
Lakehead University

Peak Load Ensemble Prediction and

Multi-agent Reinforcement Learning for

DER Demand Response Management in

Smart Grids

by

Jiawei Dong

A thesis submitted in partial fulfillment for the

degree of Master

in the

Engineering of Electrical & Computer

April 2022

University Web Site URL Here (include http://lakeheadu.ca)
jdong4@lakeheadu.ca
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, Jiawei Dong, declare that this thesis titled, ‘Peak Load Ensemble Prediction and

Multi-agent Reinforcement Learning for DER Demand Response Management in Smart

Grids’ and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree

at this University.

■ Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

■ Where I have consulted the published work of others, this is always clearly at-

tributed.

■ Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Lakehead University

Abstract

Faculty Name

Engineering of Electrical & Computer

Master of Engineering

by Jiawei Dong

The increasing number of Distributed Energy Resources (DERs), such as home bat-

teries and Electrical Vehicles (EVs), provides an opportunity for utility companies to

develop demand response mechanisms to balance the demand and supply of energy dur-

ing peak times. However, it is challenging to shave the grid’s peak load efficiently and

effectively as it requires accurate energy forecasting and coordinated management of

DERs. To address this challenge, this thesis proposes a system consisting of an image-

based ensemble prediction model and a Multi-agent Reinforcement Learning (MARL)

mechanism for Demand Response (DR) management in smart grids. For the image-

based prediction model, we hypothesize that the approximate curve of the daily power

consumption graph has some specific patterns that can be used to separate each day

into different groups based on the pattern of the energy consumption curve. To this

end, we use a convolution neural network model to classify and extract the features

of the curve image. Then, we apply the k-means mechanism for image clustering to

select better training sets and optimize the forecasting mechanism. Our results show

an overall improvement in prediction during the season-changing period. The proposed

MARL mechanism takes the prediction results as input to the agents to coordinate the

discharging time of DERs to maximize the peak shaving performance. This mechanism

requires centralized training and allows distributed execution. The system’s evaluations

and experiments are conducted on a real-life dataset, and our results show the proposed

system’s effectiveness.

University Web Site URL Here (include http://lakeheadu.ca)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
jdong4@lakeheadu.ca

Acknowledgements

I am appreciative of the support of my supervisor, Dr. Abdulsalam Yassine. This thesis

and research would not have been possible without his exceptional support. I am grateful

for his constructive suggestions, patient instruction, and enthusiastic encouragement,

especially during the pandemic.

I thank Lakehead University and the Department of Electrical and Computer Engineer-

ing for providing scholarships and awards as financial support. I am also thankful for

the lab space and online remote desktop services, which help improve my productivity.

I am grateful to Synergy North, the company that cooperates with us on this project.

They provide the dataset of energy consumption, which is very valuable during my re-

search. I am grateful for Andy Armitage, the Vice President, Customer and Information

Services at Synergy North, who offers instruction on dataset connection and professional

advice for our project.

I am also grateful to my lab mates. Their welcoming gives me a wonderful research

time. Our discussion about the newest techniques and their research directions always

provide me with new insight.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables viii

Abbreviations ix

Symbols x

1 Introduction 1

1.1 Introduction . 1

1.2 Technical Challenges . 3

1.3 Research Approach . 4

1.4 Contribution . 5

1.5 Publications . 6

1.6 Organization . 7

2 Background, Related Work and Proposed Model 8

2.1 Energy Arbitrage and Forecasting Models 8

2.2 Reinforcement Learning - a Brief Background 10

2.2.1 Multi-agent Reinforcement Learning 11

2.3 RL in Distributed Energy Resource Management 15

2.4 Overall Proposed System Model Architecture 17

2.4.1 Prediction system . 18

2.4.2 MARL . 19

3 Image-based with Peak Load Ensemble Prediction System for Demand
Response in Smart Grid 20

3.1 Introduction . 20

3.2 System Model . 21

iv

Contents v

3.2.1 Weather Data Processing . 21

3.2.2 Phase 1: Classification . 23

3.2.3 Phase 2: Ensemble Prediction Model 26

3.2.3.1 Random Forest . 27

3.2.3.2 XGBoost . 29

3.2.3.3 Cubist . 30

3.2.3.4 Feedforward Neural Network 30

3.2.3.5 Long-Short Term Memory 30

3.2.4 Phase 3: Dynamic Weight Calculation 31

3.3 Experimental setup . 33

3.4 Analysis of Results . 33

3.5 Discussion . 38

4 Multi-agent Reinforcement Learning for DER Discharging Scheduling 42

4.1 Introduction . 42

4.2 System model . 43

4.2.1 Environment Design . 45

4.2.2 Markov Decision Process . 45

4.2.3 Algorithm Learning Design . 46

4.2.4 Value neural network . 47

4.2.5 Policy neural network . 49

4.3 Experiment and Results . 50

4.3.1 Experiment on shared reward function 51

4.3.2 Experiments on scheduling both charging and discharging 51

4.4 Time Complexity Experiment . 52

4.4.1 Training Time and Agent Sizes . 53

4.4.2 Training Time and Action space 53

4.4.3 Effect of Exploration rates . 56

4.4.3.1 Serial and Parallel Programming 57

4.5 Limitation . 58

5 Conclusions and Future Work 60

5.1 Conclusions . 60

5.1.1 Future Work . 61

A Prototype of Real-life Implementation at Synergy North 63

Bibliography 68

List of Figures

1.1 (a) Reducing highest peak and creating to 2 relative peaks, (b) Flattening
the demand peak effectively . 4

2.1 System Model of Day-ahead Discharging Scheduling 18

3.1 The System Model. Daily consumption curve images, clustered and fed
into the ensemble model for prediction . 21

3.2 The structure of VGG-16 convolutional neuron network. 24

3.3 Relationship between number of cluster (group) and sum of squared dis-
tances of samples to their closest cluster center 25

3.4 Type 1: a smooth peak in afternoon with a random oscillations at noon. . 26

3.5 Type 2: a lower consumption in morning and a sharp peak in afternoon. . 26

3.6 Type 3: a long flat peak start at morning and end afternoon, may have a
sharper peak in afternoon. 26

3.7 Basic ensemble model in example normal day 36

3.8 Basic ensemble model with image clustering technique in example normal
day . 36

3.9 Ensemble model with dynamic weighting in example normal day 37

3.10 Basic ensemble model in example odd day 37

3.11 Basic ensemble model with image clustering technique in example odd day 38

3.12 Ensemble model with dynamic weighting in example odd day 38

3.13 The detailed model performance of day in type 1 39

3.14 The detailed model performance of day in type 2 39

3.15 The detailed model performance of day in type 3 40

3.16 The detailed model performance of an inaccuracy prediction 40

3.17 Monthly report include prediction and suggest discharging,charging time . 41

4.1 System Model of Day-ahead Discharging Scheduling 43

4.2 The training process of actor-critic multi agent reinforcement learning . . 44

4.3 Value Neural Network(Critic) . 48

4.4 Policy Neural Network . 49

4.5 Reward for each training epoch of Experiment on shared reward function 52

4.6 Peak Shave for each training epoch of Experiment on shared reward function 53

4.7 Example day in validation set . 54

4.8 Example day of both discharging and charging scheduling 55

4.9 Relationship between Training time and Agent size 55

4.10 Relationship between training time and action space 56

4.11 Average Peak Shave using different Exploration Rates 57

4.12 Comparison of training time between Serial and Parallel programming . . 58

vi

List of Figures vii

4.13 Example day in validation set : discharging scheduling with highest peak
not in available discharging period . 59

A.1 User interface of simple mode . 63

A.2 User interface of detailed mode . 64

A.3 User interface of monthly report simple mode 64

A.4 User interface of monthly report detailed mode 65

A.5 User interface of daily discharging scheduling 65

A.6 User interface of expected monthly peak shaving 66

A.7 User interface of Accumulative Daily Peak Shaving Using Multiple EVs . 66

A.8 User interface of Accumulative Daily Peak Shaving Using Multiple EVs(continue) 67

A.9 User interface of Accumulative Monthly Peak Shaving Using Multiple EVs 67

List of Tables

3.1 5-min interval weather information dataset 22

3.2 Daily weather information dataset . 22

3.3 Performance analysis on Odd days . 34

3.4 Performance analysis on Normal days . 35

viii

Abbreviations

AI Artificial Intelligence

CNN Convolution Neural Network

DER Distributed Energy Resource

DL Deep Learning

DR Demand Respond

EV Electric Vehicle

FNN Feedfoward Neural Network

LSTM Long Short Term Memory

MARL Multi Agent Reinforcement Learning

MARIMA Multivariate Autoregressive Integrated Moving Average

MDP Markov Decision P rocess

NN Neural Network

RL Reinforcement Learning

RMSE Root Mean Square Error

SGP Smart Grid Provider

V2G Vehicle Grid

ix

Symbols

N Set of agents

i Index of an agent

ci The predefined battery discharging capacity of agent battery i in kWh

ki The predefined threshold of discharging an of agent battery i in kWh

d Index of day

t Index of time

x The number of discharging duration

pi Discharging rate of agent battery i in kW

eptd Predicted energy power consumption in kW for day d at time t

EP d Predicted energy power consumption in kW for day d for 24 hours period

λl The off-peak charging price $/kWh

λh The on-peak charging price $/kWh

τ id The discharging period of agent i in day d

S Finite state space

A Action space

ri Reward of the agent i

Rd Shared Reward of the agents of day d

π Policy function

θ Trainable parameters for policy neural network

w Trainable parameters for value neural network

α Learning rate for value neural network

β Learning rate for policy neural network

ε Exploration decay

q/Q Action value function

V State value function

x

Symbols xi

J Objective function

L Loss function

g derivative of the state value function

I dedicate my work to my parents, Yuliang Dong and Jianping Zou.
Not only for their financial support but also for their love and
encouragement to me. Even though they live in my hometown
China, their support is the biggest reason I can focus on my

research without other worries.

xii

Chapter 1

Introduction

1.1 Introduction

Energy management systems that deal with the integration of DERs into the grid sys-

tem require an accurate prediction model and a sophisticated coordination mechanism

to balance the demand and supply. For DERs that consist of smart home battery sys-

tems or EV batteries, load forecasting becomes a crucial component because the energy

management system demands a short-term peak load prediction to engage loads from

such DERs. This is because these battery systems are relatively small; thus, they require

shorter charging and discharging time [1],[2], and [3]. Thus, an accurate peak load pre-

diction model has a significant impact on developing an appropriate mitigation strategy

toward load balancing [4] and resource planning effectiveness [5]. To address this chal-

lenge, this thesis proposes a system consisting of an image-based ensemble prediction

model and a Multi-agent Reinforcement Learning (MARL) mechanism for DR manage-

ment in smart grids. For the image-based prediction model, we hypothesize that the

approximate curve of the daily power consumption graph has some specific patterns that

can be used to separate each day into different groups based on the pattern of the energy

consumption curve. To this end, we use a convolution neural network model to classify

and extract the features of the curve image. Then, we apply the k-means mechanism for

image clustering to select better training sets and optimize the forecasting mechanism.

Our results show an overall improvement of prediction during the season-changing pe-

riod. The proposed MARL mechanism takes the prediction results as input to the agent

to coordinate the discharging time of DERs to maximize the peak shaving performance.

This mechanism requires centralized training and allows distributed execution.

The literature has a plethora of studies on energy forecasting models. For example,

the work in [6] compares different algorithms of energy forecasting in smart cities while

1

Symbols 2

the work in [7] focuses on individual house energy data. After analyzing these stud-

ies, we found that the decreased size of the geographically collected energy data leads

to increased randomness; thus, it is harder to perform accurate forecasting. The work

presented in [8] addresses the problem of prediction accuracy of multivariate models.

The study proposes a hybrid system to analyze the energy consumption data along with

associated weather data at different time periods and address the limitations of learn-

ing techniques. The model combines both the long-term and the short-term learning

mechanisms to improve performance and accuracy. In [9], the authors propose a model

that allows utility companies to predict the highest peak of energy consumption on the

distribution feed where the load is connected. The prediction model in the study uses

Multivariate Autoregressive Integrated Moving Average (MARIMA) to reach an accu-

racy of 92.64%. Parallel to the above-mentioned studies, the work described in [10] looks

at the season-changing period, where energy consumption activities are more random

because of weather changes. The decrease in accuracy during the season-changing pe-

riod is related to over-fitting from unexpected data. In general, season-changing does

not have a specific time throughout the year, so we can not use the season as a vari-

able in the training set. However, the season is an essential factor that affects power

consumption. To improve the model accuracy in the shoulder season, we hypothesize

that the approximate curve of the daily power consumption graph has some specific pat-

terns. We can separate each day into different types based on the pattern of the energy

consumption curve image, where the data in the same type are primarily correlated.

Although the consumption value in kWh of each day is different, the shape of the curve

almost exhibits a similar pattern for each day. As a result, we use image processing to

separate similar patterns of power consumption curves to different groups. Then, we

implemented an ensemble learning model with different learners. The ensemble learning

combines multiple weakly supervised models to obtain an outstanding strong-supervised

model. The idea is that different learner’s correct errors mutually to achieve the ultimate

accuracy improvement.

As mentioned above, the main purpose of the energy management system is to balance

the demand and supply of the energy grid. One method of achieving the balance is

through the coordination of DERs to shave the peak load. But, before shaving the

peak, we need to predict when it will happen. This is usually done in the day ahead.

Based on the optimized day-ahead power consumption prediction, a coordination model

is used to integrate the DERs to shave the peak. This thesis proposes a MARL model

with the coordination of DERs to shave the peak. Reinforcement learning (RL) has re-

cently received significant attention from researchers as an effective AI-based technique

to coordinate the integration of DERs (e.g., EVs, battery storage, etc.) into the smart

grid for an efficient balance of supply and demand [11],[12],[13], and [14]. In RL schemes,

Symbols 3

DERs are modelled as agents who interact with the environment (e.g., demand response

programs, utility companies, price signals, etc.) to take actions and receive rewards (e.g.,

monetary benefit, cost reduction, etc.). In such a process, the agents learn from their

actions and observe the outputs and rewards continuously. The agents can be trained

to be autonomous, adaptive, independent of the environment model, which makes them

practical to DR applications [13][14]. In smart grids, DR programs are expected to en-

gage a variety of DERs to reduce the peak load; hence, it is required that the DR system

relies on a scheme that does not require full observability of the entire system to make

decisions. Indeed, it is not practical to assume that DERs of different types and brands

will be interacting with each other to coordinate the dispatch process in DR programs

[13]. Agents in RL can make decisions with partial observability of the entire system.

Several researchers have attempted to solve the DER coordination problem using RL.

However, most of these studies focus on the uncertainty of the environment [15], the

scaling of the system by increasing the number of agents [16], and the comfort of the

users [17]. This work is completely different from previous attempts because we tackle

the day-ahead coordination of the DERs to reduce the peak load. Our system depends

on an external prediction mechanism to determine the day-ahead peak period. However,

it provides discharging scheduling of DERs with an optimized peak shaving performance

while considering the inaccuracy of energy prediction. The model depicts DERs as au-

tonomous agents and provides centralized training and distributed execution. In the

proposed model, DERs scheduling does not need to constantly connect to a centralized

server in the distributed execution phase, which improves the system’s robustness and

provides data privacy for DER owners. This is also a significant distinction from existing

studies.

1.2 Technical Challenges

In the energy arbitrage with DERs, the day-ahead forecasting accuracy is significant

due to the short discharging period of the DERs. If the discharging period did not cover

the highest peak period, then the peak load still exists. Thus, an accurate peak load

prediction model has a significant impact on load balancing [4] and resource planning

effectiveness. Energy forecasting in a small residential area has more randomness than in

a larger residential area or industry area. Unlike industry areas, the energy consumption

of residential areas is highly related to people’s activities. People in residential areas

use the energy more randomly, and the smaller the area size is, the more difficult it is

to predict. Besides, the weather is an essential factor in forecasting peak load. The

correlation between weather and power consumption changes over the season, making

energy forecasting during shoulder season (season-changing period) more difficult. The

Symbols 4

nature of weather change is brutal to detect the exact season; thus, using the season as

a parameter is hardly performed.

One the energy consumption is forecasted, managing the DERs with efficient day-ahead

discharging scheduling is another challenge. Assume we have accurate day-ahead fore-

casting; scheduling every DER at the highest peak is inefficient management. The

highest peak is shaved but over-clipped and create two relative peaks at two sides of

the original peak period. The discharging of one EV battery affects other discharging

consequences on peak-shaving. When several batteries discharge at the same peak load

time slot, the highest peak of the load is over clipped into a relative valley and creates

another two relative peaks instead of effectively flat the peak load. Figure 1.1-a de-

scribes the peak shaving in which the discharging process is creating two relative peaks

and figure 1.1-b displays the proposed solution. The difference between the two figures

clearly shows the need for a coordinated discharging process to flatten the peak effec-

tively. It is challenging to avoid DERs discharge at the same peak load time slot and

maximize the efficiency of flattening the peak load. Besides, daily consumption may have

two peak periods with similar power consumption or a flatter and longer peak period.

Ideally, DERs should be coordinated to deal with different types of daily consumption

peak curves and flatten power consumption curves. Different DERs belong to different

owners, and owners may not be willing or able to share their scheduling information,

making coordination between DERs difficult.

Figure 1.1: (a) Reducing highest peak and creating to 2 relative peaks, (b) Flattening
the demand peak effectively

1.3 Research Approach

In the challenge of optimizing the power consumption prediction, we focus on improving

model performance during shoulder seasons. We hypothesize that the daily power con-

sumption curve images have specific patterns and data of same type days are primarily

correlated. To overcome the difficulty of clustering the daily power consumption curve,

our approach uses a convolution neural network to extract features and use the k-means

mechanism for clustering. We then select the training set based on the clustered type

of each day. To further increase the prediction accuracy, we also propose an ensemble

Symbols 5

model combining multiple algorithms. The prediction results averaging through a dy-

namic weighting system that outputs a predicted curve and a majority voting mechanism

to determine the peak point’s output.

Driven by the challenge of cooperatively discharge scheduling of DERs, we propose a

MARL mechanism that provides a day-ahead discharging schedule for each DER. Our

approach is different from existing studies as it focuses on the peak shaving efficiency

of scheduling discharging DER in the local grid. In this approach, each battery agent

receives day-ahead overall energy consumption forecasting as mentioned above and pro-

duces day-ahead discharging scheduling based on the agent’s properties and policy. The

proposed MARL models are centralized training and distributed execution to provide

day-ahead optimized DER discharging scheduling of DER. The policy of agents is trained

by a neural network model of an actor-critic algorithm [18]. The model contains two

neural networks: the critic network estimates the reward of each agent’s discharging

schedule (action-value). The actor-network updates the policy based on the sugges-

tion of the critic network. This advanced technology improves our model’s complexity,

increasing the learning performance and providing a potential for future distributed

training. The model offers a corresponding scheduling strategy based on the confident

interval of daily forecasting learned during the simulated training process. The agents

have a cooperative relationship, which allows them to provide coordinated scheduling to

maximize daily peak shaving performance in the distributed execution without commu-

nication after training. Local agents’ distributed execution enhances network connection

robustness and improves general DER owners’ data privacy from presenting their daily

discharging plan collected in a centralized server.

1.4 Contribution

The following are the contributions of the thesis.

1. We hypothesize that the power consumption primarily correlated to the previ-

ous days in the same type of curve as the predicted day. In the experiments, we

prove that the selection of training sets containing the same type as the predicted

days will increase the accuracy of the models, especially during shoulder season.

The results of experiments prove that, in the residential area, the daily power

consumption curve has certain types, and days in the same type have a stronger

correlation. We can increase the model performance by clustering these types. To

achieve the above tasks, we propose a novel image-based processing technique to

cluster the daily power consumption curve based on the load curve’s characteris-

tics. We used a pre-trained CNN to extract the features of the image and use the

Symbols 6

k-means mechanism for clustering. The proposed technique solves the difficulty

of deciding the number of clusters of the training set. Transferring the knowledge

in the pre-trained CNN model tackles the shortage of labelled daily power con-

sumption curve images. The image-based processing technique converts the task

of clustering the daily power consumption curve image from an unsupervised prob-

lem to a supervised one. Also, we propose an ensemble day-ahead load forecasting

model with dynamic weighting and a majority voting mechanism. The proposed

model’s ensemble multiple machine learning algorithm includes Random Forest,

XGBoost, Cubist, Feedforward Neural Network and Long-Short Term Memory.

The experiments proved that the proposed ensemble models have improved per-

formance in predicting accuracy factors such as Root Mean Square Error (RMSE)

and the highest peak difference.

2. For the coordination of the DERs’ charging/discharing process, we propose a ro-

bust MARL model to coordinate the integration of DERs into the smart grid

system. Particularly, we showed that our model effectively reduces the peak load

regardless of the inaccurate energy forecasting days. This is rather significant

because it helps utility companies to minimize their peak load cost and prevent

the creation of relative peaks. The proposed MARL model provides a centralized

training distributed execution that allowed DERs to coordinate the peak-shaving

tasks without information sharing or communication between the agents. The

importance of this approach is that it is practical and encourages agents to partic-

ipate in the system because the distributed execution does not need a collection

of discharging times of DERs in a centralized server. Therefore, data privacy is

maintained, and customers’ interest in enrolling in energy arbitrage can increase.

1.5 Publications

J. Dong, A. Yassine and A. Armitage, ”Image-based with Peak Load Ensemble Predic-

tion System for Demand Response in Smart Grid,” 2021 International Symposium on

Networks, Computers and Communications (ISNCC), 2021, pp. 1-6, doi: 10.1109/IS-

NCC52172.2021.9615837.

J. Dong, A. Yassine and A. Armitage, ”Image-Based Processing Mechanism for Peak

Load Forecasting in Smart Grids,” 2020 IEEE 8th International Conference on Smart En-

ergy Grid Engineering (SEGE), 2020, pp. 64-69, doi: 10.1109/SEGE49949.2020.9182025.

Symbols 7

1.6 Organization

This thesis is organized as follows:

• Chapter 1: Introduction -This chapter provides a high-level description of the

thesis and all aspects involved.

• Chapter 2: Background, Related Work, and overall architecture of the proposed

model - This chapter describes the fundamental idea of energy arbitrage, short-

term energy forecasting and reinforcement learning. This chapter also presents a

summary of relevant published works. The works principally include research on

parameters correlation analysis, standard models of short-term energy forecasting,

and DER management application with MARL.

• Chapter 3: Novel Image-based Peak Load Ensemble Prediction System - This

chapter proposes a novel image-based ensemble system that enhances prediction

outcomes, especially during the shoulder season (season-changing days).

• Chapter 4: MARL Approach to Day-ahead DER Discharging Scheduling - This

chapter proposed an optimal day-ahead peak-shaving scheduling system based on

the MARL approach on energy forecasting of DERs.

• Chapter 5: Conclusion and Future Work - This chapter describes the conclusions

from the analysis of the results of this work. We propose some possible future

extensions and a review of the current shortage.

Chapter 2

Background, Related Work and

Proposed Model

In this chapter, we introduce the background and related work including studies on

short-term energy forecasting in residential areas and MARL in DER management. We

also present the overall architecture of the proposed model.

2.1 Energy Arbitrage and Forecasting Models

Peak shaving and valley filling is a measure to flatten the electricity load during the day.

Such a process requires managing and organizing the electricity consumption time of

various users in coordinated manner. The aim is to reduce the peak-to-valley difference of

the grid load so that the power generation and electricity consumption become balanced.

Because power plants continue to generate electricity around the clock, if the electricity

generated is not used, the excess energy from power generation will be wasted. The

power generation capacity of a power plant is usually fixed and does not change easily.

However, the peak of electricity consumption happen during the day when there is

insufficient generation of electricity. But, the electricity usage is low at night when

excess of electricity is not used. In response to this phenomenon, power companies shift

part of the peak load to the period at night, thereby using the excess power at night

and achieving the goal of energy balance. However, to achieve this shift, they need to

predict the expected peak times with high accuracy. Energy forecasting is an important

part of power system planning, and it is also the foundation of power system economic

operation. Energy forecasting refers to the research or use of mathematical methods to

systematically process past and future loads under the conditions of fully considering

some important system operating characteristics.

8

Symbols 9

This thesis is concerned with day-ahead, or short-term load forecasting, which is af-

fected by various factors such as weather changes, social activities and festival types and

appears as a non-stationary random process in the time series [51]. However, most of

the factors that affect the system load are regular. There are many methods used for

short-term load forecasting. The newer algorithms mainly include the neural network,

time series, regression analysis, support vector machine, fuzzy forecasting [4]. The core

challenge of power load forecasting research is using the existing historical data to es-

tablish a forecasting model to predict the load value in the future, such as the work in

[23]. Therefore, the reliability of historical data information and the forecasting model

are two main factors affecting short-term load forecasting accuracy. With the gradual

establishment of the database of power systems and the improvement of weather fore-

casting, it is no longer difficult to obtain various historical data accurately. Therefore,

the core issue of short-term load forecasting is the mathematical forecasting models.

Other studies focus on machine learning to produce advanced load forecasting methods.

The application of the neural network methods in load forecasting is mainly divided

into an Artificial Neural Network (ANN) such as [4] and a Recurrent Neural Network

(RNN) [37]. The advantages of the neural networks model are that it can adapt to

a large number of non-structural and imprecise rules. The neural network also has

strong calculation and complex mapping capabilities as well as fault tolerance. The

shortcomings of the neural network method include difficulty in the construction of the

model structure, optimization of the learning speed, and the local minimum problem.

Several forecasting methods use historical data of power load, which is an ordered col-

lection sampled and recorded at a specific time interval, so it is a time series. The time

series methods in [7][46], and [47] are relatively mature algorithms for short-term load

forecasting of the power system. The advantage of the time series methods is that they

require less data, less workload, faster calculation speed, and reflect the continuity of re-

cent changes in load. The disadvantage of the time series methods is that the modelling

process is more complicated than other methods. The model has high requirements for

the stability of the original time series and is only suitable for short-term forecasts with

relatively constant power consumption changes. The time series methods do not consider

other influences of load changes. For example, when the weather changes significantly

or during holidays, the model’s prediction error is relatively large.

Existing work related to regression analysis forecasting methods such as [44] and [45]

finds the correlation between the independent and dependent variables and its regres-

sion equation according to the changing rules of historical power consumption data and

the factors that affect the load change. These methods determine the model parame-

ters and infer the load value in the future. The advantages of regression analysis are

Symbols 10

simple calculation principle and structure, fast prediction speed, good extrapolation

performance, and better predictions for situations that have not appeared in history.

The shortcomings of the regression method are that it requires lots of historical data.

Furthermore, because of regression method uses linear methods to describe a complex

problem such as energy consumption, the structure is too simple, and the accuracy is

low. The model cannot describe various factors that affect the load, and the model

initialization is challenging.

2.2 Reinforcement Learning - a Brief Background

RL is an area of machine learning method for computers (Agent) that learns the optimal

strategy (Policy) by continuously interacting with the possibly unknown environment for

a given task. In a particular task state, the traditional search strategy needs to search

down layer by layer. It takes much time to calculate the optimal operation in this state.

RL can directly learn a mapping from state to operate. This mapping can be a function

or a lookup table that stores states and operations [56]. Therefore, RL can always

get the optimal action faster in real-time tasks and save more memory. In addition,

it is often not clear how the task environment interacts with the operation. At this

time, the algorithm needs actual exploration in a simulated or actual environment. We

can only rely on RL’s adventurous properties, which constantly update information in

interactions. RL can quickly adapt through learning if the environment changes instead

of manually remodelling and remodifying the environment like traditional searching. In

this thesis, RL is applied to the design of the day-ahead DER scheduling system because

of the above mentioned characteristics.

The four most basic elements in RL are the following [61]: State (S); there can be many

states in a task, and we set each state equidistant in time. Action (A): There should be

at least one action for each state to choose. Reward (R); the environment will provide

numerical feedback on the selected action for each state. The higher the value, the more

favoured the action. Policy (π); given a state as input, policy π always output only one

operation a, that is, a = π(s), π can be a lookup table or a function.In general, the

thinking process of RL is: given a task, the agent will get a state every fixed time step.

The agent needs to select an action from the preset action list and implement it. In the

next time step, the agent will get the state of the next time step and the feedback of it.

Clearly, each time step the agent does two things: get the state of the time step and the

feedback of the previous step; give the operation of the step from policy and interact

with the environment.

Symbols 11

The agent will also update the policy based on the information obtained to learn the

optimal strategy [62]. The agent’s policy is updated during interaction with the envi-

ronment (online update) or after the end of the episode (offline update). The agent also

could be updated online and offline at the same time. All operations of the agents are

only based on the information obtained in each time step. In other words, the agent

only needs the current time step’s state information to give a proper action. It has noth-

ing to do with the information before this step. The characteristics considering future

development is only related to the present is called Markov. The time series composed

of states with this characteristic is called Markov Process. When decisions are invlived

in each state, the whole process is the Markov Decision Process (MDP). Most of the

current RL is based on the idea of MDP.

Finding the optimal policy is the core objective of RL. Before considering how to find

the optimal strategy, we need a way to evaluate each policy. Suppose that an agent is

designed to play chess, and the chess played by the agent is defined as an action. The

initial position or each position after the opponent’s move is a state until the checkmate

becomes the opponent’s victory; otherwise, the agent loses. If there are two policies π

and π1, they both win. Can it be said that the two strategies are equally good? We

can define it this way, but experience tells us that not every operation in a task is often

optimal. The same strategy will likely have different results in different chess tasks, so

it is impossible to compare the advantages and disadvantages of different strategies.

2.2.1 Multi-agent Reinforcement Learning

The practicality and scalability of a multi-intelligent system allow it to be employed

in multiple fields such as robot cooperation, distributed control, resource management,

collaborative decision support systems, autonomous fighting systems, and data mining.

In multi-agent systems, the agents interact with the environment simultaneously [76].

Each agent still follows the goal of reinforcement learning, which is to maximize the

cumulative return obtained. The change in the state of the environment is related to the

actions of all agents; therefore, the agent’s strategy learning will consider the influence of

joint actions. The expansion of the MDP to multi-agent systems requires the knowledge

of game theory to model multi-agent reinforcement learning problems [75]. Compared

with a single-agent system, the application of RL in a multi-agent system will encounter

the following problems and challenges:

• Environmental instability: While the agent is making decisions, other agents are

also taking action. Changes in the state of the environment are related to the joint

Symbols 12

actions of all agents. The return of the same agent taking the same action in the

same state may differ caused by the change in other agents’ actions.

• Limitation of information acquisition: Agents may only obtain partial, instead of

global, observational information. Agents cannot know other agents’ observational

information, actions, and rewards.

• Consistency of goal: The objective of each agent may be the best global return

or may also be the best individual return. The design of the agent’s objective

depends on the real problem.

• Scalability: In a large-scale multi-agent system, high-dimensional state space and

action space are involved. There are specific requirements for model expression

capabilities and hardware computing power in real scenarios.

The algorithms address how an intelligent agent executes actions in the environment to

maximize the cumulative reward, in contrast to the aims of supervised and unsupervised

learning. Reinforcement learning models can be used to abstract a wide range of con-

trol and decision problems. Like supervised learning, reinforcement learning includes a

training process that entails repeatedly performing actions, observing the consequence

of those actions, and gathering experience to construct a model [74]. In contrast to

supervised learning, there is usually no direct calibrated label value for each action as a

supervisory signal. The system only provides feedback to the algorithm’s action, which

is usually delayed. The consequences of the current action will be fully reflected in the

future with randomness.

The literature discusses several solutions/algorithms [79] [80], and [81] such as dynamic

programming, which can theoretically solve the reinforcement learning problem if the

state transfer probabilities of all states and the payoff values are known. Starting with

a random initial value, some rule is employed to iterate until the state-value function or

action-value function converges to an extreme value. The Bellman equation is commonly

used as an iteration rule, also known as the Bellman optimality equation [78]. In many

actual situations, however, we cannot obtain the transfer probabilities of all states and

must instead rely on stochastic techniques. The basic idea is to undertake a series of

random actions, starting with a random strategy, and then observe the payoffs and state

transfers to estimate or update the value of the value function. It means increasing

the execution of influential acts while decreasing the execution of ineffective actions.

Typical examples are the Monte Carlo algorithm and the temporal difference algorithm.

After an action is completed, the temporal difference algorithm [57] updates the action-

value function. The TD approach does not need to use the state transfer probability and

instead calculates it directly using random samples. Using the Bellman equation, the TD

Symbols 13

algorithm evaluates the value of the value function and then creates the update term.

The SARSA algorithm and the Q-learning method are two popular implementations.

The Q-learning method [58] is a type of temporal difference algorithm that predicts

the maximum value of the value function for each action. The extreme value of the

Q-function can be obtained directly by iteration to find the ideal policy.

The following is the process of the Q-learning training algorithm: initialization [58]:

for all non-terminating states, set Q(s, a) to any value, and for terminating states, set

Q(s, a) to 0. The implementation necessitates choosing one of three actions for each

state to conduct based on the current estimate of the action-value function. The first is

to choose an action at random, known as exploration, and the second is to choose the

action with the highest value based on the current action function, which is known as

exploitation. The third technique, known as the ε− greedy strategy, is a hybrid of the

preceding two. After completing an action, it enters the next state s′ and generates an

update term by finding the extreme value of the value function of all actions in state

s′. The method finally converges on the action value function’s best value. When used

for prediction, the action with the highest function value in each state is chosen for

execution, resulting in the best strategy. The same ε− greedy strategy can be utilized

for the specific implementation. For a specific implementation, all states and actions are

recorded in Q(s, a) in a two-dimensional table that is first initialized, then utilized to

determine which actions should be conducted. Finally, the table’s values are updated

until convergence.

Deep RL (DRL) that integrates deep neural networks with RL has become a prevalent

study issue for all researchers due to the advent of deep learning technology and its

outstanding results in many sectors. They have actively attempted to merge DRL

methodologies into the multi-agent system to achieve various complex tasks in multi-

agent environments. Multi-agent Deep Reinforcement Learning (MDRL) [74], widely

employed in several real-world areas after several years of development and innovation,

has evolved into multiple algorithms, rules, and frameworks. MDRL is becoming the

hottest study and application direction in machine learning. MARL is based on the

Stochastic Game (SG) [75] method, as opposed to single-agent RL. MARL algorithms

can be characterized as fully cooperative, fully competitive, or mixed [76].

DQN (Deep Q Network), introduced by DeepMind in 2013 [66] and improved in Nature

in 2015, is a typical example of DRL based on value functions. This method uses a CNN

to fit a value function, usually a Q function. The original scene data, such as a gaming

screen image, is fed into the network. The output is the extreme value of the Q function

achieved by performing various actions in that scenario. Despite DQN’s success, there

is still much opportunity for improvement. Since then, many better algorithms have

Symbols 14

appeared for DQN, including enhancements to the general system structure, training

sample construction, and neural network structure. In the literature, the Double DQN

(DDQN) algorithm was proposed [68]. In the DDQN, there are two sets of parameters: θ

and θ−. Theta is used to choose the action with the highest Q value; θ and θ− are used to

determine the ideal action’s Q value. By separating action selection and policy evaluation

with these two sets of parameters, the possibility of overestimating Q is reduced. DDQN

selects the ideal action using the current value network’s parameter θ and evaluates that

action using the target value network’s parameter θ−. The experimental results show

that DDQN can more reliably estimate the Q function value, resulting in a more stable

training process and trained policy.

A priority sampling-based DQN, which enhances the empirical replay mechanism, is

proposed in [69]. In prior DQNs, the training samples were randomly sampled with

equal probability from the samples in the experience pool at each iteration. The prior

DQNs did not take into account the significance of each sample. The method described in

the literature [69] determines a priority for each sample in the experience pool, enhancing

the likelihood of sampling valuable training examples at the moment of sampling. The

error term of the temporal differencing algorithm is used to construct the sample priority.

The greater the absolute priority value, the greater the sample’s probability at the time

of sampling. The results of the experiments show that this approach has a faster training

speed and better runtime results.

A DQN based on a competitive architecture is proposed in [70], with the critical change

replacing the fully connected layer after the convolutional layer of the CNN with two

branches, one of which fits the state value function and the other the action dominance

function. Finally, the Q function values are formed by adding the output values of the

two branches. Experiments demonstrate that this enhancement can more precisely pre-

dict the value function value. CNNs, which are used in DQN, cannot recall for long

periods. As a result, the study in [71] suggested a DQN algorithm (DRQN) that in-

corporates RNNs. This method adds a recurrent layer (LSTM unit) after the CNN’s

convolutional layer, allowing it to remember past data. In the fully cooperative algo-

rithm, each agent’s reward function is the same, indicating that all agents work hard to

attain a common goal. Team Q-learning [77] and distributed Q-learning (Distributed

Q -learning) [79] are examples of representative algorithms. The agent’s reward func-

tion in a fully competitive algorithm is the opposite. There are usually two downright

opposed agents in the environment. The agent’s goal is to maximize its rewards while

minimizing the rewards of the other party as much as possible. Its representative algo-

rithm is Minimax- Q [80]. In mixed tasks, there is no deterministic positive or negative

relationship between the agent’s reward function. This model is appropriate for selfish

agents. In general, the concept of equilibrium solution in game theory is important

Symbols 15

to solving such tasks. When a state in the environment has various equilibriums, the

agent must unanimously choose the same equilibria. This approach is primarily used for

static tasks. Nash Q-learning [81], Correlated Q-learning [82], Friend or Foe Q-learning

[82][83] are some instances. The algorithm we use in this thesis is fully cooperative.

In this thesis, we propose a DERs discharging scheduling model with centralized learn-

ing and decentralized execution. Most early MARL algorithms used one of two training

modes: centralized or decentralized. The centralized training employs a single training

network to oversee the entire learning process, making it easy to overfit and compu-

tationally intensive. The decentralized training uses multiple training networks, each

completely independent of the others, making the algorithm challenging to converge due

to the lack of a centralized objective function. As a result, both training modalities

are limited to small systems with a few agents. Centralized Learning and Decentralized

Execution (CLDE) [84] combines the characteristics of the above two modes. On the one

hand, agents obtain global information based on mutual communication for centralized

training and then perform decentralized execution based on their partial observations.

The most significant benefit of CLDE is that it allows additional information (such as

the global state of the environment, actions, or rewards) to be added during training

that would otherwise be ignored during the execution phase. It allows for real-time

control and guidance of the agent’s learning process.

2.3 RL in Distributed Energy Resource Management

Several existing approaches studied the application of reinforcement learning to help in

the decision-making process while using multiple DER. The work in [16] proposed an

RL approach to learning EV charging behaviour, which is determined by a predefined

heuristic scheme. They use collective EV fleet control actions rather than individual

EV control operations. Defining an MDP for the entire EV fleet minimizes the state

and action space. A simple heuristic is employed to translate collective control activi-

ties back to individual control actions. A cost-effective day-ahead plan is learned based

on historical data of cooperative control operations, which automatically considers the

heuristic division strategy. We also utilize fitted Q iteration instead of temporal differ-

ence learning to deal with continuous variables in our state and action space. O’Neill

et al. [31] developed an RL-based Consumer Automated Energy Management System

(CAES) for adjusting an individual home consumer’s energy use to reduce residential

energy costs and flatten the daily energy consumption curve. Both energy pricing and

customer decisions are treated as MDPs in their approach.

Symbols 16

Compared to the uncontrolled instance, this strategy was able to cut a consumer’s costs

by 16-40% in simulations. CASES only proposed the system for one consumer; there-

fore, state and action spaces are constrained. The authors of [32] present how to model

resources such as battery energy storage systems, solar generation systems, directly con-

trollable loads, load shedding, programmed deliberate islanding, and power curtailment

mathematically in the microgrid optimal scheduling problem. The suggested modelling

also includes a methodology for determining the availability cost of battery and solar

system assets. They model the Battery Energy Storage System (BESS) state of charge

as a non-recursive constraint to the multi-integer linear programming issue. The paper

presented a practical approach to computing the BESS availability cost in USD/kWh

modelling of the BESS system considering battery, converter, and transformer relevant

values of efficiency. The BESS approach does a great job of providing a mathematical

approach but might fail with more complex data, which can be addressed using ad-

vanced methods like deep learning. The work in [33] presents a multi-agent-based model

of distributed energy and the load management approach for DER. In a multiagent sys-

tem, electricity suppliers and consumers are depicted as autonomous agents capable of

making local decisions to optimize their profit. Whether on the supply or demand side,

each agent is designed to optimize its utility in an auction-based market using reinforce-

ment learning, allowing it to adapt its behaviour to other agents in a competitive and

stochastic energy market. The reinforcement learning capability, which is based on the

model-free Q-learning algorithm, enables agents to identify the best policy to maximize

their utility without communicating directly with other system entities.

The study in [34] presents a RL-based framework for home energy management (HEM)

to achieve effective home-based DR. The authors used a finite Markov decision pro-

cess (FMDP) with discrete time steps to tackle the hour-ahead energy consumption

scheduling problem. They devised a data-driven strategy based on neural networks

(NN) and a Q-learning algorithm for the HEM system that provides satisfactory perfor-

mance on cost-effective schedules. They also provided scheduling decisions for household

appliances and electric cars (EVs) by a proposed framework, which has a dual goal of

minimizing the power bill and the DR-induced discontent.

Since data privacy is really important in this age, there has also been research to protect

users’ data and secure the system. The authors in [35] propose a Deep Robust Adver-

sarial Reinforcement Learning for privacy process among the users. In the proposed

work, the entire model is done in three different steps. The first step develops strategy

patterns for the users considering the integration of renewable energy and effective de-

mand response analysis. The second step in the process exhibits the learning process

of the consumers using Robust Adversarial Reinforcement Learning for privacy process

among the users. The third step develops an optimal strategy plan for the users to

Symbols 17

maintain privacy among the users. Another interesting approach was discussed by [36],

where the authors proposed a decentralized control of residential energy storage system

for peak shaving. The model treats the problem as a non-cooperative aggregative game,

where the allowable peak acts as the global constraint which has to be satisfied by the

community and proposes a decentralized control algorithm to achieve the equilibrium

strategy of the aggregative game.

Parallel to the above-mentioned work, several studies such as those in [37] [38] [39]

[40], and [41], to name a few, propose models to reduce the peak load. Although these

models do not use MARL, they represent the body of work on peak load reduction

using methods like direct load control, providing incentives to consumers, optimization

techniques and implementing game theory.

Our approach is different from existing studies as it focuses on the peak shaving efficiency

of scheduling discharging DER in the local grid, considering the daily forecasting of

other consumptions in a local grid. We proposed a centralized training and distributed

execution MARL model to provide day-ahead optimized discharging scheduling of DER.

The model offers a corresponding scheduling strategy based on the confident interval

of daily forecasting learned during the simulated training process. The agents have

a cooperative relationship with each other, which allows them to provide coordinated

scheduling to maximize daily peak shaving performance in the distributed execution

without communication after training. Local agents’ distributed execution enhances

network connection robustness and improves general DER owners’ data privacy from

presenting their daily discharging plan collected in a centralized server. We use an actor-

critic approach [18] that has two neural networking instead of Q-learning. This advanced

technology improves our model’s complexity, increasing the learning performance and

providing a potential for future distributed training.

2.4 Overall Proposed System Model Architecture

The aim of this subsection is to provide the readers with an overall structure of the

proposed system. Specifically, the relation and interaction of the two major components,

the prediction system for DR in Smart Grids and the MARL system for the integration

of the DERs into the smart grid.

Figure (2.1) shows the system architecture. Each DER (e.g., an EV battery) is modelled

as an agent in our system. The agent has the following properties: Capacity, Discharging

rate, Plug-in Time. The capacity is the total energy allowed to discharge back to the grid

of the DER’s battery. The discharging rate is in W during the discharging period. The

Symbols 18

Figure 2.1: System Model of Day-ahead Discharging Scheduling

division of capacity by discharging rate defines an agent’s expected discharging time per

day. The plug-in time represents the time range of the battery attached to a charging

station and ready for discharging events. The day-ahead discharging will schedule in

the corresponding agent’s plug-in time.

The subsections below provide a brief description of the two components.

2.4.1 Prediction system

The prediction system contains the following component:

• An image clustering system with the images of the daily power consumption curve

generated by the dataset. This system provides the type of each day based on

Symbols 19

the image-processing technique. The type of each day affects the selection of the

training set.

• An ensemble model for power consumption prediction combines four machine

learning algorithms. The machine learning algorithms include Cubist, FNN, Ran-

dom Forest and LSTM.

• An dynamic weighting mechanism further improves the accuracy of the predicted

daily consumption curve. Moreover, a majority voting mechanism improves the

predicted peak point time.

2.4.2 MARL

The MARL system takes the output of the day-ahead daily power consumption from

the prediction system and outputs a day-ahead discharging schedule for each DER. The

proposed MARL model is trained on a dataset of historical daily prediction and actual

power consumption. The RL training process increases the model performance on the

day-ahead scheduling and optimizes the daily peak shaving. We use the actor-critic RL

model with a centralized training and distributed execution design.

The following chapters provide the details of the design and validation of the prediction

and the MARL models.

Chapter 3

Image-based with Peak Load

Ensemble Prediction System for

Demand Response in Smart Grid

3.1 Introduction

In an energy management system, load forecasting is a crucial component. An intelli-

gent energy management system demands short-term peak load forecasting to engage

loads from smart homes and EV battery systems. This is because these battery systems

are relatively small; thus, they require shorter charging and discharging time [1][2], and

[3]. The energy management system allows general users to enroll in load balancing

by charging or discharging the electric vehicle battery during peak and non-peak times

based on a proposed time. Thus, an accurate peak load prediction model has a signifi-

cant impact on developing an appropriate mitigation strategy toward load balancing [4]

and resource planning effectiveness [5]. This thesis aims to design a power consumption

forecasting system focusing on accuracy during peak periods using a novel image pro-

cessing technique based on the characteristics of the load curve. To this end, we use

a convolution neural network model to extract the features of the image and use the

k-means mechanism for clustering. Although the consumption value in kWh of each

day is different, the shape of the curve almost exhibits a similar pattern for each day.

As a result, we use image processing to separate similar patterns of power consumption

curves to different groups. To validate our hypothesis, we use the energy consumption

data from Thunder Bay (Ontario, Canada) area and test in 900 days, including 200

shoulder-season days, to show the improvement of peak prediction accuracy.

20

Symbols 21

3.2 System Model

Figure 3.1: The System Model. Daily consumption curve images, clustered and fed
into the ensemble model for prediction

Figure (4.2) shows the proposed system model. The system classifies every training day

to a type of pattern based on an image clustering technique. Then, the training set is

selected depending on the type as the predicted day and trained using multi algorithms

ensemble model. The ensemble model includes 5 prediction algorithms (explained in

subsection (3.2.3), Random Forest, Cubist, XGBoost, LSTM, and FNN. The results will

be averaged through a dynamic weighting mechanism that outputs a predicted curve

and a majority voting mechanism to determine the peak point’s output.

3.2.1 Weather Data Processing

All weather information is collected from the Dark Sky API of Thunder Bay, ON,

Canada. The 5-min interval weather dataset, as shown in Table (3.1), is the training

set of the ensemble prediction model. Table (3.1) records weather and time information

and power consumption(output) every 5 minutes as each row. The weather informa-

tion provided by Dark Sky API was originally recorded hourly; we equally separate the

one-hour weather parameters into the 5-min interval. The first two rows record the

historical data consumption one day and two days ago. The power consumption data

are collected in about 150 houses of the residential areas in Thunder Bay provided by

Synergy North, including the market and small businesses. In the variable time, we

convert the data-hour-minute structure to a Sin and a Cos variable to represent hours

and minutes, respectively. Hours and minutes are cyclic, so Sin and Cos make the cycli-

cal interpretation of time easier. Compared to the date-hour-minute structure, this new

Symbols 22

data format allows us to extract more information because it becomes easier to identify

the time of the day; for example, 23:00 is very close to 0:00, but in numerical expression,

they are 82800 seconds and 0 seconds. After we change time to cos & sin expression,

time data act as a clock; 23:00 and 0:00 are numerically close to each other. The daily

dataset, as shown in Table (3.2), includes weather and time information for every day.

The temperature difference represents the average temperature change compared to the

previous day. It is a factor correlated to detecting season-changing. After image cluster-

ing power consumption curves in the training set, the daily dataset is applied to classify

which group the predicted day belongs.

Table 3.1: 5-min interval weather information dataset

Attribute No. Description

1 power consumption 1days ago
2 power consumption 2days ago
3 Sine expression of hours
4 Sine expression of minutes
5 Tempreture(Celsius)
6 Dew
7 Humidity
8 Wind speed
9 Visibility
10 Pressure

11-17 Day of week(dummy variable)
18 Power Consumption(output)

Table 3.2: Daily weather information dataset

Attribute No. Description

1 Average temperature
2 Temperature difference
3 Wind speed
4 Dew
5 Humidity
6 Pressure
7 Visibility
8 Sunrise(Time in seconds)
9 Sunset(Time in seconds)

10-16 Day of week(dummy variable)
17-28 Month(dummy variable)
29 Group of day(Output: 0,1,2)

Symbols 23

3.2.2 Phase 1: Classification

In this subsection, we use image processing techniques to classify the images of daily

consumption curves into different types and select the previous days in the same type of

predicted days as the training set. The daily power consumption curve images should

be a plot with the x-axis in 5-min intervals and the y-axis as power consumption in

kWh. The graph’s format is as follows: images dimension is 224 × 224 pixels (RGB);

bold curve line to emphasize information; the x and y-axis labels are deleted. Example

images as shown in Figure (3.4),(3.5), and (3.6).

Visual Geometry Group or also called OxfordNet (VGG16) CNN structure, which pre-

trained with ImageNet (open source image dataset), is powerful to extract features

from images [53]. Transfer learning from the pre-trained model can solve the shortage of

daily power consumption curve images. The idea of a pre-trained model is to accumulate

knowledge in a model trained for a specific task and transfer it to other relevant tasks.

The ImageNet dataset is an object detection that requires the model to classify an input

image into 1,000 different classes. The VGG16 pre-trained data is used to extract the

feature of objects, similar to the feature extraction of curve images. The saved weight

of filters in the VGG16 are transferred to extract the feature of images of the daily

consumption curve.

The VGG16 model, as shown in Figure (3.2), is a CNN with five blocks and a total of

16 layers. Each block has two to three convolutional layers to extract features and one

max pooling layer to reduce half of the size. The convolutional layer has several random

filters to extract different features and enhance themselves during the training process.

In VGG16, three 3× 3 convolution kernels are used instead of 7× 7 convolution kernels,

and two 3 × 3 convolution kernels are used instead of 5 × 5 convolution kernels. By

doing so, under the same perceptual field, the network becomes more in-depth; thus,

the effect of the neural network improves. The original image data format has a large

dimension of numbers, which is too complex to apply k-means. VGG16 model extracts

image features and converts each image to an array of numerical numbers. In the first

two layers in VGG16, kernel size is 224 × 224 × 64, which means there are 64 feature

maps in this layer, and each feature map represents a 224×224 image after convolution.

Each feature map is calculated by the convolution of previous layer data and a filter.

(in VGG16, all convolution filters are 3× 3) For the image I convolute with filter k, the

formula as following:(k represent the size of the filters, for size of filter as 3, the
∑k

v=−k

will be [−1, 0,−1])

(I ∗K)ij =

k∑
u=−k

k∑
v=−k

I(i− u, j − v)K(u, v) (3.1)

Symbols 24

There are three fully connected layers in the pre-train model in ImageNet. The first

two layers have 4096 channels output of the vector representation of an image; the third

contains 1000 channels(one for each class), which is a softmax layer output of the image

class. It is unnecessary to keep the last softmax layers since the output of curve image

classification is not 1000 class. Due to the limit of a relatively smaller dataset, it is better

to keep the pre-trained weights of filters. If a larger dataset is available, the pre-trained

model can be fine-tuned by reconstructing fully connected layers and unfreezing some

convolution layers to retrain the model. By doing so, the model will be more fitted to

the task. The reason for using CNN to extract features from daily power consumption

images instead of using RNN to extract features directly from numbers: we want to

cluster our datasets based on the pattern of the curve or not the digital differences

at each time of day. For example, when using RNN to extract features directly from

time-series data, one day with a smooth curve with a peak at 5 pm may have a closer

distance to a sharp peak at 5 pm than a sharp peak at 8 pm. In our hypothesis, we

want to cluster the days with sharp peaks together because we believe these days are

more correlated in the training process.

Figure 3.2: The structure of VGG-16 convolutional neuron network.

Classification of daily power consumption curve is an unsupervised image clustering;

thus, the number of clusters needs to be selected wisely. The k-means algorithm calcu-

lates the distance between arrays and separates closer arrays into different groups after

applying the k-means algorithm with the number of clusters from 2 to 10. The average

distance between each image and its clustered center is shown in Figure (3.3). The av-

erage distance dramatically decreased from 2 clusters to 3 clusters, and after 3 clusters,

the average distance decreased smoothly. It means that separating the images into three

Symbols 25

Figure 3.3: Relationship between number of cluster (group) and sum of squared
distances of samples to their closest cluster center

types is most appropriate for our datasets. A relatively smaller number of clusters can

help the accuracy of forecasting the cluster of new predicted days and increase model

robustness toward new unseen data. The optimal selection of the number of clusters

might vary for different datasets. The seasons in Thunder Bay are mostly separated into

three; spring/summer is short (4 months), which the people often consider one season.

This may be the reason why the number of clusters is 3. A larger number of clusters

may cause less difference between each cluster; a smaller number of clusters may cause

more feature differences inside each cluster. It is important to choose an appropriate

number of clusters for the datasets.

After image clustering of 900 days, 45% percent of the daily consumption curve belong to

type 1, 25% belong to type 2, and 30% belong to type 3. Examples of each type as shown

in Figure (3.4),(3.5), and (3.6), images of type 2 have a sharp peak in the afternoon, in

type 1 the curve oscillations occur at noon and in type 3 the curve has a long flat peak.

Type 1 and 3 do not have a sharp peak; thus, predicting the exact peak time is difficult.

Before predicting the power consumption of a new day, the system should first classify

the type of curve of new days. This is a typical supervised machine learning problem

in which we could use the historical clustered days with parameters in Table (3.2) as a

training set. The type of new day is predicted by the random forest model, as known

as the ideal solution of the classification task, with 400 ntrees and set the max depth

as 9 using parameters in Table (3.2). The accuracy of leave-one-out cross-validation in

900 test cases achieve at 98.36%. Leave-one-out cross-validation means, in each testing

case, only use the data before the testing day as the training set. The same validation

is used in testing the performance of the prediction model. We hypothesize that the

power consumption primarily correlated to the previous days in the same type of curve

Symbols 26

Figure 3.4: Type
1: a smooth peak
in afternoon with a
random oscillations

at noon.

Figure 3.5: Type
2: a lower con-
sumption in morn-
ing and a sharp
peak in afternoon.

Figure 3.6: Type
3: a long flat peak
start at morning
and end afternoon,
may have a sharper
peak in afternoon.

as the predicted day. The selection of a training set of power consumption forecasting

models should contain all the days with the same curve type as the predicted day in the

last 60 days. During testing, using data further than 60 days ago as the training set

will decrease the model’s performance; this number might differ in different geographical

areas.

3.2.3 Phase 2: Ensemble Prediction Model

Ensemble learning integrates a series of classifiers with general performance into a com-

bined classifier with better performance. Because training a single classifier with good

performance may be difficult. The general structure of Ensemble learning is: first gener-

ate a group of ”individual learners” and then use a particular strategy to combine them.

Individual learners are usually generated from training data by an existing learning al-

gorithm, such as the decision tree. If the integration contains only the same type of

individual learners, for example, ”decision tree integration” contains all decision trees,

such integration is ”homogeneous.” The ensemble can also include different types of in-

dividual learners, such as a decision tree and a neural network at the same time. Such

an ensemble is ”heterogeneous.” Ensemble learning is sometimes named differently, and

sometimes it is called multi-classifier system, committee learning, modular systems, clas-

sifier fusion, combination, aggregation. These concepts are related to each other, but

there are some differences. The industry has not yet reached a consensus on the defini-

tion of the concept. The performance of the whole algorithm is compelling, and it is the

first choice in many high-level competitions (Knowledge Discovery and Data Mining,

Kaggle). Different learners have different preference models, but each is a weakly super-

vised model. Ensemble learning combines multiple weakly supervised models to obtain

Symbols 27

an outstanding strong-supervised model. The idea is that different learner’s correct

errors mutually to achieve the ultimate accuracy improvement.

The combination of learners may benefit from three aspects: First, from a statistical

point of view, because the hypothesis space of learning tasks is often ample, there may

be multiple hypotheses that achieve the same performance on the training set. If using

a single learner, it may have poor generalization performance due to misselection. Com-

bining multiple learners will reduce this risk. Second, the single learning algorithm falls

into a local minimum and some local extremes from the calculation perspective. The

generalization performance corresponding to the local minimum may be terrible, and

the combination of multiple trained models can reduce the risk of falling into a bad local

minimum. Third, from the representation perspective, the hypothesis of some learning

tasks maybe not be in the hypothesis space considered by the current learning algorithm.

Combining multiple learners makes it possible to learn a better approximation due to

the expansion of the corresponding hypothesis space.

There are two conditions to determine if the performance of the ensemble learner is bet-

ter than that of the individual learner: the individual learner is better than the result of

random guessing, and individual learners must be independent of each other. The first

condition is relatively easy to implement. Train a model in the present which produce

results that are usually better than guessing. The second condition is the core issue

of integrated learning research. Each learner learns the same problem, so individual

learners cannot be completely independent of each other. The entire algorithm learning

process is from data to model to output. There are three approaches to enhancing the

diversity of individual learners. First approach considers the input data. Each learner

learns from different samples will produce a diversity of relatively different individual

learners. Each learner selects samples randomly or uses different attribute subsets to

train different individual learners are the most common way to divide the training sam-

ples. The second consideration is the model. Suppose the model of the base learner is

different, then they will train different individual learners from the same training set.

The third approach is the output. If we divide according to the characteristics of the

label, we can also get different individual learners. In this thesis, we use five machine

learning models: Random Forest, XGBoost, Cubist, Feedforward Neural Network, and

Long-Short Term Memory.

3.2.3.1 Random Forest

In the 1980s, Breiman et al. invented the classification tree algorithm [85]. By repeat-

edly dichotomizing data for classification or regression, the tree algorithm significantly

Symbols 28

reduces the amount of calculation. In 2001, Breiman combined the classification trees

into a random forest, which is to randomize the use of variables (columns) and the use

of data (rows), generate many classification trees, and then aggregate the results of the

classification trees. Random forest improves the prediction accuracy on the premise

that it does not significantly increase the amount of calculation. Random forest is not

sensitive to multiple factor linear regression problems, and the results are relatively ro-

bust to missing and unbalanced data. It can predict the effects of up to thousands of

explanatory variables well and is currently one of the best machine learning algorithms.

Random forest, as the name implies, is to build a forest randomly. There are many

decision trees in the forest, and there is no correlation between each decision tree in the

random forest. When a new input sample enters, let each trained decision tree in the

forest judge separately to see which category the sample belongs to (for the classification

algorithm). The prediction of that sample belongs to the category selected the most.

The random forest can handle both discrete-valued quantities and continuous-valued

quantities. In addition, the random forest can also apply to unsupervised learning

clustering and outlier detection.

The decision tree is a tree structure (can be a binary tree or non-binary tree). Each

non-leaf node represents a test on a characteristic attribute. Each branch represents the

output of this characteristic attribute in a specific value range. Each leaf node stores a

category. The process of using a decision tree to make a decision is to start from the root

node, test the corresponding feature attributes in the items to be classified, and select

the output branch according to its value until the leaf node is reached. The category

stored in the leaf node is the decision result. Decision trees are based on the calculation

of entropy (3.2) and information gain (3.3) of each variable p.

Entropy H(X) = −
∑

p(X) log p(X) (3.2)

Information Gain I(X,Y) = H(X)−H(X|Y) (3.3)

Random forests have many advantages: it performs well on data sets, and introducing

two randomness makes random forests less likely to fall into overfitting. It has excellent

anti-noise ability. It can handle very high-dimensional (many features) data without

select features and has strong adaptability to data sets: it can handle discrete and con-

tinuous data. The data set does not need to be standardized. The training speed is fast,

and the importance of variables can be ranked based on data correlations. During the

training process, it can detect the mutual influence between features. The implementa-

tion is relatively simple. The disadvantages of the random forest are that it is easy to

Symbols 29

fall into overfitting in some sample sets with relatively large noise. Features with more

value divisions are likely to have a more significant impact on the decision-making of

the random forest, thereby affecting the effect of the fitting model.

3.2.3.2 XGBoost

The full name of XGBoost is eXtreme Gradient Boosting, which is an optimized dis-

tributed gradient boosting library designed to be efficient, flexible and portable [86].

XGBoost is a tool for massively parallel boosting trees. It is currently the fastest and

best open-source boosting tree toolkit, ten times faster than common toolkits. In terms

of data science, many Kaggle members choose XGBoost for data mining competitions,

which are commonly found in major data science competitions. In terms of large-scale

data in the industrial world, the distributed version of XGBoost has extensive porta-

bility. It supports Kubernetes and Hadoop, SGE, MPI, Dask and other distributed

environments to solve the problem of large-scale data in the industry.

XGBoost algorithm is based on the decision tree and uses Gradient Boost as a framework.

XGBoost also uses an additive model and a forward step-by-step algorithm to realize

the optimization process of learning, but it is different from gradient boosted decision

trees (GBDT). The main differences include the following: In the objective function, the

loss function of XGBoost adds a regularization term to control the complexity of the

model. The regularization term contains the number of leaf nodes of the tree, the weight

of each leaf node and the sum of squares of the score values of the points. GBDT only

uses first-order derivative information during optimization, and XGBoost uses first and

second-order derivative information. XBGoost handles missing values and automatically

selects the optimal default segmentation direction for missing values through the learning

model. In addition to adding regular terms to prevent overfitting, XGBoost also supports

row and column sampling to prevent overfitting. It can get better results with fewer

computing resources in the shortest time.

The XGBoost algorithm is an implementation of gradient boosted decision trees de-

signed. This algorithm has a high performance with structured or tabular datasets

on classification and regression predictive modelling problems. Energy forecasting is

a complex problem; we should approach it from both the classification and regression

sides.

Symbols 30

3.2.3.3 Cubist

The Cubist model tree algorithm is a binary regression tree model where the last nodes

are the linear regression functions that can produce continuous numerical attributes [87].

The M5 algorithm uses a divergence metric to produce a decision tree. The next step to

developing a tree model involves tree pruning, tree evacuation and substitution of trees

with linear regression functions. In the end, this method produces a tree-like structure

with the linear regression model. The advantage of this algorithm is that the model

trees are generally much smaller than regression trees with high accuracy.

3.2.3.4 Feedforward Neural Network

Feedforward means that all information is finally output to y through some intermediate

calculations from the input, and there is no feedback from the model’s output to the input

[88]. For the case of feedback, it is a recurrent neural network. The feedforward neuron

network has been widely used in the industry. It is also the basis for understanding the

widely used recurrent neural network in natural language processing.

The network represents that the model is a model formed by combining different basic

functions. For example, the final function f(x) = f (1)(f (2)(f (3)(x))), f (1) is the first

layer of the network, f (2) is the second layer of the network, and so on. The length of

this chain is also called the depth of the network, hence the name of deep learning. The

last layer of the feedforward network is called the output layer. For the training data,

each input x has a corresponding label yf∗(x), and the output layer of the network.

The result should be as close to y as possible. Nevertheless, for other layers, there is

no such direct correspondence with the training data. The algorithm only requires the

final output to be close to the actual mark, and the purpose of each layer in the middle

is not clearly defined, so these layers are also called hidden layers. The hidden layers

also make the neuron network a black-box algorithm; hence it is hardly explainable.

Feedforward Neural Network(FNN) is a simple implemented artificial neural network

without any cycles or loops. In this network, the data only move one-directional from

the input layer to the output layer and passes many hidden layers in between.

3.2.3.5 Long-Short Term Memory

Long short-term memory (LSTM) is a special RNN, mainly to solve the problem of gradi-

ent disappearance and gradient explosion during long sequence training [89]. In general,

Symbols 31

LSTM can perform better in longer sequences than ordinary RNNs. Besides the in-

formation moving forward, the recurrent neural network also learns from the predicted

output and the actual output. After each forward pass through a network, backpropa-

gation performs a backward pass while adjusting the parameters of the model (weights

and biases). During backpropagation, each weight is updated through gradient descent.

The network learns through constant forward pass and backpropagation. The forgot

gate in LSTM helps abandon details from the block so that only essential information

is retained in the cell to make the computation efficient and effective.

There are three main stages inside LSTM. First is the forget stage, which is mainly to

forget the input passed in by the previous node selectively. Generally speaking, forget

the unimportant information and remember the important ones. The second is the

memory stage. This stage selectively remembers the input of this stage. Mainly to

select and memorize the input. What is essential is recorded, and what is not essential

is recorded less. The third stage is the output stage which will decide which outputs

will be considered as the current state.Because of the increasing contents, the number

of parameters has increased, and the training difficulty has also increased a lot.

3.2.4 Phase 3: Dynamic Weight Calculation

RMSE is one of the most convenient error calculations that could not accurately rep-

resent peak prediction performance. This thesis focuses on the correctness of the peak

period prediction; RMSE also includes the morning’s error. The morning power con-

sumption is majorly random and impossible to predict, leading to a massive increase in

RMSE. The peak point time difference between predictions and actual could only be a

reference for judging a model’s accuracy; it can not represent the error either. On some

days, there may be two peak points more than one hour away from each other with sim-

ilar power consumption (kW); one of them will be the exact peak; a model could predict

a curve that fits two peaks but captures the other as the exact peak. Even though the

peak prediction point is far from the actual, the model performs with excellent accuracy.

Thus, we use a relative root mean square error (rRMSE). In equation (3.4), RMSE is

divided by the average power consumption of the tested day, between 1:00 pm and 12:00

pm. The rRMSE represents the ability of a model to predict the peak period. In the

following formula, n represents the number of energy consumption in the array, yi and

xi are the predicted and actual power consumption receptively.

rRMSE =
1
√

(1n)
∑n

i=1(yi − xi)2

1
n

∑n
i=1 xi

(3.4)

Symbols 32

The ensemble model aggregates three model algorithms’ predictions and produces a final

prediction for the unseen data. Instead of using direct averaging, we can use a weight

calculation mechanism to assign a weight to algorithms based on their accuracy. Because

the prediction is one day before the predicted day, we can calculate the weight based on

the day’s peak period’s model accuracy before the predicted day. In equation (3.5), M n

represents rRMSE of the peak period between the prediction model results and the real

peak time of one day before the predicted day of each algorithm. This mechanism’s basic

idea is to enlarge the weights of the model, which provides a more fitted peak period

curve previously. We use the reciprocal of the difference of time prediction because the

smaller error a model has, the higher the accuracy produced.

Wi =
1

1+Mi∑n
i

1
1+Mn

(3.5)

The improvement of applying weight-based averaging in terms will be presented in the

section ”Analysis of Results”. The system also includes a majority voting technique to

output the exact peak point prediction as a reference. The mechanism of majority voting,

as shown in Algorithm (1). First, calculate the mean of predicted exact peak points of

each algorithm. If there is any predicted peak point that is more than 60 min away from

the calculated mean, remove the one with the largest absolute difference and recalculate

the mean. It can prevent any model with a worse prediction from ruining the whole

system. As mentioned above, there are someday has two peaks; it is doubtless that one

model prediction will occur around the lower peak. In this case, three algorithms voting

to one peak point will provide much better results than a simple averaging prediction,

which is most likely in the middle of two peak points. Dynamic weighting is enough for

plotting the curve and scheduling discharging based on the curve. The mean peak point

only outputs the exact peak point’s times; it can only be considered as a reference.

Algorithm 1 Majority voting of predicted peak point time.

Input: The predicted time of peak point occur in different models: M1,...Mn (type

POSIXlt)

Output: The time in POSIXlt of predict peak point X

1: if Any |Mi −X| >= 60 mins then

X =
{

n∑
i=1

Mi}−argmax
Mi

|Mi−X|

n−1

2: end if

Symbols 33

3.3 Experimental setup

The experiments are set up based on a historical database provided by Synergy North on

the area in Thunder Bay, ON. The weather data provided by Dark Sky API details data

processing as described in the above section. The experiments are using leave-one-out

cross-validation, in which, on each testing day, we select the previous 60 days as the

training set to train our models and test among all days in the dataset. The number 60

is selected based on our initial analysis of the correlation between each basic machine

learning model and previous days in the training set. We analyze the average accuracy

of all testing cases in the dataset, as shown in the next section of the model performance.

The initial approach is to select 60 days to examine the different training day lengths and

find the higher correlated period. The number 60 varies for different power consumption

datasets based on the local grid sizes, the weather, the development of new electric

devices, and the composition of customers, i.e., factories, houses, commercial buildings,

etc. The power consumption dataset is recorded in 5-min intervals, which means there

are 288 numerical data points in each day. The models are trained with the previous 60

days and output the next-day power consumption contain 288 numbers. This task is a

sequence to sequence prediction. All the training sets must be selected before the testing

day; otherwise, the model will overfit the future data. To test the effect of selecting days

of similar curve structures that are clustered by image-based processing, we select the

training set with all the days combined with 50% of days in different types. Other days

in the training set are extreme cases; this usually occurs at the beginning of the shoulder

season. The number 50% is selected based on an experiment of model performance 25%,

50%, 75%. The higher the percentage we put other type days into the training set, the

more negligible effect on the image-based clustering technique. The lower percentage

will increase the overfitting of the extreme case. As a result, 50% is a balanced number

in our dataset.

3.4 Analysis of Results

The training time of the ensemble model for one-day prediction costs around 5-6 minutes.

The time is recorded on the PC with Intel(R) Core(TM) i7-6700 CPU 3.40 GHz, 16GB

RAM, and Radeon (TM) RX 480 GPU. In the ensemble model, RF costs around 40-50

seconds, LSTM costs around 3 minutes and 30 seconds, Cubist costs around 30 seconds,

FNN costs around 1 minute, and XGBoost costs around 10 seconds. In the running

prototype, the prediction model is required to execute at the beginning of each day with

fully collected data from yesterday. The execution time of the daily prediction process

is the same as the training time since the execution of models takes less than 5 seconds.

Symbols 34

The running time of daily image clustering takes 2 hours and 30 minutes for all 900

images in the dataset. The clustering for each day takes around 10 seconds. However,

the clustering of the dataset is in the pre-processing phase, which does not infect the

running phase. Table (3.3) shows the improvement of the performance of each algorithm

by applying image clustering training dataset, dynamic weighting and majority voting

during the normal days and season-changing period separately. The season-changing

days are manually selected based on the weather report. Each year, there are approx-

imately 14 weeks considered as season-changing period (shoulder-season), also defined

as odd days and the rest of the days are so-called normal days. The image clustering

refers to the direct averaging of three algorithms after applying our image clustering

based training set selection mechanism. Dynamic weighting refers to additional dy-

namic weight calculation after selecting a training set based on image clustering. The

majority voting only regards the peak time. There are three measurements to analyze

the performance of each algorithm. rRSME, as shown in equation (3.4), describes the

error of fitting the prediction curve to the actual curve. On each testing day, the peak

error is the difference between the predicted highest point and the actual highest point.

The decreasing number of average peak error increase the effectiveness of discharging

event during peak-shaving. Peak time under 60 is how many percentages of days have

a peak error under 60 minutes. Any peak error above 60 minutes will go beyond any

fully-charged batteries discharging window, which leads to an unsuccessful peak shaving.

Table 3.3: Performance analysis on Odd days

Performance of season-changing period

Average rRMSE Average Peak errors Peak error under 60

Cubist 0.0947 97.57 34.4%
XGBoost 0.0936 95.62 39.1%
Random Forest 0.0831 82.11 31.2%
FNN 0.1048 86.90 37.67%
LSTM 0.1103 92.07 35.8%
Direct Averaging 0.0858 88.62 32.08%
Image Clustering 0.0819 69.68 46.3%
Dynamic Weighting 0.0764 71.28 43.1%
Majority Voting NA 71.25 45.3%

During the season-changing period, the final model has a 7.64% rRMSE in the peak

period, which reduces 11% error in prediction in the peak period than the model without

an image clustered training set. From the perspective of peak shaving, the enhanced

model allowed 40% more days successfully enroll in peak shaving activities. The exact

peak point prediction can only be a reference for accuracy due to the irregular peak

curves. During the season-changing period, the peak may be flat, or we might have

multiple peaks. In the flatter peak or multiple peaks, the exact peak point has similar

Symbols 35

Table 3.4: Performance analysis on Normal days

Performance of normal days

Average rRMSE Average Peak errors Peak error under 60

Cubist 0.0955 39.33 85.4%
XGBoost 0.0935 45.08 79.8%
Random Forest 0.0906 35.32 84.1%
FNN 0.1027 42.31 78.6%
LSTM 0.1186 35.41 83.7%
Direct Averaging 0.0887 32.81 89.7%
Image Clustering 0.0883 31.75 86.3%
Dynamic Weighting 0.0852 32.62 88.0%
Majority Voting NA 29.55 95.3%

power consumption to a point far from it. This situation leads to errors as the model

fails to predict the highest point.

The normal days usually have a sharper peak period with larger power consumption

values; thus, the overall number of rRMSE is higher than the odd day. On normal

days, the exact peak point is much higher than any other value during the day, so any

slight prediction error causes a higher rRMSE value than the odd day (flatter peak).

The normal days have less randomness on-peak period, so their peak point prediction

performance is more accurate than the season-changing period. During normal days,

the season is more certain, and the type of curve remains the same; thus, the image

clustering training of the dataset does not have a similar effect as in season-changing

periods. We focus on improving the accuracy of hardly predicted odd days; there is

only a slight improvement in the accuracy on the normal days and mostly improved

by dynamic weighting and majority voting scheme since the prediction of these days is

more accessible.

As shown in Figure (3.7), this is a random normal day with the basic ensemble model.

Figure (3.8) shows the effect of the applied image-based technique. Figure (3.9) shows

the final model in which we apply dynamic weighting and majority voting techniques.

A high percentage of days is of normal days; thus, the image-clustering has a minor

effect on normal days. The dynamic weighting improves the model accuracy in terms of

RMSE.

Odd days are hard to predict for their usage of electricity. As shown in Figure (3.10),

the odd day in the basic ensemble model cannot predict the peak accurately and lead

to a 1 hour and 45 minutes peak prediction error. Figure (3.11) shows the improvement

of applying the image clustering technique. Even so, the model still cannot forecast the

increasing usage of electricity; the predicted power consumption curve is more similar

to the actual curve. As a result, the peak point is predicted within 1 hour error of the

Symbols 36

Figure 3.7: Basic ensemble model in example normal day

Figure 3.8: Basic ensemble model with image clustering technique in example normal
day

actual peak time. Figure (3.10) shows the further improvement of dynamic weighting

and majority voting.

The Figures (3.13),(3.14), and (3.15) show a detail model performance of random days

in each type. The figures present the power consumption prediction of each individual

model.

Figure (3.16) shows a detailed model performance of an inaccuracy prediction. The odd

days’ inaccuracy prediction usually has multiple peaks, and the prediction model only

Symbols 37

Figure 3.9: Ensemble model with dynamic weighting in example normal day

Figure 3.10: Basic ensemble model in example odd day

captures one of them. When the predicted peak is not the highest actual peak, it causes

a high peak prediction error.

Figure (3.17) show the predictions for one month, including a suggested discharging

and charging period. The electricity bills are monthly payments; thus, we analyze the

monthly model performance for savings.

Symbols 38

Figure 3.11: Basic ensemble model with image clustering technique in example odd
day

Figure 3.12: Ensemble model with dynamic weighting in example odd day

3.5 Discussion

In this section, we present an image processing technique to analyze power consumption

curves and make enhanced peak predictions for shoulder season. We proved that the

pattern of the daily consumption graph in a smaller residential area could be clustered,

and days in similar patterns have a stronger correlation. We also proposed a dynamic

weighting and majority voting mechanism to further improve the ensemble system’s

performance. The system enhances the demand response planning during the shoulder

Symbols 39

Figure 3.13: The detailed model performance of day in type 1

Figure 3.14: The detailed model performance of day in type 2

season and increases peak load period prediction accuracy. On the other hand, we still

need to exterminate if image-based processing could apply to other locations.

Symbols 40

Figure 3.15: The detailed model performance of day in type 3

Figure 3.16: The detailed model performance of an inaccuracy prediction

Symbols 41

Figure 3.17: Monthly report include prediction and suggest discharging,charging time

Chapter 4

Multi-agent Reinforcement

Learning for DER Discharging

Scheduling

4.1 Introduction

The proposed model in this chapter focuses on the coordination of DERs, especially EVs,

to reduce the peak and avoid creating relative peaks. Several researchers have attempted

to solve the DER coordination problem using RL. However, most of these studies focus

on the uncertainty of the environment [15], the scaling of the system by increasing

the number of agents [16], and the comfort of the users [17]. Our work is completely

different from previous attempts because we tackle the day-ahead coordination of the

DR problem. To this end, scalability is assured since only selected DERs will be engaged

based on the previous reward. Our system depends on an external prediction mechanism

to determine the day-ahead peak period but provides discharging scheduling of DERs

with an optimized peak shaving performance while considering the inaccuracy of energy

prediction. The model depicts DERs as autonomous agents and provides centralized

training and distributed execution. In the proposed model, DERs scheduling does not

need to constantly connect to a centralized server in the distributed execution phase,

which improves the system’s robustness and provides data privacy for DER owners. This

is also a significant distinction from existing studies.

42

Symbols 43

Figure 4.1: System Model of Day-ahead Discharging Scheduling

4.2 System model

This section presents the details of the proposed model and its design components. Fig-

ure (4.1) shows the system architecture. In our system, each DER (e.g., an EV battery)

is modelled as an agent. The agents are part of a MARL model that determines a

day-ahead discharging schedule for multiple DERs. We assume that the MARL model

takes its energy forecast from the utility company (electricity provider) through a pre-

diction model designed for this purpose. Once the prediction information is passed to

the MARL, the system then coordinates the discharging process. Each agent uses the

day-ahead energy consumption prediction to know its discharging schedule based on its

properties and policy. The agents’ policy is trained in a centralized fashion by a neural

network model using an actor-critic algorithm. The proposed system encompasses two

Symbols 44

Figure 4.2: The training process of actor-critic multi agent reinforcement learning

neural networks: the critic network, which estimates the reward of each agent’s discharg-

ing schedule (i.e., the action-value), and the actor network, which updates the policy

based on the suggestion of the critic network. Figure (4.2) describes the training process.

For each training day d−1, the energy provider forecasts the power consumption of day

d. The policy neural network of each agent i takes state d as input and produces the

action at, which is the discharging start time for the day d. The energy provider collects

all actions from agents and calculates the reward, which is the profit of energy arbitrage

and sends it to each agent. The agent then updates the value function based on the

reward. The value function is another neural network that takes the state and action as

inputs to estimate the reward of each action. Finally, the policy network updates itself

based on the action’s estimated reward by the value network. The detailed components

of the proposed model are described below.

Symbols 45

4.2.1 Environment Design

Let N = {1, 2, ..., n} be the set of agents comprising EV batteries who are participating

in the DR program of the smart grid system. We assume that each agent i ∈ N purchases

electricity from the grid during the low peak period at a price rate λl. In each day d,

the SGP submits a daily power consumption prediction array in 5-min interval EPd

to the agents. The system intelligently selects a discharging start time ti for agent i

and continually discharging at a rate pi. Each agent has a discharging threshold ki that

defines the maximum amount of energy that can be given back to the grid. The threshold

can be determined based on the next travel plan or other usages of the EV. The scheme

of determining the threshold is not considered in this article, but it is assumed to be

known based on the work in [72][73]. We also assume that each agent can give back to

the grid any amount ci such that ci ≤ ki. The discharging period of agent i in a day is

as follows.

τ id = [t : t+
ci
pi
] (4.1)

Equation (4.1) indicates that each agent starts discharging at a specified time for a

duration t + ci
pi
. The duration of the discharging may not lead to discharging energy

more than the defined threshold. However, the agent may be involved in discharging the

EV battery more than one time. We define xi to be the number of times (duration τi)

that an agent participates in the DR signal. However, it is recommended that an agent

participate once a day during the highest peak to save the EV’s battery lifetime. At the

end of each day, the grid calculates the profit of agent i based on the amount of energy

it discharged as shown in equation (4.2).

Profitxi =
x∑

m=1

[λm
h − λm

l]cmi (4.2)

Equation (4.2) calculates the profit resulting from charging at a low price of electricity

and discharging at a high price of electricity. Each agent would be able to gain a

monetary reward based on the amount of energy given to the grid.

4.2.2 Markov Decision Process

The design of the MDP framework is crucial in MARL. Mathematically, our Markov

game is defined as a tuple (N , S,A,R) where N is the set of agents; S is a finite state

space; A is a joint action space of the agents; R is the immediate reward for the agents.

In our Markov game framework, each day is considered one state of specific prediction

Symbols 46

of energy consumption of kWh array of 5-min intervals t ∈ d given by eptd. Therefore,

we have 288 5-min intervals of energy consumption data each day. The discrete action

space is A = [at, at+1, ..., aT] spans the interval of times from t = 1 to T = 288, and at

represents the action of agent i to discharge or not from the EV battery into the grid

starting at time t. The individual reward for each agent rid = Profitxi ; in our design,

we used a fully cooperative setting that all agents share a common reward function as

in equation (4.3).

Rd =
1

N

N∑
i=1

rid (4.3)

Under some electricity price plans, the price is only affected by the highest peak. In this

scenario, Rd is mathematically equivalent to the peak shave, the difference between the

maximum energy consumption before and after batteries discharging. We use a shared

reward function to avoid competition among the agents. In a non-cooperative setting,

the overall system may not maximize the peak-shaving of the smart grid; thus we use a

shared reward for each agent to train coordinated policies.

4.2.3 Algorithm Learning Design

Let πi∗(a|s) be the theoretical optimal policy function of the probability of agent i

selecting action a in state s. The policy πi∗ takes state s as input and output a probability

space of actions πi∗(s) = [Pr(at), P r(at+1), ..., P r(aT)],
∑

a∈A πi∗(a|s) = 1. The action-

value function in equation (4.4) describes the expected reward of agent i doing action

at at state s ∈ S . The state-value function in equation (4.5) describes the expected

reward of state s by applying the joint optimal policy π∗.

Qi
π(s, a) = E[Rd|S = s,A = at] (4.4)

V i∗
π (s) =

∑
a∈A

πi∗(a|s) ·Qi
π(s, a) (4.5)

We use one neural network πi(a|s, θi) (actor) to approximate the optimal policy function

πi∗(a|s) and one neural network qi(s, a;wi) (critic) to approximate the action-value

function Qi
π(s, a); where θ and w are trainable parameters. The approximate state-value

function then become equation (4.6). The goal of learning parameters is to optimize

objective function J(θ) in equation (4.7) of the joint policy parameters θi ∈ {θ1,2,...,N }.

V i(s, θi, wi) =
∑
a∈A

πi(a|s, θi) · qi(s, a;wi) (4.6)

Symbols 47

J(θ) =
∑
s∈S

N∑
i=1

V i
πθ (4.7)

In the training phase, we have a number of days in the training set, and the aim is to

optimize J(θ). The training phase is shown in Algorithm (2), which is described next.

At the start of the training phase, for each agent i, we configure a different learning

rate. Learning rate is a hyper-parameter in deep learning representing the amount of

weight updated during training. A default value for the learning rate is 0.1 or 0.01 as

a start point to configure. Different neural networks with different layers and neurons

have different optimal learning rates, which are challenging and time-consuming to find.

Considering learning rate α and β for value neural network and policy neural network

respectively, we have αi = δiα and βi = δiβ. The δi is calculated as δi =
∑n

i=1 Ci
nCi

.

Each neural network of a different agent will have a different learning rate. The agents

with larger battery capacity have a lower learning rate. The agent with a larger battery

capacity has a larger effect on the system; updating its policy slower than the agent has

less effect during the training.

The next step is initializing the parameters of the neural network θi and wi for each

agent. Then initializing the minimum exploration rate and exploration decay ε. The

exploration rate is initialized as 1, and at each epoch exploration rate will decrease by

the decay ε and stop at the minimum exploration rate, which is typically set to a default

value of 0.01. The exploration rate is the chance of the agent performing a random action

instead of choosing an effort based on the current model. The details of the effect of

exploration rate and decay are described in section (4.4.3).

In figure (4.2), for each training day of each epoch, every agent first observes the state.

The observation of the state means reading the predicted power consumption EP d as

the input to each agent’s neural network. Then each agent chooses an action based on

the current exploration rate. When every agent chooses an action, we can calculate the

joint reward Rd. Every value neural network in section (4.2.4) and policy neural network

in section (4.2.5) will update their parameter θi and wi base on Rd.

4.2.4 Value neural network

In the model design, we use the actor-critic method [18]. Actor and critic are synonyms

for the policy and value function, respectively. The actor-critic method is a preferred

algorithm in solving RL problems, which have advantages over both actor-only and

critic-only method.

Symbols 48

Algorithm 2 Training Phase

1: Initializing learning rate parameters α and β
2: Initializing θi and wi for each agent
3: Initializing minimum exploring rate and epsilon decay ε
4: for each epoch do
5: for each day d in the training set do
6: for each agent i ∈ N do
7: Observe the state s
8: Randomly sample action a according to πi(s, θi) and exploration rate
9: Perform action a for each agent

10: end for
11: Calculate the reward Rd based on joint actions
12: for each agent i ∈ N do
13: update wi using temporal difference in section (4.2.4)
14: update θi using policy gradient in section (4.2.5)
15: end for
16: end for
17: end for

Figure 4.3: Value Neural Network(Critic)

The value neural network, as shown in figure (4.3), takes the merged array of state and

action space as input. The state is the daily power consumption EP d. The action is

discrete, so the action array is generated by one-hot encoding. After the hidden layers,

the value neural network uses a dense layer to output one value representing reward.

This output predicts the expected reward of input action in the input state. The training

process of updating trainable parameter w aims to increase the precision of the value

neural network output to better estimate Rd.

At the end of each training case, the value neural network updates itself using the tempo-

ral difference (TD) method. The TD target is the actual reward Rd. The loss function in

equation (4.8) encourage to minimize the difference of the value neural network q(s, a;w)

Symbols 49

and actual reward Rd. In the process of gradient descent in equation (4.9), w will up-

date based on the derivative of loss function to w.(α is the learning rate) After gradient

descent, the loss L(w) will decrease thus the output of value neural network will closer

to Rd.

Loss function:

L(w) =
1

2
[q(s, a;w)−Rd]

2 (4.8)

Gradient descent:

wd+1 = wd − α · ∂L(w)
∂w

(4.9)

4.2.5 Policy neural network

Figure 4.4: Policy Neural Network

The policy neural network, as shown in figure (4.4), takes only the state as the input

feature. After the hidden layer, the policy neural network uses a dense layer map to

vector the same size as action space. Then the softmax function will output a probability

of suggested actions. The final output action could be the highest possible action in the

previous layer. Updating the policy neural network aims to gain a higher reward from

the output suggested action.

The policy neural network is updated using the policy gradient. The state value functions

V (s; θ, w) output the expected reward, as the performance, of policy function in state s.

In the process of gradient ascent described in equation (4.13), the trainable parameter θ is

adding the derivative of state-value function g(a, θ).(β is the learning rate) The updated

Symbols 50

policy network will increase the value of state-value function V (s; θ, w) which increase

the performance of the policy network. The derivative of the state-value function shown

in equation (4.12), q(s, a;w) is the value neural network. The equation (4.10),(4.11)

derives why log is used in g(a, θ). Derivative of state-value function V (s; θ, w):

g(a, θ) =
∑
a∈A

∂π(a|s; θ)
∂θ

· q(s, a;w) (4.10)

g(a, θ) =
∑
a∈A

π(a|s; θ) ∂π(a|s; θ))
∂θ · π(a|s; θ)

· q(s, a;w) (4.11)

g(a, θ) =
∂ log π(a|s; θ))

∂θ
· q(s, a;w) (4.12)

Gradient ascent:

θd+1 = θd + βg(a, θd) (4.13)

.

4.3 Experiment and Results

The following section introduces the experiments on the performance of the model. The

daily energy consumption data are collected from the local utility company Synergy

North, Thunder Bay, Ontario, Canada. The prediction model with the historical daily

forecasted data is present in [42]. The configuration of the experiments is as follows.

Epoch configuration: In each epoch, the models are trained for all the days in the training

sets. The default value for the number of epochs is set to 1000.

Agent configurations: In the initial attempt, we trained three agents with similar battery

capacity and discharging rates. Each agent has a 2kW discharging rate and 1 hour

discharging period. The training set typically has 50kW power consumption for peak

points. The agents were trained to choose a discharging start time from 11:00 am to

10:55 pm in 5-min intervals. Thus the action space contains 144 discrete actions. The

scheduling of the discharging considers only the afternoon peak and assumes that EV

batteries are available during that time.

Measure of success: The total reward, i.e., the sum of the joint rewards of every agent

in all training days.

Average Peak Shave: For each training day, after the models perform discharging ac-

tivities, the peak reduction is calculated by the highest peak of the actual load curve

Symbols 51

and after shaved load curve. Average peak shave is the mean of peak shaves through all

training days.

Neural network: The policy neural network has three layers. Layer1 includes 288 input

space to read a 5-min interval power consumption of training day, 512 neurons. Layer

2 includes 256 neurons. Layer 3 includes a dense layer of 144 action space. The value

neural network has the same hidden layer as the actor neural network. The value neural

network input layer includes a 5-min interval of power consumption merged with the

144 action space. The dense layer is reduced to one number as the reward for training

the actor neural network.

4.3.1 Experiment on shared reward function

The experiment focuses on the coordination of multiple agents to perform peak shaving.

The reward learned by the model for this experiment is the joint profit of the three agent’s

activities. Each agent gets a profit as described in equation (4.2) from its discharging

activities. The total reward is shown in figure (4.5), and the average peak shave is shown

in figure (4.6). The result of the trained model for an example day in the validation set is

shown in figure (4.7). The results of the experiment prove that the models optimize the

discharging scheduling and the trained model provides optimal results with coordination.

The reward figure demonstrates that the model is learning based on the designed reward

function; the peak shave figure shows the model’s enhancement during the training phase

optimized agents’ discharging policy. The agent’s trained model does not require other

agents’ information, and thus they are distributed executable.

4.3.2 Experiments on scheduling both charging and discharging

The discharging scheduling is the most important in energy arbitrage. Currently, these

DERs charges are performed at night when there is less demand. But this can also

pose a problem with the increase in DER and hence, create demand if the charging

is performed simultaneously. The proposed model can take care of that. The model

generates the charging and discharging schedules for each DER. Figure (4.8) shows

the model predictions for charging and discharging to maintain a stable load. The

experiment is training five charging scheduling models with the same power and battery

capacity as discharging devices. The reward learned by the charging scheduling model

is negative to the discharging models. The observed results prove that the system can

effectively generate charging and discharging schedules.

Symbols 52

Figure 4.5: Reward for each training epoch of Experiment on shared reward function

4.4 Time Complexity Experiment

The time complexity analysis of artificial intelligence models differs from traditional

algorithms. The time complexity of an artificial intelligence model has two components:

training time and inference time. Training time is the time required to train a model in

order to achieve desired results. Inference time is the time taken by the model to process

the input and produce an output. The time complexity analysis of artificial intelligence

algorithms is less critical than traditional ones since the training phase’s time difference

does not affect the actual application. Training time is subjective to many parameters,

for example, training data size, model complexity, and desired results. However, it is

still meaningful to analyze the time complexity of artificial intelligence algorithms. The

training dataset usually contains a large amount of data; the time complexity of artificial

intelligence should be less than O(n2) to avoid exponential time growth. In the time

complexity analysis, we focus on the relationship of actual time taken in the training

phase. The time of each experiment is recorded on the same machine with Intel(R)

Core(TM) i7-6700 CPU 3.40 GHz, 16GB RAM, and Radeon (TM) RX 480 GPU. The

objective of the following experiment is to prove that the model’s training time will not

Symbols 53

Figure 4.6: Peak Shave for each training epoch of Experiment on shared reward
function

grow exponentially with linearly increasing training data or other possible changes in

the model structure.

4.4.1 Training Time and Agent Sizes

The objective of this experiment is to analyze the relationship between training time

and agent size. The agent size represents the number of DERs in the system. Figure

(4.9) exhibits a linear relationship between the training time and the size of the agents

in the model. Hence, we can conclude that the time complexity is O(n).

4.4.2 Training Time and Action space

This experiment analyzes the relationship between training time and the resolution of

action space. The discharge recommendation system provides an action to agents. The

action is allocated from the provided action space. The action space in our model is the

available discharging times. The resolution of action space decides the performance of

Symbols 54

Figure 4.7: Example day in validation set

discharging effectiveness of the system. The higher the resolution is, the granular the

action space, and hence, the system could provide more precise discharging scheduling.

For example, if the resolution is one hour, the system could only suggest DER discharge

on the hour (such as 15:00), and the action space will be 24 for a day. If the resolution

is five minutes, the system could suggest DER discharge at each five-minute interval

(such as 15:05), and the action space will be 288 actions for a day. Due to the limitation

of the recorded power consumption data from the smart grid provider, the resolution

space is always discrete. In our experiment, the recorded power consumption data is

in five minutes intervals. Therefore, we tested from five minutes to one hour of action

space resolution. Figure (4.10) shows that there is a linear relationship between the

action space and training time. Based on our results, we can conclude that the trade-off

between the action space and training time is not significant. Therefore, a larger action

space should be used for higher precision. That is because the action space resolution

change only affects the dense layer of the neural network model. There are still immense

calculations needed for the hidden layers. In conclusion, only decreasing the resolution

of action space is not optimal for speeding up the training time.

Symbols 55

Figure 4.8: Example day of both discharging and charging scheduling

Figure 4.9: Relationship between Training time and Agent size

Symbols 56

Figure 4.10: Relationship between training time and action space

4.4.3 Effect of Exploration rates

To achieve the desired goals, reinforcement learning agents use two methods: Exploration

and Exploitation. In the exploration phase, the agent explores new actions and the

rewards for a given state. Whereas in the exploitation phase, the agent makes decisions

using the previous knowledge. For an agent to maximize the reward function, it performs

heavy exploration in the initial iterations for the agent to explore the best actions at

every given stage and to achieve the maximum reward. The exploration rate represents

the probability of our agent exploring the environment. During the training phase

of the agents, the exploration rate is initialized as 1 to perform exploration. To use

the best actions explored in the initial iterations, the exploration rate is reduced by a

decay function ε. Therefore over time, the model uses exploitation over exploration to

maximize the reward.

Figure (4.11) shows the effect of different exploration rates on the model.

Based on our results, we can conclude that using a smaller value of ε can help the model

converge earlier and hence useless epochs. The value of ε has to be adjusted based on

the action space. Based on our earlier experiment (4.4.2), we can conclude that the

training time can further be reduced for a larger action space by choosing an optimal ε

value.

Symbols 57

Figure 4.11: Average Peak Shave using different Exploration Rates

4.4.3.1 Serial and Parallel Programming

The training and inference of agents can be sped up using parallel programming. Using

multi-core to improve program performance usually requires some processing of compu-

tationally intensive code. The process includes the following three steps. First, divide

the code into blocks. Second, execute these code blocks in parallel through multiple

threads. After the results become available, integrate these results in a thread-safe and

high-performance manner. There is a challenge that when multiple threads use the same

data simultaneously, the common strategy of locking for thread safety considerations will

cause competition. As shown in the algorithm (3), model execution and training are

executed in parallel. In each simulated day, the random sampling action for each agent

are isolated from each other; however, the calculation of reward need to wait until every

agent selects its action. The model’s training for each agent’s after-action reward is

calculated and can also be executed parallelly.

Figure (4.12) presents a comparison of training time between serial programming and

parallel programming. The application of parallel programming can speed up the train-

ing phase remarkably.

Symbols 58

Algorithm 3 Training Phase with parallel programming

1: Initializing learning rate parameters α and β
2: Initializing θi and wi for each agent
3: Initializing minimum exploring rate and epsilon decay ε
4: for each epoch do
5: for each day d in the training set do
6: for each agent i ∈ N do
7: Observe the state s
8: Randomly sample action a according to πi(s, θi)

 in parallel
9: Perform a for each agent

10: end for
11: Wait until all parallel process done
12: Calculate the reward Rd based on joint actions
13: for each agent i ∈ N do
14: update wi using temporal difference
15: update θi using policy gradient

}
in parallel

16: end for
17: Wait until all models updated
18: end for
19: end for

Figure 4.12: Comparison of training time between Serial and Parallel programming

4.5 Limitation

Due to the limited variability of the dataset used in the training process, the proposed

model fails to detect the peaks occurring in the morning. This happens because the

model is trained on a heavily biased dataset where the peaks only occur in the evening

and hence only focus on that time frame. Figure (4.13) shows the example in which there

Symbols 59

are two peaks, morning and evening. Even though the morning peak is more beneficial

for shaving, the model chooses the evening peak due to its biased nature. In the future,

this problem can be resolved by an assessment mechanism that can help detect the more

valuable peak to shave in case of limited DER or utilize the available resources effectively

to shave the two peaks instead of opting for the more valuable peak.

Figure 4.13: Example day in validation set : discharging scheduling with highest
peak not in available discharging period

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we present an image processing technique to analyze power consumption

curves and make enhanced peak predictions during shoulder season. We proved that the

pattern of the daily consumption graph in a smaller residential area could be clustered,

and days in similar patterns have a stronger correlation. We also proposed a dynamic

weighting and majority voting mechanism to improve the ensemble system’s performance

further. The system enhances the demand response planning during the shoulder season

and increases peak load period prediction accuracy. On the other hand, we still need to

exterminate if image-based processing could apply to other locations. We also proposed

a MARL model for day-ahead DER discharging scheduling to peak shaving the daily

consumption curve. The above experiments prove that the MARL model could optimize

day-ahead scheduling for DER. The experiments demonstrate that agents could coordi-

nate with each other in the executed phase without communication to maximize the daily

peak shaving. Unlike traditional DER charging or discharging scheduler, the distributed

execution does not need a collection of discharging times of DER in a centralized server.

The DER owner data privacy is highly improved in the proposed system. Data privacy

security will increase general customers’ interest in enrolling in energy arbitrage since

people are becoming increasingly concerned about data privacy. Besides, the distributed

execution increases the robustness of networking since each DER agent connects to their

local trained model. This thesis also analyzes time complexity that demonstrates that

the model training time will not exponentially increase with a massive number of DER

installed in the peak shaving scheduling system. The analysis also includes the potential

speed-up of training time and the efficient trade-off between training speed and model

performance.

60

Symbols 61

5.1.1 Future Work

In this section, we present the future extension of this work with the improvement of

model performance.

1. The image processing system uses a pre-trained convolution neural network and

k-means clustering. Collecting different datasets will solve the shortage of daily

power consumption images. Instead of using transfer learning models, a future di-

rection would be to train a daily consumption pattern classification model with an

extensive database. During the database extension, we could unfreeze layers of the

current pre-trained model and retrain it with labelled images. Once we get enough

variety of labelled daily power consumption images, we could build an optimized

image processing model to cluster all types of daily power consumption images.

The challenges of this task include the difficulty of collecting other datasets and

labelling the daily images. The power consumption data is private for each energy

company; data collection requires further cooperation from other companies. The

labelled images could be done with the current model or manually labelled by an

expert electrical engineer.

2. We also need more experiments to study the effect of the image-based processing

technique on the prediction model accuracy. Future work would collect more

power consumption data from more geographical locations and data from other

non-residential areas such as schools or industries. After collecting extra data, we

could analyze if the image-based processing technique is a universal solution for

optimizing prediction model performance.

3. Our current work assumes that agents are trained using a centralized approach. A

future direction would be to consider federal learning. The application of federal

learning will assist the model in creating an average of all existing models for

the newly installed agents and keep training distributed during the daily task,

eventually becoming an optimal model in the multi-agent system. The application

of distributed training phase will highly increase the chances of convincing new

DER owners to enroll in the energy arbitrage and future model updating.

4. Another future work is the assumption that every DER agent will perform a dis-

charging per day. We need future research on the damage of discharging to DER

batteries’ life. The current system design only schedules one discharging task for

all DER per day to save the battery’s life. In the future, we could train the MARL

models with a reward function considering the damage to the batteries; then, the

model can suggest multiple discharging schedules a day with a reasonable calcula-

tion of the cost of batteries and save on peak shave. In addition, sometimes, not all

Symbols 62

DER discharging will benefit the peak shaving. The increasing number of DERs

in the system will lead to part of DERs discharging unnecessary and wasted on

certain days. There is a threshold when parts of DER discharging already flatten

the peak, then the rest of the discharging activities will become inefficient. The

challenge is the design of reward functions needs to consider the cost of batteries

discharging financially.

Appendix A

Prototype of Real-life

Implementation at Synergy North

The following are the screenshots of the prototype that we have developed and imple-

mented in real-life at the industry partner Synergy North.

Figure A.1: User interface of simple mode

Figure (A.1) shows the landing page of the system where the user can select the electric

feed system, upload the dataset for the specific forecasting day. The result shows the

final prediction for the day-ahead and gives the user the predicted highest peak time,

the actual peak time, and the difference in time between them.

63

Symbols 64

Figure A.2: User interface of detailed mode

Figure (A.2) provides the user with details about the prediction models used in the

ensemble. The user can try to check the performance of each prediction algorithm in

comparison with others.

Figure A.3: User interface of monthly report simple mode

Figure (A.3) presents the monthly power prediction including a average peak shave. The

figure also provide a suggest discharging period and charging period. The Figure (A.4)

show the interface for the detailed monthly prediction for each algorithm.

Figure (A.5) is the user interface of the day-ahead scheduling from MARL models. This

interface can be accessed from the interface in Figure (A.4). This interface allows the

user to enter a date/time, the number of agents they want in the system, and the

Symbols 65

Figure A.4: User interface of monthly report detailed mode

Figure A.5: User interface of daily discharging scheduling

configurations of DERs, including discharging time and battery capacity. Figure (A.5)

shows the daily discharging simulation.

Figure (A.6) presents the monthly peak shaving results based on the configuration on

the left slide bars. The figure updates itself when the user changing the configurations

of DERs.

Figure (A.7) is the interface of Accumulative Daily Peak Shaving. This interface allows

the user to select agent number, provides a graph of the effect on peak shaving for each

agent. Figure (A.8) is a continuation of Figure (A.7) which presents the expected peak

shaving increase for each added agent in the system.

Symbols 66

Figure A.6: User interface of expected monthly peak shaving

Figure A.7: User interface of Accumulative Daily Peak Shaving Using Multiple EVs

Figure (A.9) shows the accumulative monthly peak shaving for each added agent. The

monthly peak shaving is calculated by the sum of every daily peak shaving.

Symbols 67

Figure A.8: User interface of Accumulative Daily Peak Shaving Using Multiple
EVs(continue)

Figure A.9: User interface of Accumulative Monthly Peak Shaving Using Multiple
EVs

Bibliography

[1] W. Zhong, R. Yu, S. Xie, Y. Zhang and D. K. Y. Yau, ”On Stability and Robustness

of Demand Response in V2G Mobile Energy Networks,” in IEEE Transactions on

Smart Grid, vol. 9, no. 4, pp. 3203-3212, July 2018.

[2] O. Erdinc, N. G. Paterakis, T. D. P. Mendes, A. G. Bakirtzis and J. P. S. CatalÃ£o,

”Smart Household Operation Considering Bi-Directional EV and ESS Utilization

by Real-Time Pricing-Based DR,” in IEEE Transactions on Smart Grid, vol. 6, no.

3, pp. 1281-1291, May 2015.

[3] K. Mets, T. Verschueren, W. Haerick, C. Develder and F. De Turck, ”Optimizing

smart energy control strategies for plug-in hybrid electric vehicle charging,” 2010

IEEE/IFIP Network Operations and Management Symposium Workshops, Osaka,

2010, pp. 293-299.

[4] Saxena, Harshit, ”Forecasting Strategies for Predicting Peak Electric Load Days”

(2017). Thesis. Rochester Institute of Technology.

[5] A. Yassine, ”Implementation challenges of automatic demand response for house-

holds in smart grids” 2016 3rd International Conference on Renewable Energies for

Developing Countries (REDEC), Zouk Mosbeh, 2016, pp. 1-6.

[6] Krzysztof Gajowniczek and Tomasz Z abkowski. Two-Stage Electricity Demand

Modeling Using Machine Learning Algorithms.Department of Informatics, Fac-

ulty of Applied Informatics and Mathematics, Warsaw University of Life Sciences,

Nowoursynowska 159, 02-787 Warsaw, Poland. Energies 2017, 10(10), 1547.

[7] Jui-Sheng Choua, Ngoc-Son Truonga. Cloud forecasting system

for monitoring and alerting of energy use by home appliances.

Applied Energy Volume 249, 1 September 2019, Pages 166-17.

https://www.sciencedirect.com/science/article/abs/pii/S0306261919307

10X?via=ihub

[8] S. Singh, A. Yassine and R. Benlamri. ”Towards Hybrid Energy Consumption Pre-

diction in Smart Grids with Machine Learning.” 2018 4th International Conference

68

Symbols 69

on Big Data Innovations and Applications (Innovate-Data), Barcelona, 2018, pp.

44-50.

[9] S. Rinchen, A. Yassine, K. Schwartzentruber, H. Ahmed and A. Armitage, ”In-

tegrating Small Scale Green Energy into Smart Grids: Prediction for Peak Load

Reduction,” 2018 International Conference on Computer and Applications (ICCA),

Beirut, 2018, pp. 104-109.

[10] Fahad, M.U.; Arbab, N. Factor Affecting Short Term Load Forecasting. J. Clean

Energy Technol. 2014, 2, 305-309.

[11] A. Tittaferrante and A. Yassine, ”Multi-Advisor Reinforcement Learning for Multi-

Agent Multi-Objective Smart Home Energy Control,” in IEEE Transactions on

Artificial Intelligence, doi: 10.1109/TAI.2021.3125918.

[12] N. Sadeghianpourhamami, J. Deleu and C. Develder, ”Definition and Evaluation of

Model-Free Coordination of Electrical Vehicle Charging With Reinforcement Learn-

ing,” in IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 203-214, Jan. 2020,

doi: 10.1109/TSG.2019.2920320.

[13] F. L. D. Silva, C. E. H. Nishida, D. M. Roijers and A. H. R. Costa, ”Coordina-

tion of Electric Vehicle Charging Through Multiagent Reinforcement Learning,” in

IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2347-2356, May 2020, doi:

10.1109/TSG.2019.2952331.

[14] T. Qian, C. Shao, X. Wang and M. Shahidehpour, ”Deep Reinforcement Learning

for EV Charging Navigation by Coordinating Smart Grid and Intelligent Trans-

portation System,” in IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1714-

1723, March 2020, doi: 10.1109/TSG.2019.2942593.

[15] JR. Vazquez-Canteli JR, Z. Nagy. Reinforcement learning for demand response: A

review of algorithms and modeling techniques. Applied Energy 2018;1072â89

[16] S. Vandael, B. Claessens, D. Ernst, T. Holvoet, and G. Deconinck,”Reinforcement

learning of heuristic ev fleet charging in a day-ahead electricity market,” IEEE

Transactions on Smart Grid, vol. 6, no. 4, pp.1795-1805, July 2015.

[17] F. Tuchnitz, N. Ebell, J. Schlund, M. Pruckner. Development and Evaluation of

a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement

Learning. Applied Energy Volume 285, 1 March 2021, 116382

[18] I. Grondman, L. Busoniu, G. A. D. Lopes and R. Babuska, ”A Survey

of Actor-Critic Reinforcement Learning: Standard and Natural Policy Gra-

dients,” in IEEE Transactions on Systems, Man, and Cybernetics, Part C

Symbols 70

(Applications and Reviews), vol. 42, no. 6, pp. 1291-1307, Nov. 2012, doi:

10.1109/TSMCC.2012.2218595.

[19] S. Singh, A. Yassine and R. Benlamri, ”Consumer Segmentation: Improving Energy

Demand Management through Households Socio-Analytics,” 2019 IEEE Intl Conf

on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelli-

gence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on

Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),

Fukuoka, Japan, 2019, pp. 1038-1045.

[20] McLaren, Joyce A, Gagnon, Pieter J, and Mullendore, Seth. Identifying Potential

Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand

Charges. United States: N. p., 2017. Web.

[21] Stephen Haben, Colin Singleton, and Peter Grindrod. Analysis and Clustering

of Residential Customers Energy Behavioral Demand Using Smart Meter Data.

IEEE TRANSACTIONS ON SMART GRID, VOL. 7, NO. 1, JANUARY 2016

https://ieeexplore.ieee.org/abstract/document/7063233.

[22] K. Tokuda, S. Matsumoto and M. Nakamura, ”Implementing a mobile application

for spontaneous peak shaving of home electricity,” 2013 IEEE 9th International

Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob), 2013, pp. 273-278, doi: 10.1109/WiMOB.2013.6673372.

[23] S. Park and W. -K. Park, ”CES peak demand shaving with energy storage system,”

2017 International Conference on Information and Communication Technology Con-

vergence (ICTC), 2017, pp. 1124-1126, doi: 10.1109/ICTC.2017.8190874.

[24] X. Gong, E. Castillo-Guerra, J. L. Cardenas-Barrera, B. Cao, S. A. Saleh and L.

Chang, ”Robust Hierarchical Control Mechanism for Aggregated Thermostatically

Controlled Loads,” in IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 453-467,

Jan. 2021, doi: 10.1109/TSG.2020.3009989.

[25] H. Mortaji, S. H. Ow, M. Moghavvemi and H. A. F. Almurib, ”Load Shedding

and Smart-Direct Load Control Using Internet of Things in Smart Grid Demand

Response Management,” in IEEE Transactions on Industry Applications, vol. 53,

no. 6, pp. 5155-5163, Nov.-Dec. 2017, doi: 10.1109/TIA.2017.2740832.

[26] K. Mongird, V. Viswanathan, J. Alam, C. Vartanian, V. Sprenkle, R. ”2020

grid energy storage technology cost and performance assessment”, Publication No.

DOE/PA-0204, Dec. 2020

[27] C. Liu, K. T. Chau, D. Wu and S. Gao, ”Opportunities and Challenges

of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies,” in

Symbols 71

Proceedings of the IEEE, vol. 101, no. 11, pp. 2409-2427, Nov. 2013, doi:

10.1109/JPROC.2013.2271951.

[28] J. Yusuf, A. S. M. J. Hasan and S. Ula, ”Impacts Analysis & Field Implementation

of Plug-in Electric Vehicles Participation in Demand Response and Critical Peak

Pricing for Commercial Buildings,” 2021 IEEE Texas Power and Energy Conference

(TPEC), 2021, pp. 1-6

[29] Chenxiao Guan, Y. Wang, Xue Lin, S. Nazarian and M. Pedram, ”Reinforcement

learning-based control of residential energy storage systems for electric bill min-

imization,” 2015 12th Annual IEEE Consumer Communications and Networking

Conference (CCNC), 2015, pp. 637-642, doi: 10.1109/CCNC.2015.7158054.

[30] H. Xu, W. Kuang, J. Lu and Q. Hu, ”A Modified Incentive-based Demand Re-

sponse Model using Deep Reinforcement Learning,” 2020 12th IEEE PES Asia-

Pacific Power and Energy Engineering Conference (APPEEC), 2020, pp. 1-5, doi:

10.1109/APPEEC48164.2020.9220364.

[31] O’Neill, Daniel, et al. ”Residential demand response using reinforcement learning.”

2010 First IEEE international conference on smart grid communications. IEEE,

2010.

[32] Silva, V.A.; Aoki, A.R.; Lambert-Torres, G. Optimal Day-Ahead Scheduling

of Microgrids with Battery Energy Storage System. Energies 2020, 13, 5188.

https://doi.org/10.3390/en13195188

[33] E. Foruzan, L. Soh and S. Asgarpoor, ”Reinforcement Learning Approach for

Optimal Distributed Energy Management in a Microgrid,” in IEEE Transactions

on Power Systems, vol. 33, no. 5, pp. 5749-5758, Sept. 2018, doi: 10.1109/TP-

WRS.2018.2823641.

[34] X. Xu, Y. Jia, Y. Xu, Z. Xu, S. Chai and C. S. Lai, ”A Multi-Agent Rein-

forcement Learning-Based Data-Driven Method for Home Energy Management,”

in IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3201-3211, July 2020, doi:

10.1109/TSG.2020.2971427.

[35] S. S. Reka, P. Venugopal, H. H. Alhelou, P. Siano and M. E. H. Golshan, ”Real Time

Demand Response Modeling for Residential Consumers in Smart Grid Considering

Renewable Energy With Deep Learning Approach,” in IEEE Access, vol. 9, pp.

56551-56562, 2021, doi: 10.1109/ACCESS.2021.3071993.

Symbols 72

[36] A. Joshi, H. Kebriaei, V. Mariani and L. Glielmo, ”Decentralized Control of Resi-

dential Energy Storage System for Community Peak Shaving: A Constrained Ag-

gregative Game,” 2021 IEEE Madrid PowerTech, 2021, pp. 1-6, doi: 10.1109/Pow-

erTech46648.2021.9495052.

[37] D. Kaur, R. Kumar, N. Kumar and M. Guizani, ”Smart Grid Energy Manage-

ment Using RNN-LSTM: A Deep Learning-Based Approach,” 2019 IEEE Global

Communications Conference (GLOBECOM), 2019, pp. 1-6, doi: 10.1109/GLOBE-

COM38437.2019.9013850.

[38] Li, Y., Gao, W., & Ruan, Y. (2018, April 26). Performance

investigation of grid-connected residential PV-battery system focus-

ing on enhancing self-consumption and peak shaving in Kyushu,

Japan. Renewable Energy. Retrieved December 18, 2021, from

https://www.sciencedirect.com/science/article/pii/S0960148118304920

[39] Pimm, A. J., Cockerill, T. T., & Taylor, P. G. (2018, February 9). The

potential for peak shaving on low voltage distribution networks using electric-

ity storage. Journal of Energy Storage. Retrieved December 18, 2021, from

https://www.sciencedirect.com/science/article/pii/S2352152X17305601

[40] K. Kaur, A. Dua, A. Jindal, N. Kumar, M. Singh and A. Vinel, ”A Novel Resource

Reservation Scheme for Mobile PHEVs in V2G Environment Using Game Theoret-

ical Approach,” in IEEE Transactions on Vehicular Technology, vol. 64, no. 12, pp.

5653-5666, Dec. 2015, doi: 10.1109/TVT.2015.2482462.

[41] Reddy, T. A., Norford, L. K., & Kempton, W. (2003, August

11). Shaving residential air-conditioner electricity peaks by intelligent use

of the building thermal mass. Energy. Retrieved December 18, 2021, from

https://www.sciencedirect.com/science/article/abs/pii/036054429190060Y

[42] J. Dong, A. Yassine and A. Armitage, ”Image-based with Peak Load Ensemble

Prediction System for Demand Response in Smart Grid,” 2021 International Sym-

posium on Networks, Computers and Communications (ISNCC), 2021, pp. 1-6, doi:

10.1109/ISNCC52172.2021.9615837.

[43] J. Dong, A. Yassine and A. Armitage, ”Image-Based Processing Mechanism for

Peak Load Forecasting in Smart Grids,” 2020 IEEE 8th International Conference

on Smart Energy Grid Engineering (SEGE), 2020, pp. 64-69,

[44] T. Hong, P. Pinson, and S. Fan, ”Global energy forecasting competition 2012,” Int.

J. Forecast., vol. 30, no. 2, pp. 357-363, 2014.

Symbols 73

[45] A. Goia, C. May, and G. Fusai, ”Functional clustering and linear regression for

peak load forecasting,” Int. J. Forecast., vol. 26, no. 4, pp. 700-711, 2010.

[46] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series

Analysis and Forecasting. Somerset, US: Wiley, 2011.

[47] R. Ngabesong and L. McLauchlan, ”Implementing ”R” Programming for Time Se-

ries Analysis and Forecasting of Electricity Demand for Texas, USA,” 2019 IEEE

Green Technologies Conference(GreenTech), 2019, pp. 1-4, doi: 10.1109/Green-

Tech.2019.8767131.

[48] H. Huang, Y. Cai, H. Xu and H. Yu, ”A Multiagent Minority-Game-Based Demand-

Response Management of Smart Buildings Toward Peak Load Reduction,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

36, no. 4, pp. 573-585, April 2017.

[49] L. Barbierato et al., ”A Distributed IoT Infrastructure to Test and Deploy Real-

Time Demand Response in Smart Grids,” in IEEE Internet of Things Journal, vol.

6, no. 1, pp. 1136-1146, Feb. 2019.

[50] A. Yassine, S. Singh and A. Alamri, ”Mining Human Activity Patterns From Smart

Home Big Data for Health Care Applications,” in IEEE Access, vol. 5, pp. 13131-

13141, 2017.

[51] Singh S., Yassine A. Big data mining of energy time series for behavioral analytics

and energy consumption forecasting Energies, 11 (2018), p. 452

[52] S. Singh and A. Yassine, ”Mining Energy Consumption Behavior Patterns for

Households in Smart Grid,” in IEEE Transactions on Emerging Topics in Comput-

ing, vol. 7, no. 3, pp. 404-419, 1 July-Sept. 2019.

[53] K. Simonyan and A. Zisserman, ”Very Deep Convolutional Networks for Large-

Scale Image Recognition.” Retrieved from https://arxiv.org/abs/1409.1556 ,2015,

April 10.

[54] Zhang, W., Liu, H., Wang, F., Xu, T., Xin, H., Dou, D., & Xiong, H. (2021). Intel-

ligent electric vehicle charging recommendation based on multi-agent reinforcement

learning. In The Web Conference 2021 - Proceedings of the World Wide Web Con-

ference, WWW 2021 (pp. 1856-1867). (The Web Conference 2021 - Proceedings of

the World Wide Web Conference, WWW 2021). Association for Computing Ma-

chinery, Inc. https://doi.org/10.1145/3442381.3449934

[55] Kaiqing Zhang, Zhuoran Yang, Tamer Basar. Multi-Agent Reinforcement Learning:

A Selective Overview of Theories and Algorithms, arXiv:1911.10635.

Symbols 74

[56] Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement learning.

Vol. 135. Cambridge: MIT press, 1998.

[57] Sutton, Richard S.. ”Learning to Predict by the Methods of Temporal Differences.”

Machine Learning 3 (2005): 9-44.

[58] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279?292, 1992.

[59] Gerald Tesauro. Temporal difference learning and td-gammon. Communications of

the ACM,38(3):58?68, 1995.

[60] Tsitsiklis J N, Van R B. An analysis of temporal-difference learning with function

approximation. IEEE Transactions on Automatic Control, 1997, 42(5): 674-690

[61] Brian Sallans and Geoffrey E. Hinton. Reinforcement learning with factored states

and actions. Journal of Machine Learning Research, 5:1063?1088, 2004.

[62] Nicolas Heess, David Silver, and Yee Whye Teh. Actor-critic reinforcement learning

with energy-based policies. In EuropeanWorkshop on Reinforcement Learning, page

43, 2012.

[63] Riedmiller M. Neural fitted q iteration-first experiences with a data efficient neural

reinforcement learning method. Proceedings of the Conference on Machine Learn-

ing. Berlin, German, 2005: 317-328

[64] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks in re-

inforcement learning. In Neural Networks (IJCNN), The 2010 International Joint

Conference on, pages 1?8. IEEE, 2010.

[65] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical

report, DTIC Document, 1993.

[66] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou. Playing Atari with Deep Reinforcement Learning. NIPS 2013.

[67] Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning.

Nature. 518 (7540): 529-533, 2015.

[68] Van H V, Guez A, Silver D. Deep reinforcement learning with double q-learning.

Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016:

2094-2100.

[69] Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. Proceedings

of the 4th International Conference on Learning Representations. San Juan, Puerto

Rico, 2016:322-355.

Symbols 75

[70] Wang Z, Freitas N D, Lanctot M. Dueling network architectures for deep reinforce-

ment learning. Proceedings of the International Conference on Machine Learning.

New York, USA, 2016: 1995-2003.

[71] Hausknecht M, Stone P. Deep recurrent q-learning for partially observable MDPs.

arXiv preprint arXiv:1507.06527, 2015.

[72] A. Abdulaal, M. H. Cintuglu, S. Asfour and O. A. Mohammed, ”Solving the Mul-

tivariant EV Routing Problem Incorporating V2G and G2V Options,” in IEEE

Transactions on Transportation Electrification, vol. 3, no. 1, pp. 238-248, March

2017, doi: 10.1109/TTE.2016.2614385.

[73] H. Yang, Y. Deng, J. Qiu, M. Li, M. Lai and Z. Y. Dong, ”Electric Vehicle Route

Selection and Charging Navigation Strategy Based on Crowd Sensing,” in IEEE

Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2214-2226, Oct. 2017,

doi: 10.1109/TII.2017.2682960.

[74] Egorov, Maxim. ”Multi-agent deep reinforcement learning.” CS231n: convolutional

neural networks for visual recognition (2016): 1-8.

[75] Solan, Eilon, and Nicolas Vieille. ”Stochastic games.” Proceedings of the National

Academy of Sciences of the United States of America vol. 112,45 (2015): 13743-6.

doi:10.1073/pnas.1513508112

[76] Busoniu L., Babuska R., De Schutter B. (2010) Multi-agent Reinforcement Learn-

ing: An Overview. In: Srinivasan D., Jain L.C. (eds) Innovations in Multi-Agent

Systems and Applications - 1. Studies in Computational Intelligence, vol 310.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14435-67

[77] Wang, Ying, and Clarence W. De Silva. ”Multi-robot box-pushing: Single-agent

q-learning vs. team q-learning.” 2006 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems. IEEE, 2006.

[78] H. Zhang, H. Jiang, Y. Luo and G. Xiao, ”Data-Driven Optimal Consensus Control

for Discrete-Time Multi-Agent Systems With Unknown Dynamics Using Reinforce-

ment Learning Method,” in IEEE Transactions on Industrial Electronics, vol. 64,

no. 5, pp. 4091-4100, May 2017, doi: 10.1109/TIE.2016.2542134.

[79] Galindo-Serrano, Ana, and Lorenza Giupponi. ”Distributed Q-learning for aggre-

gated interference control in cognitive radio networks.” IEEE Transactions on Ve-

hicular Technology 59.4 (2010): 1823-1834.

[80] Littman, Michael L. ”Markov games as a framework for multi-agent reinforcement

learning.” Machine learning proceedings 1994. Morgan Kaufmann, 1994. 157-163.

Symbols 76

[81] Hu, Junling, and Michael P. Wellman. ”Nash Q-learning for general-sum stochastic

games.” Journal of machine learning research 4.Nov (2003): 1039-1069.

[82] Greenwald, Amy, Keith Hall, and Roberto Serrano. ”Correlated Q-learning.” ICML.

Vol. 3. 2003.

[83] Littman, Michael L. ”Friend-or-foe Q-learning in general-sum games.” ICML. Vol.

1. 2001.

[84] Lowe, Ryan, et al. ”Multi-agent actor-critic for mixed cooperative-competitive en-

vironments.” Advances in neural information processing systems 30 (2017).

[85] Wang, Y. Witten, I. H. (1996). Induction of model trees for predicting continuous

classes. (Working paper 96/23). Hamilton, New Zealand: University of Waikato,

Department of Computer Science.

[86] Chen, Tianqi, and Carlos Guestrin. ”Xgboost: A scalable tree boosting system.”

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining. 2016.

[87] Kuhn, Max, et al. ”Cubist models for regression.” R package Vignette R package

version 0.0 18 (2012): 480.

[88] Svozil, Daniel, Vladimir Kvasnicka, and Jiri Pospichal. ”Introduction to multi-layer

feed-forward neural networks.” Chemometrics and intelligent laboratory systems

39.1 (1997): 43-62.

[89] Hochreiter, Sepp, and JÃ¼rgen Schmidhuber. ”Long short-term memory.” Neural

computation 9.8 (1997): 1735-1780.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Introduction
	1.2 Technical Challenges
	1.3 Research Approach
	1.4 Contribution
	1.5 Publications
	1.6 Organization

	2 Background, Related Work and Proposed Model
	2.1 Energy Arbitrage and Forecasting Models
	2.2 Reinforcement Learning - a Brief Background
	2.2.1 Multi-agent Reinforcement Learning

	2.3 RL in Distributed Energy Resource Management
	2.4 Overall Proposed System Model Architecture
	2.4.1 Prediction system
	2.4.2 MARL

	3 Image-based with Peak Load Ensemble Prediction System for Demand Response in Smart Grid
	3.1 Introduction
	3.2 System Model
	3.2.1 Weather Data Processing
	3.2.2 Phase 1: Classification
	3.2.3 Phase 2: Ensemble Prediction Model
	3.2.3.1 Random Forest
	3.2.3.2 XGBoost
	3.2.3.3 Cubist
	3.2.3.4 Feedforward Neural Network
	3.2.3.5 Long-Short Term Memory

	3.2.4 Phase 3: Dynamic Weight Calculation

	3.3 Experimental setup
	3.4 Analysis of Results
	3.5 Discussion

	4 Multi-agent Reinforcement Learning for DER Discharging Scheduling
	4.1 Introduction
	4.2 System model
	4.2.1 Environment Design
	4.2.2 Markov Decision Process
	4.2.3 Algorithm Learning Design
	4.2.4 Value neural network
	4.2.5 Policy neural network

	4.3 Experiment and Results
	4.3.1 Experiment on shared reward function
	4.3.2 Experiments on scheduling both charging and discharging

	4.4 Time Complexity Experiment
	4.4.1 Training Time and Agent Sizes
	4.4.2 Training Time and Action space
	4.4.3 Effect of Exploration rates
	4.4.3.1 Serial and Parallel Programming

	4.5 Limitation

	5 Conclusions and Future Work
	5.1 Conclusions
	5.1.1 Future Work

	A Prototype of Real-life Implementation at Synergy North
	Bibliography

