of events from the 

computer drive. Optionally, attenuation factors are calculated if an appropriate 
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segmentation map is passed as an argument to the program. The next step is to calculate 

the sensitivity matrix, after which the most time-consuming component of reconstruction, 

being FP and BP, is complete. Finally, division by the sensitivity matrix and image 

regularization using median root prior (MRP) [60] method finalize a single iteration. An 

MRP filter is used to stabilize the noise in the MLEM algorithm. The main advantage of a 

median-based filter is that it does not blur the edges of bright objects in the image. This 

summarizes the CPU-based approach. The following sections describe the steps taken 

to reformulate and efficiently implement this algorithm on GPU. 

4.2.3 Efficient GPU Programming 

Although GPU hardware comes with a great computational power, it requires careful 

planning and algorithm design to fully utilize its potential. Key considerations include: 

avoiding thread divergence, minimizing lower bandwidth global memory usage and 

ensuring coalesced memory access, improving the ratio of arithmetic to memory 

operations, and usage of faster memory types such as shared memory, constant memory, 

caches [34].           

Another common issue in parallel programming is memory writing conflicts. Fortunately, 

CUDA provides API for atomic operations starting in Fermi architecture [34]. The atomic 

operations are guaranteed to execute without interruption from other threads, thus they 

are suitable for situations when simultaneous write operations might happen into the 

same memory location from different executing threads. However, it is still the 

programmer’s responsibility to ensure appropriate usage of such operations to maintain 

integrity of the results. Atomic operations serialize execution and decrease efficiency of 

the GPU and should only be used when necessary. 

Finally, optimizing occupancy of streaming multiprocessors is important to ensure 

maximum throughput. Streaming multiprocessors occupancy is determined by 2 factors; 

number of threads that run simultaneously and amount of shared memory usage. Once 

the amount of shared memory utilization is established, one must balance the number of 

threads/blocks for individual CUDA kernel launches.  
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4.2.4 Naïve GPU Implementation 

We present the first attempt on reformulating Radialis MLEM for GPU. It is called “naïve” 

because none of the GPU-specific optimization techniques are used in this 

implementation and the primary focus was on transferring the execution of the most time-

consuming event projections operation to GPU. Figure 4.3 shows an updated flow chart 

for the naïve GPU algorithm reformulation. Two new operations for copying data from 

CPU to GPU and copying result of the projections back to CPU were added. Execution 

environment for projections of events data was changed to from CPU to GPU.   

 

Figure 4.3 - Naive GPU 
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In the foundation of projection operation itself lies a line tracing algorithm, Radialis PET 

uses a fast and accurate voxel traversing algorithm proposed in Ref. [59]. The same 

algorithm was ported to GPU. All LORs are divided by the number of GPU threads in use. 

Then, each thread is assigned a subset of all LORs. Each LOR is processed separately 

via a single thread, and atomic operations are used when a thread needs to update image 

space after back projection. The aim of this implementation is to establish a baseline for 

GPU reconstruction performance that would help in assessing effects of future 

optimization techniques. 

4.2.5 Reducing Data Transfer Overhead 

Memory transfer between CPU and GPU is slow and inefficient [34] and should be 

minimized where possible. The naïve implementation does not account for this and 

requires memory transfer between CPU and GPU for every iteration. It is a straightforward 

change to reduce the number of data transfer operations to 2: before starting the first 

iteration, upload all necessary data such as list of events, FOV properties, image space, 

estimate space, etc. Once the required number of iterations is reached, the results of the 

execution are copied and saved to the disk. This change led to reformulation of all 

additional operations (normalization and MRP image regularization) that are repeated 

with each iteration. Normalization is done by multiplying our estimate by the 1

∑ 𝐴𝑖,𝑗𝑖
 where 

÷ is an element-wise division and it is easily portable to GPU since each image matrix 

element is calculated separately. The MRP regularization being a 3D median filter in its 

core can be efficiently reimplemented on GPU. In addition, attenuation factors calculation 

was also ported to GPU, because it is very similar to the event projections operation and 

only minor modifications were required to the function. Figure 4.4 presents these 

differences in the float chart. 
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Figure 4.4 – Data transfer optimized GPU reconstruction flow chart 

4.2.6 Coalesced Memory Access and Compiler Optimizations 

Global memory layout plays an important role in CUDA program’ performance. Due to 

slower speed, it is important to ensure coalesced access to the global memory so that 

memory transactions within a warp of threads (each thread block is divided into 32 thread 

warps) are combined into a single transaction [34]. In our case, a bottleneck was found 

in the organization of the image space in memory. We vectorize our image space into 1D 

array for convenient processing on GPU. In the initial implementation the vectorization 

was done starting with the Z axis, following by Y and X (See Figure 4.5 top). However, 

given planar detectors, the majority of measured LORs go along the Z axis (from one 

detector to another) and considering a limited number of Z slices most of adjacent voxels 

found during projection algorithm are X or Y adjacent, but when having the memory 

alignment described before these voxels end up located far from each other in the 
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memory thus resulting in non-coalesced access. Rearranging data in the global memory 

helped to improve global memory performance (See Figure 4.5 bottom). 

 

Figure 4.5 - Adjusting image space vectorization approach to improve coalesced thread access to the GPU’ global 

memory. Top: Vectorization is happening along Z axis first then Y then X. Bottom: Revisited approach, vectorization 

along X axis first then Y then Z. nx, ny, nz are constants representing a total number of voxels along the x, y, z axis 

correspondingly. 

NVIDIA GPUs and CUDA provides intrinsic alternatives for some of standard 

mathematical functions implemented on the hardware level. Such functions work faster 

and can be enabled via compiler flag -use_fast_math. This may result in a lower precision 

accuracy; however, our experiments show that enabling intrinsic functions does not 

impact the accuracy of results. 

These optimizations mark a milestone in our reformulation process since we have not 

changed the conceptual approach to the reconstruction. Both FP and BP are done within 

a single projection operation (See Algorithm 4.1). 
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Algorithm 4.1 - Main loop for the projection operations, both FP (lines 3-10) and BP (lines 11-17) are done within the 
same event processing loop via a single thread 

   1: for each line assigned to the thread do 
2: Read coordinates and weight lw for line l from global memory 
3: Find the list of voxels V that l intersects 
4: for voxel = 1, 2, . . . , V do 
5: Find the length of the intersection LineLength of l and voxel 
6: if LineLength > 0 then 
7: weight[voxel] ← LineLength ∗ previousVoxelValue 
8: Add the contribution weight[voxel] to the TotalSum for the 

current line 
9: end if 

10: end for 
11: if TotalSum > 0 then 
12: for voxel = 1, 2, . . . , V do 
13: Calculate the contribution w of the l to the voxel 
14: w ← (weight[voxel] ∗ lw)/TotalSum 
15: Atomically add w to the image space in global memory 
16: end for 
17: end if 
18: end for 

  

4.2.7 Shared Memory & Slice-by-slice Processing 

Even with all the GPU-specific optimizations added thus far the nature of the 

computations implemented in Algorithm 4.1 are intrinsically more suitable for CPU 

architecture. In order to implement both FP and BP within the same iteration over the list 

of events, the voxel traversing algorithm must take into account the whole FOV while 

traversing a LOR from one detector to another. The need to store all intersected voxels, 

to be later used in FP and BP calculations, creates an extensive memory overhead and 

in case of GPU implementation the only memory type that can handle its size is slow 

global memory. Having this memory overhead when threads are simultaneously reading 

and writing excessive amount of data to/from the global memory affects the performance. 

This leads to a situation when memory transactions take most of the computation time. 

To address this issue, we propose an approach similar to other work in [30], [53] when, 

in order to avoid excessive global memory consumption, FOV may be split into smaller 

pieces and processed individually. Such method requires extracting FP and BP 
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operations from Algorithm 4.1 to use them independently. The difference of our approach 

is that we do not cache a slice of the image space itself into the fast shared memory, but 

instead we propose caching the list of voxels which a particular LOR intersects within a 

slice. Changes to the high-level flow chart diagram of the MLEM process are presented 

in the Figure 4.6. 

 

Figure 4.6 - GPU reconstruction including all presented optimizations 

The main difference is that the projections of the event data is now split into separate FP 

and BP operations.  

4.2.7.1 Forward projection 

The idea of FP remains to calculate the contribution of a given voxel along an LOR to the 

total projection value of the LOR. Implementation details are present in Algorithm 4.2. We 

first initialize enough shared memory to store the list of intersected voxels for each thread. 

Then we process the image slice-by-slice along the Z axis. Voxel traversing algorithm is 

applied using the previously allocated to store the intersected voxels and speed up the 
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memory access. Finally, total sum for an event within current slice is added to the total 

sum of the event in the global memory. Atomic operations are not necessary here 

because each event is processed by its own individual thread. 

Algorithm 4.2 - Forward projection 

1: Initialize shared memory to hold intersected voxels 
2: for each slice along Z axis do 
3: for each line assigned to the thread do 
4: Read coordinates and weight lw for line l from global memory 
5: Find the intersection voxels V between the l and the current slice. 

Save V in the shared memory 
6:  Find the length of the intersection LineLength of l and current 

slice 
7: VoxelLength ← LineLength/length(V) 
8: for voxel = 1, 2, . . . , V do 
9: if VoxelLength > 0 then 

10: weight[voxel] ← VoxelLength ∗ previousVoxelValue 
11: Add the contribution weight[voxel] in the current slice to 

the SliceSum for the current line 
12: end if 
13: end for 
14: Atomically add SliceSum to the lorSum[l] in the global memory 
15: end for 
16: end for 

  

4.2.7.2 Back projection 

BP differs from FP in that it calculates the contribution of a measured LOR to every voxel 

it passes through. Implementation details are present in Algorithm 4.3. The approach is 

very similar to the one in FP in terms of shared memory usage. Even though with this 

approach, the program needs to calculate voxels that a line intersects with twice (once in 

FP once in BP) doubling the computations. This is still more than excessive global 

memory transactions in the previous implementation. 
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Algorithm 4.3- Back projection 

1: Initialize shared memory to hold intersected voxels 
2: for each slice along Z axis do 
3: for each line assigned to the thread do 
4: Read coordinates and weight lw for line l from global memory 
5: TotalSum ← lorSum[l] 
6: Find the intersection voxels V between the l and the current 
slice. 

Save V in the shared memory 
7:  Find the length of the intersection LineLength of l and 

current slice 
8: VoxelLength ← LineLength/length(V) 
9: for voxel = 1, 2, . . . , V do 

10: if V oxelLength > 0 then 
11: Calculate the contribution w of the l to the voxel 
12: weight[voxel] ← VoxelLength ∗ previousVoxelValue 
13: w ← (weight[voxel] ∗ lw)/TotalSum 
14: Atomically add w to the image space in global memory 
15: end if 
16: end for 
17: end for 
18: end for 

  

4.2.8 Evaluation Methods 

In order to evaluate the proposed algorithm, computer hardware identical to the one 

deployed in the clinical system was used: Intel Core i7-6800K CPU with 6 cores/12 

threads and 3.4 GHz clock speed and NVIDIA GTX 1070 GPU with 1920 CUDA cores 

grouped into 15 streaming multiprocessors, and 48 kB of shared memory per block. In 

comparisons between CPU and GPU-based method, unless specified otherwise, 8 CPU 

threads are utilized while GPU reconstruction only relies on a single CPU thread. Default 

clinical image resolution (577x433x24) and number of iterations in the MLEM 

reconstruction (15) were used. For the reconstruction speed evaluation, we measured 

execution time of the CPU and GPU-based methods. The effect of different optimization 

techniques presented in sections 4.2.4 - 4.2.7 was analyzed. The optimal GPU-specific 

parameters, such as number of blocks were found and used for execution of GPU-based 

algorithms. 
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Image quality comparison is based on visual analysis of clinical and phantom images 

along with a set of standardized NEMA-NU-4 tests. NEMA NU-4-based evaluations are 

very common for small animal and organ-targeted PET devices [61]–[64]. Part of the 

NEMA NU-4 based analysis of Radialis PET can be found in [45]. 

4.2.8.1 Visual assessment of clinical images 

Comparison for both reconstruction speed and image quality between CPU-based and 

GPU-based reconstruction was performed using clinical data. The Radialis organ-

targeted PET Camera is currently undergoing clinical trial at UHN-PMCC. Participants in 

the study are women with a newly diagnosed breast cancer; they receive a clinical 

indication for diagnostic medical imaging tests like full-field digital mammography (FFDM) 

with or without digital breast tomosynthesis (DBT), or breast MRI, or WB PET/CT scan. 

This permits to compare the diagnostic capabilities of Radialis PET with standard clinical 

breast cancer imaging modalities. 

Prior to an imaging session with Radialis PET system, participants are injected with 18F-

FDG in the range of activities between 37 and 307 MBq (activity is chosen randomly and 

does not depend on the clinical case). Each participant rests for 60 minutes to allow for 

the 18F-FDG uptake, followed by Radialis PET image acquisition. Features of known 

malignancies and additional PET findings were recorded and correlated with 

histopathology as the ground truth. 

The majority of clinical images acquired within the scope of this clinical study were used 

to assess how the reconstruction speedup affects clinical image quality. Two of the clinical 

images along with detailed description are provided below to visually compare image 

quality between the baseline CPU reconstruction and the proposed GPU-based solution. 

4.2.8.2 Quantitative assessment of phantom data 

Evaluation of GPU-based image reconstruction in comparison with CPU-based was 

performed with acquisition of NEMA NU-4 Image Quality (IQ) phantom and with a Flood 

Field Uniformity (FFU) test.  NEMA NU-4 image quality phantom is composed of two 

parts: the first part is a fillable cylindric chamber 30 mm in diameter and 30 mm long to 

be filled with an isotope (hot region). This chamber contains two smaller cavities 
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separated from that volume, which are filled with water and air (cold regions). The second 

part of the phantom is 20 mm long solid cylinder that houses five fillable “hot” rods with 1, 

2-, 3-, 4- and 5-mm diameters. As this is shown in Figure 4.7(B-B) “hot” rods are aligned 

radially around the phantom length axis, providing a connection to the first half of the 

cylinder, which is filled with an isotope. Thus, NEMA NU-4 image quality phantom 

provides hot lesions in the form of hot rods in the cold solid background, as well as uniform 

hot and cold regions. The phantom is filled with 18.7 MBq of activity and positioned with 

its axis of symmetry being perpendicular to the surface of the detectors. Three parameters 

are measured: Uniformity, Recovery Coefficient (RC) and Spill-over ratio (SOR). This 

metrics is chosen because of its importance for assessing the system’s ability to analyze 

images quantitively and to apply standardized uptake value (SUV) analysis to lesions of 

different size and uptake of a radiopharmaceutical. For the uniformity measurement, a 

cylindrical 22.5x10 mm2 volume is taken within the central uniform region of the phantom. 

The mean activity concentration, along with maximum, minimum and standard deviation 

(STD), are reported. The noise and uniformity measurement in the uniform hot region 

assesses the signal to noise ratio. Knowing the mean uniformity value, we measure RC 

(that is the ratio between image-derived and true activity) for the hot rods in the following 

way: central 10 mm of the hot rods are averaged based on voxel values to generate a 

single image slice. For each hot rod: a circular region of interest (ROI) with twice the 

physical diameter of the rod is drawn. ROI is searched for a pixel position with a maximum 

value. Line profile is drawn along the rod through the maximum pixel. The mean value is 

taken along this line and divided by the mean activity concentration measured in the 

uniformity calculation (refer to Equation 4.2). 

𝑅𝐶 =
𝐿𝑖𝑛𝑒𝑀𝑒𝑎𝑛

𝑀𝑒𝑎𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦
(4.2) 

The measurement of RC in the hot rods is used for assessment of the system’s capability 

to recover the activity in reconstructed images and is indicative of the spatial resolution 

of the scanner. Finally, the SOR is measured as a ration between mean value of the 

activity inside a central 4 x 7.5mm2 region in each cold chamber and the mean of the 

activity concentration measured for the uniformity region. SOR assesses the accuracy of 

the attenuation and scatter corrections (refer to Equation 4.3). 



56 
 

𝑆𝑂𝑅 =
𝑀𝑒𝑎𝑛(𝑐𝑜𝑙𝑑 𝑐ℎ𝑎𝑚𝑏𝑒𝑟)

𝑀𝑒𝑎𝑛(𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑎𝑟𝑒𝑎)
(4.3) 

 

Figure 4.7- NEMA NU-4 Image Quality phantom. Source: https://www.qrm.de/en/products/micro-pet-iq-phantom/ 

FFU test is not specified by the NEMA standard, but it is a part of reconstruction quality 

assurance process at Radialis. The method used for FFU assessment is based on the 

uniformity measurement in gamma cameras [65]. The goal of this method is to assess 

the degree to which a PET system can render a uniform distribution radioactivity as flat. 

A flat phantom large enough to cover the whole FOV is positioned parallel to the 

detectors. At least 5 million coincidences are acquired and reconstructed. Once an image 

is generated, an 18 cm line profile (an array of inline pixel values) is extracted from the 

geometrical center of the image for uniformity calculation. The uniformity of a line profile 

is calculated using the Equation 4.4.  

𝑈 =
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀𝑎𝑥 + 𝑀𝑖𝑛
(4.4) 
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where 𝑀𝑎𝑥 and 𝑀𝑖𝑛 are the corresponding maximum and minimal pixel values within the 

line profile. The experiment is repeated for the line profiles of different width (1 - 9px). 

4.3 Results 

4.3.1 Complexity Analysis 

In this section, the worst case computational complexity of each of the main steps of our 
adopted MLEM algorithm iteration is listed in Table 4.1. For simplicity we treat our 
resulting images as cubes with resolution N x N x N voxels, the list of all the events is 
represented by M. Both the initial CPU-based implementation and the resulting GPU-
based solution are the implementations of the same MLEM image reconstruction 
algorithm applied to list mode data. The primary factors affecting computational 
complexity of the MLEM algorithm are the forward and back projection operations. The 
computational complexity associated with these operations is well known to be O(MN2). 
The other two steps of MRP and normalization have the complexity of the degree of  
O(N3). It seems like every step has a similar computational complexity; however, in reality, 
the image dimensions are cubic and in particular the Z dimension is much smaller than 
the number of events M. 
Table 4.1 - Computational complexity for different steps of our MLEM algorithm 

Step Computational Complexity 

Forward projection O(MN2) 

Back projection O(MN2) 

Image normalization O(N3) 

Image regularization (MRP) O(N3) 

4.3.2 Reconstruction Speed Effects 

In this section we are going to focus on the achieved speedup in terms of the iteration 

time between the CPU and the latest proposed GPU-based reconstruction. A single 

iteration includes projection of the events data (FP and BP in case of the latest GPU-

based reconstruction), normalization and MRP regularization for the image. Experiments 

were made on the IQ and the FFU phantoms with 15 iterations and the default image 
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resolution (577x433x24). Voxel size for z dimension was determined by the number of 

slices and compression. In case of the IQ phantom the compression value is 109mm thus 

resulting in voxel size 0.4x0.4x4.53mm3. In case of the FFU phantom compression value 

was measured at 138mm and the resulting voxel dimension was: 0.4x0.4x5.75mm3. All 

experiments were done using the clinical system hardware, a single CPU thread was 

used for both CPU-based and GPU-based reconstructions with 30 thread blocks allocated 

on GPU which was measured to be an optimal number. The analysis on finding the 

optimal number of blocks on the GPU is present in Figure 4.8. 

 

Figure 4.8 - Number of events processed per second based on the selected number of blocks for the GPU 

Due to the limitations associated with shared memory used in FP and BP each block size 

was limited to 128 threads. Figure 4.8 shows that the GPU throughput is maximized when 

we utilize 30 blocks. The resulting average iteration time speedup from all the proposed 

optimizations was measured at 436 times between GPU and single thread CPU 

reconstruction. A breakdown of the contributions during the progressive transition from 

CPU to GPU is present in Figure 4.9. 
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Figure 4.9 - Breakdown of measured speedup for different contributions based for the GPU-based reconstruction 

compared with the CPU-based reconstruction 

It is visible that the most notable improvement was achieved by applying the memory-

related optimizations and slice-by-slice processing for the reconstruction. 

4.3.3 Clinical Reconstruction 

An important step in the analysis of recently proposed GPU-based reconstruction 

algorithms is to understand their impact on the rate of clinical reconstruction. Clinical 

reconstruction is a multi-step process that includes every single step, from reading data 

from a hard drive to creating a DICOM file. The detailed breakdown of the time required 

for different steps in the clinical reconstruction on GPU is present in the Table 4.2. The 

table shows the time taken to use the proposed GPU-based image reconstruction 

algorithm in relation to the full clinical reconstruction workflow. Default clinical parameters 

for a typical low-dose breast scan with 1623989 events was used.  
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Table 4.2 - Clinical reconstruction time breakdown for a typical low-dose breast reconstruction file with 1623989 

events. Every highlighted column is included in the “Reconstruction time” along with some other things that are not 

mentioned here explicitly such as attenuation correction, scatter correction, etc 

 
Make 
list, s 

Loading 
events, 

s 

Attenuatio
n factors, 

s 
Solid 

angle, s 

All 
iterations

, s 
Reconstructi

on time, s 

DICOM 
generati

on, s 
Total 

time, s 
Image 
reconstructio
n #1 

37.67 

9.86 N/A 1.78 5.02 

77 32 146.67 

Image 
reconstructio
n #2 9.57 0.45 1.68 2.41 

Image 
reconstructio
n #3 9.86 1.11 1.67 4.95 

It is worth noting that the total time spent on running all MLEM iterations in this case is 

12.48 seconds or 16.2% of the time spent on image reconstruction or only 8.5% of the 

overall image reconstruction workflow time (including list mode transformation and 

DICOM generation). Which is a clear indicator that further improvement in image 

reconstruction speed won’t have a significant impact on the overall duration of the imaging 

procedure. 

To further evaluate performance improvements the default clinical reconstruction 

parameters were applied including 8 threads for the CPU reconstruction and 1 CPU 

thread for the GPU reconstruction. The data were split into 4 groups based on the number 

events per acquisition. The average iteration time speedup and total image reconstruction 

time speedup is reported in the Table 4.3. 

Table 4.3 - Average reconstruction and iteration speedup between GPU and CPU reconstruction for different groups 

within prepared clinical dataset 

 Group, 
x106 

events 

Average 
number of 

events 

Average image total reconstruction 
speedup, X times 

Average iteration speedup, X 
times 

GPU vs CPU 1 
thread 

GPU vs CPU 8 
threads 

GPU vs CPU 1 
thread 

GPU vs CPU 8 
threads 

0-1 383927 20.27 11.71 318.15 168.86 

1-3 1979911 40.78 19.48 449.28 206.74 

3-8 4859927 57.38 25.54 525.93 227.97 
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8-20 17125623 103.87 45.39 672.09 290.21 

Table 4.3 shows that the overall reconstruction speedup is far from the actual iteration 

speedup achieved. As MLEM iterations become faster their impact on the overall 

reconstruction duration decreases and the iterations time starts taking a much smaller 

proportion of the time giving way to other operations (such as, various corrections, loading 

data from the drive, etc.) which used to take negligible amount of time in the past. Table 

4.4 present a comparison between the average time needed to load events from disk to 

the time needed to run MLEM on the same number of evets. With the current GPU-based 

reconstruction it normally takes around 2 times less time to reconstruct the data compared 

to the time needed to load it into computer memory for a typical clinical file size. 

Table 4.4 - Comparison between the time needed to load events from disk and time needed to reconstruct the same 
events 

Number of events 
Average time to load events from the 

drive for processing, s 
Average time for 15 iterations 
using GPU reconstruction, s 

18283650 106 48.837 

4658729 28.7 11.53 

2036642 12.04 6.1 

1205429 6.99 3.58 

4.3.4 Image Quality Analysis 

Finally, it was the task of the utmost importance to ensure that the proposed approach 

does not sacrifice the resulting image quality. In this section we report phantom data 

quality analysis first, followed by visual analysis for clinical image quality. 

The results of phantom tests for both CPU and GPU reconstruction are presented in Table 

4.5 - Table 4.12 and are summarized below. Flood field uniformity results are shown in 

Table 4.5 for CPU and Table 4.6 for GPU-based reconstruction. Uniformity value is 

17.73% for 1-pixel line and slowly improves while increasing line width to 14.53% for 9-

pixel line. This is slightly better than the reported CPU results. NEMA NU-4 phantom 

evaluation is presented in Table 4.7, Table 4.9, and Table 4.11 for the CPU-based 

reconstruction and in Table 4.8, Table 4.10, and Table 4.12 for the GPU-based 

reconstruction. GPU reconstruction results show uniformity value of 13.62% within the 
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uniform region, contrast recovery coefficients of 81%, 67%, 47%, 31%, and 14% for the 

5, 4-, 3-, 2-, and 1-mm hot rods, respectively. The spill over ratio for the air-filled and 

water-filled reservoirs were 16% and 24% respectively. The results are on par with the 

values reported for CPU reconstruction. Views from different slices of the IQ phantom 

reconstructed with the GPU-based algorithm are illustrated in Figure 4.10. Visual analysis 

confirmed that there are no visible differences between phantom images reconstructed 

by CPU and GPU. 

 

Figure 4.10 - NEMA NU-4 IQ phantom reconstructed using the latest GPU-based reconstruction. Slices displaying the 

hot rods for recovery coefficient (left), uniform region (center) and air and water reservoirs (right) 

Table 4.5 - FFU test results for the CPU-based reconstruction 

Line Width (px) Mean STD Min Max Uniformity (%) RMS/Mean 
1 481.57 36.87 397.45 576.82 18.41 7.66 
2 481.77 33.74 421.56 568.07 14.8 7 
3 484.76 33.74 422.43 572.07 15.05 6.96 
4 485.19 31.04 430.86 567.7 13.7 6.4 
5 484.79 31.67 425.88 578.57 15.2 6.53 
6 483.52 30.03 433.13 577.98 14.33 6.21 
7 483.75 30.43 429.5 580.35 14.94 6.29 
8 483.05 29.53 426.27 576.76 15 6.11 
9 483.81 30.2 423.38 576.43 15.31 6.24 

 

Table 4.6 - FFU test results for the GPU-based reconstruction 

Line Width (px) Mean STD Min Max Uniformity (%) RMS/Mean 
1 494.28 36.64 417.54 597.53 17.73 7.41 
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2 493.78 34.38 422.85 582.08 15.85 6.96 
3 497.68 34.5 423.12 591.87 16.63 6.93 
4 498.55 31.54 436.88 583.44 14.36 6.33 
5 497.56 32.28 432.68 588.71 15.28 6.49 
6 496.1 30.45 440.19 583.85 14.03 6.14 
7 496.05 30.92 437.32 584.62 14.41 6.23 
8 495.24 29.83 437.44 581.19 14.11 6.02 
9 496.26 30.58 434.5 582.22 14.53 6.16 

 
Table 4.7 – Measured uniformity for the IQ test used to evaluate CPU-based reconstruction  

 Mean Minimum Maximum %STD 

Uniformity 35488 26846 47759 12.38 

Table 4.8 - Measured uniformity for the IQ test used to evaluate GPU-based reconstruction 

 Mean Minimum Maximum %STD 

Uniformity 32730.05 23929.14 45564.82 13.62 

Table 4.9 - Measured RC values for the IQ test for the CPU-based reconstruction 

Rod Size (mm) RC %STD 
5 0.79 12.73 
4 0.64 12.43 
3 0.45 12.77 
2 0.3 12.73 
1 0.14 12.91 

Table 4.10 - Measured RC values for the IQ test for the GPU-based reconstruction 

Rod Size (mm) RC %STD 
5 0.81 14.9 
4 0.67 14.09 
3 0.47 13.75 
2 0.31 13.84 
1 0.14 14.09 

Table 4.11 - Measured SOR values for the IQ test for the CPU-based reconstruction 

Chamber SOR %STD 
Air 0.13 27.28 

Water 0.21 15.58 
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Table 4.12 - Measured SOR values for the IQ test for the GPU-based reconstruction 

Chamber SOR %STD 
Air 0.16 46.85 

Water 0.24 34.22 

The results for the FFU and IQ phantom, fall under the benchmark set at Radialis where 

IQ uniformity must be under 20%, recovery coefficient for the 2mm hot rod must be 

greater than 20% and the spill over ratio must be no more than 20% and 40% for the air 

and water reservoirs respectively. Flood field uniformity value must be below 25% for the 

10th iteration for 1px line. These are the minimum acceptable values used at Radialis to 

ensure image quality standards in the system. 

In addition to the phantom test, visual analysis of clinical images reconstructed with both 

algorithms was performed. The selected results are shown in Figures 4.11 and 4.12. 

Figure 4.11 compares two Radialis PET camera images obtained from a 61years-old 

female with right breast multifocal invasive and in situ ductal carcinoma and reconstructed 

with CPU (left) and GPU-based (right) reconstruction algorithms. For Radialis PET 

acquisition, 178 MBq of 18F-FDG was administrated. Both PET images show a group of 

multiple distinct masses, which reproduce histopathology findings of multi-focal cancer.  

Qualitatively, the contrast and detectability of small foci is the same in both images. It took 

~1h 14m 45s to reconstruct the image of breast (Figure 4.11, left) with CPU-based 

reconstruction vs ~4m 55s seconds to get images for the same raw data using GPU 

reconstruction (Figure 4.11, right).  

Figure 4.12 compares between two slices selected from 3D low-dose (37 MBq of 18F-

FDG) Radialis PET image reconstructed with CPU-based (Figure 4.12, left) and GPU-

based (Figure 4.12, right) reconstructions. The scan was acquired in a 56-year-old female 

with histopathology diagnosed invasive ductal carcinoma and intermediate-grade ductal 

carcinoma in situ (DCIS). Two focal uptakes on both images correspond to two 

histopathology proven masses. Visual analysis shows no differences in the reconstructed 

images: they look almost identical and clearly present 18F-FDG uptake in both lesions. It 

took ~25m 45s to produce the image of breast (Figure 4.12, left) with CPU-based 
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reconstruction vs ~3m 38s seconds to get images for the same raw data using GPU 

reconstruction (Figure 4.12, right). 

 

Figure 4.11 - A 61-years old female with right breast multifocal invasive and in situ ductal carcinoma. Breast images 

reconstructed with CPU (left) and GPU-based (right) reconstruction algorithms. Acquisition time: 10m. Total 

reconstruction time for the CPU version is ~1h 14m 45s compared to ~4m 55s for GPU reconstruction 

 
Figure 4.12 - A 56-years old female with invasive ductal carcinoma. Breast images reconstructed with CPU (left) and 

GPU-based (right) reconstruction algorithms. Acquisition time: 5 m.  Total reconstruction time for the CPU version is 

~25m 41s compared to ~3m 38s for GPU reconstruction 
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5 Conclusion 
Organ-targeted PET technology is gaining momentum in recent years. New applications 

are being developed and tested both in clinical applications and in research laboratories. 

PEM is the most used clinical application for organ-targeted PET. The Radialis organ-

targeted PET camera is a great example of a successful PEM system that is actively 

paving its path to clinical use. The novel approach to the detector architecture significantly 

improves system sensitivity and spatial resolution in comparison to standard WB PET 

devices. This, in turn, allowed for imaging with one tenth of a typical WB PET radiation 

dose, making a significant impact on clinical adaptability of the technology. Radialis PET 

has successfully demonstrated its capability in addressing the current deficiencies of X-

ray and MRI breast screening for dense breast imaging. 

This work is devoted to adopting novel GPU-based MLEM image reconstruction algorithm 

for the clinical organ-targeted PET system with planar detectors to speed up image 

reconstruction time. Reconstruction speed plays an important role in modeling complexity 

of a PET system, patient throughput, and research and innovation speed. As shown in 

section 4.3.4, transition from CPU to GPU did not compromise the image quality which 

was proven with both phantom and clinical data. This also realized a significant 

improvement in single iteration speed of at least 436x times compared to the CPU-based 

reconstruction used previously. Our progressive approach has shown that GPU-specific 

memory and data processing optimization techniques account for much of the speed gain. 

However, even the naïve implementation has lowered average iteration time by about 

44x times. The resulting clinical reconstruction speedup was more than 24 times on 

average compared to the clinical CPU-based reconstruction used by Radialis PET. The 

improvement in reconstruction time is also demonstrated on clinical images presented in 

Figure 4.11 and Figure 4.12. In both cases, reconstruction time was less than the 

acquisition time while CPU reconstruction time exceeded acquisition time 7.5 times for 

Figure 4.11 and 2.66 times for Figure 4.12. Therefore, our goal of making reconstruction 

time less than the acquisition time has been successfully achieved and validated with 

both clinical and phantom images, establishing the proposed algorithm as ready for 

clinical deployment. It should be noted that the speedup becomes larger for files with 
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higher number of events and smaller for files with lower number of events. This can be 

explained by the fact that higher count projection operations, which are primarily ported 

to GPU, take proportionally more time compared to CPU-based operations. The 

percentage of time spent on the MLEM algorithm falls below 15% for most clinical 

reconstructions. Overall, the novel GPU-based approach shifts the most time-consuming 

operations away from image reconstruction itself to IO operations, list mode generation, 

and data corrections. At this stage, it was shown that reading events from the hard drive 

on average takes 2x longer when compared to the time needed to reconstruct the same 

number of events. 

The proposed solution can be easily extended for more advanced algorithms and physical 

models that would incorporate Depth of Interaction (DOI) data, shift varying PSF [66], and 

even ToF PET. One straightforward extension of this work would be to implement a more 

accurate model to represent the physics of LORs, such as the Tube-of-Response (TOR) 

approach [67]. This may lead to improvements in the overall image quality; however, this 

approach was not practical previously due to additional computational overhead it 

introduces on top of typical MLEM algorithm and slow speed of the CPU-based 

reconstruction.  

GPU technology is constantly developing by increasing number of cores, shared memory 

size, etc. We believe that the proposed method implemented in CUDA has a potential to 

yield an improved performance on future generations of the GPUs without any 

reformulation efforts. A straightforward extension of this work may include a multi-GPU 

adaptation of the presented method. 

Finally, we believe that this reformulation will have a profound impact on the patient 

throughput capabilities of the clinical Radialis PET system by way of increased image 

reconstruction speed and freeing of CPU resources by switching the main computation 

burden to GPU. The vacant resources could be utilized in other applications such as 

preview image generation, system monitoring, data acquisition, etc. This work ultimately 

brings us closer to incorporating PEM devices such as Radialis PET in breast cancer 

screening procedures and increasing adaptation of technology to improve outcomes in 

broader patient populations. Success of PEM devices may also encourage clinical 
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adaptation of PET for other indications. It is our privilege to work with an industry partner 

and see the great applicability of the developed solution. We believe that the proposed 

GPU reconstruction method is ready for the next stage of testing and development that 

will begin with the clinical deployment occurring this Fall. 



69 
 

6 Future Work 
An important topic that was not covered in this work is the comparison of performance 

between our solution and other GPU-based MLEM / OSEM implementations out there 

[30], [53]. PET systems come with several different unique characteristics, such as 

detector geometry, data format, reconstruction algorithm, data corrections, etc; all of 

which affect the resulting image reconstruction. Here, we focus on the whole clinical 

reconstruction process with an emphasis on the effects of reconstruction speed affecting 

it. To compare our solution with other works in the area, we would need to extract the 

proposed method and come up with some standardized performance metric, using similar 

hardware, and simulated system characteristics, such as detector geometry. This 

certainly can be done in the future in order to better understand the applicability of our 

solutions to other systems; however,it is out of scope of this work. 

In addition to that, we anticipate three primary directions for further improvements of 

Radialis PET: software optimizations and development, image reconstruction 

improvements, and data pre/post processing. Improvements in these directions are not 

necessarily exclusive to each other. Advances in GPU hardware and Artificial Intelligence 

(AI) methods such as Machine Learning (ML) and Deep learning (DL) have recently 

begun to affect medical imaging through new AI-based solutions to common problems 

directly or indirectly related to image reconstruction [68]. DL methods in PET image 

reconstruction have been an active area of research in recent years [69]–[71]. It would be 

remiss to ignore the application of this emerging technology in considering the future of 

the Radialis PET. A common issue with DL-based methods in PET stems from reliance 

on the anatomical modalities in addition to PET data for training purposes as well as the 

need for high quantity and quality of the training data. In addition, current DL-based 

methods work best with the 2D data and in many cases are not efficient with the 3D data 

commonly used in PET. Overall, we do not see AI as the one-and-only method of 

improvement for the Radialis PET since an efficient GPU-based reconstruction opens 

doors for adopting more complex physical models for the image reconstruction. Figure 

6.1 presents the main directions of development for the technology. 
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Figure 6.1 - Future developments for Radialis PET. Current, planned and potential future work 

The first direction going forward is “System optimization & development”. The primary 

focus is to increase the efficiency of the system by improving some aspects which are not 

directly related to the image reconstruction. Examples of such improvements may include 

real time list mode generation for increasing speed in data processing and reducing the 

IO overhead. Employing two hardware architectures in the system places importance on 

the ability to maximize resources allocation at any given point in time. We continue to 

investigate possible ways to allocate resources more intelligently to improve overall 

system utilization. 

The second direction is data pre/post processing. Examples for improvements in this area 

can be motion detection using corrections applied at the list mode level, post 
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reconstruction image denoising or feature enhancing. Some promising work has already 

been done in this area using the DL methods [72]. 

The third and most significant area for potential improvements lies in the image 

reconstruction domain itself. In Figure 6.1 we divided this group into “Conventional” 

methods and “AI-based” methods. Conventional methods are well known and initially 

proposed some time ago, with a potential to improve clinical image quality. It may be 

possible to compensate for low axial resolution inherent to planar detector systems by 

implementing image fusion of various view angles in clinical situations where greater 

resolution is required (such as brain scans).  Further improvements may be achieved 

through extending our reconstruction model with TOR approach or a shift variant PSF 

which are now possible with the GPU reconstruction. Finally, there is an experimental 

project aiming to combine Radialis PET with MRI. 

There are two main directions for AI incorporation in PET image reconstruction: 

standalone reconstruction where a trained DL model receives measured data and tries to 

generate the resulting image [71], [73] and embedded approach where DL or ML 

techniques are incorporated within iterative reconstruction in order to impact a particular 

aspect of it such as denoising image estimate during iterative reconstruction[74]. While 

the first approach in its current state is not likely to be implemented with a standalone 

PET, due to the aforementioned reasons, the second approach shows promise for the 

Radialis PET. 
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