MECHANICAL PROPERTIES OF UNDERUTILIZED SPECIES IN NORTHWESTERN ONTARIO

By

Lauren Chisholm

FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO

April 2021

MECHANICAL PROPERTIES OF UNDERUTILIZED SPECIES IN NORTHWESTERN ONTARIO

By

Lauren Chisholm

An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Science in Forestry

Faculty of Natural Resources Management

Lakehead University

April 2021

Major Advisor

Second Reader

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for the HBScF degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection.

This thesis is made available by my authority solely for the purpose of private study and research and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority.

Signature: _____

Date: _____April 16, 2021_____

ii

A CAUTION TO THE READER

This HBScF thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry.

The reader should be aware that the opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or Lakehead University.

iii

ABSTRACT

Chisholm, L. G. 2020. Mechanical properties of underutilized species in Northwestern Ontario. 48 Pp.

Keywords: Bioeconomy, *Betula papyrifera*, forest industry, *Larix laricina*, mechanical properties, Ontario, *Picea glauca*, *Populus tremuloides*, property testing, wood products.

Increasing the utilization of available wood supply is becoming more important in sustaining market demand and developing future opportunities for Ontario's wood products in the growing bioeconomy. The objective of this paper is to determine the mechanical properties of commonly underutilized species in Ontario to identify possible commodity and value-added uses. In this study, four boreal species were measured to determine the basic mechanical properties. Each species was tested for modulus of elasticity (MOE), modulus of rupture (MOR), density and compression characteristics. The results concluded in statistically accurate MOR, MOE, density and compression values for each of the four species. Possible market opportunities and value-added uses for the species are viable.

TABLE OF CONTENTS

ABSTRACT	iv
FIGURES	vi
TABLES	vii
ACKNOWLEDGMENTS	viii
1.0 INTRODUCTION AND OBJECTIVE	1
1.1 OBJECTIVE	2
2.0 LITERATURE REVIEW	2
2.1 SPECIES	2
2.2 WOOD PROPERTIES	4
2.3 UTILIZATION	8
2.4 VALUE-ADDED	9
3.0 METHODS AND MATERIALS	12
4.0 RESULTS	13
4.1 MODULUS OF RUPTURE / MODULUS OF ELASTICITY	7 14
4.2 COMPRESSION PARALLEL TO THE GRAIN	14
4.3 DENSITY	14
5.0 DISCUSSION	14
6.0 CONCLUSION	15
LITERATURE CITED	16
APPENDIX	18

FIGURES

Figure 1.0. Canada's GDP per cubic meter of fibre in comparison to other countries.	14
Figure 4.1.0. Boxplot and whisker distribution of the MOR results for each of the four study species.	19
Figure 4.1.1. Mean MOR per study species.	19
Figure 4.1.2. Boxplot and whisker distribution of the MOE results for the four study species.	20
Figure 4.1.3. Mean MOE per study species.	20
Figure 4.2.0. Boxplot and whisker distribution of the Max Load (kPa) for each of the four study species.	26
Figure 4.2.1. Mean Max Load per study species.	27
Figure 4.2.2. Boxplot and whisker distribution of the Max Stress (MPa) for the four study species.	27
Figure 4.2.3. Mean Max Stress per study species.	28
Figure 4.3.0. Boxplot and whisker distribution of the densities of each study species at 12% moisture content.	33
Figure 4.3.1. Mean densities per study species at 12% moisture content.	34
Figure 4.3.2. Boxplot and whisker distribution of the density results when dry for the four study species.	34
Figure 4.3.3. Mean densities per study species when dry.	35

TABLES

Table 1.0. Summary of physical and mechanical wood properties per species.	8
Table 2.1. Comparison of MOR, MOE, and maximum stress properties from the present study with those reported by Jessome (2000) and Kennedy (1965) (in MPa).	10
Table 2.2. Densities reported by Jessome (1977), Singh (1984), and Kennedy (1965) (in g/cm^3).	11
Table 3.0. Summary of species sample count per mechanical and physical property tested.	17
Table 4.1.0. Levene's Test of Equality of Error Variances for MOE and MOR tests.	21
Table 4.1.1. ANOVA results for MOE and MOR tests.	22
Table 4.1.2. Multiple comparison post-hoc of MOE results.	23
Table 4.1.3. Multiple comparison post-hoc of MOR results.	24
Table 4.1.4. Duncan and Turkey post-hoc subsets of the MOE results.	25
Table 4.1.5. Duncan and Turkey post-hoc subsets of the MOR results.	25
Table 4.2.0. Levene's Test of Equality of Error Variances for maximum load and maximum stress.	29
Table 4.2.1. ANOVA results for maximum load and maximum load and maximum stress.	29
Table 4.2.2. Multiple comparison post-hoc of maximum load results.	30
Table 4.2.3. Multiple comparison post-hoc maximum stress results.	31
Table 4.2.4. Duncan and Turkey post-hoc subsets of the maximum load results.	32
Table 4.2.5. Duncan and Turkey post-hoc subsets of the maximum stress results.	32
Table 4.3.0. Levene's Test of Equality of Error Variances for density	36

at 12% MC and when Dry.

Table 4.3.1. ANOVA results for density at 12% MC and when Dry.	36
Table 4.2.2. Multiple comparison post-hoc of the Density at 12% MC results.	37
Table 4.2.3. Multiple comparison post-hoc of the Density when Dry results.	38
Table 4.2.4. Duncan and Turkey post-hoc subsets of the Density at 12% MC results.	39
Table 4.2.5. Duncan and Turkey post-hoc subsets of the Density when Dry results.	39
Table 4.3.0. Mechanical and physical properties of four underutilized species in northwestern Ontario.	40
Table 5.1. Comparison of MOR, MOE, and maximum stress properties from the present study with those reported by Jessome (2000) and Kennedy (1965) (in MPa).	42
Table 5.2. Comparison of densities from the present study with those reported by Jessome (1977), Singh (1984), and Kennedy (1965) (in g/cm ³).	43

ACKNOWLEDGMENTS

Thank You to Dr. Mathew Leitch for his contributions as the major advisor for this thesis. Thank You to graduate student, Robert Glover, for providing assistance with data collection and analysis. As well, Thank You to the Lakehead University Wood Testing Facility for the use of the equipment.

1.0 INTRODUCTION

The global market demand for traditional forest products has continued to decline since the financial crisis of 2008 (Majumdar et al. 2017). This has had a long and significant impact on Ontario's forestry sector and Canadian economy at large (Majumdar et al. 2017). Globalization has further pressured these issues by increasing demand for natural resources, escalating environmental degradation, and increasing competition in natural resources industries (NRCAN 2020). Ontario's forest industry needs to generate new innovations and new markets to reinvigorate its position. The emerging bioeconomy provides an opportunity for the forest industry to take advantage of a multitude of economic benefits while simultaneously supporting sustainable development objectives (Maloney 2018; Dietz et al. 2018; EESC 2018).

The forest bioeconomy can provide uses for more than just the bole of the tree, for example the slash, bark, spent pulping liquor, wood shavings, and sawdust (Puddister et al. 2011). Bioenergy, biochemicals, and biomaterials are created from parts of trees that are left as harvesting residues, burned in slash piles, or become landfill (Majumdar et al. 2017). Many are aligned with a sector of the industry, for example bioenergy exists in many pulp mills and lumber mills using waste stream by-products to produce electricity and heat (Balat and Ayar 2003). Many pulp mills are aligned with chemical biorefinery opportunities recovering valuable chemicals from their spent liquors (Van Heiningen 2006). Biomaterials cover a wide range of products that are manufactured from trees processed in different ways. Engineered wood products such as glue-laminated timber, cross-laminated timber, oriented strand lumber, and oriented

1

strand board are one avenue of biomaterials that is growing in demand within Canada and internationally (UNECE 2017). Improving utilization of species through engineered wood products provides an opportunity to add value beyond the traditional lumber and pulp industries (Majumdar et al. 2017).

The utilization of white birch (*Betula papyrifera* Marsh.), eastern larch (*Larix laricina* (Du Roi) K. Koch.), trembling aspen (*Populus tremuloides* Michx.), and white spruce (*Picea glauca* (Moench) Voss.) in Ontario's forest sector is mainly in construction lumber, structural engineered products, panel board products, and pulp and paper. There is a significant change in the wood market away from traditional structural products towards engineered wood and value-added products (WAI 2003). These markets can provide better utilization of commercial and under-utilized tree species increasing the overall value of the harvest. Understanding the wood properties of Ontario's tree species contributes to finding alternative end-products and markets that increase their utilization and value (Pers. Comm. M. Leitch).

The physical, chemical, and mechanical properties of a species largely impact their suitability for end-uses and potential value-added. The common mechanical properties tested for the purpose of engineering wood products are modulus of elasticity (MOE), modulus of rupture (MOR), and compression parallel to the grain (Record 1914). Mechanical and physical properties are closely correlated to the density of the wood thus density is a useful measurement to understanding the strength of the wood (Shmulsky and Jones 2019).

2

The literature review will focus on; species distribution, habitat conditions, limitations to harvesting, physical and mechanical properties, current utilizations, as well as the value-added potential.

Research was guided by the following questions: What is the current extent of harvesting for each species? What are the current utilizations of each species? How can the mechanical properties determined in this study increase their market value?

1.1 OBJECTIVE

The objective of this study is to determine the mechanical properties of white birch, Eastern larch, poplar, and white spruce from the Thunder Bay Ecoregion (3W) in order to increase their utilization and market value potential.

2.0 LITERATURE REVIEW

2.1 SPECIES

2.1.1 White Birch

White birch grows on a wide variety of sites in mixed-forests or in pure stands (Farrar 2016). It is shade-intolerant and typically an early colonizer following disturbance (Farrar 2016). Its leaves, buds, and seeds are an important source of food for many birds and animals (MNRF 2016). Mature trees are 21-24 m tall and commonly 25-30 cm in diameter in good natural form (Uchytil 1991). They are a short-lived species with most trees living less than 120 years (Uchytil 1991). White birch comprises 8% of Ontario's growing stock (MNRF 2016). Clearcutting with scarification is the most common silvicultural system used for white birch, although many other systems are applicable (Uchytil 1991).

2.1.2 Eastern Larch

Eastern larch or tamarack is found on cold, wet, and poorly-drained sites (Farrar 2016). It is common in sphagnum bogs and muskegs, although it is found to grow better on moist, well-drained, light soils (Farrar 2016). Tamarack is a shade-intolerant species often first to colonize bogs and organic sites after fire in the boreal (Burns and Honkala 1990). It is often observed to self-prune, developing clear bole lengths in 25-30 year-old trees (Burns and Honkala 1990). Mature trees are 15-23 m in height and generally 46-51

cm in diameter (Uchytil 1991). They live up to 140 years (Uchytil 2991). Tamarack is found in low proportions comprising only 1.5% of Ontario's growing stock volume (MNRF 2016). Even-aged management is suggested with a clearcut adaptation or seedtree cutting considered the best silvicultural system as it germinates better in open (Johnston 1990). However, reestablishment often requires site preparation such as slash disposal and herbicide (Burns and Honkala 1990).

2.1.3 Poplar

Poplar, or trembling aspen, occurs on a variety of sites often in pure stands (Farrar 2016). It is an aggressive pioneer species and major cover type due to its root suckering capabilities (Howard 1996). Often poplar only lives up to 70 years old (Howard 1996). Poplar provides important breeding, foraging, and resting habitat for many birds and mammals (Howard 1996). It commonly grows to 15 m in height and 40 cm in diameter, however good form deteriorates with age. Poplar represents 22% of Ontario's growing stock volume (MNRF 2016). Prescribed burning and clearcutting will promote the growing conditions for poplar (Howard 1996). Over time, pure poplar stands tend to deteriorate as other conifers succeed to replace the forest (Farrar 2016; Howard 199).

2.1.4 White Spruce

White spruce occurs in a variety of sites and climate conditions (Farrar 2016). Favorable seedbeds for white spruce are mineral soils, thin organic soils, and rotten downed woody debris (Abrahamson 2015). Establishment occurs throughout stand

5

development, including early and late-succession following fire disturbance (Abrahamson 2015). Many wildlife species use late-seral white spruce cover for important habitat (Abrahamson 2015). Mature trees are typically 25-28 m tall and 60-90 cm in diameter (Abrahamson 2015). They typically have a straight bole with vertically continuous branches (Abrahamson 2015). White spruce has a moderate lifespan living 100-250 years (Abrahamson 2015). White spruce represents 4% of Ontario's growing stock volume (MNRF 2016). Regeneration of white spruce following harvest usually requires scarification or planting (Abrahamson 2015).

2.2 WOOD PROPERTIES

2.2.1 Chemical and Physical Properties

The physical, chemical, and mechanical properties of each species largely impact their suitability for end-uses and potential value-added. Relevant characteristics for each species are broadly summarized in Table 1.0. Each of these characteristics, alone and in combination, determine the possible uses or have differentiating characteristics which may prove higher value in one market than another (Mullins and McKnight 1981).

Earlywood and latewood colour and function influences both value in appearance and value over time (Mullins and McKnight 1981). Their final form in the wood is dependent on the age, species, and rate of growth (Mullins and McKnight 1981). After a number of years, the tree ceases to produce sap and organic substances; the extractives fill the cells forming the heartwood (Mullins and McKnight 1981). These extractives can have various applications including oils, tannins, gums, dyes, and glues used in food preservation to medicine (De Jong and Gosselink 2014). Spruce has relatively low content of extractives leaving the colour pale, whereas eastern larch has a high content giving a prominent colour. The amount, of extractives in the heartwood is also related to durability, weight, resistance to decay and permeability (Mullins and McKnight 1981). Depending on the end-use, these features may be advantageous or limiting.

The presence of extractives can increase the decay resistance from fungi (Woodard and Milner 2016). Extractives can limit the permeability in the formation of tyloses (Woodard and Milner 2016). Low permeability is proved advantageous in the use of certain species for barrel staves where tight cooperage is desired (Woodard and Milner 2016). However, for other uses, low permeability can make preservative treating more difficult (Wheeler 2001). Extractives can cause greater density and weight which are important factors for use in construction (Woodard and Milner 2016). Extractives may cause slight increases in the compressive strength and hardness (Mullins and McKnight 1981).

Colour, grain texture, grain figure, and deviations of these characteristics formed by the earlywood, latewood, and heartwood can provide visual aesthetics to the enduser. Pattern making and colour in the carving and design of the product may be considered when differentiating between species (Mullins and McKnight 1981).

Shrinkage can affect visual and structural properties of the wood. Shrinking and swelling occur as the wood changes moisture content in response to relative humidity and temperature of the environment (Ecklemen n.d). It is influential in the loss of value during the drying process (Mullins and McKnight 1981). Shrinkage can also vary in

7

earlywood and latewood and is affected by the density of the species (Mullins and McKnight 1981). End-uses must consider the ease and cost of drying.

Characteristic	White spruce	Eastern larch	White birch	Poplar
Relative common size	Medium in height and diameter	Small to medium in height and diameter	Medium-tall in height and medium diameter	Medium-tall in height and medium diameter
Colour of the wood	Creamy white, hint of yellow	Heartwood is generally yellow-brown to brown, sapwood is whiteish	Creamy white, brownish core	Light in colour, white to greyish-white
Growth-ring figure	Distinct	Prominent	Faint	Faint
Transition from earlywood to latewood	Gradual	Abrupt	Conspicuous	Conspicuous
Texture and grain	Fine and even texture, consistently straight grain	Coarse texture, commonly spiral grain	Fine and even texture, uniform grain	Fine texture, uniform grain
Weight (air-dry)	Moderate	Moderate	Moderate	Light
Strength	Weak to moderate bending and compressive strength, moderate stiffness, low in impact resistance	High bending and compressive strength, low resistance to impact	Generally a strong and hard wood, lower resistance to sudden impact	Medium strength, resistance to wear is high considering its low-density
Shrinkage	Moderate shrinkage, seasons well	Moderate shrinkage, tendency to warp, requires above average care	High shrinkage, seasons satisfactorily but slow	Moderate shrinkage, seasons satisfactorily, slightly more care required
Other properties	Glues well, little tendency to split, low ability to hold nails	Difficult to penetrate with preservatives	Smooth finish, good machining capabilities, high nail and screw holding ability, can be readily treated with preservatives	Little danger of splitting, holds nails well, easy to glue

Table 1.0. Summary of physical and mechanical wood properties per species.

(Source: Mullins and McKnight 1981)

2.2.1 Mechanical and Physical Properties

The cellular structure of wood explains many of the differences in properties found between species and provides the unique properties for its utilization (Shmulsky and Jones 2019). The physicomechanical properties are mainly determined by the porosity, thickness of the cell walls, variety and proportion of the cell types, and moisture content (Shmulsky and Jones 2019). Properties such as density, hardness, and bending strength are derived from the cell structures and arrangements (Wiedenhoeft 2010). The strength and resistance to deformation are referred to as its mechanical properties (Shmulsk and Jones 2019). Modulus of rupture (MOR), modulus of elasticity (MOE), and compression parallel to the grain, are three mechanical properties of interest to engineering uses of wood. Density, a physical property, is closely correlated to the structure and strength properties of the wood thus it is a useful measurement to understanding the mechanical properties (Shmulsky and Jones 2019).

Modulus of rupture (MOR) is the maximum load-carrying capacity of a bending specimen (Kretschmann 2010). Modulus of elasticity (MOE) is the measure for the stress that can be applied to a bending specimen prior to the point where deformation or failure prevents the recovery of the specimen after the load is removed (Kretschmann 2010). Maximum stress is the measure of the force that can be sustained by compression of a specimen parallel to the grain (Kretschmann 2010). Table 2.1 summarizes the mechanical properties of the four species that are reported in other studies.

Variations in density within a species are influenced by the local site conditions where it is grown, climate, growth stresses, and genetic source (Mullins and McKnight 1981; Shmulsky and Jones 2019). Fiber and tracheid length, cell wall thickness,

9

proportions of cell type, uniformity, extractive contents, and form development are heritable traits that affect the wood quality and strength properties of wood (Schmulsky and Jones 2019). Thus, it is imperative to determine the strength of the wood in relation to its locale for the application to be effective. Table 2.2 summarizes the densities of the four species that are reported in other studies.

Species	Property	Jessome ^a	Kennedy ^b
xx 71 · 1 ·	MOR	94.8	94.8
White birch	MOE	12,900.0	12,846.0
	Max. Stress	44.7	44.7
Eastern larch	MOR	76.0	75.9
	MOE	9,380.0	9,414.4
	Max. Stress	44.8	44.8
Poplar	MOR	67.6	67.6
ropiui	MOE	11,200.0	11,277.6
	Max. Stress	36.3	36.3
White spruce	MOR	62.7	62.7
	MOE	9,930.0	10,002.8
	Max. Stress	36.9	36.9

Table 2.1. Comparison of MOR, MOE, and maximum stress properties from the present study with those reported by Jessome (2000) and Kennedy (1965) (in MPa).

Note: ^a eastern Canadian provinces,^b various Canadian provinces

	Moisture Content	Jessome ^a	Singh ^b	Kennedy ^c
White	12%	0.571	0.481	-
birch	Dry	0.588	0.556	0.59
Eastern larch	12%	0.506	0.458	-
larch	Dry	0.544	0.530	0.54
Poplar	12%	0.408	0.401	-
	Dry	0.424	0.458	0.42
White	12%	0.372	0.386	-
spruce	Dry	0.393	0.432	0.39

Table 2.2. Densities reported by Jessome (1977), Singh (1984), and Kennedy (1965) (in g/cm^3).

Note: ^a eastern Canadian provinces, ^b Canadian prairie provinces, ^c various Canadian provinces

2.3 UTILIZATION

2.3.1 White Birch

White birch represents 3% of Ontario's annual harvest (MNRF 2016). It is used commercially for veneer, plywood, and pulpwood (Uchytil 1991). Birch is also used in furniture and cabinet making, flooring, other specialty items, and is commonly used as fuelwood (Uchytil 1991). Low quality birch is used for boxes, pallets, and crates. The white colour wood and odourless-tasteless properties allow the best quality wood to be used as popsicle sticks, toothpicks, disposable utensils and medical tongue depressors (Walker 1989).

2.3.2 Eastern Larch

Larch represents less than 2.0% of Ontario's annual harvest (MNRF 2016). It is primarily used for making pulp products (Burns and Honkala 1990). However, it is also used for construction lumber, fuelwood, boxes, crates, boat ribs, and fish traps (Burns and Honkala 1990).

2.3.3 Poplar

Poplar is 18% of Ontario's annual harvest (MNRF 2016). It is used mainly for particleboard, pulpwood, and fuelwood (Howard 1996; Burns and Honkala 1990). Some lumber is made for boxes, crates, pallets, furniture and specialty products such as matchsticks and tongue depressors (Howard 1996; Mullins and McKnight 1981).

2.3.4 White Spruce

Spruces in general currently account for over 40% of Ontario's annual harvest in the past decade (MNRF 2016). White spruce is an important commercial species for production of dimensional lumber and pulpwood (Farrar 2016). Additional uses for instruments, transmission poles, matchsticks, and paneling are also common (Burns and Honkala 1990).

4.0 POTENTIAL FOR VALUE-ADDED

Canada's forest sector is facing financial and market challenges due to shifts in market demand, increasing trade barriers, and higher competitive pressures (Maloney 2018). It is suggested that there is an urgent need for the sector to transform or repurpose to ensure it remains an economic engine (Maloney 2018).

Value-added manufacturing in the forest industry contributes to both economic and employment growth in Canada (Maloney 2018). Value-added market opportunities derived from trees include bioenergy, advanced wood building construction, and biorefining to produce material alternatives in all industries (Maloney 2018). Growing market opportunities surround wood-pellet fuel manufacturing; structural engineered wood such as mass timber; unused residue applications such as bark-based adhesives; biomaterials made from lignin or cellulose filaments; as well as development of cellulose nanocrystals (Maloney 2018).

The government of British Columbia identifies key drivers to the success of generating more economic value per hectare. Notable drivers include:

- Promoting structural use of wood in commercial, institutional, and mid-rise buildings.
- Encouraging higher value product developments from mill waste.
- Identifying effective fibre merchandising so manufacturers access the correct fibres they can utilize.
- Increasing public and consumer awareness of climate-positive wood products.

(BC MFR 2009)

13

The faculty of forestry at the University of British Columbia identified the ability of several countries to create more economic value from wood (Figure 1.0).

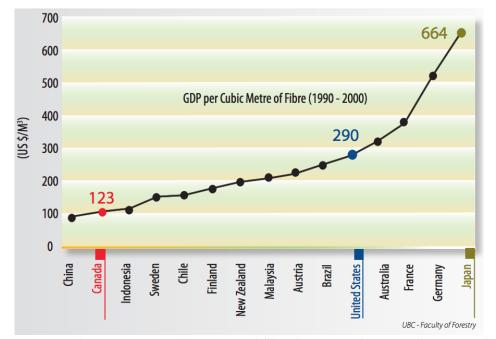


Figure 1.0. Canada's GDP per cubic meter of fibre in comparison to other countries.

Most value-added producers are constrained by lack of capacities to expand and secure a stable fiber supply (BC MFR 2009). They often depend on primary manufacturers for the species, dimensions, and grades of fiber required while primary manufacturers have difficulty redirecting the specific low-volume product lines (BC MFR 2009). Underutilized species, small diameter stems, and by-product residues can be a source to feed the value-added market as they do not directly compete with traditional sawlogs (BC MFR 2009).

In Ontario, the \$2.2 billion value-added sector is primarily supplied from Quebec and the United States (Manson and Rose 2005). Ontario supplies only 38.1 % of its own value-added wood products sector demand (Manson and Rose 2005). Thus, market opportunities to diversify the uses of these species exist both within the province and internationally (Manson and Rose 2005).

The mechanical properties found in this study could help to identify value-added opportunities for white birch, eastern larch, poplar, and white spruce from northwestern Ontario.

3.0 METHODS AND MATERIALS

For this study, MOE, MOR, and compression parallel to the grain were the mechanical properties of interest. The physical property density was also measured in this study. Boles of white spruce, eastern larch, trembling aspen, and white birch were collected in the Thunder Bay area by the Lakehead University Wood Science and Testing Facility. A Wood Mizer LT 40 Hydraulic portable bandsaw mill was used to break the logs down into 2.5 cm thick boards, which were then stacked and stickered to air dry prior to further processing. Once the boards were dried to approximately 15% moisture content the boards were re-sawn into sample sticks. A table saw was used to cut the wood into 2 cm-height by 2 cm-width by 30cm-length test samples in accordance with the International Organization of Standardization parameters (ISO 1975) and American Society for Testing and Materials International (ASTM 2010) standards. Cull wood and pith samples were removed, and the clear samples were dried in a conditioning chamber set at 65% RH and 20° C for 14 days. Clear samples of each species were tested at 12% moisture content using a Tinius Olsen H10KT universal testing machine to determine MOE and MOR. It involves a three-point flexure tool which applies a constant load at a load rate of 8mm/minute until failure and generates MOE and MOR values in Megapascal pressure units (MPa). Results were generated through the Tinius Olsen Test Navigator software of the machine. Following MOE/MOR testing the samples were then further cut using a table saw into 2 cm-height by 2 cm-width by 6 cm-length samples for measuring compression parallel to the grain using the Tinius Olsen H50KT universal testing machine with a compression parallel to

the grain testing tool. Further, 2 cm-height by 2 cm-width by 2cm-length samples were cut from the MOE/MOR samples and were used for density measurements. The samples were measured by weight and volume at 12% moisture content and then again when dry (samples were dried in a large oven set at 100° C for two days). Analysis of the data was completed using SPSS statistical software. Outliers in the data were identified using boxplots and whiskers and removed if outside the interquartile range using a multiplier of 3. Four white birch samples were removed from the MOE and MOR analysis due to a calculation discrepancy during data collection. The number of samples used per species and property test are summarized in Table 3.0. A univariate general linear model was used to determine the descriptive statistics and run the analysis of variance (ANOVA). Means were derived from the sample sizes of 27 to 35 samples for each of the four species tested (see Table 3). The means were determined for six measurements: modulus of rupture (MPa), modulus of elasticity (MPa), density at 12% moisture content (g/cm³), density when dry (g/cm³), maximum load (kPa), and maximum stress (MPa).

Species	Compression parallel to the grain	MOE/MOR	Density
White birch	28	27	30
Eastern larch	33	34	34
Poplar	35	35	35
White spruce	34	34	34

Table 3.0. Summary of species sample count per mechanical and physical property tested.

4.0 RESULTS

4.1 MODULUS OF RUPTURE AND MODULUS OF ELASTICITY

The mean MOR of white birch (BW) was 76.91 MPa (9.28 MPa Std) with a minimum of 58.2 MPa. Larch (LA) mean MOR was 68.28 MPa (10.16 MPa Std) with a minimum of 45.5 MPa. Poplar (PT) mean MOR was 67.03 MPa (6.56 MPa Std) with a minimum of 49.0 MPa. White spruce (SW) mean MOR was 52.32 MPa (7.09 MPa Std) with a minimum of 38.7 MPa. The distribution of the MOR data for each species is summarized in Figure 4.1.0 and the means and standard deviations are represented in Figure 4.1.1. The mean MOE of White birch was 7,772.22 MPa (1,231.204 MPa Std.) with a minimum of 5,540 MPa. Larch mean MOE was 6,948.82 MPa (1,230.025 MPa Std.) with a minimum of 4,850 MPa. Poplar was 7,704.00 MPa (956.440 MPa Std) with a minimum of 5,040 MPa. The distribution of the MOE data for each species is summarized in Figure 4.1.2 and the means and standard deviations are represented in Figure 4.1.3. A summary of the results are presented in Table 4.3.0.

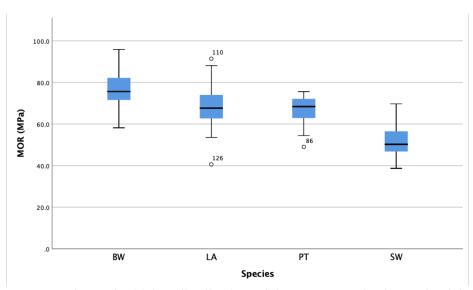


Figure 4.1.0. Boxplot and whisker distribution of the MOR results for each of the four study species. The whiskers are the minimum and maximum values, the box identifies the interquartile range and median line, and the circle points identify outliers using a multiplier of 1.5 from the interquartile range. Outliers were only removed if determined using a multiplier of 3 as suggested by Hoaglin and Iglewicz (1987).

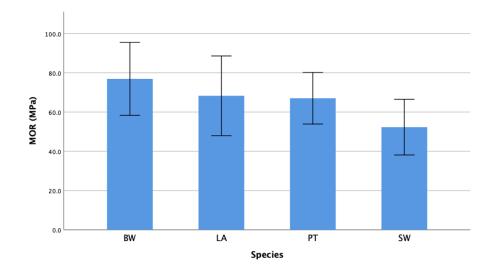


Figure 4.1.1. Mean MOR per study species. Error bars represent ± 2 Standard Deviations.

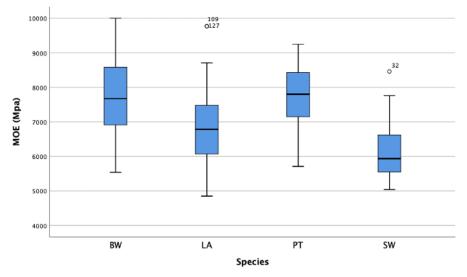


Figure 4.1.2. Boxplot and whisker distribution of the MOE results for the four study species (Chart elements described in Figure 4.1.0).

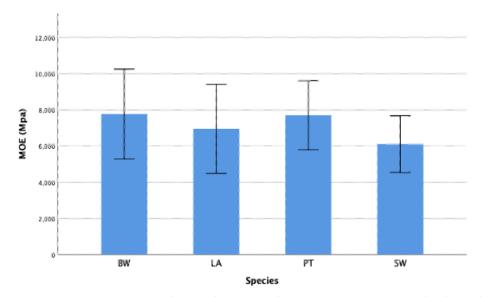


Figure 4.1.3. Mean MOE per study species. Error bars represent ± 2 Standard Deviations.

The MOE test did not have equal variances across the species according to the Lavene's Test completed in SPSS. The results of the Lavene's Tests are summarized in Table 4.1.0. Equal variances is a required assumption to perform an ANOVA, however for the purposes of this study, an ANOVA and post-hoc were completed regardless. The ANOVA determined significant differences (p = <0.01, $\alpha = 0.05$) in MOR and MOE means between species. The results of the ANOVA for the MOE and MOR tests are presented in Table 4.1.1. Tukey, LSD, and Duncan post-hoc results all determined the mean differences are statistically significant between each species relationship with two exceptions; larch and poplar for MOR and white birch and poplar for MOE, were not statistically significant at the $\alpha = 0.05$ level. The multiple comparisons post hoc for the MOE and MOR results are detailed in Table 4.1.2 and 4.1.3 respectively. The post-hoc subsets for the MOE and MOR results are detailed in Table 4.1.4 and 4.1.5 respectively.

Levene's Tes	t of Equality of Error Variances a,b	Levene Statistic	df1	df2	Sig.
MOE (mPa)	MOE (mPa) Based on Mean		3	126	0.043
	Based on Median	2.749	3	126	0.046
	Based on Median and with adjusted df	2.749	3	115.41	0.046
	Based on trimmed mean	2.84	3	126	0.041
MOR (mPa)	Based on Mean	3.686	3	126	0.014
	Based on Median	3.132	3	126	0.028
	Based on Median and with adjusted df	3.132	3	109.32	0.029
	Based on trimmed mean	3.657	3	126	0.014

Table 4.1.0. Levene's Test of Equality of Error Variances for MOE and MOR tests.

a Dependent variable: MOE (Mpa) or MOR (mPa)

b Design: Intercept + species

Table 4.1.1. ANOVA results for MOE and MOR tests.

Tests of Between-Subjects Effects									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Dependent Variable: MOE (Mpa)									
Corrected Model	59286885.505a	3	19762295.17	17.6	0.0000				
Intercept	6542241872	1	6542241872	5823	0.0000				
species	59286885.51	3	19762295.17	17.6	0.0000				
Error	141555003.7	126	1123452.411						
Total	6759539000	130							
Corrected Total	200841889.2	129							
Dependent Variable	: MoR (Mpa)								
Corrected Model	58251758.003a	3	19417252.67	16	0.00000				
Intercept	7190926657	1	7190926657	5914	0.00000				
species	58251758	3	19417252.67	16	0.00000				
Error	153216438.9	126	1216003.483						
Total	7427091200	130							
Corrected Total	211468196.9	129							
a D Sawarad - 275 /	a P. Sauarad - 275 (Adjusted P. Sauarad - 258)								

a R Squared = .275 (Adjusted R Squared = .258)

b R Squared = .295 (Adjusted R Squared = .278)

Dependen	t Variable: N	AOE (Mpa) Mult	iple Comparis	sons		
(I) species	(J) species	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	nce Interval
					Lower Bound	Upper Bound
Tukey HSD						
BW	LA	823.40*	273.225	0.016	112.02	1534.78
	РТ	68.22	271.492	0.994	-638.65	775.09
	SW	1665.46*	273.225	0	954.07	2376.84
LA	BW	-823.40*	273.225	0.016	-1534.78	-112.02
	PT	-755.18*	255.228	0.019	-1419.7	-90.65
	SW	842.06*	257.071	0.007	172.74	1511.38
PT	BW	-68.22	271.492	0.994	-775.09	638.65
	LA	755.18*	255.228	0.019	90.65	1419.7
	SW	1597.24*	255.228	0	932.71	2261.76
SW	BW	-1665.46*	273.225	0	-2376.84	-954.07
	LA	-842.06*	257.071	0.007	-1511.38	-172.74
	PT	-1597.24*	255.228	0	-2261.76	-932.71
Least Square	Difference -	LSD				
BW	LA	823.40*	273.225	0.003	282.69	1364.1
	РТ	68.22	271.492	0.802	-469.05	605.5
	SW	1665.46*	273.225	0	1124.75	2206.16
LA	BW	-823.40*	273.225	0.003	-1364.1	-282.69
	РТ	-755.18*	255.228	0.004	-1260.27	-250.09
	SW	842.06*	257.071	0.001	333.32	1350.79
РТ	BW	-68.22	271.492	0.802	-605.5	469.05
	LA	755.18*	255.228	0.004	250.09	1260.27
	sw	1597.24*	255.228	0	1092.15	2102.32
SW	BW	-1665.46*	273.225	0	-2206.16	-1124.75
	LA	-842.06*	257.071	0.001	-1350.79	-333.32
	PT	-1597.24*	255.228	0	-2102.32	-1092.15

Table 4.1.2. Multiple comparison post-hoc of MOE results.

* The mean difference is significant at the .05 level.

Depender	nt Variable: N	/IOR (Mpa) Mult	iple Comparis	ons		
(I) species	(J) species	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	nce Interval
					Lower Bound	Upper Bound
Tukey HSD						
BW	LA	696.97	284.257	0.073	-43.13	1437.08
	PT	49.58	282.454	0.998	-685.83	784.99
	SW	1653.15*	284.257	0	913.04	2393.25
LA	BW	-696.97	284.257	0.073	-1437.08	43.13
	PT	-647.39	265.533	0.075	-1338.75	43.96
	SW	956.18*	267.45	0.003	259.83	1652.52
PT	BW	-49.58	282.454	0.998	-784.99	685.83
	LA	647.39	265.533	0.075	-43.96	1338.75
	sw	1603.57*	265.533	0	912.22	2294.93
sw	BW	-1653.15*	284.257	0	-2393.25	-913.04
	LA	-956.18*	267.45	0.003	-1652.52	-259.83
	PT	-1603.57*	265.533	0	-2294.93	-912.22
Least Square	Difference -	LSD				
BW	LA	696.97*	284.257	0.016	134.44	1259.51
	PT	49.58	282.454	0.861	-509.39	608.54
	sw	1653.15*	284.257	0	1090.61	2215.68
LA	BW	-696.97*	284.257	0.016	-1259.51	-134.44
	PT	-647.39*	265.533	0.016	-1172.88	-121.91
	sw	956.18*	267.45	0	426.9	1485.45
РТ	BW	-49.58	282.454	0.861	-608.54	509.39
	LA	647.39*	265.533	0.016	121.91	1172.88
	sw	1603.57*	265.533	0	1078.09	2129.05
sw	BW	-1653.15*	284.257	0	-2215.68	-1090.61
	LA	-956.18*	267.45	0	-1485.45	-426.9
	PT	-1603.57*	265.533	0	-2129.05	-1078.09

Table 4.1.3. Multiple comparison post-hoc of MOR results.

Based on observed means.

The error term is Mean Square(Error) = 1123452.411.

* The mean difference is significant at the .05 level.

MOE (Mpa)			Subset		
	Species	Ν	1	2	3
Tukey HSD	SW	34	6106.76		
	LA	34		6948.82	
	PT	35			7704
	BW	27			7772.22
	Sig.		1	1	0.994
Duncan	SW	34	6106.76		
	LA	34		6948.82	
	РТ	35			7704
	BW	27			7772.22
	Sig.		1	1	0.797

Table 4.1.4. Duncan and Turkey post-hoc subsets of the MOE results.

Means for groups in homogeneous subsets are displayed. The error term is Mean Square(Error) = 1123452.411.

Uses Harmonic Mean Sample Size = 32.146. Alpha = .05.

	5 1				
MOR (Mpa)				Subset	
	Species	Ν	1	2	3
Tukey HSD	SW	34	6425		
	LA	34		7381.18	
	РТ	35		8028.57	
	BW	27		8078.15	
	Sig.		1	0.06	
Duncan	SW	34	6425		
	LA	34		7381.18	
	РТ	35			8028.57
	BW	27			8078.15
	Sig.		1	1	0.857

Table 4.1.5. Duncan and Turkey post-hoc subsets of the MOR results.

Means for groups in homogeneous subsets are displayed.

The error term is Mean Square(Error) = 1216003.483.

Uses Harmonic Mean Sample Size = 32.146. Alpha = .05.

4.2 COMPRESSION PARALLEL TO THE GRAIN

The mean maximum load of White birch (BW) was 15,332.41 kPa (1,452.605 kPa Std) with the lowest value of 11,930 kPa. Larch (LA) mean maximum load was 17,066.97 kPa (1,795.278 kPa Std) with the lowest value of 12,620 kPa. Poplar (PT) mean maximum load was 13,986.29 kPa (1,172.602 kPa Std) with the lowest value of 10,500 kPa. White spruce (SW) mean maximum load was 13,318.24 kPa (1,590.250 kPa Std). The distribution of the max load for each species is summarized in Figure 4.3.0 and the means and standard deviations are represented in Figure 4.3.1. The mean maximum stress of White birch was 38.957 MPa (3.246 MPa Std.), Larch was 44.307 MPa (4.665 MPa Std.), Poplar was 37.089 MPa (3.124 MPa Std), and White spruce was 33.179 MPa (3.487 MPa Std). The distribution of the max and standard deviations are represented in Figure 4.3.2. A summary of the results are presented in Table 4.3.0.

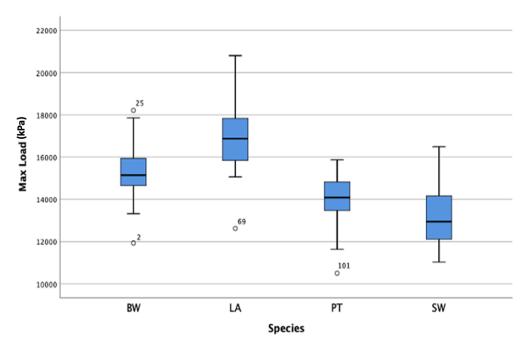


Figure 4.2.0. Boxplot and whisker distribution of the Max Load (kPa) for each of the four study species (Chart elements described in Figure 4.1.0).

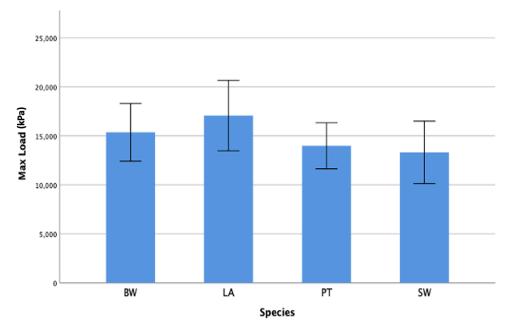


Figure 4.2.1 Mean Max Load per study species. Error bars represent ± 2 Standard Deviations.

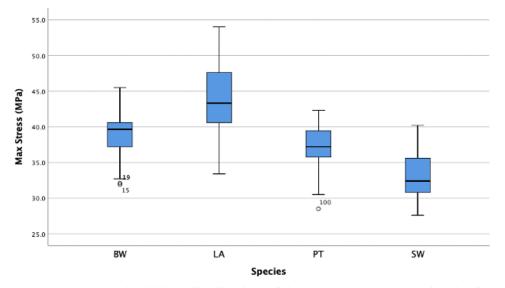


Figure 4.2.2. Boxplot and whisker distribution of the Max Stress (MPa) for the four study species (Chart elements described in Figure 4.1.0).

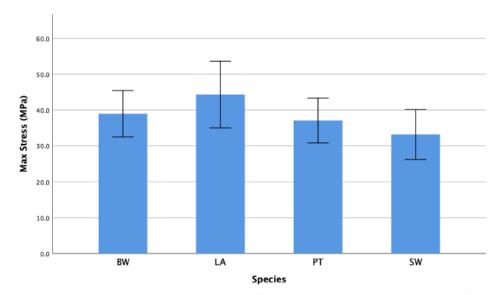


Figure 4.2.3. Mean Max Stress per study species. Error bars represent ± 2 Standard Deviations.

The data for maximum load had equal variances across the species according to the results of the Lavene's Test. The data for maximum stress, however, did not show equal variances across the species; an ANOVA was completed despite this assumption being violated. The results of the Levene's Test are summarized Table 4.2.0. The ANOVA determined significant (p = <0.01, $\alpha = 0.05$) differences in the means between species for both tests. The results of the ANOVA for the maximum load and maximum stress test are presented in Table 4.2.1. Turkey, LSD, and Duncan post-hoc results for the maximum load test all determined the mean differences are statistically significant in each specie relationship except between White spruce and Poplar which were not statistically significant at the $\alpha = 0.05$. The Turkey and Duncan post-hoc results for the maximum stress test determined the mean differences are statistically significant in each specie relationship except between Poplar and White birch at the $\alpha = 0.05$, whereas the LSD post-hoc determined the mean differences were statistically significant between all

specie relationships. The multiple comparison post-hoc for the maximum load and maximum stress results are detailed in Table 4.2.2 and 4.2.3 respectively. The post-hoc subsets for the maximum load and maximum stress results are detailed in Table 4.2.4 and 4.2.5 respectively.

Table 4.2.0. Levene's Test of Equality of Error Variances for maximum load and maximum stress.

Levene's Tes	st of Equality of Error Variances a,b	Levene Statistic	df1	df2	Sig.
Max_load	Based on Mean	1.94	3	df2 127 127 118.318 127 126 126 114.144	0.126
	Based on Median	1.611	3	127	0.19
	Based on Median and with adjusted df	1.611	3	118.318	0.19
	Based on trimmed mean	1.924	3	127	0.129
Max_stress	Based on Mean	2.819	3	126	0.042
	Based on Median	2.111	3	126	0.102
	Based on Median and with adjusted df	2.111	3	114.144	0.103
	Based on trimmed mean	2.782	3	126	0.044

a Dependent variable: Max_load(kPa)or Max_stress (mPa)

b Design: Intercept + species

Table 4.2.1. ANOVA results for maximum load and maximum load and maximum stress.

Tests of Between-Su	bjects Effects				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Dependent Variable	: Max_load				
Corrected Model	274648039.361a	3	91549346.5	39.76	0
Intercept	29034664526	1	2.9035E+10	12609.878	0
Sample	274648039.4	3	91549346.5	39.76	0
Error	292421739.3	127	2302533.38		
Total	29599444100	131			
Corrected Total	567069778.6	130			
Dependent Variable	: Max_stress				
Corrected Model	2150.159a	3	716.72	52.686	0
Intercept	190124.601	1	190124.601	13976.091	0
Sample	2150.159	3	716.72	52.686	0
Error	1714.049	126	13.604		
Total	194598.21	130			
Corrected Total	3864.208	129			

a R Squared = .484 (Adjusted R Squared = .472)

b R Squared = .556 (Adjusted R Squared = .546)

Dependent	Variable: N	1ax_load (kPa) Mul	tiple Comparis	sons		
(I) species	(J) species	Mean Difference (I-J)	Std. Error	Sig.	95% Confide Lower Bound	ence Interval Upper Bound
Tukey HSD						
BW	LA	-1734.56*	386.227	0	-2740.05	-729.06
	PT	1346.13*	381.031	0.003	354.16	2338.09
	SW	2014.18*	383.561	0	1015.63	3012.73
LA	BW	1734.56*	386.227	0	729.06	2740.05
	PT	3080.68*	368.185	0	2122.16	4039.21
	SW	3748.73*	370.804	0	2783.39	4714.07
PT	BW	-1346.13*	381.031	0.003	-2338.09	-354.16
	LA	-3080.68*	368.185	0	-4039.21	-2122.16
	SW	668.05	365.388	0.265	-283.19	1619.29
SW	BW	-2014.18*	383.561	0	-3012.73	-1015.63
	LA	-3748.73*	370.804	0	-4714.07	-2783.39
	РТ	-668.05	365.388	0.265	-1619.29	283.19
Least Squar	e Difference ·	LSD				
BW	LA	-1734.56*	386.227	0	-2498.83	-970.28
	PT	1346.13*	381.031	0.001	592.14	2100.12
	SW	2014.18*	383.561	0	1255.18	2773.18
LA	BW	1734.56*	386.227	0	970.28	2498.83
	PT	3080.68*	368.185	0	2352.11	3809.26
	SW	3748.73*	370.804	0	3014.98	4482.49
PT	BW	-1346.13*	381.031	0.001	-2100.12	-592.14
	LA	-3080.68*	368.185	0	-3809.26	-2352.11
	SW	668.05	365.388	0.07	-54.99	1391.09
SW	BW	-2014.18*	383.561	0	-2773.18	-1255.18
	LA	-3748.73*	370.804	0	-4482.49	-3014.98
	PT	-668.05	365.388	0.07	-1391.09	54.99

Table 4.2.2. Multiple comparison post-hoc of maximum load results.

The error term is Mean Square(Error) = 2302533.380.

Dependent V	'ariable: Max	_stress (Mpa) Muł	tiple Comparis	ons		
(I) species	(J) species	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	nce Interval
					Lower Bound	Upper Bound
Tukey HSD						
BW	LA	-5.361*	0.9477	0	-7.828	-2.894
	PT	1.869	0.9352	0.194	-0.566	4.303
	SW	5.778*	0.9412	0	3.327	8.228
LA	BW	5.361*	0.9477	0	2.894	7.828
	PT	7.230*	0.8949	0	4.9	9.56
	SW	11.139*	0.9013	0	8.792	13.485
PT	BW	-1.869	0.9352	0.194	-4.303	0.566
	LA	-7.230*	0.8949	0	-9.56	-4.9
	SW	3.909*	0.8881	0	1.597	6.222
SW	BW	-5.778*	0.9412	0	-8.228	-3.327
	LA	-11.139*	0.9013	0	-13.485	-8.792
	PT	-3.909*	0.8881	0	-6.222	-1.597
Least Square	e Difference ·	LSD				
BW	LA	-5.361*	0.9477	0	-7.236	-3.486
	PT	1.869*	0.9352	0.048	0.018	3.719
	SW	5.778*	0.9412	0	3.915	7.64
LA	BW	5.361*	0.9477	0	3.486	7.236
	PT	7.230*	0.8949	0	5.459	9.001
	SW	11.139*	0.9013	0	9.355	12.922
PT	BW	-1.869*	0.9352	0.048	-3.719	-0.018
	LA	-7.230*	0.8949	0	-9.001	-5.459
	SW	3.909*	0.8881	0	2.152	5.667
SW	BW	-5.778*	0.9412	0	-7.64	-3.915
	LA	-11.139*	0.9013	0	-12.922	-9.355
	PT	-3.909*	0.8881	0	-5.667	-2.152

Table 4.2.3. Multiple comparison post-hoc maximum stress results.

The error term is Mean Square(Error) = 13.604.

Max_load				Subset	
	Species	Ν	1	2	3
Tukey HSDa,I	SW	34	13318.24		
	PT	35	13986.29		
	BW	29		15332.41	
	LA	33			17066.97
	Sig.		0.289	1	1
Duncana,b,c	SW	34	13318.24		
	PT	35	13986.29		
	BW	29		15332.41	
	LA	33			17066.97
	Sig.		0.078	1	1

Table 4.2.4. Duncan and Turkey post-hoc subsets of the maximum load results.

Means for groups in homogeneous subsets are displayed.

The error term is Mean Square(Error) = 2302533.380.

Uses Harmonic Mean Sample Size = 32. Alpha = .05.

Max_stress				Subset		
	Species	Ν	1	2	3	4
Tukey HSDa,I	SW	34	33.179			
	PT	35		37.089		
	BW	28		38.957		
	LA	33			44.318	
	Sig.		1	0.181	1	
Duncana,b,c	SW	34	33.179			
	PT	35		37.089		
	BW	28			38.957	
	LA	33				44.318
	Sig.		1	1	1	1

Table 4.2.5. Duncan and Turkey post-hoc subsets of the maximum stress results.

Means for groups in homogeneous subsets are displayed.

The error term is Mean Square(Error) = 13.604.

Uses Harmonic Mean Sample Size = 32 Alpha = .05.

4.3 DENSITY

The mean density at 12% moisture content (MC) of White birch (BW) was 0.603 g/cm³ (0.032 g/cm³ Std), Larch (LA) was 0.579 g/cm³ (0.041 g/cm³ Std), Poplar (PT) was 0.459 g/cm³ (0.030 g/cm³ Std), and White spruce (SW) was 0.391 g/cm³ (0.026 g/cm³ Std). The distribution of the density data at 12% MC for each species is summarized in Figure 4.2.0 and the means and standard deviations are represented in Figure 4.2.1. The mean dry density of White birch was 0.565 g/cm³ (0.032 g/cm³ Std.), Larch was 0.542 g/cm³ (0.039 g/cm³ Std.), Poplar was 0.431 g/cm³ (0.028 g/cm³ Std), and White spruce was 0.369 g/cm³ (0.027 g/cm³ Std). The distribution of the dry density data for each species is summarized in Figure 4.2.3. The results are summarized in Table 4.3.0

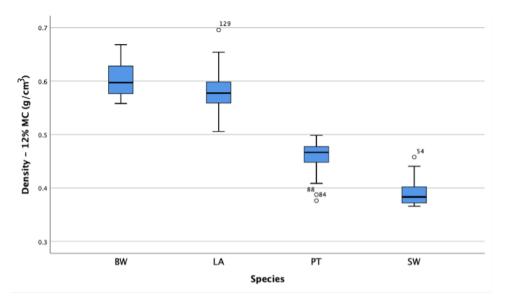


Figure 4.3.0. Boxplot and whisker distribution of the densities of each study species at 12% moisture content (Chart elements described in Figure 4.1.0).

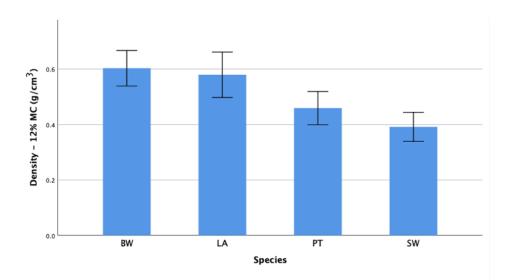


Figure 4.3.1. Mean densities per study species at 12% moisture content. Error bars represent ± 2 Standard Deviations.

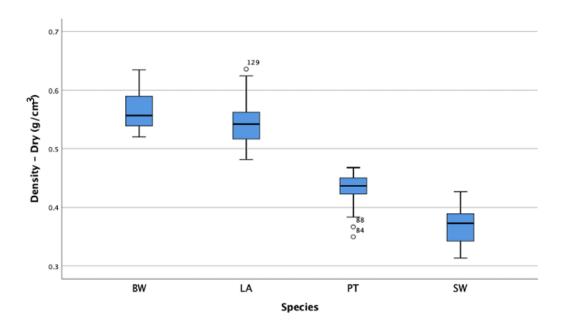


Figure 4.3.2. Boxplot and whisker distribution of the density results when dry for the four study species (Chart elements described in Figure 4.1.0).

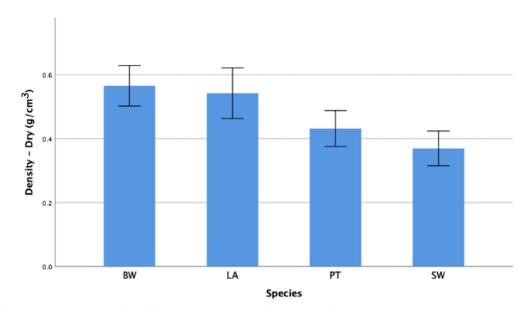


Figure 4.3.3. Mean densities per study species when dry. Error bars represent ± 2 Standard Deviations.

Both the data for density when at 12% MC and when dry had equal variances according to the results of the Lavene's Test. The results of the Lavene's Test are summarized in Table 4.3.0. The ANOVA determined significant (p = <0.01, $\alpha = 0.05$) differences in the means between species for both tests. The ANOVA results are summarized in Table 4.3.1. Turkey, LSD, and Duncan post-hoc results all determined the mean differences are statistically significant in each specie relationship at the $\alpha = 0.05$. The multiple comparison post-hoc for the maximum load and maximum stress results are detailed in Table 4.3.2 and 4.3.3 respectively. The post-hoc subsets for the maximum load and maximum stress results are detailed in Table 4.3.4 and 4.3.5 respectively.

inen Erj.					
Levene's Test	of Equality of Error Variances a,b	Levene Statistic	df1	df2	Sig.
Density, 12%	Based on Mean	1.462	3	129	0.228
	Based on Median	1.541	3	129	0.207
	Based on Median and with adjusted df	1.541	3	115.26	0.208
	Based on trimmed mean	1.534	3	129	0.209
Density, Dry	Based on Mean	1.775	3	129	0.155
	Based on Median	1.743	3	129	0.162
	Based on Median and with adjusted df	1.743	3	118.26	0.162
	Based on trimmed mean	1.842	3	129	0.143

Table 4.3.0. Levene's Test of Equality of Error Variances for density at 12% MC and when Dry.

a Dependent variable: Density, 12% MC (g/cm^3) or Density Dry (g/cm^3)

b Design: Intercept + species

Table 4.3.1. ANOVA results for density at 12% MC and when Dry.

Tests of Between-Sul	bjects Effects				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Dependent Variable:	Density, 12% MC				
Corrected Model	.989a	3	0.33	307.359	0.000
Intercept	34.245	1	34.245	31939.668	0.000
V1	0.989	3	0.33	307.359	0.000
Error	0.138	129	0.001		
Total	35.06	133			
Corrected Total	1.127	132			
Dependent Variable:	Density, Dry				
Corrected Model	.845b	3	0.282	274.766	0.000
Intercept	30.155	1	30.155	29426.8	0.000
V1	0.845	3	0.282	274.766	0.000
Error	0.132	129	0.001		
Total	30.859	133			
Corrected Total	0.977	132			

a R Squared = .877 (Adjusted R Squared = .874)

b R Squared = .865 (Adjusted R Squared = .862)

Dependent V	ariable: Den	sity, 12% MC (g/cm^3)	Multi	ple Compa	risons	
(I) species		Mean Difference (I-J)		Sig.	95% Confide	nce Interval
					Lower Bound	Upper Bound
Tukey HSD						
BW	LA	.023*	0.008	0.024	0.002	0.045
	РТ	.143*	0.008	0	0.123	0.165
	SW	.211*	0.008	0	0.190	0.233
LA	BW	023*	0.008	0.024	-0.045	-0.002
	PT	.120*	0.008	0	0.100	0.141
	SW	.188*	0.008	0	0.167	0.209
РТ	BW	143*	0.008	0	-0.165	-0.123
	LA	120*	0.008	0	-0.141	-0.100
	SW	.067*	0.008	0	0.047	0.088
SW	BW	211*	0.008	0	-0.233	-0.190
	LA	188*	0.008	0	-0.209	-0.167
	РТ	067*	0.008	0	-0.088	-0.047
Least Square	Difference - I	_SD				
BW	LA	.023*	0.008	0.005	0.007	0.040
	РТ	.143*	0.008	0	0.128	0.160
	SW	.211*	0.008	0	0.195	0.228
LA	BW	023*	0.008	0.005	-0.040	-0.007
	PT	.120*	0.008	0	0.105	0.136
	SW	.188*	0.008	0	0.172	0.204
РТ	BW	143*	0.008	0	-0.160	-0.128
	LA	120*	0.008	0	-0.136	-0.105
	SW	.067*	0.008	0	0.052	0.083
SW	BW	211*	0.008	0	-0.228	-0.195
	LA	188*	0.008	0	-0.204	-0.172
	РТ	067*	0.008	0	-0.083	-0.052

Table 4.2.2. Multiple comparison post-hoc of the Density at 12% MC results.

The error term is Mean Square(Error) = .001.

Dependent	Variable: De	nsity, Dry (g/cm^3)	Multiple Comparisons			
(I) species	(J) species	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	nce Interval
					Lower Bound	Upper Bound
Tukey HSD						
BW	LA	.023*	0.008	0.022	0.002	0.044
	PT	.134*	0.008	0	0.113	0.155
	SW	.196*	0.008	0	0.175	0.217
LA	BW	0234*	0.008	0.022	-0.044	-0.002
	РТ	.110*	0.008	0	0.091	0.131
	SW	.172*	0.008	0	0.153	0.193
PT	BW	134*	0.008	0	-0.155	-0.113
	LA	110*	0.008	0	-0.131	-0.091
	SW	.062*	0.008	0	0.042	0.082
SW	BW	196*	0.008	0	-0.217	-0.175
	LA	172*	0.008	0	-0.193	-0.153
	РТ	062*	0.008	0	-0.082	-0.042
Least Square	e Difference -	LSD				
BW	LA	.023*	0.008	0.004	0.007	0.039
	РТ	.134*	0.008	0	0.118	0.150
	SW	.196*	0.008	0	0.180	0.212
LA	BW	023*	0.008	0.004	-0.039	-0.007
	РТ	.110*	0.008	0	0.096	0.126
	SW	.172*	0.008	0	0.157	0.188
РТ	BW	134*	0.008	0	-0.150	-0.118
	LA	110*	0.008	0	-0.126	-0.096
	SW	.062*	0.008	0	0.047	0.077
SW	BW	196*	0.008	0	-0.212	-0.180
	LA	172*	0.008	0	-0.188	-0.157
	PT	062*	0.008	0	-0.077	-0.047

Table 4.2.3. Multiple comparison post-hoc of the Density when Dry results.

The error term is Mean Square(Error) = .001.

Density, 12% MC	(g/cm^3)			Subset		
	Species	Ν	1	2	3	4
Tukey HSDa,b,c	SW	34	0.391			
	PT	35		0.459		
	LA	34			0.579	
	BW	30				0.603
	Sig.		1	1	1	1
Duncan a,b,c	SW	34	0.391			
	PT	35		0.459		
	LA	34			0.579	
	BW	30				0.603
	Sig.		1	1	1	1
Means for groups	in homoger	neous su	bsets are di	splayed.		
The error term is	Mean Squar	e(Error)	=.001.			

Table 4.2.4. Duncan and Turkey post-hoc subsets of the Density at 12% MC results.

Uses Harmonic Mean Sample Size = 33.152. Alpha = .05.

Table 4.2.5. Duncan and Turkey post-hoc subsets of the Density when Dry results.

	4.2.)			<u> </u>		
Density, Dry (g/cr	n^3)			Subset		
	Species	Ν	1	2	3	4
Tukey HSDa,b,c	SW	34	0.369			
	PT	35		0.431		
	LA	34			0.542	
	BW	30				0.565
	Sig.		1	1	1	1
Duncan a,b,c	SW	34	0.369			
	PT	35		0.431		
	LA	34			0.542	
	BW	30				0.565
	Sig.		1	1	1	1

Means for groups in homogeneous subsets are displayed.

The error term is Mean Square(Error) = .001.

Uses Harmonic Mean Sample Size = 33.152. Alpha = .05.

Property	White birch	Eastern larch	Poplar	White spruce
MOE (MPa)	7,772.22	6,948.82	7,704.00	6,106.76
	(±1,231.204)	(±1,230.025)	(±956.440)	(±1,247.76)
MOR (MPa)	76.92	68.28	67.03	52.32
	(±9.27)	(±10.15)	(±6.56)	(±7.09)
Maximum	38.957	44.307	37.089	33.179
Stress (MPa)	(±3.246)	(±4.665)	(±3.124)	(±3.487)
Maximum	15,332.41	17,066.97	13,986.29	13,318.24
Load (kPa)	(±1,452.605)	(±1,795.278)	(±1,172.602)	(±1,590.250)
Density at 12%	0.603	0.579	0.459	0.391
MC (g/cm ³)	(±0.032)	(±0.041)	(±0.030)	(±0.026)
Density dry	0.565	0.542	0.431	0.369
(g/cm ³)	(±0.032)	(±0.039)	(±0.028)	(±0.027)

Table 4.3.0 Mechanical and physical properties of four underutilized species in northwestern Ontario.

Note: Mean results are listed with the standard deviations of ± 2 Std in the brackets.

5.0 DISCUSSION

Comparisons of MOR, MOE, and compression parallel to the grain results of this study to those of Jessome (2000) and Kennedy (1965) are summarized in Table 5.1. Comparisons of the density results of this study to those of Jessome (1977), Singh (1984), and Kennedy (1965) are summarized in Table 5.2. Additional reported densities can be found in Gonzalez' (1990) summary of studies for comparison of measures from various regions within Canada, the United States, and intercontinentally.

White birch MOR and MOE results are lower than the averages reported by Jessome (1977) and Kennedy (1965) (Table 5.1). The maximum stress measure for compression parallel to the grain is more similar to the other two studies (Table 5.1). The density at 12% MC is slightly higher than Jessome (1977) and Kennedy (1965), and much higher than Singh (1984) (Table 5.2). The density at oven-dry is very similar to the other three studies (Table 5.2).

Eastern larch result for MOR is slightly lower than the averages reported by Jessome (1977) and Kennedy (1965) (Table 5.1). The result for MOE is much lower than the averages reported in the other two studies (Table 5.1). The maximum stress measure for compression parallel to the grain is quite similar to other two studies (Table 5.1). The density at 12% MC is slightly higher than Jessome (1977) and Kennedy (1965), and much higher than Singh (1984) (Table 5.2). The density at oven-dry is very similar to the other three studies (Table 5.2).

	Property	Present Study	Jessome ^a	Kennedy	
White	MOR	76.9	94.8	94.8	
birch	MOE	7,772.2	12,900.0	12,846.0	
	Max. Stress	38.9	44.7	44.7	
Eastern	MOR	68.3	76.0	75.9	
larch	MOE	6,948.8	9,380.0	9,414.4	
	Max. Stress	44.3	44.8	44.8	
Poplar	MOR	67.0	67.6	67.6	
ropiai	MOE	7,704.0	11,200.0	11,277.6	
	Max. Stress	37.1	36.3	36.3	
	MOR	52.3	62.7	62.7	
White spruce	MOE	6,106.8	9,930.0	10,002.8	
	Max. Stress	33.18	36.9	36.9	

Table 5.1. Comparison of MOR, MOE, and maximum stress properties from the present study with those reported by Jessome (2000) and Kennedy (1965) (in MPa).

Note: ^a eastern Canadian provinces,^b various Canadian provinces

	Moisture Content	Present study	Jessome ^a	Singh ^b	Kennedy ^c
White	12%	0.603	0.571	0.481	_
birch	Dry	0.565	0.588	0.556	0.59
Eastern larch	12%	0.579	0.506	0.458	_
	Dry	0.542	0.544	0.530	0.54
Poplar	12%	0.459	0.408	0.401	-
	Dry	0.431	0.424	0.458	0.42
White	12%	0.391	0.372	0.386	_
spruce	Dry	0.369	0.393	0.432	0.39

Table 5.2. Comparison of densities from the present study with those reported by Jessome (1977), Singh (1984), and Kennedy (1965) (in g/cm^3).

Note: ^a eastern Canadian provinces, ^b Canadian prairie provinces, ^c various Canadian provinces

Poplar MOR result is very similar to the averages reported by Jessome (1977) and Kennedy (1965) (Table 5.1). The result for MOE is much lower than the averages reported in the other two studies (Table 5.1). The maximum stress measure for compression parallel to the grain is quite similar (Table 5.1). The density at 12% MC is slightly higher than those reported by Jessome (1977), Kennedy (1965), and Singh (1984) (Table 5.2). The density when oven-dry is very similar to the other three studies (Table 5.2). White spruce MOR result is lower than the averages reported by Jessome (1977) and Kennedy (1965) (Table 5.1). The result for MOE is much lower than the averages reported in the other two studies (Table 5.1). The maximum stress measure for compression parallel to the grain is similar to the other two studies (Table 5.1). The density at 12% MC and when oven-dry are quite similar to those reported by Jessome (1977), Kennedy (1965), and Singh (1984) (Table 5.2).

Some differences in the results of this study to the other studies may be due to slightly different processing and calculation methods; the specific instruments and standards for testing are assumed but were not stated (Alemdag 1984; Singh 1986). The other studies included in the comparison here sampled data from outside northwestern Ontario. Regional variation of vegetation, climatic zones, as well as natural genetic variation are likely reasons for the differences reported here (Alemdag 1984; Singh 1986).

Wood is described as an orthotropic material; it has unique and independent mechanical properties on the longitudinal, radial, and tangential axes (Kretschmann 2010). Inherent variability in mechanical properties occurs along the stem of an individual tree and within individuals of the same species depending on localized growing conditions (i.e. soil and site conditions, or growing space) (Kretschmann 2010; Cown 2001). These sources of variability were not accounted for in the scope of this study.

6.0 CONCLUSION

Ontario's forest industry needs to generate new innovations and new markets to reinvigorate its position. Engineered wood products are growing in demand within Canada and internationally. This provides an opportunity to add value beyond the traditional lumber and pulp industries. White birch, eastern larch, poplar, and white spruce are four species in northwestern Ontario where alternative end-products and markets could increase their utilization and value.

The common mechanical properties tested for the purpose of engineering wood products are modulus of elasticity (MOE), modulus of rupture (MOR), and compression parallel to the grain. The properties vary within a species depending on the climate and genetic variation in the region. Therefor it is necessary to determine the properties of the species grown in northwestern Ontario.

In this study, modulus of elasticity (MOE), modulus of rupture (MOR), compression parallel to the grain, as well as density was determined of four underutilized species in northwestern Ontario using ASTM standards to derive statistically sound results. Future research can use the results to evaluate potential valueadded uses of these species for engineered wood products.

LITERATURE CITED

- Abrahamson, Ilana. 2015. Fire Effects Information System: Picea glauca white spruce. USDA Forest Service.
- Alemdag, I. S. 1984. Wood density variation of 28 tree species from Ontario. Can. For. Serv. Inf. Rep. PI-X-45.
- ASTM. 2010. D5536 94 Standard practice for sampling forest trees for determination of clear wood properties. ASTM International. 18pp.
- [BC MFR] British Columbia's Ministry of Forests and Range. 2009. Generating More Value from our Forests: A vision and action plan for further manufacturing. Government of British Columbia. 32pp.
- Balat, M. and G. Ayer. 2003. Biomass energy in the world: Use of biomass and potential trends. Energy Sources. 27(10): 931-940.
- Burns, R. M. and B. H. Honkala. 1990. Silvics of North America. United States Department of Agriculture - Forest Service. 654(1): 675 pp.
- Cown, D.J. 2001. Encyclopedia of Materials: Wood Density. Elsevier.
- De Jong, E. and R. J. A. Grosselink. 2014. Chapter 17 Lignocellulose-based chemical products. Elsevier. Bioenergy Research: Advance and Applications. 277-313p.
- Eckleman, C.A. n.d. The shrinking and swelling of wood and its effect on furniture. Purdue University. Forestry and Natural Resources 163. 26pp.
- Farrar, J. L. Trees in Canada. Natural Resources Canada. 502pp.
- Gonzalez, J.5. 1990. Wood density of Canadian tree species. For. Can. Rep. NOR-X-315. 138pp.
- Hoaglin, D. C. and B. Igle wicz. 1987. Fine tuning some resistant rules for outlier labeling. J. American Statistical Association. 82: 1147-1149p.
- Howard, J. L. 1996. *Populus tremuloides* in Fire Effects Information System. United States Department of Agriculture Forest Service.
- ISO. 1975. ISO 3349 Wood: Determination of ultimate strength in static bending: 3133-1975 E.

- Jessome, A.P. 1977. Strength and related properties of woods grown in Canada. Environ. Can., Can. For. Servo. For. Tech. Rep. 21.
- Jessome, A.P. 2000. Strength and related Properties of woods grown in Canada. Publication SP-514E. Forintek Canada Corporation. 37 pp.
- Kennedy, E.I. 1965. Strength and related properties of woods grown in Canada. Ministry of Forestry. 51pp.
- Kretschmann. 2010. Wood Handbook: Chapter 5 Mechanical Properties of Wood. USDA Forest Service. Gen. Tech. Rep. FPL-GTR-190. 509pp.
- Manson, I. and C. Rose. 2005. Linking the forest and the factory: an analytical summary of research into the wood purchasing behaviour of Ontario's value-added wood industries. OMNR. 16 pp.
- Mullins, E.J. and T. S. McKnight. 1981 Canadian Woods: Their Properties and Uses. University of Toronto. 389pp.
- Maloney, J. 2018. Value-added products in Canada's forest sector: cultivating innovation for a competitive bioeconomy. Standing Committee on Natural Resources. 48pp.
- [MNRF] Ministry of Natural Resources and Forestry. 2016. Forest Resources of Ontario 2016. Queen's Printer.
- Record, S.J. 1914. Mechanical Properties of Wood. Wiley and Sons. 165pp.
- Shmulsky, R. and P.D. Jones. 2019. Forest Products and Wood Science. Wiley. 7: 490pp.
- Singh, T. 1984. Variation in the ovendry wood density of ten prairie tree species. For. Chron. 60(4):217-221.
- Uchytil, R. J. 1991. *Betula papyrifera* in Fire Effects Information System. United States Department of Agriculture Forest Service.
- [UNECE] United Nations Economic Commision for Europe. 2017. Forest Products Annual Market Review 2016-2017. Food and Agriculture Organization of the United Nations.
- Van Heiningen, A. 2006. Converting a kraft pulp mill into an integrated forest biorefinery. Pulp and Paper Canada. 107(6): 38-43.

- [WAI] Woodbridge Associates Inc. 2003. Ontario's value-added wood products market potential in the U.S. Great Lakes States. Living Legacy Trust. 158pp.
- Walker, A. 1989. The Encyclopedia of Wood. Quarto. 192pp.
- Wiederhoeft, A. 2010. Wood Handbook: Chapter 3 Structure and Function of Wood. USDA Forest Service. Gen. Tech. Rep. FPL-GTR-190. 509pp.
- Wheeler, E. 2001. Wood: Macroscopic Anatomy. Elsevier. Encyclopedia of Materials: Science and Technology. 2: 9653-9657.

APPENDIX

Table A. Raw data of MOR and MOE test.

sample	MOE (Mpa) M	oR (Mpa)	sample N	/OE (Mpa) M	oR (Mpa)	sample	MOE (Mpa) M	oR (Mpa)	sample	MOE (Mpa) M	oR (Mpa)
BW14	7970	75.6	Sw14	6810	60.4	Pt24	8240	73.7	La32	7620	80.2
BW19	6880	71.3	Sw12	5780	46.4	Pt6	7580	58	La13	5620	59.9
BW10	7230	72.5	Sw23	7760	65.6	Pt12	8940	74.2	La27	5620	65.9
BW25	8410	79.8	Sw31	6750	53.9	Pt28	6640	61.8	La6	6480	68.4
BW5	5870	66.4	Sw34	8460	69.7	Pt32	6100	57.4	La28	6700	74.2
BW16	5540	58.2	Sw20	6320	56.5	Pt11	8100	68.4	La31	6160	64.8
BW9	8260	81.9	Sw25	5770	44.8	Pt22	7960	70.3	La10	8540	88.1
BW4	6380	75	Sw21	5640	48.8	Pt29	8400	69.6	La33	6400	56.6
BW22	9800	92.5	Sw27	5700	54.8	Pt14	7930	70.6	La18	7460	69.5
BW21	9100	87.8	Sw30	5800	56.4	Pt25	8890	75.3	La17	7480	72
BW15	7670	73	Sw33	6650	62.2	Pt17	8440	72.9	La5	6800	71.3
BW1 BW18	6920	63.9 72	Sw18 Sw2	6620 5870	52.8 49.5	Pt16 Pt33	7230 7640	72.2 66.3	La12 La26	6050 9770	73.7 74.6
	8160	87.9	Sw13	5930	49.5	Pt21	7620	69.3	La20	8710	91.4
BW7	9140										
Bw30	8930	68.8	Sw1	5200	48.3	Pt2	7440	65	La29	6650	71.5
Bw32	7940	75.7	Sw7	5550	49.6	Pt19	8360	66.5	La15	5480	62.8
Bw26	7510	78.2	Sw19	5350	48.9	Pt30	7360	64	La30	6340	65.7
Bw31	8370	78.9	Sw24	5240	43.7	Pt7	8610	72.1	La2	5340	64.1
Bw28	9870	95.9	Sw29	6000	51.4	Pt4	6230	54.4	La24	7470	73
Bw20	7620	84	Sw6	5060	38.7	Pt9	7070	60.9	La23	8180	59.4
Bw11	10000	93.2	Sw8	5550	46.7	Pt18	8870	75.6	La4	6770	63.7
Bw8	7140	73.5	Sw10	6410	50.5	Pt15	9250	72.7	La21	6070	60
Bw27	6910	71.9	Sw28	5940	51.5	Pt26	5870	49	La14	7310	62.7
Bw3	6860	80.4	Sw4	7370	67.2	Pt3	7970	68.2	La1	6210	60.4
Bw2	8750	82.5	Sw5	6620	56.7	Pt8	8430	72.1	La7	7020	78.4
Bw6	6910	70.3	Sw26	5980	45.5	Pt34	6810	56.4	La20	8500	77.7
Bw29	5710	65.7	Sw9	5290	46.2	Pt31	8420	74.5	La19	6930	64.8
			Sw32	7080	59.2	Pt35	7040	65.2	La22	7310	74
			Sw22	5840	47.5 46.8	Pt13	5710	60 61.8	La34	7050	66.9 40.6
			Sw3 Sw17	5130 5040	49.3	Pt1 Pt23	5980 8750	71.6	La8 La25	4850 9770	69.7
			Sw17	6510	49.3 59.5	Pt10	7660	65.7	La16	5730	53.6
			Sw15	6390		Pt36	8740	71.5	Lall	5370	
			Sw10 Sw11	6220	46.3	Pt20	7560	68	LaII	8500	56.9 85.1
			3W11	0220	53.6	Pt20 Pt5	7800		Lap	6500	85.1
						PLS	7800	70.7			

		Max	Max			Max	Max			Max	Max			Max	Ma
		Load	Stress				Stress			Load				Load	Stres
Sam	ple	kPa	MPa			kPa	MPa	Sar		kPa	MPa	Sa	mpl	kPa	MP
BW		14650		SW	15	16100		LA		16870		PT	18		
BW	16	11930	32.7			16140		LA		20500			28	13470	
BW	2	15700				13280				16250			29	14640	
BW	1		36.4	SW		14160				18240			31	14360	
BW	19	15340	39.8	sw		11790		LA		19410		PT	26	10500	28
BW	22		40.2	SW		11320		LA		12620			8	14780	
BW	17	15800	40.8	SW		12490				19790			21	13920	
BW		15430	39.6	SW		13940		LA	19	17470	45.9		32	11780	
BW		17390	39.3	SW		16420				17710			6	12720	
BW	7	15940	43.2	sw		12620				16500			2	13590	
BW		13320	36.1	SW		15260				20800	54		12	14000	
BW	14	14430	39.2			12700				17300			17	15270	
BW		17400	38.9			15100		LA		16470			27	14770	
BW	18	16000	40.8			11740		LA		16580	40		22	14580	
BW	32	14760	38.1	SW	32	13050		LA	20	18390	49		7	13400	
BW	8	13600	31.9	SW		12960				17300			10	13810	
BW	23	16580	43.4	SW		12000		LA	30	15450	42.4	PT	3	14080	37
BW	9	15780	41.3			15800		LA	32	20100	52.7	PT	25	15490	
BW	3	17860	40.1	SW	30	14190	35.6	LA	31	16640	43.9	PT	33	13320	35
BW	29	13520	32.1	SW	10	12780	32	LA	18	17510	46.1	PT	20	14210	37
BW	25	15010	40.4	SW	24	11090		LA	4	15200	40.6		1	13720	36
BW	31	15100	40	SW	33	16490	40.2	LA	7	17830	43.2	PT	34	12620	33
BW	27	13580	36			13830		LA	34	15060	40.1	PT	35	15870	42
BW	5	14660	38.2	SW	20	13590	34.3	LA	27	15840	42.1	PT	13	12940	34
BW	20	18210	42.9	SW	28	13890	34.4	LA	3	18940	48.6	PT	4	11630	30
BW	4	15140	39.8	SW	13	13010	32.4	LA	22	17600	46.6	PT	16	14860	39
BW	21	14960	39.7	SW	29	12490	31.4	LA	21	15910	41.3	PT	15	14120	37
BW	10	14420	37.8	SW		12920		LA	13	15060	39.9	PT	24	15010	39
BW	24	17410	45.5	SW	11	12840	31.9	LA	33	17060	45	PT	19	14120	37
				SW	6	12110	30.8	LA	6	15570	40.7	PT	30	14050	37
				SW	22	11570	29.6	LA	16	16500	43.3	PT	23	13480	36
				sw	26	11030	27.6	LA	29	15250	40.3	PT	5	15100	40
				sw	21	12690	33.1	LA	1	15490	40.5	PT	9	13540	36
				sw	25	11430	28.9					PT	14	15110	40
												PT	36	15640	42

Table B. Raw data for compression parallel to the grain test.

Table C. Raw data for density measurements.

sample	Density 12%	Density Dry	sample	Density 12%	Density Dry	sample	Density 12%	Density Dry	sample	Density 12%	Density Dr
		0.5428133			0.4020541		0.4607391	0.430314	La32	0.65412946	
BW19	0.5669248	0.533831		0.3720971	0.3742009	Pt5		0.4271798	La13	0.53890774	0.49930
BW10	0.5742093	0.5392457	Sw23	0.3890969	0.3891354	Pt6	0.4206223	0.3988688	La27	0.58897629	0.55152
BW25	0.5834262	0.5495254	Sw31	0.3905738	0.3575648	Pt24	0.4714189	0.4458431	La6	0.59937647	0.55693
BW5	0.5763337	0.537962	Sw34	0.4392941	0.4066768	Pt12	0.473548	0.4407018	La28	0.59349525	0.55970
BW16	0.6041589	0.5660366	Sw20	0.3909717	0.3853333	Pt28	0.4707242	0.4440909	La31	0.57570022	0.53202
BW9	0.5955249	0.5543124	Sw25	0.3854555	0.3811451	Pt32	0.4086177	0.383352	La10	0.61708901	0.58242
BW4	0.5989342	0.5593014	Sw21	0.3828079	0.3403568	Pt11	0.4579956	0.4300342	La33	0.52148026	0.49106
BW22	0.6682164	0.6307895	Sw27	0.3658687	0.3372784	Pt22	0.4776663	0.4524704	La18	0.58880289	0.5569
BW21	0.6380675	0.6085414	Sw30	0.3940954	0.3731328	Pt29	0.4663113	0.4366593	La17	0.58995296	0.56895
BW15	0.5778305	0.5521437	Sw33	0.4405682	0.4037631	Pt25	0.4845182	0.4527393	La5	0.56610476	0.51658
BW1	0.5581526	0.5202107	Sw18	0.3764995	0.3397975	Pt17	0.4759385	0.4481478	La12	0.59772727	0.55878
BW18	0.5664077	0.5309038	Sw2	0.3660258	0.3695272	Pt16	0.484187	0.4526604	La26	0.65219756	0.60939
BW7	0.6170671	0.5808864	Sw13	0.3836888	0.3725783	Pt33	0.4621976	0.4367053	La9	0.62507463	0.59367
Bw17	0.6015466	0.5686323	Sw1	0.3661035	0.338668	Pt21	0.4577131	0.4285221	La29	0.57877249	0.53440
Bw24	0.631393	0.5316121	Sw7	0.4020412	0.3963927	Pt2		0.4161056	La15	0.53835417	0.48952
Bw13	0.5875655	0.5537529	Sw19	0.3686226	0.3381503	Pt19	0.4859256	0.4572013	La30	0.51466009	0.48280
Bw23	0.665	0.63456	Sw24	0.3731498	0.3545542	Pt30	0.4753656	0.444635	La2	0.59846316	0.55545
Bw32	0.5604636	0.5256221	Sw29	0.378279	0.358473	Pt7	0.4986325	0.4671271	La24	0.57830923	0.5420
Bw26	0.626169	0.5896083	Sw6	0.3657982	0.3135675	Pt4	0.376318	0.3497964	La23	0.57471163	0.54330
Bw31	0.5787066	0.5414567	Sw8	0.3658805	0.3366667	Pt9	0.4290206	0.3996375	La4	0.53141649	0.48748
Bw28	0.6543938	0.6128945	Sw10	0.379902	0.3818402	Pt18	0.4770701	0.4464901	La21	0.55904915	0.51673
Bw20	0.6356065	0.5936291	Sw28	0.4111155	0.3952476	Pt15	0.4667108	0.4408997	La14	0.53862788	0.50085
Bw11	0.60318	0.5667489	Sw4	0.4578431	0.4266868	Pt26	0.3874897	0.3668364	La1	0.56290391	0.5222
Bw8	0.6473228	0.6127339	Sw5	0.43093	0.3885208	Pt3	0.4684411	0.4366887	La7	0.57671906	0.53971
Bw27	0.624232	0.5848094	Sw26	0.3754031	0.375178	Pt8	0.4957173	0.4613751	La20	0.60142553	0.56996
Bw3	0.6283032	0.5903175	Sw9	0.3760101	0.3626559	Pt34	0.4131447	0.3884432	La19	0.57106	0.53246
Bw2	0.5933458	0.5491908	Sw32	0.3691379	0.3424414	Pt31	0.4924111	0.4678862	La22	0.59569474	0.56233
Bw6	0.5765616	0.5391144	Sw22	0.3721016	0.3509762	Pt35	0.4922732	0.4638803	La34	0.52249495	0.4817
Bw29	0.5750399	0.5600481	Sw3	0.3892999	0.3621875	Pt13	0.4396938	0.4089309	La8	0.69570953	0.63583
			Sw17	0.4075	0.3765879	Pt1	0.4534724	0.4268143	La25	0.57057778	0.54191
			Sw15	0.4383463	0.4081764	Pt23	0.4432424	0.4184379	La16	0.57324295	0.5275
			Sw16	0.3701889	0.3233333	Pt10	0.4678542	0.4367243	La11	0.50580247	0.49474
			Sw11	0.3978487	0.3926474	Pt36	0.4931848	0.4621808	La3	0.60461384	0.56753
						pt27	0.4532977	0.427114			

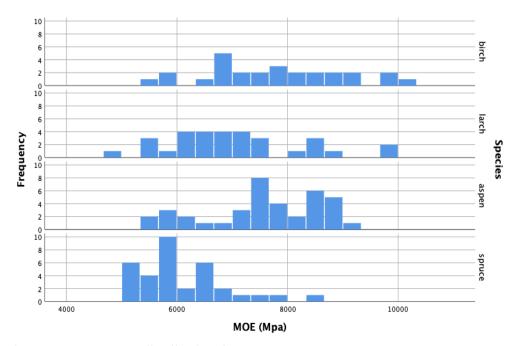


Figure A. Frequency distribution for MOE test.

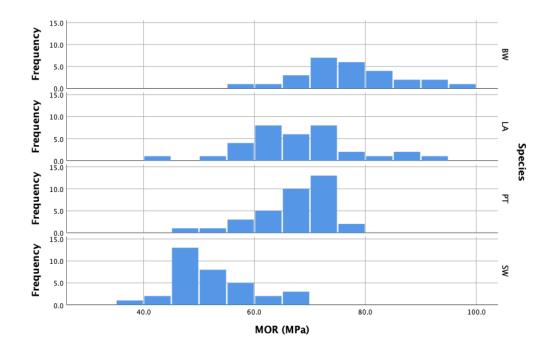


Figure B. Frequency distribution for MOR test.

Figure C. Frequency distribution for max load test.

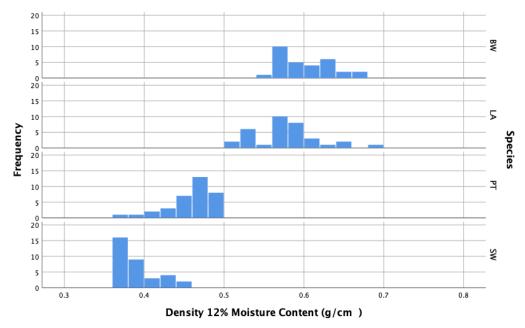


Figure D. Frequency distribution for density at 12% MC.

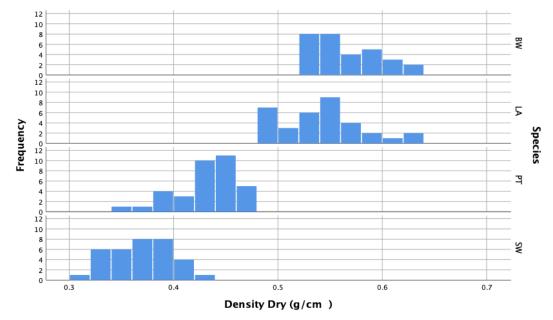


Figure E. Frequency distribution for density dry.