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ABSTRACT

This thesis is centered around the topic of emergency department(ED) optimiza-

tion. Working in conjunction with the Thunder Bay Regional Health Sciences Centre

a simulation model was developed to determine an optimal physician schedule for the

high acuity portion of the ED. The simulation uses patients generated based on the

data provided. The simulation accounts for resource usage and coordinating physi-

cian patient interaction. As a secondary component to the thesis the minimum cut

problem is investigated, as it has potential in aiding physicians in the ED. During this

investigation a local search algorithm is proposed and the effects of parallelization are

investigated.



iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures ix

Acknowledgements xii

Dedication xiii

1 Introduction 1

1.1 Impacts of Emergency Department Optimization . . . . . . . . . . . 1

1.2 Setting of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Interacting Components of the Department . . . . . . . . . . . . . . . 3

1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Evaluation of Emergency Physician Schedules . . . . . . . . . . . . . 8

2.3 Optimization of Physician Schedules . . . . . . . . . . . . . . . . . . 9

2.3.1 Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Mixed Integer Programming . . . . . . . . . . . . . . . . . . . 10

2.3.3 Algorithmic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Queuing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Advantages of Physicians in Triage . . . . . . . . . . . . . . . . . . . 13



v

2.5 Effect of Fast Track Areas . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Managing Patient Handovers . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Potential Benefits of Clustering . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Patient Predictions at Triage . . . . . . . . . . . . . . . . . . 18

2.7.2 Building Clinical Profiles for Patients . . . . . . . . . . . . . . 18

2.7.3 Predicting Likelihood of Admission . . . . . . . . . . . . . . . 19

2.7.4 Length of Stay Related Benefits . . . . . . . . . . . . . . . . . 19

2.7.5 Frequent User Profile Identification . . . . . . . . . . . . . . . 19

2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Modeling the Patients 22

3.1 Provided Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Process of Generating Patients . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Time of Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Patient Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Validation of Generated Patients . . . . . . . . . . . . . . . . . . . . 29

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Modeling the Emergency Department 39

4.1 Provided Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Evolution of the Model Trough Iterations . . . . . . . . . . . . . . . . 40

4.3 Modeling of Individual Steps . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Choosing Which Patients are Served First . . . . . . . . . . . 43

4.3.2 Modeling the Time Spent With the Physician . . . . . . . . . 44

4.3.3 Modeling the service time for laboratory tests and imaging pro-

cedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Modeling the Time Spent Bed-Blocking . . . . . . . . . . . . . 63

4.4 Validation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Cluster Partitioning 68

5.1 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Algorithmic Approximation . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Partitioning Portion of the Algorithm . . . . . . . . . . . . . . 71

5.2.2 Swapping Portion of the Algorithm . . . . . . . . . . . . . . . 72

5.2.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



vi

5.2.4 Paralellization . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Experimental Results 79

6.1 Physician Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Candidate Schedule Generation . . . . . . . . . . . . . . . . . 79

6.1.2 Optimal Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Cluster Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.2 Algorithmic Performance . . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Effects of Paralellization . . . . . . . . . . . . . . . . . . . . . 95

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion 108

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



vii

List of Tables

Table 3.1 Comparison between data and generated binned age

proportions. . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.2 Comparison between data and generated sex proportions. 30

Table 3.3 Comparison between data and generated chief com-

plaint proportions for the the top 20 most occurring. . 30

Table 3.4 Comparison between data and generated CTAS level

proportions. . . . . . . . . . . . . . . . . . . . . . . . 32

Table 3.5 Comparison between data and generated laboratory

test order rates. . . . . . . . . . . . . . . . . . . . . . 32

Table 3.6 Comparison between data and generated CT scan or-

der rates. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.7 Comparison between data and generated radiology scan

order rates. . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 3.8 Comparison between data and generated ultra sound

order rates. . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 3.9 Comparison between data and generated admission and

discharge rates. . . . . . . . . . . . . . . . . . . . . . 37

Table 4.1 How priority levels for patients evolve over time. . . . 44

Table 4.2 The amount of time patient’s spend with physicians. . 45

Table 4.3 Generated breakdown of how much time a patient spends

with a physician, during which part of their visit to the

ED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 4.4 Bounds used in the genetic algorithm to generate the

mean times patient’s spend with physicians. . . . . . 46

Table 4.5 Bounds placed on the distributions of how much time

patient’s spend with physicians in order to avoid edge

effects. . . . . . . . . . . . . . . . . . . . . . . . . . . 49



viii

Table 4.6 Bounds used for CT scan wait time distributions to

avoid edge effects. . . . . . . . . . . . . . . . . . . . . 57

Table 4.7 Bounds used for ultrasound wait time distributions to

avoid edge effects. . . . . . . . . . . . . . . . . . . . . 62

Table 4.8 Comparison between data and simulated PIA. . . . . 64

Table 4.9 Comparison between data and simulated LOS. . . . . 64

Table 6.1 A table showing the Algorithmic and ILP performance

comparisons for finding the optimal. . . . . . . . . . . 90

Table 6.2 A table showing the Algorithmic and ILP performance

comparisons for runtime. . . . . . . . . . . . . . . . . 94

Table 6.3 A table showing the comparison of runtimes for the

initial partitioning portion of the problem. . . . . . . 100

Table 6.4 A table showing the comparisons of runtime for the

swapping portion. . . . . . . . . . . . . . . . . . . . . 105



ix

List of Figures

Figure 3.1 CTAS levels. . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2 Important relationships between (chief complaint, age

bin, sex) and CTAS Level. . . . . . . . . . . . . . . . 28

Figure 3.3 Simulated patient arrivals over a 365 day period com-

pared to those in the data. . . . . . . . . . . . . . . . 29

Figure 4.1 First Iteration of the ED model. . . . . . . . . . . . . 41

Figure 4.2 Second iteration of the model. . . . . . . . . . . . . . 42

Figure 4.3 Evolution in patient priority values over time. . . . . 44

Figure 4.4 CDF’s of time spent in initial assessments for CTAS

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.5 CDF’s of time spent in reassessments for CTAS levels. 48

Figure 4.6 CDF’s of time spent in repeated reassessments for CTAS

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.7 CDF’s of time spent waiting for laboratory samples to

be collected. . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.8 CDF’s of time spent waiting for laboratory tests to be

completed. . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.9 CDF’s of time spent waiting for laboratory samples to

be collected and the tests completed. . . . . . . . . . 53

Figure 4.10 CDF’s for CT scans ordered between 0:00-1:59 and

6:00-7:59. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.11 CDF’s for CT scans ordered between 2:00-5:59. . . . . 55

Figure 4.12 CDF’s for CT scans ordered between 8:00-19:59 . . . 56

Figure 4.13 CDF’s for CT scans ordered between 20:00-23:59. . . 57

Figure 4.14 CDF’s for radiology scans ordered. . . . . . . . . . . . 58

Figure 4.15 CDF’s for US scans ordered between 0:00-3:59. . . . . 59

Figure 4.16 CDF’s for US scans ordered between 4:00-7:59. . . . . 60



x

Figure 4.17 CDF’s for US scans ordered between 8:00-19:59. . . . 61

Figure 4.18 CDF’s for US scans ordered between 20:00-23:59. . . . 62

Figure 4.19 CDF’s for bed blocking. . . . . . . . . . . . . . . . . . 63

Figure 4.20 Boxplots for comparing PIA of data and simulation. . 65

Figure 4.21 Boxplots for comparing LOS of data and simulation. . 66

Figure 5.1 Example graph. . . . . . . . . . . . . . . . . . . . . . 73

Figure 6.1 Proportion of the top 100 weekday schedules that occur

most frequently. . . . . . . . . . . . . . . . . . . . . . 82

Figure 6.2 Proportion of the top 100 weekend schedules that occur

most frequently. . . . . . . . . . . . . . . . . . . . . . 83

Figure 6.3 A graph representing shifts that appear together in at

least 50% of the top 100 weekday schedules. . . . . . 84

Figure 6.4 A graph representing shifts that appear together in at

least 50% of the top 100 weekend schedules. . . . . . 85

Figure 6.5 A graph showing the relationship between algorithmic

performance in finding the optimal solution and the

number of nodes in the weighted graphs. . . . . . . . 87

Figure 6.6 A graph showing the relationship between algorithmic

performance in finding the optimal solution and the

number of partitions in the weighted graphs. . . . . . 88

Figure 6.7 A graph showing the relationship between algorithmic

performance in finding the optimal solution and the

number of nodes in the unweighted graphs . . . . . . 89

Figure 6.8 A graph showing the relationship between algorithmic

performance in finding the optimal solution and the

number of partitions in the unweighted graphs. . . . . 90

Figure 6.9 A graph showing the relationship between algorithmic

performance in runtime and the number of nodes in

the weighted graphs. . . . . . . . . . . . . . . . . . . 93

Figure 6.10 A graph showing the relationship between algorithmic

performance in runtime and the number of partitions

in the weighted graphs. . . . . . . . . . . . . . . . . . 93



xi

Figure 6.11 A graph showing the relationship between algorithmic

performance in runtime and the number of nodes in

the weighted graphs. . . . . . . . . . . . . . . . . . . 94

Figure 6.12 A graph showing relationship between algorithmic per-

formance in runtime and the number of partitions in

the weighted graphs. . . . . . . . . . . . . . . . . . . 94

Figure 6.13 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K2 graphs in the initial partitioning portion. . 97

Figure 6.14 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K3 graphs in the initial partitioning portion. . 98

Figure 6.15 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K4 graphs in the initial partitioning portion. . 99

Figure 6.16 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K5 graphs in the initial partitioning portion. . 100

Figure 6.17 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K2 graphs in the swapping portion. . . . . . . 102

Figure 6.18 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K3 graphs in the swapping portion. . . . . . . 103

Figure 6.19 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K4 graphs in the swapping portion. . . . . . . 104

Figure 6.20 A graph showing the relationship between paralleliza-

tion performance in runtime and the number of nodes

in the K5 graphs in the swapping portion. . . . . . . 105



xii

ACKNOWLEDGEMENTS

I would like to acknowledge the following individuals and institutions for their con-

tributions to this thesis.

First and foremost I would like to thank my two advisors Dr. Salimur Choudhury

and Dr. Dr. David Savage. They have both provided a great amount of council

and support throughout my thesis.

Dr. Yimin Yang for his time and participation as a member of my supervisory

committee and his helpful suggestions to improve my thesis.

Dr. Yassine for his time and participation as a member of my supervisory committee

and his helpful suggestions to improve my thesis.

Last but not least I would like to thank Faculty of Graduate Studies, Faculty of

Science and Environmental studies & the National Science and Engineer-

ing Research Council for their generous financial contributions to my education.

Additionally the Ontario Student Assistance Program for their offer of the On-

tario Graduate Scholarship.



xiii

DEDICATION

“Little by little, one travels far.”

– J.R.R. Tolkien

I would like to dedicate this thesis to,

My parents who have financed a great part of my education and supported me

throughout the process. In addition to this support in later years, they helped lay a

foundation to put me on the course to a higher education from an early age.

My professors who have had a great deal of impact on me as a student. In par-

ticular there are three educators that have contributed a great deal to my education.

Firstly, in the last two years both Dr. Salimur Choudhury and Dr. Dr. David Savage

have been a constant source of council during the work on this thesis as well as in

other projects and studies. The third is Michael Lajoie, who played a large part in

sparking my interest in computer science in my undergraduate degree.

Finally I would also like to dedicate this thesis to my fellow graduate students.

Whom have provided me with companionship throughout the course of this degree.



Chapter 1

Introduction

1.1 Impacts of Emergency Department Optimization . . . . . . . . . . . 1

1.2 Setting of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Interacting Components of the Department . . . . . . . . . . . . . . . 3

1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A trip to the emergency department (ED) is an event in most people’s lives that

is universally relatable. At some point, most people have experienced this either first

hand, as a patient or by accompanying a friend or family member. Visits to the ED

can be highly stressful and the conditions requiring medical attention time sensitive.

Providing the right care, to the right patient in a timely manner is essentially a service

optimization problem and can have a much greater impact than those implemented

in private commercial industries.

1.1 Impacts of Emergency Department Optimiza-

tion

Optimization of EDs is both beneficial to patient care and at the administrative level.

The benefits in quality of a patients stay are very positive, and take the form of in-

creased patient safety and decreased service times. Increased patient safety further

results in both, a decreased mortality rate and a decreased revisit rate. Better ser-
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vice times will result in shorter physician initial assessment (PIA) and length of stay

(LOS), both of these leading to a lower left without being seen rate (LWBS). These

factors also have an impact on the patients view on the quality of service forming a

more positive community perspective of the hospital. From an administrative per-

spective better service times, specifically in Ontario where this study takes place, can

drastically effect a hospital’s funding. In Ontario, all EDs receive base funding de-

pendent on historical patient volumes, additional funding is available to all EDs with

good performance metrics, this program is known as the Pay for Results program.

This means that EDs that maintain low PIA and LOS times receive additional fund-

ing. This funding can then be applied to obtaining further resources, both medical

staff and equipment, to even further improve system performance.

1.2 Setting of the Study

Many optimization topics are purposefully designed to be general to ensure a wide

range of applications, the unfortunate reality of ED optimization modeling is that

each ED is a highly specific instance. This is due to several factors. One of the

primary factors being patient demographics. On a macro scale most ED patient

demographics will be relatively similar, there are important differences. For example,

the shear volume of patients can be different depending on a hospitals location and

function (e.g., some EDs will manage trauma and other significant health conditions

while others will not). It is due to these variations between departments that the

need for individual case studies of EDs rather than constructing a standard method

arises. The differing demographics place importance on different resources during a

simulation. For example, high trauma EDs will need a larger concern on the part that

imaging resources play in the system. In addition there are the administrative choices

in how physicians service patients, get assigned to new patients and the handling of

triage that can greatly differ between EDs.

This study takes place in the ED at the Thunder Bay Regional Health Sciences

Centre (TBRHSC) in Thunder Bay, Ontario, Canada and using the same data that

was provided for the study [49]. This a high volume ED and the only trauma centre

in northwestern Ontario. There have already been changes to help optimize the ED in

the past. The ED is currently divided into two parts; a fast track queue for low acuity

patients (e.g., fractured bones, lacerations, and upper respiratory tract infections) and

a queue designated for higher acuity patients (e.g., heart attacks, stroke and trauma).



3

This study is focused on the optimization of the later. In addition, the physician

workflow is such that the physicians accumulate patients during the beginning of

their shift and then service (i.e., await investigations and provide treatment) these

same patients for the remainder. This is different than many other EDs where the

physician is continually accumulating new patients throughout the shift. The primary

benefit of seeing the majority of patients at the beginning of the shift is that it reduces

the likelihood of handover [62]. Handover in this instance refers to the change in the

physician responsible for the patients well being during the course of their stay in the

ED. Further discussion of these can be found in the related work section.

The optimization problem that is being investigated within this study is physician

scheduling. This unlike other approaches that may be considered; such as the benefits

of purchasing additional equipment or increasing staffing levels, optimizing scheduling

of physicians does not have additional cost associated with it. Therefore the objective

is to properly tailor the schedule so that the physicians begin their shifts at times

that allow demand to be met the fastest.

1.3 Interacting Components of the Department

During the course of their shifts physicians are a very sought after resource for patients

and have little downtime with the addition of other duties [9]. However, this is not

the only resource that patients require, creating bottlenecks between components of

the department resulting in longer wait times. During the course of a patients visit

to the ED the patient does not only interact with the physicians but also auxiliary

departments. These interactions are generally due to the need for laboratory testing

and imaging procedures. These departments are also responsible for investigations

both in the hospital and for some outpatients. In the case of imaging procedures,

outpatients have priority over many of those in the ED. This means that the booking

of times for inpatients and outpatients can effect the PIA and LOS metrics for the ED

as wait times for certain imaging procedures can be rather long. In addition, these

metrics can also be affected by other patients visits to the ED. Once all investigations

and initial treatments are completed, the physician will make a decision as to whether

the patient will be admitted to the hospital or discharged home. In the case of

admission the patient must remain in the ED until space can be allocated to them

within the hospital, during which time they are occupying valuable resources that

other patients may have otherwise utilized. This is referred to as bed blocking. All of
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these can greatly impact a patients LOS and potentially the PIA of other patients as

a result. Since these are separate departments the ED has to look to optimize around

them, as opposed to optimizing them directly.

1.4 Terminology

Due to the fact that this is computer science thesis; and therefore many readers may

be unfamiliar with many terms that are used by the medical community mentioned.

A full list of descriptions are included below.

• Emergency Department: The area of the hospital where a patient is treated

when entering with an urgent need and no appointment.

• Physician Initial Assessment: The point in a patients stay when they are

first assessed by a physician.

• Length of Stay: The time from a patients arrival to either their discharge or

admission.

• Left Without Being Seen Rate: The number of patients who are triaged

but leave before their initial assessment by a physician.

• Mortality Rate: The number of patients who die during the course of their

time in the ED over a particular period of time.

• Revisiting Rate: How often patients must return to the ED due to the same

complaint over a particular period of time.

• Acuity: The severity of a patients condition.

• Triage: The process of determining the severity of the patients condition and

how quickly they need to be seen by a physician. Patients are given a score

from 1 to 5 with level 1 patients requiring immediate attention to prevent harm

or death.

• CTAS Level: The Canadian Triage Acuity Scale, the system used to triage

patients.

• Patient Handoffs: When a physician finishes their shift but still has patients

that they need to see, instead they are assigned to a new physician.
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• Imaging Procedures: Procedures that allow for the imaging of a patients in-

ternals; CT scans, MRIs, X-rays(radiology), ultrasounds and echo cardiograms.

• Laboratory Tests: Tests conducted on blood or urine samples from the patient

to determine their condition.

• Inpatients: Patients admitted to hospital .

• Outpatients: Patients coming from the community to access hospital resources

but are not admitted to hospital.

• Admission: When a patient is unable to go home for a variety reasons and

needs to stay in hospital for further monitoring or treatment.

• Discharge: When the patient is deemed fit to leave by the physician.

• Bed Blocking: The time a patient spends in the ED after they have been

admitted but not yet transferred out of the ED and thus prevent another patient

from utilizing that space.

1.5 Thesis Overview

In this remaining section of the chapter a brief summary of the further contents of the

thesis will be provided for the reader. In the next chapter, related work, a number of

studies will be discussed that helped guide the research of the thesis. These pertain

to various methods of optimizing the ED as well as the applications of clustering in

the ED. The discussion begins with how academics evaluate ED physician schedules

and then proceeds into the methods commonly used to optimize schedules. Following

this some changes to EDs on a higher level, that have been shown to be effective in

improving metrics, are discussed. Finally areas in the ED that could benefit from the

use of clustering to aid physicians in making decisions are provided for the reader.

The two chapters following the related work pertain to the construction of the

simulation model. The third, and first of these two chapters, illustrates the process

in which patients are generated for use in the simulation model the using provided

data. Additionally this chapter provides validation information to argue the quality

of these generated patients. The fourth chapter continues into the construction of the

simulation model of the ED. This explains the iterations in it’s construction and as

in the previous chapter provides validation information.
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The fifth chapter discusses the cluster partitioning problem. The problem is out-

lined for the reader and an integer linear programming model is constructed for com-

parison to the algorithm’s performance. Additionally both sequential and parallel

versions of the algorithm are provided for the reader. The parallel versions being

both CPU and GPU based.

In the remainder of the thesis the results are discussed. In the sixth chapter the

results of the simulation and the clustering algorithm’s performance are offered to the

reader along with the author’s comments. In the final chapter some closing thoughts

are provided, discussing the results and potential future work.
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2.1 Overview

The problem of physician staffing for an ED is a complicated one that is not easily

generalized. Schedules must be formed case by case for individual EDs. While there

may be similar patterns among hospital ED patient volumes, each EDs structure is

decided upon by the hospital governing it. For example, the presence of a fast-track

queue for low acuity patients. Another example would be the physician workflow

and how physicians accumulate patients over the course of their shift. In some EDs

physicians assess new patients throughout their shift and handover those that require

further attention at the end. While in other departments, the physicians will acquire

patients for an allotted period during the beginning of there shifts and service these

patients for the remainder, in order to avoid the handover of patients between physi-

cians. These two simple examples illustrate the very different situations in which EDs

operate.

An observational study of physicians was conducted in EDs across Ontatio to

measure their activities during shifts [9]. The study consisted of data gathered from

eleven hospitals and five different geographic regions. Three different types of EDs

were studied: 2 rural, 6 community and 3 teaching hospitals. Data was collected over

the course of multiple periods during the course of the year. The results describe the

type of patients that visited the eleven EDs, how much time physicians spent doing

different activities during the course of their shift and how long physicians spent

with types of patients corresponding to Canadian Triage Acuity Scale (CTAS) level.

The study found that physicians in EDs in community and teaching hospitals have

minimal downtime during the course of their shifts and that CTAS levels present

within the EDs varied in their distributions.

2.2 Evaluation of Emergency Physician Schedules

If the objective of a study is to optimize the scheduling of physicians in the ED,

then a method for the evaluation of such schedules must also be constructed. Not

surprisingly the methods of evaluating ED schedules out date optimization techniques

for the area. Evaluations are generally simulation based through the use of discrete

event simulation [13], [55], [42] and [45]. A general basis for a simulation tool was

developed by [53].

A study was performed at an inner city urban teaching hospital in Vancouver,
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British Columbia, Canada, to determine predictors of physician workload [25]. Sev-

eral key variables were found that predicted total physician time per patient visit,

including CTAS, age, sex and whether a medical procedure was required or not. The

authors conclude although their model was validated at the same hospital, further

validation is required.

In addition to evaluating the performance of current physician schedules against

potential schedules, the simulation model can also be employed to test other changes

in the ED. Concentration on the minimization of average patient length of stay was

found to have adverse affects on other aspects of the department [50]. It was found

within the simulation that this minimization resulted in high variability of staff uti-

lization and the length of stay in patients in general. The authors also mention

that the common tactic of increasing beds can result in resource bottlenecks. Dis-

crete event simulation was used to investigate the effect of the implementation of a

fast track queue and acuity ratio triage assignment in comparison to traditional ED

patient assignment [5].

2.3 Optimization of Physician Schedules

2.3.1 Discrete Event Simulation

One method of optimizing physician schedules is through the use of discrete event

simulation [15]. Prior to the optimization of the ED’s schedule the simulation model

is first validated to determine if its an accurate representation of the ED. Typically

the optimization of these schedules consists of experts running the simulation for

potential schedules. The schedules are then iterively adjusted to produce one that

better meets the hospitals needs.

A study was done using discrete event simulation and what if analysis in regards

to a hospital in Moncton, Canada [29]. The main objective was the reduction of

wait times. The data was collected between the hours of 0800 and 2000 on weekdays

only. Additionally, only patients with CTAS levels from 3-5 were considered, as they

makeup 93% of patients within the department and levels 1 and 2 were meeting

standards. Alternative schedules were explored with the use of additional staff, both

nurses and physicians, as well as the use of additional rooms. These scenarios were all

constructed with the intent of reducing the time between a patients registration and

the availability of an examination room, as it was found to be the most significant
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contributor to wait times. The results of the study found that an increase in rooms

without a matching increase in staff has no affect on the waiting times. They also

show that the addition of a physician and a nurse between 0800 hours and 1600 hours

is the most beneficial of the scenarios explored.

2.3.2 Mixed Integer Programming

Another technique is mathematical modeling through the use of mixed integer pro-

gramming. In this process constraints are created that describe the nature of the ED,

such as how many beds and physicians are available. As well, as logical constraints

such as only one patient can use a bed at a time. The mathematical solver is then

given an objective function, that in this case is generally the minimization of a factor

related to ED overcrowding such as: length of stay, waiting time, or patients that left

without being seen to name a few.

Stochastic optimization was used by another study in Lille, France [12]. The

schedules were evaluated using discrete event simulation and the optimization of

schedules was done via a stochastic mixed integer model solved using sample aver-

age approximation. Both the simulation and optimization models used exponential

service times and the patients arrival was based on a Poisson distribution. However

the optimization model is less complex, an example being resource usage including

laboratory tests and imaging procedures. Multiple schedules were created using this

technique with varying constraints on shift lengths; fixed eight hour shifts, shifts of

four to twelve hours and shifts with no length constraint only total hours worked.

Optimized schedules were then tested for robustness, simulating a large increase in

patient volumes, such as an epidemic. The final evaluation of schedules was done by

simulating 100, ten day periods for each of the the three generated schedules as well

as the original. The authors found that the additional flexibility of no required shift

length was not more beneficial than that of a four to twelve hour shift, and that the

most important factor overall in the optimization of a schedule is the start time.

A study was done using historical data from a teaching hospital in Thunder Bay

(Thunder Bay Regional Health Sciences Centre), Ontario Canada that used mixed

integer programming to optimize a schedule [49]. Temporal patterns within the data

where analyzed between days of the week in regards to patient arrival rates. The

authors found that a division of a schedule into one for weekdays and one for weekends

was best. The model was constructed illustrating constraints in the ED including the
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two queues (i.e., a fast track and acute care), and accounts for movement of physicians

from the acute care queue to the fast track during the last three hours of their shift.

During the course of the study three scenarios were explored; a schedule that was

simply an optimized version of the current one, a schedule that made use of an

additional physician in the acute care area of the department and a schedule that

used an additional physician in the fast track area. The model was able to generate

better performing schedules for all three scenarios. The scenario of a revised schedule

with no additional physicians reduced the unmet patient demand by 19%. Note, the

unmet demand was calculated as the average number of arriving patients beyond the

physician productivity. As one may expect it was found that an additional physician

reduced unmet demand further. Specifically having the greatest effect in the the fast

track area. However the authors mention that the choice to utilize the physician in

the acute care area may be better when other factors are considered.

2.3.3 Algorithmic

A more recent area that is being explored is optimization through the use of algo-

rithms [51]. These algorithms tend to borrow the generalized framework of resource

scheduling algorithms and modify them to fit the parameters of the ED.

A study was done that constructed two iterative algorithms that made use of a

linear optimization model [52]. The study was conducted using data gathered from

five EDs in Israel, of which one was a level 1 trauma centre, two were medium sized

hospitals and two were small hospitals. The physicians in the study were divided into

categories within the ED. The two algorithms proposed were largely similar with the

second being an extension of the first. The algorithms attempt to reduce the average

patient length of stay by finding the largest contributor within the department and

rescheduling that area accordingly. The schedule is tested between iterations using

a simulation model. The first algorithm ignores any areas that are scheduled that

do not have more than 24 person hours assigned to them as they are are unable

to be rescheduled. While the second algorithm allows these areas to be rescheduled

when staff from other areas can be borrowed, choosing the one that is causing the

least delay. The results of the algorithms showed that across the data from the five

hospitals there was an average reduction in the length of stay of patients between

7% and 17.5% for the first algorithm, the second showing between 11% and 29%.

The authors offer some areas that could be potentially explored for further benefit.



12

Firstly, the modifying of the algorithm to incorporate mixed shift lengths, as currently

it only considers eight hour shifts. Additionally, changing the heuristic so that it also

considers variability of wait times, as it could yield a more robust schedule. Finally

the consideration of cost functions, as shifts can have different cost depending on

time.

2.3.4 Queuing Theory

Because an ED is essentially a service system, queueing theory has been offered as a

possible means of optimization [18]. A study was done that constructed a queueing

model of an urban ED in Manhattan [17]. The model considered a single queue

for entering patients that fed into servers (i.e., the staff) with constant arrival rates

and service times using an exponential distribution. To account for the fact that

EDs having varying arrival rates through out the day, patient flow was broken down

according to a lag stationary independent period by period (SIPP) approach. This is

modified from the standard SIPP to account for the fact that peak congestion often

occurs slightly after peak arrival in many service systems. Each of these periods

is then solved independently to find the required minimum staffing level to meet

targets. The objective in question was based on the amount of patients that left

without being seen, and is that a patient will not have a probability higher than 20%

of waiting an hour to be seen. To investigate the effects of the optimization, data was

compared from a 39 week period before the schedules implementation and a 39 week

one after the implementation. These periods consisted of matching weeks to account

for seasonal and disease state variation. Also being aligned to account for days of the

week. Schedule construction was divided into weekdays and weekends. Between the

two periods an increase in patients of 6.3% occurred, while the new schedule resulted

in a left without being seen percentage of 6.4% opposed to the previous 8.3%. The

authors also comment that for the periods of the week where the number of staff

hours was unchanged, just the scheduling had a left without being seen percentage of

7.2% compared to the previous 9.2%, despite a 5.5% increase in patients during the

time. The authors note that these results could be further improved if proper data

was provided on the length of time providers spent with patients and patient triage

level, as well as the effects of patients waiting on test results.
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2.4 Advantages of Physicians in Triage

Studies have investigated the effects of modifying the traditional triage process by

having a physician during this early stage of a patients stay in an ED [35]. The idea

behind this being that physicians can more reliably determine a patients acuity and

then order the required investigations while the patient waits to access a treatment

space. In addition this approach is usually considered when the objective of the

optimization is focused in the earlier portion of a patient’s visit.

Having a physician involved in the triage process has been shown to decrease the

time spent waiting to see a physician, left without being seen rate and length of stay

[31], [24], [39], [16], [22] and [10]. The presence of a physician in triage allows for low

acuity patients not needing laboratory tests or imaging to be discharged immediately

after the triage stage [58]. In addition to reducing waiting times for all patients,

having a physician in triage allows physically small EDs to service patients while no

beds are available [40]. With the possibility of having laboratory tests and imaging

ordered at triage, physicians in triage allow for less time spent waiting in a bed in the

ED [47] and [56]. This is due to the fact that without a physician in triage a patient

would have to first wait for an initial assessment by a physician before having the

tests and imaging ordered.

A study was done at an urban academic medical centre in San Diego, California,

in which the effects of their implemented REACT (rapid entry and accelerated care

at triage) system had on the ED were analysed [2]. REACT created many changes for

the process of ambulatory patients, which make up 85% of their patient population.

Among the changes was the allowing of patients to have a medical record started

prior to full registration. Allowing this opened the door to several possibilities. This

allows for such things as tests being ordered and the patient being immediately sent to

available rooms after triage. In addition if no beds in the ED were available, nursing

staff were directed to contact the physician, who could then make a brief evaluation

at triage and order lab or radiology tests. This change in the system allows for tests

to be completed while the patient is waiting for a full registration, where as previously

none of this would have even begun. The implementation of REACT resulted in a

decrease of the left without being seen rate of 50%, those that received accelerated

testing and care at triage made up 8% of the total population and that 23% of patients

waited five minutes or less to be seen.

Another study investigated the effects of having physician at triage in a urban
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academic level 1 trauma centre in a medium sized city [20]. Data was collected during

a 9 week period before and after the implementation, forming a control data set as

well as one effected by the presence of a physician at triage. With the control data

collwction ending one day prior to the data during the test period. This was done in

order to minimize temporal and seasonal changes. The LWBS rates decreased from

4.5% to 2.5%, with no change in patient volumes. Ambulance diversion also decreased,

from 5.6 days per month (36 episodes) to 3.2 days per month (29 episodes), with a

decrease in duration as well from a median of 431.5 minutes per episode to a median

of 256 minutes per episode. Decreases in patients length of stay however were only

found with discharged patients, due to the boarding times within the department.

2.5 Effect of Fast Track Areas

As previously mentioned in section 2.1 some EDs make use of fast track areas. The

function of these areas are to specifically target the length of stay for lower acuity

patients. While at first glance this may appear in opposition to the triaging system, as

patients are prioritized based on severity of acuity. This however is untrue as it allows

low acuity patients to continue flowing through the ED while beds are being blocked

by patients that have been admitted but not yet left the ED. In addition to this it

has also been found to reduce the left without being seen rate and length of stays in

several EDs [43], [23], [38] and [14]. These fast track queues are not always managed

by physicians, sometimes by nurse practitioners or a combination of physicians and

nurse practitioners. This can be beneficial from a budgetary perspective, since having

low acuity patients being handled by a nurse practitioner is less expensive than a

physician. In addition to this budgetary advantage, by having lower acuity patients

be serviced, at least in part, by nurse practitioners it allows physicians to concentrate

on the higher acuity patients [26]. Studies have been done that show that patients are

very happy with the service provided by nurse practitioners within fast track areas

[8] and [30]. It has also been found that fast track patients have less tests that need

to performed, meaning that the fast track area’s patient flow is less effected by other

departments [19]. It has been shown that these effects still persist with increased

amounts of patients and therefore an increased workload for physicians [27].

The introduction of fast track areas in EDs has been shown to decrease the number

of patients with lengths of stays of 4 or more hours [4]. A fast track area was shown

to reduce the number of patients waiting over an hour by 30%, and 50% with an
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increased consultant presence [7]. These decreased length of stays lead to an increase

of patient flow and decreased likelihood of overcrowding [28]. As mentioned, a concern

that is raised when the implementation of fast track areas is considered is the effect

it will have on higher acuity patients. It has been shown that in addition to lowering

waiting times for lower acuity patients, there are also benefits for those with higher

acuity [44].

One study done at an urban tertiary ED that services 75,000 patients per year

investigated the effectiveness of the newly implemented fast track area [48]. The

study was done by analysing data from a period prior to the implementation of the

fast track area and a period after. The second period experienced a 4.43% increase

in daily patients compared to the first and 30% of the total patients were triaged to

the fast track area. There were clear benefits to the ED from implementating the

fast track area. There was an average decrease of 50% in the waiting time too see a

physician, including both fast track and non-fast track patients. There was a decrease

in the average length of stay by 9.79% on average, again both fast track and non-fast

track. The authors mention that the primary concern is that the implementation of

the fast track area would effect the quality of care. To address this the authors point

out that there was a decrease of 52.18%, 1.31% and 3.57% in the left without being

seen rate, revisiting rate and mortality rate, respectively.

A similar study was done at a tertiary adult ED in Perth, Western Australia, with

a trial period for a fast track department [36]. This ED experiences a large number

of elderly patients (i.e., 26%) over 70 years of age and 14% over 80 and of the total

patients 48% were admitted. The trial period consisted of a twelve week period of

an operational fast track area between 09:00 and 22:00 on weekdays and 09:30 and

18:00 on weekends. This area was staffed by a single junior physician and a single

nurse, with no increase in staffing levels within the department. Triaged patients were

assigned to the fast track area when they where expected to be discharged and had

low acuity scores, 3 to 5 on the Australian Triage Scale. Over this period the fast track

area handled 21.6% of patients, 123.5 per week on average, and 29.8% of all patients

who were discharged. This trial period resulted in the reduction of both length of

stay and waiting times for discharged patients. The relative decrease in length of

stay was shown to be 18% and 9.7%, for the matching 12 week period of the previous

year and the 12 week period preceeding the trial, respectively. These decreases were

in the face of 7.7% increase in patients from the previous year and a 10.2% seasonal

increase in patients. Similarly there was a relative decrease in the waiting time to
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see a physician for the prior periods of 20.3% and 3.4%, respectively for discharged

patients. There was also a relative decrease in patients who left without being seen

of 37% and 17% for respective periods. The authors mention that there were no

increases in the average waiting time for admitted patients with either period. The

fast track area used during the course of the trial was allocated 3 beds in comparison

to 500 in the standard ED. The authors mention that there are limitations in the

study. During the course of the of the matching period of the previous year the ED

was expanded, providing additional physical space, hence the investigation of the two

prior periods to try to negate any reductions that were a result of increased area.

A study was done at a teaching hospital in Melbourne, Australia to investigate

the effectiveness of a fast track area within the ED [6]. Data was gathered over the

course of two periods, July 1st 2006 to November 15th and January 1st 2007 to March

31st 2007, being a ED setting without a fast track area and one with a fast track

area respectively. The implementation of the fast track area resulted in a decrease

in length of stay for discharged patients and no significant change with admitted

patients. Both the periods prior and following the implementation of the fast track

area had 14% of discharged patients have a length of stay of 60 minutes or less. This

diverges in the cases of patients who stay 2 hours or less. This accounts for 44% of

non-fast track discharged patients and 53% of fast track patients. Similarly in the case

of patients who stay 4 hours or less. Accounting for 84% of non-fast track patients

who where discharged and 92% of the fast track patients. The authors mention that

the demographic and volume of patients did not significantly change within the two

periods.

2.6 Managing Patient Handovers

Patient handovers are another area of research that can be used to improve EDs.

Patient handovers occur when a physician has finished their shift but patients under

their supervision require further attention before being admitted or discharged. A

study was done in which the handovers of 992 patients were observed at an urban

teaching hospital over an 8 week period [33]. During this period it was found that

physical examination errors occurred in 13.1% of cases and omissions in 45.1% of

cases. While laboratory errors and omissions were found in 3.7% and 29.2% of cases

respectively. A similar study was done with the more specific focus on vital sign

communication at an urban academic tertiary care hospital [59]. The study observed
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1163 patient handovers, in which 42% of those with episodes of low blood pressure

(66 of 117) and 74% of those with an episode of low levels of oxygen in the blood

(116 of 156) were not communicated to the physician taking over patient care. The

authors mention that even a single episode of low blood pressure is associated with

higher mortality rates. The study also found that omissions of vital sign occurred in

14% of handovers. Further support to the errors present in handovers can be found

in [61]. These errors often lead to increased patient stay that can be a result of the

new physician performing examinations that were performed by the original.

A general framework for patient handovers is discussed and presented in [3]. The

authors discuss potential causes of handover errors between physicians. They men-

tion that the ED is a chaotic work environment that can lead to interruptions during

the handover process resulting in errors. In addition to this since time is a valu-

able resource in the ED errors can occur from physicians balancing conciseness and

completeness when performing handovers. Other sources mentioned are that many

physicians will continue to perform activities such as charting leading to confusion

about which physician is responsible for specific tasks, as well as poor communication

of factors such as pending results of imaging, laboratory tests and consultants and

unclear diagnosis. The author’s offer general guidelines to better streamline the pro-

cess of handovers. These include; a dedicated space for the process of handovers to

reduce distractions, a structured overview of patients with initial assessment, imag-

ing and laboratory results including those that are outstanding, properly accounting

for patients temporarily in other departments, the establishment of clear moments of

transfer.

As mentioned in the beginning of this chapter some EDs organize their schedules

in a manner that a physician shift has two phases; the first where they acquire new

patients and the second where they mainly service their existing patients. Organizing

shifts in such a manner reduces the number of handoffs necessary during a physicians

shift. A study was conduct on the effects of such a scheduling change at a the Seattle

Children’s Hospital [62]. The study observed 43,835 patient encounters, in which

patient handoffs where reduced from 7.9% to 5.9%. Surveys also showed improved

perceptions of patient safety, patient flow and job satisfaction.
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2.7 Potential Benefits of Clustering

We know arrive at the secondary area of investigation within the study, clustering.

In this section some potential benefits of clustering will be discussed in regards to the

ED.

2.7.1 Patient Predictions at Triage

Clustering can yield some advantages if utilized during the triage process. It can

be used as both a method of determining the seriousness of a patients condition

and to get a prediction of resources that a patient may require throughout their

stay. The determining of the seriousness of a patient’s condition with the aid of

clustering can help to more effectively assign patients that are borderline to queues

when a fast track queue is present within the ED. When used to determine resources

that patients are likely to require throughout their stay in the ED, wait times for

things such as laboratory tests and imaging procedures can be drastically cut down

as the process can begin while the patient is waiting for their initial assessment. One

study developed a clustering system to show a patients association with resources

and admission with regards to presenting complaints using hierarchical clustering

[34]. This allowed patients to be categorized into three groups of acuity. Another

study used data from a hospital in west London in the UK to determine between

to groups of high acuity patients [32]. This study used both K means clustering

and fuzzy C means. A study was done using hierarchical clustering that identified

misdiagnoses of influenza case for respiratory disease [54]. The authors stress the

reduction in overcrowding that could be seen if this was used during flu seasons.

2.7.2 Building Clinical Profiles for Patients

While all uses of clustering involve building profiles for patients to a degree there are

certain situations where additional information can be utilized by physicians through

the use of patient profiles alone. These are often highly specified but if introduced

as a system within the ED they could be very useful to physicians. One study used

data from the Massachusetts General hospital to make accurate predictions for septic

shock in patients [37]. This was done using agglomerative hierarchical clustering

of blood pressure trajectories. Another study was done using K means clustering to

categorize patients seriously attempting suicide at a University hospital in Brazil [41].
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The study was able to determine three groups of patients that are likely to require

admission, although the authors mention that further analysis is needed.

2.7.3 Predicting Likelihood of Admission

Another application of clustering is determining whether a patient will require admis-

sion. If patients that are to be admitted can be identified earlier then fewer patients

will be occupying treatment spaces within the ED. If time to admission can be re-

duced it could potentially aid in overcrowding problems within the ED. One study

used ward’s method to cluster patients in a psychiatric ward to predict admission [1].

Another study focused specifically on patients having CT head scans and found sub

populations that were likely to be admitted [57]. This paper used data from three

Emory hospitals in Atlanta to perform K means clustering.

2.7.4 Length of Stay Related Benefits

Clustering can also be applied in regards to a patients LOS. Some studies focus on

predicting a patients LOS. Such as one study that uses K means clustering on the

MIMIC II data set [46]. It was able to predict death and LOS of patients. Another use

of length of stay is not through predicting it but rather using previous data to estimate

future resource consumption. One study used a variety of clustering techniques on

a stroke victim data set from the English Hospital Episode Database to do just this

[11].

2.7.5 Frequent User Profile Identification

A less obvious use of clustering is the construction of frequent user profiles. Some

patients have conditions that often require medical attention. These can be consistent

visits or short bursts periodically. Being able to build these profiles can allow an ED

to perform forecasting to a better manage these populations. Additionally it could

allow the ED to reevaluate their approach with these patients as at times admission

could remove the need for additional visits for a period. One study used decision

trees to identify patients likely to return within 30 days [21]. This resulted in the

identification of high risk patients and patterns in resource consumption. Another

study was done using spectral clustering with Wasserstein distance to identify and

build profiles of frequent users that take a toll on the ED [60].
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2.8 Chapter Summary

In this chapter various methods that have been used to optimize EDs have been

discussed. There are both approaches that focus on merely improving how schedules

meet patient demand and those that change the way the ED functions as a whole.

In regards to scheduling physicians the current common practice for evaluating

schedules is through the use of discrete event simulation. This is done in order to

judge whether or not a schedule properly meets patient demand. In order to ac-

tually optimize the physician schedules, surveying the research in this area showed

four different approaches. The first approach was to use discrete event simulation

to evaluate a handful of schedules. This is often done to determine if small changes

should be made to schedules or to choose between different proposed schedules. Al-

ternatively the schedules are adapted through what if analysis in order to determine a

more efficient schedule. The second approach that is commonly used is mixed integer

programming. In this approach a model is defined through the use of equations that

constrain the problem space. Algorithmic approaches are also used. These consist

of using simulation to evaluate schedules and a heuristic to guide the optimization.

Finally the fourth common approach is the use of queuing theory. This approach

models the ED in the form of a service problem.

Following this, approaches that introduce changes to the way the ED functions

were discussed. The first approach was the use of physicians in triage. This provides

more accurate triaging of patients and allows for the ordering of laboratory tests and

imaging procedures immediately. The second approach discussed was the effects of

implementing a fast track area within the ED. These areas allow low acuity patients

to be seen quickly instead of waiting for high acuity patients to free up necessary

staff and resources. Introduction of these areas has been found to have beneficial

effects on key performance metrics for EDs, namely PIA and LOS. Last managing

the handover of patients at the end of a physicians shift was discussed. Common

issues that result from the miscommunications between physicians where discussed

as well. Additionally the approach to remedy these issues of having physicians work

in two phases was offered to the reader. This approach first has the physician focus

on acquiring new patients for the first portion of their shift and then attending to

these patients for the remainder of the shift.

Finally the potential benefits of utilizing clustering in the ED are discussed. The

studies show the ability of clustering to produce accurate predictions for patients
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from information obtained at triage and the capability to build clinical profiles. Ad-

ditionally clustering can be used to determine if patients are likely to need admission,

which could greatly decrease bed blocking times, and the estimated LOS of patients.

Lastly clustering can be used to identify likely frequent users of the ED.
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The first step in modeling the ED is properly generating patients for a simula-

tion. These generated patients need to be representative of those that visit the ED.

Therefore they can not be simply randomly generated and need to be based of the

data.

3.1 Provided Data

The data provided by the TBRHSC comes from two sources; the ED and radiol-

ogy. The first dataset contains all of the patient descriptors and several time stamps

that denote important processes within the ED (e.g., arrival, physician initial assess-

ment, investigation ordering, admission and/or discharge). The second data set only

contains information for laboratory tests and imaging procedures.

The information in the ED data that are made use of are as follows:

• Time and date of the patients arrival
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• Time and date of the patients PIA (point of initial assessment)

• Time and date of the patients end of stay(this may be discharge or

admission)

• Time and date of the patients transfer to the main hospital(this is in

the event of admission)

• The patients primary complaint upon arrival

• The patients age

• The patients sex

• The patients assigned Canadian Triage Acuity Scale(CTAS) level,

rankings of this scale can be seen in figure 3.1

• The patients area of treatment within the ED

Figure 3.1: CTAS levels.

The information in the radiology data that are made use of are as follows:

• The name of the laboratory test or imaging procedure

• The category, in the case of imaging procedures

• The time and date that the order was placed

• The time and date of collection, in the case of laboratory test
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• The time and date when the results became available, in the case of

laboratory tests

• The time and date where the patient enters the imaging procedure

A unique patient ID was also provided to ensure patient anonymity and to link

the two datasets.

3.2 Process of Generating Patients

For the purpose of modeling the ED synthetic data is used. These process of gener-

ating these patients is elaborated on in the rest of this chapter. The goal is was to

have the demographics and resource needs of these generated patients to match the

records found in the data as close as possible. The reason for doing this is two fold.

First it avoids the issue of partially incomplete records for patients. These patients

would need to be removed from the simulation making the ED less busy then it truly

was. Second it allows for the generation of multiple sets of data to aid in tuning the

simulation parameters.

While several of the variables can be clearly used in the process of generating

patients, the use of several other variables was not. In particular, the inclusion of

many of the date and time data points. These dates and times were included as a

method of double checking those used in the generation process. As this data is hand

entered by hospital staff throughout the day there are some obvious entry errors in

the data. The errors can be as simple as transposition errors that mix up the date

format so that the so that the month and day are changed. In the instances where

this creates an impossible date, for example the 2nd day of the 20th month, this is

an simple mistake to catch. However, if the date is still possible then the date and

time stamps can be checked against other events in the patients stay to ensure that

a logical order is followed. This process can also be used to detect errors in the time

stamp as well.

3.2.1 Time of Arrival

The generated patient arrival times must accurately match patient times and volumes

in the data. Another consideration is whether the data should be split to account

for differences in patient arrivals between weekdays, weekends, and holiday days seen
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in previous research [49]. Several holiday dates were removed from the data set to

reduce variability. These were long weekends in which the Friday or Monday where

removed along with the dates that directly proceed and follow them. This was done

with the thought that these days may behave closer to the weekend days and may

skew the result.

The patient arrivals were then divided into 96, 15 minute increments throughout

the day. These begin on the hour, the quarter hour, the half hour and the three

quarter hour. The mean number of patients arriving in the ED was then calculated,

which are then used in a non-stationary Poisson process. This generated results very

close to the true means but some further adjustments where necessary and arrivals

where dropped randomly form the farthest outlier of each group, until the correct

mean was reached. The algorithm for the Non-Stationary Poisson Process can be

seen bellow in algorithm 1. This process was done for both weekdays and weekends

separately.
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Algorithm 1 Partitioning Algorithm

1: for number of minutes to generate patients for do

2: a: number of patients who arrived in the last 15 minutes

3: for j in the past 15 minutes do

4: if j ¡ 0 then

5: continue this is a boundary condition

6: end if

7: if a patient arrived during minute j then

8: a+=1

9: end if

10: end for

11: if a >= 6 then

continue realistic bound from looking at data

12: end if

13: r1 = probability of at least a+1 patients having arrived in the past 15 minutes

14: r1 = probability of at least a patients having arrived in the past 15 minutes

15: chance = r1/r2

16: generate a random number to see if there is and arrival

17: if there was an arrival then

18: record the arrival time

19: end if

20: end for

3.2.2 Patient Profile

With the patient’s arrival time generated, the patient’s characteristics must be gen-

erated. The variables required for each patient are: chief complaint, sex, age, CTAS

level, laboratory tests, imaging procedures and admission/discharge. During the

course of the simulation the type of laboratory test or imaging procedure required

is irrelevant, it is whether it none, one, or both occur. Consecutive laboratory tests

were not uncommon in the actual ED and may be needed for monitoring reasons.

These can not be easily generated as their are some causal relationships at play.

The first set of important relationships is that of age, sex and chief complaint.

While all sex and age combinations are valid, extreme old ages are less likely. Chief
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complaints are not valid with all combinations of age or sex. For example, a fever

can be serious for a baby but may not be significant for an adult, indicating that age

is a determiner of chief complaint. An example, where sex is a determiner would be

cases that relate to female sexual organs, such as uterine bleeding which a biological

male cannot have. Frequency distributions for each combination sex, age, and chief

complaint were developed, negating ones that were not present. The patient age was

binned in five year intervals in order to decrease the resolution of the data and elim-

inate ”noise” within the data. These tuples where then drawn from the distribution

according to their relative weights in the data.

At this point our patient has the descriptors age, sex, and chief complaint. The

next step was to generate a CTAS level for each patient. The CTAS level of the

patient is directly related to the previously generated descriptors as that is what a

nurse will primarily use to triage the patient upon first assessing them. We know

that these relationships are important but some are likely to be less important than

others and can be essentially drawn from the global CTAS distribution. To determine

the important relationships we borrow the concept of association rule mining from

the field of big data. To accomplish this analysis, the support and confidence for

each combination must be calculated. The equation for these to metrics can be found

in equations 3.1 and 3.2, respectively. When the combination of minimum support

and confidence is used, a relationship in the number of association rules generated

emerges, this can be seen in figure 3.2. The chosen minimum support and confidence

were 4.0x10̂-8 and 4.0x10̂-8 respectively. The relationships not deemed important are

simply drawn from the global CTAS distribution with the caveat that there must

be an example of the combination within the data. For those deemed important, a

chance is first given to this relationship by using the confidence.

support =
occurrences within data

amount of data points
(3.1)

confidence =
occurrences with both the antecedent and consequent

occurrences with the antecedent
(3.2)
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Figure 3.2: Important relationships between (chief complaint, age bin, sex) and CTAS
Level.

Next, the orders for laboratory test and imaging procedures were generated. For

our purposes we do not need to know what the type of test or procedure, but instead

that one is required. To do this we again use the Poisson distribution to determine

whether the number of rounds of tests or procedures the patient undergoes. For

these distributions we need to determine the probability for each combination of chief

complaint, sex, age bin and CTAS level ordering a procedure or test. As well as how

likely it is to order subsequent ones. We again use the timestamps within the data to

ensure that the test or procedure was completed prior to admission. Note that due

to the extremely small number of instances, the MRI and echocardiogram procedures

were not considered for the simulation. For each of the patients, it is then determined

how many laboratory test, CT, radiology and ultrasound rounds they receive before

being admitted or discharged. It should be noted that there are possibilities within the

data for multiple tests or procedures to be ordered at once, this is extremely common

with lab tests. Taking this into consideration, before determining the number of

rounds a patient underwent, they were grouped by the end of the test or procedure

as the patient would be waiting until that point so it did not matter if an additional

test or procedure of the same category was added to the list between then if it was
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in the same batch of completed results.

Finally, the patient is either admitted or discharged. This is done simply by using

the proportion of the patients in the data that are admitted or discharged according

to their chief complaint, sex, age bin and CTAS level.

3.3 Validation of Generated Patients

Before starting the modeling, the generated patients were compared to the true data.

To do this the steps will be compared in a step by step fashion.

To begin we have the patient arrivals generated for simulation. A comparison

between the generated patients and those from the data can be seen in figure 3.3.

These results where obtained by simulating 365 days of patient arrival.

Figure 3.3: Simulated patient arrivals over a 365 day period compared to those in the
data.

Following this we have the generated patient descriptors. The comparisons for

age bin and sex can be seen in tables 3.1 and 3.2, respectively. The comparisons for

chief complaints can be seen in table 3.3. This table only contains the top 20 chief

complaints for the sets, as there are 177 chief complaints within the data. However,

these top 20 makeup about 63% of the patients in both the data and the generated

set.

Table 3.1: Comparison between data and generated binned age proportions.

Age Bin(Years) Data Proportion Generated Proportion
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0-4 6.64% 6.75%

5-9 1.73% 1.77%

10-14 2.33% 2.29%

15-19 5.28% 5.37%

20-24 7.80% 7.80%

25-29 6.71% 6.72%

30-34 5.99% 5.79%

35-39 5.93% 5.86%

40-44 5.36% 5.37%

45-49 5.72% 5.73%

50-54 6.44% 6.50%

55-59 6.73% 6.59%

60-64 6.11% 6.08%

65-69 6.10% 6.05%

70-74 5.44% 5.54%

75-79 4.71% 4.77%

80-84 4.51% 4.54%

90-94 3.68% 3.67%

95-99 2.13% 2.18%

100-104 0.63% 0.59%

105-110 0.04% 0.03%

Table 3.2: Comparison between data and generated sex proportions.

Sex Data Proportion Generated Proportion

Male 44.69% 44.91%

Female 55.31% 55.09%

Table 3.3: Comparison between data and generated chief complaint proportions for
the the top 20 most occurring.

Rank Data Complaint
Data Pro-

portion
Generated Complaint

Generated

Proportion
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1

ABDOMINAL

PAINNON −
SPECIFIED

11.73%

ABDOMINAL

PAINNON −
SPECIFIED

11.36%

2
SHORTNESS OF

BREATH/DYSPNEA
5.51%

SHORTNESS OF

BREATH/DYSPNEA
5.57%

3 CHEST PAIN CARDIAC 5.37% CHEST PAIN CARDIAC 5.19%

4 COUGH 4.19% COUGH 4.23%

5 BACK PAIN 3.61% BACK PAIN 3.52%

6
NAUSEA AND/OR VOM-

ITING
3.38%

NAUSEA AND/OR VOM-

ITING
3.29%

7
INTOXICATION/SUBSTANCE

MISUSE
2.99%

INTOXICATION/SUBSTANCE

MISUSE
3.00%

8
URINARY TRACT IN-

FECTION
2.81%

URINARY TRACT IN-

FECTION
2.86%

9 HEADACHE 2.44% HEADACHE 2.46%

10 FEVER 2.38% FEVER 2.35%

11
LOWER EXTREMITY

PAIN
2.15%

MINOR COMPLAINTS

NOT SPECIFIED
2.22%

12
MINOR COMPLAINTS

NOT SPECIFIED
2.09%

LOWER EXTREMITY

PAIN
2.19%

13
ANXIETY/SITUATIONAL

CRISIS
2.07%

ANXIETY/SITUATIONAL

CRISIS
2.10%

14 HEAD INJURY 2.02% HEAD INJURY 2.10%

15 FLANK PAIN 1.92% FLANK PAIN 2.00%

16 WEAKNESS/FATIGUE 1.91% WEAKNESS/FATIGUE 1.97%

17 VERTIGO/DIZZINESS 1.70% VERTIGO/DIZZINESS 1.88%

18
UPPER EXTREMITY IN-

JURY
1.55%

UPPER EXTREMITY IN-

JURY
1.60%

19
CHEST PAINNON −
CARDIAC

1.51%
CHEST PAINNON −
CARDIAC

1.47%

20 SYNCOPE/FAINT 1.47% SYNCOPE/FAINT 1.44%

Next the comparisons for CTAS levels can be seen bellow in table 3.4.
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Table 3.4: Comparison between data and generated CTAS level proportions.

CTAS Level Data Proportion Generated Proportion

1 3.35% 1.85%

2 36.71% 36.60%

3 56.12% 59.48%

4 3.51% 2.03%

5 0.32% 0.04%

Similarities in the ordering of laboratory test, CT scan, radiology scan and ul-

trasound orders can be seen in tables 3.5, 3.6, 3.7 and 3.8 respectively. While the

admission to discharge ratios can be seen in table 3.9.

Table 3.5: Comparison between data and generated laboratory test order rates.

Number of Orders Overall Data Overall Generated

1 57.53% 57.80%

2 11.61% 11.40%

3 3.34% 1.98%

4 0.58% 0.49%

5 0.19% 0.14%

Number of Orders CTAS 1 Data CTAS 1 Generated

1 74.76% 74.62%

2 32.56% 32.39%

3 12.31% 11.00%

4 5.00% 4.79%

5 2.06% 1.51%

Number of Orders CTAS 2 Data CTAS 2 Generated

1 64.67% 63.40%

2 15.65% 14.17%

3 3.24% 2.67%

4 0.76% 0.66%

5 0.25% 0.18%

Number of Orders CTAS 3 Data CTAS 3 Generated
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1 53.63% 54.39%

2 8.23% 9.26%

3 1.10% 1.32%

4 0.23% 0.26%

5 0.06% 0.07%

Number of Orders CTAS 4 Data CTAS 4 Generated

1 31.76% 41.40%

2 3.98% 5.41%

3 0.74% 0.73%

4 0.15% 0.24%

5 0.00% 0.00%

Number of Orders CTAS 5 Data CTAS 5 Generated

1 24.04% 52.17%

2 4.92% 0.00%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

Table 3.6: Comparison between data and generated CT scan order rates.

Number of Orders Overall Data Overall Generated

1 14.76% 14.84%

2 8.06% 8.08%

3 0.40% 0.35%

4 0.03% 0.02%

5 0.00% 0.00%

Number of Orders CTAS 1 Data CTAS 1 Generated

1 30.50% 31.14%

2 12.67% 15.88%

3 2.52% 2.48%

4 0.21% 0.18%

5 0.00% 0.00%

Number of Orders CTAS 2 Data CTAS 2 Generated
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1 19.53% 19.11%

2 10.33% 10.48%

3 0.59% 0.55%

4 0.03% 0.01%

5 0.00% 0.00%

Number of Orders CTAS 3 Data CTAS 3 Generated

1 11.46% 12.04%

2 6.68% 6.50%

3 0.18% 0.17%

4 0.01% 0.01%

5 0.00% 0.00%

Number of Orders CTAS 4 Data CTAS 4 Generated

1 3.53% 5.25%

2 2.45% 4.20%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 5 Data CTAS 5 Generated

1 3.28% 0.00%

2 0.00% 0.00%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

Table 3.7: Comparison between data and generated radiology scan order rates.

Number of Orders Overall Data Overall Generated

1 41.21% 41.79%

2 1.79% 1.69%

3 0.17% 0.15%

4 0.04% 0.04%

5 0.01% 0.00%

Number of Orders CTAS 1 Data CTAS 1 Generated
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1 60.79% 59.54%

2 6.96% 5.77%

3 1.49% 2.22%

4 0.62% 1.24%

5 0.1% 0.18%

Number of Orders CTAS 2 Data CTAS 2 Generated

1 50.69% 46.28%

2 2.24% 2.25%

3 0.19% 0.16%

4 0.04% 0.03%

5 0.00% 0.00%

Number of Orders CTAS 3 Data CTAS 3 Generated

1 34.96% 38.82%

2 1.27% 1.26%

3 0.08% 0.08%

4 0.01% 0.01%

5 0.00% 0.00%

Number of Orders CTAS 4 Data CTAS 4 Generated

1 25.63% 32.36%

2 0.64% 0.48%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 5 Data CTAS 5 Generated

1 14.21% 21.74%

2 0.00% 0.00%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

Table 3.8: Comparison between data and generated ultra sound order rates.

Number of Orders Overall Data Overall Generated
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1 9.80% 9.95%

2 2.14% 2.17%

3 0.11% 0.12%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 1 Data CTAS 1 Generated

1 3.40% 5.06%

2 0.31% 0.62%

3 0.00% 0.00%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 2 Data CTAS 2 Generated

1 8.40% 9.71%

2 1.69% 2.25%

3 0.07% 0.07%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 3 Data CTAS 3 Generated

1 11.37% 10.28%

2 2.60% 2.17%

3 0.14% 0.12%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 4 Data CTAS 4 Generated

1 5.94% 8.80%

2 1.23% 2.26%

3 0.10% 0.81%

4 0.00% 0.00%

5 0.00% 0.00%

Number of Orders CTAS 5 Data CTAS 5 Generated

1 3.83% 21.74%

2 1.09% 13.04%

3 5.46% 13.04%
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4 0.00% 0.00%

5 0.00% 0.00%

Table 3.9: Comparison between data and generated admission and discharge rates.

Overall

Data Dis-

charge

Overall

Data Ad-

mission

Overall

Generated

Discharge

Overall

Generated

Admission

87.25% 12.75% 87.84% 12.16%

CTAS

1 Data

Discharge

CTAS

1 Data

Admission

CTAS 1

Generated

Discharge

CTAS 1

Generated

Admission

46.21% 53.79% 53.15% 46.85%

CTAS

2 Data

Discharge

CTAS

2 Data

Admission

CTAS 2

Generated

Discharge

CTAS 2

Generated

Admission

81.26% 18.74% 82.30% 17.70%

CTAS

3 Data

Discharge

CTAS

3 Data

Admission

CTAS 3

Generated

Discharge

CTAS 3

Generated

Admission

92.92% 7.08% 92.02% 7.98%

CTAS

4 Data

Discharge

CTAS

4 Data

Admission

CTAS 4

Generated

Discharge

CTAS 4

Generated

Admission

97.20% 2.80% 96.85% 3.15%

CTAS

5 Data

Discharge

CTAS

5 Data

Admission

CTAS 5

Generated

Discharge

CTAS 5

Generated

Admission

97.81% 2.19% 96.85% 4.35%

These results where deemed acceptable by an on staff physician and the study

proceeded to the modeling of the ED. At first glance some of the results for the
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CTAS level 4 and 5 simulations seem to be very off, this is due to the fact that they

represent an extremely low proportion of the data as can be seen in table 3.4.

3.4 Discussion

In this chapter the process through which patients for the simulation of the ED were

generated was detailed. To begin the modeling of patient arrivals was done via a

non-stationary Poisson process. With some slight adjustments this was able to effec-

tively reproduce arrival patterns for the patients in the high acuity queue for both

weekdays and weekends. Following this patient profiles where created. These used a

combination of the patients chief complaint, sex, age and CTAS level. These where

done with the first three influencing the CTAS level. With the use of support and

confidence important relationships where able to be identified allowing for the gen-

eration of profiles to fit the patient demographic that visits the ED. Finally similar

procedures where used to create the number of laboratory testing and imaging proce-

dure rounds that the patients where required to go through. Validation information

was then presented to the reader to illustrate the effectiveness of the technique.

This process could be performed for any given ED allowing for the testing of several

schedule or policy changes. Additionally, since the data is synthetically generated

multiple sets can be created ensuring that policy creation is not over fitting the data.

This in particular, is a large strength the method has over simply using the gathered

data for testing.
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Chapter 4

Modeling the Emergency

Department

4.1 Provided Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Evolution of the Model Trough Iterations . . . . . . . . . . . . . . . . 40

4.3 Modeling of Individual Steps . . . . . . . . . . . . . . . . . . . . . . . 43
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4.3.2 Modeling the Time Spent With the Physician . . . . . . . . . 44

4.3.3 Modeling the service time for laboratory tests and imaging pro-

cedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Modeling the Time Spent Bed-Blocking . . . . . . . . . . . . . 63

4.4 Validation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Provided Data

As discussed in the prior chapter, the data is broken into two sections; ED data and

laboratory and imaging data. Since the process of generating patients was established

in the previous section, the next step in building the simulation is calculating the time

spent waiting for events to occur.
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4.2 Evolution of the Model Trough Iterations

The model was developed iteratively with continual feedback from an emergency

physician to ensure the correct level of detail was incorporated in the simulation.

It was decided that time would be measured in minutes because the data has no

measurement that are at a finer level.

To begin, the first iteration of the model was a simplified representation of the

system with a straight forward route that a patient would take through the ED (4.1).

In this first iteration the patient will see the physician for an initial assessment, wait

for any laboratory tests and imaging procedures to be completed, see the physician

again for a reassessment and then be admitted or discharged. Patients are chosen for

initial assessment by an accumulating priority queue that makes use of the patient’s

CTAS level. The conditions that allow a new patient to enter the initial assessment

are that a bed is available (i.e., there are 50 total available) and a that a physician

is available to see the patients. In this iteration, a physician works in two distinct

phases; the first where they are accumulating new patients and the second where they

are servicing their current patients.
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Figure 4.1: First Iteration of the ED model.

The above described model was further developed after discussion of the impor-

tance of the need to address multiple rounds of laboratory test and imaging proce-

dures. An example of this expanded model can be seen in Figure 4.2. In the updated

model, the patient will again wait for the laboratory tests and imaging procedures as
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well as another reassessment to be completed before admission or discharge. Addi-

tionally, the added event of bed blocking was considered in the case of admission.

Figure 4.2: Second iteration of the model.

In the next set of iterations of the model, the event chain that a patient can

follow did not change, however, physician and patient interaction was modified. After

discussion it was established that the rapid accumulation of new patients does not
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have a hard time limit in practice and in reality works with a soft constraint on the

maximum number of patients per physician. In the simulation, the maximum number

of patients that the physician can assess is 21 except for the overnight physician who

does not have a limit. Additionally. the process of patient handover was added for

those physicians who are at the end of there scheduled shift, although it will not

interrupt the assessment that the physician is already in. It was also established

that not all patients require the use of their beds throughout their stay and only for

assessments. As it is not possible to obtain any information regarding this from the

data it was decided that the patients that would likely need their beds for the entire

stay would also likely be admitted, which was therefore used for determining this.

Lastly it was decided that the time required to perform the imaging procedures was

relatively small compared to the time required to wait for them to occur. Due to

the fact that their is no information in the data of how long a patient was in the

procedure, the patient only needs to undergo the waiting period for the procedure.

4.3 Modeling of Individual Steps

With the flow of the model established, it was next determined how patients were

chosen for assessment and the time for each event within the patients stay. Data

timestamps for the various stages of the patients stay in the ED were compared to

ensure that the chronological order was logical as a method for checking for errors in

the data.

4.3.1 Choosing Which Patients are Served First

To determine which patients were chosen for assessment, a priority queue was used.

The aging of priority values and their initial values can be seen in figure 4.3 and

table 4.1. These values where estimated through a process of trial and error in an

effort to get the closest simulated CTAS level mean PIA and LOS times to the actual

data. There is no data available to estimate this process. In practice, it is up to each

physician to determine patients priority and it is not a structured set of rules, but

instead a consideration of CTAS level, patient waiting time and patient factors such

as age and past medical history. The comparison of simulated results with the actual

PIA and LOS in the data can be seen in the validation section of this chapter.
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Figure 4.3: Evolution in patient priority values over time.

Table 4.1: How priority levels for patients evolve over time.

CTAS Level Starting Priority Value Priority Increase Per Minute

1 262 5

2 42 4

3 2 3

4 1 2

5 0 1

4.3.2 Modeling the Time Spent With the Physician

For the time a physician spends with patients during assessments, ordering writing,

reviewing results of investigations and subsequent reassessments, there is unfortu-
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nately no data availabe. Therefore, the results from a previous study from Ontario

that investigated the time spent with patients by CTAS level was used [9]. This study

allows us a starting point for determining times for the simulation. The distributions

shown in the study appear to be exponential and therefore that is what was used for

the simulations. The mean time spent with each patient based on CTAS level, appear

to be high for our purposes due to the high volume and higher proportion of higher

acuity patients. The mean times were adjusted and can be seen in table 4.2. They

were adjusted through a process of trial and error with some insight from a physician

on staff at the ED.

Table 4.2: The amount of time patient’s spend with physicians.

CTAS Level Old Mean (Minutes) New Mean (Minutes)

1 73.6 59.1

2 38.9 29.8

3 26.3 18.6

4 15.0 11.0

5 10.9 7.7

With the mean times spent with patients based on CTAS level established the

question remains how is it divided in the patient’s stay. For the purpose of simplic-

ity three types of assessment are established; initial assessment, reassessment and

repeated reassessment. A genetic algorithm was made as method of establishing the

breakdown of the time. The algorithm uses the generated patients to determine a

multiplication factor for each CTAS level and each type of assessment. The resulting

factors are shown in table 4.3. The algorithm uses the bounds shown in table 4.4 to

generate acceptable sets of multiplication factors for each CTAS level. The repeated

reassessment bounds are constrianed far lower than the others due to the fact that

the vast majority of the repeated reassessments are due to laboratory test and would

only need a small amount of the physicians time to get an update on the patient’s

status.
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Table 4.3: Generated breakdown of how much time a patient spends with a physician,
during which part of their visit to the ED.

CTAS Level Stage Factor

1 Initial Assessment 0.43

1 Reassessment 0.54

1 Repeated Reassessment 0.10

2 Initial Assessment 0.57

2 Reassessment 0.54

2 Repeated Reassessment 0.10

3 Initial Assessment 0.81

3 Reassessment 0.27

3 Repeated Reassessment 0.11

4 Initial Assessment 0.82

4 Reassessment 0.36

4 Repeated Reassessment 0.09

5 Initial Assessment 0.78

5 Reassessment 0.39

5 Repeated Reassessment 0.13

Table 4.4: Bounds used in the genetic algorithm to generate the mean times patient’s
spend with physicians.

CTAS Level Stage Lower Bound (Minutes) Upper Bound (Minutes)

1 Initial Assessment 30% reassessment time

1 Reassessment 30% 80%

1 Repeated Reassessment 1% 20%

2 Initial Assessment 30% 80%

2 Reassessment 30% initial assessment time

2 Repeated Reassessment 1% 20%

3 Initial Assessment 30% 90%

3 Reassessment 30% 40%

3 Repeated Reassessment 1% 20%

4 Initial Assessment 30% 95%

4 Reassessment 30% initial assessment time
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4 Repeated Reassessment 1% 20%

5 Initial Assessment 30% 95%

5 Reassessment 20% initial assessment time

5 Repeated Reassessment 1% 20%

The resulting exponential distributions that are used in the simulation can be seen

in figures 4.4, 4.5 and 4.6. These distributions are trimmed to negate tail effects. The

trimming was done through trial and error to obtain the closed PIA and LOS values

possible, this will be discussed further in the validation portion of this chapter. The

lower and upper bounds for these distributions can be seen in table 4.5.

Figure 4.4: CDF’s of time spent in initial assessments for CTAS levels.
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Figure 4.5: CDF’s of time spent in reassessments for CTAS levels.
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Figure 4.6: CDF’s of time spent in repeated reassessments for CTAS levels.

Table 4.5: Bounds placed on the distributions of how much time patient’s spend with
physicians in order to avoid edge effects.

CTAS Level Stage Lower Bound (Minutes) Upper Bound (Minutes)

1 Initial Assessment 9 59

1 Reassessment 11 73

1 Repeated Reassessment 2 17

2 Initial Assessment 6 39

2 Reassessment 5 30

2 Repeated Reassessment 1 9

3 Initial Assessment 5 34

3 Reassessment 1 14

3 Repeated Reassessment 1 5
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4 Initial Assessment 3 20

4 Reassessment 1 11

4 Repeated Reassessment 1 3

5 Initial Assessment 2 13

5 Reassessment 1 8

5 Repeated Reassessment 1 2

4.3.3 Modeling the service time for laboratory tests and imag-

ing procedures

For the laboratory tests and imaging procedures the data was grouped in a similar

manner to the analysis of the number of sequential tests being done except the patient

descriptors were not considered. When analyzing the data there was no noticeable

difference between the CTAS levels in the waiting times. It was also no difference

between weekends and weekdays. Since there are multiple time lengths in these groups

the longest is used, as it was mentioned before often additional orders are added on

while waiting. For each of these events three types of distributions where chosen for

investigation; exponential, log normal and gamma. These were chosen as they are all

common distributions used in queueing systems and simulation modelling.

Laboratory Tests

For laboratory tests there is a special consideration. Within the data there is infor-

mation on time spent waiting for collection of samples from the patient and the time

spent waiting for the samples to be processed (i.e., time spent waiting for the re-

sults). The question becomes whether to model these separately or as one event. The

distributions considered for time spent waiting for collection can be seen in Figure

4.7. The waiting times for sample processing are shown in Figure 4.8. Finally, the

times for the combination of both are shown in Figure 4.9. The results show that the

best fitting distribution for time until collection is log normal, although it is closer

to the exponential than the gamma. For the time until lab testing is completed, the

best fitting distribution is the log normal, but it is closer to the gamma than the

exponential. For this reason while log normal is likely the best fitting distribution

for the combined laboratory testing times it does not fit as closely to the other two
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distributions. However, upon discussion it was deemed acceptable and is used in the

simulation. The lower bound is 29 minutes and the upper bound is 175 minutes.

Figure 4.7: CDF’s of time spent waiting for laboratory samples to be collected.
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Figure 4.8: CDF’s of time spent waiting for laboratory tests to be completed.
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Figure 4.9: CDF’s of time spent waiting for laboratory samples to be collected and
the tests completed.

CT Imaging

For CT the scanner, there is no technician available from 0:00-7:00 except for emergen-

cies. This produces variances in the distributions based on time. Through multiple

groupings of the data based on the 24 bins (i.e., starting on the hour), they were

grouped into four groups. These groups are as follows:

The group for 0:00-1:59 and 6:00-7:59 can be seen in figure 4.10. The distribution

that fits best for this is the gamma.
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Figure 4.10: CDF’s for CT scans ordered between 0:00-1:59 and 6:00-7:59.

The group for the 2:00-5:59 can be seen in figure 4.11. The distribution that fits

best is the exponential.
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Figure 4.11: CDF’s for CT scans ordered between 2:00-5:59.

The group for the 8:00-19:59 can be seen in figure 4.12. The distribution that fits

best is the gamma.
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Figure 4.12: CDF’s for CT scans ordered between 8:00-19:59

The group for the 20:00-23:59 can be seen in figure 4.13. The distribution that

fits best is the gamma.
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Figure 4.13: CDF’s for CT scans ordered between 20:00-23:59.

As with the distributions for the time spent with physicians these distributions

are all truncated to negate tail effects. The upper and lower bounds for the chosen

distributions are shown in Table 4.6.

Table 4.6: Bounds used for CT scan wait time distributions to avoid edge effects.

Times CT is Ordered Lower Bound Upper Bound

0:00-1:59 and 6:00-7:59 11 286

2:00-5:59 12 470

8:00-19:59 17 192

20:00-23:59 11 149
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Radiology Imaging

For the time spent waiting to complete imaging, the distributions can be seen in

Figure 4.14. The distribution with the best fit is the exponential distribution. Again,

these have been truncated to negate tail effects. The lower bound is 3 minutes and

the upper bound is 182 minutes.

Figure 4.14: CDF’s for radiology scans ordered.

Ultrasound Imaging

The ultrasound imaging, like the CT imaging, relies on technicians that are not always

scheduled (i.e., 23:00-7:00). The same process was used to produce the groupings for

the distributions. The groups are as follows:

The group for the 0:00-3:59 can be seen in figure 4.15. The distribution that fits

best is the gamma.
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Figure 4.15: CDF’s for US scans ordered between 0:00-3:59.

The group for the 4:00-7:59 can be seen in figure 4.16. The distribution that fits

best is the gamma.
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Figure 4.16: CDF’s for US scans ordered between 4:00-7:59.

The group for the 8:00-19:59 can be seen in figure 4.17. The distribution that fits

best is the gamma.
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Figure 4.17: CDF’s for US scans ordered between 8:00-19:59.

The group for the 20:00-23:59 can be seen in figure 4.18. The distribution that

fits best is the gamma.
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Figure 4.18: CDF’s for US scans ordered between 20:00-23:59.

These distributions are again truncated to negate tail effects and the bounds can

be seen in Table 4.7.

Table 4.7: Bounds used for ultrasound wait time distributions to avoid edge effects.

Time US is ordered Lower Bound Upper Bound

0:00-3:59 142 547

4:00-7:59 45 299

8:00-19:59 28 201

20:00-23:59 45 106
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4.3.4 Modeling the Time Spent Bed-Blocking

For the time a patient spends bed-blocking (i.e., waiting in the ED for transfer to a

hospital floor) the same three distributions were investigated. It was found that there

was no distinct difference in distributions between weekdays and weekends. Similarly

there was no differences between CTAS levels. The distributions can be seen in Figure

4.19. The distribution that fits best is the lognormal. Again this is tuncated to negate

tail effects. The lower bound used is 23 minutes and the upper bound is 1896 minutes.

Figure 4.19: CDF’s for bed blocking.

4.4 Validation of the Model

The process of validating the model of the ED was done by using the physician

schedule that was in place during data collection and simulating 365 days of patients

and then comparing the metrics PIA and LOS to those from the data.
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While funding only considers how many patients meet target PIA and LOS times

for a particular CTAS level. For the purposes of validation we will be looking at

the metrics on patients as a whole and in the individual CTAS levels. It should also

be noted that the results from patients in the first day are neglected as the model

startup period could have effects. As well, the last day of data is also ignored since the

patients may not complete their visit . Therefore these function as warm up and cool

down periods, respectively. Tables showing the comparison of the PIA and LOS times

can be found in Table 4.8 and 4.9 respectively. While graphical representations can

be found in Figures 4.20 and 4.21. In the figures the bounds of the boxes represent the

25th and 75th percentile. While the whiskers represent the 5th and 95th percentile.

Table 4.8: Comparison between data and simulated PIA.

Type Data Mean(Minutes) C.I. 95% Sim Mean(Minutes) C.I. 95%

Overall 77.86 77.23-78.49 84.83 84.30-85.36

CTAS 1 21.38 19.62-23.13 24.66 22.76-26.57

CTAS 2 62.36 61.34-63.37 66.73 66.06-67.39

CTAS 3 91.02 90.18-91.85 95.89 95.17-96.60

CTAS 4 83.67 80.58-86.76 137.99 132.33-143.65

CTAS 5 83.01 72.85-93.17 279.43 162.80-396.07

Table 4.9: Comparison between data and simulated LOS.

Type Data Mean(Minutes) C.I. 95% Sim Mean(Minutes) C.I. 95%

Overall 299.55 297.89-301.22 293.73 292.34-295.12

CTAS 1 346.23 335.06-357.39 320.95 309.39-332.51

CTAS 2 331.73 328.77-334.69 295.78 293.56-298.00

CTAS 3 281.31 279.26-283.36 291.45 289.65-293.26

CTAS 4 214.69 207.67-221.71 295.65 283.99-307.30

CTAS 5 190.20 169.75-210.64 452.09 316.60-587.58
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Figure 4.20: Boxplots for comparing PIA of data and simulation.
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Figure 4.21: Boxplots for comparing LOS of data and simulation.

These results were deemed acceptable by an ED staff physician and the study

proceeded to finding the optimal candidate schedule. Although, the result for CTAS

4 and 5 simulated patients does not represent the actual data well, these patients make

up a very small portion of the data and are therefore difficult to model appropriately.

In the previous chapter in Table 3.4, it can be seen that the these two levels makeup

3.83% of the data and 2.07% of the generated patients. Furthermore, the high acuity

queue is not designed for these patients and they should be sent to the fast track

queue. None the less, it appears that some make their way into the queue.

4.5 Discussion

In this chapter the construction of the process used to evaluate schedules is illustrated.

To begin the patients stay was broken up into events that a patient goes through

during they’re stay. When put together this forms a series of queues patients proceed

through while occupying resources. Individual distributions were produced modeling

the time patients spend waiting for laboratory testing, imaging procedures and bed
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blocking. For these several approaches were considered before deciding upon the final

ones. The time spent with physicians was modeled based on prior work with some

adaptions based on trial and error and physician input to fit the ED at the TBRHSC.

This was done due to a lack of information in the data in regards to the time spent

with physicians. The method for determining which patient is seen next by physicians

uses an accumulating priority queue. The aging of the priority values was determined

using trial and error with physician input as no information regarding it was present

in the data and no prior works on the topic could be found. Validation results are

then presented to the reader to prove the validity of the method.

This model could be easily replicated to match of EDs allowing for optimization

of their physician schedules. In addition, with slight modifications it could be used

to test policy changes that were discussed in the related work section that have not

been considered at the TBRHSC. Also, it could be used in cost benefit analysis

for additional staff and resources. Alternatively, due to the separation between the

method and the patient data it could be used to forecast expected metrics if a change

in patient demographics is expected. Therefore this could be an extremely useful tool

for ED management.
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Chapter 5

Cluster Partitioning
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The secondary topic of investigation in this study was the cluster partitioning

problem. This is commonly referred to as a minimum cut or maximum cut problem

depending on the objective, our focus was the minimum cut. To begin, a graph is

presented to describe the problem in question. For our purposes we will be looking at

undirected graphs. The objective of the problem is to separate the graph into a spec-

ified number of n partitions. These partitions may be capacitated or uncapacitated,

for our purposes they are capacitated. The minimum cut is the partitioning of the

graph in which the set of edges that must be removed to separate these partitions into

separate graphs is the least total weight possible. The max cut is the partitioning in

which it is the most total weight possible that is removed from the graph to separate

the partitions.



69

5.1 Integer Linear Programming

In order to assess the performance of the developed algorithms, integer linear pro-

gramming (ILP) was used. In ILP, a problem is represented by a space specified by

parameters and variables. This space is then restricted to a smaller subset through

the use of constraints. The solver is direct through the use of an objective function

in it’s search for the optimal solution. As mentioned above we are considering the

minimum cut problem.

The variables

Parameters and their descriptions are as follows:

V : The set of vertices

S: The set of partitions

si: The capacity of partition i

The variables and their descriptions are as follows:

ω(u,v): represents the weight of the edge between the vertices u and v

yiu,v: represents whether both the vertices u and v are within partition i

xiu: represents the presence of vertex u in partition i

The equations that govern the minimum cut problem can be seen in equations

5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.

minimize
∑
i

∑
u,v

ω(u, v)yiu,v (5.1)

∑
i

xiu = 1,∀u (5.2)

yiu,v = |xiu − xiv|,∀u, v, i (5.3)

∑
u

xiu = si,∀i (5.4)

xiu ∈ 0, 1 (5.5)

yiu,v ∈ 0, 1 (5.6)
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Equation 5.1 is the objective function of the ILP. This equation represents the the

summation of all weights of edges whose vertices are not within the same partition.

Equation 5.2 ensures that each vertex is assinged to one partition. Equation 5.3 is

used to determine whether vertex u and vertex v are in different partitions. Equation

5.4 ensures that all partitions are full, therefore not allowing vertices to exist outside

partitions. Equations 5.5 and 5.6 are the constraints ensuring that xiu and yiu,v are

binary values.

We can then take these equations and transform them to represent an identical

but further constrained problem of maximum K uncut total weight from the edges.

This problem can be represented through the Equations 5.7, 5.8, 5.9, 5.10, 5.11 and

5.12. Where the only new parameter is |E| indicating the total value of the set of

edges within the graph. It should be noted that |E| double counts edges. As it counts

each edge from vertex u to vertex v as well as one from v to u.

minimize |E| −
∑
i

∑
u,v

ω(u, v)yiu,v (5.7)

∑
i

xiu = 1,∀u (5.8)

yiu,v = xiu ∗ xiv,∀u, v, i (5.9)

∑
u

xiu = si,∀i (5.10)

xiu ∈ 0, 1 (5.11)

yiu,v ∈ 0, 1 (5.12)

Within this reformulation of the problem, only equation 5.9 has changed from its

initial form in the min K cut problem, Equation 5.3. In this new form, Equation 5.9

indicates whether or not the vertices u and v are within the same partition, making

it the opposite value of that in the Equation 5.3.
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5.2 Algorithmic Approximation

The local search algorithm is divided into two components. The first component is

a greedy method that builds the initial partition structures. The second component

then takes these partitions and swaps vertices that reduce the cut value.

5.2.1 Partitioning Portion of the Algorithm

The partitioning algorithm is a greedy method that is shown in both algorithms 1

and 2. This algorithm will produce the initial partitioning that while feasible will be

improved by the swapping portion.

The parameters and variables used are as follows:

G: the set of vertices in the graph that are not yet assigned to a partition

S: the sets that represent the k partitions

si: the capacity of partition i

ω(u,v): the weight of the edge connecting vertices u and v

N : sets of vertices in G that are adjacent to vertices in the partitions

Algorithm 2 Max Part

Require: Ni, Si, G

1: Find u ε G such that ω(u,v) ≤ ω(u′,v) for any u′, v ε Ni

2: Si = Si ∪ {u}
3: G = G \ Si

4: for v′ ε G do

5: if ω(u,v′) > 0 then

6: Ni = Ni ∪ v′

7: end if

8: end for
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Algorithm 3 Partitioning Algorithm

Require: G, S

1: for i = 1 to k do

2: Randomly select a vertex u ε G

3: Si = {u}
4: G = G \ Si

5: for v ε G do

6: if ω(u,v) > 0 then

7: Ni = Ni ∪ {v}
8: end if

9: end for

10: end for

11: while G 6= 0 do

12: for i = 1 to k do

13: if ‖Si‖ < si then

14: Max Part(Ni, Si, G)

15: end if

16: end for

17: end while

5.2.2 Swapping Portion of the Algorithm

Following the termination of the partitioning algorithm in the previous section which

allows the swapping algorithm to start with an initial solution, that while still inferior

is better than a random partitioning would expect to be. The swapping algorithm

checks each pairing of vertices between the partition Si and those in partition Sj

to see if Equation 5.13 is satisfied when i 6=j. If the equation is satisfied, the two

vertices positions are swapped, thereby reducing the cut value. The only parameter

not described above is W; the total connected weight of vertex u with the vertices

within the partition Si.

W (u, Si) +W (v, Sj) < W (u, Sj) +W (v, Si)− 2ω(u, v) (5.13)

The swapping algorithm will terminate when i 6=j and Equation 5.13 can no longer

be satisfied. This occurs when every possible paring of vertices for the partitions Si

and Sj satisfies the equation 5.14 where i6=j. Note the parameters of Equation 5.14
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represent the same information as those in 5.13.

W (u, Si) +W (v, Sj) ≥ W (u, Sj) +W (v, Si)− 2ω(u, v) (5.14)

5.2.3 An Example

To further clarify the two portions of the algorithm, an example is provided in Figure

5.1.

Figure 5.1: Example graph.

To begin, the algorithm requires the capacities of the partitions. For this example

we will have two partitions of capacity 3, s1=3 and s2=3. We then proceed to choose

random vertices for each partition. From Figure 5.1, we will choose vertex 1 for

partition 1 and vertex 3 for partition 2. We then add vertices to the partitions in a

greedy manner, which of the unassigned vertices has the highest total sum of weight

from edges that connect to other vertices in the partition. Vertices are added to the

partitions in the following order. Vertex 2 to partition 1. Vertex 6 to partition 2.

Vertex 5 to partition 1. Lastly vertex 4 to partition 2, because there are no longer

any connected unassigned vertices. Thus terminating the partitioning algorithm.

At this point the swapping algorithm will commence. At the beginning partition

1 will consist of the vertices (1,2,5) and partition 2 (3,6,4). The first and only swap

will occur between vertex 1 and 4 making partition 1 become (4, 2, 5) and 2 (3, 6,

1). This results in the true minimum cut value of 14.

5.2.4 Paralellization

When considering paralellization of the above algorithm there are two avenues that

we can explore. The first is the standard CPU based paralellization and the second



74

is the newer GPU based paralellization. CPU based paralellization has the ability of

processing multiple threads of information at once that is capped by the number of

cores in a given processors and whether they are capable of hyper threading. In GPU

based parallelization the ceiling is much higher and therefore the potential speed

gains are higher as well. The GPU is designed as a graphics tool and is therefore

designed to have a high throughput to keep pixels updated on screen. Due to the

required performance for graphics it can be useful in speeding up many algorithms.

The ceiling of the GPU is not limited to the number of cores like a CPU but the

number of blocks used, each of which has the capability of processing 32 threads at

once. The main barrier that needs to be overcome when using GPU paralellization is

the expensive kernel call that is needed utilize the GPU.

CPU Based

As the algorithm is divided between initial partitioning and swapping, their paralel-

lizations will be discussed separately. The initial partitioning algorithm is already

quite fast but there may be benefits in it’s paralellization, and is therefore at least

worth investigating. Conversely, the swapping portion of the algorithm is where the

algorithm spends most of it’s time and is the most likely to yield benefits of paralel-

lization.

The paralellized version of the initial partitioning contains two changes from the

sequential greedy version described previously. The first is the determining of adja-

cent nodes to the partition and the second is the determining the max part. The

parrallelized algorithm for determining adjacent nodes can be seen in Algorithm 4.

The parallelized algorithm for the max part can be seen in Algorithm 5.



75

Algorithm 4 Parallelized version for finding nodes adjacent to the partition that are
unallocated.

Require: G, Sk

1: adjacentBinary = array of 0’s the size of G

2: create threads

3: id = thread number

4: target = id

5: while target <size of partition Sk do

6: for u ε G do

7: if ω(Sk(target),u) then

adj[u] = 1

8: end if

9: end for

10: target += number of threads

11: end while

12: wait for threads to finish and continue sequentially

13: N = empty list

14: for u ε G do

15: if adjacentBinary(u) == 1 then

16: add u to N

17: end if

18: end for
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Algorithm 5 Parallelized version of the max part algorithm in algorithm 2

Require: Sk, N

1: bestUs:list of 0’s the length of the number of threads

2: bestV s:list of 0’s the length of the number of threads

3: start threads

4: id = thread number

5: target = id

6: if id ¡ length of Sk length of N then

7: bestUs(id) = id / length of N

8: bestV s(id) = id % length of N

9: end if

10: while target ¡ length of Sk length of adjacent do

11: newU = target / length of N

12: newV = target % length of N

13: if ω(Sk(bestUs(id)),N(bestV s(id)))<ω(Sk(bestUs(newU)),N(bestV s(newV )))

then

14: bestUs(id) = newU

15: bestV s(id) = newV

16: end if

17: target += number of threads

18: end while

19: wait for threads to finish

20: topU = bestUs(0)

21: topV = bestV s(0)

22: for i from 1 to length of bestUs do

23: if ω(Sk(topU),N(topV )) <ω(Sk(bestUs(i)),N(bestV s(i))) then

24: topU = bestUs(i)

25: topV = bestV s(i)

26: end if

27: end for

The parallelized part of the swapping portion can be seen in Algorithm 6. This

represents the calculation of the four total connected weights, W, in 5.13. Therefore,

this algorithm is used four times inside the necessary loops needed to check for the

potential swaps between nodes and partitions. This algorithm essentially divides the
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work of summation between multiple threads. So if there are 4 threads then each

does a quarter of the sum. Once this is finished the threads each add their sums to

a shared total with synchronization to ensure there are no race conditions.

Algorithm 6 CPU parallelized summation

1: localSum = 0

2: id = thread number

3: target = id

4: while target <si do

5: index1 = Sk(u)

6: index2 = Sk(target)

7: localSum += ω(index1,index2)

8: target += number of threads

9: end while

GPU Based

Due to the expensive cost of calling the kernel for the GPU, the time taken to move

data to the GPU and back, its more feasible to use it for larger cases. Since it will only

be useful with larger cases, almost the entirety of the run time will be consumed by

the swapping portion. Therefore, only a GPU based version of the swapping portion

will be investigated.

The algorithm for the GPU based version of the swapping algorithm can be seen

in Algorithm 7. This algorithm is essentially the same as Agorithm 6, however,

was adapted slightly for the GPU. Unfortunately, all threads need to communicate

with each other to properly maintain the partitions, therefore the full power of the

GPU can not be harnessed as only one block can be used. The GPU does allow the

execution of more threads simultaneously , for this reason a binary reduction was

used. The binary reduction adds the back half of the array to the mirrored positions

in the front half. The f̈unctional lengthöf the array is then reduced accordingly. This

process continues until the total sum is in the 0th index of the array.
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Algorithm 7 Partitioning Algorithm

Require: shared block variables array of integers sums, integer sumsLength,

1: sumLength = length of sums

2: id = thread number in the block

3: while sumLength >1 do

4: target = id

5: while target <sumLength do

6: if target + 1 <sumLen then

7: sums(target) += sums(sumLenght - target - 1)

8: end if

9: target += number of threads

10: end while

11: wait for all threads in the block to get to this point

12: if id is 0 then

13: sumLength = sumLength / 2 + sumLength % 2

14: end if

15: wait for all threads in the block to get to this point

16: end while

17: wait for all threads in the block to get to this point

5.3 Discussion

In this chapter the mincut problem was defined. An ILP model was established that

was used to judge the quality of the algorithmic version. The algorithmic solution

presented consists of an initial greedy partitioning followed by a swapping algorithm.

This algorithm was presented as both a sequential version and a paralellized version.

The later having both a CPU based version and a GPU based one.

The purpose of the proposed algorithm is to provide a time efficient approximation

that could be used in a variety of clustering situations within the ED. In the following

chapter the specifics of the algorithms performance will be discussed. The reason for

the focus on time efficiency is to utilize it the algorithm as a tool to aid physicians

in making decisions about patients through the areas discussed in the related works

chapter in real time.
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6.1 Physician Scheduling

6.1.1 Candidate Schedule Generation

The reality of schedule testing is that the problem space is extremely large. There

are 9 shift start times that need to be allocated to a starting time and if shifts

begin on a 15 minute interval (i.e., 0:00,0:15,0:30,0:45,1:00,...) there 96 possible start

times for each physician. Then using the choose function it can be seen that the total

possible combinations is on the order of 1011. This is not a space that can be searched

completely in a reasonable amount of time. Therefore, some restrictions are placed on

the choosing of candidate schedules as some are likely to be not very useful, meaning

that they do not properly meet demand, and some are impractical. Several logical
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constraints can be imposed, while some are departmental scheduling rules to follow.

The first simple logical constraint for the schedule is that a physician is required

to be scheduled at any given point of the day. The reasoning for this constraint is

clear and obvious. The next constraints that were proposed were based on physician

input about realistic scheduling constraints for the ED. Firstly, it was decided that

only one physician would start at any particular start time in the day. Secondly,

that shifts would begin on half hour intervals and that there would be spacing of at

least one hour between shift starting times. Thirdly, that the over night physicians

start time (i.e., 0:00/24:00-7:00), would remain unchanged. These constrains greatly

reduce the number of candidate schedules, however, not all of the remaining are

worth considering. A few additional constraints can be applied to reduce the solution

space that better defines an optimal schedule based on the different levels of patients

through out the day, in order to avoid testing schedules that allocated large numbers

of physicians to times with lower patient volumes.

This leaves approximately 454,000 possible schedules to examine. Since our goal

is to determine the optimal schedule for the ED, allowing separate schedules for the

weekdays and the weekend was important. Therefore, fully testing the combinations

of all schedules is again too large. In order to remedy this the schedules were tested

separately to determine the best performing schedules for weekdays and the weekends,

the top 100. As we are considering two metrics for the schedules, PIA and LOS, a

score is needed that considers both, the equation used can be seen in equation 6.1.

metric =
the number of patients with PIA under 2 hours

number of patients
∗ the number of patients with LOS under 7 hours

number of patients
(6.1)

6.1.2 Optimal Schedule

From the 10,000 schedules that consider both weekdays and weekends the resulting

schedule that was found to be the optimal was:

For the Weekends:

• 0:00/24:00-7:00

• 5:30-13:30

• 7:30-15:30
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• 10:00-18:00

• 12:00-20:00

• 14:00-22:00

• 16:00-24:00/0:00

• 18:00-2:00

• 20:30-4:30

For the Weekdays:

• 0:00/24:00-7:00

• 5:30-13:30

• 7:30-15:30

• 10:00-18:00

• 12:00-20:00

• 14:00-22:00

• 16:00-24:00/0:00

• 18:00-2:00

• 20:00-4:00

The difference between the two schedules is a half hour start time adjustment on

the last shift.

Further investigation of the top 100 schedules showed that the shift starts that

appear most often. The shifts for the weekday schedules can be seen in Figure 6.1.

While the shifts for the weekend schedules can be seen in Figure 6.2. The most

frequently occurring start times for both weekdays and weekends are 10:00, 12:00,

14:00 as they are in nearly every one of these top 100 schedules. It should be noted

that all of these top 100 schedules had a metric rating over 0.96 according to equation

6.1.
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Figure 6.1: Proportion of the top 100 weekday schedules that occur most frequently.
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Figure 6.2: Proportion of the top 100 weekend schedules that occur most frequently.

A network graph was generated to show the relationship among the top schedules

and how they interact with each other. The graph representing weekday schedules

can be seen in Figure 6.3. The graph representing weekend schedules can be seen in

Figure 6.4. It can be seen that in the case of weekdays, the start times; 5:30, 7:30,

10:00, 12:00, 14:00, 16:00, 18:00 and 20:00 are all highly correlated. While in the case

of weekends start times; 5:30, 8:00, 10:00, 12:00, 14:00, 16:30, 18:30 and 20:30 are

highly correlated.
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Figure 6.3: A graph representing shifts that appear together in at least 50% of the
top 100 weekday schedules.
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Figure 6.4: A graph representing shifts that appear together in at least 50% of the
top 100 weekend schedules.

6.2 Cluster Partitioning

In this section the results of testing the mincut algorithm will be discussed. The

algorithm was first compared to an ILP solution in order to determine how well it

is able to approximate the mincut of a graph. Second the investigation turns to the

parallelization of the algorithm.

6.2.1 Graph Generation

In order to test the algorithm, graphs are required. This study used undirected graphs

and tested the algorithm on both weighted and unweighted graphs. The process of

the graph generation can be seen in Equation 8. The first of these loops forms a

graph in which every node can reach another node through some path of edges. The

two nested loops add additional edges to make the minimum cut harder to solve.
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Algorithm 8 Partitioning Algorithm

Require: V

1: for i ε V do

2: select a random node less than i

3: form an edge with it

4: end for

5: for i ε V do

6: for j ε V do

7: if no edge is present between i and j and i != j then

8: Give a 20% chance to add an edge between i and j

9: end if

10: end for

11: end for

The unweighted graphs were simply created by setting all edge values in the

weighted graphs to one.

6.2.2 Algorithmic Performance

First the results of the algorithm were compared to those of the ILP model. Scenarios

with graphs of sizes 20, 30, 40, 50, 80 and 100 nodes were tested. These graphs where

partitioned into sets of 2, 3, 4 and 5 partitions. This was done for both weighted and

unweighted versions of the graphs. There were 3 sets of each of the graph size and

weighted/unweighted combinations used to avoid testing on a graph that was easy

for the algorithm to solve. These tests were all performed 20 times to find a mean for

the minimum cut from the algorithm, each time using a random seed for the initial

partitioning. The ILP tests were each run once for a maximum period of 3 hours.

In Figure 6.5 the comparison between the increase in graph size and the mincut

values of both the algorithm and ILP for weighted graphs can be seen. The ILP

problem was solved using the Gurobi solver and found two curves, the incumbent

and best bound. These are the two values that the solver uses to constrain the

problem when solving it. The incumbent is the value of the best solution found so

far. While the best bound is what the solver believes to be the optimal value at this

point in the execution. When these two curves share values the solver has reached a

solution which it believes to be optimal. The algorithm curve follows the incumbent
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curve very closely in all three scenarios and then deviates when the number of nodes

in the graph reaches 50. This can be seen in the graph in the bottom right of the

figure where the 95% confidence interval of the mean is very close to 1.00, the value

of the incumbent, except in the case of the 20 node graph. When the case of the

20 node graph is examined in the other three graphs, it can be seen that they are

very close. The proportion maybe misleading as it could easily be the result of a

couple of nodes out of place. The best bound curve becomes flat when the number of

nodes in the graph becomes large. This is due to how the effort required by Gurobi

to bring down the best bound compared with finding a better incumbent. When the

logs for Gurobi where examined it was found that the solver often found it’s best

incumbent, the solution it reported in the end, and then spent a significant portion

of time bringing down the best bound. Therefore the incumbents are most likely far

more closer to the optimal then they appear.

Figure 6.5: A graph showing the relationship between algorithmic performance in
finding the optimal solution and the number of nodes in the weighted graphs.
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Examining Figure 6.6 we can see that the algorithm also performs well with the

scaling of the number of partitions. Note the result shown in the first data points in

each line in the previous figures are the same as those in these. Additionally these

graphs only have one curve due to Gurobi solving to what it believed to be optimal

for all the test shown.

Figure 6.6: A graph showing the relationship between algorithmic performance in
finding the optimal solution and the number of partitions in the weighted graphs.

The results for the unweighted graphs can be seen in Figures 6.7 and 6.8. The

algorithm performed well compared to the incumbent with respect to graph size. It

did, however, have more difficulty with respect to the number of partitions in the

graph.
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Figure 6.7: A graph showing the relationship between algorithmic performance in
finding the optimal solution and the number of nodes in the unweighted graphs
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Figure 6.8: A graph showing the relationship between algorithmic performance in
finding the optimal solution and the number of partitions in the unweighted graphs.

All the data points shown in Figures 6.5 and 6.6 can be seen in Table 6.1 below.

Table 6.1: A table showing the Algorithmic and ILP performance comparisons for
finding the optimal.

Set K V

Gurobi

Iccum-

bent

Gurobi

Best

Bound

Gap

Algorithm

Cut

Value

C.I.

95%

1

weighted
2 20 144 144 0% 149.5

145.31-

153.59

1

weighted
2 30 319 319 0% 330.95

325.48-

336.41

1

weighted
2 40 515 515 0% 542.85

534.34-

551.36
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1

weighted
2 50 856 856 0% 894.25

886.06-

902.44

1

weighted
2 80 2456 906 63.11% 2422.4

2400.85-

2443.95

1

weighted
2 100 4106 892 78.28% 3875.45

3848.78-

3902.12

1

weighted
3 20 199 199 0% 208.0

204.82-

211.18

1

weighted
4 20 246 246 0% 252.75

249.846-

255.65

1

weighted
5 20 275 275 0% 281.85

279.60-

284.10

2

weighted
2 20 120 120 0% 137.25

133.00-

141.50

2

weighted
2 30 321 321 0% 336.85

331.59-

342.11

2

weighted
2 40 618 618 0% 635.70

630.13-

641.27

2

weighted
2 50 852 852 0% 882.25

866.52-

897.97

2

weighted
2 80 2647 950 64.11% 2587.75

2569.98-

2605.52

2

weighted
2 100 4315 1040 75.90% 4185.75

4159.54-

4211.96

2

weighted
3 20 177 177 0% 186.15

182.92-

189.38

2

weighted
4 20 218 218 0% 224.15

220.88-

227.42

2

weighted
5 20 244 244 0% 250.90

248.63-

253.17

3

weighted
2 20 129 129 0% 141.35

136.25-

146.45
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3

weighted
2 30 324 324 0% 335.20

322.07-

348.33

3

weighted
2 40 546 546 0% 570.7

559.86-

581.54

3

weighted
2 50 963 871 9.55% 1008.5

995.57-

1021.43

3

weighted
2 80 2490 876 64.82% 2476.45

2450.02-

2502.88

3

weighted
2 100 4178 913 78.15% 4042.50

4019.28-

4065.72

3

weighted
3 20 179 179 0% 190.10

185.64-

194.56

3

weighted
4 20 229 229 0% 235.75

233.35-

238.15

3

weighted
5 20 249 249 0% 253.4

251.45-

255.35

The solution speed resulting from the algorithm rather than the ILP was assessed.

In Figure 6.9 the runtimes and the number of nodes in the graph were compared. In

the first graph, the runtime for the algorithm appears constant but when looking at

the second graph it can be seen that they are not constant but instead grow slowly

in comparison to the ILP ones. Note that when the ILP curves flatten out in higher

cases it is due to the 3 hour time limit being reached. This occurs in both Figure 6.9

and Figure 6.11.
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Figure 6.9: A graph showing the relationship between algorithmic performance in
runtime and the number of nodes in the weighted graphs.

Figure 6.10 shows the corresponding results for the comparison of the number of

partitions in the graph. The comparison between ILP and algorithm curves is similar.

However, in this case the algorithm curves appear logarithmic rather than exponential,

but most likely linear or a less severe exponential. This result is not unexpected given

that there are more iteration loops to go through to check that there are no more

partition combinations that must be considered but less node combinations in the

this case.

Figure 6.10: A graph showing the relationship between algorithmic performance in
runtime and the number of partitions in the weighted graphs.

Very similar results can be seen if Figures 6.11 and 6.12 for the unweighted graphs.
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Figure 6.11: A graph showing the relationship between algorithmic performance in
runtime and the number of nodes in the weighted graphs.

Figure 6.12: A graph showing relationship between algorithmic performance in run-
time and the number of partitions in the weighted graphs.

All the data points shown in Figures 6.9 and 6.10 can be seen in table 6.2 bellow.

Note Gurobi time indicates the runtime of the Gurobi solver.

Table 6.2: A table showing the Algorithmic and ILP performance comparisons for
runtime.

Set K V Gurobi Time(seconds) Algorithm Time(seconds)

1 weighted 2 20 0.83 0.21

1 weighted 2 30 8.84 0.69

1 weighted 2 40 171.70 1.54

1 weighted 2 50 9504.54 3.73

1 weighted 2 80 10800.15 16.05

1 weighted 2 100 10800.09 35.16
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1 weighted 3 20 3.16 0.33

1 weighted 4 20 6.35 0.39

1 weighted 5 20 25.44 0.37

2 weighted 2 20 0.57 0.21

2 weighted 2 30 6.40 0.66

2 weighted 2 40 422.41 1.64

2 weighted 2 50 3392 3.80

2 weighted 2 80 10800.09 15.44

2 weighted 2 100 10800.15 34.49

2 weighted 3 20 6.60 0.28

2 weighted 4 20 10.94 0.31

2 weighted 5 20 22.03 0.35

3 weighted 2 20 0.66 0.19

3 weighted 2 30 4.74 0.80

3 weighted 2 40 191.78 1.85

3 weighted 2 50 10800.05 3.21

3 weighted 2 80 10800.15 16.88

3 weighted 2 100 10800.11 32.80

3 weighted 3 20 2.47 0.28

3 weighted 4 20 5.22 0.33

3 weighted 5 20 16.45 0.37

Overall, the results show that the algorithm could be used as an effective tool

to quickly partition patients into groups. This could be used in real time to assist

physicians in a variety of situations, as were mentioned in the related work section.

The ILP model on the other would not be useful in a real time environment except for

very small cases, as the runtime alone would render many results useless as decisions

have already been made for the patients by that time.

6.2.3 Effects of Paralellization

As the algorithm is divided between the initial partitioning and the swapping compo-

nent, the paralellization was divided between the two as well. Furthermore, since the
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algorithm is dependant on a random seeding of each partition in the initial partition-

ing portion, then the test must be done in a manner that this seeding is the same for

each test for a given V and K combination. This means that the initial partitioning

test use the same seed and that the swapping tests use the same initial partition

starting point. The resulting test for each of the chosen V and K combinations dis-

cussed below were generated by running each case 10 times. Some mean runtimes are

displayed below in Table 6.3 for the initial partitioning portion and Table 6.4 for the

swapping portion. These tests were all performed on a computer with the following

specifications: 12 GB of RAM 2400MHz, an Intel i5-7300HQ CPU 2.50Ghz with 4

cores and a NVIDIA GeForce GTX 1050 GPU. Once again all implementations were

done in C++. The GPU parallelization used CUDA and the CPU parallelization

used openMP. Furthermore, due to limitations in RAM speed , the implementations

use malloc memory blocks rather than objects to avoid using the heap. To ensure

a consistent comparison, the sequential algorithm is also implemented this way. To

further reduce computing overhead, the CPU based version utilized the same set of

threads so new ones did not need to be created each time. Therefore, in the swapping

portion the threads were all created prior to beginning to loop through nodes and

partitions and syncronization is maintained between them all throughout. Similarly,

the same was done with the GPU based swapping portion, note this only requires

one call to the GPU to begin, minimizing it’s expense. Additionally, in the CPU

implementation each thread has it’s own copy of information, such as the weight ma-

trix. This was in response to having each thread using shared memory during testing,

causing too many faults due to memory row refreshing. Also, it must be noted that

these tests were run with no other programs active to provide the fairest comparison

possible.

To begin a sequential algorithm, 2 thread, 4 thread and 8 thread case were tested

for the initial partitioning portion. In Figures 6.13, 6.14, 6.15 and 6.16 the relationship

between the number of nodes in the graph and runtime is presented. These are for

K2, K3, K4 and K5, respectively. The plots demonstrate that as the gap between

the methods narrows, the number of partitions increases. This is due to the fact that

the parrellelization happens within the partitions as information is gathered about

other nodes in the graph. Therefore, the gap does not shrink but merely lags behind

in growth. Also, of note is that the 4 thread and 8 thread tests follow the same

path. This shows that the process is a very busy one, with not much time to allow

other threads to make use of the same core. In fact the speed of memory here is



97

most likely the limiting factor. Therefore, with better specifications this could result

in additional speed. It must be considered though the initial partitioning process is

already very fast so parallelization only becomes viable at very large scales or if it is

a heavily repeated process. Furthermore the issue with in the case of larger case a

higher percentage of the runtime is taken up by the swapping portion.

Figure 6.13: A graph showing the relationship between parallelization performance in
runtime and the number of nodes in the K2 graphs in the initial partitioning portion.
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Figure 6.14: A graph showing the relationship between parallelization performance in
runtime and the number of nodes in the K3 graphs in the initial partitioning portion.
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Figure 6.15: A graph showing the relationship between parallelization performance in
runtime and the number of nodes in the K4 graphs in the initial partitioning portion.
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Figure 6.16: A graph showing the relationship between parallelization performance in
runtime and the number of nodes in the K5 graphs in the initial partitioning portion.

Table 6.3: A table showing the comparison of runtimes for the initial partitioning
portion of the problem.

K V

Sequential

Time

(Sec-

onds)

2

Threads

Time

(Sec-

onds)

4

Threads

Time

(Sec-

onds)

8

Threads

Time

(Sec-

onds)

2 20 0.0064 0.008 0.0076 0.008

2 30 0.0163 0.0184 0.017 0.0174

2 40 0.0323 0.0348 0.0305 0.0319

2 50 0.0565 0.0577 0.0496 0.0517

2 60 0.0887 0.0872 0.0733 0.076

2 70 0.1359 0.1255 0.1035 0.1051
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2 80 0.1884 0.1739 0.1467 0.1434

2 90 0.2622 0.2309 0.187 0.1865

2 100 0.3488 0.2996 0.2348 0.2387

2 120 0.5675 0.4751 0.3556 0.3615

2 140 0.8754 0.7052 0.5426 0.5225

2 160 1.2628 1.0066 0.7269 0.7264

2 180 1.7781 1.3757 0.9805 0.9758

2 200 2.3924 1.8181 1.303 1.269

3 20 0.0053 0.0072 0.0068 0.0076

3 30 0.0137 0.0162 0.0159 0.0163

3 40 0.0258 0.03 0.0283 0.029

3 50 0.0455 0.0493 0.0455 0.0462

3 60 0.0694 0.074 0.0662 0.0676

3 70 0.1034 0.1046 0.0929 0.0947

3 80 0.1451 0.1428 0.1225 0.1253

3 90 0.196 0.1894 0.1583 0.1655

3 100 0.2594 0.2451 0.2039 0.2091

3 120 0.4218 0.3822 0.3177 0.3132

3 140 0.6351 0.5557 0.4466 0.4434

3 160 0.9183 0.7848 0.6199 0.6109

3 180 1.2624 1.0588 0.8003 0.812

3 200 1.7089 1.3925 1.0415 1.0367

Next, the swapping portion of the algorithm with the same cases were considered

as the initial partitioning portion with the additional GPU cases. Figures 6.17, 6.18,

6.19 and 6.20 show the relationship between the number of nodes in the graph and

runtime. These are for K2, K3, K4 and K5 respectively. The GPU based solution can

be quickly discounted as a viable form of parallelization, as it’s scaling is very poor.

While the GPU itself is very useful the cost of transferring the data is too great.

In most cases this would be eventually overcome when larger cases are considered

but the issue in this case is the growing weight matrix size with larger case causing

the rapidly increasing trajectory of the GPU curves. Turning to the CPU based

parallelizations runtime decreases along with the number of threads used, making
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sequential the fastest. Therefore the overhead of keeping the threads synchronized

with each other is too costly, showing that the parallelized swapping portion is not a

viable option.

Figure 6.17: A graph showing the relationship between parallelization performance
in runtime and the number of nodes in the K2 graphs in the swapping portion.
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Figure 6.18: A graph showing the relationship between parallelization performance
in runtime and the number of nodes in the K3 graphs in the swapping portion.
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Figure 6.19: A graph showing the relationship between parallelization performance
in runtime and the number of nodes in the K4 graphs in the swapping portion.
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Figure 6.20: A graph showing the relationship between parallelization performance
in runtime and the number of nodes in the K5 graphs in the swapping portion.

Table 6.4: A table showing the comparisons of runtime for the swapping portion.

K V

Sequential

Time

(Sec-

onds)

2

Threads

Time

(Sec-

onds)

4

Threads

Time

(Sec-

onds)

8

Threads

Time

(Sec-

onds)

GPU

Time

(Sec-

onds)

2 20 0.0178 0.0097 0.0105 0.0159 0.3966

2 30 0.016 0.022 0.0238 0.0347 1.5455

2 40 0.0543 0.0763 0.0793 0.1216 5.2066

2 50 0.0439 0.0601 0.0637 0.0955 16.3841

2 60 0.0631 0.0877 0.0916 0.1366

2 70 0.1636 0.2383 0.2483 0.3717

2 80 0.1623 0.2317 0.2422 0.3622
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2 90 0.2035 0.2963 0.3072 0.4577

2 100 0.1729 0.2478 0.2581 0.3913

2 120 0.3636 0.53 0.5548 0.8215

2 140 0.6606 0.9752 1.0067 1.4939

2 160 0.6512 0.9467 1.011 1.4741

2 180 0.8364 1.2334 1.2726 1.871

2 200 2.3652 3.5494 3.6512 5.4478

3 20 0.0094 0.014 0.0148 0.0219 0.4884

3 30 0.031 0.0468 0.0491 0.0726 1.684

3 40 0.0543 0.0837 0.0877 0.1293 6.2748

3 50 0.0564 0.087 0.0929 0.1341 19.1629

3 60 0.1207 0.1863 0.196 0.2917

3 70 0.109 0.171 0.181 0.2645

3 80 0.2107 0.3333 0.3533 0.5145

3 90 0.2688 0.4258 0.4442 0.647

3 100 0.4381 0.6983 0.7341 1.0657

3 120 0.4776 0.7622 0.7968 1.1587

3 140 0.6526 1.0424 1.0901 1.5735

3 160 1.4181 2.2777 2.3731 3.4366

3 180 1.0852 1.7657 1.8215 2.6198

3 200 2.6649 4.3638 4.5278 6.4635

Overall, in my opinion the parallelization of the algorithm does not seem viable

in practice as the only point that it is faster is during the initial partitioning. Which

as mentioned becomes a smaller portion of the runtime as the number of nodes in the

graph grows. A more useful of parallelization in my opinion would be to run several

instances at once. This is because the use of different initial partitions could result in

finding a better min cut value. Running these cases in parrallel would take roughly the

same amount of time as running one sequentially as they require no synchronization

between them. Additionally since they would all share a weight matrix the GPU

may become viable. An issue with the GPU implementation was that only one block

was usable as synchronization was needed between all threads, it is not in this case.

Allowing the full power of the GPU to be harnessed. To further press this last point
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if a second look is taken at Figures 6.17, 6.18, 6.19 and 6.20 the GPU curves are

much smoother than the others. Meaning that almost all the runtime is taken up by

the call to the GPU. This means that enough blocks are run with the same graph

simultaneously then there could be a potential speed up compared to running them

sequentially.

6.3 Discussion

In this chapter the results of the experiments are detailed. To begin an optimal ED

physician schedule was produced for the weekdays and for the weekends. Following the

top 100 schedules for each case where examined in order to determine how important

certain shift starting points were. The results for the mincut problem were then

discussed.

The physician schedules produced performed very well in regards to the metrics

PIA and LOS during simulation. The key benefit that this study has over others is the

shear number of schedules tested, approximately 454,000. While most other studies

consider an amount of schedules on the order of 1,000 at most. This allows for the

coverage a much larger problem space and the further assurance that the schedule

produced is near optimal. Furthermore the key shift starting times are identified

that would allow the ED to make some modifications to the schedule based on when

physicians are actually able to work, due to lifestyle concerns or other obligations.

In the mincut results it was shown that the algorithm, particularly the sequential

version could be reasonably integrated into the ED as part of a real time tool to

aid physicians. This is due to the fact that the run time is on the order of seconds,

while the time the results are need would be most likely measured in minutes. The

parallelized versions however are ineffective as they do not scale very well. However

some scenarios in which the parallelization could be more useful in are offered for

consideration.
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Chapter 7

Conclusion

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Summary

In the ED physician scheduling, I was able to successfully model both the patients

and the ED processes. Using the model schedules were found for both weekdays and

weekends that result in a high number of patients meeting targets for PIA and LOS.

If the proposed schedule was implemented and resulted in improved PIA and LOS

this could result in additional funding for the ED. There were also some relationships

determined between shift start times that would allow for the selection of sub-optimal

schedules that better fit the other responsibility physicians have. While this simula-

tion was developed for the TBRHSC, this technique could be applied to other EDs.

This method searched a far greater problem space than is typically considered in

similar studies, as can be seen in the related work section. Therefore assuring an

approximation that is closer to the optimal as well as providing the additional infor-

mation for choosing related schedules based on the hospitals managerial constraints.

The later is not typically included in studies and provides a benefit for the practical

choosing of schedules.

With respect to the minimum cut problem, the proposed algorithm performed

very well compared to the gurobi solver with the ILP model. This means that it
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could provide the basis for a real time tool to assist physicians in many situations

potentially further improving PIA and LOS metrics for the ED. When examining

parallelization of the algorithm, only the initial partitioning portion showed promise

for using CPU threading to quickly solve a single case. The paralleliztion of the

swapping component had too much overhead with both the CPU and GPU being

outperformed by the sequential version. As mentioned it is a very busy process and

GPU calls are too expensive. Alternatively, a more beneficial use of paralellization

would be running multiple instances at once as the result ultimately depends on the

seeding of the initial partition portion.

7.2 Future Work

In regards to future work there are several avenues that can be taken.

First, the modeling could be improved by assessing the time TBRHSC ED physi-

cians spend with patients during different points of the patients stay. Additionally, a

study could be done to determine how physicians triage which patients to see next.

With proper data for these two things the simulation could be further improved.

Another avenue that could be taken would to be adjust the model to determine

additional scenarios. Rather than maximizing the PIA and LOS targets, scenarios

could be done to test the robustness of schedules with different patient demographics,

arrival time, and volume. Alternatively, a cost benefit analysis could be done to add

additional physicians to the schedule or implement physicians at triage as discussed

in the related work section. With additional modifications and data it could even

be used to determine the benefit of adding equipment, such as an ED specific CT

scanner.

Turning towards the minimum cut problem physicians could be consulted to de-

termine the specific scenarios in which it could be useful and determine a method for

the construction of graphs to frame their problems. Additionally, comparisons could

be done to determine the benefit of looking at multiple swaps before determining if

the swap should be done. This could help determine if potentially obtaining a bet-

ter minimum cut value is worth the additional runtime and whether parallelization

becomes feasible for individual runs at this level.

This algorithm for the minimum cut problem could be implemented as the basis

of a real time tool to aid staff. It could be added in several stages of a patients

stay. One example would be in triage. This would allow the algorithm to be run
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as the nurse enters the patients information, aiding in more accurate triaging, and

providing the physician with laboratory tests and imaging procedures the patient

may require. It could also provide the likely hood of a patient’s stay resulting in

admission. These last two scenarios would be able to reduce the patients LOS by

ordering test and procedures that are extremely likely from triage, shortening time

between initial assessment and reassessment. As well as prepping area in the hospital

for a patient very likely to be admitted ahead of time, to reduce the time spent bed

blocking. Due to the time efficiency of the algorithm these likely hoods could be

calculated repeatedly to provide up to date information to physicians.

In order to use the algorithm as a basis for a real time tool further studies will

need to be done heavily involving the medical community to identify proper weighted

relationships between factors. Since these relationships are not ED specific it would

allow the system to be easily added to any ED. All that would be needed would be

an intermediate layer to translate the data to how it is represented in a graph. For

example things like chief complaint may not have the same wording between hospitals.
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