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ABSTRACT 

 The rapidly accumulating post-consumer polyethylene terephthalate (PET) plastics 

pose a great threat to our environment as they constitute one of the most used products in 

our day-to-day life. As a result, degradation of PET and recycling has become the focus of 

considerable interest in the last decade. Hydrolysis of PET is very challenging as they are 

extremely resistant to both biotic and abiotic degradation. A technically and economically 

feasible approach to degrade PET waste from the environment is highly desirable. 

Physicochemical pre-treatment can play an important role in making PET more degradable 

by changing their surface properties. Direct recycling of segregated PET has problems of 

contamination of additives and components used in various PET products. PET hydrolysis 

however can lead to recovery of the monomers terephthalic acid (TPA) and ethylene glycol 

(EG) as well as the dimers bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-

hydroxyethyl) terephthalate (MHET) which can be reused for making new PETs. This can 

potentially solve the difficulties associated with PET recycling and lead to a circular 

economy. The present study reports the effect of ozone and ultrasound pretreatment on 

both enzymatic and chemical hydrolysis of PET. The results showed that combination of 

ozone pretreatment followed by ultra-sonication during enzymatic hydrolysis using HiC 

cutinase enzyme resulted in almost 9-fold increase in TPA and EG recovery compared to 

enzymatic hydrolysis of untreated PET. However, the long reaction time in enzymatic 

hydrolysis prompted us to investigate chemical hydrolysis. Although, chemical hydrolysis 

of pretreated PET films using methanolic sodium hydroxide as solvent resulted in 80% 

weight loss (at 50C, atmospheric pressure), the recovery of monomers was relatively not 

as efficient as enzymatic hydrolysis. Size reduction of the PET films followed by chemical 

hydrolysis gave the highest (90%) breakdown, but it is a very energy intensive process. 

 

Keywords: Enzymatic hydrolysis, chemical hydrolysis, polyethylene terephthalate (PET), 

pretreatment, ozone, ultrasound. 
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LAY SUMMARY 

 

 

 Plastic pollution is a major environmental concern in today’s world. The enormous 

use of plastic has led to accumulation of wastes in both terrestrial and marine environments. 

Polyethylene terephthalate (PET) is one of the most commonly used plastic that are used 

in food and beverage packaging. Usually, PET products are disposed of immediately after 

a single use and makes a high contribution of low degradable wastes. The accumulation of 

PETs in the landfills, waterways and oceans critically affects the ecosystem and food chain. 

They are broken down in size forming micro plastics but remain unconverted for hundreds 

of years. These particles can be consumed by animals and aquatic organisms and eventually 

can enter human food streams. The overall aim of this study was to address this issue and 

move towards finding a sustainable solution. Use of biological catalysts (enzymes) to break 

down PET is a potential method for plastic degradation. This will allow of recovery of their 

building block (monomer) constituents. The novelty of this study was to incorporate 

physicochemical pretreatments like ozone and ultrasound for enhancing the efficiency of 

enzymatic hydrolysis. However, the process being slow, chemical breakdown (hydrolysis) 

was also attempted. This reduced reaction time but needed size reduction, which is energy 

intensive. Besides the monomers, this process also led to small chain polymer chains. The 

breakdown of PET to its building block (monomers) can help in their reuse to produce new 

plastic products again and hence contribute to a sustainable circular economy.   

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

Acknowledgements 

I would like to express sincere gratitude to my supervisor Prof. Dr. Sudip Rakshit for his 

continuous guidance, suggestions and wholehearted supervision throughout the progress 

of this work. I am also grateful to him for acquainting me with the world of advance 

research. Without his advice, guidance and incredible support, this thesis work would not 

have been possible. I am indebted forever to him. 

Besides my supervisor, I would like to express my deepest thanks and gratitude to Ellen 

Caroline Silverio Vieira (Phd Student) and Mahdieh Samavi (Post Doc.), Lakehead 

University, who has helped me by mental support, valuable suggestions and cooperation 

to do the thesis work. To add to this, I am also thankful to my research group for helping 

me to complete the thesis.  

More importantly, I owe my deepest gratitude to my parents and my spouse for their love, 

patience and prayers. Whatever I write here will not show my gratefulness to them, but I 

will say that I would never be able to finish this thesis (as all my achieved successes) 

without their help.  

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

TABLE OF CONTENTS 
Abstract ii 

Lay Summary iii 

Acknowledgements iv 

Table of Contents v 

List of Tables ix 

List of Figure x 

List of Abbreviation xii 
xi 

CHAPTER 1: INTRODUCTION 1 
 

CHAPTER 2: LITERATURE REVIEW  
 

 

 

 

2.1 The problem of Plastic Pollution 5 

2.2 Plastic Degradation 5 

 2.2.1 Mechanical Degradation 6 

          2.2.1.1 Regrinding 6 

          2.2.1.2 Adhesive pressing 6 

          2.2.1.3 Compression molding 6 

          2.2.1.4 Injection molding 6 

 2.2.2 Thermal Degradation 7 

 2.2.3 Photo-Oxidative Degradation 8 

 2.2.4 Microbial and Enzymatic Biodegradation 9 

2.3 Factors Affecting Plastic Biodegradation 10 

 2.3.1 Hydrophobicity 10 

 2.3.2 Degree of crystallinity 10 

 2.3.3 Surface Topography 11 

 2.3.4 Molecular Size 11 

2.4 Polyethylene Terephthalate (PET) 12 

 2.4.1 Packaging of Water 12 

 2.4.2 Packaging of Fruit Juice 13 



vi 
 

 2.4.3 Packaging of Carbonated Beverages 13 

2.5 Recycling of PET Bottles 13 

 2.5.1 Source of Contamination in Recycled PET 13 

 2.5.2 Regulation of PET Recycling 14 

2.6 Current Knowledge on Microbial and Enzymatic Degradation of 

PET 

15 

2.7 Chemical Hydrolysis of PET 20 

2.8 Pretreatment of PET for Hydrolysis 21 

 2.8.1 Ozone Pretreatment 22 

 2.8.2 Ultrasound Treatment: 23 
 

CHAPTER 3: MATERIALS & METHODS  
 

3.1 Materials 25 

 3.1.1 Enzyme Catalyst  25 

 3.1.2 Plastic  25 

 3.1.3 Chemicals 25 

 3.1.4 Ozone Generator 25 

 3.1.5 Ultrasonic Bath 25 

3.2 Methods 25 

 3.2.1 Enzyme Activity Assay 26 

 3.2.2 Ozone Production Analysis 26 

 3.2.3 Pretreatment of PET film 27 

          3.2.3.1 Ozone  27 

          3.2.3.2 Ultrasound  27 

          3.2.3.3 Size Reduction 28 

 3.2.4 Hydrolysis of PET films 28 

          3.2.4.1 Enzymatic Hydrolysis 28 

          3.2.4.2 Chemical Hydrolysis 28 

 3.2.5 Ultrasound Assisted Hydrolysis of PET film 29 

          3.2.5.1 Ultrasound Assisted Enzymatic Hydrolysis 29 

          3.2.5.2 Ultrasound Assisted Chemical Hydrolysis 29 



vii 
 

 3.2.6 Chemical Hydrolysis of PET Powders 30 

 3.2.7 HPLC Analysis 30 

 3.2.8 FTIR Analysis 31 

 3.2.9 Data Analysis 31 

 3.2.10 Experimental Design 32 
 

CHAPTER 4: RESULTS & DISCUSSION  
 

4.1 Enzymatic Hydrolysis of Untreated PET film 33 

 4.1.1 Weight loss 33 

 4.1.2 HPLC Analysis 34 

 4.1.3 FTIR Analysis 34 

4.2 Enzymatic Hydrolysis of Ozone and Ultrasound Pretreated PET 

films 

37 

 4.2.1 Weight Loss 37 

 4.2.2 FTIR Analysis 38 

4.3 Ultrasound Assisted Enzymatic Hydrolysis of PET film 38 

 4.3.1 Weight Loss 38 

 4.3.2 HPLC Analysis 39 

 4.3.3 FTIR Analysis 40 

4.4 Ultrasound Assisted Enzymatic Hydrolysis of Ozone Pretreated PET 

film 

41 

 4.4.1 Weight Loss 41 

 4.4.2 HPLC Analysis 43 

 4.4.3 FTIR Analysis 44 

4.5 Chemical Hydrolysis of Untreated PET film 48 

 4.5.1 Weight Loss (WL) 49 

 4.5.2 HPLC Analysis 49 

 4.5.3 FTIR Analysis 50 

4.6 Chemical Hydrolysis of Ozone and Ultrasound Pretreated PET film 50 

 4.6.1 Weight Loss 51 

 4.6.2 HPLC Analysis 51 



viii 
 

 4.6.3 FTIR Analysis 52 

4.7 Ultrasound Assisted Chemical Hydrolysis of Untreated PET film 53 

 4.7.1 Weight Loss (WL) 53 

 4.7.2 HPLC Analysis 53 

 4.7.3 FTIR Analysis 54 

4.8 Ultrasound Assisted Chemical Hydrolysis of Ozone Pretreated PET 

film 

55 

 4.8.1 Weight Loss 55 

 4.8.2 HPLC Analysis 56 

 4.8.3 FTIR Analysis 57 

4.9 Size reduction and Chemical Hydrolysis 59 

4.10 Discussion 60 
 

CHAPTER 5: CONCLUSION & FUTURE WORK  
 

5.1 Conclusion 63 

5.2 Future Work 64 
 

REFERENCE 65 
73 

APPENDIX 77 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

LIST OF TABLES  

Table 2.1 Recent Studies on Biodegradation of PET 16 

Table 2.2 PET hydrolyzing enzymes and their source organism 19 

Table 2.3 Chemical resistance by PET 21 

Table 2.4 Biodegradation of Pretreated Plastic 22 

Table 4.1 Changes of FTIR spectrum after enzymatic hydrolysis of PET 36 

Table 4.2 HPLC recovery of PET monomers (TPA and EG) and dimers 

(BHET and MHET) after ultrasound assisted enzymatic 

hydrolysis. 

40 

Table 4.3 HPLC recovery of PET monomers and dimers after ultrasound 

assisted enzymatic hydrolysis of ozone pretreated PET films 

43 

Table 4.4 Changes of FTIR spectrum after ultrasound assisted enzymatic 

hydrolysis of ozone pretreated PET films 

48 

Table 4.5 HPLC results of filtrate after filtering out neutralized monomers. 

Recovery values are based on a summation of PET monomers and 

dimers obtained by weight of solids filtered out and HPLC values 

after chemical hydrolysis of ozone pretreated PET. 

52 

Table 4.6 HPLC results of filtrate after filtering out neutralized monomers. 

Recovery values are based on a summation of PET monomers and 

dimers obtained by weight of solids filtered out and HPLC values 

after ultrasound assisted chemical hydrolysis of ozone pretreated 

PET. 

56 

 

 

 

 

 

 

 



x 
 

 

LIST OF FIGUREURES 

 
Figure 1.1 Consumption of PET in different sectors globally 1 

Figure 1.2 Canadian plastic flows in thousands of tons per annum, 2016 2 

Figure 2.1 General structure of PET 12 

Figure 2.2 Hydrolysis Pathway of PET to TPA 18 

Figure 2.3 Formation of TPA by Chemical Hydrolysis of PET 20 

Figure 2.4 Reaction of Ozone with Aromatic Structure  23 

Figure 2.5 Ultrasonic Cavitation in Polymer 24 

Figure 3.1 Systematic Illustration of Experimental Setup 32 

Figure 4.1 Weight loss (WL) of PET films at different time of enzymatic 

hydrolysis. 

33 

Figure 4.2 FTIR spectrum of virgin PET film. 35 

Figure 4.3 FTIR spectrum of enzymatically hydrolyzed PET 36 

Figure 4.4 WL of enzymatic hydrolyzed pretreated PET films. 37 

Figure 4.5 Ultrasound Assisted Enzymatic Hydrolysis of PET Films 39 

Figure 4.6 FTIR spectra of deformation of C-O due to ultrasound assisted 

enzymatic hydrolysis of PET. 

41 

Figure 4.7 WL of ultrasound assisted enzymatic hydrolysis of ozone 

pretreated PET films (the yellow bar shows highest WL at 10 

minutes of ultra-sonication). 

42 

Figure 4.8 Statistical Analysis of Ultrasound Assisted Enzymatic 

Hydrolysis of Ozone Pretreated  PET 

42 

Figure 4.9 (a) FTIR spectra of ozone pretreated and ultrasound assisted 

enzymatically hydrolyzed PET films. 

44 

Figure 4.9 (b) FTIR changes of O-H stretch 45 

Figure 4.9 (c) FTIR changes of C=H stretch 45 

Figure 4.9 (d) FTIR changes of C=O stretch 46 

Figure 4.9 (e) FTIR changes of C=C stretch and C-H stretch 46 



xi 
 

Figure 4.9 (f) FTIR changes of C-O stretch 47 

Figure 4.10 FTIR spectrum of chemically hydrolyzed PET film 50 

Figure 4.11 WL of chemical hydrolysis of pretreated PET films. 51 

Figure 4.12 FTIR spectrum of chemically hydrolyzed pretreated PET film 53 

Figure 4.13 FTIR spectrum of ultrasound assisted chemically hydrolyzed 

PET film 

54 

Figure 4.14 Statistical analysis of ultrasound assisted chemical hydrolysis 

of ozone pretreated PET films 

55 

Figure 4.15 

(a) 

FTIR spectrum of ultrasound assisted chemically hydrolyzed 

pretreated PET film. 

57 

Figure 4.15 

(b) 

FTIR changes of O-H stretch and C=H stretch 57 

Figure 4.15 

(c) 

FTIR changes of C=O stretch 58 

Figure 4.15 

(d) 

FTIR changes of C=C stretch and C-H stretch 58 

Figure 4.15 

(e) 

FTIR changes of C-O stretch 59 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

 

List of Abbreviations  

PET Polyethylene Terephthalate 

TPA Terephthalic Acid 

EG Ethylene Glycol 

BHET Bis(2-hydroxyethyl) Terephthalate 

MHET Mono(2-hydroxyethyl) Terephthalate 

HiC Humicola insolens Cutinase 

 LDPE Low Density Polyethylene 

HDPE high density polyethylene 

PVC Polyvinyl Chloride 

PP Polypropylene 

PS Polystyrene 

PHAs Polyhydroxyalkanoates 

WL Weight Loss 

US Ultra Sound 

FTIR Fourier Transform Infrared Spectroscopy 

HPLC High-performance liquid chromatography 

UV Ultra Violet 

OSHA Occupational Safety and Health Administration 

DET Diethyle Terephthalate 

pNP p-nitrophenol 

pNPB p-nitrophenol butyrate 

 

 

 



1 
 

Chapter 1 

 

INTRODUCTION 

The expansion of various industries like construction, automotive and packaging in 

the twentieth century had led to the revolution of petroleum-based plastic products 

worldwide (Lintsen et al. 2017; Sánchez, 2019). The use of different types of plastic in day 

to day life has increased 20 folds since 1964 because of its low cost, durability, 

transparency, chemical inertness, light-weight and versatility (Eriksen et al., 2019; 

Sánchez, 2019). The global production of plastic is around 335 million tons and is expected 

to reach 1124 million tons by 2050 which indicates a four-fold increase (EMF, 2016; 

PlasticsEurope and EPRO, 2017; Young, 2019). The major plastics used in day-to-day life 

today include low density polyethylene (LDPE), high density polyethylene (HDPE), 

polyvinyl chloride (PVC), polyethylene terephthalate (PET), polypropylene (PP), 

polystyrene (PS), polyhydroxyalkanoates (PHAs), polylactic acid (PLA) etc. Among 

various petroleum-based plastic, PET has gained enormous popularity in the packaging 

industry, especially in beverage and drinking water bottles. Figure 1.1 shows the 

application of PET in different industrial sectors.  

 

Figure 1.1: Consumption of PET in different sectors globally (source: 

PlasticInsight.com, 2020) 
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A report by Global PET-Market, (2017), global PET production was 50.1 million 

tons and it was expected to reach 87.16 million tons by 2022. PET is a thermostable 

polyester which is composed of ethylene glycol (EG) and terephthalic acid (TPA) (Wei 

and Zimmermann, 2020; Liu et al., 2018; Qiu and Chen, 2020; Chen et al., 2020). In 2017, 

global PET production was 30.3 million tons (PlasticInsight.com, 2020). As regards 

specifically PET bottles, a recent report by Statista highlighted 485 billion PET bottle 

production in 2016 and predicted an increase to 583.3 billion by 2021 (Tiseo, 2021). The 

high volume of production of PET generates a great amount of post-consumer wastes in 

the environment as most of the packaging is thrown away after a single use. The high 

molecular weight of PET has made it almost impossible to biodegrade naturally thus can 

accumulate in the environment for hundreds of years (Chen et al., 2020). Eventually, these 

post-consumer PETs pose a great threat to the environment by accumulating waste in the 

ocean and prevailing as micro-plastic in the terrestrial ecosystem  (Beaumont et al., 2019; 

Qiu and Chen, 2020).  

Although PET is considered highly recyclable, the scenario is very poor in actual 

practice in most countries. The fate of the post-consumer plastics in Canada is shown in 

Figure 1.2. 

 

Figure 1.2: Canadian plastic flows in thousands of tons per annum, 2016 (Source: 

Canadian Plastic Industry, 2019). 
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Studies reported that approximately 72% of packaging waste is not recovered 

properly where 32% escapes the collection stream and 40% ends up in landfills and the 

ocean (Wei and Zimmermann, 2020; Liu et al., 2018). The Recycling Council of Ontario 

reported that only 9% of plastic waste are recycled in Canada. Difficulties in the 

segregation of different plastics are one of the major hurdles in PET recycling. Post-

consumer PET bottles that are collected from households, industry, commercials, are 

mixed with other types of plastics. When all these plastics are recycled together, they get 

contaminated and produce low quality end products (Canadian Plastic Industry, 2019). 

Chemical and physical methods including incineration, solvent extraction etc. have 

been used to get rid of this polymer waste (Gan et al. 2009; Phale et al. 2019; Kim et al., 

2019). However, these physicochemical methods have some disadvantages. They can 

introduce or convert into other harmful compounds like dioxins and furans leading to more 

complexity and are costly to implement as well (Phale et al. 2019; Kim et al., 2019). 

Over the years, research on the biodegradation of plastic is gaining much popularity 

as it has no adverse effect on the environment (Arutchelvi et al., 2008; Niaounakis, 2013; 

Tiso et al., 2020; Ghosal et al., 2016; Furukawa et al., 2019). Biodegradation can be done 

either by the microorganism or by using the hydrolase enzymes produced by the 

microorganisms. Enzymatic degradation of PET is ecofriendly and hence can play a major 

role in accomplishing sustainable development (Lorenz and Kandelbauer, 2016; Furukawa 

et al., 2019). As enzymatic hydrolysis breaks the easter bonds of the polymer chain, there 

is a high chance of recovering the monomers (Furukawa et al., 2019; Wei and 

Zimmermann, 2020; Kumar et al. 2013). 

 PET has structural similarities with cutin, a waxy polymer in plant cuticle. Thus 

cutin degrading hydrolase enzyme cutinase can also degrade polyesters (Furukawa et al., 

2019). Cutinase from many bacteria and fungus including Ideonella sakaiensis, Fusarium 

oxysporum, Fusarium solani, Thermomyces insolens, Thermobifida alba, Thermobifida 

fusca, Humicola isolens, Penicillium citrinum, and Bacillus subtilis showed PET 

degradation capability (Nimchua et al. 2008; Liebminger et al., 2009; Ronkvist et al., 2009; 

Ribitsch et al., 2011, 2012; Yoshida et al., 2016). 
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 However, the enzyme sometimes lacks the ability to cleave the polymer bonds 

efficiently. In order to make the polymer more prone to hydrolytic cleavage, different 

physical and chemical pretreatment methods have been studied. These include mechanical 

size reduction by grinding, UV irradiation and weathering effect, chemical treatment etc. 

(Esmaeili et al., 2013; Tian et al., 2017; Tribedi and Dey, 2017; Farzi et al. , 2019). These 

physicochemical pre-treatments help to loosen the polymer bonds, increase functional 

groups on the polymer surface, change the surface topography resulting in efficient 

hydrolysis. For instance, oxidation of polymer surface by ozone causes formation of active 

functional group and ultrasound causes formation of microbubbles on the surface, hence, 

the polymer become more prone to hydrolytic cleavage (Pellis et al., 2016; Tian et al., 

2017). To the best of our knowledge, ultrasound and ozone for the hydrolysis of PET have 

not been studied extensively yet. Therefore, the rationale of this study is to understand the 

effects of ozone pre-treatment and ultrasound treatment on PET followed by enzymatic and 

chemical hydrolysis. These hydrolysis processes cloud led to accumulation and recovery 

of the monomers which overcomes the difficulty of mixing different types of plastics. The 

overall aim of this study was to incorporate pretreatment such as ozone and ultrasound in 

order to improve the hydrolysis process efficiency without using harsh chemicals.  

 

The specific objectives of this study were to: 

1) Evaluate the effect of ozone and ultra-sonic pretreatment on chemical and enzymatic 

hydrolysis of PET. 

2) Evaluate the effect of a combination of ozone and ultrasonic pretreatment on chemical 

and enzymatic hydrolysis of PET. 

3) Estimate the recovery of the monomers (TPA and EG) and dimers (BHET and MHET) 

after hydrolysis of PET. 
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   Chapter 2 

LITERATURE REVIEW 

 

2.1. The problem of Plastic Pollution 

 Plastics are synthetic polymers with excellent physicochemical properties which 

result in prolonged life even in harsh environmental conditions(Shimao, 2001; Kawai, 

2010). Plastics can be classified in two broad groups, petroleum-based plastic and bio-

based plastic. Generally, petroleum based plastics are made of polymer derivatives such as 

polyethylene, polystyrene and polyvinyl. Under natural condition these plastics can persist 

in the environment for hundreds of years. With their wide range of application, plastic 

pollution has become a major (Cózar et al., 2014; Klein et al. 2015). As a consequence, 

bio-based plastics like polyhydroxy alkanoate (PHA), polyhydroxy butyrate (PHB), 

polylactic acid (PLA) etc. have emerged. These products are made from renewable biomass 

source like corn starch, vegetable fats and oils, wood hemicellulose etc. which can be 

biodegraded easily (Varsha et al. 2011). Unfortunately, all bio-based plastics are not 

degradable (Ribitsch et al., 2012). Nonetheless, it has been reported (Muller et al., 2005; 

Esmaeili et al., 2013; Tournier et al., 2020) that different types and combinations of 

physicochemical treatments have shortened the degradation period from hundreds of years 

to months. This thesis is an attempt to contribute to this effort. 

2.2. Plastic Degradation 

As mentioned earlier, plastic degradation has become a major concern as it tends 

to remain unchanged for hundreds of years after being disposed of. Plastic pollution poses 

a major threat to our environment, marine ecology, wildlife as well as human life itself. 

Generally, mechanical, thermal, photo-oxidative or microbial methods are used for plastic 

degradation.  However, there are some drawbacks and difficulties with these methods and 

need improvement. Some of these processes are described below. 
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2.2.1. Mechanical Degradation 

Mechanical strength plays an important role in the durability and reliability of 

plastics. Plastics can undergo several mechanical degradations at the time of processing, 

storage, and use. Mechanical degradation can take place because of mechanical stress such 

as shear forces, tension and/or compression (Briassoulis, 2006, 2007). Mechanical 

degradation comprises of four major routes including regrinding, adhesive pressing, 

compression molding and injection molding (Bhuvaneswari, 2018). 

2.2.1.1. Regrinding: The process is also known as powdering because plastic waste is 

ground into a powder and reused for different applications. The two methods used here 

include ball milling for grinding rigid polymer and roll milling for flexible polymer. One 

of the common applications of these powdered polymers is as fillers for the production of 

elastomers or polymer foams (Bhuvaneswari, 2018). The energy costs involved for size 

reduction of plastics are high which do not make them economically feasible. 

2.2.1.2. Adhesive pressing: It is a simple and rapid recycling process. Adhesive pressing 

is one of the oldest processes for the physical recycling of plastic foam. In this method, the 

surface of plastic particles such as polyurethane is coated using an adhesive binder and 

bonded in a heated press. The recycled products can be used as carpet underlay, production 

of mats, sports hall floor parts etc. (Bhuvaneswari, 2018). This method does extend the use 

of the plastics used, but is limited by the amount that can be reused in this way and the 

quality of new product. 

2.2.1.3. Compression molding: This is a process where the molding of plastic particles 

occurs at high temperature and pressure that helps the flow of the neat particles without the 

need for any additional binders. The end product of this procedure increases the stiffness 

which is used in automotive parts (Bhuvaneswari, 2018). Contaminants present in the 

recycled plastics obtained need to be segregated or separated, which is not an easy task. 

2.2.1.4. Injection molding: This is also a type of molding that helps the recycling of cross-

linked polymer products. Usually, this method is used for mixing different thermoplastics 

(Singh and Sharma, 2008; Yousif and Haddad, 2013; Bhuvaneswari, 2018). 
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In mechanical degradation, the segregation of plastics is not done precisely. As a result, 

there is a high chance of contamination or the mixing of different types of plastics in the 

waste which eventually decreases the quality of the recycled products (Ragaert et al. 2017). 

2.2.2. Thermal Degradation 

Molecular deterioration of plastics as a result of overheating is known as thermal 

degradation. The three reactions occur during nonoxidative thermal degradation are 

depolymerization, random chain scission and side-group elimination (Król-morkisz and 

Pielichowska, 2019). A recombination process that leads to cross-linking or cyclization 

may occur during the process (Kaczmarek et al., 2012) . In most cases, more than one 

degradation mechanism takes place simultaneously.  

In depolymerization, which is a free radical process, polymer chains are degraded 

to monomers, dimers and/or oligomers at high temperatures. It is a continuous process that 

lasts until the polymer is completely depolymerized (Król-morkisz and Pielichowska, 

2019). Thermal depolymerization is usually suitable for those polymers that are generated 

by chain polymerization such as polymethyl methacrylate (PMMA), polystyrene, and 

polyoxymethylene (POM). It is the opposite of polycondensation of polymers (Król-

morkisz and Pielichowska, 2019).  

The second mechanism in polymer thermal decomposition is random chain 

scission. This process generally follows multiple free-radical generating routes including 

initiation, propagation and termination steps (Ray and Cooney, 2012). These steps cause 

fragmentation of the polymer. The fragmented molecules differ in chain length as well as 

some volatile molecules. In the case of end-chain scission, process monomers are removed 

from the chain ends which is another possible pathway for the polymer thermal degradation 

(Król-morkisz and Pielichowska, 2019). The molecular weight and mechanical strength of 

polymer decrease drastically in chain scission processes. Random chain scission is a classic 

degradation mechanism for polyolefins (Ueno et al., 2010; Wilkie and Morgan, 2010). 

Side group elimination is the third degradation mechanism in which the bonds 

between the side groups and the main chains are broken. The free side groups can react 

with each other parts of the same molecule resulting in cyclic structures. The molecules 
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formed are usually volatile products of degradation (Ueno et al., 2010). In case of PET, 

although the glass transition temperature, Tg is 67 C for amorphous PET and 81 C for 

crystalline PET, thermal degradation can occur at extremely high temperature, 

approximately 250-400 C, by random chain scission of ester bonds. This is because the 

melting point (Tm) of PET is very high which is 260 C. The end-groups in PET are mostly 

hydroxyl-ester, hence, they form vinyl-ester end groups and carboxyl end groups after 

thermal degradation (Sarker and Rashid, 2013).  However, thermal degradation is not 

environmentally friendly. This process produces many harmful compounds that are 

eventually released into the atmosphere. Greenhouse gases like carbon dioxide, methane, 

toxic oxygen-based free radicles, heavy metals are released in this process (Webb et al., 

2013).  

2.2.3. Photo-Oxidative Degradation 

Photon energy in light causes photodegradation. Most polymers are susceptible to 

this degradation initiated by UV and visible light (Bhuvaneswari, 2018). Generally, the 

lifespan of polymers for outdoor applications is determined by the extent of exposure to 

near-UV radiation in the sun light (290-400 nm) (Singh and Sharma, 2008). 

Photodegradation changes the physical and optical properties of the plastic. Different 

polymers require different wavelengths for degradation based on the bonds present in the 

polymers. For instance, polypropylene needs around 370 nm wavelength for degrading 

whereas polyethylene requires around 300 nm (Bhuvaneswari, 2018).  

The mechanisms involved in photodegradation are expressed by the Norrish 

reactions that transform the polymers by photoionization (Norrish I) and chain scission 

(Norrish II) (Singh and Sharma, 2008). Photodegradation can conduce Norrish reactions, 

cross-linking reactions or oxidative processes (Niaounakis, 2013). Photo-oxidative 

degradation involves both oxygen and ultraviolet radiation which results in breaking of 

chemical bonds, polymer chains, produces radicals and reduces the molecular weight 

(Lucas et al., 2008). 

Photodegradation and thermal degradation can be accelerated by the use of 

oxidants. In an atmosphere containing oxygen, the onset of decomposition temperature 

decreases. The degradation rate and its mechanism may drastically change in the presence 
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of oxidants (Król-morkisz and Pielichowska, 2019). Although photo-oxidative degradation 

is environmentally friendly compared to thermal degradation, the process is very slow. It 

might take 50 years or even more to degrade polymers via this process. However, the slow 

changes of surface topography of polymer make them more susceptible to microbial 

degradation as they provide better binding site for microbial attachment.  

2.2.4. Microbial  and Enzymatic Biodegradation 

When micro-organisms bring about the breakdown of polymers, they are called 

microbial biodegradation. The steps involved are the attachment of microbes on the plastic 

surface, growth of microbes using the plastic as the carbon source (Yousif and Haddad, 

2013). When microbes attach to the surface of the polymer, they secrete enzymes that break 

down the polymer into monomers or oligomers. For aliphatic polyesters, the breakdown 

products are consumed by the micro-organisms as carbon sources for growth. The 

biopolymers are degraded into CO2 and water in aerobic conditions and CO2 and CH4 in 

the anaerobic environment (Arutchelvi et al., 2008a; Singh and Sharma, 2008). 

Although biodegradation of plastic has been reported in many research studies for 

the last few decades, under normal condition the process is very time consuming 

(Albertsson, 2004; Koutny et al., 2006; Arutchelvi et al., 2008a). The slow rate of 

degradation by micro-organisms is attributed to physical limitations, lack of functional 

group, hydrophobicity and high molecular weight of polymer(Koutny et al., 2006). The 

degradation can occur by single microbial colonies or complex microbial communities. 

The type of polymer used as a substrate can influence the structure of a microbial 

community isolated on a polymer surface during biodegradation experiments. It has been 

proven by several studies that the ability of microbes to form a biofilm structure depends 

on the physicochemical nature of the surface (Donlan, 2002; Restrepo-flórez et al. 2014). 

The organisms that are generally involved in polymer biodegradation are fungi, 

bacteria and algae (Leja and Lewandowicz, 2010). In simple words, biodegradable 

polymers are the food for these micro-organisms. The enzymes, either intracellular or 

extracellular, produced by the microbes chemically react with polymer and cause the 

polymer chain to break (Nair et al., 2017). 
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Considering all the degradation methods, microbial biodegradation seems to be a 

promising way to reduce the environmental effects of plastic wastes. The limitations of this 

method can be overcome by using genetic engineering technology that will lead to the 

generation of novel microbes and species with high efficiency of polymer degradation. 

Further details on recent research on microbial and enzymatic biodegradation of PET is 

given in a following section. The use of select microorganisms and enzymes capable of 

breaking down PET is presently the focus of research in our research group. 

2.3. Factors Affecting Plastic Biodegradation 

 There are certain attributes that determines how well and rapidly a plastic will 

biodegrade. The general factors that affect plastic biodegradation are discussed below. 

2.3.1. Hydrophobicity 

Hydrophobicity is the physical property of the polymer that makes them repelled 

by water because of the contact angle of the polymer surface with water. The higher the 

contact angle with water the more hydrophobic the polymer surface (Arutchelvi et al., 

2008b; Roy et al., 2008; Restrepo-flórez et al. 2014). The hydrophobicity of a polymer 

surface relies on the exposure, concentration, and nature of the functional groups available 

in the polymer. Hence, hydrophobicity is an important attribute in biodegradation which, 

in turn, determines the colonization of microbes on polymer surface (Restrepo-flórez et al. 

2014). It further supports the reports that hydrophilic surfaces are more susceptible to 

microbial attack (Donlan, 2002; Wang et al., 2012).  

2.3.2. Degree of crystallinity 

Crystallinity is another parameter that affects biodegradation which defines the 

degree of structural order of the polymer material. The rigidity and density of plastic 

increase with the increase in the degree of crystallinity. The polymer structure consists of 

the amorphous region and the crystalline region. The crystalline microstructures are 

surrounded by amorphous regions (Restrepo-flórez et al. 2014)). Several studies report the 

breakdown of the amorphous region before the crystalline structures due to their 

accessibility. This increases the percentage of crystallinity (Raghavan, 1992; Manzur, 
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Cuamatzi and Favela, 1997; Santo, Weitsman and Sivan, 2012). The fate of the crystalline 

region is not yet clear. However, it has been suggested that after consuming the amorphous 

region microbes attack and consume small crystal parts of polymers, increasing the 

percentage of larger crystal parts(Manzur, Cuamatzi and Favela, 1997; Restrepo-flórez, 

Bassi and Thompson, 2014). Therefore, after a certain period, the biodegradation rate 

decreases. In our study, we used an amorphous PET plastic sheet that have been used as a 

standard in many researches. 

2.3.3. Surface Topography 

The surface of plastic is usually even when molded for their respective applications. 

A change in the surface topography indicates physical degradation of the plastic. It has 

been proven that the colonization of micro-organisms on the polymer surface results in a 

change of surface topography. When micro-organisms attack the polymer, they tend to 

colonize on the surface depending on the availability of some functional groups 

(Bonhomme et al., 2003; Hadad, Geresh and Sivan, 2005; Koutny et al., 2006; Fontanella 

et al., 2010; Pramila and Ramesh, 2011; ‘Low-density polyethylene degradation by 

Pseudomonas’, 2013). The chances of microbial attack increase with the increase of the 

number of functional groups available on the polymer surface. The functional groups on 

the polymer surface can be studied by FTIR spectroscopy. The most common functional 

groups responsible for microbial attachment on polymer surfaces are esters (1740 cm-1), 

double bonds (908 cm-1), carbonyls (1715 cm-1) and vinyls (1650 cm-1) (Restrepo-flórez, 

Bassi and Thompson, 2014). 

2.3.4. Molecular Size 

The high molecular size of plastic makes them resistant to microbial attack. The 

decrease in molecular weight is a common effect after a microbial attack due to the 

ingestion of smaller molecular size chains by the microbes(Lee and Johnson, 1992; 

Yamada-onodera, Mukumoto and Katsuyaya, 2001; Hadad, Geresh and Sivan, 2005; 

Santo, Weitsman and Sivan, 2012) although some authors conclude that abiotic factors like 

UV radiation affect molecular size rather than a direct microbial attack (Fontanella et al., 

2010). For the determination of molecular weight distribution two approaches have been 

discussed in many studies which are size exclusion chromatography and rheological 
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measurements (Yamada-onodera, Mukumoto and Katsuyaya, 2001; Bonhomme et al., 

2003; Hadad, Geresh and Sivan, 2005; Koutny et al., 2006; Fontanella et al., 2010). 

2.4. Polyethylene Terephthalate (PET) 

Polyethylene terephthalate (PET) has resin code number 1 and is composed of 

ethylene glycol (EG) and terephthalic acid (TPA) (Boyle and Örmeci, 2020). It has high 

molecular weight ranging from 192.2 – 228.19 g/mol of repeat units depending on the 

crystallinity. Degree of polymerization of PET depends on the purpose of the product used 

and can be ranged from 300-3000 repeat units. Figure 2.1 shows a general structure of PET.   

 

Figure 2.1: General structure of PET 

In the food packaging system, PET is one of the most commonly used plastics that 

includes packaging of soft drinks, single-served water, sports drinks, oils, ketchup and 

salad dressing to name but a few. The main reason behind this increasing use of PET is its 

chemical and physical stability. They are lightweight, transparent and have high 

recyclability. Moreover, PET bottles provide an adequate gas barrier against carbon 

dioxide, oxygen, moisture which make them suitable liquid food packaging especially 

carbonated beverages (Ghoshal, 2019). Some of the widest use of PET bottles in liquid 

food packaging are discussed below. 

2.4.1. Packaging of Water 

Water is an essential everyday need of human life. Since the beginning of human 

culture, water has been stored and transported by vessels. Nowadays, the demand for 

filtered water leads to the popularity of the commercialization of bottled water (Ghoshal, 

2019). Light weight, handy, sleek and contoured PET bottles gained popularity among 

consumers. 
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2.4.2. Packaging of Fruit Juice 

Packaging organic juice requires sophisticated material to enhance shelf life in 

terms of the time frame of realistic usability. PET bottles are increasingly used for fruit 

juice packaging, because of having suitable properties like UV resistance, clearness, good 

oxygen barrier (Ghoshal, 2019). 

2.4.3. Packaging of Carbonated Beverages 

Carbonated beverages like soda, soft drinks contain carbonated water which causes 

pressure inside the package. Glass, metals and PET bottles can withstand such pressure. 

Unlike glass and metal, PET bottles are durable, light weight, low cost and easy to transport 

which make PETs perfect packaging material (Ghoshal, 2019).   

 Due to these vast use PET bottles are produced in huge numbers across the world 

which results in an increasing amount of waste generation. Since PET is non-

biodegradable, it can remain unchanged for hundreds of years. According to a report by 

the “Environment and Climate Change Canada, 2019” annual waste generation by the 

packaging sector is around 43% of total plastic waste. The majority of waste generation is 

occupied by the post-consumer PET bottles. To manage this huge amount of PET waste, 

Canadian Plastics Industry Association (CPIA) introduced the 5Rs hierarchy that includes 

reduce, reuse, recycle, recover, and retain. 

 2.5. Recycling of PET Bottles 

As mentioned earlier, the rate of recycling PET is considerably low. The Recycling 

Council of Ontario reported (2016) that only 9% plastics are recycled in Canada. As a 

result, the majority of the post-consumer PET ends up in landfills and oceans. Eventually, 

this building up of plastic waste in the environment poses a great risk towards all living 

beings. Difficulties in the segregation of different plastics are one of the major hurdles in 

PET recycling.  

2.5.1. Source of Contamination in Recycled PET 

Post-consumer PET bottles that are collected from households, industry, 

commercials, are mixed with other types of plastics. When all these plastics are recycled 
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together, they get contaminated and produce low quality end products (Post-consumer 

Plastic Recycling, 2019). The contaminant sources are being divided into three broad 

categories. They include the chemicals used specifically for the recycling process, input 

contaminants and the degradation products. Besides, the different color blends also 

contribute to contamination during recycling. Studies showed that in the USA 

approximately 43% of recycled PET bottles are turned into fiber whereas 25% of recycled 

PET bottles are again used as bottles (Gopalakrishna and Reddy, 2019). Because of 

contamination, PET bottles lose their quality thus recycled PET bottles cannot give the 

ubiquitous properties of the primary PET bottles. The additives present in PET bottles also 

makes the recycling process difficult (Gopalakrishna and Reddy, 2019).  

2.5.2. Regulation of PET Recycling 

 In order to recycle and recover PET bottles, different technologies and methods are 

used which follow the rules and regulations set by different countries. According to US 

regulations, the facilities that are responsible for PET recycling should follow some 

regulations to reduce contamination (Hurd, Seattle, WA, 98121). The dust exhaust and 

filtration system of grinders of PET plastics should follow the OSHA requirements. The 

Department of Transportation regulation is responsible for the transport of PET for 

recycling (Gopalakrishna and Reddy, 2019). At the time of transportation, PET bottles are 

restricted to different bales according to their type, size and density. Usually, three classes 

of PET bales are available. So called ‘soda bales’ containing only the carbonated beverage 

bottle. ‘Curbside bale’ contains custom PET containers along with soda bottles. ‘Custom 

bale’ contains only the custom PET bottles (Gopalakrishna and Reddy, 2019).  

These strict regulations and the issues related to contamination have reduced the 

recycle of PETs. If recycle streams can be broken down to monomeric or dimeric level, it 

might solve the problems associated with contamination as well as serve as a potential for 

reproducing good quality PETs from the recovered monomers and dimers. Eventually, this 

will become a sustainable option by evolving into a circular bioeconomy. 
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2.6. Current Knowledge on Microbial and Enzymatic Degradation of PET 

 As mentioned earlier, biodegradation of PET has been gaining popularity over the 

past few decades because of the process being ecofriendly. Microorganisms from PET 

accumulation environment were investigated in many research and their ability to degrade 

amorphous and low crystallinity was discovered   (Chen et al., 2020; Sim et al., 2021). 

Several bacterial and fungal microorganisms including Psudomonas species, Streptomyces 

species, Enterobacter species, actinomycetes- Thermobifida fusca, Thermobifida alba, 

thermobifida cellulosilytica, Pichia pastoris, Humicola insolens, Fusarium solani showed 

biodegradtion capability by convirting PET into its’ oligomer and monomer, Bis-2-

hydroxyethyle terephthalate (BHET) and mono-2-hydrosyethyl terephthalate (MHET) 

(Kawai, 2019). However, microbial degradation being very slow, approaches were taken 

to modify the genes of the microorganisms for improving their ability to degrade PET. The 

mutant microbes showed enhanced biodegradation in many studies.    

 Yoshida et al., (2016) discovered a new bacterial strain, Ideonella sakaiensis 201-

F6 that can use PET as its major carbon source by using a cutinase like enzyme PETase. 

This enzyme can act on MHET to release TPA and EG. They have reported conversion of 

75% PET carbon using consortia of bacteria and yeast like cells (Yoshida et al. 2016). 

Chen et al., (2020) engineered a similar PETase enzyme in yeast cell that increased enzyme 

activity by 36-fold compared to pure PETase. Furukawa et al., (2019) did mutation of 

TfCut2 with similar sequence from PETase and constructed TfCut2 G62A/F209A. The 

mutant version of enzyme could biodegrade PET ~90% within 30 hours which is the 

highest biodegradation of PET so far.  

Janczak et al. (2018) studied PET biodegradation by different rhizosphere 

microorganism in soil compost. After 6 months in compost, they recorded 20% loss of 

strength of the polymer. Because of the recalcitrant nature of PET, many researchers 

worked with the dimer oligomer such as Diethyle terephthalate (DET) and BHET for PET 

biodegradation studies. Liu et al., (2018) studied mineralization of DET by Delftia spp. 

WL-3. They found ~94% degradation of DET in 7 days. Table 2.1 summarizes recent 

studies on Microbial biodegradation of PET. 
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Table 2.1: Recent Studies on Biodegradation of PET  

Sample Pre-

treatment 

Microorganism Enzyme Result Reference 

PET strip 

25x5 mm 

UV 30 

mins, 

365nm 

Pseudomonas 

spp 

Lipase Increase in aliphatic 

index 

Vague, 2019 

PET powder Mechanica

l 

Streptomyces 

spp 

- 68% biodegradation Farzi et al.  

2019 

1.9% LC 

PET film 

- Ideonella 

sakaiensis 201-

F6 

 

PETase 

75% PET carbon 

converted into CO2 

Yoshida et 

al., 2016 

lc PET film 

(250um 

goodfellow) 

N/A Thermobifida 

fusca KW3 

TfCut2 & 

TfCut2s 

mutant 

90± 4.5% 

biodegradation 

Furukawa et 

al., 2019 

hc PET 

6mm 

N/A Pichia pastoris Engineere

d PETase 

Enzymatic activity 

increased 36-fold 

Chen et al., 

2020 

DET 

PET 

N/A Delftia spp. 

WL-3 

N/A 94% degradation of 

DET in 7 days. 

Pits and cavities on 

PET surface by 

SEM 

aLiu et al., 

2018 

PET 

Film 

Extruded 

and then 

film 

formation 

Arthrobacter 

sulfonivorans, 

Serratia 

plymuthica, 

Laccaria 

laccata, 

Clitocybe spp. 

Fungi- 

cellulose 

Bacteria- 

Lipase 

20% strength loss Janczak et 

al.,  2018 

BHET 

 

N/A Enterobacter 

spp. HY1 

Esterase- 

recombina

nt EstB 

84.4% degradation 

rate of BHET 

Qiu and 

Chen, 2020 
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Table 2.1: Recent Studies on Biodegradation of PET (continued). 

Sample Pre-

treatment 

Microorganism Enzyme Result Reference 

Lc PET N/A Consortia with 

Ideonella 

sakaiensis 201-

F6 

Mutants of 

PETase 

Degradation rate  

0.13 mg/(cm2 day) 

Taniguchi et 

al., 2019 

 

Lc PET film 

15x15 mm 

N/A Humicola 

insolens 

Pseudomonas 

mendocina 

Fusarium solani 

HiC 

PmC 

FsC 

97 % weight lossby 

HiC 

5% weight loss by 

PmC and FsC 

Ronkvist et 

al., 2009 

PET film 

10mm x 

5mm 

N/A Fusarium. solani FsC 7-fold increase in 

hydrolyzed product 

 

Eberl et al., 

2009 

PET film 

0.5 cm 

N/A Humicola 

insolens 

Candida 

antarctica lipase 

B 

HiC 

CLAB 

7.7 fold increase in 

TPA yield 

Carniel et al., 

2016 

PET film 

PET powder 

Ultrasound

-assisted 

Thermobifida 

cellulosilytica 

Thc_Cut 1 Film = 1.2-fold 

increase in TPA 

release 

Powder = 5.2-fold 

increase in TPA 

release 

Pellis et al., 

2016 

50 mg 

polyester 

powders 

N/A Thermobifida 

cellulosilytica 

Thc_Cut 1 10 times increase in 

hydrolyzed product 

Gamerith et 

al., 2017 

 

 Similarly, Qiu and Chen, (2020) found ~84% degradation of BHET by 

Enterobacter species. Figure 2.1 shows the hydrolysis pathway of PET.                                 
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Figure 2.2: Hydrolysis Pathway of PET to TPA (Modified from Qiu and Chen, 2020) 

 Some microorganism secrete the hydrolase enzyme responsible for plastic 

biodegradation. The chain of PET polymer has easter bonds hence they are susceptible to 

enzymatic hydrolysis. To date, several studies reported PET hydrolyzing activity by lipase, 

cutinase, esterase and carboxylic esterase (Ronkvist et al., 2009; Janczak et al., 2018; 

Furukawa et al., 2019; Qiu and Chen, 2020). All these enzymes basically belong to the 

serine esterase group of α/β superfamily which catalyzes the ester groups of polymer (b 

Liu et al., 2018). They have similar catalytic centre called catalytic triad of Ser160-

Asp206-His237 (Lenfant et al., 2013). These enzymes break the covalent bond resulting in 

decreasing molecular weight. 

 Enzymatic breakdown of PET got highlighted when Muller et al., (2005) 

discovered PET hydrolyzing enzyme TfH from Thermoibifida fusca that resulted in ~14% 

weight loss in 1 week and ~50% of weight loss in 3 weeks. Ronkvist et al., (2009) reported 

weight loss of lc PET film of 97% by HiC and 5% by PmC and FsC after 96 hours. From 

HPLC analysis they found the presence of TPA only. In another study done by Carniel et 

al., (2016) showed combination of HiC and CLAB enzymes from Humicola insolens and 

Candida antarctica lipase B increased TPA release by7.7-fold. An interesting study by 

Pellis et al., (2016) reported 1.2-fold increase of TPA release when enzymatic hydrolysis 
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was carried out in presence of ultra-sonication. Table 2.2 highlights PET hydrolyzing 

enzymes and their source organism. 

Table 2.2: PET hydrolyzing enzymes and their source organism (adapted from Kawai et 

al., 2020). 

Name Source 
GenBank 

Accession 

Sequence 

Identity (%) 

lipase Streptomyces exfoliatus  62.8 

BTA-1 (TfH) Thermobifida fusca DSM43793 AJ810119.1 100 

Tfu_0882 Thermobifida fusca YX AAZ54920.1 93.1 

Tfu_0883 (T. fusca WSH03-11) AAZ54921.1 100 

TfCut1 Thermobifida fusca KW3 CBY05529.1 94.3 

Est1 Thermobifida alba BAI99230.2 83.1 

Est119 AHK119 BAK48590.1 82.4 

Thc_Cut1 Thermobifida ADV92526.1 100 

Thc_Cut2 cellulosilytica DSM44535 ADV92527.1 93.1 

Thf42_Cut1 Thermobifida fusca DSM44342 ADV92528.1 97.7 

Tha_Cut1 Thermobifida alba DSM43185 ADV92525.1 98.5 

Thh_Est T. halotolerans DSM44931 AFA45122.1 75.1 

TfaXE Thermobifida fusca NTU22 ADM47605.1 98.9 

LC-cutinase  leaf-branch compost AEV21261.1 56.6 

Cut1 Thermobifida fusca NRRL JN129499.1 93.1 

Cut2 B-8184 JN129500.1 100 

Tcur1278 Thermonospora curvata ACY96861.1 61.9 

Tcur0390 DSM43183 ACY95991.1 61.9 

Cut190 S. viridis AHK190 AB728484 65.6 

PETase Ideonella Sakaiensis 201-F6 GAP38373.1 51.7 

EstB Enterobacter sp. HY1 MK681894 99.5 

BsEstB Bacillus subtilis 4P3-11 ADH43200.1 N/A 

HiC Humicula insulens 4OYY N/A 
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Usually, cutinase activity is measured by the release of pNP from model substrate 

p-nitrophenol butyrate (pNPB) in order to compare polymer hydrolysis reaction. However, 

Heumann et al., (2006) showed there is no correlation of cutinase hydrolyzing activity of 

PET with its enzymatic activity on pNPB.  

While increasing studies about enzymatic hydrolysis of PET exist, knowledge gaps 

and lack of standard analytical method cause trouble in understanding the full extent of the 

degradation. 

 

2.7. Chemical Hydrolysis of PET 

 Chemical hydrolysis of PET has been investigated by several research as there is 

potential for recovering monomers like enzymatic hydrolysis. Studies by Oku et al., 

(1996); Lopez-Fonseca et al., (2009); Rahman and East (2009) reported very high 

temperature and longer reaction time of chemical hydrolysis that makes the process costly. 

However, Bhogle and Pandit, (2018)  investigated alkaline hydrolysis in presence of ultra-

sonication in aqueous medium and non-aqueous medium. In non-aqueous medium the 

weight loss oh PET was 42% weight loss whereas in aqueous medium it was 20% because 

non-aqueous NaOH gives better affinity to the PET surface. In this process, firstly, sodium 

hydroxide (NaOH) cleaves ester bond of PET making disodium terephthalate (Na2TA) and 

EG. Secondly, by using concentrated sulphuric acid (H2SO4), Na2TA is neutralized and 

precipitated TPA as white solid. Figure 2.2 shows the mechanism of action of PET 

hydrolysis by NaOH. 

 

 

 
Figure 2.3: Formation of TPA by Chemical Hydrolysis of PET (Bhogle and Pandit, 

2018). 
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   Similar study was performed by Paliwal and Mungray, (2013) in presence of phase 

transfer catalyst and yielded 99% PET conversion to TPA. Ultrasound causes microbubbles 

on PET surface. This mechanical phenomenon increases hydrolysis. 

 Kamaruzamal (2014) studied solubility of PET in different solvent. Table 2.3 

summarizes the resistance of PET from different chemicals.  

 

Table 2.3: Chemical resistance by PET (Kamaruzamal, 2014). 

Chemicals Resistance by PET 

Concentrated acids Good 

Diluted acids Good 

Alkali Poor 

Alcohols Good 

Aromatic hydrocarbons Fair 

Halogens Good 

Ketons Good 

Greases and Oils Good 

 

2.8. Pretreatment of PET for Hydrolysis 

Physicochemical pretreatments showed an increase in biodegradability in other 

plastics. In the case of PET plastic, several micro-organisms show enzymatic hydrolysis 

effects but the rate of degradation is not up to the mark. So, pre-treatment of PET plastic 

can enhance its biodegradability Bhuvaneswari, (2018) Pre-treatment with ozone followed 

by ultrasound assistance during hydrolysis will cause change in hydrophobicity, 

crystallinity, surface topography of the PET by introducing oxygen to the surface. As a 

result, carbonyl (CO) and hydroxyl (HO) group will form on PET surface (Boyle and 

Örmeci, 2020). Eventually, these will lead to the increase of functional groups on the PET 

surface and will make a favorable environment for hydrolysis  (Bhuvaneswari, 2018) Table 

2.4 summarizes the effects of pre-treatment on plastic biodegradation.  

 



22 
 

Table 2.4: Biodegradation of Pretreated Plastics. 

Plastic 
Pre-

treatment 
Microorganism 

Biodegradation 

without 

pretreatment 

Biodegradation 

with 

pretreatment 

Reference 

 

LDPE 

films 

UV 

irradiated 

Lysinibacillus 

xylanilyticus 

and Aspergillus 

niger 

15.8% 

(weight loss) 
29.5% 

Esmaeili et 

al., 2013 

LDPE 

films 
UV treated 

Soil microcosms 

 

3.5% 

(gravimetric 

loss) 

6% 
Tribedi and 

Dey, 2017 

PS films Ozonation 
Penicillium 

variabile 

0.010 ± 0.003% 

mineralisation 
0.15 ± 0.03% 

Tian et al., 

2017 

PET 

powder 
Mechanical 

Streptomyces 

spp 
N/A 

~70% weight 

loss 

Farzi et al., 

2019 

PET 

powder 
Mechanical 

Ideonella 

sakaiensis strain 

201-F6 

N/A 
90% de-

polymerization 

Tournier et 

al., 2020 

 

PET film Thermal 
Thermobifida 

fusca 
N/A 

49.7% weight 

loss 

Muller et 

al., 2005 

 

2.8.1. Ozone Pretreatment 

Ozonation had been used in wastewater treatment and polycyclic aromatic 

hydrocarbon (PAH) remediation in soil (Nam and Kukor, 2000; Wu et al., 2021). 

Naphthalene, fluorine, phenanthrene and anthracene were efficiently removed from PAH 

contaminated soil using ozonation treatment followed by biodegradation (Nam and Kukor, 

2000). Ozone can successfully oxidize organic contaminant in wastewater as it is a very 

strong oxidant (Nam and Kukor, 2000; Mohan et al., 2019). Because the presence of a very 

unstable “nascent” oxygen atom in ozone molecule makes them highly reactive. Ozone 

transforms organic compounds into oxygenated intermediates either by direct oxidation or 

by generating hydroxyl radical. Hence, these intermediates become more soluble and 
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degradable (Nam and Kukor, 2000; Wu et al., 2021). Figure 2.4 shows general reaction of 

ozone with aromatic structure. 

 

Figure 2.4: Reaction of Ozone with Aromatic Structure  

Tian et al., (2017) used ozone pretreatment for polystyrene mineralization by 

Penicillium variabile. They reported that ozonation formed active groups such as carbonyl 

groups on the polymer chain. However, in plastic degradation little research have been 

done incorporating ozonation process. To the best of our knowledge, our study is the first 

to analyze effects of ozone pretreatment for PET hydrolysis.   

2.8.2. Ultrasound Treatment 

Like sound wave, ultrasound is an elastic wave. But ultrasonic wave has higher 

frequency and low wave length, thus differ from sound wave propagation (Vikulina and 

Vikulin, 2018). Ultrasonication has been used in wastewater treatment and degradation of 

organic chemicals (Okitsu et al., 2009). Usually, ultrasound causes formation of micro-

cavities in compounds. These cavities generate shock waves by increased temperature and 

pressure inside the bubbles.  As a results, breakage of weak bonds like hydrogen bonds and 

van der Walls bonds occurs (Pellis et al., 2016; Vikulina and Vikulin, 2018). Figure 2.5 

shows general mechanism of ultrasonic cavitation on polymer. 
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Figure 2.5: Ultrasonic Cavitation in Polymer  

Chakraborty et al., (2004) studied ultrasonic degradation of polybutadiene. 

Degradation of polypropylene and low-density polyethylene under acoustic induced 

cavitation had been reported by Desai et al., (2008). Ultrasonic degradation of 

carboxymethyl cellulose and polyvinyl alcohol had been studied by Mohod and Gogate 

(2011). Daraboina and Madras, (2009) reported ultrasonic degradation of poly alkyl 

methacrylate. All these studies positively support application of ultrasound in 

depolymerization. As mentioned earlier, Ultrasound also helped in both chemical 

hydrolysis and enzymatic hydrolysis of PET (Paliwal and Mungray, 2013; Pellis et al., 

2016; Bhogle and Pandit, 2018).   

From these studies we realized that there is considerable potential for improving 

effects of ozone and ultrasonic pretreatment for PET hydrolysis.  
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Chapter 3 

MATERIALS & METHODS 

3.1. Materials 

The materials used throughout this study and the sources from which they were obtained 

are given in the following section.  

3.1.1. Enzyme Catalyst  

 Immobilized HiC (cutinase, NZ51032, Novozymes, listed as Lipase by the 

supplier) was purchased from Cedarlane, Canada. The source organism for the cutinase 

enzyme was Humicola insolens. The enzyme was absorbed into polymethacrylate 

divinylbenzene copolymer beads and the particle size ranges from 250 to 700 μm. This was 

the only enzyme available commercially in the market at this time.   

3.1.2. Plastic  

 Transparent, amorphous polyethylene terephthalate (PET) film (thickness 0.25 

mm) was purchased from Goodfellow (Goodfellow Cambridge Limited, England). 

3.1.3. Chemicals 

 p-Nitrophenyl Butyrate (CAS: 2635-84-9) was purchased from Cederlane. 

Analytical grade Bis-2-hydroxyethyle terephthalate (BHET), terephthalic acid (TPA) and 

ethylene glycol (EG) were purchased from Sigma-Aldrich.   

3.1.4. Ozone Generator 

 For ozone pretreatment, Titan 1 Ozone Generator (WD8) was purchased form 

Longevity Ozone Resources Inc. Compressed Oxygen (UN 1072, class 2) obtained from 

Praxair was used as feed gas for the ozone generator.  

3.1.5. Ultrasonic Bath 

 CPX Series Digital Ultrasonic Bath (40 Hz, CAT: 15-337-419, Fisherbrand™) 

from Fisher Scientific available in our lab was used for ultrasound treatment.     

3.2. Methods 

 The enzyme assays and analytical assay methods used in this study are as follows. 
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3.2.1. Enzyme Activity Assay 

 Enzymatic activity assay for cutinase biocatalyst used in this study was adapted 

from (Carniel et al., 2016). Esterase activity of HiC was measured using 

spectrophotometric analysis of production of p-Nitro phenol (pNP) from the substrate p-

Nitrophenyl butyrate (pNPB).  A standard curve of optical density vs. pNP concentration 

in tris-HCl was prepared for concentration ranging from 1 to 25 mM (See Appendix B). 

The equation derived from the standard curve using excel graph was used to calculate 

esterase activity later. The equation with the best fit is-  

y = 5.7569x + 0.0894…………………………(1)  

Where, y is absorbance and x is concentration of pNP in solution. 

For the assay, 10 μL of 100 mM pNPB substrate were added to different centrifuge 

tubes and 1 mL of 0.2 M Tris-HCl buffer (pH8) was added to each tubes. Then 5 mg of 

immobilized cutinase enzyme was added to each tube and the reaction was allowed to occur 

for 8 minutes at 350 rpm. The temperature was 60C ± 2C. After 8 minutes, the solution 

was taken out using a micropipette into a microplate and absorbance of the solution was 

measured. The solutions were diluted few times to get absorbance in the range 0.2-0.8. 

Absorbance was measured by BioRad xMark microplate spectrophotometer at 405nm and 

the concentration of the released pNP was calculated using the equation relating absorption 

to concentration using the standard curve. Finally, enzymatic activity and specific activity 

of HiC on pNPB substrate was calculated using equation 2 and 3.  The experiment was 

done in triplicate. 

Enzyme activity, U (m mol/min) = 
𝐶∗𝑑𝑓∗𝑣

𝑡
  …………………….. (2) 

Where, C is concentration, df is dilution factor, v is total volume and t is time. 

Specific activity (U/g) = 
𝑈

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑒𝑛𝑧𝑦𝑚𝑒
 ………………………. (3) 

3.2.2. Ozone Production Analysis 

Ozone density test was done to evaluate the production of ozone by the ozone 

generator. A 125 mL Erlenmeyer flask was flushed with pure oxygen gas for 5 minutes. A 
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50 mL syringe was 1st weighed empty and then with oxygen filled in it. Then the flask was 

flushed with ozone gas for 5 minutes at a flow rate of 6 L/min and ozone dosage of 3 g/hr, 

6 g/hr and 12 g/hr. For each dosage, the syringe was weighed with ozone. Then density, 

mass fraction and ozone production per hour was calculated (See Appendix C) and 

compared with the data sheet provided by the company.   

3.2.3. Pretreatment of PET film 

 The following pretreatments were done to PET films prior to the hydrolysis assays. 

3.2.3.1. Ozone  

 This method was adapted from Tian et al., (2017). For pre-treatment, 1x5 inch 

polyethylene terephthalate (PET) films were washed with diluted soap water and rinsed 

with mili Q water 3 times and then air dried over-night. The films were then hung with 

clips and placed inside the ozone chamber that was placed inside the fume hood and 

connected to the ozone generator. Oxygen from a cylinder was fed to the ozone generator 

at a flow rate of 6 L/min and 9 L/min in separate experiment. Ozone flow was interrupted 

after 0 hour, 2 hours and 4 hours for each flow rate. After reaction, the samples were 

removed, washed with methanol and air dried over-night before being used for the 

hydrolysis experiments. 

3.2.3.2. Ultrasound  

For ultrasound pretreatment, 1x1 inch PET films were weighed in electric balance and 

was put into 50 mL beaker. 15 mL methanol was added to the beaker and an ultrasound 

horn (Branson sonifier, 20 kHz) was dipped into the beaker 1 cm below the upper liquid 

level. The treatment was carried out for total 30 minutes with specific condition (70% 

amplitude with pulse of 1s ON and 1s OFF). So, the total reaction time was 15 minutes. 

After reaction, the samples were removed from the solution and air dried over-night for the 

hydrolysis process. 
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3.2.3.3. Size Reduction 

1x1 PET films were mechanically grinded to get smaller particle size. A grinder 

from our lab was used to grind the films into powders. Then they were separated using 

sieves of different mesh size ranging from 250 μm to 1 mm.  

3.2.4. Hydrolysis of PET films 

 Both enzymatic and chemical hydrolysis of PET films were done for virgin 

(untreated) PET and pretreated PET. The methods for both experiments are as follows. 

3.2.4.1 Enzymatic Hydrolysis  

This method was adapted from (Carniel et al., 2016). Each 1x1 inch (~185 mg) 

PET films/ pretreated PET films were weighed and taken in Erlenmeyer flasks and 10 mL 

of 0.1 M tris-HCl was added to each of them. Then 4 g of immobilized cutinase enzyme 

per gram of PET samples was added into the flasks. The flasks were placed inside the rotary 

shaker at 60C ± 2C under agitation of 100 rpm for 48 hours. After 48 hours PET films were 

removed from the buffer and washed with tris-HCl. The films were then kept in -80 freezer 

before freeze drying (-53C, 0.200 mBar, 8h). Enzymes were separated from the liquid 

solution by vacuum filtration and the liquid solution was stored in the freezer for HPLC 

analysis. Blank reactions were performed with treated PET film under the same reaction 

condition but without the enzyme. The final weight of the samples was measured and 

gravimetric weight loss was calculated. All the experiments were done in triplicate. 

3.2.4.2. Chemical Hydrolysis 

 This method was adapted from Bhogle et al, 2018. In each 125 mL Erlenmeyer 

flask 30 mL 2.5 M NaOH/ methanol solution and two 1x1 inch (~370 mg) PET 

films/pretreated PET films were added. The flasks were placed inside the rotary shaker at 

50C ± 2C under agitation of 100 rpm for 1 hour. After 1 hour 30 mL of chilled distilled 

H2O was added in each flask to stop the reaction. Unreacted PET was separated by vacuum 

filtration, washed with distilled H2O and then dried in hot air oven at 100 C for an hour.  

The final weight of the samples was measured and gravimetric weight loss was 

calculated. Pure H2SO4 was added to the liquid solution until the pH dropped to 7. The 
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white precipitation was separated by vacuum filtration and washed again with distilled 

water to get the undissolved precipitation which is known to be TPA. It was the dried in 

hot air oven at 100 C for an hour. The rest of the liquid solutions were kept in the freezer 

for HPLC analysis. Finally, the weight of the recovered TPA was measured and was added 

to the HPLC recovery to get the total recovery of monomers and dimers. All the 

experiments were done in triplicate. 

3.2.5. Ultrasound Assisted Hydrolysis of PET film 

 Ultrasonic energy was incorporated during the enzymatic hydrolysis and chemical 

hydrolysis reaction. Both virgin PET and ozone pretreated PET were used in these 

experiments. The methods for both experiments are as follows. 

3.2.5.1. Ultrasound Assisted Enzymatic Hydrolysis 

 This method was adapted from Pellis et al., (2016). Each 1x1 inch (~185 mg) PET 

film/ozone pre-treated PET film was weighed and taken in Erlenmeyer flasks and 10 mL 

of 0.1 M tris-HCl was added to each of them. Then 4 g of immobilized cutinase enzyme 

per gram of PET samples was added into the flasks. The flasks were placed inside the 

ultrasonic bath for 0 to 15 minutes at 60C ± 2C. The flasks were removed from ultrasonic 

bath in intervals of 5 minutes and kept inside the rotary shaker at 60C ± 2C under agitation 

of 100 rpm for 48 hours. After 48 hours PET films were removed from the buffer and 

washed with tris-HCl. The films were then kept in -80 freezer before freeze drying (-53C, 

0.200 mBar, 8h). Enzymes were separated from the liquid solution by vacuum filtration 

and the liquid solution was stored in the freezer for HPLC analysis. Blank reactions were 

performed with/without treated PET film under the same reaction condition but without 

the enzyme. The final weight of the samples was measured and gravimetric weight loss 

was calculated. All the experiments were done in triplicate. 

3.2.5.2. Ultrasound Assisted Chemical Hydrolysis 

 This method was adapted from Bhogle et al, 2018. In each 125 mL Erlenmeyer 

flask 30 mL 2.5 M NaOH/ methanol solution and two 1x1 inch (~370 mg) PET films/ozone 

pretreated PET films were added. The flasks were placed inside the ultrasonic bath for 1 

hour at 50C ± 2C. After 1 hour 30 mL of chilled distilled H2O was added in each flask to 
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stop the reaction. Unreacted PET was separated by vacuum filtration, washed with distilled 

H2O and then dried in hot air oven at 100 C for an hour. Blank reaction was performed in 

same reaction condition in a rotary shaker outside ultrasonic bath. 

 The final weight of the samples was measured and gravimetric weight loss was 

calculated. Pure H2SO4 was added to the liquid solution until the pH dropped to 7. The 

white precipitation was separated by vacuum filtration and washed again with distilled 

water to get the undissolved precipitation which is known to be TPA. It was the dried in 

hot air oven at 100 C for an hour. The rest of the liquid solutions were kept in the freezer 

for HPLC analysis. Finally, the weight of the recovered TPA was measured and was added 

to the HPLC recovery to get the total recovery of monomers and dimers. All the 

experiments were done in triplicate. 

3.2.6. Chemical Hydrolysis of PET Powders 

 This method was similar to the chemical hydrolysis of PET films as mentioned in 

the last section. Here the difference was adding 370 mg of 250 μm PET powders to the 2.5 

M NaOH/ methanol solution instead of 1x1 inche PET films.  

3.2.7. HPLC Analysis 

For TPA, EG, BHET and MHET quantification by HPLC, an Agilent system 

available in our lab was used. The column used was Agilent Poroshell 120, EC-C18 (2.7 

μm, 4.6x100 mm) with a guard column. Detection was done using an UV detector at 299 

nm. For standard curve a mixture in the range of 1 to 100 mM of standard EG, TPA, and 

BHET were prepared in tris-HCl buffer (pH 8). 50 mM of each solute was prepared and 

run through the HPLC to get the retention time. MHET was obtained by hydrolysis of 

BHET using HiC. Then 4genzyme/gBHET enzyme was added to each centrifuge tube with 0.5 

mL BHET solution and 0.7 mL of Tris-HCl.  

The temperature was 60C ± 2C and the agitation was 180 rpm for 30 minutes. Then 

enzymes were separated and solution was run through HPLC. BHET, MHET and TPA was 

measured by using Poroshell 120 EC-C18 column. Injection volume was 1 μL at a flow 

rate of 0.75 mL/min and temperature was 40±0.8 C. Total time was 18 minutes including 

7 minutes’ post time. A gradient mixture of 0.1% (v/v) formic acid, methanol and water 
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was used as mobile phase at a ratio from 1:5:94 to 1:90:9. UV detection was done at 299 

nm. 

3.2.8. FTIR Analysis 

 FTIR analysis was performed using a Bruker Tensor 37 Fourier Transform Infrared 

Spectrophotometer available in the Lakehead University Center for Analytical Services 

(LUCAS) was used for this study. All spectra were obtained in the 600-4000 cm-1 spectral 

region with 32 scans and 4 cm-1 of resolution. 

3.2.9. Data Analysis 

 For statistical analysis, both one-way and two-way ANOVA were performed 

followed by pairwise post-hoc Tukey test for all the replicates using a software (JASP, 

version 0.14.1.0). The level of significance was set at p<0.05.  
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3.2.10. Experimental Design 

 The overall experimental design is summarized in the figure 3.1. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.1: Systematic Illustration of Experimental Setup 
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Chapter 4 

RESULTS & DISCUSSION 

In this chapter, the results of all experiments carried out in the course of this study 

will be presented and discussed. The schematic in figure 3.1 provides and overview of the 

sequence of experiments conducted. All hydrolysis experiments were followed by 

estimation of weight loss, HPLC analysis and FTIR analysis of the PET sample. 

 

4.1. Enzymatic Hydrolysis of Untreated PET film 

 The experiments initially carried out to check the effects of enzyme treatment on 

the original untreated PET films. The result and discussion of enzymatic hydrolysis of 

virgin PET films included measurement of weight loss, HPLC and FTIR analysis. 

4.1.1. Weight loss 

 After 48 hours of enzymatic hydrolysis of 1x1 inch PET films by immobilized HiC, 

approximately 6.67% weight loss (WL) was found (figure 4.1). In order to investigate 

effect of time on PET hydrolysis by HiC activity, the process was further continued for 96 

hours and 120 hours respectively. All experiments were carried out in triplicate. Figure 4.1 

shows the WL of untreated PET films after different period of enzymatic hydrolysis. 

 

Figure 4.1: Weight loss (WL) of PET films at different time of enzymatic hydrolysis. 
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Although the observation of Figure 4.1 shows that there is slight increase of weight loss 

even after 120 hours, the result was not found to be significant. For further analyzing the 

effect of time on enzymatic hydrolysis, enzymatic hydrolysis was carried on for 60 days, 

which gave 24.76% WL was recorded. 

Based on the preliminary results, a decision was made to carry on enzymatic 

hydrolysis for 48 hours for further experiments. As mentioned earlier Muller et al., (2005) 

reported 14% WL of PET by TfH in 1 week and 50% of WL in 3 weeks. Similarly, 

Ronkvist et al., (2009) reported WL 97% of lcPET film by HiC and 5% WL by FsC and 

PmC. However, in our study, the low WL is due to the use of immobilized HiC. As our 

enzyme was absorbed in polymer beads, the solid-solid reaction resulted in slower 

enzymatic hydrolysis process.  

 

4.1.2. HPLC Analysis 

After 48 hours of enzymatic hydrolysis of virgin PET, more dimers were found 

than the monomers. The monomers recovered were 0.5% TPA and 0.15% EG from the 

initial weight of the PET samples. On the other hand, the dimers recovered were 3.27% 

BHET and 2.63% MHET. This result was in agreement with previous studies (Carniel et 

al., 2016; Castro et al., 2017) that enzymatic hydrolysis of virgin PET generates more 

dimers than monomers. The total recovery of the monomers and dimers was 6.55% which 

is close to the WL 6.67%. There were no monomers or dimers present in the blank 

experiment that co-relates with our results obtained from the FTIR and WL. However, after 

60 days of treatment the monomers and dimers recovery were 1.07% TPA, 3.81% EG, 

0.71% BHET, 0.84% MHET. So, the total HPLC recovery was 6.42% which is a lot lower 

than the WL found. This could be due to drying up the buffer during the hydrolysis process.     

 

4.1.3. FTIR Analysis 

The major bonds present in polyethylene terephthalate (PET) are carboxylic C=O, 

aromatic and aliphatic C-H, hydroxyl O-H, ester C-O, C=C and phenyl ring. In the 

untreated PET film absorption peaks detected at 725 cm-1 and 873 cm-1 are for C-H bending 

mode of vibration out of plane of benzene ring (Prasad et al., 2011; El-Saftawy et al., 2014; 
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Ioakeimidis et al., 2016; Dubelley et al., 2017; Fadel et al., 2020). Peak at 956 cm-1 is for 

C-O stretching mode of trans conformation of ethylene glycol (EG) (Dubelley et al., 2017). 

Peak at 1016 cm-1 refers to C-H bending mode of vibration in plane of benzene ring 

(Prasad, et al., 2011; Dubelley et al., 2017; Fadel et al., 2020).  

Peak at 1093 cm-1 and 1242 cm-1 are related to C-O stretching of aliphatic and 

aromatic ester respectively  (Prasad et al., 2011; El-Saftawy et al., 2014; Ioakeimidis et al., 

2016; Dubelley et al., 2017). Strong peak at 1714 cm-1 is related to C=O stretching of 

carboxylic ester bond (Prasad et al., 2011; Siddiqui et al., 2012; El-Saftawy et al., 2014; 

Ioakeimidis et al., 2016; Dubelley et al., 2017). Peak at 1407 cm-1 refers to aromatic C=C 

stretching and peak at 1575 cm-1 refers to C-H stretch of aromatic phenyl   ( Siddiqui et al., 

2012; El-Saftawy et al., 2014). Absorption peak at 1452 cm-1 is for C-H bending of EG ( 

Siddiqui et al., 2012; Dubelley et al., 2017). Peaks at 2858 cm-1 and 2931 cm-1 refers to 

C=H stretching mode of vibration (Prasad et al., 2011; Fadel et al., 2020). Figure 4.2 shows 

a typical FTIR spectrum of virgin PET. 

 

 

Figure 4.2: FTIR spectrum of virgin PET film. 
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H stretch of hydroxyl group  (El-Saftawy et al., 2014). Appearance of O-H group is a likely 

phenomenon in hydrolysis process. Figure 4.3 shows the changes of the FTIR spectrum of 

PET after enzymatic hydrolysis. 

 

Figure 4.3: FTIR spectrum of enzymatically hydrolyzed PET 
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Table 4.1: Changes of FTIR spectrum after enzymatic hydrolysis of PET. 
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Considering the small changes in the PET films as a result of enzymatic treatment, 

it is clear that the PET films need to be pretreated before it can be hydrolyzed to its 

monomeric form. 

4.2. Enzymatic Hydrolysis of Ozone and Ultrasound Pretreated PET films 

 The result and discussion of enzymatic hydrolysis of both ozone and ultrasound 

pretreated PET films are given in the following sections.  

4.2.1. Weight Loss 

 The WL of ultrasound pretreated PET films were found to be approximately 6.62% 

after 48 h. This result was similar to the result of virgin PET films (without pretreatment). 

Ultra-sonication causes formation of micro-cavities on polymer surface and damages the 

polymer by breaking weak bonds like hydrogen bonds and van der Walls bonds. As a result, 

more functional groups get exposed which help in enzymatic degradation. In our case, such 

results were not obtained as the HiC was in immobilized form. This might hinder the 

binding of active site of the enzyme with the available functional group. Figure 4.4 shows 

comparison between WL of enzymatically hydrolyzed untreated PET films and pretreated 

PET films. 

 

Figure 4.4: WL of enzymatic hydrolyzed pretreated PET films. 
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Similarly, when ozone pretreated PET films were used for enzymatic hydrolysis, 

the WL was 7% after 48 h. In this step no significant result was obtained after incorporation 

pretreatment prior to enzymatic hydrolysis.   

4.2.2. FTIR Analysis 

 There was no change found in the FTIR spectrum after ozone and ultrasound 

pretreatment. However, when these pretreated films were enzymatically hydrolyzed, 

changes were observed in the spectrum. The result obtained was similar to the result from 

enzymatic hydrolysis of untreated PET. This indicated that the alteration of the bonds was 

due to the enzymatic hydrolysis. 

As the results from FTIR and WL were not significant, we decided to use ultra-

sonication during the start of enzymatic hydrolysis as suggested by Pellis et al., (2016). 

4.3. Ultrasound Assisted Enzymatic Hydrolysis of PET film 

 In the next set of experiments, the PET samples were taken in the ultrasonic unit 

along with the enzyme catalyst. This is different from previous set of experiments where 

samples were pretreated by ultrasound before enzyme treatment. The combination of 

sonication during hydrolysis is termed as “ultrasound-assisted” hydrolysis for the rest of 

this thesis. The result and discussion of ultrasound assisted enzymatic hydrolysis of PET 

films are given in the following sections.  

4.3.1. Weight Loss 

In this experiment we found that 10 minutes of ultra-sonication gave the best result 

which was 9.5% WL after 48h. The use of ultrasound during hydrolysis process 

significantly increased enzymatic activity which was in agreement with the study by Pellis 

et al., (2016). The energy generated by ultrasound reduces the activation energy and the 

enthalpy of the enzymatic reaction, hence increased enzymatic hydrolysis was observed 

even when the sonication was stopped after a certain time and the enzymatic reaction was 

continued for 48 hours (Malani et al., 2014). Figure 4.5 shows almost 1.3-fold increase of 

WL when compared to enzymatic hydrolysis alone. A decrease of WL was observed when 

longer time of ultra-sonication was applied. This could be because of partial inactivation 
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of the enzyme as a result of mechanical and chemical effects arising from the cavity formed 

by ultrasound. 

 At the beginning of sonication, high intensity ultrasonic wave creates small 

vacuum bubbles containing low pressure in the molecule. After reaching a certain volume, 

the bubbles can no longer absorb energy. As a result, these micro-cavities generate shock 

waves from extreme heat and pressure which helps in breaking the weak bonds as mention 

earlier. At the same time, this energy negatively affects the enzyme activity on prolonged 

exposure (He et al., 2006; Pellis et al., 2016). So, it can be concluded that ultrasound 

assistance increases enzymatic hydrolysis of PET, but ultra-sonication should be done for 

limited periods as it can affect enzyme activity as well.  

Figure 4.5 shows WL of PET films after addition of different times of sonication 

during enzymatic hydrolysis. 

 

Figure 4.5: Ultrasound Assisted Enzymatic Hydrolysis of PET Films 
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ultrasound assistance. Table 4.2 depicts the percent of monomer and dimers recovered after 

using different sonication time during enzymatic hydrolysis 

Table 4.2: HPLC recovery of PET monomers (TPA and EG) and dimers (BHET and 

MHET) after ultrasound assisted enzymatic hydrolysis. 

Ultra-

sonication 

(minutes) 

 

% TPA 

 

% EG 

 

% BHET 

 

% 

MHET 

 

% Total 

Recovery 

 

% weight 

Loss 

5 1.02 0.3 2.6 2.11 6.03 6.19 

10 2.99 0.89 2.9 2.4 9.18 9.5 

15 0.72 0.22 2.55 2.05 5.54 5.75 

 

 It can be observed that increasing the sonication time decreased the TPA recovery. 

This again supports our explanation given earlier that the increased shock waves generated 

from the micro-cavity during sonication results in inactivation of the enzyme. Hence, the 

conversion of monomer decreased.  

4.3.3. FTIR Analysis 

 To investigate the effect of ultrasound further, different time ranging from 5 

minutes to 15 minutes of ultra-sonication was applied during the enzymatic hydrolysis 

process. The changes in FTIR spectrum were similar to previous experiments. The 

additional peak that we found here was at 1089 cm-1 which can be assigned to C-O stretch 

of ester according to the report by Dubelley et al., (2017). This peak was the deformation 

of original C-O peak at 1093 cm-1. The deformed stretch might be resulted from the micro-

cavities formed during sonication and contributed to hydrolysis process. The slight 

decrease of transmittance also suggested that the bond might be hydrolyzed by HiC. Figure 

4.6 shows the deformation of C-O stretch due to ultrasound treatment during enzymatic 

reaction. 
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Figure 4.6: FTIR spectra of deformation of C-O due to ultrasound assisted enzymatic 

hydrolysis of PET. 

 Finally, we decided to investigate the additional effect of ultrasound on enzymatic 

hydrolysis of ozone pretreated PET films.   
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WL.  
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But, from the Figure 4.7 it is evident that 10 minutes of ultra-sonication enhanced 

enzymatic degradation of the PET film in all combination of ozone dosage.  

 

Figure 4.7: WL of ultrasound assisted enzymatic hydrolysis of ozone pretreated PET 

films (the yellow bar shows highest WL at 10 minutes of ultra-sonication; blue bar shows 

WL after 5 minutes of sonication; green bar shows WL after 15 minutes of sonication for 

different ozone dosage). 

Figure 4.8 summarizes the statistical analysis of different combination of ozone 

pretreatment with ultrasound assisted enzymatic hydrolysis of PET films. 

 

Figure 4.8: Statistical Analysis of Ultrasound Assisted Enzymatic Hydrolysis of Ozone 

Pretreated  PET (lower case different letters mean significant difference in the ozone dose. Upper 

case different letters mean significant difference in the ultrasound treatment). 
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From this analysis, it was observed that increasing ozone exposure beyond 10 

minutes decreases the enzyme activity. The reasonable explanation could be the increase 

of ozone fused benzene rings inhibits hydrolysis. Similar phenomenon was found in Nam 

and Kukor (2000) and Olewnik et al. (2013) where increased ozonation caused formation 

of charge transfer between phenyl rings and ozone molecule that resulted in tightening the 

ring structure of organic polymer.  

4.4.2. HPLC Analysis 

Similar to ultrasound assisted enzymatic hydrolysis of untreated PET, 10 minutes 

of sonication during enzymatic hydrolysis gave the best result in terms of monomer 

recovery of ozone pretreated PET films. Moreover, different amount of monomers and 

dimers were recovered from different ozone dosage. It was observed that 1.5g ozone/ 

sample resulted in 4.92% of TPA recovery which was the highest TPA recovered among 

all the experiments with enzymatic hydrolysis. Table 4.3 shows all the data of monomers 

and dimers recovery from different combination of ozone dosage and ultra-sonication time. 

Table 4.3: HPLC recovery of PET monomers and dimers after ultrasound assisted 

enzymatic hydrolysis of ozone pretreated PET films. 

O3 - 

Ultra-

sonication 

(g-mins) 

 

% TPA 

 

% EG 

 

% BHET 

 

% 

MHET 

 

% Total 

Recovery 

 

% 

Weight 

Loss 

0.75-5 1.88 0.56 2.24 2.1 6.78 6.88 

0.75-10 3.29 0.99 1.62 1.47 7.37 8.01 

0.75-15 1.89 0.56 2.26 1.92 6.63 7.16 

1.5-5 2.79 0.84 1.81 1.28 6.72 6.88 

1.5-10 4.92 1.47 0.77 0.54 7.7 8.26 

1.5-15 3.02 0.9 1.78 1.17 6.87 7.16 

3-5 1.11 0.33 1.41 1.17 4.02 4.16 

3-10 3.18 0.96 1.64 1.35 7.13 8.15 

3-15 1.29 0.39 1.68 1.3 4.66 6.86 
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Statistical analysis showed that both combination of 0.75g ozone per sample with 

10 minutes ultra-sonication and 1.5 g ozone per sample with 10 minutes ultra-sonication 

gave significant result. We decided to take 1.5 g ozone/sample with 10 minutes ultra-

sonication as our best result as the monomer recovery is the highest at this combination.  

4.4.3. FTIR Analysis 

FTIR analysis showed different alteration of peaks in ozone pretreated and 

ultrasound assisted enzymatic hydrolysis of PET. From figure 4.9 overall changes of the 

spectrum was observed. Figure 4.9 (a, b, c, d, e and f) shows alteration of different 

functional groups of ozone pretreated and ultrasound assisted enzymatic hydrolysis of PET. 

 

 

Figure 4.9 (a) 
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Figure 4.9 (b) 

 

Figure 4.9 (c) 
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Figure 4.9 (d) 

 

Figure 4.9 (e) 
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Figure 4.9 (f) 

Figure 4.9: a) FTIR spectra of ozone pretreated and ultrasound assisted enzymatically 

hydrolyzed PET films. b) changes of O-H stretch c) changes of C=H stretch d) changes of 

C=O stretch e) changes of C=C stretch and C-H stretch & f) changes of C-O stretch. 

 It was observed from figure 4.9 that ozone pretreatment followed by additional 

ultra-sonication during enzymatic hydrolysis significantly affected the bonds. 

Disappearance of C=H stretch at 2858 cm-1 indicated they had undergone complete 

hydrolysis. New O-H peak at 3184 and 3186 cm-1 indicated addition of O-H group during 

hydrolysis. Similarly, changes of peak position, decrease and increase of their intensity 

were associated with hydrolysis. Disappearance of C-H stretch at 1454 cm-1 was also 

found.  Table 7 summarizes the alterations of functional groups found in this experiment. 

Most alterations were associated with enzymatic hydrolysis. However, shift of O-H at 3186 

cm-1, disappearance of C-H at 1454 cm-1 and shift of C-O at 1238 cm-1 could be due to 

ozone pretreatment as these changes were not observed in previous experiments. The 

possible explanation cloud be formation of ozonated intermediate compounds that aided in 

the enzymatic hydrolysis process (Olewnik et al. 2013). The changes are summarized in 

table 4.4. 
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Table 4.4: Changes of FTIR spectrum after ultrasound assisted enzymatic 

hydrolysis of ozone pretreated PET films. 

Functional group and Bonds Original Peak 

(cm-1) 

Shift in Peak (cm-1) 

Hydroxyl  O-H stretch none 3184 & 3186 

Easter C=O stretch 1714 1716 

Methylene non-sym 

& sym 

C=H stretch 2858 & 2931 Disappearance of 

2858 and change of 

2931 to 2972 

Phenyl Aromatic  C-H stretch 1454 & 1575 Disappearance of 

1454 and change of 

1575 to 1554 and 

increased intensity 

Aliphatic & 

Aromatic 

C-O stretch 1093 & 1242 Decrease of intensity 

and shit at 1091 & 

1240-1238 

 

From analyzing all the results, we can conclude that ultrasound assistance during 

enzymatic hydrolysis enhance the reaction. Although, pretreated samples did not show 

significant difference in enzymatic hydrolysis, it certainly increased the monomer recovery 

when combined with ultra-sonication. Moreover, the percent of WL is close to the percent 

of total recovery suggesting that the PET that was hydrolyzed, was successfully converting 

into monomers and dimers. Hence, there is no reason to worry about generating micro 

plastics or short chain polymer. Recovering monomers was our initial aim so that we can 

use the process in circular bio-economy. However, the low breakdown rates and long 

reaction time required, prompted us to look for alternative chemically catalyzed methods. 

4.5. Chemical Hydrolysis of Untreated PET film 

 In this method, methanolic NaOH solution was used for chemical hydrolysis. As 

mentioned earlier, PET has poor resistance against alkaline hence NaOH could be used as 
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chemical catalyst (Bhogle and Pandit, 2018). The result and discussion of chemical 

hydrolysis of virgin PET films are given in the following sections.   

4.5.1. Weight Loss  

 Unlike enzymatic hydrolysis, chemical hydrolysis showed better results in terms of 

WL of PET films. One hour of chemical hydrolysis by methanolic NaOH solution resulted 

in 49% WL of PET films which is many times higher than the results obtained by enzyme 

hydrolysis. 

 Bhogle and Pandit (2018), Paliwal and Mungray (2013) reported significant 

improvement of hydrolysis while using non-aqueous hydrolysis rather than aqueous 

hydrolysis. Both of the studies reported that using non-aqueous solution decreased reaction 

time and temperature. For alkaline hydrolysis, PET should be able to react with NaOH 

molecule which is easily soluble in aqueous solution. Although PET has poor resistivity 

against alkaline (Kamaruzamal, 2014), the highly polar water molecule associated with 

NaOH in aqueous solution is repelled at the hydrophobic PET surface. The polarity of 

methanol is 0.762 compared to water which is 1. As methanol is less polar than water, it 

faces less repellent force. Hence, methanolic NaOH resulted in better hydrolysis (Bhogle 

and Pandit, 2018).   

4.5.2. HPLC Analysis 

 As observed from HPLC analysis, monomer recovery seemed was much lower. 

Although peaks of all the monomers and dimers were found by HPLC the quantity obtained 

was lower than expected. 0.13% TPA, 0.46% EG, 1.77% BHET and 1.57% MHET was 

obtained from HPLC recovery. So, the HPLC recovery was 3.93% and the total recovery 

was 16.94% including TPA precipitated by adding H2SO4. There was a significant 

difference between the WL and total recovery. The possible explanation could be PET 

underwent partial hydrolysis during chemical hydrolysis process. The partially hydrolyzed 

molecules were solubilized in the chemical solution thus did not break down to monomers 

and dimers completely. Apparently, the generated partially hydrolyzed molecules were 

filtered out before HPLC analysis as there were no additional peaks found in the HPLC 

results besides the monomeric and dimeric compounds. 
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4.5.3. FTIR Analysis 

 Like enzymatically hydrolyzed PET films, chemically hydrolyzed PET showed 

alteration of similar bonds in FTIR spectrum. However, the peak intensity of few bonds 

differed from the enzymatic hydrolyzed PET. A new peak at 3195 cm-1 was found that is 

assigned for O-H stretch but the peak intensity was very low. Peaks at 2856 and 2925 cm-

1 for both symmetrical and asymmetrical stretch of C=H disappeared in chemical 

hydrolysis. C=O stretch at 1714 cm1 and C-O stretch at 1093 and 1242 cm-1 decreased in 

intensity significantly. Besides, peak at 1093 cm-1 also shifted to 1095 cm-1. Increased 

intensity and shift of peak position from 1575 cm-1 to 1554 cm-1 was also observed. These 

alterations indicated chemical hydrolysis of PET. Figure 4.10 shows the changes in FTIR 

spectrum of PET after chemical hydrolysis. 

 

 

Figure 4.10: FTIR spectrum of chemically hydrolyzed PET film.  

4.6. Chemical Hydrolysis of Ozone and Ultrasound Pretreated PET film 

 Next, the effects of chemical hydrolysis on ozone and ultrasound pretreated PET 

films were investigated. The results obtained from this experiment are discussed in the 

following section.  
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4.6.1. Weight Loss 

 Ultrasonic pretreatment followed by chemical hydrolysis resulted in 60% WL 

whereas, in ozone pretreatment followed by chemical hydrolysis 65% WL was recorded. 

Both results showed increase of WL in the pretreated films compared to the virgin PET 

(without any pretreatment). These results are in agreement with the explanation given 

earlier in the enzymatic section. The micro-cavity formed during ultra-sonication and the 

oxidation of PET by ozone enhanced chemical hydrolysis in their respective experiments. 

This result also indicates why enzymatic hydrolysis did not show any significant 

difference.  It was the immobilized form of enzyme that hindered the hydrolysis earlier. 

Figure 4.11 depicts the effect of WL after using pretreatments. 

 

 

Figure 4.11: WL of chemical hydrolysis of pretreated PET films. 

4.6.2. HPLC Analysis 

 Similar to the WL results, more monomers and dimers were recovered when ozone 

and ultrasound pretreated PET films underwent chemical hydrolysis. For ultrasound 

pretreatment, the HPLC recovery was 13.54% including 0.73% TPA, 6.98% EG, 0.81% 

BHET and 5.02% MHET. The total recovery was 38.3% including 24.76% TPA 

precipitated by adding H2SO4. The effect of ozone dosage also affected monomer recovery. 
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It was found when samples were exposed to 1.5 g ozone, they generated more monomers 

after chemical hydrolysis. 3.02% TPA, 3.02% EG, 0.78% BHET and 1.09% MHET was 

obtained from HPLC recovery. So the HPLC recovery was 7.91% and the total recovery 

was 44.53% including TPA precipitated by adding H2SO4. This also indicated that ozone 

pretreatment resulted in better TPA precipitation after chemical hydrolysis. Furthermore, 

the difference between total recovery and WL also decreased compared to untreated PET 

films. This suggested that, oxidation by ozone helped in better hydrolysis of PET. Hence 

higher amount of high molecular weight PET was solubilized. Table 4.5 summarizes the 

HPLC recovery of monomers and dimers from chemical hydrolysis of ozone (different 

dosage) pretreated films. 

Table 4.5: HPLC results of filtrate after filtering out neutralized monomers. Recovery 

values are based on a summation of PET monomers and dimers obtained by weight of 

solids filtered out and HPLC values after chemical hydrolysis of ozone pretreated PET. 

 

Ozon

e (g) 

% 

TP

A 

% 

EG 

% 

BHE

T 

% 

MHE

T 

% 

HPLC 

Recover

y 

% 
Weight of 

washed 
filtrate after 
neutralizatio

n 

%  

Total 

Recover

y 

% 

Weigh

t Loss 

0.75 1.95 6.93 3.37 3.06 15.32 5.23 20.55 65.43 

1.5 3.02 10.6

9 

0.78 1.09 15.59 28.94 44.53 52.97 

3 1.52 5.4 2.34 2.4 11.73 21.85 33.59 55.62 

 

4.6.3. FTIR Analysis 

 From hydrolysis of ozone pretreated PET films, the appearance of O-H stretch was 

found at 3197 cm-1. Disappearance of C=H stretch at 2856 and 2925 cm-1 was observed. 

Aromatic C=C stretch was shifted from 1407 to 1409 cm-1 which is likely because of ozone 

pretreatment. Shift of C-O stretch at 1244 cm-1 was also observed. The rest changes were 

similar to chemical hydrolysis of untreated PET films. Figure 4.12 shows the changes in 

FTIR spectrum of pretreated PET after chemical hydrolysis. 
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Figure 4.12: FTIR spectrum of chemically hydrolyzed pretreated PET film 

4.7. Ultrasound Assisted Chemical Hydrolysis of Untreated PET film 

 In order to investigate the additional effect of ultrasound similar to the enzymatic 

study, sonication was incorporated during chemical hydrolysis of PET. Here, by ultrasound 

assisted we mean sonication and hydrolysis was done together. The results obtained from 

this experiment are discussed in the following section.  

4.7.1. Weight Loss (WL) 

 68% WL was observed in ultrasound assisted chemical hydrolysis of PET. 

Similarly, higher rate of surface reaction was report by Paliwal and Mungray (2013) and  

Bhogle and Pandit (2018) while using ultrasound assistance during hydrolysis. The use of 

higher concentration of NaOH (2.5M) facilitates the process as it serves as nuclei for cavity 

formation during ultra-sonication. 

4.7.2. HPLC Analysis 

 Although the additional effect of ultrasound on chemical hydrolysis of PET 

increased the WL, the HPLC result did not come as expected. 0.07% TPA, 0.26% EG, 

5.79% BHET and 5.01% MHET was obtained from HPLC recovery. So the HPLC 
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recovery of all the monomers and dimers were 11.13% and the total recovery was 25.2% 

including the TPA precipitated by addition of H2SO4. It was observed that ultrasound 

assistance during chemical hydrolysis increased the dimer generation but complete 

hydrolysis to monomer was poor. Besides, significant difference between the WL and total 

recovery was recorded co-relating our explanation given earlier in the chemical hydrolysis 

of untreated PET. 

4.7.3. FTIR Analysis 

 Ultrasound assisted chemical hydrolysis of PET showed bond alteration similar to 

previous experiment. One significant change was found for C=O stretch which decreased 

intensity drastically and also shifted the peak position from 1714 to 1716 cm-1. In both 

chemical hydrolysis of untreated and pretreated PET, the only change found for C=O 

stretch was decreased intensity. Similarly, for C-O stretch, even further shift of peaks was 

observed. Peak at 1093 cm-1shifted to 1091 cm-1 and 1242 cm-1 shifted to 1259 cm-1. Figure 

4.13 shows the changes in FTIR spectrum of ultrasound assisted chemical hydrolysis of 

PET film. 

 

Figure 4.13: FTIR spectrum of ultrasound assisted chemically hydrolyzed PET film. 
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4.8. Ultrasound Assisted Chemical Hydrolysis of Ozone Pretreated PET film: 

 Finally, a combination experiment of ozone pretreatment and ultrasound assistance 

on chemical hydrolysis of PET film was investigated. The results obtained from this 

experiment are discussed in the following section. 

4.8.1. Weight Loss 

 The combined effect of ultrasound during chemical hydrolysis showed ~80% WL. 

Figure 4.14 shows the effect of ozone dosage on ultrasound assisted chemical hydrolysis. 

It was observed that the dosage of ozone had no significant impact on the process. Figure 

4.14 summarizes the statistical analysis of WL of ultrasound assisted chemical hydrolysis 

of ozone pretreated PET films. 

 

Figure 4.14: Statistical analysis of ultrasound assisted chemical hydrolysis of ozone 

pretreated PET films (lower case different letters mean significant difference in the ozone 

dose. Upper case different letters mean significant difference in the ultrasound assistance) 

 From figure 4.14 it was observed that there was no significant difference of ultra-

sonication on ozone pretreated PET films. However, there was a significant difference 

when 0.75gozone/sample was used for chemical hydrolysis.  

a,A
67.86

a,A
79.93

a,A
79.92

a,A
77.63

b,B
49.84

a,A
65.43

b,B
52.97

b,AB
55.62

0
10
20
30
40
50
60
70
80
90

0 gozone/sample 0.75 gozone/sample1.5 gozone/sample 3 gozone/sample

W
eg

ht
 lo

ss
 %

w ultrasound
w/o ultrasound



56 
 

4.8.2. HPLC Analysis 

 Combination of ultrasound energy during chemical hydrolysis of ozone pretreated 

PET increased the monomer recovery compared to ultrasound aided chemical hydrolysis 

of untreated PET. From this experiment we found 1.5 g ozone dosage per sample gave the 

significant result. The increase of monomers was most like due to ozone pretreatment that 

co-relates our result from the chemical hydrolysis of ozone pretreated film. Table 4.6 

summarizes the HPLC recovery of monomers and dimers from chemical hydrolysis of 

ozone (different dosage) pretreated films. 

 Table 4.6: HPLC results of filtrate after filtering out neutralized monomers. 

Recovery values are based on a summation of PET monomers and dimers obtained by 

weight of solids filtered out and HPLC values after ultrasound assisted chemical hydrolysis 

of ozone pretreated PET. 

 

Ozon

e (g) 

% 

TP

A 

% 

EG 

% 

BHE

T 

% 

MHE

T 

% 

HPLC 

Recover

y 

% 
Weight of 

washed 
filtrate after 
neutralizatio

n 

% 

Total 

Recover

y 

% 

Weigh

t Loss 

0.75 3.29 11.6

8 

1.92 2.3 19.19 0.16 19.3 79.93 

1.5 5.55 19.7

1 

0.82 1.37 27.45 25.44 52.9 79.92 

3 3.33 11.8

1 

2.19 2.19 19.92 37.86 57.78 77.63 

  

 Unlike enzymatic hydrolysis, the higher difference between WL and total recovery 

was found in most of the chemical hydrolysis process. Although Bhogle and Pandit (2018) 

reported significant amount of TPA recovery after ultrasound assisted chemical hydrolysis, 

our results did not show such significance. But it showed a little improved recovery than 

without ultrasound assisted chemical hydrolysis. Even though, ultrasound assistance 
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increased WL, monomer recovery was quite low compared to WL. This indicated that PET 

was not hydrolyzed completely rather solubilized.  

4.8.3. FTIR Analysis 

 Significant changes were observed in the FTIR spectrum of ultrasound assisted 

chemical hydrolysis of ozone pretreated PET films. Figure 4.15 shows the overall changes 

in FTIR spectrum and the changes in each bond.  

 

Figure 4.15 (a) 

 

Figure 4.15 (b) 
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Figure 4.15 (c) 

 

Figure 4.15 (d) 
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Figure 4.15 (e)  

Figure 4.15: a) FTIR spectrum of ultrasound assisted chemically hydrolyzed pretreated 

PET film. b) changes of O-H stretch and C=H stretch c) changes of C=O stretch d) 

changes of C=C stretch and C-H stretch & e) changes of C-O stretch. 

 From these spectrums it was observed that the intensity of a few bonds decreased 

drastically. Disappearance of C=H stretch at 2858 cm-1 and 2925 cm-1 indicated they had 

undergone complete hydrolysis. New O-H peak at 3193 cm-1 indicated addition of O-H 

group during hydrolysis. Similarly, changes of peak position, decrease and increase of their 

intensity were associated with hydrolysis. Disappearance of C-H stretch at 1452 cm-1 was 

also found. Most alterations were associated with chemical hydrolysis. However, further 

decreased intensity of C-O stretch and their shift from 1093 to 1097-1107 cm-1 and from 

1242 to 1272-1276 cm-1 could be due to ozone pretreatment as these changes were not 

observed in previous experiments. Similarly, C=O stretch at 1714 cm-1 shifted to 1716 cm-

1 with drastic decrease of intensity. The possible explanation cloud be formation of 

ozonated intermediate compounds that aided in the chemical hydrolysis process similar to 

enzymatic hydrolysis (Olewnik et al. 2013). 

4.9. Size reduction and Chemical Hydrolysis 

As the chemical hydrolysis gave such high breakdown, it was decided to investigate 
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PET samples were broken down to particle size 250μm using a grinder. Then the powdered 

samples were used for chemical hydrolysis. This resulted in 90% WL of the initial samples. 

However, no peak was found in HPLC for monomers and dimers. The precipitation found 

after neutralization by acid was 44.38% of initial weight of the sample which is known to 

be TPA by Bhogle and Pandit (2018). Despite giving better WL compared to the films, 

mechanical grinding pretreatment is a very tedious process and consumes a lot of time and 

energy and may not be economically feasible (Kim et al., 2019). However, we can 

conclude here that physicochemical pretreatments enhance the hydrolysis of PET. 

4.10. Discussion 

 Enzymatic hydrolysis by HiC of untreated PET after 48 hours gave 6.6% WL and 

6.55% monomers and dimers of which 5.9% were the dimers, BHET and MHET. As 

mentioned before in a study by Ronkvist et al., (2009) 5% WL was reported after 96 hours 

using FsC and PmC. Besides, they reported 97% WL of lcPET by HiC after 96 hours. In 

our study, WL increased to 24.76% after 60 days of hydrolysis. The slower hydrolysis rate 

is because we used an immobilized form of the enzyme. The solid-solid reaction rate is 

expectedly very slow. In order to increase the hydrolysis rate, ozone and ultrasounds 

pretreated films were used for enzymatic hydrolysis. Here the overall WL of the films did 

not increase significantly. This could be because of insufficient ultra-sonication or 

oxidation by ozone.  

Subsequently, the effect of ultra-sonication was investigated during enzymatic 

hydrolysis as ultra-sonication increases enzymatic activity by reducing activation energy 

and enthalpy of the enzyme reaction (Pellis et al., 2016). The WL increased 1.3-fold as 

well as 5.9-fold increase was found in TPA recovery. The result suggested increase in HiC 

activity as more TPA and EG were convertd from BHET and MHET. This result is in 

agreement with a study by Pellis et al., (2016) where they reported 5.2-fold increase of 

TPA release by incorporating ultrasound during enzymatic hydrolysis by the enzyme 

Thc_cut 1. Moreover, it was found that ultrasonication beyond 10 minutes decreased the 

WL. As mentioned earlier, the extreame shock waves from micro cavities during sonication 

inactivates the enzyme and hence reduces conversion.  
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Furthermore, effect of ultra-sonication during enzymatic hydrolysis of ozone 

pretreated films was investigated in our study as well. 9.8-fold increase of TPA recovery 

was recorded. This suggested that, combination of ozone pretreatment and ultra-sonication 

during enzymatic hydrolysis gave the highest monomer recovery in enzymatic hydrolysis. 

This is because the oxidation by ozone caused increase of carbonyl groups that are prone 

to hydrolytic cleavage by HiC and the sonication both increased the enzyme activity and 

made microbubbles on the surface of PET. To the best of our knowledge, our study is the 

first report of the combined effect of ozone and ultrasound on PET hydrolysis by HiC.  

Later on, chemical catalyst was used for PET hydrolysis as this process was faster  

than enzymatic hydrolysis. An one hour of chemical hydrolysis of PET in methanolic 

NaOH gave 49% WL. This result is in agreement with Bhogle and Pandit (2018) who 

reported 42% WL of PET in non-aqueous alkaline hydrolysis. The total recovery from the 

coversion was 16.94% including 3.93% from HPLC recovery and 13.01% from 

precipitated TPA after nutralization. As mentioned earlier, the generated short chain 

polyolefins which were dissolved in the solution was not recovered. WL increased to 60% 

in ultrasound pretreated films and 65% in ozone pretreated films. this result suggested that 

ultrasound and ozone can increase PET hydrolysis. In case of monomer recovery, 38.3% 

was recovered when ultrasound pretreated films were used and 44.53% when ozone 

pretreated films were used for chemical hydrolysis. These result again proved that 

ultrasound and ozone pretreatments increased the functional groups, weekened the bonds 

of the PET films thus increased the hydrolysis. 

Ultrasound assistance during chemical hydrolysis of untreated PET increased WL 

from 49% to 68% WL. This is similar to the report of Bhogle and Pandit (2018) who 

reported WL increase from 42% to 53%. But the total recovery was 25.2% including 

11.13% HPLC recovery and 14.07% TPA precipitated after neutralization. This is because 

ultra-sonication helped in solubilizing the PET by forming short chain polyolefins, but the 

monomer recovery was lower. The WL and total monomer recovery increased to 80% and 

52.9% respectively when ultra-sonication was used during chemical hydrolysis of ozone 

pretreated films. In this case the monomer recovery increased 2-fold from ultrasound 

assisted chemical hydrolysis of untreated film and 3.1-fold from chemical hydrolysis of 
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untreated film. Similar to enzymatic hydrolysis, combination of ozone pretreatment and 

ultra-sonication during chemical hydrolysis gave the highest WL and monomer recovery 

suggestion the positive effect of the combination in PET hydrolysis. 

The highest WL of 90% was found using chemical hydrolysis of PET powders 

(250μ particle size) and 44.38% total recover of monomers and dimers were obtaind. 

However, mechanical size reduction precess is not energy efficient as 20 minutes of 

grinding generates approximately 100 mg of PET powder and  consumes 7.5 Kw/hr energy. 

Moreover, the difference between WL and total recovey is high in most cases of chemical 

hydrolysis. This suggested the presensce of shorter chain polyolefins that might become 

difficult to recover.  

One conclusion we can draw from this is that enhancing chemical hydrolysis 

process we can either incorporate ozone pretreatment or ultrasound assistance. Further 

studies are need to make the processes more economical and implementable on a larger 

scale. The basic aim of this work was to obtain monomers or dimers, so that they can be 

reused. Our results showed that while the enzymatic hydrolysis produced mostly 

monomers or dimers, the total yields were low. This was attributed to use of immobilized 

enzymes with an insoluble substrate. On the other hand, chemical hydrolysis resulted in 

higher weight loss (more than 90%) but the number of monomers and dimers produced 

were small. From a practical point of view, we suggest that an enzyme in solution that can 

react with the plastic surface (enhanced by pretreatment) and produces monomers in higher 

quantities faster. The products can be separated and reused for PET production and will be 

the best environmentally sustainable way forward.   
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Chapter 5 

 

CONCLUSION & FUTURE WORK 

5.1. Conclusion 

Given its positive characteristics for a wide variety of application, it is very unlikely 

that the use of PET will be reduced substantially in the near future. The problems associated 

with post-consumer PET waste disposal cannot be solved overnight as the same 

characteristics make them difficult to degrade. Hence, these wastes will increase at an 

alarming rate posing a great threat to our environment and ecosystem. In addition, these 

wastes are contributing to generate Micro-plastics and Nano-plastics that are eventually 

consumed by us through food and water. To close loop of end of life of PETs and other 

plastics, implementing circular bio-economy seems a sustainable approach. This will 

require monomer recovery as an essential target. The recovered monomers have the 

potential to be reused to make the plastic again. This route will solve the difficulties of 

contamination associated with other recycling options. 

 Physicochemical pretreatment will certainly enhance degradation of polymers to 

its monomeric form. Ultrasonication and ozone pretreatment evaluated in this study 

enhanced the hydrolysis of PET and resulted in the accumulation and recovery of the 

monomers TPA and EG. The following conclusion can be drawn from our study- 

• Enzymatic hydrolysis of untreated PET using immobilized HiC yielded lower 

degradation and lower TPA and EG recovery. 

• Ultra-sonication for 10 minutes during enzymatic hydrolysis increases the activity 

of the process and increased breakdown of PET. 

• Although a combination of ozone pretreatment followed by ultrasound treatment 

during enzymatic hydrolysis did not increase the WL of PET, it certainly increased 

TPA and EG recovery. 

• In enzymatic hydrolysis the overall degradation is very slow compared to chemical 

hydrolysis, but the recovery of TPA and EG was great. This can be attributed to the 

immobilized form of the enzyme used. 
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• Chemical hydrolysis has significantly higher degradation rate than enzymatic 

hydrolysis.  

• In terms of degradation of PET, ozone pretreatment (1.5g) followed by ultrasound 

assisted treatment during chemical hydrolysis gave 80% weight loss and 52.9% 

total recovery of monomers and dimers. 

• Chemical hydrolysis leads to breakdown to monomers, dimers, and other shorter 

chain polymers. The difference between weight loss and total monomer-dimer 

quantities are accounted for by the short chain solubilized PET. 

• Among pretreatments, size reduction prior to chemical hydrolysis gave the highest 

degradation which is ~90%. However, the process is not cost effective. 

5.2. Future Work 

 To implement green route for PET degradation, more works need to focus on 

improving the enzymatic hydrolysis processes. The production of cutinase enzyme can be 

enhanced by using different inducers. Use of these enzymes in soluble form, will certainly 

result in higher biodegradation. Besides, the micro-organism can be genetically modified 

to produce more cutinase that can breakdown the pretreated PET into TPA and EG and 

increase the recovery yield. Further studies are required for the separation of the monomers 

obtained after hydrolysis. Furthermore, work needs to be done to remake PET using the 

recovered monomers in order to a circular bio-economy. 
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APPENDIX  

A. Calculations 

• Weight loss (WL), % = (𝑊𝑝𝑒𝑡,𝑖,𝑠−𝑊𝑝𝑒𝑡,𝑓,𝑠

𝑊𝑝𝑒𝑡,𝑖,𝑠
) × 100  

Where Wpet,i is initial weight of pre-treated PET film before hydrolysis and Wpet,f 

is the final weight of PET film after hydrolysis. 

• % monomer/dimer = ( 𝑚𝑎𝑠𝑠 (𝑚𝑔)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)
) × 100 

• Total Recovery = (𝐻𝑃𝐿𝐶 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦+𝑇𝑃𝐴 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)
) × 100 

B. pNP Standard curve 

 

Figure: Standard curve of p-Nitrophenol at 405nm. 
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C. Ozone production 

Mass with Syringe 
(g)  

Mass 
(g)  

Density 
(g/L)  

Mass 
fraction  

Ozone 
production 

(g/min) 

Ozone 
Production 

(g/h) 

Production 
rate from 
data sheet 

(g/h) 

Oxygen  27.4383 0.0582 1.21200426     
Setting 
2, 
Ozone 27.4391 0.059 1.22866411 0.005498282 0.040533249 2.431994937 2.6 
Setting 
5, 
Ozone  27.4394 0.0593 1.23491155 0.015120275 0.112033213 6.721992786 6.25 
Setting 
9, 
Ozone  27.4401 0.06 1.24948892 0.024742268 0.185491139 11.12946836 11.8 
Dry 
empty  27.3801       

D. Retention time in HPLC: 

o TPA = 8.8 min 

o EG = 11.5 min 

o BHET = 10.9 min  

o MHET = 7.3 min 

E. HPLC spectrum 

• HPLC peaks are shown in the following figures. 
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Figure a: Standard PET monomers and dimers 

 

 
Figure b: Hydrolysis of untreated PET 

 
Figure c: Combined ozone and ultrasound treated Hydrolyzed PET 

 

 

 

 

 


