
Hybrid Deep Learning with Stacked
Dilated Causal Convolutions for Health

Forecasting using Multivariate
Time-series Data

by

Brandon Mossop

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE FACULTY OF GRADUATE STUDIES

OF LAKEHEAD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE (SPECIALIZATION IN ARTIFICIAL

INTELLIGENCE)

© Copyright 2022 by Brandon Mossop

Lakehead University

Thunder Bay, Ontario, Canada

ii

Hybrid Deep Learning with Stacked
Dilated Causal Convolutions for Health

Forecasting using Multivariate
Time-series Data

by

Brandon Mossop

Supervisory Committee

Dr. Quazi Abidur Rahman,

Supervisor

(Department of Computer Science, Trent University, Peterborough,

Ontario, Canada)

Dr. Zubair Fadlullah,

Internal Examiner

(Department of Computer Science, Lakehead University, Thunder Bay,

Ontario, Canada)

Dr. Farhana Zulkernine,

External Examiner

(School of Computing, Queen’s University, Kingston, Ontario, Canada)

iii

ABSTRACT

Health forecasting using time-series data facilitates preventive medicine and health-

care interventions by predicting future health events. This thesis introduces a novel

hybrid deep-learning architecture for health forecasting that combines the Stacked-

dilated-causal Convolutional Neural Network and Bidirectional Long Short-TermMem-

ory (SCNN-BiLSTM). Stacked-dilated-causal Convolutional Neural Networks provide

full history-coverage of the input window while maintaining the causal structure such

that each output in a temporal sequence depends on all previous elements. Two

use-case scenarios were studied to examine the effectiveness of the proposed SCNN-

BiLSTM architecture: (1) hospital admission forecasting for mental health patients

and (2) infectious disease forecasting.

In hospital admission forecasting, the number of admissions for mental health pa-

tients at the Thunder Bay Regional Health Sciences Centre was predicted using mul-

tivariate time-series data. In the one-step forecast, the CNN-BiLSTM hybrid model

outperformed various statistical and neural network techniques. Consequently, this

hybrid model involving a standard CNN was compared with the proposed SCNN-

BiLSTM to determine if having full history-coverage improved forecasting perfor-

mance for long-term forecasting. This experiment revealed that the SCNN-BiLSTM

outperformed the standard CNN-BiLSTM hybrid model for multi-step forecasting.

The infectious disease experiment utilized COVID-19 data and Google mobility

data in Ontario, Canada, to predict the spread of new daily COVID-19 cases for a

long forecasting horizon of 28 days. Various configurations of Convolutional Neu-

ral Networks (CNN) with recurrent neural networks (RNN) were tested to determine

whether: (1) the full history coverage provided by the SCNN performed better than a

standard CNN (2) the multivariate or univariate approach has superior performance;

(3) the LSTM, Bidirectional LSTM (BiLSTM) or the gated recurrent unit (GRU) was

the optimal RNN for the hybrid model. The experiments revealed that SCNN outper-

formed standard CNN, the multivariate approach was superior to the univariate even

in the presence of an incomplete dataset, and BiLSTM was the optimal RNN. These

results all support the effectiveness of the proposed multivariate SCNN-BiLSTM.

Experiments conducted in this thesis using two use cases demonstrate that the

proposed SCNN-BiLSTM deep-learning architecture may potentially be utilized to

train generalizable hybrid models that are effective in multivariate health forecasting.

iv

ACKNOWLEDGEMENTS

I want to express my deepest gratitude to my supervisor, Dr. Quazi Abidur

Rahman, for shaping and directing my research and development throughout my

studies as a master’s student. Dr. Rahman’s constant support and feedback have

been invaluable, and without his help, none of my academic work would have been

possible. I want to thank him for letting me pursue research topics that I find exciting.

I will forever be grateful for the love and support of my family: my mother, father,

and brother. They have always motivated me to do my best, even when life is tough.

v

Contents

Supervisory Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background and Brief History of Forecasting 2

1.2 Models and Time Series Data . 3

1.2.1 Time Series Data . 3

1.2.2 Patterns in Time Series Data 4

1.2.3 Forecasting Models . 5

1.3 Thesis Organization . 6

2 Related Work 8

2.1 Infectious Disease Forecasting . 9

2.2 Hospital Admissions Forecasting . 12

2.3 Summary . 13

3 Forecasting Theory, Methods, and the Proposed Architecture 14

3.1 Evaluating Forecasts . 14

3.2 Statistical Methods . 15

3.2.1 Autoregressive Integrated Moving Average Method 16

3.2.2 Seasonal Autoregressive Integrated Moving Average Method . 16

vi

3.3 Neural Network Methods . 16

3.3.1 Sliding Window Method . 17

3.3.2 Multi-layer Perceptron . 17

3.3.3 Convolutional Neural Network 18

3.3.4 Long Short-Term Memory Network 18

3.3.5 Bidirectional Long Short-Term Memory Network 18

3.4 Hyperparameter Tuning . 19

3.4.1 Grid Search . 19

3.4.2 Evolutionary Neural Architecture Search 19

3.5 Proposed Hybrid SCNN-BiLSTM Architecture for Health Forecasting 24

3.5.1 Convolutional Neural Networks for Time Series 25

3.5.2 Stacked-dilated-causal Convolutions 29

3.5.3 Recurrent Neural Networks for Time Series 29

3.5.4 Complete Hybrid SCNN-BiLSTM Architecture 31

3.6 Summary . 35

4 Hospital Admission Forecasting 36

4.1 Data . 36

4.2 Experiments and Results . 37

4.2.1 Experimental Setup . 38

4.2.2 Performance Metric . 39

4.2.3 Data Preprocessing . 39

4.2.4 One-step Forecasting . 39

4.2.5 Multi-step Forecasting . 43

4.3 Discussion . 48

5 Infectious Disease Forecasting using Incomplete Multivariate Time-

series 49

5.1 Data . 49

5.2 Experiments and Results . 50

5.2.1 Experimental Setup . 51

5.2.2 Performance Metric . 53

5.2.3 Data Preprocessing . 53

5.2.4 Forecasting Results . 53

5.3 Discussion . 58

vii

6 Conclusion 60

6.1 Contributions . 60

6.2 Future Work . 61

Bibliography 63

viii

List of Tables

Table 3.1 Bounded Limits for each Gene of an Individual 21

Table 4.1 Results for Univariate One-Step Forecasting 42

Table 4.2 Performance Results for Four-Step Forecasting 45

Table 5.1 Forecasting Performance (MAPE Score) of Best Uni-

variate and Multivariate SCNN-BiLSTM models from

Grid Search . 56

ix

List of Figures

Figure 3.1 A one-dimensional convolution for time series 27

Figure 3.2 Stacked-dilated-causal convolutions for full history cov-

erage while maintaining the causal structure of the

time-series input . 28

Figure 3.3 A basic LSTM for time series forecasting 30

Figure 3.4 A high-level depiction of the proposed SCNN-BiLSTM 32

Figure 3.5 A detailed depiction of the proposed SCNN-BiLSTM 33

Figure 4.1 Multi-headed architecture for the SCNN-BiLSTM 4-

step forecast . 43

Figure 4.2 SCNN-BiLSTM 4-step forecast (entire time series) . . 44

Figure 4.3 SCNN-BiLSTM 4-step forecast (forecast time range) . 44

Figure 4.4 Results of the Evolutionary Neural Architecture Search 47

Figure 5.1 Univariate SCNN-BiLSTM forecast for the number of

confirmed COVID-19 cases in Ontario, Canada (full

time series) . 54

Figure 5.2 Univariate SCNN-BiLSTM forecast for the number of

confirmed COVID-19 cases in Ontario, Canada (fore-

cast time period) . 54

Figure 5.3 Multivariate SCNN-BiLSTM forecast for the number

of confirmed COVID-19 cases in Ontario, Canada (full

time series) . 55

Figure 5.4 Multivariate SCNN-BiLSTM forecast for the number

of confirmed COVID-19 cases in Ontario, Canada (Fore-

cast time range) . 55

Figure 5.5 Results of the Evolutionary Neural Architecture Search 57

Chapter 1

Introduction

Health forecasting is the prediction of future health events. A health event is a

physical or psychological condition that affects an individual or a broader population.

As the global population continues to grow, there is an increasing need for ade-

quate health care. Health forecasting is a vital tool in meeting the resource demands

of future health care needs. By predicting health factors, health care management

can better prepare for a range of likely future outcomes.

Researchers previously developed deep learning models to conduct univariate and

multivariate health forecasting. However, providing full history coverage of incom-

plete multivariate temporal sequences while maintaining the causal structure through

a hybrid deep learning architecture has not been addressed.

This dissertation extends previous research on multivariate hybrid neural net-

works by introducing the combination of the Stacked-dilated-causal Convolutional

Neural Network (SCNN) and the Bidirectional Long Short-Term Memory (BiLSTM)

to create the SCNN-BiLSTM architecture. The main innovation that the proposed

architecture provides is full history coverage of the input values while maintaining

the causal structure. The stacked-dilated-causal approach allows for efficient casual

coverage of the input window without requiring an infeasible number of convolutional

layers.

The two critical health forecasting problems this dissertation considers as use-cases

to develop such an architecture are: hospital admissions forecasting and infectious

disease forecasting. These pressing problems have been addressed in the literature

with statistical, mathematical, and machine learning techniques. However, compar-

atively little work has been done with hybrid neural network methods that consider

multivariate data, provide full history-coverage, and forecast long horizons.

2

This chapter will briefly introduce forecasting and some historical background.

The principles of forecasting models and time series data will follow. The organization

of the thesis will close the chapter.

1.1 Background and Brief History of Forecasting

A forecast is any statement about the future. The range of questions one might ask

about the future is practically endless. We all must perform forecasts continuously,

such as: ‘will it rain tomorrow?’; ‘will the cost of gasoline increase next week?’; ‘is

my current job right for my entire career, or are there better-suited positions for my

talents and interests?’; and so on. Beyond our personal forecasts, anticipating the

future is vital for facilitating decisions and formulating planning, policy, and strategy

in many industries, such as finance, education, and healthcare.

A forecast can simply be an opinion or guess about the future since a forecast

is not necessarily a true statement. However, forecasts of this kind are unreliable

and subject to inherent biases [1]. Making statements about the future is easy, but

producing competent forecasts is a much harder task. Therefore, forecasts based

on systematic methods are preferred since they consolidate knowledge in progressive

research, aid in explaining their own failures, and are reproducible. Only systematic

forecasting methods will be considered in this thesis.

The term forecasting was coined by Robert FitzRoy in 1859 when he sought to

predict future weather [2]. FitzRoy wanted a system that could predict storms at sea

to reduce the number of sailors dying. He believed that many lives could be saved

by forewarning future storms. His forecasts were not always accurate; nevertheless,

many lives were saved at sea due to his storm warnings.

Today, weather forecasting has improved considerably. The forecasts are based on

physical theories of meteorology and use vast amounts of data [3]. However, weather

forecasting is still often incorrect, showing the inherent difficulty of the problem.

Besides weather forecasting, economic, primarily financial, forecasting has been

heavily studied. Research on economic forecasting has led to better statistical meth-

ods to predict the future value of economic variables and explain economic relation-

ships. However, economic forecasting, like weather forecasting, continues to miss

predicting important events, such as the failure of most economists to predict the

2008 Recession [4].

When the performance of a forecasting model deviates by a greater magnitude

3

than could be reasonably expected based on past results, it is known as a systematic

forecast failure [5]. When we produce forecasting models for the real world we need

to ensure that systematic forecast failure does not occur or the model is useless for

decision making.

1.2 Models and Time Series Data

A systematic forecast based on rules is produced by models estimated from past data

or time series. The models must include reliable historical time series factors that are

relevant to the variable being forecast, otherwise the model is considered misspecified.

Time series data differs significantly from the independent and identically distributed

(iid) data typically used for statistical learning tasks.

1.2.1 Time Series Data

A time series is a set of historical observations ordered by the passing of time. The

frequency (hourly, daily, weekly, etc.) of the time series determines how far into the

future can be reasonably forecast. For example, it is unreasonable to forecast years in

advance when the time series frequency is hourly. The forecasting model is considered

univariate or multivariate depending on the number of variables used to train it. A

univariate model trains with a single time series, while a multivariate model has two

or more variables.

Time series data differs significantly from independent and identically distributed

(iid) data. The samples from an iid dataset are assumed to be independent of each

other. For example, consider rolling two dice. Each time the two dice are rolled,

the sum of both is recorded. This record is an event or sample from the probability

distribution of all the possible outcomes. In this case, we know that the total number

of outcomes is 6× 6 = 36. Each sample from the distribution is random since it does

not depend on previous samples. In other words, future outcomes do not depend

on past outcomes. This is an example of an iid dataset. This kind of data is not

useful when forecasting. Instead, we rely upon time series data where observations

or samples are related to past observations, known as auto-correlation. In this way,

the temporal structure of the time series data is an important source of information

to extract when forecasting.

Another significant way forecasting differs from the dice example is that we tend

4

not to know the complete set of possible future outcomes when forecasting. This

makes the task of forecasting future values even more challenging.

Ideally, each input variable of a forecasting model could be manipulated while all

other factors are fixed to measure the effect of each input on the output (forecast).

However, most time series data is non-experimental (not from a randomized controlled

trial), so confounding factors could exist. Therefore, the models must learn from

correlated relationships between the included variables and past (lagged) values of

each time series variable.

The time series data may be missing values for specific observations, making the

dataset incomplete. There are various techniques to impute the missing data. This

thesis will consider incomplete data and a forecasting method to infer the values (see

Chapter 5).

1.2.2 Patterns in Time Series Data

Auto-correlations in time series produce various temporal patterns. These patterns

can be classified as seasonal short-term movements, cyclical short-term movements,

and long-term movements or trends [6]. Collectively, the temporal patterns are known

as the signal of the time series data.

The trend refers to the overall movement of the time series during a time interval.

The movement can be positive (increasing), negative (decreasing) or stable (constant).

The trend can shift in a time series, and special attention must be paid to this

possibility when forecasting.

A seasonal pattern is a temporal fluctuation that repeats in a period of less than

a year. Seasonality always occurs at a constant time interval. For example, if more

ice cream is always sold during the summer, this is a seasonal pattern.

A cyclic pattern is similar to seasonality, except the repeating fluctuation does not

occur at a fixed and constant time interval. A classic example is the business cycle

(the movement of gross domestic product), which can last several years, but future

movements are unknown.

Noise is the last component that causes variations in time series data. Therefore,

each time series value yt at time t is

yt = signal + noise (1.1)

where the noise is assumed to be described by the Gaussian distribution, because it

5

is composed of many unrelated factors.

A successful forecasting model aims to capture the signal while excluding the

random or irregular fluctuations (noise), as the noise component is unpredictable and

erratic.

1.2.3 Forecasting Models

A future event can be forecast regardless of the predictability of the event. Forecast-

ing rules are derived by extrapolating from past information. Successful forecasting

models require that:

1. There are regularities to be captured from historical data (time series).

2. The regularities are informative of the future.

3. The proposed model captures such regularities, yet excludes distorting non-

regularities (noise).

The first two requirements relate to the time series data. The last requirement is

about the forecasting model. We must ensure that the model is in the correct form

to capture the regularities in the time series. For example, if the time series data is

a nonlinear process, the forecasting model must be nonlinear.

In this thesis, statistical and machine learning forecasting models are considered.

Statistical models have been developed that are well-established in the forecasting

literature. Meanwhile, machine learning approaches are only recently being applied

to forecasting problems [7]. These models will be discussed in detail in Chapter 3.

Model misspecification is when a model incorrectly omits predictive features and

unknowingly includes irrelevant features. Model misspecification does not necessarily

result in wrong forecasts. For example, the Ptolemaic system wrongly assumed that

features like a planet’s retrograde distance are predictive of the movement of that

planet. Yet, the Ptolemaic system could predict a planet’s positions with a reason-

able degree of accuracy. However, model misspecification complicates calculating the

likely magnitudes of forecast errors and usually increases the variance of the resulting

forecast errors.

6

1.3 Thesis Organization

A literature survey is presented in Chapter 2. Specifically, previous work on infec-

tious disease forecasting and hospital admissions forecasting will be discussed from a

multivariate hybrid neural network perspective.

In chapter 3, forecasting theory and methods will be explained. This includes

classical models from statistics and neural network techniques. Then, two techniques

for hyperparameter tuning forecasting models will be discussed: grid search and evo-

lutionary neural architecture search. The evolutionary neural architecture search

approach requires background material on the principles of genetic algorithms, which

will be covered in detail. Finally, the proposed SCNN-BiLSTM architecture is intro-

duced. The details of each component of the hybrid method will be explained in detail.

Special attention will be paid to the Stacked-dilated-causal Convolutional approach

that the SCNN-BiLSTM utilizes to achieve full history coverage while maintaining

causal structure efficiently.

Chapters 4 and 5 will present the experiments using the SCNN-BiLSTM architec-

ture in two health forecasting use cases to determine if this novel hybrid approach is

suitable for health forecasting problems.

The first use case for health forecasting with the SCNN-BiLSTM is presented in

Chapter 4. It involves forecasting the weekly number of admissions to adult mental

health services at the Thunder Bay Regional Sciences Centre. The first experiment

establishes that hybrid models are suitable for one-step forecasting, as the CNN-

BiLSTM outperformed statistical and neural network methods. Next, long-range

forecasting is examined to determine if multivariate models are better than univari-

ate models and if the stacked-dilated-causal Convolutional (SCNN) approach outper-

forms a standard CNN in a hybrid architecture. The experiments revealed that the

multivariate approach is superior to the univariate and that the SCNN outperformed

the CNN. Finally, the evolutionary neural architecture search was again compared

with the grid search to find the optimal configuration of the SCNN-BiLSTM.

The second use case (Chapter 5) is infectious disease forecasting. The infectious

disease forecast in the experiments is the daily spread of COVID-19 across Ontario.

The experimental results establish that the Stacked-dilated-causal Convolutional ap-

proach is better than a standard CNN layers in a hybrid architecture, the multivariate

approach outperformed univariate models, and the BiLSTM was the best performing

RNN compared to the LSTM and GRU (gated recurrent unit). The multivariate

7

dataset in the experiments is unique in infectious disease forecasting, as it has incom-

plete temporal data that must first be inferred before forecasting is possible. This

scenario is more realistic since public data for each variable is often not updated at

the same rate. Finally, the evolutionary neural architecture search is compared with

the grid search to find the optimal configuration of the SCNN-BiLSTM.

Finally, chapter 6 will review the major contributions of this thesis and discuss

some of the future work that will be conducted to advance the research completed

here.

8

Chapter 2

Related Work

This chapter will cover previous research that is related to this thesis. Additionally,

the principles and background of health forecasting are discussed.

Health forecasting is a tool that facilities preventive medicine and healthcare inter-

ventions by predicting future health events. Furthermore, forecasting future health

events allows health service providers to reduce and manage future risks and de-

mands [8].

For health forecasting to be a helpful tool, reliable data collection and robust fore-

casting models are required. A reliable health forecast is essential for health service

delivery since it enhances preventive healthcare and services, alerts management of

expected future patient overflows, and reduces the costs of supplies and staff redun-

dancy.

There are four main principles of health forecasting:

1. The measure of uncertainty.

2. The nature of data aggregation.

3. The horizon of health forecasting.

4. The focus.

There are multiple sources of uncertainty in forecasting. First, there is uncertainty

in the data. The data may be incomplete or imperfect. Then, there is uncertainty

when estimating the parameters of a forecasting model. When considering neural

networks, which are the focus of this thesis, the parameters are the weights that

connect the network nodes. These weights are estimated with the back-propagation

9

technique. These estimates will always intrinsically contain uncertainty. Finally, the

error term (noise) of the forecasting model has uncertainty. Each aspect of uncertainty

needs to be considered when producing health forecasts.

The nature of data aggregation refers to population data compared to individual

time series data. In general, forecasting population-level data is an easier task as

more robust and general data is available. The alternative is forecasting a particular

individual’s ailment, usually referred to as prognosis.

There is no single technique for health forecasting, and various methods have

been studied. Likewise, no forecast horizon has been established to match a health

forecasting method. Therefore, each health forecast problem is a unique context that

requires experimentation to establish a superior technique for the required forecasting

horizon [8].

The models must be able to produce the desired forecasting horizon. The horizon

will depend on the difficulty of the problem, the time series frequency, and what is

considered useful. For example, a one-step daily forecast will not be useful if long-term

planning is required to manage health care resources.

The focus refers to the specific health problem being addressed. The two prob-

lems this thesis addresses are infectious disease forecasting and hospital admissions

forecasting.

2.1 Infectious Disease Forecasting

An infectious disease is an organism, such as a virus or bacterium, invading another

host organism. Many infectious organisms are harmless and even beneficial, such

as the bacteria in our digestive system that aids digestion. However, pathogenic

infections harm their host and cause disease, spreading from the host to a susceptible

individual [9].

Infectious disease forecasting is the prediction of the future spread of an infectious

disease in a population. The relation of infectious disease forecasting to public health

is direct and substantial [10]. Public health is greatly affected by the spread of infec-

tious diseases throughout the population. Infectious diseases place a heavy burden

on health care services and resources.

Accurate infectious disease forecasting aids in preparing for surge capacity and

hospital resource management by anticipating staffing needs and resource usage, po-

tentially guiding the allocation and deployment of human resources and treatment

10

inventory. Additionally, infectious disease forecasts can guide community mitigation

strategies, such as which public restrictions would reduce the spread of a disease

during a pandemic [10].

Infectious disease forecasting has traditionally been approached with mathemat-

ical modelling techniques, such as agent-based and compartmental models. Agent-

based approaches model the spread of a disease as a collection of individual agents

(people) interacting with each other and the environment. These models have been

studied to determine the impacts of different interventions on the spread of the dis-

ease. The agent-based approaches are challenging to model accurately because how

a population will behave is difficult to predict. The modelling also requires massive

computational resources.

Compartmental models divide a population into categories (compartments). The

compartments reflect the state of the individual based on the disease. In the classic

susceptible-infectious-recovered (SIR) model, each individual is placed in one of the

three susceptible, infectious, or recovered compartments. A susceptible individual

has not been infected and is a potential target for spreading an infectious disease. An

infected individual currently has the disease and can spread it to a susceptible individ-

ual. A recovered person has previously been infected and is now considered immune

from the infectious disease. The SIR model contains differential equations describing

each compartment’s rate of change. This simple model has been rigorously studied,

which is an advantage. It can also be easily modified to more accurately model in-

fectious diseases [11]. However, the model’s simplicity is also often a shortcoming, as

the model usually leaves out essential assumptions about the spread of an infectious

disease.

The COVID-19 pandemic highlighted the importance of accurately predicting the

future spread of an infectious disease. It is difficult to overstate the impact of the

COVID-19 pandemic over the past two years. This has ignited a burst of research to

accurately forecast the spread of COVID-19 cases. A recent literature search in the

NIH LitCovid online database revealed 2843 peer-reviewed publications on COVID-

19 forecasting [12]. Traditional approaches to infectious disease forecasting, such as

compartmental and agent-based models, were again popular in this current COVID-19

pandemic [13]. However, mechanistic modelling requires reliable epidemiological data,

which has not been consistently available throughout this pandemic [14]. Additionally,

mechanistic models only take advantage of a small amount of available data on a

pandemic. For example, the classic SIR model is unable to incorporate mobility data

11

directly. The COVID-19 infection is spread by close contact [15], so this data could

increase the accuracy of the forecast of new cases. These limitations have led to

pandemic forecasting with data-driven models.

A data-driven model does not rely on assumptions about a virus’s biological char-

acteristics. Instead, these models will learn directly from the data. A popular data-

driven approach is the artificial neural network. Indeed, neural networks have been

widely used for COVID-19 forecasting [16].

Depending on the task, many popular neural network configurations exist. For

example, the convolutional neural network has been successfully used for computer

vision tasks [17]. Neural network configurations can be combined into hybrid models

to leverage the strengths of each design.

In time series forecasting, the effectiveness of hybrid neural network models, com-

bining the CNN with the RNN, has been investigated for various problems, such as

gold price prediction [18], web traffic forecasting [19], and forecasting tool wear in

manufacturing [20]. The main idea behind the CNN-RNN hybrid model is to use the

ability of the CNN to extract informative features from the raw time series and then

feed these more complex features to a RNN, which can learn long-term dependencies.

Previous research on the CNN-RNN has been performed in the context of COVID-

19 forecasting. In Zain et al. [21], a CNN-LSTM model improved forecasting per-

formance compared to a CNN or LSTM alone for the number of global confirmed

COVID-19 cases. This model was univariate (global confirmed COVID-19 cases),

with a 7-day forecast horizon. Xu et al. [22] developed a CNN-LSTM hybrid model,

CNN model, and LSTM model to predict a 14-step forecast of the cumulative cases for

Brazil, India, and Russia. The models were multivariate with features derived from

government policies such as face-covering requirements, public gathering sizes, closure

of public transportation, and stay-at-home orders. However, this study found that

the LSTM alone outperformed the CNN and hybrid CNN-LSTM. Widiputra [23] de-

veloped a multivariate CNN-LSTM optimized with genetic algorithms for predicting

mobility measurements during the COVID-19 pandemic. The GA-optimized CNN-

LSTM model performed better than stand-alone CNN and LSTM models. In another

study [24], a multivariate CNN-LSTM performed better than the ARIMA and LSTM

models in forecasting the number of new cases in each province of India. In Verma

et al. [25], an LSTM, stacked LSTM, ED-LSTM, BiLSTM, CNN, and CNN-LSTM

were trained to predict the daily confined cases for 7, 14, and 21 days in India. Ev-

ery model in this study was univariate. The stacked LSTM and hybrid CNN-LSTM

12

performed better than the other six models.

2.2 Hospital Admissions Forecasting

As the global population continues to grow, there is an increased demand for health-

care services. Hospital admission forecasting is vital to an effective and robust health-

care system. An optimal balance between healthcare resources such as doctors, nurses,

beds, medical equipment, etc. and patient admission (demand) is necessary to en-

hance healthcare processes. Accurate forecasting of patient admission can signifi-

cantly reduce the associated costs in supplies and staff redundancy.

Hospital admission prediction has been extensively studied in the literature, but

mainly from a feature-based approach. In [26], a feature-based approach with logistic

regression was employed. Several key features were included that were supported by

past studies.

A common feature-based approach is with neural networks. However, the rela-

tive superiority of machine learning approaches compared to traditional methods like

logistic regression has not been proven.

A study developed a multi-layer artificial neural network to predict a peak in

the number of patients with respiratory disease in the emergency department [27]. A

similar study focused on predicting the number of admissions [28]. Another study [29]

developed three separate multi-layer artificial neural networks for each subgroup of

children aged 0 to 4, 5 to 14, and the entire study population. The study aimed

to evaluate the possible impact of meteorological factors and air pollution on the

number of children admitted for asthma. A significant shortcoming of feature-based

approaches is neglecting temporal patterns in the data.

An essential part of any hospital is its inpatient wards, which admit patients to

stay in the hospital while under treatment. When no inpatient beds are available to

new inpatients, overcrowding in that ward will occur.

Forecasting hospital admissions has been highly studied, but hybrid hospital ad-

mission forecasting has not seen the same attention. Only one study follows the

hybrid forecasting approach in the first use case of this thesis (see Chapter 4). This

work applied a hybrid autoregressive integrated moving average (ARIMA) and the

nonlinear autoregressive neural network (NARNN) models to forecast new admission

inpatients at a hospital in Chongqing, China [30]. The individual components of the

hybrid model were each compared to the hybrid model to determine if the hybrid

13

approach was superior. The study found that only for the monthly time series data

did the combination ARIMA-NARNN outperform the separate ARIMA and NARNN

models. Indeed, for the daily data, the NARNN model was superior to the ARIMA

and the ARIMA-NARNN models.

2.3 Summary

This chapter covered essential health forecasting background material. Health fore-

casting has four main principles: (1) The measure of uncertainty; (2) The nature of

time series data aggregation; (3) the forecasting horizon; (4) The focus. Each of these

principles must be considered when conducting a health forecast.

Previous health forecasting research related to this thesis was reviewed. Health

forecasting problems from infectious disease and hospital admissions forecasting were

considered from a multivariate hybrid neural network perspective. No previous work

has proposed methods long-range forecasting using multivariate data with full history

coverage that maintains the causal structure in the temporal sequences.

This thesis builds on previous work on hybrid neural network models for health

forecasting by offering the following improvements: (1) Stacked-dilated-causal CNN

layers to provide full history coverage that maintains the causal structure of the time

series ; (2) Incorporation of multivariate data; (3) Automatic inference of incomplete

multivariate data; (4) Multi-headed architecture, so a separate CNN and RNN process

each time-series; (5) Longer-range forecast horizon.

Chapter 3 will cover basic forecasting theory and forecasting methods. The pri-

mary focus of this chapter will be presenting the novel SCNN-BiLSTM architecture,

which will be explained in detail.

14

Chapter 3

Forecasting Theory, Methods, and

the Proposed Architecture

To judge the skill of a forecast, we need to compare and rank the performance of

various methods. This chapter begins with a discussion on properly evaluating a

forecast so we can rank each forecast from best to worst.

Then, the statistical and neural network methods used to test the skill of the

proposed hybrid neural network architecture, the SCNN-BiLSTM, are explained.

This is followed by explaining two hyperparameter methods: grid search and

evolutionary neural architecture search. Evolutionary neural architecture search is

an intelligent search for the optimal configuration of a neural network. These two

methods are compared in the use cases to determine which one provides a more

optimal design for the SCNN-BiLSTM.

Finally, the proposed health forecasting hybrid architecture is presented. The

SCNN-BiLSTM has three main neural network components: stacked-dilated-causal

convolution, bidirectional LSTM, and fully connected layers. Each component will

be explained in mathematical detail.

3.1 Evaluating Forecasts

A forecast should be judged based on the quality of the decision it facilitates. This

often requires considering the differential cost of a decision. For example, a forecast

that systematically underestimates the departure time of a flight is not useful because

the cost of missing a flight is higher than being early for most people.

15

Often the context-specific decisions that result from a forecast are difficult or

impossible to consider completely. In this case, an objective forecasting metric is

required. The metric selected for both use-cases was the Mean Average Percentage

Error (MAPE) which is

MAPE =
1

n

n∑
t=1

|At − Ft

At

| × 100 (3.1)

where At are the actual values, Ft are the forecasts, n is the number of steps in the

forecast.

A MAPE score of zero percent indicates that the forecast was perfect. As the

MAPE score increases, the performance of the forecast decreases.

With an objective metric, such as the MAPE score, it is possible to compare the

forecasts produced by a model. Then the skill of each model can be ranked from

worst (highest MAPE score) to best (lowest MAPE score).

A MAPE score is a standard metric to evaluate forecasting performance. However,

if any actual values are zero, the MAPE score will not work (division by zero). For

both use cases, there are no values that are zero, so this limitation was not an issue.

In time series forecasting, the gold standard to validate the performance of a model

is the walk-forward method. This approach entails training the model on data from

the beginning of the time series to a certain point T . Then the model forecasts h

time steps into the future. The value of h is known as the forecasting horizon. If the

forecast consists of the following five steps, it is called a five-step forecasting horizon.

Then the model is input with the actual values for the next h steps and forecasts the

following h values. This process is repeated for the selected testing time interval, and

the MAPE scores of each forecast are combined to determine the complete MAPE

score for the walk-forward time range.

The walk-forward method ensures that the model forecasts a wide range of values

so that the chance a model was simply lucky forecasting a particular set of values is

reduced.

3.2 Statistical Methods

Classical methods for time series forecasting are generally focused on linear relation-

ships between historical time series observations and future values. The classical

methods also tend to be univariate, meaning a single time series variable is used

16

to train the models. One of the most popular classical statistical methods is the

Autoregressive Integrated Moving Average Method.

3.2.1 Autoregressive Integrated Moving Average Method

The Autoregressive Integrated Moving Average (ARIMA) model forecasts values as a

linear function of past observations and the residuals. The residuals are the difference

between the actual observations and the forecast.

The ARIMA model consists of three parameters: p, d, q. The parameter p repre-

sents the number of time lags included in the model. The parameter d is the degree

of differencing, it describes the number of times the time series will be differenced to

make it stationary (variance and mean are constant over time). Differencing involves

subtracting the previous value from present value for the entire time series. The

parameter q is the order of the moving average term. The ARIMA model is a com-

bination of the AR, I, and MA models. The model is a general representation of each

of the component models, so if a parameter of the model is assigned zero, then that

part of the model is not included. The notation for the ARIMA is: ARIMA(p, d, q).

3.2.2 Seasonal Autoregressive Integrated Moving Average

Method

The Seasonal ARIMA or SARIMA is an extension of ARIMA. It is useful for time

series that exhibit seasonality. Seasonality is a repeating pattern that occurs over a

fixed time interval. SARIMA adds four more parameters to the ARIMA model. These

parameters are P for the seasonal autoregressive order, D for the seasonal difference

order, Q for the seasonal moving average order, and m for the number of time steps

for a single seasonal period. An m of 12 for monthly data suggest a yearly seasonal

cycle. The notation for a SARIMA is expressed as: SARIMA(p, d, q)(P,D,Q)m.

3.3 Neural Network Methods

Neural networks simulate a simplified mathematical model of biological neurons, with

neurons or nodes connected to each other by weights that control the amount of

information that passes between the nodes.

17

The two essential characteristics of how neural networks learn from data are the

incremental, layer-by-layer way increasingly complex representations are developed

and the fact that these intermediate incremental representations are learned jointly.

The time series data requires a specific technique to prepare for neural networks,

known as the sliding window method.

3.3.1 Sliding Window Method

A time series dataset must first be transformed to a supervised learning problem prior

to training any of the neural network forecasting methods. A supervised learning

method requires that the data be a set of samples that has an input, X, and output,

y. A supervised learning method fits a function that maps the input to the output

during training that approximates the actual mapping. For univariate time series with

a one-step forecast, the input is prior time steps, and the output is the observation

at the next time step. The use of prior time steps to predict the next time step is

called the sliding window method. The order between the observations is preserved

when creating the windowed dataset, which is essential when learning the temporal

structure of the time series. The number of previous steps is called the window width

or size of the lag. The sliding window method allows any time series problem to

transformed into a supervised learning problem.

3.3.2 Multi-layer Perceptron

The multi-layer perceptron (MLP) or fully connected neural network is a network

of nodes organized in layers. The nodes in each layer are connected to every node

from the previous layer (fully connected). The nodes compute the weighted sum

of each weight that is connected to it. The weighted sum is then subjected to an

activation function. The nonlinear activation function allows the model to learn

nonlinear relationships from the data. In time series forecasting the time series from

real-world data is often nonlinear, which allows deep learning methods to capture

patterns in time series data. The result of the activation function is an input to

the next layer of nodes. The final output of the neural network is the forecast as a

continuous value.

18

3.3.3 Convolutional Neural Network

The Convolutional Neural Network (CNN) was originally designed for image data.

It operates directly on the pixels of the raw image data to extract relevant features.

This eliminates the need for manual feature extraction.

The CNN is able to automatically extract features by using the convolution oper-

ation, which consists of a filter moving around the image and performing the element-

wise multiplication of the filter values with the pixel values, then summing the result.

The filters are typically connected to more layers of fully-connected nodes, like the

architecture of the fully connected neural network.

In the context of time series forecasting, a sequence of observations can be con-

sidered a one-dimensional image. The CNN can learn the most important parts of

the sequence that aid in better forecasting results.

3.3.4 Long Short-Term Memory Network

The Long Short-Term Memory Network (LSTM) is a type of Recurrent Neural Net-

work (RNN). RNNs allow for the temporal structure of the time series to be explicitly

modelled. This is achieved by retaining results of past inputs by feeding the past out-

puts into the next time step.

The LSTM has a series of gates that allow it to remember long-term dependencies

in a time series. The cells of the LSTM are updated with the input gate. The

information from the previous hidden state is combined with the input at the current

time step at the input gate. LSTMs also have a forget gate. The forget gate decides

what information to ignore and what information from the time series is important

and should be remembered. The output gate decides what the next hidden state

should be for the next cell of the LSTM. The current input and previous hidden state

are combined with the sigmoid function. The output from the sigmoid function is

then subjected to the tanh activation function. These operations allow the LSTM to

decide what information the hidden state should retain.

3.3.5 Bidirectional Long Short-Term Memory Network

The Bidirectional LSTM or BiLSTM consists of two layers of LSTM nodes. The first

layer will consider the time series forward in time, while the second layer of the LSTM

will consider the observations in reverse (backward) in time. In this way, the LSTM

19

layers attempt to capture time-dependent regularities forward and backward in time.

This approach will capture more time dependencies in the time series than a regular

(forward) LSTM layer of nodes.

3.4 Hyperparameter Tuning

Statistical and neural network methods require hyperparameter tuning, which is de-

termining the optimal values of parameters that are not learned from data. Two

techniques were used for hyperparameter tuning: grid search and evolutionary neural

architecture search.

3.4.1 Grid Search

A grid search uses the permutations of each hyperparameter selected and tests the

performance of the resulting configuration. Grid search is not an intelligent search,

it simply tests each configuration from a list of all possible configurations.

3.4.2 Evolutionary Neural Architecture Search

Determining the optimal hyperparameters of a model is a challenging task. The search

space is massive, and the time required to search even a small part is considerable. The

optimal hyperparameters of a model are often determined by domain expertise gained

by trial-and-error experimentation. To combat this, techniques from evolutionary

computation have been used for automatic and efficient hyperparameter search. When

considering neural networks, one such technique is evolutionary neural architecture

search.

Evolutionary neural architecture search utilizes techniques from genetic algorithms

to automatically determine the best hyperparameters for a neural network [31] [32].

The techniques of genetic algorithms consist of the genetic operators of selection,

crossover, and mutation, which are applied to a population of individuals [33]. Each

individual consists of a chromosome representing an array of values; each value is a

gene. Each individual is a candidate solution to a specific task. In the case of this

thesis, the tasks are to forecast the number of daily COVID-19 cases and to forecast

the weekly number of hospital admissions.

The selection operator determines which individuals from the current generation

will be parents to the next generation of individuals. There are various selection

20

methods, but each one aims to select the best individuals. The best individuals are

determined based on the fitness of the individual. The fitness value is computed

based on a specific task. The best individuals in this thesis produce the lowest mean

average percentage error score when forecasting.

The crossover (or recombination) operator creates children (or offspring) from

the selected individuals. This is typically performed by using two individuals as the

parents and swapping parts of their chromosomes to create two new chromosomes

representing the children.

The mutation operator will randomly alter the chromosome of a child to promote

diversity in the population. The chance of mutation is usually very rare.

In the following subsections, the specific methods chosen for selection, crossover,

and mutation in the evolutionary neural architecture search for each use-case exper-

iment are discussed in detail. But first, the way a chromosome is represented will be

explained.

Chromosome Representation

There are two ways to represent the chromosome of an individual: integer-coded or

real-coded. An integer-coded chromosome consists of genes that are whole numbers.

However, an integer-based individual requires that each gene has the same range

of values. In evolutionary neural architecture search, each gene of the chromosome

represents a part of the specific configuration of the hybrid neural network. Unless

each gene has the same range of values, the integer-based solution will not be feasible.

In response to this, there is the real-coded chromosome, which consists of real-

valued genes. The real-values allow each gene to represent its own range of values.

This approach is used for the architecture search. The representation of a real-

coded chromosome for the optimal architecture search of the proposed hybrid model

(described next section) is shown in Table 3.1.

The chromosome has 9 genes (see Gene Index column in Table 3.1). Each gene

represents a part of the specific architecture of the hybrid neural network. Since the

genes are real numbers, the values need to be converted to a whole number prior to

becoming hyperparameters to the hybrid neural network. The range of values of each

gene is restricted to a lower and upper bound. These limits guarantee the values of

the gene always stay within a bounded range.

Beginning at gene index 0, this part of the chromosome represents the window

21

Table 3.1: Bounded Limits for each Gene of an Individual

Gene Index Hyperparameter Lower Bound Upper Bound
0 Window Length 5 20
1 Horizon Length 1 12
2 Number of RNN Nodes 5 100
3 Maximum Pooling Size 1 2
4 Fully Connected Layer 1 5 200
5 Fully Connected Layer 2 -5 100
6 Fully Connected Layer 3 -5 100
7 Fully Connected Layer 4 -5 100
8 Number of Convolutional Filters 5 60

length. The window length is the number of lagged time steps for the input. The next

gene is the horizon length, which is the number of time steps to be forecast during

training. The number of RNN nodes is represented by gene 2. Gene 3 is the maximum

pool size. The maximum pooling occurs after the convolutional layer(s). It can have a

value of either 1 or 2. The following four genes are for the number of nodes in the fully

connected layers. A value of less than 1 means that layer and subsequent layers are

not included. For example, if genes 4, 5, 6, 7 were 23, 40, -3, and 22, this would mean

that the hybrid neural network has two fully connected layers with 23 and 40 nodes,

respectively. The positive lower bound of gene 4 ensures that there will be at least one

fully connected layer. Finally, the number of convolutional filters is represented by

gene 8. The chromosomes have a total of 16×12×96×2×196×106×106×106×56 =

4.819 × 1014 possible configurations, or approximately 500 thousand billion. This

means that if it took 1 second to train and test a configuration, it would take over 15

million years for each possible configuration.

The use of a real-coded chromosome restricts the methods available for crossover

and mutation. The specific architecture that each chromosome represents is used to

produce a forecast. The forecast is what is evaluated as the fitness of each chromo-

some.

Fitness Value

In order to select the best individuals at each generation, there must be a method

to evaluate the individuals. This is captured with the fitness value. As mentioned

previously, the MAPE score will be the metric to evaluate the forecasting results.

22

Therefore, the MAPE score will represent the fitness value.

Selection

The selection operator determines which individuals from the current generation will

be the parents of the next generation. In contrast to the crossover and mutation

operators, the selection method does not depend on the chromosome representation.

The tournament selection method was chosen for this thesis in combination with

elitism. [34].

Tournament selection

Tournament selection requires a tournament size value, n. When selecting the par-

ents of the next generation, a subgroup of n individuals are randomly selected from

the current generation. These n individuals are compared to each other, and the

individual with the best fitness is selected as a parent.

The larger the tournament size, n, the greater the probability that the best in-

dividuals will be part of the tournament. When the best individuals are part of

more tournaments the most fit individuals of the current population will become par-

ents more often, on average. A larger tournament size will also tend to reduce the

variability or diversity of the population.

Tournament selection does not require a fitness value to determine which individ-

uals are selected as parents. The only requirement is a method to compare any two

individuals to determine which is better. In this thesis the fitness value is the MAPE

score from forecasting with the architecture that each individual represents. A lower

MAPE score is considered a better fitness value.

The tournament selection method was combined with elitism to select the popu-

lation at the next generation [35].

Elitism

Generally, the average fitness of the population increases with each generation. How-

ever, the best individuals may be lost in the next generation. This is the result of

applying the genetic operators on each individual. In many cases the loss is only

temporary, and the best individuals will be reintroduced in later generations.

To avoid the potential time wasted on rediscovering good individuals, the best n

individuals from each generation can be automatically selected to be part of the next

23

generation, without applying crossover or mutation. This concept is known as elitism.

Elitism was combined with tournament selection to select each new generation.

Crossover

The crossover methods applicable to integer-based chromosomes are not suitable for

a real-coded chromosomes. Therefore, a specialized crossover method, unique to real-

coded individuals is required. For this purpose, the simulated binary crossover (SBX)

method was chosen [36].

The SBX method imitates the properties of the single-point crossover technique

that is common with integer-coded chromosomes. One of these proprieties is that the

children’s chromosomes are the average of their parents. The SBX is expressed as

c1,k =
1

2
[(1− βk)p1,k + (1 + βk)p2,k] (3.2)

c2,k =
1

2
[(1 + βk)p1,k + (1− βk)p2,k] (3.3)

where ci,k is the ith child with the kth dimension, pi,k is the selected parent and βk is

a random number referred to as the spread factor.

This formula has several notable properties. As mentioned previously, the average

of the two children is equal to their parents, regardless of the value of β. This is

how SBX imitates single-point crossover. When the value of β is 1, the children

are effectively clones of the parents. If the value of β is less than 1, the children’s

chromosomes will be closer to each other than the parents were. Conversely, when

the value of β is greater than 1, the children will be farther apart from each other

than the parents were.

In the SBX method, the similarity between children and parents is preserved with

the random distribution of the β value. The probability of β is higher for values

around 1, where the children are similar to the parents. To achieve this, the value

of β is computed with u, which is a random number sampled uniformly from [0, 1].

Once the value of u is selected β is computed as

β(u) =

(2u)
1

η+1 if u ≤ 0.5

1

[2(1−u)]
1

η+1
otherwise

(3.4)

where η is the crowding factor, which is set as a constant representing the distribution

24

index. Children will be more similar to the parents with larger values of η.

Mutation

Similar to the crossover operator, the mutation operator must be suitable for a real-

coded genetic algorithm. Therefore, the polynomial bounded mutation operator was

chosen [36]. The polynomial bounded mutation operator determines the probability

distribution with a polynomial function, rather than a Gaussian function. This oper-

ator requires arguments for the upper and lower boundaries of the search space. The

polynomial bounded mutation operator is expressed as

ck = pk + (puk − plk)δk (3.5)

where ck is the child, pk is the parent, k is the dimension being considered, puk is the

upper bound on the parent, plk is the lower bound, and δk is the variation which is

δk =

(2rk)
1

nm+1 − 1 if rk < 0.5

1− [2(1− rk)]
1

nm+1 otherwise
(3.6)

where rk is a random number sampled from a uniform distribution between [0, 1] and

nm is the mutation distribution index.

3.5 Proposed Hybrid SCNN-BiLSTM Architecture

for Health Forecasting

The proposed hybrid neural network is composed of three main neural network ar-

chitectures: a stacked-dilated-causal convolutional neural network, a bidirectional

LSTM, and a fully connected neural network. Each component will be discussed in

detail.

As discussed in Chapter 2, there has been previous research on hybrid models in

health forecasting. This thesis extends previous research on the CNN-RNN hybrid

model for health forecasting in the following ways:

1. Stacked-dilated-causal CNN to provide full history coverage that maintains the

causal structure of a time series.

2. Incorporates multivariate data.

25

3. Automatically infers incomplete multivariate data.

4. Multi-headed architecture, so a separate CNN and RNN process each time-

series.

5. Longer-range forecast horizon.

The proposed Stacked-dilated-causal CNN-BiLSTM or SCNN-BiLSTM architec-

ture incorporates all of these enhancements to accurately forecast health data, which

will be displayed in the two use cases (see Chapter 4 and 5) .

Next, Each component of the SCNN-BiLSTM will be explained in mathematical

detail.

3.5.1 Convolutional Neural Networks for Time Series

Convolutional neural networks are usually used in computer vision. This involves

applying a two-dimensional convolutional filter over a two dimensional image. In

forecasting, a one-dimensional convolutional filter is applied to time series.

One-Dimensional Convolution

The convolution operation is defined as the dot product between a kernel matrix

k ∈ Rh×d and the input vector x. The kernel k has length h and width d. In this

study, the width d of k is 1, since each input is one-dimensional. In the case of

non-causal convolution the input vector is xi:i+h+(s−1), which is the concatenation of

h continuous time steps, initiated from the ith step, with stride s. Formally, x can be

expressed as

xi:i+h+(s−1) = xi ⊕ xi+s ⊕ ...⊕ xi+h+(s−1) (3.7)

where ⊕ is the direct sum operator. The dot product between k and x is

y(w) =

∑h

i=1 kixw+i if w=1∑h
i=1 kixw+i+(s−1) otherwise

(3.8)

where w is the width of the input (the number of lagged values) and y is the output of

the dot product. If the output y is dependent on future inputs x, then such systems

are called non-causal. For example, if w is 5, h is 3, and s is 1 then,

26

y(1) = k(1)x(1) + k(2)x(2) + k(3)x(3)

y(2) = k(1)x(2) + k(2)x(3) + k(3)x(4)

y(3) = k(1)x(3) + k(2)x(4) + k(3)x(5)

Notice that the output y(1) is dependent on future inputs x(2) and x(3). The output

length is not equal to the length of the input. This corresponds to valid padding

in the deep learning library Keras [37], which was used in this study. To make the

output length equal with the input there is same or causal padding.

In causal convolution, the output is not dependent on future inputs. The input

vector becomes

xi:i−h+(s−1) = xi ⊕ xi−s ⊕ ...⊕ xi−h+(s−1) (3.9)

The causal dot product of input x and kernel k is now computed as

y(w) =

∑h

i=1 kixw−i if w = h− 1∑h
i=1 kixw−i+(s−1) otherwise

(3.10)

If w is set to 5, h is 3, and s is 1 (as in the previous example) then,

y(3) = k(1)x(3) + k(2)x(2) + k(3)x(1)

y(4) = k(1)x(4) + k(2)x(3) + k(3)x(2)

y(5) = k(1)x(5) + k(2)x(4) + k(3)x(3)

In this example the output y is independent of future inputs of x, and hence represents

causal convolution.

In addition to the dot product between k and x, a bias b is added. The result

y(wi) + b is input to the Rectified Linear Unit (ReLU) which is

ai = max(0, y(wi) + b) (3.11)

where ai is the activation value for the feature map. It is worth noting that ai is a

scalar value, representing a single activation value in a feature map. The complete

feature map is then

aj = [a1, a2, ..., aw−h+1] (3.12)

27

Figure 3.1: A one-dimensional convolution applied to a univariate raw time series
input where n is the number of input samples, w is the number of lagged time steps
in the input window, d is the dimension of the input (1 since it is univariate), h is
width of the convolutional filter, f is the number of filters, l is the size of max pooling.

where the jth index denotes the jth convolutional filter. and w is the width of the

input window of lagged values of x. When the padding is set to same or causal aj

becomes

aj = [a1, a2, ..., aw] (3.13)

since the padding will equal h−1 to ensure that the output from the convolution and

activation operations match the length of the input.

Max Pooling

The pooling layer reduces the length of the feature map. The max pool operation is

applied ⌊w
l
⌋ times to each feature map aj taking the maximum value of l continuous

elements. The compressed feature will become

p = [p1, p2, ..., pw−h
l

+1] (3.14)

There are typically multiple filters f applied to the raw inputs, each with different

initial weights to derive the output of the CNN layer.

The time series input shape to the CNN layer is n × w × d, where n is the

number of samples. The size of the outputs will be n × (w−h
l

+ 1) × f . In this way,

after convolutional and pooling operations, the raw input time dimension w, can be

compressed from w to (w−h
l

+ 1). The raw input feature dimension d, which is 1, is

increased to the number of filters, f . Therefore, the CNN acts as a feature extractor

28

Figure 3.2: Stacked-dilated-causal convolutions for full history coverage while main-
taining the causal structure of the time-series input. Note that convolutional layer 1
has a kernel with 20 = 1 dilation, layer 2 has a 21 = 2 dilated kernel, and layer 3 has
a kernel that is dilated by 22 = 4.

29

that feeds a more informative sequential representation to any subsequent layers,

compared to the initial raw time series input. The complete transformation of the

raw time series to the richer representation of each feature matrix is shown in Figure

3.1.

3.5.2 Stacked-dilated-causal Convolutions

There is full history coverage when every output from a convolution operation depends

on all previous elements in the input window. This often requires stacking multiple

convolutional layers. The total number of convolutional layers required for full history

coverage is

⌈(w − 1)

h− 1
⌉ (3.15)

so that a convolution with an input window, w, equal to 8, and a kernel length, h,

set to 2 would result in seven convolutional layers for full history coverage.

To reduce the number of layers, a convolutional kernel can be dilated, which refers

to the distance between the elements of the input that are convoluted with the kernel

[38]. To increase the dilation at each layer, if c represents the number of convolutional

layers before the layer being considered, then with a dilation base, b, the dilation of

the kernel will be bc at that layer. Then the number of convolutional layers required

for full history coverage will be

⌈logb
(w − 1)(b− 1)

h− 1
+ 1⌉ (3.16)

which would reduce the total number of layers for full history coverage from seven

without a dilated kernel to three (see Figure 3.2). Evidently, without dilating the

convolutional kernel, the ability to train the model would quickly become impractical

as the input window increased in size.

3.5.3 Recurrent Neural Networks for Time Series

There are various forms of recurrent neural networks (RNNs). All RNNs use previous

inputs rather than only the present input. The RNN that had the best forecasting

performance was the bidirectional long short-term memory network, which is an ex-

tension of the long short-term memory network.

30

Figure 3.3: A basic LSTM for time series forecasting

31

The main idea behind long short-term memory networks (LSTMs) is that at each

time step t gates are used to control the passage of information. The hidden state

ht at time t is updated by the current time step input x′
t, the previous hidden state

ht−1, the input gate it, the forget gate ft, the output gate ot and the memory cell

state Ct. The LSTM is shown in Figure3.3. The equations that describe a LSTM are

ft = σ(Wf [ht−1 ⊕ x′
t] + bf) (3.17)

it = σ(Wi[ht−1 ⊕ x′
t] + bi) (3.18)

C′
t = tanh(Wc[ht−1 ⊕ x′

t] + bc) (3.19)

Ct = ft ⊗Ct−1 + it ⊗C′
t (3.20)

ot = σ(Wo[ht−1 ⊕ x′
t] + bo) (3.21)

ht = ot ⊗ tanh(Ct) (3.22)

where W ∈ Rm×(m+f), ht−1 ∈ Rm×1, x′
t ∈ Rf×1, σ is the sigmoid activation function,

tanh is the hyperbolic tangent activation function, ⊗ is the element-wise product, m

is the number of nodes in the hidden layer, b ∈ Rm is the bias vector. The LSTM

processes the time series in temporal order. The output of the LSTM at the terminal

time step is ht.

A single LSTM hidden layer will only process previous time steps forward in time

(from past to future). However, Bi-directional LSTMs are able to process a time

series in both the forward and backward temporal directions. Then the complete

bi-directional LSTM output ht is the concatenation of the forward and backward

processes.

3.5.4 Complete Hybrid SCNN-BiLSTM Architecture

The proposed hybrid SCNN-BiLSTM combines Stacked-dilated-causal convolutions,

a bidirectional LSTM, and fully connected layers. The stacked-dilated-causal con-

volutions guarantee that every output from the convolution operation depends on

all previous elements in the time series input window, ensuring full history coverage

while maintaining the causal structure.

The hidden state units from the LSTM are concatenated for each input variable.

There are one or two more fully connected layers in succession connected to the layer

of concatenated values from the LSTMs. The fully connected layers are defined by

32

Figure 3.4: A high-level depiction of the proposed SCNN-BiLSTM. Note that the
CNN component will involve multiple stacked layers of dilated causal convolutions.

33

Figure 3.5: The complete SCNN-BiLSTM hybrid neural network. The blue-dotted
boxes highlight notable progressive stages. To indicate each stage, the blue boxes
are labelled by a numbered blue circle. Blue-box 1 is part of the output from the
convolutional component. The convolutional kernel with width h is applied to the raw
time-series w which is [xt, xt−1, ..., xt−7]. Then max-pooling with width l is applied to
reduce the number of time steps to [x

′
t, x

′
t−1, ..., x

′
t−3]. The output from applying this

process once is shown in a green-dotted box. The process is repeated for each filter
n, resulting in n feature maps. The final output from the convolutional component
is w−h

l
+ 1. Each variable v has separate convolutional and LSTM processing. This

figure only shows the convolutional component being applied to one variable. The
output from blue-box 1 is the first input to the LSTM (blue-box 2). Since the RNN
component has bi-directional LSTMs, the output from the convolutional component
is processed in both directions (the second LSTM in the backwards direction is not
shown). There are m hidden units in the LSTM (blue-box 3). In the figure, the
LSTM near blue-box 3 is a close up the final LSTM output. The m hidden units
from the LSTM are concatenated with the LSTM hidden units of each variable v
(blue-box 4). Next, there are fully connected. Finally, there are v outputs that are
each h units long.

34

oi = r(Wih
i + bi) (3.23)

where oi is the output and hi denotes the input, Wi is the weight,bi is bias term in of

the ith fully connected layer, r is the rectified linear unit (ReLU) activation function.

There is an output for each input variable v that is the length of the forecast horizon.

The SCNN-BiLSTM is multi-headed, meaning each input variable has a separate

CNN and RNN component before being concatenated and processed by fully con-

nected layers. The hybrid neural network leverages the advantages of each separate

neural network architecture to learn a complex representation of the raw time series

input. The stacked-dilated-causal-convolutional component extracts temporal struc-

tural features from the raw time series. The temporal features are then processed

forwards and backwards in time with an LSTM to capture the long-term time de-

pendencies. Then the hidden LSTM units of each input variable are concatenated

and processed by fully connected layers to determine the relationships between the

variables.

The model is also able to forecast every time series variable at once, since it has

an output for each variable. The hybrid model is shown in Figure 3.4 and Figure 3.5.

The multi-headed architecture provides recursive or direct forecasts. The outputs

(forecast) are used as input in a recursive forecast until the desired forecasting horizon

has been met. A direct forecast has the same number of outputs to match the

forecasting horizon. If the desired forecasting horizon is longer than the number

of outputs, the SCNN-BiLSTM will automatically produce the selected forecasting

horizon with the recursive method.

Since the initial weights of a neural network are assigned randomly, the same

configuration with that same training data will result in a different set of final trained

weights. This will produce different forecasting performances. To address this, each

hybrid configuration is trained and tested five times. Then the mean of all five

forecasts becomes the final forecast. This also allows for a simple but robust method to

estimate the uncertainty of the final forecast. The lower boundary of the uncertainty

is defined as the mean of the forecasts subtracted by 1.95 times the standard deviation

of the forecasts. Similarly, the upper boundary is the mean of the forecasts plus 1.95

times the standard deviation of the forecasts.

35

3.6 Summary

In this chapter we first covered the classical auto-regression methods, which are suit-

able for univariate time series forecasting. This was followed by presenting the basic

building blocks of the proposed architecture. The building blocks consist of the

stacked-dilated-causal convolutional neural network, a bidirectional long short-term

memory network, and fully connected neural network layers.

Finally, the complete hybrid architecture consisting of Stacked-dilated-causal Con-

volutional Neural Network and Bidirectional Long Short-TermMemory (SCNN-BiLSTM)

was presented. The main innovation of this hybrid technique is introducing stacked-

causal convolutions for multivariate health forecasting, which efficiently provide full

history coverage of the input window while maintaining the causal structure.

36

Chapter 4

Hospital Admission Forecasting

This chapter presents the the first health-forecasting use case to conduct experiments

with the proposed SCNN-BiLSTM hybrid architecture. The aim of this use case is

to predict number of hospital admission for mental health patients using multivariate

time-series data.

This use case is framed as a series of experimental questions to answer, just like the

infectious disease forecasting use case. In the Dataset section, the multivariate data

used in the experiments are explained. Then in the Experiments and Results section,

the first experiment investigates whether hybrid models are suitable for one-step

forecasting. Next, long-range forecasting was examined to determine if multivariate

models were better than univariate and if the stacked-dilated-causal Convolutional

(SCNN) approach outperforms a standard CNN in a hybrid architecture. Finally, grid

search and evolutionary neural architecture search were compared for the SCNN-

BiLSTM to determine which approach would find the optimal configuration. The

chapter will conclude with a discussion of the main experimental results.

4.1 Data

The data for the experiments consisted of the following variables:

1. Hospital admissions cases: The original dataset consisted of the date and time

a patient at the Thunder Bay Regional Health Sciences Centre (TBRHSC) was

admitted to adult mental health services from April 1, 2014, to February 15,

2021. In 2020 there was a shift in the time series distribution caused by the

COVID-19 pandemic. Due to this shift in the time series distribution, the data

37

that followed 2019 were excluded from the test set. This time series dataset

was re-sampled to forecast the total number of patients each week, with the

beginning of each week defined as Monday. The weekly frequency was chosen

because the daily frequency time series did not consist of significant regularities

2. Unemployment: The monthly unemployment in Thunder Bay. This variable

has been found to influence mental health [39]. During an economic crisis,

unemployment plays an important role in developing anxiety and depressive

disorders and is closely related to suicide attempts.

3. Maximum temperature: The maximum weekly temperature in Thunder Bay.

Meteorological variables such as maximum temperature have been linked with

mental health [40].

4. Maximum precipitation: The maximum weekly precipitation in Thunder Bay.

Precipitation is another meteorological variable along with temperature that is

linked to mental health admissions in the literature. Since these variables have

been shown to exhibit relationships with mental health admissions, multivariate

forecasting models can exploit this information to produce better forecasts.

For the one-step forecasting, only hospital admissions cases were included. In the

multi-step forecasting, the other three variables were included with the number of

hospital admissions.

4.2 Experiments and Results

When conducting the experiments the following questions were considered:

1. For one-step forecasting, does a statistical, neural network, or hybrid neural

network perform best?

2. Does the full coverage history provided by the SCNN-BiLSTM provide an ad-

vantage compared to a standard CNN for multi-step multivariate forecasting?

3. Will the evolutionary neural architecture search produce a configuration of the

SCNN-BiLSTM that performs better than the grid search approach?

38

First, the CNN-BiLSTM hybrid architecture was compared with various classical

statistical and machine learning techniques for one-step forecasting to examine if

hybrid models can outperform statistical and neural network methods. The following

methods were compared (each method is more fully explained in 3.2 and 3.3):

• The Auto-regressive Integrated Moving Average (ARIMA): The ARIMA model

forecasts future values as a linear function of past observations and the random

residuals.

• Seasonal ARIMA (SARIMA): The SARIMA model is an extension of ARIMA.

It is useful for time series that exhibit seasonality. Seasonality is a repeating

pattern that occurs over a fixed time interval.

• Fully Connected Neural Network (FCNN): The FCNN is a network of nodes

organized in layers. The nodes in each layer are connected to every node from

the previous layer.

• One-dimensional Convolutional Neural Network (CNN): The one-dimensional

CNN uses filters to learn a more complex representation of the input time series.

• The Long Short-Term Memory Network (LSTM): The LSTM is a form of re-

current neural network that uses previous inputs rather than only the present

input.

4.2.1 Experimental Setup

The neural network methods required an input that is a window of w lagged values

of the each time series. This transformation of a time series is known as the window

method (see 3.3.1). A time series of length N is reduced to

N − g − c+ 1 (4.1)

samples, where g is the window size, c is the output size.

The hyperparameters for the comparison models were all determined with grid

searches over a range of possible values that will be described in the next section.

39

4.2.2 Performance Metric

The forecasting models required a performance metric to determine which model pro-

duces the best forecasts. In this study, the Mean Average Percentage Error (MAPE)

was selected (see 3.1 for details).

4.2.3 Data Preprocessing

A neural network requires an input that is a window of w lagged values of each time

series. This transformation of a time series is known as the window method. A time

series of length N is reduced to N − w − c+ 1 samples, where w is the window size,

c is the output size.

After the dataset was transformed into windows of lagged windows of inputs and

outputs, the values of each variable x were normalized with the following equation

x− xmin

xmax − xmin

(4.2)

where xmin is the minimum value of that variable, xmax is the maximum value of the

variable. The forecasts must be inverse-transformed so the values are consistent with

the actual values.

Explicit denoising of the input time-series was not conducted since the dataset is

not expected to contain any significant noise.

4.2.4 One-step Forecasting

The first part of this use case tested neural network, statistical, and hybrid neural

network methods with a one-step hospital admissions forecast to answer experimental

question 1.

The optimal hyperparameters of each method were determined with a grid search.

The grid search trained each technique with the number of weekly hospital admissions

from April 7, 2014, to December 31, 2018. It was tested over the entire year of 2019

with one-step walk-forward validation. The grid search pseudo-code is described in

Algorithm 1.

The FCNN for this study consists of one hidden layer and an output layer. The

number of nodes in the hidden layer, the number of epochs (number of iterations

the model is trained with the complete data set), the batch size (number of obser-

vations to train the model prior to updating the weights), and the window size were

40

Algorithm 1: Grid Search for Hospital Admissions Forecasting

Input: Training Dataset M, Walk-forward Validation Dataset V, configurations C,
forecast horizon p

Output: List of ranked model configurations R
Initialisation: Empty list R
for configuration c in C do
initialize model c
cfit = M // fit model configuration with training set

initialize Results // List Results to save forecast MAPE scores

for step in V do
cforecastp // forecast one-step

score cforecastp with equation 3.1 // MAPE score of forecast

Results = cforecastp // append MAPE score of forecast to list

cupdate // input with actual values for forecast horizon

end for
R = Results // add MAPE results of model to R

end for
Sort R // rank the configurations of model by MAPE score

return R

41

all hyperparameters that needed to be determined. The grid search for this model

involved the following permutations of hyperparameter values: 100, 200, 300, 400,

and 500 nodes for the hidden layer; a batch size of 100, 200, and 300; 100, 200, and

300 epochs. The optimal hyperparameters determined by the grid search were 500

nodes, 300 epochs, a batch size of 100.

The CNN model has one hidden layer of fully connected nodes. It consists of the

same hyperparameters as the FCNN, with the addition of filters, and kernels. The

grid search for this model involved the following permutations of hyperparameter

values: 40, and 50 nodes for the hidden layer; a batch size of 80, 90, and 100; 100,

200, and 300 epochs; kernel size of 3; 35, 40, 50 filters. The optimal hyperparameters

were 40 nodes, 300 epochs, 35 filters, kernel size of 3, and a batch size of 80.

The LSTM model consists of a layer of LSTM nodes followed by a dense fully-

connected layer and a single node as the output layer. The hyperparameters for this

model are the number of nodes for the LSTM and fully-connected layer, the number of

epochs, and the batch size. The number of nodes for the LSTM and fully-connected

layer was set to be the same value. The grid search for this model included the

following permutations of values: 100, 200 nodes; 100, 200, 300 epochs; 80, 90, 100

batch size. The optimal hyperparameters were 100 nodes, 100 epochs, and a batch

size of 100.

The bidirectional LSTM (BiLSTM) consists of two layers of LSTM nodes. The

first layer will consider the time series forward in time, while the second layer of the

LSTM will consider the observations in reverse (backward) in time. In this way, the

LSTM layers attempt to capture time-dependent regularities forward and backward

in time. This approach will capture more time dependencies in the time series than a

regular (forward) LSTM layer of nodes. The BiLSTM has the same hyperparameters

as the LSTM. The optimal hyperparameters were 100 nodes, 200 epochs, and a batch

size of 100.

The grid search for the CNN-LSTM involved the following permutations of hy-

perparameter values: 20 or 30 nodes for the hidden layer; a batch size of 40, 50,

and 60; 100, 200, and 300 epochs; kernel size of 3; 10, 20, 30 filters. The optimal

hyperparameters were 20 nodes, 300 epochs, 10 filters, kernel size of 3, and a batch

size of 40.

The CNN-BiLSTM has the same hyperparameters as the CNN-LSTM except the

model architecture that was implemented excludes a hidden layer of fully connected

nodes. The optimal hyperparameters that were determined by a grid search were 300

42

Table 4.1: Results for Univariate One-Step Forecasting

Model Forecasting MAPE Score
SARIMA(0, 1, 1)(3, 1, 0)7 15.5

ARIMA(5, 1, 0) 16.8
FCNN 15.3
CNN 14.9
LSTM 15.2
BiLSTM 15.5

CNN-LSTM 14.8
CNN-BiLSTM 13.8

epochs, 10 filters, kernel size of 3, and a batch size of 30.

The parameters for the ARIMA model were determined with a grid search. The

optimal p parameter was 5, the d parameter was 1, and the q parameter was 0, which

resulted in an ARIMA(5, 1, 0) model.

SARIMA adds four more parameters to the ARIMA model. These parameters

are P for the seasonal auto-regressive order, D for the seasonal difference order, Q for

the seasonal moving average order, andm for the number of time steps for a single sea-

sonal period. The notation for a SARIMA is expressed as: SARIMA(p, d, q)(P,D,Q)m.

The model that was selected based on a grid search was the SARIMA(0, 1, 1)(3, 1, 0)7.

The results of the one-step forecasts are shown in Table 4.1 with the optimal mod-

els from the grid search. The best performing technique was the CNN-BiLSTM, with

a MAPE score of 13.8 percent. Notably, the only statistical method that performed

as well as a deep learning method was the SARIMA, with a MAPE score of 15.5

percent.

The next best performing method was the CNN-LSTM model. The only difference

between the CNN-LSTM and the CNN-BiLSTM is the bi-directional structure of the

LSTM layer. The bi-directional structure enables the capture of past and future

contexts, rather than exclusively past time series structures.

The two hybrid neural network approaches achieved the top performance met-

rics. This establishes the effectiveness of the hybrid neural network approach, which

combines the strengths of various neural network architectures to improve time series

forecasting. The results also answer question 1: The hybrid neural network approach

outperforms the statistical and single neural network models for one-step hospital

admissions forecasting.

43

Figure 4.1: SCNN-BiLSTM for the 4-step forecast. The multi-headed architecture
accommodates the 4 time series variables.

4.2.5 Multi-step Forecasting

The next stage in this study was to extend the forecasting horizon from a one-step

forecast to a multi-step forecast. A four-step forecasting horizon was selected, as a

month (4 weeks) provides an adequate amount of time for health care management

to prepare staff and resource demands.

Since the CNN-BiLSTM was the best performing model in the one-step forecasting

experiment, variations of it were selected for the four-step forecasting. Notably, the

proposed model, the SCNN-BiLSTM with full history coverage provided by stacked-

dilated-causal convolutions, was included in determining if this architecture is better

than a single layer of a standard CNN (CNN-BiLSTM).

Instead of considering a single variable (the number of hospital admissions), ad-

ditional variables were included for the CNN-BiLSTM and SCNN-BiLSTM methods,

creating multivariate models. The other variables included were the previously de-

44

Figure 4.2: SCNN-BiLSTM 4-step forecast. The dark orange represents the forecast,
the light orange is a 95 percent prediction interval. The entire data set is shown.

Figure 4.3: SCNN-BiLSTM 4-step forecast. The dark orange represents the forecast,
the light orange is a 95 percent prediction interval. The figure is limited to the forecast
range exclusively.

45

scribed unemployment, maximum temperature and total precipitation variables (see

5.1). To determine if the multivariate approach was superior to the univariate ap-

proach for long-range forecasting, a univariate CNN-BiLSTM was compared to the

multivariate models.

Each of the four-step forecasting models was trained identically to the one-step

forecasting models. This entailed training on the weekly time series data from April 7,

2014, to December 31, 2018. The year 2019 was the test range, which is also identical

to the one-step forecasts. The walk-forward validation method was used to produce

each 4-week forecast. This means that following each forecast, the actual values were

provided as input for the next forecast for the entire test range.

A walk-forward validation MAPE score of various configurations of each model

was conducted with a grid search. Each model considered 30 or 50 convolutional

filters, an input window of 8,12, or 16, a fully connected component with 40 nodes or

80 and 40 nodes, and a maximum pool size of 1 or 2.

The best configuration for the univariate CNN-BiLSTM had 52 convolutional

filters, an input window size of 8, fully connected layers with 80 and 40 nodes, and

a max pool size of 1. The optimal configuration for the multivariate CNN-BiLSTM

had 52 convolutional filters, an input window size of 8, fully connected layers with

80 and 40 nodes, and a max pool size of 2. Finally, the optimal architecture of the

multivariate SCNN-BiLSTM had 52 convolutional filters, an input window size of 16,

fully connected layer with 40 nodes, and a max pool size of 2. The architecture of

the multivariate SCNN-BiLSTM is shown in Figure 4.1. The MAPE scores for the

optimal configuration of each model are shown in Table 4.2.

Table 4.2: Performance Results for Four-Step Forecasting

Model Dataset Forecasting MAPE Score
CNN-BiLSTM Univariate 14.78
CNN-BiLSTM Multivariate 13.33
SCNN-BiLSTM Multivariate 12.96

The results reveal the answer to experimental question 2: the stacked-dilated-

causal convolutions of the SCNN-BiLSTM produced the best performing forecast

for the four-step horizon. The forecast produced by the SCNN-BiLSTM is shown

in Figure 4.2 and Figure 4.3. Visually, the pattern of the actual time series values

(weekly hospital admissions data) is followed closely by the SCNN-BiLSTM forecast.

Once again the forecasts includes a prediction interval. The prediction interval

46

assumes the errors are a Gaussian distribution. The prediction interval is 95 percent

of the Gaussian distribution.

Evolutionary Neural Architecture Search

To answer the final experimental question, the evolutionary neural architecture search

approach was compared to the grid search to determine if the best configuration of

the SCNN-BiLSTM from evolutionary neural architecture search would outperform

the best configuration of the same model from the grid search.

The following hyperparameters values were genes in each individual chromosome

solution for the evolutionary neural architecture search: the window size had a range

of 8 to 20 input lags; the output was from 1 to 12; the number of RNN nodes was

from 5 to 100; the maximum pooling was from size 1 to 2; the first fully connected

layer was from 5 to 200 nodes; the second fully connected layer was from -5 to 100

nodes (a negative value means this layer and all subsequent layers were not included);

the third fully connected layer was from -5 to 100 nodes; the last fully connected layer

was from -5 to 100 nodes; the number of convolutional filters was from 5 to 60.

Other values part of the evolutionary neural architecture search were: the crowd-

ing factor, which was set to 10; the number of individuals in the population, which

was 20; the probability of crossover, set to 1.0; the probability of mutation, set to 1.0.

The evolutionary neural architecture search was run for 5 generations. The results

are shown in Figure 4.4

In the first generation, the best performing individual had a 14.2352 MAPE score.

The average score of the first generation was 16.8665. In the last generation, or

generation 5, the best performing individual got a 13.4669 MAPE score. The 5th

generation of individuals had an average MAPE score of 14.863. Evolutionary neural

architecture search improved the initial average score of the generation and the score

of the best individual by the last generation.

The optimal solution from the evolutionary neural architecture search had a win-

dow size of 20, an output of 11, 81 RNN nodes, a maximum pooling size of 1, 42

convolutional filters, and fully connected layers with 50, 91, 67, 64 nodes. This con-

figuration had a MAPE score of 13.4669, worse than the grid search MAPE score of

12.96.

47

Figure 4.4: Results of the Evolutionary Neural Architecture Search. Each generation
of solutions records the best performing individual (red) and the mean performance
of the entire generation (green).

48

4.3 Discussion

This chapter presented the first use case for health forecasting with the SCNN-

BiLSTM. It involved forecasting the weekly number of admissions to adult mental

services at the Thunder Bay Regional Sciences Centre.

The first experiment of the use case established that hybrid models are suitable

for one-step forecasting, as the CNN-BiLSTM outperformed statistical and neural

network methods. Next, long-range forecasting was examined to determine if mul-

tivariate models were better than univariate and if the stacked-dilated-causal Con-

volutional (SCNN) approach outperforms a standard CNN in a hybrid model. The

experiment revealed that the multivariate approach was superior to the univariate

and that the SCNN outperformed the standard CNN.

Finally, the evolutionary neural architecture search was compared with the grid

search to find the optimal configuration of the SCNN-BiLSTM. The configuration

from the grid search had a better MAPE score than the evolutionary neural architec-

ture search approach. Further experiments are required to establish if the evolutionary

neural architecture search offers any benefits compared to the grid search.

49

Chapter 5

Infectious Disease Forecasting

using Incomplete Multivariate

Time-series

This chapter presents the second use case to test the proposed SCNN-BiLSTM archi-

tecture with a health forecasting problem. This use case considers infectious disease

forecasting. Specifically, the spread of COVID-19 in Ontario, Canada, is forecast

with various hybrid configurations of different types of Recurrent Neural Networks

(RNN), and standard CNN or stacked-dilated-causal convolutions that provide full

history coverage while maintaining the causal structure of the time series.

This chapter begins with the Data section, which describes the multivariate time-

series data used for the experiments. The Experiments and Results section frames

the experiments with four experimental questions. Then the experimental setup, the

performance metric, the data prepossessing, and forecasting results are discussed. In

the Forecasting Results subsection, there are answers to each of the four experimental

questions. The last section of this chapter is the Discussion, which summarizes the

experimental results from the use-case of infectious disease forecasting.

5.1 Data

The data for the experiments consisted of the following time series variables:

1. Number of confirmed COVID-19 cases: The number of confirmed COVID-19

cases was compiled daily from various public health units across Ontario [41].

50

2. Effective reproduction number: Ontario Health estimated the effective (or dy-

namic) reproduction number. It uses daily reported case counts and a 7-day

rolling average for estimation, with a Markov Chain Monte Carlo sampling pro-

cedure. The mean serial interval was set to 4.5 days with a standard deviation

of 2.5 days [42].

3. Total number of fully vaccinated individuals: Ontario Health collected the cu-

mulative number of fully vaccinated individuals. To be fully vaccinated, an

individual requires two doses of an approved COVID-19 vaccine.

4. Workplace mobility: Google collected the mobility measurements (workplace

and residential) as part of their Community Mobility Reports [43]. The data

shows how individuals in categorized places change compared to a baseline day.

The baseline day is the median value for the five weeks from January 3, 2020,

to February 6, 2020.

5. Residential mobility: Also collected by Google to compare the movement in

residential areas to a baseline.

The collected multivariate time-series data represent epidemiological and mobil-

ity factors to capture the spread of COVID-19 infections across Ontario, Canada.

Since COVID-19 spreads by close contact, the ability to quantify the movement of a

population with the Google Mobility data is beneficial.

5.2 Experiments and Results

Since use case 1 established that hybrid neural networks are effective for health fore-

casting problems, this use case will not include statistical and neural network methods

again. The experiments were conduced to answer the following key questions:

1. Is full history coverage using SCNN better than a standard CNN?

2. Is multivariate better than univariate forecasting with the CNN-RNN?

3. Which RNN (GRU, LSTM, or BiLSTM) performs best?

4. Will the evolutionary neural architecture search produce a configuration with a

better MAPE score than grid search?

51

5.2.1 Experimental Setup

To answer the key experimental questions mentioned previously, there were two vari-

ations considered for the CNN-RNN: univariate and multivariate. These versions of

the CNN-RNN were trained and tested with a grid search that exhaustively consid-

ered different architectures. The were five hyperparameters: the type of RNN, which

was either a GRU, LSTM, or BiLSTM; the number of convolutional filters, which was

either 10 or 50; the window size of either 8 or 16 lagged inputs; the fully connected

layers, which could be a single layer of 50 nodes or two layers with 100 and 50 nodes;

the number of convolutional layers, which could be 1, 2, or full history coverage. The

total number of hyperparameters considered was 3×2×2×2×3 = 72. The maximum

pool size was set to 2, the convolutional padding was set to causal, the convolutional

kernel size was set to 2, the dilation base for convolutional layers was set to 2, and the

number of RNN hidden units was set to 10 for each configuration in the grid search.

The grid search algorithm pseudo-code is shown in Algorithm 2.

The evolutionary neural architecture search (ENAS) was implemented as de-

scribed in 3.4.2. The ENAS was only used for the SCNN-BiLSTM, as it proved to be

the best architecture during the grid search for the first part of the experiments.

The univariate forecasting models were trained using the first N −p observations,

where N is the length of the daily number of confirmed COVID-19 cases in Ontario,

and p is the forecast horizon. The forecast horizon was set to produce 28-step-ahead

forecasts. The test range from April 1, 2021 to April 28, 2021 was chosen to be a diffi-

cult period to forecast accurately, as the number of confirmed cases initially increases,

then peaks near the middle of the month, only to steadily decrease for the rest of the

month. A 28-step forecast was also selected to produce a longer forecasting horizon

than any previous CNN-RNN approach in the COVID-19 forecasting literature.

The length of this time series N was 412, it ranged from March 13, 2020 to March

31, 2021. The the trained models forecast the number of confirmed COVID-19 cases

for the next 28 days from April 1, 2021 to April 28, 2021.

The multivariate forecasting models were fit with the daily number of confirmed

COVID-19 cases, the effective reproduction number, the cumulative number of fully

vaccinated individuals, baseline change in workplace mobility, and the baseline change

in residential mobility in Ontario. To create a more realistic scenario, recent data

was removed from some time series to simulate an incomplete multivariate dataset.

Ontario Health published the effective reproduction number weekly. Likewise, other

52

variables may not be entirely up to date throughout the pandemic.

Considering this scenario, in the experiment, the seven most recent days from the

effective reproduction, the two most recent days of a cumulative number of fully vac-

cinated individuals, and the five most recent days of the baseline change in workplace

mobility from the training set were removed. Since the dataset was incomplete, the

multivariate CNN-RNN could not be trained with the first N − p observations, like

for the univariate version. Instead, the forecasting models were initially trained on

the N − p− q observations, q is computed as

argmax
xj

(incomplete(xj) ∀j ∈ [1, 2, ..., v] (5.1)

where incomplete(.) is the number of incomplete elements in each vector, xj is the

jth variable in the multivariate dataset, and v is the number of variables considered.

In the case of this study, q is 7, since the maximum time steps of incomplete data

is 7 (from the effective reproduction number). After multivariate model was trained

on the incomplete data it inferred the rest of the dataset. Then, with the completed

dataset the model forecast the next 28 days of the number of confirmed cases.

Algorithm 2: Grid Search for Univariate and Multivariate Models

Input: Multivariate dataset M ∈ RN×d, configurations C, forecast horizon p
Output: List of ranked model configurations Rmultivariate and Runivariate

Initialisation: Empty lists Rmultivariate and Runivariate

for configuration c in C do
initialize model c
if (c is multivariate model) then
Determine q by eq. (5.1)
cfit = M ∈ R(N−p−q)×d // fit model with complete data

Mincomplete = cforecastq // infer incomplete data

Rmultivariate = cforecastp // forecast the next p steps

Sort Rmultivariate by score from eq. (3.1)
end if
if (c is univariate model) then
cfit = M ∈ R(N−p)×1

Runivariate = cforecastp
Sort Runivariate by score from eq. (3.1)

end if
end for
return Rmultivariate and Runivariate

53

5.2.2 Performance Metric

The forecasting models required a performance metric to determine which model

produces the best forecasts. In this use-case experiment, the Mean Average Percent-

age Error (MAPE) was selected. The MAPE is a common metric to evaluate the

performance of a forecast. See 3.1 for details on the MAPE forecasting metric.

5.2.3 Data Preprocessing

A neural network requires an input that is a window of w lagged values of each time

series. This transformation of a time series is known as the window method. A time

series of length N is reduced to N − w − c+ 1 samples, where w is the window size,

c is the output size.

After the dataset was transformed into windows of lagged windows of inputs and

outputs, the values of each variable x were normalized with the following equation

x− xmin

xmax − xmin

(5.2)

where xmin is the minimum value of that variable, xmax is the maximum value of the

variable. The forecasts must be inverse-transformed so the values are consistent with

the actual values (number of confirmed cases).

Explicit denoising of the input time-series was not conducted since the dataset is

not expected to contain any significant noise.

5.2.4 Forecasting Results

As previously mentioned, the univariate and multivariate CNN-RNN models were

validated with a grid search of various architectures to determine the best performing

univariate and multivariate configuration. The best configuration for the univariate

model was found to be a bidirectional LSTM with 10 filters, 16 lagged values for the

window size, a single layer of 50 fully connected nodes, and full history coverage for

the number of stacked CNN layers. The best performing multivariate CNN-RNN had

the identical configuration.

This answers key experimental question 1: the univariate and multivariate CNN-

RNN models achieved the best MAPE scores with the stacked CNN with full history

coverage of the input window values. Eight of the top ten results of the multivariate

models from the grid search were full history coverage CNNs, and seven of the top

54

Figure 5.1: Univariate forecast for the number of confirmed COVID-19 cases in On-
tario, Canada. The dark orange represents the forecast, the light orange is a 95
percent prediction interval. The entire data set is shown.

Figure 5.2: Univariate forecast for the number of confirmed COVID-19 cases in On-
tario, Canada. The dark orange represents the forecast, the light orange is a 95
percent prediction interval. The figure is limited to the forecast range exclusively.

55

Figure 5.3: Multivariate forecast for the number of confirmed COVID-19 cases in
Ontario, Canada. The dark orange represents the forecast, the light orange is a 95
percent prediction interval. The entire data set is shown.

Figure 5.4: Multivariate forecast for the number of confirmed COVID-19 cases in
Ontario, Canada. The dark orange represents the forecast, the light orange is a 95
percent prediction interval. The figure is limited to the forecast range exclusively.

56

ten results from the univariate models were full history coverage CNNs. These results

suggest that the stacked causal dilated CNN approach is superior for this forecast-

ing problem. The BiLSTM was the best RNN option for both the univariate and

multivariate models, which answers key question 3.

To answer question 2, the 28-day-ahead forecast horizon from April 1, 2021, to

April 28, 2021, produced by the univariate and multivariate SCNN-BiLSTM models,

was grouped into one-step (1 day), medium-term (1-14 days), and long-term (15-28)

forecasts. The results are displayed in Table 5.1. In the COVID-19 CNN-LSTM

hybrid neural network forecasting literature, there is only one other study with a

comparable result to this use case. It found that a CNN-LSTM had a MAPE score

of 7.68 for a 14-day forecasting horizon. It should be noted that this forecast is for

COVID-19 spread in India, not Ontario [25].

Given that the multivariate SCNN-BiLSTM had an incomplete dataset that first

required completing with inferences from the model before the 28-step forecast, it

is notable that multivariate SCNN-BiLSTM outperformed the univariate SCNN-

BiLSTM for all forecasting horizons examined. These results support the claim that

the multivariate hybrid forecasting approach is more effective than a univariate ap-

proach, at least for this study.

Table 5.1: Forecasting Performance (MAPE Score) of Best Univariate and Multivari-
ate SCNN-BiLSTM models from Grid Search

Model
One-step
(1 day)

Medium Horizon
(1-14 days)

Long Horizon
(15-28 days)

Univariate 7.043 16.878 27.917
Multivariate 4.928 14.924 27.528

The 28-step forecast produced by the multivariate SCNN-BiLSTM is displayed

in Figure 5.3 and Figure 5.4. The same forecast horizon for the univariate SCNN-

BiLSTM is shown in Figure 5.1 and Figure 5.2. The test range from April 1, 2021 to

April 28, 2021 was chosen to be a difficult period to forecast accurately, as the number

of confirmed cases initially increases, then peaks near the middle of the month, only

to steadily decrease for the rest of the month. The multivariate SCNN-BiLSTM is

able to skillfully forecast this challenging range of values. Visually, the univariate

SCNN-BiLSTM appears to simply forecast the historical average of past cases.

The prediction interval provides an indication of the amount of uncertainty in the

forecast. This is often not included in the machine learning literature [7], and was

57

Figure 5.5: Results of the Evolutionary Neural Architecture Search. Each generation
of solutions records the best performing individual (red) and the mean performance
of the entire generation (green).

not part of past research on the CNN-RNN in COVID-19 forecasting. However, there

is always uncertainty in every forecast, so it is essential to include. The prediction

interval covers most of the actual cases of confirmed COVID-19 infections.

To answer question 4 the evolutionary neural architecture search was performed

with the SCNN-BiLSTM to determine if it could produce a configuration that per-

formed better than the grid search approach.

Evolutionary Neural Architecture Search

The evolutionary neural architecture search approach was compared to the grid search

to determine if the best configuration of the SCNN-BiLSTM from evolutionary neu-

ral architecture search would outperform the best configuration of the same model

from the grid search. The evolutionary neural architecture search was implemented

with the evolutionary computation framework DEAP (Distributed Evolutionary Al-

gorithms in Python) [44].

The following hyperparameter values were genes in each individual chromosome

58

solution for the evolutionary neural architecture search: the window size had a range

of 8 to 20 input lags; the output was from 1 to 12; the number of RNN nodes was

from 5 to 100; the maximum pooling was from size 1 to 2; the first fully connected

layer was from 5 to 200 nodes; the second fully connected layer was from -5 to 100

nodes (a negative value means this layer and all subsequent layers were not included);

the third fully connected layer was from -5 to 100 nodes; the last fully connected layer

was from -5 to 100 nodes; the number of convolutional filters was from 5 to 60.

Other values part of the evolutionary neural architecture search were: the crowd-

ing factor, which was set to 10; the number of individuals in the population, which

was 20; the probability of crossover, set to 1.0; the probability of mutation, set to 1.0.

The evolutionary neural architecture search was run for 5 generations. The results

are shown in Figure 5.5.

In the first generation, the best performing individual had a 33.3244 MAPE score.

The average score of the first generation was 37.3979. In the final generation, or

generation 5, the best performing individual got a 26.4455 MAPE score. The complete

generation of individuals had an average MAPE score of 32.8074. The initial average

score of the generation and the score of the best individual improved from the first

generation to the last.

The optimal solution had a window size of 21, an output of 7, 16 RNN nodes, a

maximum pooling size of 1, and fully connected layers with 55, 78, 48, 33 nodes, and

23 convolutional filters. This configuration had a MAPE score of 26.4455 over the

entire 28-day forecast, which was worse than the grid search MAPE score of 21.2260.

5.3 Discussion

The experimental results establish that the Stacked-dilated-causal Convolutional ap-

proach is better than a standard CNN in a hybrid model, the multivariate approach

outperformed univariate models, and the BiLSTM was the best performing RNN

compared to the LSTM and GRU (gated recurrent unit).

The multivariate dataset in the experiments is unique in infectious disease forecast-

ing, as it has incomplete temporal data that must first be inferred before forecasting

is possible. This scenario is more realistic since data for each variable is often not

updated at the same rate.

Finally, to determine the optimal configuration of the SCNN-BiLSTM, the evo-

lutionary neural architecture search was compared with the grid search. The grid

59

search found the best-performing forecasting configuration of the SCNN-BiLSTM.

Further experiments are required to determine if the intelligent search provided by

the evolutionary neural architecture search offers any benefit to choosing the optimal

design of the SCNN-BiLSTM for health forecasting problems.

60

Chapter 6

Conclusion

This thesis introduces the hybrid Stacked-dilated-causal Convolutional Neural Net-

work and Bidirectional Long Short-Term Memory (SCNN-BiLSTM) for health fore-

casting using multivariate time-series data. The stacked-dilated-causal convolutions

provide full history-coverage of the input window while maintaining the causal struc-

ture such that each output depends on all previous elements in a temporal sequence.

The main contributions of this dissertation and future work are presented in this

chapter.

6.1 Contributions

The proposed SCNN-BiLSTM architecture extends previous research on hybrid mod-

els for health forecasting in the following ways: (1) Stacked-dilated-causal CNN to

provide full history coverage that maintains the causal structure of a temporal se-

quence; (2) automatic inference of incomplete temporal sequences; (3) multi-headed

architecture to model multivariate time-series such that a separate combination of

CNN and RNN processes each temporal sequences; (4) long-range forecast horizon.

Two use-case scenarios were studied to establish the effectiveness of the proposed

SCNN-BiLSTM architecture: hospital admissions forecasting and infectious disease

forecasting.

In the use-case for hospital admissions forecasting, the number of admissions to

adult mental health services at the Thunder Bay Regional Health Sciences Centre was

predicted. The experiments were conducted to answer the following: (1) Is the hybrid

neural network approach better than a single neural network or a statistical method

61

when considering short-term forecasts? (2) for long-range forecasts, does the Stacked-

dilated-causal CNN provide better forecasting than standard CNN? In the short-

term (one-step) forecasts, it was established that the CNN-BiLSTM hybrid model

outperformed various statistical and neural network techniques. In the four-step

forecasting experiment, CNN-BiLSTM was compared with SCNN-BiLSTM. SCNN-

BiLSTM was found to outperform CNN-BiLSTM for the long-term 4-step forecast.

The infectious disease experiment utilized COVID-19 data and mobility data in

Ontario, Canada, to forecast the spread of new daily COVID-19 cases for the next

28 days. Various configurations of a CNN with a recurrent neural network (RNN)

were tested to determine whether: (1) the full history coverage provided by Stacked-

dilated-causal CNN performed better than standard CNN; (2) the multivariate or

univariate approach has superior performance; (3) the LSTM, Bidirectional LSTM

(BiLSTM) or the gated recurrent unit (GRU) was the optimal RNN for the hybrid

model. The use-case experiments revealed that the full history coverage provided by

the SCNN outperformed standard CNN, the multivariate approach was superior to

the univariate even in the presence of an incomplete dataset, and the BiLSTM was

the optimal RNN to be included in the hybrid model.

Finally, each use-case tested whether an intelligent search, such as the evolutionary

neural architecture search, would find a better configuration of the SCNN-BiLSTM

for the health forecasting problem than the grid search. However, the grid search ap-

proach produced better forecasting for both use cases. The results could be explained

by the lack of available computing resources required for a detailed evolutionary neu-

ral architecture search.

Both use-cases demonstrate that the proposed SCNN-BiLSTM hybrid architecture

is suitable for multivariate health forecasting. It was the best performing model in the

infectious disease forecasting and long-range hospital admissions forecasting use-cases,

suggesting that the model can generalize across various health forecasting problems.

6.2 Future Work

More experiments with evolutionary neural architecture search will be investigated

in future. Various hyperparameters are part of the evolutionary neural architecture

search. These hyperparameters could be explored more deeply. Notably, the number

of generations and individuals in a generation could be varied to determine if either

of these hyperparameters would improve the optimal configuration of the SCNN-

62

BiLSTM for health forecasting.

In addition to the grid search and evolutionary neural architecture search, a ran-

domized search could be utilized to determine the optimal configuration of the SCNN-

BiLSTM for health forecasting.

The architecture of the SCNN-BiLSTM could be altered in various ways. Larger

kernels would reduce the number of layers required for full history coverage. The

stacked-dilated-casual convolutions could be replaced with stacked-causal convolu-

tions to determine which approach is superior in health forecasting. The multi-headed

architecture could be changed so that one CNN and LSTM process all the inputs.

In this thesis, only multivariate time-series data was considered. However, there

are other modalities of data that can be incorporated in forecasting models. One

such modality would be text data. Text data collected from social media may play

an important role in future to improve upon the forecasting results obtained in this

research.

Another kind of feature I would include is static features. An example of a static

feature would be the day of the week. There could be seasonal patterns in such static

variables.

63

Bibliography

[1] D. Kahneman, “Article commentary: Judgment and decision making: A personal

view,” Psychological science, vol. 2, no. 3, pp. 142–145, 1991.

[2] E. D. Craft, “Economic history of weather forecasting,” EH. Net Encyclopedia,

edited by Robert Whaples, 2001.

[3] T. Gneiting and A. E. Raftery, “Weather forecasting with ensemble methods,”

Science, vol. 310, no. 5746, pp. 248–249, 2005.

[4] L. Ferrara, C. Marsilli, and J.-P. Ortega, “Forecasting growth during the great

recession: is financial volatility the missing ingredient?” Economic Modelling,

vol. 36, pp. 44–50, 2014.

[5] J. Castle, D. F. Hendry, and M. P. Clements, Forecasting. Yale University Press,

2019.

[6] F. Lazzeri, Machine learning for time series forecasting with Python. John

Wiley & Sons, 2020.

[7] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine

learning forecasting methods: Concerns and ways forward,” PloS one, vol. 13,

no. 3, p. e0194889, 2018.

[8] I. N. Soyiri and D. D. Reidpath, “An overview of health forecasting,” Environ-

mental health and preventive medicine, vol. 18, no. 1, pp. 1–9, 2013.

[9] E. Vynnycky and R. White, An introduction to infectious disease modelling.

OUP oxford, 2010.

[10] C. S. Lutz, M. P. Huynh, M. Schroeder, S. Anyatonwu, F. S. Dahlgren, G. Dany-

luk, D. Fernandez, S. K. Greene, N. Kipshidze, L. Liu et al., “Applying infectious

64

disease forecasting to public health: a path forward using influenza forecasting

examples,” BMC Public Health, vol. 19, no. 1, pp. 1–12, 2019.

[11] I. Cooper, A. Mondal, and C. G. Antonopoulos, “A sir model assumption for the

spread of covid-19 in different communities,” Chaos, Solitons & Fractals, vol.

139, p. 110057, 2020.

[12] Q. Chen, A. Allot, and Z. Lu, “Keep up with the latest coronavirus research.”

Nature, vol. 579, no. 7798, pp. 193–194, 2020.

[13] L. Kong, M. Duan, J. Shi, J. Hong, Z. Chang, and Z. Zhang, “Compartmental

structures used in modeling covid-19: a scoping review,” Infectious diseases of

poverty, vol. 11, no. 1, pp. 1–9, 2022.

[14] J. Panovska-Griffiths, “Can mathematical modelling solve the current covid-19

crisis?” pp. 1–3, 2020.

[15] J. Whitworth, “Covid-19: a fast evolving pandemic,” Transactions of the Royal

Society of Tropical Medicine and Hygiene, vol. 114, no. 4, p. 241, 2020.

[16] I. Rahimi, F. Chen, and A. H. Gandomi, “A review on covid-19 forecasting

models,” Neural Computing and Applications, pp. 1–11, 2021.

[17] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and

L. Jackel, “Handwritten digit recognition with a back-propagation network,”

Advances in neural information processing systems, vol. 2, 1989.

[18] I. E. Livieris, E. Pintelas, and P. Pintelas, “A cnn–lstm model for gold price

time-series forecasting,” Neural computing and applications, vol. 32, no. 23, pp.

17 351–17 360, 2020.

[19] J. Bi, X. Zhang, H. Yuan, J. Zhang, and M. Zhou, “A hybrid prediction method

for realistic network traffic with temporal convolutional network and lstm,” IEEE

Transactions on Automation Science and Engineering, 2021.

[20] R. Zhao, R. Yan, J. Wang, and K. Mao, “Learning to monitor machine health

with convolutional bi-directional lstm networks,” Sensors, vol. 17, no. 2, p. 273,

2017.

65

[21] Z. M. Zain and N. M. Alturki, “Covid-19 pandemic forecasting using cnn-lstm: a

hybrid approach,” Journal of Control Science and Engineering, vol. 2021, 2021.

[22] L. Xu, R. Magar, and A. B. Farimani, “Forecasting covid-19 new cases using

deep learning methods,” Computers in biology and medicine, vol. 144, p. 105342,

2022.

[23] H. Widiputra, “Ga-optimized multivariate cnn-lstm model for predicting multi-

channel mobility in the covid-19 pandemic,” Emerging Science Journal, vol. 5,

no. 5, pp. 619–635, 2021.

[24] S. Ketu and P. K. Mishra, “India perspective: Cnn-lstm hybrid deep learning

model-based covid-19 prediction and current status of medical resource availabil-

ity,” Soft Computing, vol. 26, no. 2, pp. 645–664, 2022.

[25] H. Verma, S. Mandal, and A. Gupta, “Temporal deep learning architecture for

prediction of covid-19 cases in india,” Expert Systems with Applications, vol. 195,

p. 116611, 2022.

[26] C. A. Parker, N. Liu, S. X. Wu, Y. Shen, S. S. W. Lam, and M. E. H. Ong,

“Predicting hospital admission at the emergency department triage: A novel

prediction model,” The American journal of emergency medicine, vol. 37, no. 8,

pp. 1498–1504, 2019.

[27] K. L. Khatri and L. S. Tamil, “Early detection of peak demand days of chronic

respiratory diseases emergency department visits using artificial neural net-

works,” IEEE journal of biomedical and health informatics, vol. 22, no. 1, pp.

285–290, 2017.

[28] H. Bibi, A. Nutman, D. Shoseyov, M. Shalom, R. Peled, S. Kivity, and J. Nut-

man, “Prediction of emergency department visits for respiratory symptoms using

an artificial neural network,” Chest, vol. 122, no. 5, pp. 1627–1632, 2002.

[29] K. P. Moustris, K. Douros, P. T. Nastos, I. K. Larissi, M. B. Anthracopoulos,

A. G. Paliatsos, and K. N. Priftis, “Seven-days-ahead forecasting of childhood

asthma admissions using artificial neural networks in athens, greece,” Interna-

tional Journal of Environmental Health Research, vol. 22, no. 2, pp. 93–104,

2012.

66

[30] L. Zhou, P. Zhao, D. Wu, C. Cheng, and H. Huang, “Time series model for

forecasting the number of new admission inpatients,” BMC medical informatics

and decision making, vol. 18, no. 1, pp. 1–11, 2018.

[31] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on

evolutionary neural architecture search,” IEEE transactions on neural networks

and learning systems, 2021.

[32] Z.-H. Zhan, J.-Y. Li, and J. Zhang, “Evolutionary deep learning: A survey,”

Neurocomputing, vol. 483, pp. 42–58, 2022.

[33] M. Mitchell, “Genetic algorithms: An overview.” in Complex., vol. 1, no. 1.

Citeseer, 1995, pp. 31–39.

[34] J. Yang and C. K. Soh, “Structural optimization by genetic algorithms with

tournament selection,” Journal of computing in civil engineering, vol. 11, no. 3,

pp. 195–200, 1997.

[35] C. W. Ahn and R. S. Ramakrishna, “Elitism-based compact genetic algorithms,”

IEEE Transactions on Evolutionary Computation, vol. 7, no. 4, pp. 367–385,

2003.

[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-

tive genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,

vol. 6, no. 2, pp. 182–197, 2002.

[37] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[38] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling,” arXiv preprint

arXiv:1803.01271, 2018.

[39] G. Konstantakopoulos, K. Pikouli, D. Ploumpidis, E. Bougonikolou,

K. Kouyanou, M. Nystazaki, and M. Economou, “The impact of unemployment

on mental health examined in a community mental health unit during the recent

financial crisis in greece.” Psychiatrike= Psychiatriki, vol. 30, no. 4, pp. 281–290,

2019.

[40] A. Aguglia, G. Serafini, A. Escelsior, M. Amore, and G. Maina, “What is the

role of meteorological variables on involuntary admission in psychiatric ward?

67

an italian cross-sectional study,” Environmental Research, vol. 180, p. 108800,

2020.

[41] Ontario Health. Confirmed positive cases of covid-19

in ontario. [Online]. Available: https://data.ontario.ca/dataset/

confirmed-positive-cases-of-covid-19-in-ontario

[42] ——. Effective reproduction number (re) for covid-19

in ontario. [Online]. Available: https://data.ontario.ca/dataset/

effective-reproduction-number-re-for-covid-19-in-ontario

[43] Google LLC. Google covid-19 community mobility reports. [Online]. Available:

https://www.google.com/covid19/mobility

[44] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné,

“Deap: Evolutionary algorithms made easy,” The Journal of Machine Learning

Research, vol. 13, no. 1, pp. 2171–2175, 2012.

https://data.ontario.ca/dataset/confirmed-positive-cases-of-covid-19-in-ontario
https://data.ontario.ca/dataset/confirmed-positive-cases-of-covid-19-in-ontario
https://data.ontario.ca/dataset/effective-reproduction-number-re-for-covid-19-in-ontario
https://data.ontario.ca/dataset/effective-reproduction-number-re-for-covid-19-in-ontario
https://www.google.com/covid19/mobility

	Supervisory Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Brief History of Forecasting
	Models and Time Series Data
	Time Series Data
	Patterns in Time Series Data
	Forecasting Models

	Thesis Organization

	Related Work
	Infectious Disease Forecasting
	Hospital Admissions Forecasting
	Summary

	Forecasting Theory, Methods, and the Proposed Architecture
	Evaluating Forecasts
	Statistical Methods
	Autoregressive Integrated Moving Average Method
	Seasonal Autoregressive Integrated Moving Average Method

	Neural Network Methods
	Sliding Window Method
	Multi-layer Perceptron
	Convolutional Neural Network
	Long Short-Term Memory Network
	Bidirectional Long Short-Term Memory Network

	Hyperparameter Tuning
	Grid Search
	Evolutionary Neural Architecture Search

	Proposed Hybrid SCNN-BiLSTM Architecture for Health Forecasting
	Convolutional Neural Networks for Time Series
	Stacked-dilated-causal Convolutions
	Recurrent Neural Networks for Time Series
	Complete Hybrid SCNN-BiLSTM Architecture

	Summary

	Hospital Admission Forecasting
	Data
	Experiments and Results
	Experimental Setup
	Performance Metric
	Data Preprocessing
	One-step Forecasting
	Multi-step Forecasting

	Discussion

	Infectious Disease Forecasting using Incomplete Multivariate Time-series
	Data
	Experiments and Results
	Experimental Setup
	Performance Metric
	Data Preprocessing
	Forecasting Results

	Discussion

	Conclusion
	Contributions
	Future Work

	Bibliography

