
Lightweight Deep Learning for Monocular Depth
Estimation

by

Tim Heydrich

Lakehead University

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

©Copyright 2021 by Tim Heydrich

Lakehead University

Thunder Bay, Ontario, Canada

ii

Lightweight Deep Learning for Monocular Depth
Estimation

by

Tim Heydrich

Lakehead University

Supervisory Committee

Dr. Shan Du, Supervisor

(Department of Computer Science, Mathematics, Physics and Statistics, The Univer-

sity of British Columbia Okanagan, Canada)

Dr. Yimin Yang, Co-Supervisor

(Department of Computer Science, Lakehead University, ON, Canada)

Amin Safaei, Departmental Member

(Department of Computer Science, Lakehead University, ON, Canada)

Dr. Thangarajah Akilan , External Member

(Department of Software Engineering, , Lakehead University, ON, Canada)

iii

ABSTRACT

Monocular depth estimation is a challenging but significant part of computer

vision with many applications in other areas of study. This estimation method aims to

provide a relative depth prediction for a single input image. In the past, conventional

methods have been able to give rough depth estimations however their accuracies were

not sufficient. In recent years, due to the rise of deep convolutional neural networks

(DCNNs), the accuracy of the depth estimations has increased. However, DCNNs do

so at the expense of compute resources and time. This leads to the need for more

lightweight solutions for the task.

In this thesis, we use recent advances made in lightweight network design to reduce

complexity. Furthermore, we use conventional methods to increase the performance

of lightweight networks. Specifically, we propose a novel lightweight network architec-

ture which has a significantly reduced complexity compared to current methods while

still maintaining a competitive accuracy. We propose an encoder-decoder architecture

that utilizes DiCE units [47] to reduce the complexity of the encoder. In addition, we

utilize a custom designed decoder based on depthwise-separable convolutions. Fur-

thermore, we propose a novel lightweight self-supervised training framework which

leverages conventional methods to remove the need for pose estimation that current

self-supervised methods have. Similar to current unsupervised and self-supervised

methods, out method needs a pair of stereo images during training. However, we

take advantage of this need to compute a ground truth approximation. Doing this

we are able to eliminate the need for pose estimation that other self-supervised ap-

proaches have. Both our lightweight network and our self-supervised framework re-

duce the size and complexity of current state-of-the-art methods while maintaining

competitive results in their respective areas.

iv

ACKNOWLEDGEMENTS

“Knowing where you came from is no less important than knowing where you are

going.”

[62]

- Neil DeGrasse Tyson

I would like to express my sincerest thanks and gratitude to the following people:

First of all, my supervisor Dr. Shan Du, for her knowledge, patience and guidance

through my Master’s. She provided me with the opportunity to explore my own re-

search interests and always showed great interest in my work. I will always appreciate

the constructive suggestions she provided me with and her continued support. Her

immense knowledge and insights helped me overcome any difficulties I faced. I am

truly privileged to have studied under her excellent supervision.

My co-supervisor, Dr. Yimin Yang, for his support and suggestions during my

Master’s study. He gave me the knowledge and tools to excel and improve my under-

standing of deep learning. I am thankful to have been his student and to have had

him as my co-supervisor.

I would also like to thank my family and friends for their continued love and support.

Their encouragement and understanding have helped me to complete my goals.

Last but not least I would like to thank the following founding sources for their

financial support of my research:

• Dr. Shan Du (Research Grants)

• Lakehead University Faculty of Graduate Studies

• Lakehead University Faculty of Science and Environmental Studies

• Toronto Vector Institute

v

Publications

Tim Heydrich, Shan Du, Yimin Yang, Xiangyu Ma, Yu Liu. A Novel Lightweight

Network for Fast Monocular Depth Estimation, in preparation (towards IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP)), 2022

Tim Heydrich, Shan Du, Yimin Yang. A Lightweight Self-Supervised Training

Framework for Monocular Depth Estimation, in preparation (towards IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP)), 2022

vi

Contents

Supervisory Committee ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 5

1.3 Problem Description . 6

1.4 Contribution . 6

1.5 Organization of Thesis . 7

2 Background and Related Work 8

2.1 Background . 8

2.1.1 Disparity Map Calculation . 8

2.1.2 Convolutional Neural Networks 10

2.1.3 Generative Adversarial Networks 14

2.1.4 Supervision During Network Training 15

2.1.5 Network Size and Complexity 17

2.1.6 Heavy vs Lightweight Networks 17

2.2 Related Works . 22

vii

2.2.1 Networks for Monocular Depth Estimation 22

2.2.2 Supervised vs. Unsupervised vs. Self-Supervised MDE 23

2.2.3 Lightweight Supervised Network Design 25

2.2.4 Lightweight Unsupervised Network Design 26

3 A Novel Lightweight Network for Fast Monocular Depth Estimation 27

3.1 Overview . 27

3.2 Introduction . 28

3.3 The Proposed Network Architecture 29

3.3.1 Encoder . 30

3.3.2 Decoder . 31

3.3.3 Loss Function . 33

3.4 Experiments . 33

3.4.1 Experimental Setup . 33

3.4.2 Pruning . 34

3.4.3 Comparison to State-of-the-Art 35

3.4.4 Ablation Study: Loss Function 38

3.4.5 Ablation Study: Real-World Applications 40

3.5 Conclusion . 41

4 A Lightweight Self-Supervised Training Framework for Monocular

Depth Estimation 42

4.1 Overview . 43

4.2 Introduction . 43

4.3 Self-Supervised Framework . 45

4.3.1 General Framework Explanation 45

4.3.2 The Generator . 46

4.3.3 Adversarial Learning . 47

4.3.4 Disparity Calculation . 48

4.3.5 Disparity Loss . 48

4.4 Experiments . 50

4.4.1 Experimental Setup . 50

4.4.2 Comparison to State-of-the-Art Self-Supervised Solution . . . 51

4.4.3 Ablation Study: Framework Parts Evaluation 52

4.4.4 Ablation Study: Real-World Application 53

viii

4.4.5 Ablation Study: PyDNet vs FastDepth Design Efficacy 55

4.5 Conclusion . 57

5 Conclusion & Future Work 58

5.1 Overview . 58

5.2 Main Contributions . 58

5.3 Conclusion . 59

A List of Abbreviations 61

Bibliography 63

ix

List of Tables

Table 2.1 Comparison of both heavy and lightweight networks

covered in this section. MACs count and Top 1 Acc.

are for the ImageNet dataset. For Param (M) and

MACs (B) lower is better for Top 1 Acc. higher is

better. 22

Table 3.1 Comparison with current state-of-the-art heavy net-

works. For δ1 higher is better and for every other cri-

teria lower is better. 36

Table 3.2 Quick in depth comparison of our proposed architec-

tures with the current state-of-the-art lightweight net-

work FastDepth. 36

Table 4.1 Comparison of our proposed self-supervised approach

with MonoDepthV2. Comparison based on increased

network performance as well increased overall size based

on parameters at training time. Highlighted results

taken from [4] as they have performed a quantitative

analysis of PyDNet trained on MonoDepthV2. 52

Table 4.2 Evaluation of different framework components, com-

pared with baseline. Baseline is given by training net-

works on [22] training framework exclusively. The frame-

work components are evaluated for one heavy network

and two lightweight networks. PyDNet is given two

baselines one from the original paper and one from a

Pytorch [48] implementation used for our framework. 53

Table 4.3 Network performance comparison between PyDNet and

FastDepth on the NYUv2 dataset using supervised learn-

ing. 56

x

Table 4.4 Network performance comparison between PyDNet and

FastDepth on the KITTI dataset using the Eigen Split.

Training performed using the unsupervised Left-Right

Consistency method. 56

xi

List of Figures

Figure 1.1 Example of depth maps. (A) shows the captured RGB

images. (B) represents the corresponding depth maps.

Grey scale is given fake colour transition to give better

visual contrast. 2

Figure 1.2 Example of a depth estimation algorithm. Left side is

the input image for the algorithm. Right side is the

resulting depth estimation. 3

Figure 2.1 Plots for relevant activation functions [63]. 11

Figure 2.2 Visual comparison of Max Pooling and Average Pooling. 13

Figure 2.3 Basic flow of a GAN pipeline [57]. 14

Figure 2.4 Diagrams [32, 43, 53] for the three heavy networks

VGG, ResNet and DenseNet. For VGG the whole ar-

chitecture is shown, for ResNet and Densenet only the

basic concept is shown due to the size of the overall

architecture. 18

Figure 2.5 Overview for the architecture and flow of a DiCE unit

[47]. 21

Figure 2.6 FastDepth architecture overview, including encoder,

decoder design and skip-connections. [65]. 25

Figure 2.7 PyDNet architecture overview, shows combination of

encoder and decoder into one compact network archi-

tecture [49]. 26

Figure 3.1 Overall architecture overview. Here the encoder is in

green and the decoder in blue. Both proposed decoders

utilize the same structural idea. The key difference be-

tween the decoders is the convolutional structure used

- depthwise-separable or DiCE units. 29

xii

Figure 3.2 Encoder architecture overview. Our novel architecture

follows a similar structure as the one proposed in [47]

to utilize pre-trained weights, however we propose a

modified 4-level version to optimize it for lightweight

depth estimation. Color coding in the diagram is used

to avoid repetition of layer labels. 31

Figure 3.3 Decoder architecture overview. The DiceDecode uti-

lizes DiCE units whereas the DepthDecode utilizes depthwise-

separable convolutions. The depthwise-separable con-

volutions are split into the two sub convolutions, depth-

wise and pointwise. Color coding in the diagram is

used to avoid repetition of layer labels. 32

Figure 3.4 Sample images from the NYUv2 dataset. Left are the

RGB input images and Right are the corresponding

ground truth depth maps. 34

Figure 3.5 Complexity (MACs) comparison between our proposed

network and current state-of-the-art networks. The

model chosen to represent our proposed network is the

one utilizing the DepthDecode decoder. 35

Figure 3.6 Visual comparison between our proposed work and Fast-

Depth. (A) is the RGB input image to the network,

(B) is the ground truth target, (C) is FastDepth’s re-

sult and (D) is our result. 37

Figure 3.7 Loss function comparison per epoch based on the δ1

testing accuracy. Results from training our proposed

encoder with our DepthDecode decoder. 38

Figure 4.1 Our proposed Self-Supervised framework overview. The

blue arrows represent the work of [22] resulting in the

photometric loss with left-right consistency. The green

arrows represent the work of [25] giving adversarial

training. The red arrows show our proposed addi-

tion to provide self-supervision by calculating disparity

maps for both the left and right image. 45

xiii

Figure 4.2 Sample images taken from the KITTI dataset. Left

and right view are on the Left and Right respectively.

Samples clearly show that the samples or extracted

from a video capture. 51

Chapter 1

Introduction

1.1 Overview . 1

1.2 Motivation . 5

1.3 Problem Description . 6

1.4 Contribution . 6

1.5 Organization of Thesis . 7

1.1 Overview

Depth estimation has long been an area of interest in computer vision and other areas

of study. Depth estimation produces a depth map which gives the relative distance

from the camera to objects in the scene. These relative distances are displayed as

grey scale images where a lighter tone represents objects closer to the camera and

darker tones represent objects that are further away. Monocular Depth Estimation

(MDE), depth from a single image, in particular has a wide range of applications, from

robotics to scene reconstruction [41] and augmented reality (AR) [23]. In particular,

these depth maps can be used for object avoidance, placing objects or characters in

an AR environment or simply to create a 3D representation of a scene. Examples for

pairs of captured RGB images and resulting depth estimations can be seen in Figure

1.1. In the figure there are two sample scenes taken from the NYUv2 dataset [56].

On the left are the captured RGB images and on the right are the corresponding

2

depth maps for each of the two scenes. In this example the grey scale of the depth

estimation is given as a fake colour transition as it provides better visual contrast.

Using this fake colour mapping the darker portions of the image are in the foreground

and the light green portions more toward the back of the room.

Figure 1.1: Example of depth maps. (A) shows the captured RGB images. (B)
represents the corresponding depth maps. Grey scale is given fake colour transition
to give better visual contrast.

Depth maps can be challenging to obtain. There are two main ways which can

be used to obtain depth maps, the first is the use of sophisticated hardware and

the second are depth estimation algorithms. While hardware based solutions are

generally able to capture high quality depth maps they tend to be expensive and

not feasible for most application. The most effective piece of hardware to acquire

depth maps is a Light Detection and Ranging (LiDAR) sensor. LiDAR works by

targeting objects with a laser and measuring the time it takes for the reflected light

to return to the sensor. These sensors are highly effective at producing depth maps

of a given scene. The downside is the cost, size and power consumption of the sensor.

Furthermore, LiDAR and other hardware based solutions are often not usable for

many applications, for example, when the goal is to create an AR application for

mobile devices each device would need a LiDAR sensor to be able to use the app.

Only a select few mobile device have integrated LiDAR sensor making the utilization

of such hardware unfeasible. If the utilization of hardware based depth estimation

3

is an option it should be preferred as it tends to give higher resolution and more

accurate depth estimations.

However, a much more feasible solution for most real world situations is the uti-

lization of depth estimation algorithms. These algorithms utilize various image cues

to provide a depth estimation. These depth estimations tend to be less accurate than

their hardware counterparts but the algorithms have a much wider range in terms of

target devices and applications. In this thesis, we mainly focus on different methods

of algorithmic depth estimation.

Figure 1.2: Example of a depth estimation algorithm. Left side is the input image
for the algorithm. Right side is the resulting depth estimation.

Monocular depth estimation is of particular interest as it provides the ability to

infer depth from a single image. A basic idea of the flow for a depth estimation

algorithm is given in Figure 1.2. The input (left) for the algorithm being a RGB

image and the output (right) being the depth estimation. The algorithm itself is

displayed as a black box which receives the input image and utilizes the available

cues to infer the depth map. The viability of various different depth estimation

algorithms have been researched in recent years. There are two distinct categories

for depth estimation algorithms, traditional and deep-learning. Traditional methods

have particular difficulty with monocular depth estimation as it is challenging to infer

3D information from a single 2D source. To this end a large number of traditional

methods need two or more input images to be able to compute a depth estimation.

These approaches utilize the information obtained from moving the camera or having

more than one view point to find correspondence between the images which can be

used to calculate a depth estimation. A great example of the utilization of stereo

image pairs is the work of Kamencay et al. [36]. Their approach relies on disparity

calculation between the stereo pair as well as knowledge of camera parameters. The

disparity is the pixel distance between the two images, how much each pixel has shifted

4

from one image to the other. This is an ill-posed problem as there is bound to be

occluded pixels between the two images resulting in imperfect disparity maps. These

disparity maps can then be used in correspondence with the cameras’ parameters to

calculate the depth estimation. This is done by using a baseline distance, physical

distance between the two viewpoints or cameras, and the focal length. The actual

depth calculation is fairly trivial once a disparity has been found it is defined by

Equation 1.1. This calculation is done for each pixel of the disparity map.

depth = baseline× focal/disparity. (1.1)

This approach can also be extended to utilize more than two images to increase the

overall quality as there will be more images available from which to source pixel

matches in the disparity calculation step.

Despite the challenges attached to monocular depth estimation there are tradi-

tional approaches that are able compute depth estimations. One of the most common

approaches [61] exploits the out of focus blurriness of the image. The approach per-

forms a series of blurring and deblurring operations on the image in order to achieve

the depth estimation. Each point in the image is increasingly blurred which increases

the relative depth as well as deblurred to decrease the relative depth. These opera-

tions can be used to determine at which increment of blurriness the point would reach

infinite distance. Based on that blurriness increment the depth can be obtained.

Deep neural networks (DNNs) are, thanks to the development of Convolutional

Neural Networks (CNNs), able to greatly improve on the traditional methods in var-

ious computer vision tasks. DNNs excel at tasks like image classification [30, 32, 58],

image segmentation [34, 70] or image super resolution [13, 33]. Due to the success of

CNNs with various computer vision tasks it is no surprise that a number of differ-

ent Deep Learning (DL) based depth estimation approaches were developed. Deep

learning in general and therefore also monocular depth estimation methods can be

categorized into three groups, the first group being supervised approaches [5, 17, 39].

These approaches require the existence of input image and ground truth depth map

pairs for their training strategies. They are capable of creating high accuracy depth

estimations, however, the need for labeled ground truth data is a problem as it can

be challenging to obtain those depth maps. The second group is unsupervised ap-

proaches [22, 25], they do not have a need for ground truth data, however they do

need a pair of stereo images for training. Unsupervised approaches are still capable of

5

generating high accuracy depth maps but they cannot compete with state-of-the-art

supervised methods. The third group is based on self-supervised learning [23, 44],

self-supervised approaches create the middle ground between supervised and unsu-

pervised in terms of accuracy. Self-supervision does not rely on ground-truth data,

instead they use secondary data, such as pose, obtained from the input images to

improve the results achieved by unsupervised counterparts. While there are many

MDE approaches available, most state-of-the-art approaches focus largely on improv-

ing performance and achieving the best possible depth prediction. This drive for

increased performance comes at the cost of resources. So called heavy networks are

capable of great accuracy but they require large amounts of compute resources and

time for training as well as inference. The solution is lightweight network design, with

the goal of creating a network architecture that has a significant decrease in size and

complexity but that is still capable of achieving competitive results.

In this thesis we propose two distinct MDE methods, one supervised lightweight

CNN as well as a self-supervised training framework for lightweight neural networks.

In chapter 3 we propose a novel lightweight neural network specifically designed for

the task of monocular depth estimation. We utilize recent advancements in neural

network design to minimize both size and complexity while maintaining a compet-

itive accuracy. In chapter 4 we then propose a lightweight self-supervised training

framework with the purpose of increasing performance for lightweight networks. Our

framework uses the stereo image pair required by most unsupervised training meth-

ods to compute a disparity approximation which is then compared to the networks

predictions to give a self-supervised loss. We further enhance our framework with

the addition of adversarial learning by adding a discriminator. In this instance the

network making the disparity prediction would be the generator. This gives us a

Generative Adversarial Network (GAN) [24] training structure which further im-

proves the generators performance. Each method is explained in greater detail in

the corresponding chapters.

1.2 Motivation

The motivation for this thesis is the growing need for lightweight depth estimation

algorithms. Both faster and more effective methods are needed to satisfy the demand

at hand. Despite the wide range of powerful deep neural networks available there

is a demand for more lightweight methods. Heavy neural networks are capable of

6

producing high accuracy depth estimation. However, they are incredibly resource

intensive making them unsuitable for a number of applications. In our work we

develop and investigate a number of lightweight neural network based approaches

that handle the MDE problem. These lightweight approaches can prove useful for

resource weak systems such as mobile devices with low compute capability and limited

power.

1.3 Problem Description

As discussed monocular depth estimation is a challenging task as there is only limited

3D information left after the scene has been projected to a 2D image. Inferring the

lost 3D information is an ill posed problem since the cues that are available in the 2D

images give some idea about the structure of the original 3D scene, however, they are

not capable of providing complete scene information. While there is specialized hard-

ware available it is unsuitable for most applications. The current state-of-the-art deep

learning based solutions are capable of producing high quality depth estimations at the

expense of compute resources and time. The challenge with designing a lightweight

approach is not only the size constraint but also the goal of maintaining competitive

network performance while working with reduced compute capability. Lastly when

designing a self-supervised approach the key goal is to increase a networks perfor-

mance by providing it with additional information. Obtaining this information from

the source images can be challenging because, as mentioned above, the images do not

contain all the information needed to create completely accurate depth maps. The

added challenge of extracting additional information without significantly increasing

complexity and resource drain further constraints the design process.

1.4 Contribution

In this thesis we propose two distinct lightweight methods for monocular depth esti-

mation. The main contributions are the following.

First, we propose a novel lightweight network architecture. Our novel architec-

ture leverages the advances made to CNN design over the recent years. We propose

an Encoder-Decoder based architecture where the encoder is tasked with extracting

feature information from the input image. The decoder’s job is to upsample those

extracted features and to perform the final depth prediction. We propose a novel

7

encoder architecture which utilizes the advances made by Dimension-wise Convolu-

tions for Efficient Networks (DiCENet) [47]. Our encoder is specifically designed to

be lightweight as well as optimized for the task of monocular depth estimation. We

further propose two novel decoder architectures to create an optimal lightweight net-

work. The first decoder utilizes DiCE units [47] which are also present in our encoder

and the second utilizes depthwise-separable convolutions [55]. Both decoders meet

our strict criteria to be lightweight while still maintaining competitive accuracy.

Second, we propose a novel self-supervised training framework. Our framework

utilizes existing training environments and boosts their performance at minimal cost

to complexity. At training time our framework uses a stereo pair of images, common

for unsupervised or self-supervised MDE, to infer a disparity map estimation. In

addition we employ a GAN based approach to further increase network performance.

1.5 Organization of Thesis

This thesis consists of five chapters. This first chapter was about giving an introduc-

tion to the topic. The rest of the thesis is structured as follows.

Chapter II We present the literature review. We provide background information

for relevant techniques and methods. Then, we give detailed insight into the current

state-of-the-art approaches for monocular depth estimation.

Chapter III We give a detailed description of our proposed lightweight encoder and

both decoders. We further provide the training strategy as well as experimental re-

sults.

Chapter IV We provide insight into our self-supervised training framework. We

give detailed explanations of the various components and the training strategy as a

whole. We also provide experimental results for our framework.

Chapter V We give a conclusion as well as a summary of our thesis and the contri-

butions of our methods.

All references used are presented at the end of this thesis.

8

Chapter 2

Background and Related Work

2.1 Background . 8

2.1.1 Disparity Map Calculation . 8

2.1.2 Convolutional Neural Networks 10

2.1.3 Generative Adversarial Networks 14

2.1.4 Supervision During Network Training 15

2.1.5 Network Size and Complexity 17

2.1.6 Heavy vs Lightweight Networks 17

2.2 Related Works . 22

2.2.1 Networks for Monocular Depth Estimation 22

2.2.2 Supervised vs. Unsupervised vs. Self-Supervised MDE 23

2.2.3 Lightweight Supervised Network Design 25

2.2.4 Lightweight Unsupervised Network Design 26

2.1 Background

2.1.1 Disparity Map Calculation

Disparity maps have been used for monocular depth estimation tasks for a long time.

They have been employed by traditional methods such as the one proposed by Ka-

mencay et al. [36]. Disparity maps show the pixel difference between a stereo pair

of images, the difference in location of objects in the images. Disparity calculation,

9

much like MDE, is an ill-posed problem. Between any two stereo images there will be

pixels that are visible in the first image that are either occluded or missing completely

in the second image. The most important step when calculating a disparity map is to

find the pixel correlations in the two images, so determine where pixel x in image A is

in image B. There are three algorithmic methods that both determine pixel correla-

tion while providing the disparity value. The first is the Sum of Absolute Differences

(SAD) [27, 64], the second is the Sum of Squared Differences (SSD) [38] and the third

is the Normalized Cross Correlation (NCC) [68]. The simplest and most commonly

used ones are SAD and SSD, both utilize a window W (x, y) around a center pixel

(i, j). Both compute the intensity difference for pixel (i, j). The equation for SAD is

given in Equation 2.1 and the equation for SSD is Equation 2.2.

SAD(x, y, d) =
N∑

(i,j)eW (x,y)

|IL(i, j)− IR(i− d, j)|, (2.1)

SSD(x, y, d) =
N∑

(i,j)eW (x,y)

|IL(i, j)− IR(i− d, j)|2, (2.2)

where IL and IR represent the left and right image respectively and W (x, y) is the

window around the pixel (x, y). Regardless of whether SAD or SSD is employed, the

calculation is performed over the entire row of pixels in the target image. In detail, for

every pixel (i, j) in the left image the calculation is performed for each corresponding

row j in the right image to determine best pixel correspondence. While this process

is effective at determining pixel correspondence it can be very time consuming with

larger images. To this end a Block Matching version is widely used. Instead of

determining individual pixel correspondence entire blocks are compared. Both SAD

and SSD can be used but instead of performing the calculation only for pixel (x, y)

in window W (x, y) the value for each pixel in the block is computed simultaneously

as matrix calculations. This process is capable of greatly increasing the efficiency of

this method with only minor loss in quality. The loss in quality is minimal because in

both IL and IR the area surrounding each pixel will be similar. With Block Matching

the size of each block can greatly determine the quality of the disparity map, smaller

block sizes produce more noise and larger block sizes produce overly smooth disparity

maps. It needs to be noted that regardless of block matching or pixel wise calculation

in order for this method to work effectively the cameras utilized have to be parallel.

10

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have grown in popularity for a variety of

machine learning tasks, most noticeably for computer vision tasks as their design

and function greatly benefits from the multidimensional data used for those tasks.

CNNs are a sub-type of Artificial Neural Networks (ANNs). These networks often

consist of a variety of different layer types, including but not limited to, convolutional

layers which give the CNNs their name, activation layers, pooling layers and fully

connected layers. CNNs when compared to other ANNs have the advantage of being

able to extract and refine features from multidimensional data very effectively and

efficiently due to the kernels that make up a convolutional layer. While these kernels

are effective at multidimensional feature extraction they suffer greatly when used on

1-Dimensional data as they are unable to establish proper feature relations.

Convolution Layers

Convolution Layers (CLs) [40] give the CNNs their name and are what sets them apart

from other ANNs. The invention of CLs is generally accredited to LeCun et al. [40]

as their work is the main contributor to the CNNs utilized in recent years. However,

there is some discussion since the work of Fukushima et al. [18] with their proposed

Neocognitron works similarly to the CLs proposed by LeCun et al.. Regardless of

accreditation, CLs utilized in today’s CNNs consist of a number of convolution kernels.

The kernels consist of a number of trainable parameters who perform the function

of extracting relevant feature information from the input. The number of kernels

for each convolution layer is determined by the desired amount of output channels

for that layer. Furthermore, while the size of each kernel within a layer needs to be

the same, the size of kernels in different layers can vary. Typical sizes include 3x3,

5x5 or 7x7, this size represents the number of pixels the kernel processes each step.

Each kernel traverses the input both height and widthwise and at each step performs

the convolution operation. This operation can in basic terms be compared to scalar

matrix multiplication the product of which is a single value which replaces the kernel

sized window in the output feature map. Therefore, the convolution operation reduces

the dimensions of the input image during the extraction of relevant features. During

the network’s backward pass backpropagation adjusts each kernel’s parameters based

on the loss of the specific task. This process optimizes the kernels to extract desirable

feature maps for the task. For each layer the extracted feature map can be defined

11

by the following:

Li = H i ⊗ Li−1 + bi, (2.3)

where Li is the feature map output of the i − th CL, Li−1 is the previous layer’s

output, or in case of the first layer the input data, H i represents the kernels of i− th
layer and bi is the bias for that layer. ⊗ represents the convolution operation. The

dimensions of the output feature map can be determined for each layer using the

following equation:

DO = (DI + 2P −DK)/S + 1, (2.4)

where DO is the output dimensions, DI is the dimensions of the input for that layer,

P is the padding, DK is the kernel dimensions and S is the stride.

Activation Layers

Activation Layers (ALs) are of great importance for effectively training and utilizing

CNNs. Each AL utilizes a corresponding activation function to perform their task.

ALs receive the output of a CL as input and determine whether the input value can

be activated or not. In other words, they determine which neurons are to be turned

on and which turned off. Furthermore, the activation functions give the CNNs the

ability to learn more complex data by normalizing the output into the range of -1 to

1 or 0 to 1. While there are a number of possible activation functions to choose from

the following are the ones most relevant for our work. Figure 2.1 gives the graphs for

the relevant activation functions.

Figure 2.1: Plots for relevant activation functions [63].

1) Sigmoid: The sigmoid function takes the input and constraints it into the

range of 0 to 1. It can be expressed as follows:

sigmoid(x) =
1

1 + e−x
. (2.5)

12

This brings large positive number to 1 and large negative number 0. While this

activation function produces smooth gradients as output it suffers greatly from the

vanishing gradient problem as there is little to no variation between extremely high

or extremely low input values.

2) Rectified Linear Unit (ReLU): The ReLU function does not limit the upper

range of input values but limits the bottom range to 0, setting all negative values to

0. ReLU can be expressed as follows:

ReLU(x) =

x, if x > 0

0, otherwise
. (2.6)

ReLU is able to avoid the vanishing gradient problem as well as give computational

simplicity. Furthermore, it is able to speed up the networks convergence due to non-

saturating linearity. ReLU’s drawback is that all negative input values are discarded

and set to 0. This leads to weights, that produced negative values, not being updated

during backpropagation.

3) Leaky-ReLU / Parametric ReLU: In order to rectify the issues of ReLU,

Leaky ReLU or it’s derivative Parametric ReLU utilize a small negative slope instead

of discarding all negative values. Parametric ReLU is defined as follows:

ReLU(x) =

x, if x > 0

αx, otherwise
. (2.7)

For standard Leaky-ReLU α is fixed value producing a fixed slope for the negative

values. Parametric ReLU improves this by making α a trainable parameter. The

optimal value for each activation layer is determined during the iterative training of

the network.

Pooling Layers

Pooling layers are also frequently used in CNN design as they are helpful in overcoming

overfitting issues. The high dimensionality of the data commonly used causes the

network to get extremely good at predicting the training set but unable to make any

prediction on the test set or any other input. This means that instead of learning the

relevant information to make accurate generalized predictions the network instead

learns the training set as a whole and is only able to make accurate decisions for

13

said training set. Pooling layers are able to mitigate this by reducing the spacial

dimensionality, width and height, of their input. There are two types of pooling

layers commonly used in modern CNNs, the first is Max Pooling and the second is

Average Pooling. The basic of both pooling approaches works the same, a block size

is chosen and the passed input is spatially split into equal blocks of the chosen size.

Each block is then used to determine a single value for the output of the pooling

layer. Each block is reduced to a single value, reducing the overall spacial dimensions

of the input. In the case of max pooling, the maximum value of the block is chosen.

Average pooling averages all the values in the block and that average is then the value

for the output. A good example of max and average pooling is given in Figure 2.2.

Figure 2.2: Visual comparison of Max Pooling and Average Pooling.

While average pooling is used in many CNNs, max pooling is often the preferred

choice. It only passes values that were present in the input onto the next layer,

unlike average pooling which computes new values. Furthermore, max pooling is

computationally less expensive and can also lead to faster network convergence.

Fully Connected Layers

While Fully Connected Layers (FCLs) are of great importance for a variety of ap-

plications such as image classification they are only of limited interest for our work

which is why we will only be covering them briefly. FCLs are the basic neural network

14

structure that has been used before CLs were the standard for multidimensional data.

They consist of a fixed number of neurons where each neuron in each layer is con-

nected to each neuron in the previous and following layer. In today’s application they

usually receive the feature map output from a series of convolution layers. The CLs

multidimensional feature map is converted into a 1D feature vector which is passed

to the FCLs. The FCLs then utilize that feature vector to make the final prediction

for the labels or classes of the given input.

2.1.3 Generative Adversarial Networks

Generative Adversarial Networks have grown in popularity in recent years. They have

a variety of applications from image generation [28, 60] to 3D view synthesis [19, 20].

Furthermore, the adversarial training stratagem has been utilized by various computer

vision tasks to improve overall network performance. At it’s core a GAN consists of a

generator and a discriminator. The generator is usually the network performing the

desired task by generating the desired output. The discriminator’s job is to distinguish

between the generator’s output and a real sample. Generator and discriminator are

competing against one another, the generator is trying to generate more realistic

images and the discriminator is trying to better differentiate between fake and real.

However, while it is generally the goal to achieve a peak performance generator both

generator and discriminator are trained simultaneously. The GAN’s goal is to train

both generator and discriminator until the generator is able to generate realistic

outputs that are indistinguishable from real world sample data and the discriminator

can no longer differentiate the two.

Figure 2.3: Basic flow of a GAN pipeline [57].

15

A general example for this is given in Figure 2.3. In the example the generator

takes a random noise input, sourced from a Gaussian distribution, to generate an

image of a handwritten number. The discriminator is passed either a fake image or

an image from the sample training set. It then tries to determine whether the passed

image is fake or real. The optimization, or loss, function for a GAN can be defined

as shown in Equation 2.8.

LGAN = min
G

max
D

V (D,G) = Ex[log(D(x)] + Ez[log(1−D(G(z)))], (2.8)

where D(X) is the discriminator’s estimated probability that the real data instance

x is real, G(z) is the generator’s output given noise z and D(G(z)) represents the

discriminator’s estimate of the probability that the generator’s fake output is real.

Ex and Ez are the expected values over all real instances and all fake instances

respectively. The generator tries to minimize this function while the discriminator

tries to maximize it.

GANs have been very successful at various tasks including boosting the perfor-

mance of existing methods. However, GANs suffer from vanishing gradient problems

because the discriminator is unable to pass enough information back to the generator.

Furthermore, GANs suffer from mode collapse meaning the generator is only able to

produce a single or a small set of outputs. In order to resolve this issue a number

of improved GAN architectures were developed such as WGAN [6], LSGAN [46] or

RaGAN [35].

2.1.4 Supervision During Network Training

Training of a neural network is a key step as this teaches the network how to pro-

cess the given data to achieve the desired output. There are a number of different

training stratagems currently being used. The most relevant for us are supervised,

unsupervised and self-supervised training. Each of these methods has their own set

of advantages and disadvantages. The details are given below.

Supervised Learning

Supervised learning is the most common and most straight forward approach. It

requires the existence of labeled data for training. The term labeled data means that

for any given input in the training set a corresponding expected output is given. The

16

network is then given the training input and makes a prediction about the output.

The network’s output is then compared to the expected output and an appropriate

loss function is used to determine how well the network performed. This loss is then

used during backpropagation to adjust the network’s parameters with the goal of

improving the network’s performance for the next pass. While this method is simple

and extremely effective at training network it has the drawback of requiring labeled

data for training. Deep convolutional neural networks require very large datasets for

training as they need to be exposed to several different samples in order to generalize

and not overfit. The need for large datasets can be problematic for several different

areas of computer vision as the acquisition of labeled data is challenging due to a

number of different reasons.

Unsupervised Learning

Unsupervised learning removes the need for labeled data. Only the input data is

needed during training. The network’s performance is evaluated differently depending

on the task at hand. In the case of unsupervised classification, or clustering, this is

usually done through a combination of cohesion and separation of the clusters. For

MDE it is usually done by utilizing the networks prediction to warp or reproject the

input image and then compare the warped image to the original input to determine the

network performance and adjust it accordingly. While unsupervised learning is able

to train a network without labeled data it usually does this at the cost of performance.

In most cases networks trained using an unsupervised training method do not achieve

the same accuracy that the same networks trained on supervised training stratagems

do.

Self-Supervised Learning

Self-Supervised learning forms the middle ground between supervised and unsuper-

vised learning. Self-supervised training methods do not require labeled data during

training but are able to achieve accuracies closer to that of supervised learning. This

is done by utilizing secondary information to boost the performance of the target

network i.e. the network to be trained. This secondary information is either obtained

through additional sensor information available at training time or by extracting ad-

ditional information from the input data and passing that to the target network or

using it to modify the networks prediction. Despite improving network performance

17

compared to unsupervised methods self-supervised approaches still fall short of super-

vised methods. Furthermore, the extraction and utilization of additional information

increases the overall complexity of the training process and therefore also increases

resource consumption and training time.

2.1.5 Network Size and Complexity

When designing lightweight networks, both the size and the computational complexity

are of great importance. The network size describes how much storage and random-

access memory (RAM) a neural network needs to operate. One of the main attributes

that can be used to gauge the size of a neural network is the number of parameters. It

needs to be noted that there are other factors that determine the RAM requirements

of a neural network such as the number of activations as well as what precision is

used to store each of the values. One of the goals when creating a lightweight neural

network is a low number of parameters to reduce the size. Additionally, the num-

ber of parameters is also related to the complexity of a neural network. Most often

this complexity is measured in terms of Multiply-Accumulate (MAC) operations [9].

These MAC operations describe the computational complexity of a neural network as

it determines how many operations are performed during each forward pass of a neu-

ral network. Reducing the number of MACs is the main goal of lightweight network

design as reduced complexity results in faster performance on systems with low com-

putational resources. A lower MAC count also results in lower power consumption,

this is key for systems where power consumption is a major concern. An increased

number of operations results in higher power consumption as pointed out in [65].

2.1.6 Heavy vs Lightweight Networks

In recent years the goal of network design, regardless of application whether it be

monocular depth estimation, super resolution or image classification, has mostly been

to achieve the maximum possible performance. To this end, a number of new network

architectures were developed, including but not limited to ResNet [30], DenseNet [32]

or VGG [58]. These architectures excel at image classification performed on the

ImageNet [12] dataset. Furthermore, these base network architectures were utilized

in other disciplines as a base to enhance existing models. While these architectures

are incredibly powerful and achieve great results they do so at the cost of resources.

Some basic details about the architectures design will be given in the following. The

18

basic architecture or design idea for each network is given in Figure 2.4

VGG is a very simple yet effective network design. It is based on the successful

AlexNet and achieved remarkable results for it’s time. As with both of the other two

architectures VGG offers a set of different versions, each version referring to it’s size.

Here we will focus on the most commonly used version of VGG, VGG-16, the 16 refers

to the number of layers containing weights. It consists of 13 convolution layers and 3

fully connected layers. The convolution layers are grouped into 2 groups of 2 followed

by 3 groups of 3 whose output is fed to the FCLs. While achieving good results

and improving upon it’s predecessor VGG like many deep neural networks can suffer

from vanishing gradients. Furthermore, it is incredibly large at 138M parameters and

therefore also computationally expensive.

Figure 2.4: Diagrams [32, 43, 53] for the three heavy networks VGG, ResNet and
DenseNet. For VGG the whole architecture is shown, for ResNet and Densenet only
the basic concept is shown due to the size of the overall architecture.

ResNet mitigates the effect of vanishing gradients and is able to go deeper because

of it. The standard version of ResNet, ResNet50 consists of 50 weight layers. ResNet

mitigates the vanishing gradients through the use of shortcut connections as seen in

Figure 2.4. These shortcut connections enable what is called residual learning. The

input layer connects with the output layer directly this forms the identity mapping.

Due to residual block’s identity mapping ResNet is able to go deeper and wider

without being concerned about vanishing gradients. Despite consisting of more layers

than VGG-16, ResNet50 is able to have a lower parameter count and computational

complexity. This is largely due to the use of pooling layers as well as using only

one FCL. ResNet50 has a parameter count of 25.6M, significantly lower than that of

VGG.

DenseNet further develops the use of shortcuts. Unlike the ones used by ResNet

they not only link each layers input to its output but rather they connect it to

19

each following layer’s output. Furthermore, while ResNet uses additive connections

DenseNet uses concatenative connections. Additive meaning the input is added to

the output and concatenative meaning it is stacked on. This yields maximum internal

supervision. The commonly used version of DenseNet is DenseNet-121 the 121 again

represents the number of layers with trainable parameters. DenseNet-121’s parameter

count is 7.2M.

While all three of these networks improve upon each other and achieve remark-

able results their size and complexity is of concern for a variety of different tasks.

When the target application is using a resource poor system then utilizing so called

heavy networks is not an option. Furthermore, even with powerful hardware avail-

able, training these networks is not only resource intensive but also time consuming.

This is amplified when attempting to train said networks on weaker systems. In or-

der to minimize the computational cost of using deep neural networks a number of

lightweight networks were developed. Lightweight referring to both minimized size

and computational complexity. The most important ones for us are MobileNet [31]

and DiCENet [47]. Both networks achieve a significant reduction in complexity while

still achieving competitive results. The computational complexity of a network is

usually evaluated based on the MAC operations performed by the network. A higher

value means a more complex network requiring more resources, computational, power

or otherwise. A detailed comparison between these two lightweight networks and pre-

viously mentioned heavy networks is given in Table 2.1.

MobileNet utilizes so called depthwise-separable convolutions [55] these convo-

lutions take advantage of matrix multiplication rules where a single matrix can be

split into a product of two other matrices. With regards to convolutions each reg-

ular convolution is split into two different convolutions a depthwise and a pointwise

convolution. The depthwise convolution performs the spatial convolution while the

pointwise performs the channelwise convolution, increasing or decreasing the channel

count. In terms of kernels this means that each kernel is split into two sub kernels

which if matrix multiplied would produce the original kernel. For example a kernel

which would receive a 3 channel RGB image as input, has the spatial dimensions of

5x5 and the desired feature map channel count is 256, so 256x5x5x3. This kernel

would be split into 3 5x5x1 as well as 256 1x1x3 kernels. The following equations

can be used to determine the number of operations needed for conventional convolu-

tions (2.9) and depthwise-separable convolutions (2.10). In addition, the equation to

determine the reduction in computational cost (2.11) for using depthwise-separable

20

convolutions is also given.

Ops = DK ·DK · CI · CO ·DF ·DF , (2.9)

Ops = DK ·DK · CI ·DF ·DF + CI · CO ·DF ·DF , (2.10)

Red =
eq.(2.10)

eq.(2.9)
=

1

CO
+

1

D2
K

, (2.11)

where DK is the dimensions of the kernel, CI is the input channel number, CO is the

output channel count and DF is the dimensions of the output feature map. Using

Equation 2.11 and a 3x3 kernel the computational cost is on average 8 to 9 times lower

for depthwise-separable convolutions compared to standard convolutions. MobileNet

does not exclusively use depthwise-separable convolutions rather a mix of conventional

and depthwise-separable convolutions. This is because the reduction in operations and

parameters also decreases the networks performance so a balance between lightweight

design and performance had to be found. Due to the use of depthwise-separable

convolutions MobileNet has a parameter count of 4.2M, however, as evident from the

comparison in Table 2.1 the computational cost is significantly less than that of other

heavier networks.

DiCENet [47] addresses some of the issues related to depthwise-separable con-

volutions. While they are able to achieve a significant reduction in complexity, the

amount of pointwise convolutions, right side in Equation 2.10, make up a major part of

the convolutions overall complexity. This creates a bottleneck for the computational

cost. Furthermore, depthwise-separable convolutions cannot establish channelwise

relations which play a major part in the performance reduction mentioned. Mehta et

al. propose a solution to both of these problems, the DiCE unit, Figure 2.5.

21

Figure 2.5: Overview for the architecture and flow of a DiCE unit [47].

Unlike depthwise-separable convolutions the DiCE unit splits a regular convolu-

tion into three sub-convolutions, depthwise, widthwise and heightwise. These three

convolutions are able to perform the spatial reduction as well as modify the channel

count. The output of the three sub-convolutions is combined and then fed through

what is called Dimension-wise Fusion. This fusion creates the channelwise relations

needed to achieve better performance. The DiCE unit does not eliminate the need

for pointwise convolutions completely but it significantly reduces the computational

bottleneck they pose. While each individual DiCE unit is computationally more ex-

pensive than a depthwise-separable convolution they are usually able to achieve better

accuracy. The DiCENet proposed by Mehta et al. utilizes a series of StridedDiCE

units, regular DiCE units and ShuffelDiCE units. The overall network architecture

has s slight increase in parameters, 5.1M, but achieves significantly better perfor-

mance.

22

Table 2.1: Comparison of both heavy and lightweight networks covered in this section.
MACs count and Top 1 Acc. are for the ImageNet dataset. For Param (M) and MACs
(B) lower is better for Top 1 Acc. higher is better.

Network Param (M) ↓ MACs (B) ↓ Top 1 Acc. ↑
VGG-16 138 15.5 73.4

ResNet-50 25 4.1 76.0

ResNet-152 60.2 11.3 77.8

DenseNet-121 7.9 2.9 75.0

DenseNet-201 20 4.4 77.4

MobileNet 4.2 0.57 70.6

DiCENet 5.1 - 75.7

2.2 Related Works

2.2.1 Networks for Monocular Depth Estimation

The generalized network overview in Section 2.1.6 just covered the architecture design

of the base networks used primarily for image classification. MDE requires different

network design to be effective as the existing network design is not suitable to output

2D images. An Encoder-Decoder Architecture (EDA) is therefore usually employed

for this task. As the name suggest the EDA consists of an encoder whose task it is

to extract the features and a decoder which upsamples these features into the final

depth prediction. The EDA is also frequently utilized in other areas of computer

vision such as image segmentation [52] or optical flow estimation [14]. Since it is a

sequence-to-sequence model it is the appropriate network architecture for any tasks

that take an image as an input and also produce an image as output. UNet [52]

is one of the most commonly known EDAs. For the purpose of MDE the encoder

is usually a well established network from image classification such as the ones dis-

cussed in Section 2.1.6. These networks offer great and proven feature extraction

capabilities. Furthermore, these architectures offer the ability to use transfer learn-

ing. Transfer learning refers to the use of pre-trained weights from the ImageNet

classification. These ImageNet weights have great feature extraction generalization

and offer improved network performance across disciplines. The decoder is usually

custom designed to utilize the features of the encoder. The decoder often consists of

a number of convolutions as well as interpolation layers or deconvolution layers to in-

23

crease the spatial dimensions while decreasing the channel dimension. In recent years

the EDA has further been advanced through the use of skip-connections [5, 22, 65].

These skip-connections connect the encoder with the decoder. Encoder layer outputs

with the same spatial dimensions as decoder layer outputs are concatenated or added.

These skip-connections are like the shortcut connections used by ResNet or DenseNet

they allow for different gradient passing during backpropagation. This gives the ear-

lier layers in the network better odds of being properly updated during this step.

Which in turn leads to better results and faster convergence time.

2.2.2 Supervised vs. Unsupervised vs. Self-Supervised MDE

There are key differences between supervised, unsupervised and self-supervised train-

ing as previously discussed in Section 2.1.4. In the following the different current

approaches are laid out and explained for each of the three approaches. Furthermore,

in the following sections (2.2.3, 2.2.4) the differences in network design, specifically

lightweight design, are laid out as there are key differences.

Supervised Approaches

Supervised approaches have greatly benefited from several large scale datasets such as

NYUv2 [56], KITTI [21] and Cityscapes [11]. NYUv2 offers a large range of interior

scenes with ground truth depth captured using a Kinect. KITTI and Cityscapes offer

exterior scenes captured using a calibrated pair of stereo cameras. These datasets

enabled a number of CNN based approaches [15, 17, 29, 39, 65] that were able to

excel at the task using supervised learning methods. Most of these approaches utilize

an existing network architecture such as ResNet [30], DenseNet [32] or MobileNet [31]

as feature encoders to which a specifically designed decoder is attached whose output

is the depth prediction. These networks are able to achieve great results. However,

as mentioned above, supervised learning comes with the disadvantage of requiring

large amounts of labeled data for training. The datasets available cover a number of

scenarios where depth estimation could be needed but there are still various scenarios

that are not present in the datasets.

Unsupervised Approaches

Unsupervised approaches are able to overcome the need for labeled data. The most

notable approach in recent years is Monodepth [22]. It utilizes a pair of stereo images

24

during training but not at inference time. Monodepth employs a network structure

similar to that of supervised models, however, instead of predicting a single depth

image a number of disparity maps are predicted at different resolutions. These dis-

parities are then used in combination with the input images to produce ’fake’ images

which can be compared with the original input images to evaluate network perfor-

mance and calculate network loss. Monodepth is given a single input image and

predicts the disparities for both the left and the right image. This approach is very

effective in training a number of different network architectures. It is also the basis

of several new and improved approaches published in recent years [10, 25, 44, 50, 66].

Poggi et al. [50] improved upon Monodepth by using the binocular training images

to simulate a trinocular setup which led to more accurate results. Most relevant for

this thesis is the work of Groenendijk et al. [25], they proposed a number of different

GANs to be used in conjunction with the training structure proposed by [22]. Their

approach utilizes the full resolution, same size as input, ’fake’ image calculated from

the disparity predictions to calculate not only the reconstruction image loss but also

for adversarial training. The discriminator is passed the original input image as well

as the calculated image.

The biggest challenge for unsupervised approaches is that they are unable to

exceed the performance of supervised models. While they are able to achieve adequate

results without the need of labeled data they do not achieve the same performance

in most cases.

Self-Supervised Approaches

Self-Supervised approaches are able to offset the reduced performance of unsupervised

methods. They are able to create a middle ground between unsupervised and super-

vised approaches. The most notable self-supervised method is MonodepthV2 [23].

There are similarities between Monodepth and MonodepthV2, both try to minimize

the photometric reprojection loss. However, unlike Monodepth, which uses a stereo

pair of images for training, MonodepthV2 utilizes a temporal monocular video feed

for training. In order to utilize said temporal features MonodepthV2 uses a secondary

network for pose estimation of the input images. MonodepthV2 has the option to be

either trained on stereo inputs or on monocular temporal inputs. Another approach

which also utilizes temporal inputs is MiniNet [44], it self classifies as unsupervised

but it has several key similarities with MonodepthV2, both utilize secondary net-

25

works for pose estimation between the frames as well as try to minimize photometric

reconstruction loss. MiniNet utilizes two shared weight networks for pose estimation,

one for the frame before the input frame and one for the frame after the input frame.

Both [23] and [44] utilize ResNet18 as their pose network which drastically increases

complexity and training time. Even with its shared weight approach MiniNet still

requires two passes through the pose network, one for each of the reference frames.

While both MonoDepthV2 and MiniNet are capable of increasing the generator’s per-

formance they do so at the cost of increased training time and resource consumption.

2.2.3 Lightweight Supervised Network Design

As previously mentioned lightweight networks aim to lower computational complexity

and size while maintaining a competitive performance. The general network design

covered in Section 2.2.1 suffers similarly as other tasks from the goal to achieve the

best possible performance. Furthermore, in most cases the encoder is based on an ex-

isting network architecture which results in a similarly heavy network driven design.

The current-state-of-the-art lightweight approach is FastDepth [65] proposed by Wofk

et al., Figure 2.6. FastDepth also utilizes an existing network architecture as encoder,

unlike previous methods it utilizes the lightweight MobileNet as base for it’s encoder.

Using MobileNet as encoder is already a significant reduction in complexity. The

authors further proposed a novel depthwise-separable convolution based decoder to

further reduce the networks complexity. In addition, skip-connections are utilized to

achieve optimal network performance. The skip-connections relay information from

the encoder to the decoder. Overall, FastDepth achieves a major reduction in com-

plexity with 0.5% to 1.5% the complexity of current state-of-the-art heavy networks.

Despite this significant reduction in complexity it still maintains competitive results

with a reduction in accuracy of 2% to 7%.

Figure 2.6: FastDepth architecture overview, including encoder, decoder design and
skip-connections. [65].

26

2.2.4 Lightweight Unsupervised Network Design

The lightweight network architecture PyDNet [49] utilizes the training framework

proposed by Monodepth and is able to achieve competitive results. PyDNet’s ar-

chitecture differs from that of traditional supervised networks as it does not utilize

a distinct encoder and decoder, its complete architecture can be seen in Figure 2.7.

From the figure it is apparent that PyDNet does not use a dedicated encoder and

decoder but rather a compact architecture that combines feature extraction and up-

sampling into one. The main feature extraction is performed through a series of paired

convolutions, strided and non-strided. The output of each pair is used as origin for

skip-connections. The output of these convolution pairs is then fed through groups

of four convolutions after each a sigmoid activation is used to make the disparity pre-

diction. The output of each of those groups is then upsampled and combined with a

dimensionaly matching skip-connection from the initial feature extraction pairs. This

architecture where the entire network performs both feature extraction and upsam-

pling is distinctly different in design from that of current lightweight methods used

for supervised learning. In addition, PyDNet does not utilize depthwise-separable

convolutions but uses conventional convolution layers. There is no clear performance

comparison between supervised and unsupervised designs. When compared to state-

of-the-art heavy networks, using unsupervised training, PyDNet requires only 6% the

size and has a reduction in accuracy of 4%.

Figure 2.7: PyDNet architecture overview, shows combination of encoder and decoder
into one compact network architecture [49].

27

Chapter 3

A Novel Lightweight Network for

Fast Monocular Depth Estimation

3.1 Overview . 27

3.2 Introduction . 28

3.3 The Proposed Network Architecture 29

3.3.1 Encoder . 30

3.3.2 Decoder . 31

3.3.3 Loss Function . 33

3.4 Experiments . 33

3.4.1 Experimental Setup . 33

3.4.2 Pruning . 34

3.4.3 Comparison to State-of-the-Art 35

3.4.4 Ablation Study: Loss Function 38

3.4.5 Ablation Study: Real-World Applications 40

3.5 Conclusion . 41

3.1 Overview

Depth estimation is of growing interest in many sectors, from robotics to wearable

augmented reality gears. Monocular depth estimation attracts more attention due

to its cost efficiency and low complexity. Most recent research has developed very

28

large and resource intensive networks which are not suitable for small systems with

limited resources. In this chapter, we propose a lightweight network which lever-

ages the advantages of dimension-wise convolutions and depthwise-separable convo-

lutions to reduce complexity in the architecture. In particular, the proposed depth

estimation architecture utilizes a novel DiCE unit-based encoder, optimized for a

lightweight encoder-decoder structure. Furthermore, we propose a DiCE unit-based

decoder structure as well as an optimized depthwise-separable convolution-based de-

coder. Both decoders follow a similar five-layer architecture. In the experiments,

we have demonstrated the effectiveness of the proposed architecture as well as the

comparison between the two proposed decoders. Our novel lightweight network has a

significant decrease in both size and complexity at a marginal cost to accuracy when

compared to other state-of-the-art lightweight networks.

3.2 Introduction

As previously mentioned, depth estimation is a crucial task for many areas from scene

reconstruction [41], to augmented reality and robotics. Monocular depth estimation

is preferred for a number of robotic platforms and AR gear due to its cost efficiency

and ease of use when compared to more complex solutions such as LiDAR or stereo

depth. In recent years research has largely focused on heavy deep neural networks

and on increasing the accuracy and quality of the depth prediction [15, 29, 39]. While

these networks are capable of producing good results they do so at the expense of

computational resources and time. The networks need large amounts of RAM to be

stored and have a slow training and inference time making their use in critical systems

questionable. This shows the need for lightweight approaches. FastDepth [65] is the

most notable research in this area, their network architecture relies on depthwise-

separable convolutions to reduce size and complexity. FastDepth utilizes the widely

adopted auto-encoder or encoder-decoder structure. Their encoder is the MobileNet

[31] architecture and they propose a custom decoder based on depthwise-separable

convolutions. Our novel architecture that we propose in this chapter allows us to

further reduce the size and complexity through the use of DiCE units [47]. Using the

DiCE units we are able to create a novel architecture that reduces FastDepth’s size

by two thirds and the computational complexity by half with only a minor reduction

in accuracy. In particular, we propose a DiCE unit-based encoder and two custom

designed decoders. The first decoder utilizes DiCE units and the second one utilizes

29

depthwise-separable convolutions. As mentioned above, this proposed architecture

is capable of greatly reducing both size and complexity of current state-of-the-art

lightweight networks. Our architecture is able to reduce the network size by almost

70% and the complexity by 50% while still achieving competitive accuracy with a

reduction of less than 6% when compared to other state-of-the-art lightweight net-

works.

Our contributions are summarized as follows: 1) A DiCE unit-based architecture

is proposed to optimize the performance and size of the encoder. 2) A new decoder

is proposed which is composed of DiCE units and is capable of achieving competitive

results while creating a fully DiCE-based network. 3) A second decoder architecture

is proposed based on depthwise-separable convolutions. When compared with Fast-

Depth decoder, it provides modified layer dimensions and skip-connections to achieve

optimal information transfer from the encoder.

Figure 3.1: Overall architecture overview. Here the encoder is in green and the de-
coder in blue. Both proposed decoders utilize the same structural idea. The key dif-
ference between the decoders is the convolutional structure used - depthwise-separable
or DiCE units.

3.3 The Proposed Network Architecture

Our proposed network is a fully convolutional encoder-decoder structure that relies

on the encoder to extract features which are then upsampled and combined by the

decoder to give the final depth estimation. A general overview of our novel architec-

ture can be seen in Figure 3.1. The figure shows the flow through the network as well

as the skip-connections. In addition, the output dimensions for each layer are also

30

shown in the figure. As further described in Section 3.3.1, the second layer that is

depicted in the diagram is a max-pooling layer, which was included in both Figure

3.1 and Figure 3.2 to highlight the size reduction in that step as well as to show it’s

use for an additional skip-connection.

3.3.1 Encoder

The encoder used in our network is originated from the architecture proposed in [47]

but specifically designed for depth estimation. This choice was made due to the fact

that DiCENet can compete with MobileNet but offers reduced size and computational

complexity in many applications such as object detection and segmentation. DiCENet

was originally designed for image classification. In order to preserve the general

DiCENet structure we utilized DiCEBlocks that have the same internal structure as

the ones used by DiCENet. We propose the use of a four-block structure , Figure 3.2.

These blocks consist of various amounts of DiCE units each, the first block consists

of a single conventional convolution which performs the initial feature extraction as

well as channel modification. The second block is a single max pooling layer which

is used to further reduce the feature map dimensions. While this max pooling layer

does not perform any feature extraction it is needed to provide a reduced feature map

skip-connection for the decoder. The last two blocks consist of a StridedDiCE unit

followed by three ShuffleDiCE units in the third block and seven ShuffleDiCE units in

the fourth and final block. StridedDiCE units work the same as regular DiCE units,

the only difference is that they traverse the input with bigger steps. ShuffleDiCE units

consist of one conventional convolution, a batch normalization, a DiCE unit and they

perform the channel shuffle operation [67]. Due to the four block network design our

proposed structure is able to take advantage of the pre-trained weights that exist for

DiCENet while being more lightweight and streamlined for feature extraction instead

of image classification. The original DiCENet consisted of several more blocks, similar

in structure to block three and four. The choice to utilize four blocks comes from the

fact that utilizing more blocks lead to similar overall accuracy for depth estimation.

In order to reduce size and complexity, we propose to use the minimum viable number

of blocks which in this case is four. Our novel encoder architecture has a significant

size and complexity reduction when compared to the encoder of other state-of-the-art

lightweight methods such as FastDepth. Furthermore, each of the encoder blocks also

provides a good feature output for skip-connections to the decoder. Skip-connections

31

are commonly used for depth-estimation as they provide feature transfer between the

encoder and the decoder. We utilize the output of each encoder block as the features

passed to the decoder. The ability to use pre-trained weights and achieve transfer

learning is quite important as it provides an overall increase to performance.

Figure 3.2: Encoder architecture overview. Our novel architecture follows a similar
structure as the one proposed in [47] to utilize pre-trained weights, however we propose
a modified 4-level version to optimize it for lightweight depth estimation. Color coding
in the diagram is used to avoid repetition of layer labels.

3.3.2 Decoder

The decoder’s objective is to gradually upsample and combine the feature maps to-

gether to form a dense depth map as output. We developed and tested two different

decoders for this work named DepthDecode and DiceDecode. A detailed architecture

overview of both proposed decoders can be seen in Figure 3.3. The first decoder we

propose, DiceDecode, consists of a series of DiCE units, interpolation and concatena-

tive skip-connections. The decoder is grouped into five similarly structured blocks, the

first four blocks consist of a DiCE unit followed by a nearest neighbor interpolation

and a skip-connection. The fifth block does not utilize skip-connections. The output

layer of the decoder is a single pointwise convolution which transforms the channel

dimension into the single output dimension of the depth estimation. DiceDecode is

capable of producing adequate results while preserving the overall low complexity of

the network. After several experiments and network analysis, we believe however that

the DiCE units used in our decoder can be replaced with depthwise-separable con-

volutions which could further reduce the complexity and maintain the accuracy. We

came to this conclusion since in the original work [47], the DiCE units were commonly

paired with regular convolutions to form the more complex structures such as Shif-

fleDiCE. Furthermore, while DiCENet is capable of out performing MobileNet as well

32

as have reduced complexity, we believe this is largely due to the synergy that exists

within DiCENet. In our experiments we found that individual DiCE units have in-

creased complexity when compared with depthwise-separable convolutions while also

having reduced performance, with regards to MDE. The utilization of more complex

DiCE unit structures like ShuffleDiCE is not feasible for the concise design of our de-

coders. Using basic DiCE units the complexity is already increased when compared to

FastDepth’s decoder. To this end we propose a second decoder called DepthDecode

to overcome the problems faced by DiceDecode.

This second decoder we propose follows a similar overall architecture but the DiCE

units are replaced by depthwise-separable convolutions. DepthDecode still follows the

five-block architecture where the first four blocks consist of a depthwise convolution

followed by a pointwise convolution, an interpolation and a skip-connection. Similar

to DiceDecode, the fifth layer does not have a skip-connection. The output layer

of our DepthDecode is also a single pointwise convolution. It needs to be noted

that our novel DepthDecode differs from FastDepth decoder in both layer dimension

and skip-connection utilization. The layer dimensions in our proposed decoder differ

significantly from those of FastDepth’s decoder.

Figure 3.3: Decoder architecture overview. The DiceDecode utilizes DiCE units
whereas the DepthDecode utilizes depthwise-separable convolutions. The depthwise-
separable convolutions are split into the two sub convolutions, depthwise and point-
wise. Color coding in the diagram is used to avoid repetition of layer labels.

33

As mentioned, both of our novel decoders utilize skip-connections. These skip-

connections are important as they provide alternate paths for the gradient which

increases overall performance and provides faster convergence. In addition they pass

feature map information from different stages of the encoder to the decoder. Since

our encoder consists only of four blocks but both of our decoders consist of five, means

that the last block in the decoder does not receive any skip-connections. While this is

not ideal we made the decision to maintain a five block decoder structure to maintain

a 1:1 relation for the spatial dimensions of the input and the output. This means that

our networks output has the same dimensions as the input. If the decoders were of a

four block design the output would only be half the size of the input image which is

not desirable in most cases. The skip-connections employed are concatenating skip-

connections as it has been proven in various previous works [39, 65] that they achieve

better results when compared to additive skip-connections.

3.3.3 Loss Function

After extensive testing, we utilize the L1 loss function for our final model due to its

simplicity. The training for [65] was performed similarly to [45], both used L1 as well.

In [45] their experiments showed that it produced better results when compared with

the L2 loss, MSE, and the Reversed Huber loss. It is formulated as:

L1 =
n∑
i=1

|ytrue − ypred|, (3.1)

where n is the number of samples, ytrue denotes the ground truth target, and ypred is

the value predicted by the network.

3.4 Experiments

3.4.1 Experimental Setup

The network is trained and evaluated on the NYU Depth v2 dataset [56] using the

official train/test split, example images from the dataset can be seen in Figure 3.4.

The training set up is equivalent to the one used by [65] to provide a fair comparison

with previous works. This means the use of SVG as optimizer with a learning rate

of 0.01, a momentum of 0.9 and a weight decay of 0.0001. The encoder utilizes pre-

34

trained image classification weights from the ImageNet dataset. The training and

evaluation of this model is performed on a Nvidia GTX 1080Ti.

Figure 3.4: Sample images from the NYUv2 dataset. Left are the RGB input images
and Right are the corresponding ground truth depth maps.

3.4.2 Pruning

Pruning is a common technique which can be used to reduce the size and complexity

of a neural network by removing neurons that have little or no impact on the network’s

prediction. Some authors utilized pruning as part of their proposed model architecture

to achieve a lower parameter and MAC count. We chose not to apply any pruning

as we believe that pruning can be applies to most networks and is not an inherent

property or advantage of any specific network architecture. Due to this, we will

compare our proposed network to unpruned networks or the unpruned version of

35

such that included pruning as part of their proposed architecture.

Figure 3.5: Complexity (MACs) comparison between our proposed network and cur-
rent state-of-the-art networks. The model chosen to represent our proposed network
is the one utilizing the DepthDecode decoder.

3.4.3 Comparison to State-of-the-Art

The comparison to state-of-the-art compares our proposed architecture, encoder and

both decoders, not only to state-of-the-art heavy networks such as [15, 29, 39] but

also to the current state-of-the-art lightweight network [65]. The models are evaluated

based on their Absolute Relative Error (Abs Rel), Root Mean Squared Error (RMSE),

Absolute Relative Distance (Abs Rel), Mean Squared Logarithmic Error (Log10) as

well as the δ1 metric. In addition, the complexity of each method is also provided,

measured by MACs in billion. The number of MACs is computed by counting the

number of multiply-accumulate operations each network has to perform during a

single forward pass. A visual comparison of the network complexity in MACs is given

in Figure 3.5. The detailed comparison with all relevant state-of-the-art networks can

be seen in Table 3.1.

In addition, we provide a quick comparison with our immediate competitor Fast-

Depth which is given in Table 3.2. From these comparison, the achievements are

quite obvious. Our novel architecture is able to significantly reduce the size achieved

by FastDepth without a significant loss to accuracy. From the comparison, it also

becomes apparent that a pure use of DiCE units in the decoder is sub-optimal when

36

Table 3.1: Comparison with current state-of-the-art heavy networks. For δ1 higher
is better and for every other criteria lower is better.

On NYU Depth V2 MACs (G) ↓ Abs Rel ↓ Log10 ↓ RMSE ↓ δ 1 ↑
Eigen et al. [15] 23.4 0.158 - 0.641 0.769
Xian et al. [29] 61.8 0.155 0.066 0.660 0.781
Liana et al. [39] 42.7 0.127 0.055 0.573 0.811
DORN (Fu et al 2018) [17] 68.17 0.115 0.051 0.509 0.828
Wofk et al. [65] 0.74 - - 0.599 0.775
Ours (DiceDecode) 0.45 0.181 0.079 0.663 0.704
Ours (DepthDecode) 0.37 0.188 0.077 0.654 0.718

compared to depthwise-separable convolutions. As we suspected during our initial

experiments, while DiCENet is able to outperform MobileNet and have a lower com-

plexity this does not hold true when comparing individual DiCE units to depthwise-

separable convolutions. For our decoders use-case it is not feasible to employ DiCE

units. A visual comparison between our proposed work and our immediate competi-

tor FastDepth is given in Figure 3.6. From the comparison, we can see that there is

some minor loss in detail. However, the difference in both qualitative and quantitative

evaluation is marginal when compared to the reduction in complexity.

Table 3.2: Quick in depth comparison of our proposed architectures with the current
state-of-the-art lightweight network FastDepth.

On NYU Depth V2 MACs (G) ↓ Parameters (M) ↓ RMSE ↓ δ1 ↑
Wofk et al. [65] 0.74 3.93 0.599 0.775
Ours (DiceDecode) 0.45 1.56 0.663 0.704
Ours (DepthDecode) 0.37 1.21 0.654 0.718

Overall, our network can still provide adequate depth estimation at a significant

size and complexity reduction. We believe that the size reduction achieved here is

worth the slight loss in accuracy, less than 6%, as it is able to reduce the model size

by almost 70% with respect to the size of FastDepth and the complexity by 50%.

37

Figure 3.6: Visual comparison between our proposed work and FastDepth. (A) is the
RGB input image to the network, (B) is the ground truth target, (C) is FastDepth’s
result and (D) is our result.

38

0 2 4 6 8 10 12 14 16

62

64

66

68

70

72

Epochs

δ1
A

cc
u
ra

cy
L1
L2

L1+L2
L1+SSIM
L2+SSIM

Figure 3.7: Loss function comparison per epoch based on the δ1 testing accuracy.
Results from training our proposed encoder with our DepthDecode decoder.

3.4.4 Ablation Study: Loss Function

As mentioned in 3.3.3 we performed extensive testing on various loss functions. We

were able to eliminate certain ones due to the work provided in [45]. They already

established that the L1 loss is able to produce better results than the L2 loss, MSE

and the Reversed Huber. We wanted to further explore different loss functions. In

an attempt to more exhaustively determine the effectiveness of the L1 (eq. 3.1) loss

we explored the following loss functions: L2 (eq. 3.2), L1 + SSIM, L1 + L2, L2 +

SSIM. Where SSIM refers to the Structural Similarity. The following is the notation

for the above mentioned L2 loss, the L1 notation is given in Equation 3.1.

L2 =
n∑
i=1

(ytrue − ypred)2, (3.2)

where n is the number of samples, ytrue denotes the ground truth target, and ypred

is the value predicted by the network. The SSIM is a metric that reflects the image

quality perceptually. It consists of three components which are all independent from

one another, Luminance, Contrast and Structure. Using those three components

SSIM can determine how two images relate perceptually. The SSIM of two images xi

and yi is defined as follows:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ, (3.3)

39

where l, c and s refer to the luminance, contrast and structure of xi and yi respectively.

The luminance is calculated through mean intensity which is defined as follows:

l(x, y) =
2µxµy + c1
µ2
xµ

2
y + c1

, (3.4)

where µx and µy are the are the averages of xi and yi respectively. c1 is a constant

defined as:

c1 = (k1L)2, (3.5)

where L is the dynamic range of the pixel values and k1 is a constant of usually 0.01.

The contrast is calculated the following:

c(x, y) =
2σxσy + c2
σ2
xσ

2
y + c2

, (3.6)

where σx and σy are the are the variances of xi and yi respectively. c2 is a constant

defined as:

c2 = (k2L)2, (3.7)

where k1 is a constant of usually 0.03. The structure is defined by the following

equation:

s(x, y) =
σxy + c3
σxσy + c3

, (3.8)

where σxy is the covariance of xi and yi and c3 is a constant defined as:

c3 =
c2
2
, (3.9)

The SSIM definition given in Equation 3.3 contains three parameters α, β and γ.

These parameters are generally set 1 which simplifies the SSIM definition to the

following:

SSIM(x, y) =
(2µxµy + c1)(σxy + c2)

(µ2
xµ

2
y + c1)(σ2

xσ
2
y + c2)

, (3.10)

The results of our experiments can be seen in Figure 3.7. From the figure it is

apparent that the L1 loss is the best choice as it is not outperformed by any of the

other loss functions. The L1+SSIM loss had s similar progression but ultimately

fell short of the results achieved by using L1 exclusively. Overall, this is a desired

outcome as L1 is computationally inexpensive and performs better than other more

complex combination losses, for our network.

40

3.4.5 Ablation Study: Real-World Applications

Since our network is designed for supervised training the applications need to be

within the area of scenes covered by the existing datasets. Continuing with the

NYUv2 dataset which contains data on indoor scenes, one of the main real-world

applications would be augmented reality. In AR monocular depth estimation is used

to properly place objects in the scene as well as to perform occlusion handling. The

depth estimation is used to determine the relative distance of objects in the scene and

from that the proper spatial placement can be determined. Using MDE to perform

occlusion handling can improve realistic object placement including hiding the AR

object behind real objects in the scene and determining what part of the AR object

would be visible if it were real. With a rapid increase of AR applications on mobile

devices as well as wearable gear, like the Microsoft HoloLense, the need for fast and

resource cheap neural networks grows.

Another application for MDE on mobile devices is for a number of image filters.

From filters that achieve the Bokeh effect to filters that apply effects to the scene such

as under water effects or a scene scan animation [59]. While some of those utilize

AR elements they remain image filters at their core. With Bokeh effects the depth

estimation is used to distinguish the foreground from the background which can then

be used to blur the background. For more advanced filters and AR effects the depth

estimation is used to modify the filter in a way that makes the effect appear more

realistic by applying darker colours or shadows.

Regardless of AR or image filters and effects, they are increasingly being used

on mobile devices. While the compute capabilities of mobile devices have increased

significantly over the last years they are still unable to match the performance of

dedicated graphics processing units commonly used to train and use neural networks.

Furthermore, since both mobile devices and other wearable AR gear are designed

to run on battery power the power consumption of neural networks needs to be as

low as possible. In our experiments we have shown that we were able to achieve

a significant reduction in computational complexity which in turn also reduces the

power consumption.

41

3.5 Conclusion

In this work, we proposed a novel lightweight architecture for monocular depth esti-

mation. We proposed a novel encoder architecture as well as two different decoder

architectures. Our model is able to greatly reduce the size and complexity of current

state-of-the-art lightweight networks. There is a slight reduction in accuracy but we

believe that the trade off is worth it. Furthermore, we believe that this model would

profit from unsupervised learning environments and is more suitable for real-time

learning. Despite monocular depth estimation being the main focus of the network

proposed here, we believe that it can be of significant use in other branches as well.

42

Chapter 4

A Lightweight Self-Supervised

Training Framework for Monocular

Depth Estimation

4.1 Overview . 43

4.2 Introduction . 43

4.3 Self-Supervised Framework . 45

4.3.1 General Framework Explanation 45

4.3.2 The Generator . 46

4.3.3 Adversarial Learning . 47

4.3.4 Disparity Calculation . 48

4.3.5 Disparity Loss . 48

4.4 Experiments . 50

4.4.1 Experimental Setup . 50

4.4.2 Comparison to State-of-the-Art Self-Supervised Solution . . . 51

4.4.3 Ablation Study: Framework Parts Evaluation 52

4.4.4 Ablation Study: Real-World Application 53

4.4.5 Ablation Study: PyDNet vs FastDepth Design Efficacy 55

4.5 Conclusion . 57

43

4.1 Overview

Depth estimation is of great interest for various sectors, for example robotics or wear-

able augmented reality gear. Monocular depth estimation is of particular interest

due to its low complexity and cost. Research in recent years as shifted away from

supervised learning towards unsupervised or self-supervised approaches. While there

have been great achievements, most of the research has focused on large heavy net-

works which are highly resource intensive which makes them unsuitable for systems

with limited resources. We are particularly concerned about the increased complex-

ity during training that current self-supervised approaches bring. In this section,

we propose a lightweight self-supervised training framework which utilizes computa-

tionally cheap methods to compute ground truth approximations. In particular, we

utilize a stereo pair of images during training which are used to compute photometric

reprojection loss and a disparity ground truth approximation. Due to the ground

truth approximation our framework is able to remove the need of pose estimation

and the corresponding heavy prediction networks that current self-supervised meth-

ods have. In the experiments, we have demonstrated that our framework is capable

of increasing the generator’s performance at a fraction of the size required by the

current state-of-the-art self-supervised approach.

4.2 Introduction

Depth estimation is a fundamental and ill-posed problem of computer vision. There

is a great interest in many areas from scene reconstruction [41] to augmented reality

[23]. It has long been a key point of research, however, most traditional methods

require multiple view points. Supervised learning of large deep convolutional neural

networks overcame this issue. [15, 29, 39]. In addition, CNNs are used in combination

with passive sensors, cameras, which are usually cheaper and lighter than their active

counterparts like LIDAR. However, supervised learning has the problem of requiring

large amounts of labeled data for training. This data is available to some degree

for certain specific scenarios such as interior scenes with the NYUv2 dataset[56].

While there is data available there are several different scenes that are not at all or

only limitedly covered in the datasets available. In order to allow for more versatile

training, of various settings, unsupervised approaches were developed in recent years,

the two most prominent being Godard et al. [22] and Zhou et al. [69]. Both of these

44

approaches require two or more images during training but not during inference. From

these proposed works many new and improved training architectures were developed

both unsupervised [25, 44] and self-supervised [23].

Most recent research has revolved around big heavy networks both for unsuper-

vised and self-supervised networks. There are lightweight approaches out there such

as MiniNet [44] and PyDNet [49]. Both MiniNet [44] as well as MonoDepthV2 [23]

utilize secondary networks during training to boost their performance. In both cases

the networks are utilized to provide pose estimation between the images. These sec-

ondary networks are large heavy networks which are not utilized during inference.

However, they drastically increase the complexity during training. We propose a

novel self-supervised lightweight training framework, Figure 4.1, which reduces the

training complexity while still maintaining an increase in performance. Our novel

self-supervised framework consists of three distinct parts, the generator, the discrimi-

nator and the disparity calculation. The generator is the target network which makes

the disparity predictions and whose performance is to be increased. The discrimi-

nator brings adversarial training which benefits the generator’s performance. The

self-supervision is added through the use of ground truth approximation via con-

ventional disparity map calculation. Our framework uses a stereo pair of images at

training time to compute the ground truth approximation while the generator is given

one of the images to make a disparity prediction. That prediction is then compared

to the calculated disparity giving the self-supervised loss. Our training framework is

targeted specifically for lightweight generators. Our novel self-supervised framework

is able to boost the generator’s performance while still maintaining a low complex-

ity during training. Our novel framework eliminates the need for pose estimation

entirely making the large secondary networks used by MonoDepthV2 and MiniNet

unnecessary. We do still utilize a secondary network, the discriminator but it is signif-

icantly smaller and less complex than the pose estimation networks. While our novel

approach does not provide the same improvements as the current state-of-the-art ap-

proach MonoDepthV2, it is able to boost performance requiring about 3.21% the size

of MonoDepthV2. This size and complexity decrease is particularly noticeable in a

significant reduction of training time. Our approach is able to complete each epoch

at approximately 1/5 the time that MonoDepthV2 takes.

45

Figure 4.1: Our proposed Self-Supervised framework overview. The blue arrows
represent the work of [22] resulting in the photometric loss with left-right consistency.
The green arrows represent the work of [25] giving adversarial training. The red arrows
show our proposed addition to provide self-supervision by calculating disparity maps
for both the left and right image.

4.3 Self-Supervised Framework

4.3.1 General Framework Explanation

Our novel training framework exploits the existing need for a stereo image pair at

training time that current unsupervised methods have. Unlike current state-of-the-

art self-supervised approaches there is no need for pose information at training time

or pose estimation through secondary networks. Instead we propose to compute

a ground truth approximation from the stereo images. A general overview of our

proposed framework is given in Figure 4.1.

In the figure the three key components of our network become apparent. The

generator, the discriminator and the disparity calculation. The generator is the net-

work which makes the disparity predictions needed to compute the back projection

of the stereo input. It is also the network whose performance is to be increased by

our framework. The discriminator provides adversarial learning, further explained

in 4.3.3. The disparity calculation provide the ground truth approximation. Our

proposed framework maintains the advances made by MonoDepth [22] utilizing their

left-right consistency and photometric loss calculation as a basis for our framework.

46

Furthermore, inspired by Groenendijk et al. we utilize their insight into adversarial

learning with regards to unsupervised monocular depth estimation to optimize our

framework further. Our proposed disparity calculation is the key component which

improves network performance and provides self-supervised learning. We utilize con-

ventional methods to compute a disparity map estimation which can be compared

to the generators predicted disparities to provide self-supervised loss. While the in-

herent ambiguity of disparity map calculation, due to for example occluded pixels,

leads to a computation that is not 100% accurate it is still sufficient to provide the

lightweight generator additional information during training. In addition, while not

being a true ground truth, the computation of disparity maps is inexpensive and triv-

ial compared to the secondary networks used for pose estimation by MonodepthV2[23]

and MiniNet[44]. While our framework still utilizes a secondary network, the discrim-

inator, it is significantly smaller and less complex than the heavy networks used by

MonodepthV2 and MiniNet. The three main components of our framework are laid

out in detail below.

4.3.2 The Generator

The generator represents the target network of our framework. The purpose of our

framework is to improve it’s performance in monocular depth estimation. While

our self-supervised framework is indiscriminate about the generator’s architecture

on a macroscopic level it is specifically designed to improve lightweight generator’s

performance and not heavy ones. The generator is trained to make disparity map

predictions. The generator only ever receives one of the stereo images as input,

commonly the left one. Based on the single image input the generator predicts a left

and a right disparity map, dl and dr. While a single prediction for the left and right

disparity is possible, optimal performance is achieved when a number of predictions

are made for each side. These predictions are made at different resolutions, often

called scales, commonly these resolutions are, 1:1, 1:2, 1:4, 1:8 and 1:16. The number

of scales depends on the generators architecture. The predictions are then used with

the stereo image pair given to compute projected, or reconstructed, versions of those

inputs. Using the warping function fw the left and right images can be reconstructed

in the following way:

Ĩr = fw(dr, I l), (4.1)

Ĩ l = fw(dl, Ir), (4.2)

47

where Ĩr and Ĩ l are the reconstructed images and Ir and I l are the training images

give. In an optimal case the reconstructed images should be identical to the original

inputs. While this is not possible with current methods, a well performing generator

should predict disparities dl and dr so that the reconstructed images are as close as

possible to the originals. Therefore, the purpose of our self-supervised framework is

to increase the generators ability to predict accurate disparities.

4.3.3 Adversarial Learning

Inspired by Groenendijk et al. [25] we utilize adversarial learning to improve the

generators performance. Their thorough research into the impact of different discrim-

inator designs and GAN methods provides a good knowledge base for our framework.

They determined that without modifying the generator’s architecture, with the ad-

dition of normalization layers, the utilization of adversarial learning had a negative

impact on the generator’s performance. In particular the usage of lightweight discrim-

inators in correspondence with the WGAN architecture [6] proved to be particularly

harmful. However, in order to maintain our lightweight design we use a small 4-layer

discriminator consisting of three regular convolutions and a single fully connected

layer. Inspired by Groenendijk et al., our discriminator’s convolution layers are set

up as follows, all three use a kernel size of three with a stride of 2. The first layer

increases the channel dimension from three to 64, the second doubles that to 128 and

the third increases it further to 256. The linear layer consists of 4096 neurons which

make a single prediction, whether the input is fake or real. While initial tests using

only adversarial learning in an unsupervised setting proved Groenendijk et al.’s con-

clusions correct we determined in our experiments that the utilization of a lightweight

WGAN architecture in combination with out self-supervision proved to be effective

in increasing network performance. While the generator is only fed one input image

it makes two predictions, dl and dr. These disparities are then used to reconstruct

the stereo pair images to produce the reconstructed images Ĩ l and Ĩr respectively.

The discriminator only examines the original and reconstructed right images Ir and

Ĩr. The loss for the generator, LGw , and the discriminator LDw are defined as:

LGw = E[D(Ĩr)], (4.3)

LDw = E[D(Ir)−D(Ĩr)] + λΩGP , (4.4)

48

where ΩGP is the gradient penalty and λ is set to 10 as defined by WGAN-GP [26].

4.3.4 Disparity Calculation

The disparity calculation is the key component for our self-supervised framework.

Due to the disparity calculation we are able to remove the need for pose estimation

completely, which as mentioned above removes the need for a secondary network for

pose estimation. This allows us to reduce the frameworks complexity significantly.

While there are several approaches to compute disparity maps we propose the use of

the Block Matching algorithm. It is simple and efficient, and the data available in

the dataset utilizes a pair or stereo cameras which are calibrated allowing for very

efficient disparity computation. Our framework uses a block size of 15 pixels as we

have found that this performs best in terms of increasing the generators performance.

Furthermore, the Sum of Absolute Differences is used to locate similar blocks and get

the disparity value. Our framework computes two disparity approximations one for

the left view and one for the right. This is done because the generator also predicts

a left and a right disparity map. In order to compute these two disparity maps we

first utilize the left image as source and the right image as offset to compute the first

disparity. The second is then computed by reversing the order, the right image is the

source and the left image is the offset.

4.3.5 Disparity Loss

In order to utilize the compute disparity maps to provide the generator with infor-

mation we compare the computed disparities to the predicted one. We evaluate the

generators performance based on the L1-norm. We performed similar testing as the

one detailed in 3.4.4 and achieved similar results. In our tests we explored the L1,

L2 and SSIM as well as the combinations of them but did not achieve better per-

formance than with the use of the pure L1-norm. As previously mentioned this is a

desirable outcome as the L1-norm is computationally efficient. Two separate losses

are computed, one for the left prediction and one for the right prediction. Those are

then combined in a weighted matter defined as:

LSelf = αLleft + (1− α)Lright, (4.5)

49

where Lleft, Lright are the losses for the left and right image respectively and α is the

weight constant for the left image. The right image’s weight is (1−α) to achieve a total

weight of 1 or 100%. In our tests we found that using an equal weighting, α = 0.5,

resulted in the best performance increase. The weighted total is then added to the

sum of photometric reconstruction loss for each predicted scale. The photometric

reconstruction loss as proposed by Monodepth is defined as follows:

Lphotometric =
n∑
s=1

Cs, (4.6)

where Cs is defined as:

Cs = αap(C
l
ap + Cr

ap) + αds(C
l
ds + Cr

ds) + αlr(C
l
lr + Cr

lr), (4.7)

where Cap is the Appearance Matching loss which evaluates how similar the recon-

structed image looks to the orginal. Cds enforces smooth disparities and Clr enforces

the left and right disparities to be consistent. The formulation for the Appearance

Matching loss Cap is:

C l
ap =

1

N

∑
i,j

α
1− SSIM(I lij, Ĩ

l
ij)

2
+ (1− α)||I lij − Ĩ lij||, (4.8)

where α is a constant set to 0.85. The disparity smoothness loss Cds is defined by the

following equation:

C l
ds =

1

N

∑
i,j

|∂xdlij|e−||∂xI
l
ij || + |∂ydlij|e−||∂yI

l
ij ||, (4.9)

where ∂d is the gradient of the disparities and ∂I is the image gradient which is used

to have edge awareness in the loss calculation. The left-right consistency loss Clr can

be defined by the following:

C l
lr =

1

N

∑
i,j

|dlij − drij+dlij |. (4.10)

This left-right consistency is a modified L1-norm to enforce the consistency between

the left and the right predicted disparity map. As evident from Equation 4.7 all the

above equations are computed for both the left image and the right image.

50

Combining the generator loss of Equation 4.3 with the photometric reconstruction

loss of Equation 4.6 and our self supervised loss from Equation 4.5 we get the following

complete loss for the generator:

LG = Lphotometric + φGL
G
w + τGLSelf , (4.11)

where φG and τG are weight constants set to 0.1 and 1.0 respectively.

4.4 Experiments

4.4.1 Experimental Setup

In order to ensure a fair comparison between our framework with current state-of-

the-art methods it and consequently the generators are trained and evaluated on the

KITTI[21] dataset, sample input images can be seen in Figure 4.2. In particular

the Eigen split [16] of the KITTI dataset is used. The Eigen split consists of 22.6K

training images, 888 validation images and 697 test images. The implementation of

our framework as well as tested generator networks is done in Pytroch [48]. Our

training set up follows that of Groenendijk et al. [25] to ensure fair comparison. This

means that all models are trained over 50 epochs in mini-batches of 8 using an Adam

optimizer [37] and plateau learning rate scheduler [51] with an initial learning rate

of 10-4. None of the models used in our framework have any pre-trained weights.

The training and evaluation of this model is performed on a Nvidia GTX 1080Ti.

Models are evaluated quantitatively using the following metrics widely used by other

methods [22, 25, 49], Absolute Relative Distance (Abs Rel), Squared Relative Distance

(Sq Rel), Root Mean Squared Error (RMSE), Root Mean Squared Logarithmic Error

(RMSE log), and accuracy within threshold t (δt , with t ∈ [1.25, 1.252, 1.253]).

51

Figure 4.2: Sample images taken from the KITTI dataset. Left and right view are on
the Left and Right respectively. Samples clearly show that the samples or extracted
from a video capture.

4.4.2 Comparison to State-of-the-Art Self-Supervised Solu-

tion

We compare our proposed framework with the current state-of-the-art self-supervised

approach MonodepthV2 [23]. The frameworks are evaluated on the quantitative met-

rics above as well on the size increase, parameters in million, at training time. These

comparisons are intended to determine the trade of between size and improved gen-

erator results. The detailed comparison is given in Table 4.1. The training size in the

table is evaluated based on the size increase of both our proposed method and that

of MonoDepthV2. The results given in the highlighted rows are taken from Aleotti et

52

al. [4] since they have previously performed a quantitative analysis of training both

PyDNet and FastDepth using MonoDepthV2.

From the results given it becomes apparent that both our novel self-supervised

framework as well as MonoDepthV2 are able to improve the overall performance of the

generator for both PyDNet and FastDepth. While MonoDepthV2 achieves an overall

better performance it requires a significant increase in size and complexity to do

so. Our framework is able to achieve competitive performance and is able to surpass

MonoDepthV2 for some metrics. Furthermore, our proposed method is able to achieve

this with a size increase of only ∼3.21% of the size increase from MonoDepthV2. In

addition, this significant difference in size and complexity becomes quite apparent

when comparing training time of the two frameworks. When training PyDNet for 50

epochs, MonoDepthV2 requires approximately 2500 seconds per epoch equaling ∼30

hours total. In comparison our framework requires around 475 seconds per epoch

totaling ∼6.5 hours.

Table 4.1: Comparison of our proposed self-supervised approach with MonoDepthV2.
Comparison based on increased network performance as well increased overall size
based on parameters at training time. Highlighted results taken from [4] as they have
performed a quantitative analysis of PyDNet trained on MonoDepthV2.

Generator Supervision Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Training Size

(Params. in M.)

PyDNet ([49]) L-R Unsupervised 0.163 1.399 6.253 0.262 0.759 0.911 0.961 1.970

PyDNet MonoDepthV2 0.154 1.307 5.556 0.229 0.812 0.932 0.970 +11.690

PyDNet Proposed 0.145 1.154 5.775 0.238 0.792 0.924 0.969 +0.375

FastDepth L-R Unsupervised 0.370 5.868 9.859 1.084 0.614 0.781 0.868 4.02

FastDepth MonoDepthV2 0.156 1.260 5.628 0.231 0.801 0.930 0.971 +11.690

FastDepth Proposed 0.182 2.221 6.340 0.688 0.787 0.904 0.946 +0.375

4.4.3 Ablation Study: Framework Parts Evaluation

In order to determine the efficacy of the different parts of our framework as well as to

determine the need for them we evaluate each part individually as well as together.

We use pure unsupervised MonoDepth as a baseline and then evaluate the addition of

each part. Each step is evaluated on three generator architectures. Two lightweight

ones, PyDNet and FastDepth and one heavy VGG based one. While the specific use

case for our framework lies with the improvement of lightweight generators we feel the

need to explore the impact on heavy networks as well. The results of the comparison

can be found in Table 4.2. In the table ’GAN’ refers to the addition of adversarial

learning through the discriminator, ’Self’ refers to the addition of self-supervised

53

learning through disparity map calculation and ’Self+GAN’ refers to the complete

proposed framework structure. Training for each part and generator combination is

performed over 50 epochs using the same settings mentioned above, this ensures a

fair comparison between them.

The results clearly show improved performance for both lightweight generators

when using the complete framework. Furthermore, when only self-supervision is used

the performance is increased in terms of delta threshold accuracies but reduced for

the other metrics. The addition of adversarial learning reduces overall performance,

which is in line with the results of Groenendijk et al., however when combined with

self-supervision we achieve the best performance for lightweight generators. The

heavy network experienced an overall negative impact from each individual part as

well as the complete framework. This is to be expected as our framework is target

for lightweight generators. Overall, these test highlight that our proposed framework

is able to improve overall network performance for lightweight generators.

Table 4.2: Evaluation of different framework components, compared with baseline.
Baseline is given by training networks on [22] training framework exclusively. The
framework components are evaluated for one heavy network and two lightweight net-
works. PyDNet is given two baselines one from the original paper and one from a
Pytorch [48] implementation used for our framework.

Network Architecture Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
VGG Baseline 0.151 1.325 5.876 0.246 0.791 0.920 0.965

VGG GAN 0.152 1.357 6.003 0.249 0.788 0.917 0.963

VGG Self 0.151 1.335 5.951 0.248 0.789 0.920 0.964

VGG Self + GAN 0.159 1.467 6.152 0.256 0.784 0.915 0.961

PyDNet Baseline ([49]) 0.163 1.399 6.253 0.262 0.759 0.911 0.961

PyDNet Baseline (Pytorch) 0.145 1.246 5.798 0.242 0.786 0.923 0.968

PyDNet GAN 0.160 1.462 6.156 0.256 0.770 0.910 0.962

PyDNet Self 0.149 1.316 5.810 0.245 0.792 0.923 0.967

PyDNet Self + GAN 0.145 1.154 5.775 0.238 0.792 0.924 0.969

FastDepth Baseline 0.370 5.868 9.859 1.084 0.614 0.781 0.868

FastDepth GAN 0.207 2.680 6.824 0.731 0.760 0.890 0.938

FastDepth Self 0.193 2.416 6.440 0.696 0.785 0.900 0.943

FastDepth Self + GAN 0.182 2.221 6.340 0.688 0.787 0.904 0.946

4.4.4 Ablation Study: Real-World Application

As previously mentioned, there are a number of datasets available to train models on

monocular depth estimation. While they contain a significant amount of sample data

for both indoor and outdoor scenes there is still a large quantity of possible scenes

54

not contained in those datasets. This makes it important to be able to conduct

continued training after deployment for several applications. Since previous self-

supervised approaches required large amounts of resources at training time, this was

not possible for applications deployed on resource weak systems.

Robotics is one of the fields with several applications where there is not enough

scene data available to perform adequate training of the network. In particular,

robotic systems that are being deployed underwater or on other planets. While cur-

rent and previous rovers such as the Mars rovers Curiosity [2, 8] and Perseverance

[3, 7] or the lunar rovers Chang’e 4 [42] and Lunokhod 2 [54] have collected a large

number of images from the surface of Mars and the Moon, this data is largely raw

captured footage and not collected in a usable training set. Furthermore, the rela-

tively small distances traversed by the rovers only amounts to a small scene diversity

for the respective settings. The rovers currently deployed by NASA, Curiosity and

Perseverance, have highly advanced camera sensor suites, using multiple cameras and

additional sensors such as lasers to analyze their surroundings. Due to these vision

sensors as well as a number of other sensors, to analyze samples collected amongst

other uses, the rovers have a high power consumption and are also physically quite

large, the size of a small car. While these rovers are invaluable for current scientific

research on Mars, there is also a need for much smaller and more autonomous rovers

for both Mars and lunar missions. These smaller rovers are much more concerned

about being lightweight and reducing power consumption. One such rover is the Audi

Lunar Quattro (ALQ) [1] which is the size of a large remote controlled car. Using

the ALQ as an example, it is equipped with far less sensors compared to it’s larger

counter parts, it’s vision system consists of two stereo cameras as well as a telephoto

zoom camera. In order for these rovers to maneuver autonomously accurate depth

estimation is needed. Since high accuracy is needed to adequately avoid obstacles,

self-supervision is the superior choice compared to unsupervised, reduced accuracy,

and supervised, limited training data. The small size limits both the power and

compute resources making the use of lightweight neural networks a key concern. As

mentioned, there is limited training data available for the scenes these rovers will be

exposed to. This means that continued training while the rover is in use might be

necessary to achieve the accuracy needed. With current self-supervised approaches

this would be unfeasible since the compute resources required by MonoDepthV2 or

MiniNet would increase training time drastically as well as consume large amounts of

power. Our proposed approach would mitigate this issue, as shown in our experiments

55

we are able to enhance network performance at marginal cost to size and compute

resources. This means that the rover’s vision systems can be continuously trained to

optimize performance for the target setting at minimal cost of compute resources and

power consumption.

4.4.5 Ablation Study: PyDNet vs FastDepth Design Efficacy

Both FastDepth and PyDNet represent the state of the art lightweight networks in

their respective training domain. FastDepth for supervised learning and PyDNet for

unsupervised or self-supervised. The significantly different network design of the two

networks begs the question of efficacy in each other’s domain. FastDepth utilizes

a distinct encoder-decoder design using the lightweight encoder MobileNet and a

lightweight decoder consisting of depthwise-separable convolutions. PyDNet on the

other hand does not use any lightweight convolutions at all but rather has a compact

design, fusing the encoder and decoder. We aim to evaluate the efficacy of PyDNet

in the supervised training environment as well as the efficacy of FastDepth in the un-

or self-supervised training settings.

First, we evaluate the efficacy of both lightweight networks in the supervised

training section. Since FastDepth is the state-of-the-art for this settings we will

follow the training and evaluation approach outlined by Wofk et al. [65]. We will

utilize the NYUv2 dataset for training along with the SVG optimizer with a learning

rate of 0.01, a momentum of 0.9 and a weight decay of 0.0001. Since FastDepth was

designed for this training environment no modifications need to be made. PyDNet

requires some minor modification as it’s purpose is to perform a series of disparity

predictions. We maintain the overall architecture but modify the output layer of

the prediction to output a 1D output for the depth map and remove the sigmoid

activation function. In addition we will only evaluate the largest scale predicted by

PyDNet which is 1:2. The results of the evaluation are given in Table 4.3. The results

for FastDepth are taken directly from the paper [65]. The evaluation is performed

on two metrics, RMSE and the δ1 accuracy. We perform training on an input size

of 256x256 size as PyDNet’s architecture requires the input to be divisible by 64. In

addition, both the network size and complexity is compared. Using the table below it

is apparent that FastDepth is significantly outperforming PyDNet in terms of RMSE

and δ1.

56

Table 4.3: Network performance comparison between PyDNet and FastDepth on the
NYUv2 dataset using supervised learning.

Network RMSE ↓ δ1 ↑ Parameters (M) ↓ MACs (G) ↓
PyDNet 1.214 0.373 1.97 2.47

FastDepth 0.599 0.775 3.93 0.96

Second, we evaluate the network’s performance for unsupervised training. As

PyDNet is the state-of-the-art network for this training environment we will perform

the evaluation based on it’s training settings. We will use the unsupervised Left-

Right Consistency training proposed by Godard et al. [22]. We train using stereo

inputs from the KITTI dataset and the Adam [37] optimizer with an initial learning

rate of 10-4. In terms of modifications, PyDNet does not need any modifications for

this training as this is it’s intended training environment. We also did not perform

any modifications for FastDepth which is why it will only be trained and evaluated

based on it’s full scale output. The evaluation results can be seen in Table 4.4. The

results for PyDNet are taken from the original paper [49]. We perform the testing on

an input size of 256x512. From the table it becomes apparent that for unsupervised

learning PyDNet significantly outperforms FastDepth in both RMSE and δ1.

Table 4.4: Network performance comparison between PyDNet and FastDepth on the
KITTI dataset using the Eigen Split. Training performed using the unsupervised
Left-Right Consistency method.

NetWork RMSE ↓ δ1 ↑ Parameters (M) ↓ MACs (G) ↓
PyDNet 6.253 0.759 1.97 4.93

FastDepth 9.859 0.614 4.02 1.93

The test results clearly show distinct performance differences between the two

networks. While FastDepth’s unsupervised performance is worse than that of PyD-

Net it is able to achieve a usable performance. In comparison, PyDNet performs very

poorly for supervised training and is not able to match FastDepth’s performance.

It also needs to be noted that if FastDepth is to be used in self-supervised settings

such as MonoDepthV2 or our proposed method, it is able to compete with PyDNet’s

results. This leads to the conclusion that FastDepth is the superior design choice

for supervised and most self-supervised training settings where as PyDNet performs

particularly well in unsupervised settings. When deciding what network architecture

57

to utilize two more things need to be considered, size and complexity. PyDNet is

smaller in terms of parameters as it requires around half the parameters that Fast-

Depth needs. However, FastDepth has the advantage of having significantly lower

complexity at 40% the complexity of PyDNet. This means that the design decision

lies with both the target application as well as the resources available on the system.

If the system is limited in storage and RAM and near real-time performance is not

needed then a design similar to that of PyDNet should be chosen. If however, the

system is limited by power consumption or near real-time inference is needed then a

design following that of FastDepth, using lightweight convolutions, should be used.

4.5 Conclusion

In this work, we proposed a novel lightweight self-supervised training framework for

monocular depth estimation. Our framework specifically targets lightweight networks

and aims to increase their performance at marginal cost to size and complexity. We

leverage the existing need for stereo image pairs to be given at training time to

compute disparity ground truth approximations. Our method eliminates the need for

pose estimation that other state-of-the-art frameworks have. For this reason we are

able to significantly reduce the overall complexity of self-supervised learning. Our

novel framework is able to compete with the current state-of-the-art method in terms

of performance while significantly reducing the size. While we cannot exceed current

performance in all metrics we believe that the trade off between size and performance

is worth it.

58

Chapter 5

Conclusion & Future Work

5.1 Overview . 58

5.2 Main Contributions . 58

5.3 Conclusion . 59

5.1 Overview

The approaches proposed in this thesis provide a significant reduction in size and

complexity to current state-of-the-art methods while maintaining a competitive ac-

curacy. The proposed lightweight network as well as the lightweight self-supervised

training framework can be used in future research and applications. We give detailed

explanations about the two approaches as well as possible real world applications for

both of them.

5.2 Main Contributions

Our research addresses the need for lightweight deep neural networks for monocular

depth estimation. We highlight the issue with current network design and the limita-

tion it poses on weaker systems. We propose two distinct methods to solve this issue,

one is a lightweight neural network specifically designed and optimized for monocular

depth estimation. The second is a lightweight self-supervised training framework that

is designed to improve the performance of lightweight neural networks.

59

The two key contributions are summarized as follows:

• First: We proposed a novel lightweight encoder as well as two decoders specifi-

cally designed for the task of monocular depth estimation. Specifically, our novel

encoder takes advantage of the state-of-the-art DiCENet. We optimized our en-

coder in design to be as small as possible but we ensured that our design was

able to take advantage of pre-trained weights to increase performance. In addi-

tion, we determined the optimal decoder design for our encoder and proposed

two decoders one DiCEUnit based and one depthwise-separable convolution

based. We highlight the drawbacks of utilizing DiCEUnits outside of DiCENet

which led to the second decoder being proposed. Overall, our lightweight net-

work is able to significantly reduce both size and complexity when compared

with state-of-the-art lightweight networks. Experimental results showed that,

despite complexity and size reduction, our network can still achieve competitive

results.

• Second: We proposed a lightweight self-supervised training framework specifi-

cally designed to boost the performance of lightweight networks. We exploit the

need for stereo images at training time that current unsupervised approaches

have. Our framework utilizes the stereo images to compute a ground truth

approximation which can be used to increase the networks performance. Fur-

thermore, we used adversarial training, for which we used a lightweight discrim-

inator, to further increase network performance. Unlike other state-of-the-art

self-supervised methods, we do not require a secondary network for pose estima-

tion since our method does not utilize any pose. Due to these advances we were

able to design a training framework that has minimal impact on complexity

while increasing overall network performance.

5.3 Conclusion

In this thesis we proposed two distinct solutions for the task of lightweight monocular

depth estimation. Both of our methods are able to reduce size and complexity while

maintaining competitive results. Our lightweight network is able to reduce the size

by roughly 70% and the complexity by 50% compared to the current state-of-the-

art method while having an accuracy reduction of less than 6%. The self-supervised

60

training framework we proposed is able to boost network performance. Other self-

supervised approaches achieve higher performance boosts but our framework achieves

a competitive increase in performance at just about 3% of the size of other methods.

61

Appendix A

List of Abbreviations

In this appendix we give a list of abbreviations used in the text.

A
Abs Rel: Absolute Relative Distance

ALs: Activation Layers

ANNs: Artificial Neural Networks

AQL: Audi Lunar Quattro

AR: Augmented Reality

C
CLs: Convolution Layers

CNNs: Convolutional Neural Networks

D
DenseNet: Densely Connected Convolutional Networks

DiCENet: Dimension-wise Convolutions for Efficient Networks

DL: Deep Learning

DNNs: Deep neural networks

E
EDA: Encoder-Decoder Architecture

F

62

FCLs: Fully Connected Layers

G
GANs: Generative Adversarial Networks

L
LiDAR: Light Detection and Ranging

Log10: Mean Squared Logarithmic Error

LSGAN: The Least Squares Generative Adversarial Network

M
MAC: Multiply-Accumulate

MDE: Monocular Depth Estimation

N
NCC: Normalized Cross Correlation

R
RaGAN: Relativistic GAN

ReLU: Rectified Linear Unit

ResNet: Residual Neural Network

RMSE: Root Mean Squared Error

RMSE log: Root Mean Squared Logarithmic Error

S
SAD: Sum of Absolute Differences

SSD: Sum of Squared Differences

SSIM: Structural Similarity Index

Sq Rel: Squared Relative Distance

W
WGAN: Wasserstein Generative Adversarial Network

63

Bibliography

[1] Moon rover meet the audi lunar quattro. PTScientists.

[2] Mars curiosity rover. NASA, 2011.

[3] 2020 mission perseverance rover. NASA, 2020.

[4] F. Aleotti, G. Zaccaroni, L. Bartolomei, M. Poggi, F. Tosi, and S. Mattoccia.

Real-time single image depth perception in the wild with handheld devices. Sen-

sors, 21:15, 12 2020.

[5] I. Alhashim and P. Wonka. High quality monocular depth estimation via transfer

learning. arXiv, 2018.

[6] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial net-

works. In International conference on machine learning, pages 214–223. PMLR,

2017.

[7] J. Bell, J. Maki, G. Mehall, M. Ravine, M. Caplinger, Z. Bailey, S. Brylow,

J. Schaffner, K. Kinch, M. Madsen, et al. The mars 2020 perseverance rover

mast camera zoom (mastcam-z) multispectral, stereoscopic imaging investiga-

tion. Space Science Reviews, 217(1):1–40, 2021.

[8] J. F. Bell III, A. Godber, S. McNair, M. Caplinger, J. Maki, M. Lemmon,

J. Van Beek, M. Malin, D. Wellington, K. Kinch, et al. The mars science labo-

ratory curiosity rover mastcam instruments: Preflight and in-flight calibration,

validation, and data archiving. Earth and Space Science, 4(7):396–452, 2017.

[9] J. Chang, Y. Choi, T. Lee, and J. Cho. Reducing mac operation in convolutional

neural network with sign prediction. Proceedings of International Conference on

Information and Communication Technology Convergence (ICTC), pages 177–

182, 2018.

64

[10] P.-Y. Chen, A. H. Liu, Y.-C. Liu, and Y.-C. F. Wang. Towards scene under-

standing: Unsupervised monocular depth estimation with semantic-aware rep-

resentation. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2624–2632, 2019.

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,

U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic ur-

ban scene understanding. In Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision

and pattern recognition, pages 248–255. Ieee, 2009.

[13] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep

convolutional networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 38(2):295–307, 2016.

[14] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van

Der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with

convolutional networks. In Proceedings of the IEEE international conference on

computer vision, pages 2758–2766, 2015.

[15] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic la-

bels with a common multi-scale convolutional architecture. Proceeding of IEEE

International Conference on Computer Vision (ICCV), 2015.

[16] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image

using a multi-scale deep network. arXiv preprint arXiv:1406.2283, 2014.

[17] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal regres-

sion network for monocular depth estimation. Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2018.

[18] K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network

model for a mechanism of visual pattern recognition. In Competition and coop-

eration in neural nets, pages 267–285. Springer, 1982.

65

[19] M. Gadelha, S. Maji, and R. Wang. 3d shape induction from 2d views of multiple

objects. In 2017 International Conference on 3D Vision (3DV), pages 402–411.

IEEE, 2017.

[20] B. Gecer, S. Ploumpis, I. Kotsia, and S. Zafeiriou. Ganfit: Generative adver-

sarial network fitting for high fidelity 3d face reconstruction. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

1155–1164, 2019.

[21] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti

dataset. International Journal of Robotics Research (IJRR), 2013.

[22] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth

estimation with left-right consistency. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 270–279, 2017.

[23] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into self-

supervised monocular depth estimation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 3828–3838, 2019.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural

information processing systems, 27, 2014.

[25] R. Groenendijk, S. Karaoglu, T. Gevers, and T. Mensink. On the benefit of

adversarial training for monocular depth estimation. Computer Vision and Image

Understanding, 190:102848, Jan 2020.

[26] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved

training of wasserstein gans. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, NIPS’17, page 5769–5779, Red Hook,

NY, USA, 2017. Curran Associates Inc.

[27] R. A. Hamzah, R. A. Rahim, and Z. M. Noh. Sum of absolute differences algo-

rithm in stereo correspondence problem for stereo matching in computer vision

application. In 2010 3rd International Conference on Computer Science and

Information Technology, volume 1, pages 652–657, 2010.

66

[28] C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu, Y. Fu-

rukawa, G. Mauri, and H. Nakayama. Gan-based synthetic brain mr image

generation. In 2018 IEEE 15th International Symposium on Biomedical Imaging

(ISBI 2018), pages 734–738. IEEE, 2018.

[29] Z. Hao, Y. Li, S. You, and F. Lu. Detail preserving depth estimation from a single

image using attention guided networks. Proceedings of International Conference

on 3D Vision (3DV), 2018.

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks for

mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[32] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected

convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[33] A. Ignatov, R. Timofte, M. Denna, and A. Younes. Real-time quantized image

super-resolution on mobile npus, mobile ai 2021 challenge: Report. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, pages 2525–2534, June 2021.

[34] F. Isensee, P. Jaeger, S. Kohl, J. Petersen, and K. Maier-Hein. nnu-net: a

self-configuring method for deep learning-based biomedical image segmentation.

Nature Methods, 18:1–9, 02 2021.

[35] A. Jolicoeur-Martineau. The relativistic discriminator: a key element missing

from standard gan. arXiv preprint arXiv:1807.00734, 2018.

[36] P. Kamencay, M. Breznan, R. Jarina, P. Lukac, and M. Radilova. Improved depth

map estimation from stereo images based on hybrid method. Radioengineering,

21, 04 2012.

[37] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd

International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

67

[38] A. Kuhl. Comparison of stereo matching algorithms for mobile robots. Centre

for Intelligent Information Processing System, pages 4–24, 2005.

[39] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth

prediction with fully convolutional residual networks. Proceedings of Fourth In-

ternational Conference on 3D Vision (3DV), 2016.

[40] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object recognition with

gradient-based learning. In Shape, contour and grouping in computer vision,

pages 319–345. Springer, 1999.

[41] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and

T. Aila. Noise2noise: Learning image restoration without clean data. Proceedings

of the 35th International Conference on Machine Learning (ICML), 80:2965–

2974, 2018.

[42] C. Li, Z. Wang, R. Xu, G. Lv, L. Yuan, Z. He, and J. Wang. The scientific

information model of chang’e-4 visible and near-ir imaging spectrometer (vnis)

and in-flight verification. Sensors, 19(12):2806, 2019.

[43] F.-F. Li, J. Johnson, and S. Yeung. Lecture 9: Cnn architectures, Apr 2019.

[44] J. Liu, Q. Li, R. Cao, W. Tang, and G. Qiu. Mininet: An extremely lightweight

convolutional neural network for real-time unsupervised monocular depth esti-

mation. ISPRS Journal of Photogrammetry and Remote Sensing, 166:255–267,

Aug 2020.

[45] F. Ma and S. Karaman. Sparse-to-dense: Depth prediction from sparse depth

samples and a single image. Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), 2018.

[46] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. Least squares

generative adversarial networks. In Proceedings of the IEEE international con-

ference on computer vision, pages 2794–2802, 2017.

[47] S. Mehta, H. Hajishirzi, and M. Rastegari. Dicenet: Dimension-wise convolutions

for efficient networks. IEEE Transactions on Pattern Analysis and Machine

Intelligence, pages 1–1, 2020.

68

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala. Pytorch: An imperative style, high-performance deep learning li-

brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc., 2019.

[49] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia. Towards real-time unsupervised

monocular depth estimation on cpu. In 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 5848–5854. IEEE, 2018.

[50] M. Poggi, F. Tosi, and S. Mattoccia. Learning monocular depth estimation with

unsupervised trinocular assumptions. In 2018 International conference on 3d

vision (3DV), pages 324–333. IEEE, 2018.

[51] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[52] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[53] A. Rosebrock. Imagenet: Vggnet, resnet, inception, and xception with keras,

Mar 2017.

[54] A. A. Siddiqi. A Chronology of Deep Space and Planetary Probes 1958-2000.

Monograph in Aerospace History. Nasa, 2002.

[55] L. Sifre. Rigid-Motion Scattering For Image Classification. PhD thesis, Ecole

Polytechnique, 2014.

[56] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and

support inference from rgbd images. In European conference on computer vision,

pages 746–760. Springer, 2012.

[57] T. Silva. An intuitive introduction to generative adversarial networks (gans),

Jan 2018.

69

[58] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[59] Snap Inc. Snaptchat lense studio, 2018.

[60] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image genera-

tion. arXiv preprint arXiv:1611.02200, 2016.

[61] S.-S. Tung and W.-L. Hwang. Depth extraction from a single image and its appli-

cation. In Pattern Recognition-Selected Methods and Applications. IntechOpen,

2019.

[62] N. d. Tyson. In the beginning. Natural History, Sep 2003.

[63] U. Udofia. Basic overview of convolutional neural network (cnn), Feb 2018.

[64] G. Wang and H. Ju. A disparity map extraction algorithm for lunar rover bh2.

In 2009 IEEE International Conference on Intelligent Computing and Intelligent

Systems, volume 4, pages 385–389, 2009.

[65] D. Wofk, F. Ma, T. Yang, S. Karaman, and V. Sze. Fastdepth: Fast monocular

depth estimation on embedded systems. Proceedings of International Conference

on Robotics and Automation (ICRA), pages 6101–6108, 2019.

[66] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid. Unsu-

pervised learning of monocular depth estimation and visual odometry with deep

feature reconstruction. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 340–349, 2018.

[67] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient

convolutional neural network for mobile devices. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 6848–6856, 2018.

[68] F. Zhao, Q. Huang, and W. Gao. Image matching by normalized cross-

correlation. In IEEE International Conference on Acoustics Speed and Signal

Processing Proceedings, volume 2, pages II – II, 06 2006.

[69] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth

and ego-motion from video. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1851–1858, 2017.

70

[70] Y. Zhou, G. G. Yen, and Z. Yi. Evolutionary compression of deep neural networks

for biomedical image segmentation. IEEE Transactions on Neural Networks and

Learning Systems, 31(8):2916–2929, 2020.

	Supervisory Committee
	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Problem Description
	Contribution
	Organization of Thesis

	Background and Related Work
	Background
	Disparity Map Calculation
	Convolutional Neural Networks
	Generative Adversarial Networks
	Supervision During Network Training
	Network Size and Complexity
	Heavy vs Lightweight Networks

	Related Works
	Networks for Monocular Depth Estimation
	Supervised vs. Unsupervised vs. Self-Supervised MDE
	Lightweight Supervised Network Design
	Lightweight Unsupervised Network Design

	A Novel Lightweight Network for Fast Monocular Depth Estimation
	Overview
	Introduction
	The Proposed Network Architecture
	Encoder
	Decoder
	Loss Function

	Experiments
	Experimental Setup
	Pruning
	Comparison to State-of-the-Art
	Ablation Study: Loss Function
	Ablation Study: Real-World Applications

	Conclusion

	A Lightweight Self-Supervised Training Framework for Monocular Depth Estimation
	Overview
	Introduction
	Self-Supervised Framework
	General Framework Explanation
	The Generator
	Adversarial Learning
	Disparity Calculation
	Disparity Loss

	Experiments
	Experimental Setup
	Comparison to State-of-the-Art Self-Supervised Solution
	Ablation Study: Framework Parts Evaluation
	Ablation Study: Real-World Application
	Ablation Study: PyDNet vs FastDepth Design Efficacy

	Conclusion

	Conclusion & Future Work
	Overview
	Main Contributions
	Conclusion

	List of Abbreviations
	Bibliography

