# A Modification of the Effros-Handelman-Shen Theorem with $\mathbb{Z}_{2}$ actions 

by

Bit Na Choi

Department of Mathematical Sciences
Lakehead University

## Contents

ABSTRACT ..... 2
Chapter 1. Introduction ..... 3
Chapter 2. Classification ..... 6
Chapter 3. $C^{*}$-algebras ..... 10
Chapter 4. K-theory ..... 13

1. The Semi-Groups $\mathcal{D}(A)$ ..... 13
2. The $K_{0}$ Group of a unital $C^{*}$-algebra ..... 14
3. Inductive Limits ..... 16
Chapter 5. Elliott's Intertwining Argument ..... 25
Chapter 6. The Range of Invariant Problem ..... 31
Chapter 7. A Modification of the Effros-Handelman-Shen Theorem ..... 35
Bibliography ..... 63
Index ..... 64

# ABSTRACT 

## A modification of the Effros-Handelman-Shen Theorem with $\mathbb{Z}_{2}$ actions <br> by

Bit Na Choi

In this thesis, we show that if we have a $\mathbb{Z}_{2}$ action on a latticeordered dimension group, then it will arise as an inductive limit of $\mathbb{Z}_{2}$ actions on simplicial groups. This work was motivated by the range of the invariant problem in Elliott and Su's classification of AF type $\mathbb{Z}_{2}$ actions. In order to show this, we modify the proof of Effros-HandelmanShen theorem to include $\mathbb{Z}_{2}$ actions at every stage of the arguments.

## CHAPTER 1

## Introduction

This is a thesis in Ordered Group Theory devoted to the study of actions on dimension groups. Dimension groups arise naturally as invariants in the classification of $C^{*}$-algebras.

The classification of AF-algebras started with Glimm's supernatural numbers, which he used to classify UHF-algebras [8]. Also, Bratteli showed how diagrams could be used to classify AF-algebras. The Bratteli diagram is a systematic way to write down inductive sequences of finite dimensional $C^{*}$-algebras [2]. For example, we encode a sequence $\mathbb{C} \rightarrow M_{2} \bigoplus \mathbb{C} \bigoplus M_{2} \bigoplus M_{2} \rightarrow M_{6} \bigoplus M_{3}$ as a Bratteli diagram. In the diagram below, the dots in each horizontal row represent the direct summands in the algebras in the inductive system, the number of arrows between dots counts the multiplicity of the partial embedding between those two summands. The Bratteli diagram below gives one sequence of maps such as above.


For AF algebras, the Bratteli diagram carries on downwards infinitely.
After that, George Elliott used $K$-theory to classify AF-algebras. He clarified the classification of these algebras by using invariants [5]. Elliott's invariant was the $K_{0}$ group of the $C^{*}$-algebras. The group $K_{0}$ of an AF algebra is an example of an ordered abelian group, a group with a partial order that is translation invariant.

An ordered abelian group ( $G, G^{+}$) is said to be unperforated if every $x \in G$ for which $n x \geq 0$ for some $n \in \mathbb{N}$ satisfies $x \geq 0$. An ordered abelian group $\left(G, G^{+}\right)$is said to have the Riesz interpolation property if for every $x_{1}, x_{2}, y_{1}, y_{2} \in G$ where $x_{i} \leq y_{j}$ for $i, j=1,2$, there exists $z \in G$ with $x_{i} \leq z \leq y_{j}$ for $i, j=1,2[\mathbf{1 4}]$. The Effros-Handelman-Shen theorem says that a countable ordered abelian group $\left(G, G^{+}\right)$is the $K_{0}$ group of an AF-algebra if and only if it is unperforated and has the Riesz interpolation property[4]. After the classification of AF-algebras was done, people began to add more things to the invariant besides $K_{0}$ in order to classify more algebras.

We mentioned the generalization of the classification of AF algebras above. Now, we would like to talk about the generalization of the classification of AF algebras to classifications of algebras with actions on them. First, Handelman and Rossmann assumed that the algebra was a UHF algebra and the action was product type in [10]. After that, they generalized the content of their previous paper [10] to locally representable action on an AF algebra in [11]. In [1], Blackadar showed that there were actions of $\mathbb{Z}_{2}$ that were not locally representable even on UHF algebras. Elliott and Su generalized the $K$-theoretic classification of Handelman and Rossman in [11] by removing locally representable. They still keep AF inductive limit type and they restricted the action to the group $\mathbb{Z}_{2}[7]$.

The range of the invariant that Elliott and Su used has still not been completely determined. In this thesis, we tried to generalize the Effros-Handelman-Shen theorem to apply to the invariant of Elliott and Su . Our main theorem is a step towards the generalization. This thesis is organized as follows. In chapter 2, we discuss classification, especially, using a functor. We discuss $C^{*}$-algebra facts in chapter 3. We describe the semi-groups $\mathcal{D}(A)$, the $K_{0}$ group of a unital $C^{*}$ algebra, and inductive limits in chapter 4 . In chapter 5 , we discuss Elliott's intertwining argument that is the pattern to prove Elliott's AF classification theorem. Chapter 6 contains the range of the invariant problem for the classification that goes with the theorem Elliott and Su found. Chapter 7 is our main result of this thesis. It contains a
modification of the Effros-Handelman-Shen theorem where we restrict the dimension group to a lattice-ordered one but include $\mathbb{Z}_{2}$ actions.

## CHAPTER 2

## Classification

This chapter explains about classification, in particular, a classification by using a functor.
As we see in [6], there are lots of classifications as follows:

- A complete list
- A complete list using labels
- A functor

Here are examples of each kind of classification.
Example 2.1.
(1) An example of a complete list is the classification of finite simple groups. As we see in [3], the Hölder program is the project to classify those groups.
(2) An example of a complete list using labels is the classification of complex simple Lie algebras, of which there are four sequences $A_{n}, B_{n}, C_{n}, D_{n}$, and five exceptions $\left(E_{6}, E_{7}, E_{8}, F_{4}\right.$, and $G_{2}$ ). These Lie algebras are classified by their Dynkin diagrams.
(3) The last example is the classifying functors that are used in the Elliott classification program.

We would like to explain about a functor in detail. Before explaining about a functor, we have to know what a category is. Here is the definition of a category.

Definition 2.1. [14, 3.2.1] A category $C$ consists of a class $\mathcal{O}(C)$ of objects and for each pair of objects $A, B$ in $\mathcal{O}(C)$ a set $\operatorname{Mor}(A, B)$ of morphisms from $A$ to $B$ with an associative rule of composition

$$
\operatorname{Mor}(A, B) \times \operatorname{Mor}(B, C) \rightarrow \operatorname{Mor}(A, C),(\varphi, \psi) \mapsto \psi \circ \varphi
$$

such that for each object $X$ there is an element $i d_{X}$ in $\operatorname{Mor}(X, X)$ which satisfies $i d_{Y} \circ \varphi=\varphi=\varphi \circ i d_{X}$ for every $\varphi$ in $\operatorname{Mor}(X, Y)$.

Here are various examples of categories.
Example 2.2 (Category (Objects, Morphisms)).

- (Groups, Group homomorphisms)
- (Rings, Ring homomorphisms)
- (Vector spaces, Linear maps)
- (Sets, Functions)
- (Topological spaces, Continuous maps)
- (Pointed spaces, Pointed maps)
- (C*-algebras, *-homomorphisms)
- (Partially ordered abelian groups, ordered group homomorphisms)

From now on, $\mathbf{C}^{*}$ denotes the category that consists of $C^{*}$-algebras and ${ }^{*}$-homomorphisms, and AbG denotes the category that consists of partially ordered abelian groups and ordered group homomorphisms.

Based on the definition of category, we define the two types of functors.

Definition 2.2. [14, 3.2.1] Let $C_{1}$ and $C_{2}$ be categories. For each object $A$ in $C_{1}$, we have an object $F(A)$ in $C_{2}$. Also, for each morphism $\varphi: A \rightarrow B$ in $C_{1}$,
We can define $F(\varphi)$ in two different ways.
(1) we have $F(\varphi): F(A) \rightarrow F(B), F\left(i d_{A}\right)=i d_{F(A)}$, and $F(f \circ g)=F(f) \circ F(g)$ where $f$ and $g$ are morphisms in $C_{1}$. A functor F such as this is called a covariant functor. This functor preserves identity morphisms and composition of morphisms.
(2) we have $F(\varphi): F(B) \rightarrow F(A), F\left(i d_{A}\right)=i d_{F(A)}$, and $F(f \circ g)=F(g) \circ F(f)$ where $f$ and $g$ are morphisms in $C_{1}$. A functor F such as this is called a contravariant functor. This functor reverses the direction of composition.

Here are examples of functors.

Example 2.3.
(1) $K_{0}$ is a covariant functor from approximately finite dimensional $\mathbf{C}^{*}\left(\mathrm{AF} \mathbf{C}^{*}\right)$ to $\mathbf{A b G}$.
(2) Fundamental group is a contravariant functor from pointed topological spaces to groups.
(3) A forgetful functor, which is covariant, forgets or drops some or all of the input's structure or properties before mapping to the output. For example, a mapping from vector space to set, and a mapping from linear maps to functions.

We will explain more about the first one of the above examples in chapter 4.

When we have classification by a functor, we have a class of objects that we want to classify with their homomorphisms, and a simpler category for the functor to take its values in. We want a functor to have the property that an isomorphism between invariants comes from an isomorphism between objects. In fact, if $\psi: F(A) \rightarrow F(B)$ is an isomorphism, then we want a $\tilde{\psi}: A \rightarrow B$ that is an isomorphism with $\psi=F(\widetilde{\psi})$. In this case, trivial automorphisms should go to the identity maps. The advantage of using functors for classification is giving more information about the relationship between objects than isomorphism. We usually get a homomorphism theorem which tells us when one object embeds into another one.

In order to classify a category, we would like to have a functor which ignores certain automorphisms considered to be trivial. So, here are some definitions.

Definition 2.3. Let R be a ring. Suppose $x$ is an invertible element in $R$. The map $\varphi(y)=x y x^{-1}$ is an isomorphism of $R$ with itself, also known as an automorphism. Such an automorphism is called an inner automorphism of $R$. With a $C^{*}$-algebra $A$, if $u$ satisfies $u u^{*}=u^{*} u=$ 1 , then $x \mapsto u x u^{*}$ is called an inner *-automorphism.

There exist automorphisms that are not inner. For instance, consider the ring $\mathbb{C} \oplus \mathbb{C}$. Then, there is an automorphism $(x, y) \mapsto(y, x)$ where $x, y \in \mathbb{C}$. Since the ring is commutative, the only inner automorphism is the identity. In this case, the automorphism is not inner.

We would like to consider the case of inner automorphisms as a trivial one. Here is a brief example, a classification using a functor.

Example 2.4. Consider the domain category, being classified, which consists of matrix algebras over complex number as objects and unital *-homomorphisms as morphisms, i.e., (Matrix algebras $\left(M_{n}\right)$, unital *-homomorphisms), and trivial automorphism in this case is inner automorphism.

An order unit for an ordered group $G$ is any positive element $u$ in $G^{+}$such that for any element $g$ in $G$, there is some positive integer $n$ for which $|g| \leq n u$. Define the target category, $\left(\left(\mathbb{Z}, \mathbb{Z}^{+}, n\right)\right.$, positive unital group homomorphism). Then, we can get a functor $\left(K_{0}, K_{0}^{+},[1]\right)$ from the domain category to the target category such that

$$
\left(K_{0}\left(M_{n}\right), K_{0}\left(M_{n}\right)^{+},[1]\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}, n\right)
$$

In this case, each unital homomorphism looks like down below;

$$
\begin{gathered}
M_{n} \rightarrow M_{n k} \cong M_{n} \otimes M_{k}, \text { by } x \mapsto u\left(x \otimes 1_{k}\right) u^{*} \text { for some unitary } u \\
\mathbb{Z} \rightarrow \mathbb{Z} \text { by } x \mapsto k x \text { for some } k \geq 0
\end{gathered}
$$

In particular, the map $x \mapsto k x$ is the image under the functor of the map $x \mapsto x \otimes 1_{k}$ from $M_{n} \rightarrow M_{n k}$. It means that $K_{0}$ ignores the inner automorphism part.

We explain more this example in the next chapter.

## CHAPTER 3

## $C^{*}$-algebras

As we mentioned above, we would like to describe $C^{*}$-algebras in this chapter. In particular, we define AF algebras, one of the most interesting classes of $C^{*}$-algebras. First of all, we define the category of $C^{*}$-algebras, ${ }^{*}$-homomorphism, and unital.

Definition 3.1. [14, Definition 1.1.1]
(1) A $\mathbf{C}^{*}$-algebra $A$ is an algebra over $\mathbb{C}$ with a norm $a \mapsto\|a\|$ and an involution $a \mapsto a^{*}, a \in A$, such that $A$ is complete with respect to the norm, and such that $\|a b\| \leq\|a\|\|b\|$ and $\left\|a a^{*}\right\|=\|a\|^{2}$ for every $a, b$ in $A$.
An involution is a conjugate linear function that is its own inverse, i.e., $a^{* *}=a$.
(2) A *-homomorphism $\varphi: A \rightarrow B$ between $C^{*}$-algebras $A, B$ is a linear and multiplicative map which satisfies $\varphi\left(a^{*}\right)=\varphi(a)^{*}$.
(3) A $C^{*}$-algebra $A$ is called unital if it has a multiplicative identity, which will be denoted by 1 or $1_{A}$.
(4) If A and B are unital and $\varphi\left(1_{A}\right)=1_{B}$, then $\varphi$ is called unital.

Here are some examples of $C^{*}$-algebras.
Example 3.1.
(1) $C_{0}(X)$, the complex valued continuous function on $X$ vanishing at infinity, where $X$ is a locally compact Hausdorff space with pointwise multiplication $(f g)(x)=f(x) g(x)$, the involution $f^{*}(x)=\overline{f(x)}$, and the norm $\|f(x)\|=\sup |f(x)|$
(2) $M_{n}(\mathbb{C})$, complex $n \times n$ matrices with the involution $A^{*}=\overline{A^{\top}}$ and the norm such that

$$
\|A\|=\sup \left\{\|A x\| \mid x \in \mathbb{C}^{n} \text { with }\|x\|=1\right\}
$$

(3) $B(H)$, the Banach space consisting of all bounded operators from $H$ to $H$ for $H$ a complex Hilbert space, where the involution is the Hilbert adjoint, defined by $\langle x| T y>=<T^{*} x|y\rangle$. In this case, the norm is

$$
\|T\|=\sup \{\|T y\| \mid y \in H \text { with }\|y\| \leq 1\} .
$$

In order to clarify the $\mathrm{AF} \mathbf{C}^{*}$ that we mentioned in Chapter 2, we move on to the definition of AF-algebra.

Definition 3.2. [14, Definition 7.2.1] An AF-algebra $A$ is a $C^{*}$ algebra that satisfies that there is an increasing sequence $A_{n}$ of finite dimensional $C^{*}$-algebras such that $A=\overline{\bigcup_{n=1}^{\infty} A_{n}}$
The term "AF" is an abbreviation of Approximately Finite dimensional.

In order to fully understand the above definition, we need to know a bit about finite dimensional $C^{*}$-algebras.

In [12], it is shown that an arbitrary finite dimensional $C^{*}$-algebra $A$ takes the form

$$
M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}}
$$

for some integers $n_{1}, n_{2}, \cdots, n_{k}$ where $M_{n}$ is the algebra of $n \times n$ matricies over the complex numbers.

We can define a unital map between matrix algebras;

$$
M_{n} \rightarrow M_{k} \cong M_{n} \otimes M_{m}, \text { by } x \mapsto u\left(x \otimes 1_{m}\right) u^{*}
$$

for some unitary $u \in M_{k}$. In fact, any unital $*-$ homomorphism between full matrix algebras is of this form.

By generalizing these unital maps, we can define *-homomorphisms between finite dimensional $C^{*}$-algebras. Define

$$
\pi: M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}} \rightarrow M_{l}
$$

by

$$
\pi(x)=\left[\begin{array}{llll}
\pi_{1}(x) & & & \\
& \pi_{2}(x) & & \\
& & \ddots & \\
& & & \pi_{k}(x)
\end{array}\right]
$$

where $\pi_{i}: M_{n_{i}} \rightarrow M_{n_{i} h}$ by $x \mapsto u\left(x \otimes 1_{h}\right) u^{*}$ for each $i=1,2, \cdots, k$ and for some unitary $u \in M_{n_{i} h}$, and there are, possibly, some zero maps, for example, $\mathbb{C} \oplus \mathbb{C} \rightarrow \mathbb{C}$ by $(x, y) \mapsto x$ for any $x, y \in \mathbb{C}$.

This is what unital homomorphisms $M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}} \rightarrow M_{l}$ all look like, in other words, any ${ }^{*}$-homomorphism is conjugate to one of this forms, i.e., $\varphi(x)=v \psi(x) v^{*}$ for some unitary $v$. In general, unital *-homomorphisms between finite dimensional algebras are direct sums of maps like above. Since the injective *-homomorphisms are norm preserving, we can define a norm for the union of an increasing sequence of finite dimensional algebras. In this way, we can take a completion. Therefore, we can get an AF-algebra.

## CHAPTER 4

## K-theory

In this chapter, we shall introduce the semi-group $\mathcal{D}(A)$ and the $K_{0}$ groups that arise from the semi-group. We will show that $K_{0}$ is a functor from $\mathrm{AF} \mathbf{C}^{*}$ to AbG as we mentioned in Chapter 2.

## 1. The Semi-Groups $\mathcal{D}(A)$

In this section, we would like to describe a specific semi-group, $\mathcal{D}(A)$. First, we describe the set of projections, $\mathcal{P}_{\infty}(A)$.

Here are definitions of a projection and $\mathcal{P}_{\infty}(A)$.
Definition 4.1. [14, Definition 2.2.1] An element $p$ in a $C^{*}$-algebra is a projection if $p=p^{2}=p^{*}$. The set of all projections in a $C^{*}$ algebra $A$ is denoted by $P(A)$.

Definition 4.2. [14, Definition 2.3.1] Put

$$
\mathcal{P}_{n}(A)=\mathcal{P}\left(M_{n}(A)\right), \mathcal{P}_{\infty}(A)=\bigcup_{n=1}^{\infty} \mathcal{P}_{n}(A),
$$

where $A$ is a $C^{*}$-algebra and $n$ is a positive integer.
Define the relation $\sim_{0}$ on $\mathcal{P}_{\infty}(A)$ as follows. Suppose that $p$ is a projection in $\mathcal{P}_{n}(A)$ and $q$ is a projection in $\mathcal{P}_{m}(A)$. Then $p \sim_{0} q$ if there is an element $v$ in $M_{m, n}(A)$ with $p=v v^{*}$ and $q=v^{*} v$.

Define a binary operation $\oplus$ on $\mathcal{P}_{\infty}(A)$ by

$$
p \oplus q=\operatorname{diag}(p, q)=\left(\begin{array}{ll}
p & 0 \\
0 & q
\end{array}\right)
$$

Based on the $\mathcal{P}_{\infty}(A)$, we would like to introduce the definition of semi-group $\mathcal{D}(A)$.

Definition 4.3. [14, Definition 2.3.3] With $\left(\mathcal{P}_{\infty}(A), \sim_{0}, \oplus\right)$, set

$$
\mathcal{D}(A)=\mathcal{P}_{\infty}(A) / \sim_{0}
$$

For each $p$ in $\mathcal{P}_{\infty}(A)$, let $[p]_{\mathcal{D}}$ in $\mathcal{D}(A)$ denote the equivalence class containing $p$. Define addition on $\mathcal{D}(A)$ by

$$
[p]_{\mathcal{D}}+[q]_{\mathcal{D}}=[p \oplus q]_{\mathcal{D}}, \text { for } p, q \in \mathcal{P}_{\infty}(A)
$$

Then, $(\mathcal{D},+)$ is an abelian semi-group.
Here are some examples about the semi-groups $\mathcal{D}(A)$.
Example 4.1.
$-\mathcal{D}(\mathbb{C}) \cong \mathbb{N}$

- $\mathcal{D}\left(M_{n}(\mathbb{C})\right) \cong \mathbb{N}$
$-\mathcal{D}(B(H)) \cong \mathbb{N} \cup \infty$ when $H$ is an infinite dimensional Hilbert space.

In each case, we get the isomorphism by taking the trace of any projection in an equivalence class.

## 2. The $K_{0}$ Group of a unital $C^{*}$-algebra

Before explaining the $K_{0}$ group, we should explain what the Grothendieck construction is.

Definition 4.4. [14, 3.1.1] Let $(S,+)$ be an abelian semi-group. We say that the semi-group $(S,+)$ has the cancellation property if, whenever $x, y$, and $z$ are elements in $S$ with $x+z=y+z$, it follows that $x=y$. Define an equivalence relation $\sim$ on $S \times S$ by $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if there exists $z$ in $S$ such that $x_{1}+y_{2}+z=x_{2}+y_{1}+z$.
Let $G(S)$ be the quotient $(S \times S) / \sim$, and let $\langle x, y\rangle$ denote the equivalence class in $G(S)$ containing $(x, y)$ in $S \times S$. Then, the operation

$$
<x_{1}, y_{1}>+<x_{2}, y_{2}>=<x_{1}+x_{2}, y_{1}+y_{2}>
$$

is well-defined and $(G(S),+)$ is an abelian group. The group $(G(S),+)$ is called the Grothendieck group of S . Define a map

$$
\gamma_{S}: S \rightarrow G(S), x \mapsto<x+y, y>
$$

for every $y$. This map $\gamma_{S}$ is additive. It is called the Grothendieck map. It is injective if $S$ has the cancellation property.

The Grothendieck construction generalizes how we obtain the integers $\mathbb{Z}$ from the natural numbers $\mathbb{N}$.

Example 4.2. Consider the abelian semi-group ( $\mathbb{N},+$ ). When we use the Grothendieck group construction, we obtain the formal differences between natural numbers as elements $n-m$. Since this semi-group has the cancellation property, we don't need the extra element added on the equivalence relation below

$$
n-m \sim n^{\prime}-m^{\prime} \text { if } n+m^{\prime}=n^{\prime}+m .
$$

Now, define for all $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
n:=n-0 \\
-n:=0-n
\end{array}\right.
$$

This defines the integer $\mathbb{Z}$.
We consider another example. Consider the semi-group $\mathbb{N} \cup \infty$ with addition and $n+\infty=\infty$ for all $n \in \mathbb{N} \cup \infty$. In this case, every pair is equal to every other pair. There is only one equivalence class. So, the Grothendieck group of this is $\{0\}$ and the semi-group $(\mathbb{N} \cup \infty,+)$ does not have the cancellation property.

By using the semi-group and Grothendieck construction, we begin to introduce $K_{0}$ groups. $K_{0}$ groups are defined in two cases, unital $C^{*}$-algebras and non-unital $C^{*}$-algebras. In this thesis, we concentrate on unital $C^{*}$-algebras.

Definition 4.5. [14, Definition 3.1.4] Let $A$ be a unital $C^{*}$-algebra, and let $(\mathcal{D}(A),+)$ be the abelian semi-group. Define $\boldsymbol{K}_{\mathbf{0}}(\boldsymbol{A})$ to be the Grothendieck group of $\mathcal{D}(A)$, in other words, $K_{0}(A)=G(\mathcal{D}(A))$.
Define a map $[\cdot]_{0}: \mathcal{P}_{\infty}(A) \rightarrow K_{0}(A)$ by

$$
[p]_{0}=\gamma\left([p]_{\mathcal{D}}\right) \in K_{0}(A), \text { for } p \in \mathcal{P}_{\infty}(A)
$$

where $\gamma: \mathcal{D}(A) \rightarrow K_{0}(A)$ is the Grothendieck map.
Here is the example when we apply $K_{0}$ to the example 4.1.
Example 4.3.

$$
-K_{0}(\mathbb{C})=\mathbb{Z}
$$

$$
\begin{aligned}
& -K_{0}\left(M_{n}(\mathbb{C})\right)=\mathbb{Z} \\
& -K_{0}(B(H))=0
\end{aligned}
$$

Now, we would like to explain the functoriality of $K_{0}$.
Proposition 4.1. [14, Proposition 3.1.8] Let $A$ and $B$ be a unital $C^{*}$-algebra. Given a ${ }^{*}$-homomorphism $\varphi: A \rightarrow B$, we get a group homomorphism $K_{0}(\varphi)$ such that $K_{0}(\varphi)([p])=[\varphi(p)]$ for every projection $p \in P_{\infty}(A)$.

With the definitions above we have a proposition below.
Proposition 4.2. [14, Proposition 3.2.4] [13, Proposition 9.151] The $K_{0}$ is a covariant functor from the category of unital $C^{*}$-algebras to the category of abelian groups, in other words,
(1) For each unital $C^{*}$-algebra $A, K_{0}\left(i d_{A}\right)=i d_{K_{0}(A)}$
(2) If $A, B$ and $C$ are unital $C^{*}$-algebras, and if $\varphi: A \rightarrow B$ and $\psi$ :

$$
B \rightarrow C \text { are *-homomorphisms, then } K_{0}(\psi \circ \varphi)=K_{0}(\psi) \circ K_{0}(\varphi)
$$

If the $C^{*}$-algebras are AF-algebras, then the following statement is true. The Grothendieck map $\gamma$ is injective and its image in $K_{0}$ is the positive cone for an order of the group.

The functor $K_{0}$ moves an inductive sequence to another inductive sequence and an inductive limit to another inductive limit, i.e., $K_{0}\left(\underset{\longrightarrow}{\lim } A_{n}\right)=\underset{\longrightarrow}{\lim } K_{0}\left(A_{n}\right)$. In other words, $K_{0}$ is continuous with respect to inductive limits. This will be explained in the next section. Here is another property: $K_{0}\left(M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}\right)$ is isomorphic to $\underbrace{\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{k \text {-times }}$ where the image of the Grothendieck map is the positive cone $\underbrace{\mathbb{N} \oplus \cdots \oplus \mathbb{N}}_{k \text {-times }}$.

## 3. Inductive Limits

The purpose of this section is to explain what an inductive limit is and what characteristics the inductive limit with actions have.

Definition 4.6. An inductive sequence in a category $C$ is consist of a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of objects in $C$ and a sequence $\varphi_{n}: A_{n} \rightarrow$ $A_{n+1}$ of morphisms in $C$. We write the inductive sequence like

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \xrightarrow{\varphi_{3}} \cdots
$$

For $m>n$, we consider the composed morphisms

$$
\varphi_{m, n}=\varphi_{m-1} \circ \varphi_{m-2} \circ \cdots \circ \varphi_{n}: A_{n} \rightarrow A_{m}
$$

which are called the connecting morphisms (or connecting maps).

Definition 4.7. [14, Definition 6.2.2]
An inductive limit of the inductive sequence

$$
A_{1} \xrightarrow{\varphi_{1}} A_{2} \xrightarrow{\varphi_{2}} A_{3} \xrightarrow{\varphi_{3}} \cdots
$$

in a category $C$ is a system $\left(A,\left\{\mu_{n}\right\}_{n=1}^{\infty}\right)$, where $A$ is an object in $C$, where $\mu_{n}: A_{n} \rightarrow A$ is a morphism in $C$ for each $n$ in $\mathbb{N}$, and where the following two conditions hold.
(1) The diagram

commutes for each $n$ in $\mathbb{N}$.
(2) If $\left(B,\left\{\lambda_{n}\right\}_{n=1}^{\infty}\right)$ is a system, where $B$ is an object in $C, \lambda_{n}$ : $A_{n} \rightarrow B$ is a morphism in $C$ for each $n$ in $\mathbb{N}$, and where $\lambda_{n}=\lambda_{n+1} \circ \varphi_{n}$ for all $n$ in $\mathbb{N}$, then there is one and only one morphism $\lambda: A \rightarrow B$ making the diagram

commutative for each $n$ in $\mathbb{N}$.

Here are examples of inductive limits. These examples clear up the definition and illustrate what inductive limits look like.

Example 4.4.
(1) [14, Example 6.2.3] Let $D$ be a $C^{*}$-algebra and let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be an increasing sequence of finite dimensional subalgebras of D. Put

$$
A=\overline{\bigcup_{n=1}^{\infty} A_{n}}
$$

and for each $n$ let $\iota_{n}: A_{n} \rightarrow A$ be the inclusion map. Then $\left(A,\left\{\iota_{n}\right\}\right)$ is the inductive limit of the sequence $A_{1} \rightarrow A_{2} \rightarrow$ $A_{3} \rightarrow \cdots$ where the connecting maps are the inclusion maps.
(2) This is an example of a non-unital AF algebra.

Consider the sequence

$$
\mathbb{C} \xrightarrow{\varphi_{1}} M_{2}(\mathbb{C}) \xrightarrow{\varphi_{2}} M_{3}(\mathbb{C}) \xrightarrow{\varphi_{3}} \cdots,
$$

where the connecting map $\varphi_{n}$ maps an $n \times n$ matrix into the upper left corner of an $(n+1) \times(n+1)$ matrix whose last row and last column are zero. The inductive limit of this sequence is isomorphic to $\mathcal{K}$, the $C^{*}$-algebra of compact operators on a separable infinite dimensional Hilbert space. Its $K_{0}$ group is $\mathbb{Z}$, with the usual order relation, but there is no class of the unit.
(3) This is an example of a UHF algebra called $M_{2 \infty}$.

Consider the sequence

$$
\mathbb{C} \longrightarrow M_{2}(\mathbb{C}) \longrightarrow M_{4}(\mathbb{C}) \longrightarrow \cdots,
$$

with $x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$ in each case.
When we apply the functor $K_{0}$ to the above sequence, we get

$$
\left(\mathbb{Z}, \mathbb{Z}^{+}, 1\right) \xrightarrow{\times 2}\left(\mathbb{Z}, \mathbb{Z}^{+}, 2\right) \xrightarrow{\times 2}\left(\mathbb{Z}, \mathbb{Z}^{+}, 4\right) \xrightarrow{\times 2} \cdots,
$$

which has a inductive limit $\left(\mathbb{Z}\left[\frac{1}{2}\right], \mathbb{Z}\left[\frac{1}{2}\right]^{+}, 1\right)$, where $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{k}{2^{n}} \right\rvert\, n=1,2,3, \cdots\right.$ and $\left.k \in \mathbb{Z}\right\}$.
We use that $K_{0}$ is a continuous functor in (2) and (3).

Now, we are going to show explicitely the construction of inductive limits for partially ordered abelian groups with actions of a fixed group and equivariant connecting maps.

Let $\left\{G_{n}, \varphi_{n, n+1}\right\}$ be an inductive system of abelian groups. (In other words, for each $n, \varphi_{n, n+1}$ is a group homomorphism and $\varphi_{n, n+1}$ : $G_{n} \rightarrow G_{n+1}$. Write $\varphi_{n, m}$ for $\varphi_{m-1, m} \circ \cdots \circ \varphi_{n, n+1}$ when $m>n$.) Define $\prod_{n=1}^{\infty} G_{n}=\left\{\left(g_{1}, g_{2}, g_{3}, \cdots\right) \mid g_{n} \in G_{n}\right\}$ and $\bigoplus_{n=1}^{\infty} G_{n}=\left\{\left(g_{1}, g_{2}, g_{3}, \cdots\right) \in\right.$ $\prod_{n=1}^{\infty} G_{n} \mid g_{k}=0$ for all but finitely many $\left.k\right\}$.
In this case, $\prod_{n=1}^{\infty} G_{n}$ is an abelian group with operation $\left(g_{1}, g_{2}, g_{3}, \cdots\right)+\left(h_{1}, h_{2}, h_{3}, \cdots\right)=\left(g_{1}+h_{1}, g_{2}+h_{2}, g_{3}+h_{3}, \cdots\right)$ and $\bigoplus_{n=1}^{\infty} G_{n}$ is a subgroup of $\prod_{n=1}^{\infty} G_{n}$.

Proposition 4.3. Define a map $i_{n}: G_{n} \rightarrow \prod_{n=1}^{\infty} G_{n}$ by

$$
i_{n}(x)=\left(0, \cdots, 0, x, \varphi_{n, n+1}(x), \varphi_{n, n+2}(x), \varphi_{n, n+3}(x), \cdots\right)
$$

where there are $n-1$ zeros at the beginning. Then $i_{n}$ is a group homomorphism.

Proposition 4.4. Define a map

$$
g_{n, \infty}:=\pi \circ i_{n}: G_{n} \rightarrow \prod_{n=1}^{\infty} G_{n} / \bigoplus_{n=1}^{\infty} G_{n}
$$

where $\pi: \prod_{n=1}^{\infty} G_{n} \rightarrow \prod_{n=1}^{\infty} G_{n} / \bigoplus_{n=1}^{\infty} G_{n}$ is the quotient map and let $G_{\infty}=\bigcup_{n=1}^{\infty} g_{n, \infty}\left(G_{n}\right)$.
Then, $G_{\infty}$ is a subgroup of $\prod_{n=1}^{\infty} G_{n} / \bigoplus_{n=1}^{\infty} G_{n}$.
Straightforward calculations show proposition 4.3 and 4.4.

Theorem 4.1. If $H$ is an abelian group and $\psi_{n}: G_{n} \rightarrow H$ is a collection of homomorphisms such that $\psi_{n+1} \circ \varphi_{n, n+1}=\psi_{n}$ for every $n$, then there exists a unique homomorphism $\psi_{\infty}: G_{\infty} \rightarrow H$ such that
$\psi_{n}=\psi_{\infty} \circ \varphi_{n, \infty}$ for every $n$.


Proof. First of all, we need to show the existence of this homomorphism. Pick an element of $g_{n, \infty}\left(G_{n}\right)$,

$$
\varphi_{n, \infty}(g)=\left(0,0, \cdots, 0, g, \varphi_{n, n+1}(g), \varphi_{n, n+2}(g), \cdots\right)
$$

where $g \in G_{n}$. We define $\psi_{\infty}\left(\varphi_{n, \infty}(g)\right)=\psi_{n}(g)$. We need to show that $\psi_{\infty}$ is well defined. Suppose $\varphi_{m, \infty}(h)=\varphi_{n, \infty}(g)$ where $h \in G_{m}$. Since they represent the same class, they are eventually equivalent. By the commutativity of the diagram, we could go further along in the sequence before applying the maps $\psi$. Therefore, we could go past where the two agree. Since $G_{\infty}=\bigcup_{n=1}^{\infty} g_{n, \infty}\left(G_{n}\right)$ and the property of the commutative diagram determines what $\psi_{\infty}$ must be on $g_{n, \infty}\left(G_{n}\right)$, uniqueness follows. Therefore, there exists the unique homomorphism.

This shows that $G_{\infty}$ is the inductive limit of the system $\left\{G_{n}, \varphi_{n}\right\}$ in the category of abelian groups and group homomorphisms.

Proposition 4.5. Suppose that $K$ is a group and that for each $n$, $\alpha_{n}$ is an action of $K$ on $G_{n}$. Then, we get an action $\alpha$ of $K$ on $\prod_{n=1}^{\infty} G_{n}$ defined by

$$
\alpha(k)\left(g_{1}, g_{2}, g_{3}, \cdots\right)=\left(\alpha_{1}(k)\left(g_{1}\right), \alpha_{2}(k)\left(g_{2}\right), \alpha_{3}(k)\left(g_{3}\right), \cdots\right)
$$

for each $k \in K$.

Proof. We need to show that $\alpha(k)$, which is an automorphism of the group for each $k \in K$, is an action. Let $K$ be a group and $k_{1}, k_{2} \in K$. Since $\alpha_{n}$ is action for each $n, \alpha_{n}\left(k_{1} k_{2}\right)=\alpha_{n}\left(k_{1}\right)\left(\alpha_{n}\left(k_{2}\right)\right)$

So,

$$
\begin{aligned}
& \alpha\left(k_{1} k_{2}\right)\left(g_{1}, g_{2}, g_{3}, \cdots\right) \\
= & \left(\alpha_{1}\left(k_{1} k_{2}\right)\left(g_{1}\right), \alpha_{2}\left(k_{1} k_{2}\right)\left(g_{2}\right), \alpha_{3}\left(k_{1} k_{2}\right)\left(g_{3}\right), \cdots\right) \\
= & \left(\alpha_{1}\left(k_{1}\right)\left(\alpha_{1}\left(k_{2}\right)\left(g_{1}\right)\right), \alpha_{2}\left(k_{1}\right)\left(\alpha_{2}\left(k_{2}\right)\left(g_{2}\right)\right), \alpha_{3}\left(k_{1}\right)\left(\alpha_{3}\left(k_{2}\right)\left(g_{3}\right)\right), \cdots\right) \\
= & \alpha\left(k_{1}\right)\left(\alpha\left(k_{2}\right)\left(g_{1}, g_{2}, g_{3}, \cdots\right)\right)
\end{aligned}
$$

Suppose $e$ is an identiy element of $K$. Then, $\alpha_{n}(e)\left(g_{n}\right)=g_{n}$ for each n. So,

$$
\begin{aligned}
\alpha(e)\left(g_{1}, g_{2}, g_{3}, \cdots\right) & =\left(\alpha_{1}(e)\left(g_{1}\right), \alpha_{2}(e)\left(g_{2}\right), \alpha_{3}(e)\left(g_{3}\right), \cdots\right) \\
& =\left(g_{1}, g_{2}, g_{3}, \cdots\right) .
\end{aligned}
$$

Proposition 4.6. With the action $\alpha$ of $K$ on $\prod_{n=1}^{\infty} G_{n}$ defined above, we have $\alpha(k)\left(\bigoplus_{n=1}^{\infty} G_{n}\right) \subseteq \bigoplus_{n=1}^{\infty} G_{n}$. Also, we get an action $\tilde{\alpha}$ of $K$ on $\prod_{n=1}^{\infty} G_{n} / \bigoplus_{n=1}^{\infty} G_{n}$ defined by $\tilde{\alpha}(k)\left(\left(g_{1}, g_{2}, g_{3}, \cdots\right)+\bigoplus_{n=1}^{\infty} G_{n}\right)=$ $\alpha(k)\left(g_{1}, g_{2}, g_{3}, \cdots\right)+\bigoplus_{n=1}^{\infty} G_{n}$ for $k \in K$.

Proof. By the definition of the action $\alpha, \alpha(k)\left(g_{1}, g_{2}, g_{3}, \cdots\right)=$ $\left(\alpha_{1}(k)\left(g_{1}\right), \alpha_{2}(k)\left(g_{2}\right), \alpha_{3}(k)\left(g_{3}\right), \cdots\right)$ where $\left(g_{1}, g_{2}, g_{3}, \cdots\right) \in \prod_{n=1}^{\infty} G_{n}$. If $\left(g_{1}, g_{2}, g_{3}, \cdots\right)$ belongs to $\bigoplus_{n=1}^{\infty} G_{n}$, then, since $\alpha_{n}(k)(0)=0$ for all n, $\left(\alpha_{1}(k)\left(g_{1}\right), \alpha_{2}(k)\left(g_{2}\right), \alpha_{3}(k)\left(g_{3}\right), \cdots\right)$ becomes 0 when it passes some point. So, $\alpha(k)\left(\bigoplus_{n=1}^{\infty} G_{n}\right) \subseteq \bigoplus_{n=1}^{\infty} G_{n}$.

Now, we need to check that the action $\tilde{\alpha}$ is well defined. Take two sequences $g=\left(g_{1}, g_{2}, g_{3}, \cdots\right)$ and $h=\left(h_{1}, h_{2}, h_{3}, \cdots\right)$ in $\prod_{n=1}^{\infty} G_{n}$ such that $\left(g_{1}-h_{1}, g_{2}-h_{2}, g_{3}-h_{3}, \cdots\right)$ belongs to $\bigoplus_{n=1}^{\infty} G_{n}$. Then, $\alpha(k)(g)-\alpha(k)(h) \in \bigoplus_{n=1}^{\infty} G_{n}$.

Proposition 4.7. If the connecting maps $\varphi_{n, n+1}$ are equivariant, that is to say $\alpha_{n+1}(k) \circ \varphi_{n, n+1}=\varphi_{n, n+1} \circ \alpha_{n}(k)$ for all $n \in \mathbb{N}$ and $k \in K$, then $\tilde{\alpha}(k)\left(G_{\infty}\right) \subseteq G_{\infty}$ for all $k \in K$, so we get an action of $K$ on $G_{\infty}$.

Proof. Suppose $g \in G_{\infty}$. Then,

$$
g=\left(0,0, \cdots, 0, g, \varphi_{n, n+1}(g), \varphi_{n, n+2}(g), \cdots\right) .
$$

If we apply $\alpha(k)$ to the element $g$, then $\tilde{\alpha}(k)(g)=$ $\left(0,0, \cdots, 0, \alpha_{n}(k)(g), \alpha_{n+1}(k)\left(\varphi_{n, n+1}(g)\right), \alpha_{n+2}(k)\left(\varphi_{n, n+2}(g)\right), \cdots\right)$.
If we have equivariant, we can interchange the order of the maps. So, we can replace $\alpha_{n+1}(k)\left(\varphi_{n, n+1}(g)\right)$ with $\varphi_{n, n+1}\left(\alpha_{n}(k)(g)\right), \alpha_{n+2}(k)\left(\varphi_{n, n+2}(g)\right)$ with $\varphi_{n, n+2}\left(\alpha_{n}(k)(g)\right)$, and similarly for following elements in the sequence. So, $\tilde{\alpha}(k)(g) \in G_{\infty}$.

One can show that $\left(G_{\infty}, \tilde{\alpha}\right)$ is the inductive limit of the $\left(G_{n}, \alpha_{n}\right)$ in the category of abelian groups with $K$ actions and equivariant group homomorphisms.

Proposition 4.8. If each $G_{n}$ is an ordered group, we get an order on $G_{\infty}$ by defining $G_{\infty}^{+}=\bigcup_{n=1}^{\infty} g_{n, \infty}\left(G_{n}^{+}\right)$that makes $G_{\infty}$ into an ordered group.

Proof. Since $g_{n, \infty}$ is a positive group homomorphism, it preserves the group structure. Since $G_{n}$ is an ordered group for each $n, G_{n}$ satisfies three conditions; (1) $G_{n}^{+}+G_{n}^{+} \subseteq G_{n}^{+}$, (2) $G_{n}^{+} \cap G_{n}^{-}=\{0\}$, and (3) $G_{n}^{+}+G_{n}^{-}=G_{n}$ for each $n$. Now, we need to show that $G_{\infty}$ satisfies the three conditions as well.
(1) Suppose $g_{1}=\left(0,0, \cdots, 0, g_{1}, \varphi_{n, n+1}\left(g_{1}\right), \varphi_{n, n+2}\left(g_{1}\right), \cdots\right)$, $g_{2}=\left(0,0, \cdots, 0, g_{2}, \varphi_{n, n+1}\left(g_{2}\right), \varphi_{n, n+2}\left(g_{2}\right), \cdots\right)$ are in $G_{\infty}^{+}$.
Since each term of $g_{1}$ and $g_{2}$ is in $G_{n}^{+}$, the addition of each term is in $G_{n}^{+}$. So, $g_{1}+g_{2} \in G_{\infty}^{+}$. We may suppose that the elements $g_{1}$ and $g_{2}$ are in the same $G_{n}^{+}$. Therefore, $G_{\infty}^{+}+G_{\infty}^{+} \subseteq G_{\infty}^{+}$
(2) Suppose the element $g \in G_{\infty}^{+} \cap G_{\infty}^{-}$.

Then, $g,-g \in \bigcup_{n=1}^{\infty} g_{n, \infty}\left(G_{n}^{+}\right)$. Since the images of $g_{n, \infty}$ are all compositions of these maps, $g,-g \in g_{m, \infty}\left(G_{m}^{+}\right)$for some $m$. Then, there are $h_{1}, h_{2} \in G_{m}^{+}$such that $g_{m, \infty}\left(h_{1}\right)=g$ and $g_{m, \infty}\left(h_{2}\right)=-g$. Since $g_{m, \infty}\left(-h_{2}\right)=g=g_{m, \infty}\left(h_{1}\right)$, $g_{m, l}\left(-h_{2}\right)=g_{m, l}\left(h_{1}\right)$ for some $m>l$. Since $g_{m, l}$ is a positive map and $h_{2}$ is a positive element of $G_{m}, g_{m, l}\left(h_{2}\right) \geq 0$ and $g_{m, l}\left(-h_{2}\right) \geq 0$. So, the image of $h_{2}$ in $G_{l}$ is 0 . So, the image in $G_{\infty}$ is also 0 . Therefore, $g=0$, and hence, $G_{\infty}^{+} \cap G_{\infty}^{-}=\{0\}$.
(3) Suppose $g=\left(0,0, \cdots, 0, g, \varphi_{n, n+1}(g), \varphi_{n, n+2}(g), \cdots\right) \in G_{\infty}^{+}$ and $-g \in G_{\infty}^{-}$. Then, each term of $g$ is in $G_{n}^{+}$and each term of $-g$ is in $G_{n}^{-}$for each $n$. Since $G_{n}^{+}+G_{n}^{-} \subseteq G_{n}, G_{\infty}^{+}+G_{\infty}^{-} \subseteq G_{\infty}$.

Now, we need to show that $G_{\infty} \subseteq G_{\infty}^{+}+G_{\infty}^{-}$. Suppose the element $g \in G_{\infty}$. Since each term of $g$ is in $G_{n} \subseteq G_{n}^{+}+G_{n}^{-}$for each $n$, the element $g$ is in $G_{\infty}^{+}+G_{\infty}^{-}$.

Therefore, $G_{\infty}$ is an ordered group.

One can show that $\left(G_{\infty}, G_{\infty}^{+}\right)$is the inductive limit of $\left(G_{n}, G_{n}^{+}\right)$in the category of partially ordered abelian groups with positive group homomorphisms.

With the order defined in the above proposition, it is obviouse that an element $\left(0,0, \cdots, 0, g_{n}, g_{n+1}, g_{n+2}, \cdots\right) \in G_{\infty}$ is positive if, and only if, for some $l \geq n, g_{t} \geq 0$ for every $t \geq l$. In other words, elements are positive if, and only if, they are eventually positive.

Proposition 4.9. If we have actions by positive automorphisms on the ordered groups, then these give an action by positive automorphisms on the ordered groups inductive limit.

Proof. Let $G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow \cdots \rightarrow G_{\infty}$ be an inductive sequence where $G_{i}$ is an ordered group for each $i$. Suppose that $H$ is a fixed group and each $\alpha_{n}$ is an action by possitive automorphisms. Then we need to check that $\alpha_{\infty}(h)\left(G_{\infty}^{+}\right) \subseteq G_{\infty}^{+}$for all $h \in H$. By the definition of action and the construction of an element in $G_{\infty}^{+}$, each term of an element in $\alpha_{\infty}(h)\left(G_{\infty}^{+}\right)$is in $\alpha_{i}\left(G_{i}\right)$, and hence, $\alpha_{\infty}(h)\left(G_{\infty}^{+}\right) \subseteq G_{\infty}^{+}$. So, it preserves group structures. Therefore, the action of $H$ on $G_{\infty}$ is by positive automorphisms on the ordered group inductive limit.

Define a category of $H$ actions on partially ordered groups $G$. In this case, object is $\left(G, G^{+}, \alpha(h)\right)$ and a morphism is an ordered group homomorphism $\varphi: G_{1} \rightarrow G_{2}$ with $\varphi\left(G_{1}^{+}\right) \subseteq G_{2}^{+}$and $\varphi(\alpha(h)(g))=$ $\alpha(h)(\varphi(g))$. Then, we have constructed an inductive limit which one
can show satisfies the universial mapping property;


In other words, $\left(G_{\infty}, G_{\infty}^{+}, \alpha_{\infty}\right)$ is the inductive limit of the inductive system in the category of partially ordered abelian groups with $H$ actions and equivariant group homomorphisms.

In this section, we have shown how the group $G_{\infty}$ is defined, how its positive cone is defined, and how the action on it is defined.

## CHAPTER 5

## Elliott's Intertwining Argument

We will discuss three important theorems; Elliott's AF classification theorem, the Effros-Handelman-Shen theorem, and the Elliott-Su theorem that is the motivation for our main theorem.

In this chapter, we discuss the Elliott's AF classification theorem and Elliott's intertwining argument that is used to prove the theorem.

Theorem 5.1 (Elliott). [14, Theorem 7.3.4] If $\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right]\right)$ $\cong\left(K_{0}(B), K_{0}(B)^{+},\left[1_{B}\right]\right)$, then $A \cong B$ for AF-algebras. Moreover, if $\alpha: K_{0}(A) \rightarrow K_{0}(B)$ is an isomorphism that satisfies $\alpha\left(K_{0}(A)^{+}\right)=$ $K_{0}(B)^{+}$and $\alpha\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$, then $A \cong B$ and there is an isomorphism $\varphi: A \rightarrow B$ with $K_{0}(\varphi)=\alpha$.

Before we prove this theorem, there are a couple of lemmas to know.

Lemma 5.1. [14, Lemma 7.3.2]
(1) (Existence) Let $A$ and $B$ be AF-algebras. For each positive group homomorphism $\alpha: K_{0}(A) \rightarrow K_{0}(B)$ satisfying $\alpha\left(\left[1_{A}\right]\right) \leq\left[1_{B}\right]$ there is a ${ }^{*}$-homomorphism $\varphi: A \rightarrow B$ with $K_{0}(\varphi)=\alpha$. If $\alpha\left(\left[1_{A}\right]\right)=\left[1_{B}\right]$, then $\varphi$ is necessarily unit preserving.
(2) (Uniqueness) Let $A$ and $B$ be finite dimensional algebras and let $\varphi, \psi: A \rightarrow B$ be *-homomorphisms. Then $K_{0}(\varphi)=K_{0}(\psi)$ if and only if there exists an unitary $u$ in $B$ such that $\psi(x)=$ $\operatorname{Ad} u \circ \varphi(x)$ for every $x$.

We will prove (2), but only a special case of (1) when we go through the proof below.

Here is the proof of Theorem 5.1.

Proof. This proof uses the Elliott's intertwining argument. It consists of four parts; pull back the invariant, existence lemma, uniqueness lemma, and intertwining. We will explain about each parts of the Elliott's intertwining argument.
Let

be sequences where $A_{i}$ and $B_{i}$ are finite dimensional algebras for all $i$, and $\varphi, \psi$ are isomorphisms of invariants.
(1) (Pull back the invariant) Suppose an invariant is continuous with respect to inductive limits. When we apply the invariant to sequences, the invariant turns the inductive system into another inductive system. With a continuous invariant, such as $K_{0}$, the inductive limit of invariants is the invariant of the inductive limit. We want a commutative diagram:

where $I n C$ is invariant of $C$.
We need to show that there are, possibly after passing to subsequences, maps $\varphi_{i}$ and $\psi_{i}$ that make the above diagram commutative.

Since $A_{i}$ and $B_{j}$ are finite dimensional algebras, the values of invariants are finitely generated. Suppose $\operatorname{In} A_{1}=\mathbb{Z}^{n}$. Take the simplicial basis $x_{1}, x_{2}, \cdots, x_{n}$ in $\operatorname{In} A_{1}$. We make $x_{1}$ go along the horizontal maps to $\operatorname{In} A$ and down to $\operatorname{In} B$ by $\varphi$. Since $\operatorname{In} B$ is the union of the images of $\operatorname{In} B_{l}$ 's, there exists $y_{l}$ which is the image along the bottom horizontal row of some element of $\operatorname{In} B_{l}$ such that $\varphi\left(x_{1}\right)=y_{l}$. So, we can do this for each of $x_{i}$ 's. Then, there exists a homomorphism $\varphi_{1}$ from $\operatorname{In} A_{1}$ to $\operatorname{In} B_{k}$ for some $k$ that makes a commuting diagram.

If we renumber $B_{k}$ as $B_{2}$, then we get the homomorphism $\varphi_{1}$ : $\operatorname{In} A_{1} \rightarrow \operatorname{In} B_{2}$. We do the same thing to the simplicial basis of $\operatorname{In} B_{2}$. Then we can get a map $\psi_{1}$ from $\operatorname{In} B_{2}$ to some $\operatorname{In} A_{n}$. Similarly, we renumber $A_{n}$ as $A_{2}$. Finally, we get the map $\psi_{1}$ : $\operatorname{In} B_{2} \rightarrow \operatorname{In} A_{2}$.

Now, we need to show that we can make the first triangle that consists of the maps $\varphi_{1}, \psi_{1}$, and the horizontal map $\operatorname{In} A_{1} \rightarrow \operatorname{In} A_{2}$ in (*) commutative by going further along the top row and renumbering if necessary. The diagram that consists of $\varphi_{1}, \psi$, a map from $\operatorname{In} A_{1}$ to $\operatorname{In} A$, and a map from $\operatorname{In} B_{2}$ to $\operatorname{In} B$ is commutative. Also, the diagram that consists of $\psi_{1}, \varphi$, a map from $\operatorname{In} A_{2}$ to $\operatorname{In} A$, and a map from $\operatorname{In} B_{2}$ to $\operatorname{In} B$ is commutative. Therefore, the result when the element goes along the horizontal maps to $\operatorname{In} A$ is eventually same as the result when we take maps $\varphi_{1}, \psi_{1}$ and the horizontal maps to InA. Therefore, by moving out to some $A_{n}$ further along the top row and renumbering, we can make the first triangle is commutative. Once we have done this, we can apply this to each triangle in turn. So, the diagram $(*)$ commutes. We can ensure all the maps are positive and preserve the class of the unit as well.
(2) (Existence Lemma) We stated the existence lemma in general above. We show explicitly a special case of the existence lemma here.

We have a map $\mathbb{Z}^{k} \rightarrow \mathbb{Z}^{l}$ such that

$$
\left(\begin{array}{c}
n_{1} \\
n_{2} \\
\vdots \\
n_{k}
\end{array}\right) \mapsto\left(\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{l}
\end{array}\right) .
$$

In this case, those two columns mean the class of the unit for each $\mathbb{Z}^{n}$. Since the homomorphism is positive and unital, we have a class of the unit which is the single vector in $\mathbb{Z}^{k}$ and our matrix $M=\left[a_{i j}\right]_{i, j}$ where $a_{i j} \in \mathbb{N}$ that preserves
the unit. So, we need to show that there exists a unital *homomorphism from $A$ to $B$ which induces the map $\mathbb{Z}^{k} \rightarrow \mathbb{Z}^{l}$ where $A=M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}$ and $B=M_{m_{1}} \oplus \cdots \oplus M_{m_{l}}$.

Consider the case $B=M_{m_{1}}$. In this case,

$$
M=\left(\begin{array}{lll}
a_{11} & a_{12} & \cdots a_{1 k}
\end{array}\right)
$$

Then, $M\left(\begin{array}{c}n_{1} \\ n_{2} \\ \vdots \\ n_{k}\end{array}\right)=a_{11} n_{1}+a_{12} n_{2}+\cdots+a_{1 k} n_{k}=m_{1}$
If we take a look an element $z \in A$ where

$$
z=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{k}
\end{array}\right) \in M_{n_{1}} \oplus M_{n_{2}} \oplus \cdots \oplus M_{n_{k}}
$$

then we can define a $*$-homomorphism by a map

$$
z \mapsto \operatorname{diag}(\underbrace{z_{1}, \cdots, z_{1}}_{a_{11} \text { times }}, \underbrace{z_{2}, \cdots, z_{2}}_{a_{12} \text { times }}, \cdots, \underbrace{z_{k}, \cdots, z_{k}}_{a_{1 k} \text { times }})
$$

and the size of this matrix is $m_{1}$. We can do this one direct summand at a time to get the expanded case, $B=M_{m_{1}} \oplus$ $\cdots M_{m_{l}}$. This proves the existence lemma.

So, we get a diagram below that does not commute by applying existence lemma to $(*)$.


Once we have got this diagram, this is not commuting. We need to fix this diagram so that it is commuting and induces the original one on the invariant. In order to fix the diagram, we need the uniqueness lemma.
(3) (Uniqueness Lemma) Now, we show the uniqueness lemma stated above. Consider the case $A=M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}$ and $B=M_{m_{1}}$. Assume that $\varphi$ and $\psi$ are unital homomorphisms. We have $K_{0}(\varphi)=K_{0}(\psi)$. Consider $\varphi\left(M_{n_{1}}\right) \subseteq B, \psi\left(M_{n_{1}}\right) \subseteq$ $B$, and $e_{11} \in M_{n_{1}}$. Since $K_{0}\left(\varphi\left(e_{11}\right)\right)=K_{0}\left(\psi\left(e_{11}\right)\right), \psi\left(e_{11}\right) \sim$ $\varphi\left(e_{11}\right)$. There exists an element $v \in B$ such that $v v^{*}=\psi\left(e_{11}\right)$ and $v^{*} v=\varphi\left(e_{11}\right)$. Let $u_{1}=\sum_{j=1}^{n_{1}} \psi\left(e_{j 1}\right) v \varphi\left(e_{1 j}\right)$. Then $u_{1} u_{1}^{*}=$ $\psi\left(\sum_{s=1}^{n_{1}} e_{s s}\right)$ and $u_{1}^{*} u_{1}=\varphi\left(\sum_{s=1}^{n_{1}} e_{s s}\right)$. By direct calculations, $u_{1} \varphi\left(e_{k l}\right) u_{1}^{*}=\psi\left(e_{k l}\right)$ if $e_{k l} \in M_{n_{1}} \subseteq A$. Now, we do the same for $M_{n_{2}}, \cdots, M_{n_{k}}$, and let $u=u_{1}+u_{2}+\cdots+u_{k}$. We can do this one summand at a time for the general case on $B$. Then we get $u \varphi(x) u^{*}=\psi(x)$ for all $x \in A$. This proves the uniqueness lemma.

Now, we use the uniqueness lemma one at a time to adjust all of the maps to make the diagram commute. Apply inner automorphims $A_{i} \rightarrow A_{i}$ and $B_{j} \rightarrow B_{j}$ where $i, j=1,2,3, \cdots$ to make the diagram commutative.


Since it does not change the image at the level of the invariant, the diagram in (2) commutes and we get the diagram $(*)$ when we apply the invariant.
(4) (Intertwining) If we have the commutative diagram like the diagram in (2), then we get maps between $A$ and $B$ that make the whole diagram commutative [15].


The maps $\widetilde{\psi}$ and $\widetilde{\varphi}$ induce the maps $\psi$ and $\varphi$ when we apply the invariant. Since this diagram is commutative, the maps are isomorphisms.

The same pattern of Elliott's intertwining argument has been used in other classification arguments. In particular, Elliott and Su used this pattern for classification with $\mathbb{Z}_{2}$ actions.

## CHAPTER 6

## The Range of Invariant Problem

We discussed that the functor $K_{0}$ sends AF algebras to partially ordered abelian groups. What partially ordered abelian groups arise as $K_{0}$ groups of $\mathrm{AF} C^{*}$-algebras is the natural question of the range of invariant problem. The Effros-Handelman-Shen theorem gives the answer to the range of invariant problem for $\mathrm{AF} C^{*}$-algebras. In order to precisely understand the Effros-Handelman-Shen theorem, there are some terms to know: a dimension group and a simplicial group.

To clarify the definition of dimension group, we would like to define new terminologies that help to understand the meaning. We have previously mentioned the definition of these words earlier in the thesis.

Definition 6.1. [9]

- Directed means that every element has the form $x-y$ for $x, y \in G^{+}$.
- Unperforated means that if $x \in G, n \in \mathbb{N} \backslash 0, n x \geq 0$, then $x \geq 0$.
For instance, if $G=\mathbb{Z}$ and $G^{+}=\mathbb{Z}^{+}=\{0,1,2, \cdots\}=\mathbb{N}$, then $\left(G, G^{+}\right)$is directed and unperforated. Consider the different example. If $G=\mathbb{Z}$ and $G^{+}=\{0,2,3,4, \cdots\}$, then $\left(G, G^{+}\right)$is directed but not unperforated because $1+1 \in G^{+}$, but $1 \notin G^{+}$.
- Interpolation means that for every $x_{1}, x_{2}, y_{1}, y_{2} \in G$, where $x_{i} \leq y_{j}$ for all $i, j$, there exists an element $z \in G$ with $x_{i} \leq$ $z \leq y_{j}$ for all $i, j$.

Definition 6.2. [9] A dimension group $\left(G, G^{+}\right)$is any directed, unperforated, interpolation group.

Also, we want to define a simplicial group. Here is the definition.

Definition 6.3. [9] A simplicial group is any partially ordered abelian group that is isomorphic (as an ordered group) to $\mathbb{Z}^{n}$ for some nonnegative integer $n$. A simplicial basis for a simplicial group $G$ is any basis $\left\{x_{1}, \cdots, x_{n}\right\}$ for $G$ as a free abelian group such that also $G^{+}=\sum \mathbb{Z}^{+} x_{i}$. By convention, the empty set is considered to be a simplicial basis for the zero simplicial group.

Theorem 6.1 (Effros-Handelman-Shen). [9, Theorem 3.19]
Any dimension group is isomorphic to a direct limit (or inductive limit) of a direct system of simplicial groups (in the category of partially ordered abelian groups).

This theorem points out that simplical groups are dimension groups and inductive limits of a sequence of simplicial groups are dimension groups.

Now, we would like to move on the range of invariant problem for the Elliott-Su classification of actions. In [7], Elliott and Su generalized the Elliott AF classification theorem to classifying the inductive limit of dynamical systems where the actions are by the group $\mathbb{Z}_{2}$.


We need to know what certain crossed products are. We shall only be concerned with the special case of crossed product where the group is $\mathbb{Z}_{2}$. Here is the definition of a crossed product $(\rtimes)$, dual action, and special element that we will use in this thesis.

Definition 6.4. Let $A$ be a unital $C^{*}$-algebra and let $\alpha$ be a $\mathbb{Z}_{2}$ action on $A$. There is a canonical embedding of $A$ into $A \rtimes_{\alpha} \mathbb{Z}_{2}$. There is also a dual action of $\mathbb{Z}_{2}$ on $A \rtimes_{\alpha} \mathbb{Z}_{2}$. In general, $\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right) \rtimes_{\hat{\alpha_{*}}} \mathbb{Z}_{2} \cong$ $M_{2}(A)$ and with the inclusions

$$
a \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & \alpha(a)
\end{array}\right), g \mapsto\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \gamma \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

So,

$$
\begin{aligned}
A \rtimes_{\alpha} \mathbb{Z}_{2} & =\{a+b g \mid a, b \in A\} \\
& =\left\{\left.\left(\begin{array}{cc}
a & b \\
\alpha(b) & \alpha(a)
\end{array}\right) \right\rvert\, a, b \in A\right\}
\end{aligned}
$$

and the dual action is given by $\gamma, \hat{\alpha_{*}}(x)=\gamma x \gamma^{*}$. The special element mentioned below is $\frac{1+g}{2}=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$.

The $K$-theory data we need here is the following:
$-\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], \alpha_{*}\right)$
$-\left(K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right), K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right)^{+}\right.$, the special element, $\left.\hat{\alpha_{*}}\right)$

- The map $K_{0}(A) \rightarrow K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right)$

Consider the following special cases of the invariant in [7].

## Example 6.1.

(1) Consider $A=M_{n}$ and $\alpha(x)=u x u^{*}$
where $u=\operatorname{diag}(\underbrace{1,1, \cdots, 1}_{k}, \underbrace{-1,-1, \cdots,-1}_{l})$ with $k+l=n$. Then, $M_{n} \rtimes_{\alpha} \mathbb{Z}_{2} \cong M_{n} \oplus M_{n}$. In this case, the special element is, by the definition,

$$
\left[\frac{1+g}{2}\right]=\left(\left[\frac{1+u}{2}\right],\left[\frac{1-u}{2}\right]\right)=(k, l)
$$

So, the invariant is
$-\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], \alpha_{*}\right) \cong\left(\mathbb{Z}, \mathbb{Z}^{+}, n, i d\right)$ where $n$ is a dimension.

$$
\begin{aligned}
& -\left(K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right), K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right)^{+}, \text {the special element, } \hat{\alpha_{*}}\right) \\
& \quad \cong\left(\mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z}^{+} \oplus \mathbb{Z}^{+},(k, l),(a, b) \mapsto(b, a)\right)
\end{aligned}
$$

- The map $k \in \mathbb{Z} \mapsto(k, k) \in \mathbb{Z} \oplus \mathbb{Z}$
(2) A UHF-algebra("Uniformly Hyper-Finite $C^{*}$-algebra") is a $C^{*}$ algebra which is isomorphic to the inductive limit of the sequence

$$
M_{k_{1}}(\mathbb{C}) \xrightarrow{\varphi_{1}} M_{k_{2}}(\mathbb{C}) \xrightarrow{\varphi_{2}} M_{k_{3}}(\mathbb{C}) \xrightarrow{\varphi_{3}} \cdots
$$

for some natural numbers $k_{1}, k_{2}, k_{3}, \cdots$ and some unit preserving connecting *-homomorphisms $\varphi_{1}, \varphi_{2}, \varphi_{3}, \cdots([14$, Definition 7.4.1]).
Consider UHF-algebra $A$ and $\alpha(x)=v x v^{*}$,
where $v=\operatorname{diag}(\underbrace{1,1, \cdots, 1}_{p}, \underbrace{-1,-1, \cdots,-1}_{q})$ with $p+q=r$.
Suppose $r=k_{1}$. Then, $v \in M_{k_{1}}(\mathbb{C})$
In this case, the invariant is
$-\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], \alpha_{*}\right) \cong\left(G, G^{+}, r, i d\right)$ where $G$ is a subgroup of $\mathbb{Q}$ and $r$ is a class of unit.

- $\left(K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right), K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right)^{+}\right.$, the special element, $\left.\hat{\alpha_{*}}\right)$ $\cong\left(G \oplus G, G^{+} \oplus G^{+},(p, q),(s, t) \mapsto(t, s)\right)$
- The map $x \mapsto(x, x)$
(3) Consider $A=M_{n} \oplus M_{n}, \alpha(x, y)=(y, x)$

The invariant is
$-\left(K_{0}(A), K_{0}(A)^{+},\left[1_{A}\right], \alpha_{*}\right)$ $\cong\left(\mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z}^{+} \oplus \mathbb{Z}^{+},(n, n),(x, y) \mapsto(y, x)\right)$
$-\left(K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right), K_{0}\left(A \rtimes_{\alpha} \mathbb{Z}_{2}\right)^{+}\right.$, the special element, $\left.\hat{\alpha_{*}}\right)$ $\cong\left(\mathbb{Z}, \mathbb{Z}^{+}, n, i d\right)$

- The map $(x, y) \mapsto x+y$

In [7], Elliott and Su used this invariant to classify certain actions by using the pattern of the Elliott intertwining argument. As we would like to get an Effros-Handelman-Shen theorem for this invariant from the type of action Elliott and Su classified, we try to show what kind of action we can get on a dimension group arising from a $\mathbb{Z}_{2}$ action of inductive limit type. What we were able to show is that if the dimension group is a lattice-ordered group, then any action of $\mathbb{Z}_{2}$ comes from the direct limit of $\mathbb{Z}_{2}$ actions on simplicial groups.

## CHAPTER 7

## A Modification of the Effros-Handelman-Shen Theorem

The purpose of this chapter is to check that the Effros-HandalmanShen theorem, any countable dimension group is isomorphic to a direct limit of a countable sequence of simplicial groups, is still valid if we restrict the dimension group to lattice-ordered groups but with $\mathbb{Z}_{2}$ actions added. Before starting to prove a modificaton of the theorem, we need to check a few propositions that support our main theorem.

First of all, we would like to talk about lattice-ordered groups, the relation between lattice ordered groups and dimension groups, and a few examples.

Definition 7.1. [9, pp. xxi \& 5]

- If every finite subset of a partially ordered set $X$ has a least upper bound and a greatest lower bound in $X$, then $X$ is called a lattice
- A lattice-ordered abelian group is any partially ordered abelian group which, as a partially ordered set, is a lattice.

Example 7.1. A group $\mathbb{Z}^{n}$ with the usual order is a lattice-ordered group. Such groups are called simplicial groups.

Proposition 7.1. [9, Proposition $1.22 \&$ pp.44] Any lattice-ordered abelian group is a dimension group.

Example 7.2. [9, pp.44] The group $\mathbb{Q}^{2}$ equipped with the strict ordering is a dimension group which is not lattice-ordered.

LEmma 7.1. If $G$ is lattice-ordered dimension group, and $\alpha$ is an action of $\mathbb{Z}_{2}$ on $G$, then the fixed-point subgroup $G^{\alpha}$ is also a latticeordered dimension group.

Proof. Suppose $x, y \in G^{\alpha}$, i.e., $\alpha(x)=x$ and $\alpha(y)=y$. In $G$, there exists an element $x \wedge y$ such that $x \wedge y \leq x, y$ and if $z \leq x, y$, then $z \leq x \wedge y$ for any $z \in G$. If $x \wedge y \in G^{\alpha}$, then this will do.
We will show that in general $\alpha(x \wedge y)=\alpha(x) \wedge \alpha(y)$ for an ordered automorphism $\alpha$ of period 2. Suppose $z \leq \alpha(x)$ and $z \leq \alpha(y)$. Then $\alpha(z) \leq x$ and $\alpha(z) \leq y$. So, $\alpha(z) \leq x \wedge y$ and $z \leq \alpha(x \wedge y)$. In particular, since $\alpha(x) \wedge \alpha(y) \leq \alpha(x)$ and $\alpha(x) \wedge \alpha(y) \leq \alpha(y), \alpha(x) \wedge \alpha(y) \leq \alpha(x \wedge y)$. Since $x \wedge y \leq x$, we have $\alpha(x \wedge y) \leq \alpha(x)$. Similarly, $x \wedge y \leq y$, so $\alpha(x \wedge y) \leq \alpha(y)$. Thus, $\alpha(x \wedge y) \leq \alpha(x) \wedge \alpha(y)$. Therefore, $\alpha(x \wedge y)=$ $\alpha(x) \wedge \alpha(y)=x \wedge y$.

The following propositions and theorem are modifications of Effros, Handelman and Shen's original [4].

Proposition 7.2. Let $G$ be a lattice-ordered dimension group, and $\alpha$ be an action of $\mathbb{Z}_{2}$ on $G$. Suppose $x_{1}, \cdots, x_{n}$ are elements of $G^{+}$such that $\alpha$ acts on $\left\{x_{1}, \cdots, x_{n}\right\}$ by a permutation $\sigma_{n}$. Suppose $p_{1}, \cdots, p_{n}$ are integers such that $p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}=0$. Then there exist elements $y_{1}, \cdots, y_{t}$ in $G^{+}$such that $\alpha$ acts on $\left\{y_{1}, \cdots, y_{t}\right\}$ by permutation $\sigma_{t}$ and nonnegative integers $q_{i j}$ (for $i=1, \cdots n$, and $j=1, \cdots, t)$ such that

$$
x_{i}=q_{i 1} y_{1}+\cdots+q_{i t} y_{t} \text { and } p_{1} q_{1 j}+\cdots+p_{n} q_{n j}=0
$$

for all $i=1, \cdots, n$ and $j=1, \cdots, t$, and $M_{n} Q=Q M_{t}$, where $M_{n}, M_{t}$ are the permutation matrices giving $\sigma_{n}, \sigma_{t}$ respectively, and $Q$ is the matrix of the $q_{i j}$ 's.

Proof. The proof closely follows Goodearl's treatment [9, pp. 5153]. We consider the relationship between $\mathbb{Z}^{n}$ and $G$. From the hypothesis of this proposition, we get a diagram below.

where $\varphi$ is a positive homomorphism sending the simplicial basis for $\mathbb{Z}^{n}$ to the elements $x_{i}$ and $\alpha_{n}$ is given by the permutation $\sigma_{n}$. The map $\varphi$ sends an element $p=p_{1} e_{1}+\cdots+p_{n} e_{n} \in \mathbb{Z}^{n}$ to $p_{1} x_{1}+\cdots+p_{n} x_{n}$ which is 0 .

The conclusion of the proposition is that we can construct a commuting diagram below.

where the map $\psi$ is given by the matrix $Q^{\top}$ in the statement of the proposition. We get new maps $\psi$ and $\varphi_{2}$, a new action $\alpha_{m}$, and $\psi(p)=$ 0 . Two new maps also intertwine the action; $\psi \circ \alpha_{n}=\alpha_{m} \circ \psi$ and $\varphi_{2} \circ \alpha_{m}=\alpha \circ \varphi_{2}$.

We will show that we may assume that for each $i$, either $\alpha\left(x_{i}\right)=x_{i}$ or $\alpha\left(x_{i}\right) \wedge x_{i}=0$. Since $G$ is a lattice-ordered group, we can consider

$$
\begin{array}{r}
x_{i} \wedge \alpha\left(x_{i}\right)=r_{i} \\
x_{i}-\left(x_{i} \wedge \alpha\left(x_{i}\right)\right)=s_{i} \\
\alpha\left(x_{i}\right)-\left(x_{i} \wedge \alpha\left(x_{i}\right)\right)=t_{i}
\end{array}
$$

Then, we get a new set of variables;

$$
\begin{array}{r}
\alpha\left(r_{i}\right)=r_{i} \\
\alpha\left(s_{i}\right)=t_{i} \\
\alpha\left(t_{i}\right)=s_{i} \\
s_{i} \wedge t_{i}=0 \\
x_{i}=s_{i}+r_{i} \\
\alpha\left(x_{i}\right)=t_{i}+r_{i}
\end{array}
$$

We are going to show that we can replace our original $x_{i}$ with the new list $r_{i}, s_{i}$, and $t_{i}$ the variables of which satisfy the conditions.

We consider two cases; $x_{i}=\alpha\left(x_{i}\right)$ and $x_{i} \neq \alpha\left(x_{i}\right)$. We look at the first case, $x_{i}=\alpha\left(x_{i}\right)$. Two variables $s_{i}$ and $t_{i}$ are 0 . In this case, we use only $r_{i}$. Otherwise, we use variables $r_{i}, s_{i}$, and $t_{i}$.

Now, we need to check that the proposition still works if we use the new lists. First of all, we need to show that there is a commutative diagram like $\left(^{*}\right)$ above with $\mathbb{Z}^{n}, \mathbb{Z}^{m}$, where $m$ is the number of variable in our new list, and $G$. From the hypothesis of the proposition, we get the relationship between $\mathbb{Z}^{n}$, and $G$. We can consider two cases, one is $e_{i}$ is fixed by $\alpha_{n}$ and the other is not. Suppose $e_{1}, \cdots, e_{l}$ are fixed and $e_{l+1}, \cdots, e_{n}$ are flipped in pairs by the action $\alpha_{m}$. Then, we take a simplicial basis of $\mathbb{Z}^{m},\left\{a_{1}, \cdots, a_{n}, b_{l+1}, \cdots, b_{n}, c_{l+1}, \cdots, c_{n}\right\}$. We let

$$
\begin{aligned}
a_{i} & \mapsto r_{i}, \alpha_{m}\left(a_{i}\right)
\end{aligned}=a_{i} .
$$

for each $i$. Now, we consider the map $\psi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$. We look at an element $e_{i} \in \mathbb{Z}^{n}$ such that $e_{i}$ goes to $x_{i} \in G$ for each $i$. Since $x_{i}=r_{i}$ when $i=1, \cdots, l$ and $x_{i}=r_{i}+s_{i}$ when $i=l+1, \cdots, n$, we can send $e_{i}$ to $a_{i}$ when $i=1, \cdots, l$ and $e_{i}$ to $a_{i}+b_{i}$ when $i=l+1, \cdots, n$. If we adapt this process to all basis, then we can get the map $\psi$. Then, we get a commutative diagram below.


By the proposition, with our new assumption, applied to our new variables and the image of $p$ under $\psi$, we get a commutative diagram
below.


We put two diagrams together.

where $p \in \mathbb{Z}^{n}$ and $\varphi: e_{i} \rightarrow x_{i}$. This whole diagram commutes. In this diagram, the maps $\psi_{2} \circ \psi$ and $\varphi_{3}$ solve the problem with original variables. From now on, we may assume two conditions; either $\alpha\left(x_{i}\right)=$ $x_{i}$ or $\alpha\left(x_{i}\right) \wedge x_{i}=0$ for each $i$.

First of all, we need to consider the case in which all the $p_{i} \geq 0$. If any $p_{i}>0$, then

$$
0 \leq x_{i} \leq p_{i} x_{i} \leq p_{1} x_{1}+\cdots+p_{n} x_{n}=0
$$

and hence $x_{i}=0$. In particular, if all the $p_{i}>0$, then all the $x_{i}=0$. In case all the $p_{i} \leq 0$, we apply the same process to the relation $\left(-p_{1}\right) x_{1}+\cdots+\left(-p_{n}\right) x_{n}=0$.

For the general case, we assign a degree to the coeficient list $p_{1}, \cdots, p_{n}$, and proceed by an induction on degree. The degree of a list $p_{1}, \cdots, p_{n}$ means the ordered pair $(p, \lambda)$ where $p$ is the maximum of the values $\left|p_{i}\right|$, and $\lambda$ is how many times $p$ appears in the list $\left|p_{1}\right|, \cdots\left|p_{n}\right|$.

Next, we show that we can divide the problem into two special cases. If $\varphi(p)=0$, then $\varphi\left(\alpha_{n}(p)\right)=0$. So, $\varphi\left(p+\alpha_{n}(p)\right)=0$ and $\varphi\left(p-\alpha_{n}(p)\right)=0$. Conversely, If $\varphi\left(p+\alpha_{n}(p)\right)=0$ and $\varphi\left(p-\alpha_{n}(p)\right)=0$, then $\varphi(2 p)=0$. Since $G$ is torsion free, $\varphi(p)=0$. Here, we devide two special cases; $\alpha_{n}(p)=-p$ and $\alpha_{n}(p)=p$. Now, we look at $q_{1}=$ $p+\alpha_{n}(p)$ and $q_{2}=p-\alpha_{n}(p)$. Then, $\alpha_{n}\left(q_{1}\right)=q_{1}$ and $\alpha_{n}\left(q_{2}\right)=-q_{2}$. If we use the first special case, then, we get two maps $\varphi_{2}: \mathbb{Z}^{m_{1}} \rightarrow G$ and $\psi_{1}$, both equivariant, such that we have a commuting diagram:


Since $\psi_{1}$ and $\varphi_{2}$ are equivariant, they intertwine the two actions. By the first case, $\psi_{1}\left(q_{2}\right)=0$. We get $\varphi_{2}\left(\psi_{1}\left(q_{2}\right)\right)=\varphi\left(q_{2}\right)=0$.

If we use the second special case, we can replace $q_{2}$ with $\psi_{1}\left(q_{2}\right)$. Then we can define a new map $\psi_{2}: \mathbb{Z}^{m_{1}} \rightarrow \mathbb{Z}^{m_{2}}$, and a new commutative diagram


Then, we get $\psi_{2}\left(\psi_{1}\left(q_{2}\right)\right)=0$.
Put these diagrams together.


We need to check what result we can get about $p$. Let $\psi=\psi_{2} \circ \psi_{1}$. Then,

$$
\begin{aligned}
& \psi(2 p) \\
= & \psi\left(q_{1}+q_{2}\right) \\
= & \psi_{2}\left(\psi_{1}\left(q_{1}\right)+\psi_{1}\left(q_{2}\right)\right) \\
= & \psi_{2}\left(\psi_{1}\left(q_{1}\right)\right) \\
= & 0
\end{aligned}
$$

Therefore, we can consider two cases,

Case $1 \alpha_{n}(p)=-p$ and
Case $2 \alpha_{n}(p)=p$

Now, we look at Case 1, $\alpha_{n}(p)=-p$.
Suppose $e_{1}, e_{2}, \cdots, e_{j}$ are fixed and $e_{j+1}, \alpha_{n}\left(e_{j+1}\right), e_{j+2}, \alpha_{n}\left(e_{j+2}\right), \cdots$, $e_{k}, \alpha_{n}\left(e_{k}\right)$ are flipped by $\alpha_{n}$. Then
$p=p_{1} e_{1}+p_{2} e_{2}+\cdots+p_{j} e_{j}+p_{j+1} e_{j+1}+p_{j+1}^{\prime} \alpha_{n}\left(e_{j+1}\right)+\cdots+p_{k} e_{k}+p_{k}^{\prime} \alpha_{n}\left(e_{k}\right)$ If $\alpha_{n}(p)=-p$, then $p_{1}=p_{2}=\cdots=p_{j}=0$ and $p_{l}=-p_{l}^{\prime}$ where $l=$ $j+1, \cdots, k$. Our relation becomes $p_{j+1} x_{j+1}+\cdots+p_{n} x_{n}=p_{j+1} \alpha\left(x_{j+1}\right)+$ $\cdots+p_{k} \alpha\left(x_{k}\right)$ where all $p_{l} \geq 0$, and we may assume $p_{j+1}$ is the largest coefficient. We may assume $x_{l} \wedge \alpha\left(x_{l}\right)=0$ for all $l=j+1, \cdots, k$. With the relation like above, we have $p_{j+1} x_{j+1} \leq p_{j+1} \alpha\left(x_{j+1}\right)+\cdots+p_{k} \alpha\left(x_{k}\right)$. From lattice-ordered and the condition, $p_{j+1} x_{j+1} \leq\left(p_{j+1} \alpha\left(x_{j+1}\right)+\cdots+\right.$ $\left.p_{k} \alpha\left(x_{k}\right)\right) \wedge p_{j+1} x_{j+1}$ and $p_{j+1} x_{j+1} \wedge\left(p_{j+2} \alpha\left(x_{j+2}\right)+\cdots+p_{k} \alpha\left(x_{k}\right)\right)=0$. Then, it implies

$$
\begin{aligned}
p_{j+1} x_{j+1} & \leq p_{j+2} \alpha\left(x_{j+2}\right)+\cdots+p_{k} \alpha\left(x_{k}\right) \\
\leq & p_{j+1} \alpha\left(x_{j+2}\right)+\cdots+p_{j+1} \alpha\left(x_{k}\right) \\
& =p_{j+1}\left(\alpha\left(x_{j+2}\right)+\cdots+\alpha\left(x_{k}\right)\right) \\
x_{j+1} \leq & \alpha\left(x_{j+2}\right)+\cdots+\alpha\left(x_{k}\right)
\end{aligned}
$$

By Riesz decomposition, $x_{j+1}=z_{j+2}+\cdots+z_{k}$ for some elements $z_{i} \in G^{+}$such that $z_{i} \leq \alpha\left(x_{i}\right)$ for each $i=j+2, \cdots, k$. Also, $\alpha\left(x_{j+1}\right)=$
$\alpha\left(z_{j+2}\right)+\cdots+\alpha\left(z_{k}\right), \alpha\left(z_{i}\right) \leq x_{i}$, and $\alpha\left(z_{i}\right) \wedge z_{i}=0$ for each $i=$ $j+2, \cdots, k$.

Observe that,

$$
\begin{aligned}
& \quad p_{j+1} x_{j+1}+\cdots+p_{k} x_{k}=p_{j+1} \alpha\left(x_{j+1}\right)+\cdots+p_{k} \alpha\left(x_{k}\right) \\
& \Rightarrow p_{j+1}\left(z_{j+2}+\cdots+z_{k}\right)+p_{j+2} x_{j+2}+\cdots+p_{k} x_{k} \\
& =p_{j+1}\left(\alpha\left(z_{j+2}\right)+\cdots+\alpha\left(z_{n}\right)\right)+p_{j+2} \alpha\left(x_{j+2}\right)+\cdots+p_{k} \alpha\left(x_{k}\right) \\
& \Rightarrow p_{j+1}\left(z_{j+2}+\cdots+z_{k}\right)+p_{j+2} x_{j+2}+p_{j+2} z_{j+2}-p_{j+2} z_{j+2} \\
& \quad+\cdots+p_{k} x_{k}+p_{k} z_{k}-p_{k} z_{k} \\
& =p_{j+1}\left(\alpha\left(z_{j+2}\right)+\cdots+\alpha\left(z_{k}\right)\right)+p_{j+2} \alpha\left(x_{j+2}\right) \\
& \quad+p_{j+2} \alpha\left(z_{j+2}\right)-p_{j+2} \alpha\left(z_{j+2}\right)+\cdots+p_{k} \alpha\left(x_{k}\right)+p_{k} \alpha\left(z_{k}\right)-p_{k} \alpha\left(z_{k}\right) \\
& \Rightarrow \quad\left(p_{j+1}-p_{j+2}\right) z_{j+2}+\cdots+\left(p_{j+1}-p_{k}\right) z_{k}+p_{j+2}\left(x_{j+2}-\alpha\left(z_{j+2}\right)\right) \\
& \quad \quad+\cdots+p_{k}\left(x_{k}-\alpha\left(z_{k}\right)\right) \\
& \quad=\left(p_{j+1}-p_{j+2}\right) \alpha\left(z_{j+2}\right)+\cdots+\left(p_{j+1}-p_{k}\right) \alpha\left(z_{k}\right) \\
& \quad \quad+p_{j+2}\left(\alpha\left(x_{j+2}\right)-z_{j+2}\right)+\cdots+p_{k}\left(\alpha\left(x_{k}\right)-z_{k}\right) \\
& \Rightarrow \sum_{i=j+2}^{k}\left(p_{j+1}-p_{i}\right) z_{i}+\sum_{i=j+2}^{k} p_{i}\left(x_{i}-\alpha\left(z_{i}\right)\right) \\
& \quad=\sum_{i=j+2}^{k}\left(p_{j+1}-p_{i}\right) \alpha\left(z_{i}\right)+\sum_{i=j+2}^{k} p_{i}\left(\alpha\left(x_{i}\right)-z_{i}\right)
\end{aligned}
$$

We label the collection of the new variables; $\underbrace{z_{j+2}, \cdots, z_{k}}_{\bar{z}}$, $\underbrace{x_{j+2}-\alpha\left(z_{j+2}\right), \cdots, x_{k}-\alpha\left(z_{k}\right)}_{\vec{x}-\alpha(\vec{z})}, \underbrace{\alpha\left(z_{j+2}\right), \cdots, \alpha\left(z_{k}\right)}_{\alpha(\vec{z})}$,
$\underbrace{\alpha\left(x_{j+2}\right)-z_{j+2}, \cdots, \alpha\left(x_{k}\right)-z_{k}}_{\alpha(\vec{x})-\vec{z}}$ This relation has smaller degree and
satisfies condition 1. If $p_{1}$ still occurs, it occurs one time less. By induction hypothesis, there exist elements $y_{1}, \cdots, y_{t}$ in $G^{+}$such that $\alpha$ permutes these with a permutation $\sigma^{\prime}$ and nonnegative integers $r_{i l}$, $s_{i l}, r_{i l}^{\prime}$, and $s_{i l}^{\prime}$ for $i=j+2, \cdots, k$ and $l=1, \cdots t$ such that

$$
z_{i}=r_{i 1} y_{1}+\cdots+r_{i t} y_{t}
$$

## 7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 43

$$
\begin{gathered}
x_{i}-\alpha\left(z_{i}\right)=s_{(i) 1} y_{1}+\cdots+s_{i t} y_{t} \\
\alpha\left(z_{i}\right)=\alpha\left(r_{i 1} y_{1}+\cdots+r_{i t} y_{t}\right)=r_{i 1}^{\prime} y_{1}+\cdots+r_{i t}^{\prime} y_{t} \\
\alpha\left(x_{i}\right)-z_{i}=\alpha\left(x_{i}-\alpha\left(z_{i}\right)\right)=s_{i 1}^{\prime} y_{1}+\cdots+s_{i t}^{\prime} y_{t}
\end{gathered}
$$

for $i=j+2, \cdots, k$.

$$
\text { We get a matrix } R=\left(\begin{array}{c}
r \\
s \\
r^{\prime} \\
s^{\prime}
\end{array}\right) \text { where } r, s, r^{\prime} \text {, and } s^{\prime} \text { are matrices. Then }
$$

there exists a permutation matrix $M_{\sigma}=\left(\begin{array}{cccc}0 & 0 & E_{k} & 0 \\ 0 & 0 & 0 & E_{k} \\ E_{k} & 0 & 0 & 0 \\ 0 & E_{k} & 0 & 0\end{array}\right)$ which
gives a permutation of the generators $\vec{z}, \vec{x}-\alpha(\vec{z}), \alpha(\vec{z})$, and $\alpha(\vec{x})-\vec{z}$ such that

$$
\left(\begin{array}{cccc}
0 & 0 & E_{k} & 0 \\
0 & 0 & 0 & E_{k} \\
E_{k} & 0 & 0 & 0 \\
0 & E_{k} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\vec{z} \\
\vec{x}-\alpha(\vec{z}) \\
\alpha(\vec{z}) \\
\alpha(\vec{x})-\vec{z}
\end{array}\right)=\left(\begin{array}{c}
\alpha(\vec{z}) \\
\alpha(\vec{x})-\vec{z} \\
\vec{z} \\
\vec{x}-\alpha(\vec{z})
\end{array}\right)
$$

where $E_{k}$ is a $k \times k$ identity matrix.
Also, we get a permutation $\sigma^{\prime}$ that $y_{t}$ 's undergo by the action $\alpha$. Then there exists a permutation matrix $M_{\sigma^{\prime}}$ of $y_{t}{ }^{\prime}$ s. $M_{\sigma} R=R M_{\sigma^{\prime}}$ follows by induction hypothesis.
By using a matrix $\left(\begin{array}{cccc}0 & E_{k} & E_{k} & 0 \\ E_{k} & 0 & 0 & E_{k}\end{array}\right)$, we get $\binom{\vec{x}}{\alpha(\vec{x})}$
from $\left(\begin{array}{c}\vec{z} \\ \vec{x}-\alpha(\vec{z}) \\ \alpha(\vec{z}) \\ \alpha(\vec{x})-\vec{z}\end{array}\right)$, i.e., $\binom{\vec{x}}{\alpha(\vec{x})}=\left(\begin{array}{cccc}0 & E_{k} & E_{k} & 0 \\ E_{k} & 0 & 0 & E_{k}\end{array}\right)\left(\begin{array}{c}\vec{z} \\ \vec{x}-\alpha(\vec{z}) \\ \alpha(\vec{z}) \\ \alpha(\vec{x})-\vec{z}\end{array}\right)$
Also, there exists a matrix $M_{\sigma^{\prime \prime}}=\left(\begin{array}{cc}0 & E_{k} \\ E_{k} & 0\end{array}\right)$ that gives a permutation from $\vec{x}$ and $\alpha(\vec{x})$ such that $\left(\begin{array}{cc}0 & E_{k} \\ E_{k} & 0\end{array}\right)\binom{\vec{x}}{\alpha(\vec{x})}=\binom{\alpha(\vec{x})}{\vec{x}}$

Then, $M_{\sigma^{\prime \prime}}\left(\begin{array}{cccc}0 & E_{k} & E_{k} & 0 \\ E_{k} & 0 & 0 & E_{k}\end{array}\right)=\left(\begin{array}{cccc}0 & E_{k} & E_{k} & 0 \\ E_{k} & 0 & 0 & E_{k}\end{array}\right) M_{\sigma}$
Now, we need to check that $M_{\sigma^{\prime \prime}} Q=Q M_{\sigma^{\prime}}$ where $Q=\left(\begin{array}{cccc}0 & E_{k} & E_{k} & 0 \\ E_{k} & 0 & 0 & E_{k}\end{array}\right) R$.
We get

$$
\begin{aligned}
M_{\sigma^{\prime \prime}} Q & =M_{\sigma^{\prime \prime}}\left(\begin{array}{cccc}
0 & E_{k} & E_{k} & 0 \\
E_{k} & 0 & 0 & E_{k}
\end{array}\right) R \\
& =\left(\begin{array}{cccc}
0 & E_{k} & E_{k} & 0 \\
E_{k} & 0 & 0 & E_{k}
\end{array}\right) M_{\sigma} R \\
& =\left(\begin{array}{cccc}
0 & E_{k} & E_{k} & 0 \\
E_{k} & 0 & 0 & E_{k}
\end{array}\right) R M_{\sigma^{\prime}} \\
& =Q M_{\sigma^{\prime}}
\end{aligned}
$$

Finally, suppose $Q=\left(\begin{array}{cccc}0 & E_{k} & E_{k} & 0 \\ E_{k} & 0 & 0 & E_{k}\end{array}\right) R$. Then

$$
\begin{aligned}
Q \vec{y} & =\left(\begin{array}{cccc}
0 & E_{k} & E_{k} & 0 \\
E_{k} & 0 & 0 & E_{k}
\end{array}\right) R \vec{y} \\
& =\left(\begin{array}{cccc}
0 & E_{k} & E_{k} & 0 \\
E_{k} & 0 & 0 & E_{k}
\end{array}\right)\left(\begin{array}{c}
\vec{z} \\
\vec{x}-\alpha(\vec{z}) \\
\alpha(\vec{z}) \\
\alpha(\vec{x})-\vec{z}
\end{array}\right) \\
& =\binom{\vec{x}}{\alpha(\vec{x})}
\end{aligned}
$$

Next, we look at Case 2, $\alpha_{n}(p)=p$.
In this case, coefficient of $e_{i}$ is equal to coefficient of $\alpha_{n}\left(e_{i}\right)$. Suppose $e_{1}, \cdots, e_{h}$, and $e_{m+1}, \cdots, e_{s}$ are fixed, and $e_{h+1}, \alpha_{n}\left(e_{h+1}\right), \cdots$, $e_{m}, \alpha_{n}\left(e_{m}\right)$ and $e_{s+1}, \alpha_{n}\left(e_{s+1}\right), \cdots, e_{l}, \alpha_{n}\left(e_{l}\right)$ are flipped by $\alpha_{n}$. Then,

$$
\begin{aligned}
p & =p_{1} e_{1}+\cdots+p_{h} e_{h}+p_{h+1} e_{h+1}+p_{h+1} \alpha_{n}\left(p_{h+1}\right)+\cdots+p_{m} e_{m}+p_{m} \alpha_{n}\left(e_{m}\right) \\
& -p_{m+1} e_{m+1}-\cdots-p_{s} e_{s}-p_{s+1} e_{s+1}-p_{s+1} \alpha_{n}\left(e_{s+1}\right)-\cdots-p_{l} e_{l}-p_{l} \alpha_{n}\left(e_{l}\right)
\end{aligned}
$$

with all $p_{i} \geq 0$. Then our relation becomes

$$
\begin{aligned}
& p_{1} x_{1}+\cdots+p_{h} x_{h}+p_{h+1} x_{h+1}+p_{h+1} \alpha\left(x_{h+1}\right)+\cdots+p_{m} x_{m}+p_{m} \alpha\left(x_{m}\right) \\
& \quad=p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+p_{s+1} x_{s+1}+p_{s+1} \alpha\left(x_{s+1}\right)+\cdots+p_{l} x_{l}+p_{l} \alpha\left(x_{l}\right)
\end{aligned}
$$

in $G$. We label the collection of variables in the original relation;
$\underbrace{x_{1}, \cdots, x_{h}}_{\mathcal{X}_{1}}, \underbrace{x_{h+1}, \cdots, x_{m}}_{\mathcal{X}_{2}}, \underbrace{\alpha\left(x_{h+1}\right), \cdots, \alpha\left(x_{m}\right)}_{\alpha\left(\mathcal{X}_{2}\right)}$,
$\underbrace{x_{m+1}, \cdots, x_{s}}_{\mathcal{X}_{3}}, \underbrace{x_{s+1}, \cdots, x_{l}}_{\mathcal{X}_{4}}, \underbrace{\alpha\left(x_{s+1}\right), \cdots, \alpha\left(x_{l}\right)}_{\alpha\left(\mathcal{X}_{4}\right)}$. So, we put these to-
gether in one vector $\vec{x}=\left(\begin{array}{c}\mathcal{X}_{1} \\ \mathcal{X}_{2} \\ \alpha\left(\mathcal{X}_{2}\right) \\ \mathcal{X}_{3} \\ \mathcal{X}_{4} \\ \alpha\left(\mathcal{X}_{4}\right)\end{array}\right)$, and we get a permutation

$$
M_{\sigma^{\prime \prime}}=\left(\begin{array}{cccccc}
E_{k_{1}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & E_{k_{2}} & 0 & 0 & 0 \\
0 & E_{k_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & E_{k_{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & E_{k_{4}} \\
0 & 0 & 0 & 0 & E_{k_{4}} & 0
\end{array}\right)
$$

where $E_{k_{1}}, E_{k_{2}}, E_{k_{3}}$ and $E_{k_{4}}$ are the square identity matrices for $k_{1}=$ $h, k_{2}=m-h, k_{3}=s-m$, and $k_{4}=l-s$

In the case 2, we have two situations to consider: whether the biggest coefficient is one of the fixed ones or one of the flipped ones.

Suppose it is one of the fixed ones, $p_{1}$. We have $p_{1} x_{1} \leq q$ with $q=p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+p_{s+1}\left(x_{s+1}+\alpha\left(x_{s+1}\right)\right)+\cdots+p_{l}\left(x_{l}+\alpha\left(x_{l}\right)\right)$. Suppose $x_{i}+\alpha\left(x_{i}\right)=w_{i}$. We have $x_{1}, x_{m+1}, \cdots, x_{s}, w_{s+1}, \cdots, w_{l}$ are all in $G^{\alpha}$, the fixed point subgroup. Since $G^{\alpha}$ is a lattice-ordered dimension group, we can write $x_{1}=z_{m+1}+\cdots+z_{s}+y_{s+1}+\cdots+y_{l}$ with $0 \leq z_{i} \leq x_{i}$ and $0 \leq y_{j} \leq w_{j}$ where $z_{i}, y_{j} \in G^{\alpha}$. We have $w_{j}=x_{j}+\alpha\left(x_{j}\right)$ with $x_{j} \wedge \alpha\left(x_{j}\right)=0, y_{j} \leq w_{j}$, and write $y_{j}=z_{j}+z_{j}^{\prime}$ with $z_{j} \leq x_{j}$ and $z_{j}^{\prime} \leq \alpha\left(x_{j}\right)$. Since $x_{i} \wedge \alpha\left(x_{i}\right)=0$, we get $z_{j}=y_{j} \wedge x_{j}, z_{j}^{\prime}=y_{j} \wedge \alpha\left(x_{j}\right)$.

Also, since $\alpha\left(y_{j}\right)=y_{j}$, we get $\alpha\left(z_{j}\right)=z_{j}^{\prime}$. Then, we get $x_{1}=z_{m+1}+$ $\cdots+z_{s}+z_{s+1}+\alpha\left(z_{s+1}\right)+\cdots+z_{l}+\alpha\left(z_{l}\right)$

Observe that,

$$
\begin{aligned}
& p_{1} x_{1}+\cdots+p_{h} x_{h}+p_{h+1} x_{h+1}+p_{h+1} \alpha\left(x_{h+1}\right)+\cdots \\
& +p_{m} x_{m}+p_{m} \alpha\left(x_{m}\right) \\
& =p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+p_{s+1} x_{s+1}+p_{s+1} \alpha\left(x_{s+1}\right)+\cdots \\
& +p_{l} x_{l}+p_{l} \alpha\left(x_{l}\right) \\
\Rightarrow & p_{1}\left(z_{m+1}+\cdots+z_{s}+z_{s+1}+\alpha\left(z_{s+1}\right)+\cdots+z_{l}+\alpha\left(z_{l}\right)\right)+p_{2} x_{2} \\
& +\cdots+p_{h} x_{h}+p_{h+1} x_{h+1}+p_{h+1} \alpha\left(x_{h+1}\right)+\cdots+p_{m} x_{m}+p_{m} \alpha\left(x_{m}\right) \\
& =p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+p_{s+1} x_{s+1}+p_{s+1} \alpha\left(x_{s+1}\right) \\
& +\cdots+p_{l} x_{l}+p_{l} \alpha\left(x_{l}\right) \\
\Rightarrow & \left(p_{1}-p_{m+1}\right) z_{m+1}+\cdots+\left(p_{1}-p_{s}\right) z_{s} \\
& +\left(p_{1}-p_{s+1}\right)\left(z_{s+1}+\alpha\left(z_{s+1}\right)\right)+\cdots+\left(p_{1}-p_{l}\right)\left(z_{l}+\alpha\left(z_{l}\right)\right) \\
& +p_{2} x_{2}+\cdots+p_{h} x_{h}+p_{h+1} x_{h+1}+p_{h+1} \alpha\left(x_{h+1}\right)+\cdots \\
& +p_{m} x_{m}+p_{m} \alpha\left(x_{m}\right) \\
& =p_{m+1}\left(x_{m+1}-z_{m+1}\right)+\cdots+p_{s}\left(x_{s}-z_{s}\right) \\
& +p_{s+1}\left(\left(x_{s+1}-z_{s+1}\right)+\left(\alpha\left(x_{s+1}\right)-\alpha\left(z_{z+1}\right)\right)\right)+\cdots \\
& +p_{l}\left(\left(x_{l}-z_{l}\right)+\left(\alpha\left(x_{l}\right)-\alpha\left(z_{l}\right)\right)\right) \\
\Rightarrow & \sum_{i=m+1}^{s}\left(p_{1}-p_{i}\right) z_{i}+\sum_{i=s+1}^{l}\left(p_{1}-p_{i}\right)\left(z_{i}+\alpha\left(z_{i}\right)\right)+\sum_{i=2}^{h} p_{i} x_{i} \\
& +\sum_{i=h+1}^{m} p_{i}\left(x_{i}+\alpha\left(x_{i}\right)\right) \\
& =\sum_{i=m+1}^{s} p_{i}\left(x_{i}-z_{i}\right)+\sum_{i=s+1}^{l} p_{i}\left(\left(x_{i}-z_{i}\right)+\left(\alpha\left(x_{i}\right)-\alpha\left(z_{i}\right)\right)\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \sum_{i=m+1}^{s}\left(p_{1}-p_{i}\right) z_{i}+\sum_{i=s+1}^{l}\left(p_{1}-p_{i}\right) z_{i}+\sum_{i=s+1}^{l}\left(p_{1}-p_{i}\right) \alpha\left(z_{i}\right) \\
& +\sum_{i=2}^{h} p_{i} x_{i}+\sum_{i=h+1}^{m} p_{i} x_{i}+\sum_{i=h+1}^{m} p_{i} \alpha\left(x_{i}\right) \\
& =\sum_{i=m+1}^{s} p_{i}\left(x_{i}-z_{i}\right)+\sum_{i=s+1}^{l} p_{i}\left(x_{i}-z_{i}\right)+\sum_{i=s+1}^{l} p_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(z_{i}\right)\right)
\end{aligned}
$$

We label the collection of the new variables; $\underbrace{z_{m+1}, \cdots, z_{s}}_{\mathcal{Z}_{1}}, \underbrace{z_{s+1}, \cdots, z_{l}}_{\mathcal{Z}_{2}}$, $\underbrace{\alpha\left(z_{s+1}\right), \cdots, \alpha\left(z_{l}\right)}_{\alpha\left(\mathcal{Z}_{2}\right)}, \underbrace{x_{2}, \cdots, x_{h}}_{\mathcal{X}_{1}^{\prime}}, \underbrace{x_{h+1}, \cdots, x_{m}}_{\mathcal{X}_{2}}, \underbrace{\alpha\left(x_{h+1}\right), \cdots, \alpha\left(x_{m}\right)}_{\alpha\left(\mathcal{X}_{2}\right)}$, $\underbrace{x_{m+1}-z_{m+1}, \cdots, x_{s}-z_{s}}_{\mathcal{X}_{3}-\mathcal{Z}_{1}}, \underbrace{x_{s+1}-z_{s+1}, \cdots, x_{l}-z_{l}}_{\mathcal{X}_{4}-\mathcal{Z}_{2}}$,
$\underbrace{\alpha\left(x_{s+1}-z_{s+1}\right), \cdots, \alpha\left(x_{l}-z_{l}\right)}_{\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right)}$. This relation has smaller degree and satisfies condition 2, i.e., the relation is invariant under the automorphism. If $p_{1}$ still occurs, it occurs one time less. By induction hypothesis, there exists $\vec{y}=\left(y_{1} \cdots y_{t}\right)$ for $y_{i} \in G^{+}$such that $\alpha$ permutes these with a permutation $\sigma^{\prime}$ and matrices $r, s, t, r^{\prime}, s^{\prime}, t^{\prime}, r^{\prime \prime}, s^{\prime \prime}$ and $t^{\prime \prime}$ whose entries are nonnegative integers such that

$$
\begin{aligned}
\mathcal{Z}_{1} & =r \vec{y}^{\top} \\
\mathcal{Z}_{2} & =r^{\prime} \vec{y}^{\top} \\
\alpha\left(\mathcal{Z}_{2}\right) & =\alpha\left(r^{\prime} \vec{y}^{\top}\right)=r^{\prime \prime} \vec{y}^{\top} \\
\mathcal{X}_{1}^{\prime} & =s \vec{y}^{\top} \\
\mathcal{X}_{2} & =s^{\prime} \vec{y}^{\top} \\
\alpha\left(\mathcal{X}_{2}\right) & =\alpha\left(s^{\prime} \vec{y}^{\top}\right)=s^{\prime \prime} \vec{y}^{\top} \\
\mathcal{X}_{3}-\mathcal{Z}_{1} & =t \vec{y}^{\top} \\
\mathcal{X}_{4}-\mathcal{Z}_{2} & =t^{\prime} \vec{y}^{\top} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right) & =\alpha\left(s^{\prime} \vec{y}^{\top}\right)=t^{\prime \prime} \vec{y}^{\top}
\end{aligned}
$$

## 7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 48

We get a matrix $R^{\top}=\left(\begin{array}{lllllllll}r & r^{\prime} & r^{\prime \prime} & s & s^{\prime} & s^{\prime \prime} & t & t^{\prime} & t^{\prime \prime}\end{array}\right)$. Then there exists permutation matrix

$$
M_{\sigma}=\left(\begin{array}{ccccccccc}
E_{k_{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & E_{k_{4}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & E_{k_{4}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & E_{k_{1}^{\prime}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & E_{k_{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & E_{k_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & E_{k_{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0
\end{array}\right)
$$

where $E_{k_{i}}$ is the square identity matrix for $k_{1}^{\prime}=h-1$, $k_{2}=m-h, k_{3}=s-m$, and $k_{4}=l-s$ gives permutation from the generators $\mathcal{Z}_{1}, \mathcal{Z}_{2}, \alpha\left(\mathcal{Z}_{2}\right), \mathcal{X}_{1}^{\prime}, \mathcal{X}_{2}, \alpha\left(\mathcal{X}_{2}\right), \mathcal{X}_{3}-\mathcal{Z}_{1}, \mathcal{X}_{4}-\mathcal{Z}_{2}$, and $\alpha\left(\mathcal{X}_{4}\right)-$ $\alpha\left(\mathcal{Z}_{2}\right)$ such that

$$
M_{\sigma}\left(\begin{array}{c}
\mathcal{Z}_{1} \\
\mathcal{Z}_{2} \\
\alpha\left(\mathcal{Z}_{2}\right) \\
\mathcal{X}_{1}^{\prime} \\
\mathcal{X}_{2} \\
\alpha\left(\mathcal{X}_{2}\right) \\
\mathcal{X}_{3}-\mathcal{Z}_{1} \\
\mathcal{X}_{4}-\mathcal{Z}_{2} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right)
\end{array}\right)=\left(\begin{array}{c}
\mathcal{Z}_{1} \\
\alpha\left(\mathcal{Z}_{2}\right) \\
\mathcal{Z}_{2} \\
\mathcal{X}_{1}^{\prime} \\
\alpha\left(\mathcal{X}_{2}\right) \\
\mathcal{X}_{2} \\
\mathcal{X}_{3}-\mathcal{Z}_{1} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right) \\
\mathcal{X}_{4}-\mathcal{Z}_{2}
\end{array}\right)
$$

Also, we get a permutation $\sigma^{\prime}$ that $y_{t}$ 's undergo by the action $\alpha$. Then there exists a permutation matrix $M_{\sigma^{\prime}}$ of $y_{t}$ 's. By induction hypothesis, we get a relationship such that $M_{\sigma} R=R M_{\sigma^{\prime}}$. So, we get a commutative diagram below.


We denote

$$
\mathcal{X}_{1}=\binom{x_{1}}{\mathcal{X}_{1}^{\prime}}=\left(\begin{array}{c|c}
(1, \cdots, 1) & 0 \\
\hline 0 & E_{k_{1}^{\prime}}
\end{array}\right)\left(\begin{array}{c}
\mathcal{Z}_{1} \\
\mathcal{Z}_{2} \\
\frac{\alpha\left(\mathcal{Z}_{2}\right)}{\mathcal{X}_{1}^{\prime}}
\end{array}\right)
$$

where $E_{k_{1}^{\prime}}$ is the $(h-1) \times(h-1)$ identity matrix. From the above block matrix, we can define the new matrices

$$
P_{k_{i}}=\left(\frac{1, \cdots, 1}{0}\right) \text { and } \widetilde{E_{k_{1}^{\prime}}}=\left(\frac{0, \cdots, 0}{E_{k_{1}^{\prime}}}\right)
$$

for $i=3,4$. By using a matrix

$$
R^{\prime}=\left(\begin{array}{ccccccccc}
P_{k_{3}} & P_{k_{4}} & P_{k_{4}} & \widetilde{E_{k_{1}^{\prime}}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & E_{k_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & E_{k_{2}} & 0 & 0 & 0 \\
E_{k_{3}} & 0 & 0 & 0 & 0 & 0 & E_{k_{3}} & 0 & 0 \\
0 & E_{k_{4}} & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 \\
0 & 0 & E_{k_{4}} & 0 & 0 & 0 & 0 & 0 & E_{k_{4}}
\end{array}\right)
$$

we get old variables $\left(\begin{array}{c}\mathcal{X}_{1} \\ \mathcal{X}_{2} \\ \alpha\left(\mathcal{X}_{2}\right) \\ \mathcal{X}_{3} \\ \mathcal{X}_{4} \\ \alpha\left(\mathcal{X}_{4}\right)\end{array}\right)$ from new ones $\left(\begin{array}{c}\mathcal{Z}_{2} \\ \alpha\left(\mathcal{Z}_{2}\right) \\ \mathcal{X}_{1}^{\prime} \\ \mathcal{X}_{2} \\ \alpha\left(\mathcal{X}_{2}\right) \\ \mathcal{X}_{3}-\mathcal{Z}_{1} \\ \mathcal{X}_{4}-\mathcal{Z}_{2} \\ \alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right)\end{array}\right)$.
Also, there exists a permutation matrix $M_{\sigma^{\prime \prime}}$ that gives a permutation from the original variables. One can check that $R^{\prime} M_{\sigma}=M_{\sigma^{\prime \prime}} R^{\prime}$. So, we get a commuting diagram below.


If we put together two above diagrams, then we get the result that $M_{\sigma^{\prime \prime}} Q=Q M_{\sigma^{\prime}}$ where $Q=R^{\prime} R$.

Now, suppose the largest coefficient is one of the flipped ones, $p_{h+1}$. We have $p_{h+1}\left(x_{h+1}+\alpha\left(x_{h+1}\right)\right) \leq q$ where $q=p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+$ $p_{s+1} x_{s+1}+p_{s+1} \alpha\left(x_{s+1}\right)+\cdots+p_{l} x_{l}+p_{l} \alpha\left(x_{l}\right)$. Suppose $x_{j}+\alpha\left(x_{j}\right)=v_{j}$. Then $v_{j} \in G^{\alpha}$ for each $j$. Since $G^{\alpha}$ is a lattice-ordered dimension group, we can write $x_{h+1}+\alpha\left(x_{h+1}\right)=z_{m+1}+\cdots+z_{s}+r_{s+1}+\cdots+r_{l}$ with $0 \leq z_{i} \leq x_{i}$ and $0 \leq r_{j} \leq v_{j}$ where $z_{i}, r_{j} \in G^{\alpha}$. We have $v_{j}=x_{j}+\alpha\left(x_{j}\right)$ with $x_{j} \wedge \alpha\left(x_{j}\right)=0, r_{j} \leq v_{j}$, and write $r_{j}=z_{j}+z_{j}^{\prime}$ with $z_{j} \leq x_{j}$ and $z_{j}^{\prime} \leq \alpha\left(x_{j}\right)$. Since $x_{i} \wedge \alpha\left(x_{i}\right)=0$, we get $z_{j}=v_{j} \wedge x_{j}$ and $z_{j}^{\prime}=v_{j} \wedge \alpha\left(z_{j}\right)$. Also, since $\alpha\left(v_{j}\right)=v_{j}$, we get $\alpha\left(z_{j}\right)=z_{j}^{\prime}$. Then, we get $x_{h+1}+\alpha\left(x_{h+1}\right)=z_{m+1}+\cdots+z_{s}+\left(z_{s+1}+\alpha\left(z_{s+1}\right)\right)+\cdots+\left(z_{l}+\alpha\left(z_{l}\right)\right)$.

Observe that,

$$
\left.\left.\begin{array}{rl} 
& p_{1} x_{1}+\cdots+p_{h} x_{h}+p_{h+1} x_{h+1}+p_{h+1} \alpha\left(x_{h+1}\right)+\cdots \\
& +p_{m} x_{m}+p_{m} \alpha\left(x_{m}\right) \\
= & p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+p_{s+1} x_{s+1}+p_{s+1} \alpha\left(x_{s+1}\right)+\cdots \\
& +p_{l} x_{l}+p_{l} \alpha\left(x_{l}\right) \\
\Rightarrow & p_{1} x_{1}+\cdots+p_{h} x_{h}+p_{h+1}\left(z_{m+1}+\cdots+z_{s}+\left(z_{s+1}+\alpha\left(z_{s+1}\right)\right)+\cdots\right. \\
& \left.+\left(z_{l}+\alpha\left(z_{l}\right)\right)\right)+p_{h+2}\left(x_{h+2}+\alpha\left(x_{h+2}\right)\right)+\cdots+p_{m}\left(x_{m}+\alpha\left(x_{m}\right)\right) \\
= & p_{m+1} x_{m+1}+\cdots+p_{s} x_{s}+p_{s+1} x_{s+1}+p_{s+1} \alpha\left(x_{s+1}\right) \\
& +\cdots+p_{l} x_{l}+p_{l} \alpha\left(x_{l}\right) \\
\Rightarrow & p_{1} x_{1}+\cdots+p_{h} x_{h}+\left(p_{h+1}-p_{m+1}\right) z_{m+1}+\cdots+\left(p_{h+1}-p_{s}\right) z_{s} \\
\quad+\left(p_{h+1}-p_{s+1}\right)\left(z_{s+1}+\alpha\left(z_{s+1}\right)\right)+\cdots+\left(p_{h+1}-p_{l}\right)\left(z_{l}+\alpha\left(z_{l}\right)\right) \\
\quad+p_{h+2}\left(x_{h+2}+\alpha\left(x_{h+2}\right)\right)+\cdots+p_{m}\left(x_{m}+\alpha\left(x_{m}\right)\right) \\
\quad=p_{m+1}\left(x_{m+1}-z_{m+1}\right)+\cdots+p_{s}\left(x_{s}-z_{s}\right) \\
\quad+p_{s+1}\left(\left(x_{s+1}-z_{s+1}\right)+\left(\alpha\left(x_{s+1}\right)-\alpha\left(x_{z+1}\right)\right)\right) \\
\quad+\cdots+p_{l}\left(\left(x_{l}-z_{l}\right)+\left(\alpha\left(x_{l}\right)-\alpha\left(z_{l}\right)\right)\right) \\
\Rightarrow \quad & \sum_{i=1}^{h} p_{i} x_{i}+\sum_{i=m+1}^{s}\left(p_{h+1}-p_{i}\right) z_{i}+\sum_{i=s+1}^{l}\left(p_{h+1}-p_{i}\right) z_{i} \\
\quad+\sum_{i=s+1}^{l}\left(p_{h+1}-p_{i}\right) \alpha\left(z_{i}\right)+\sum_{i=h+2}^{m} p_{i}\left(x_{i}+\alpha\left(x_{i}\right)\right) \\
\quad=\sum_{i=m+1}^{s} p_{i}\left(x_{i}-z_{i}\right)+\sum_{i=s+1}^{l} p_{i}\left(x_{i}-z_{i}\right) \\
\quad+\sum_{i=s+1}^{l} p_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(z_{i}\right)\right)
\end{array}\right\} \quad(\dagger)\right)
$$

We need to split the $x_{h+1}+\alpha\left(x_{h+1}\right)$ to $x_{h+1}$ and $\alpha\left(x_{h+1}\right)$. Define the new variables;

$$
\left.\begin{array}{c}
t_{m+1}, \cdots, t_{s} \text { where } t_{i}=z_{i} \wedge x_{h+1} \\
r_{m+1}, \cdots, r_{s} \text { where } r_{i}=z_{i} \wedge \alpha\left(x_{h+1}\right)
\end{array}\right\} \quad \alpha\left(t_{i}\right)=r_{i}
$$

## 7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 52

Then, $x_{h+1}=t_{m+1}+\cdots+t_{s}+v_{s+1}+\cdots+v_{l}+\alpha\left(w_{s+1}\right)+\cdots+\alpha\left(w_{l}\right)$, $\alpha\left(x_{h+1}\right)=r_{m+1}+\cdots+r_{s}+\alpha\left(v_{s+1}\right)+\cdots+\alpha\left(v_{l}\right)+w_{s+1}+\cdots+w_{l}$, $z_{i}=t_{i}+r_{i}$ for $i=m+1, \cdots, s, z_{j}=v_{i}+w_{i}$ for $j=s+1, \cdots, l$.

We label the collection of the new variables; $\underbrace{x_{1}, \cdots, x_{h}}_{\mathcal{X}_{1}}, \underbrace{t_{m+1}, \cdots, t_{s}}_{\mathcal{T}}$,
$\underbrace{r_{m+1}, \cdots, r_{s}}_{\mathcal{R}}, \underbrace{v_{s+1}, \cdots, v_{l}}_{\mathcal{V}}, \underbrace{\alpha\left(v_{s+1}\right), \cdots, \alpha\left(v_{l}\right)}_{\alpha(\mathcal{V})}, \underbrace{w_{s+1}, \cdots, w_{l}}_{\mathcal{W}}$,
$\underbrace{\alpha\left(w_{s+1}\right), \cdots, \alpha\left(w_{l}\right)}_{\alpha(\mathcal{W})}, \underbrace{x_{h+2}, \cdots, x_{m}}_{\mathcal{X}_{2}^{\prime}}, \underbrace{\alpha\left(x_{h+2}\right), \cdots, \alpha\left(x_{m}\right)}_{\alpha\left(\mathcal{X}_{2}^{\prime}\right)}$,
$\underbrace{x_{m+1}-z_{m+1}, \cdots, x_{s}-z_{s}}_{\mathcal{X}_{3}-\mathcal{Z}_{1}}, \underbrace{x_{s+1}-z_{s+1}, \cdots, x_{l}-z_{l}}_{\mathcal{X}_{4}-\mathcal{Z}_{2}}$,
$\underbrace{\alpha\left(x_{s+1}\right)-\alpha\left(x_{l}\right), \cdots, \alpha\left(x_{l}\right)-\alpha\left(z_{l}\right)}_{\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right)}$. This relation that we get from ( $\dagger$ )
has smaller degree and satisfies condition 2. If $p_{h+1}$ still occurs, it occurs one time less. By induction hypothesis, there exists $\vec{y}=\left(y_{1} \cdots y_{t}\right)$ for $y_{i} \in G^{+}$such that $\alpha$ permutes these with a perutation $\sigma^{\prime}$ and matrices $a, a^{\prime}, a^{\prime \prime}, b, c, d, d^{\prime}, e$,
$e^{\prime}, f, f^{\prime}$, and $f^{\prime \prime}$ whose entries are nonnegative integers such that

$$
\begin{aligned}
\mathcal{X}_{1} & =a \vec{y}^{\top} \\
\mathcal{X}_{2}^{\prime} & =a^{\prime} \vec{y}^{\top} \\
\alpha\left(\mathcal{X}_{2}^{\prime}\right) & =a^{\prime \prime} \vec{y}^{\top} \\
\mathcal{T} & =b \vec{y}^{\top} \\
\mathcal{R} & =c \vec{y}^{\top} \\
\mathcal{V} & =d \vec{y}^{\top} \\
\alpha(\mathcal{V}) & =d^{\prime} \vec{y}^{\top} \\
\mathcal{W} & =e \vec{y}^{\top} \\
\alpha(\mathcal{W}) & =e^{\prime} \vec{y}^{\top} \\
\mathcal{X}_{3}-\mathcal{Z}_{1} & =f \vec{y}^{\top} \\
\mathcal{X}_{4}-\mathcal{Z}_{2} & =f^{\prime} \vec{y}^{\top} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right) & =f^{\prime \prime} \vec{y}^{\top}
\end{aligned}
$$

## 7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 53

We get a matrix

$$
R^{\top}=\left(\begin{array}{llllllllllll}
a & a^{\prime} & a^{\prime \prime} & b & c & d & d^{\prime} & e & e^{\prime} & f & f^{\prime} & f^{\prime \prime}
\end{array}\right)
$$

Then there exists a permutation matrix

$$
M_{\sigma}=\left(\begin{array}{cccccccccccc}
E_{k_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & E_{k_{2}^{\prime}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & E_{k_{2}^{\prime}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & E_{k_{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & E_{k_{3}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0
\end{array}\right)
$$

where $E_{k_{i}}$ is the square identity matirix for $k_{1}=h, k_{2}^{\prime}=m-h-1, k_{3}=$ $s-m$, and $k_{4}=l-s$ which gives the permutation from the generators such that

$$
M_{\sigma}\left(\begin{array}{c}
\mathcal{X}_{1} \\
\mathcal{X}_{2}^{\prime} \\
\alpha\left(\mathcal{X}_{2}^{\prime}\right) \\
\mathcal{T} \\
\mathcal{R} \\
\mathcal{V} \\
\alpha(\mathcal{V}) \\
\mathcal{W} \\
\alpha(\mathcal{W}) \\
\mathcal{X}_{3}-\mathcal{Z}_{1} \\
\mathcal{X}_{4}-\mathcal{Z}_{2} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right)
\end{array}\right)=\left(\begin{array}{c}
\mathcal{X}_{1} \\
\alpha\left(\mathcal{X}_{2}^{\prime}\right) \\
\mathcal{X}_{2}^{\prime} \\
\mathcal{R} \\
\mathcal{T} \\
\alpha(\mathcal{V}) \\
\mathcal{V} \\
\alpha(\mathcal{W}) \\
\mathcal{W} \\
\mathcal{X}_{3}-\mathcal{Z}_{1} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right) \\
\mathcal{X}_{4}-\mathcal{Z}_{2}
\end{array}\right)
$$

Also, we get a permutation $\sigma^{\prime}$ that $y_{t}$ 's undergo by the action $\alpha$. Then there exists a permutation matrix $M_{\sigma^{\prime}}$ of $y_{t}$ 's. By induction hypothesis,

## 7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 54

we get a relationship such that $M_{\sigma} R=R M_{\sigma^{\prime}}$. So, one can check that we get a commutative diagram below.


We denote

$$
\mathcal{X}_{2}=\binom{x_{h+1}}{\mathcal{X}_{2}^{\prime}}=\left(\begin{array}{c|c}
(1, \cdots, 1) & 0 \\
\hline 0 & E_{k_{2}^{\prime}}
\end{array}\right)\left(\begin{array}{c}
\mathcal{T} \\
\mathcal{V} \\
\frac{\alpha(\mathcal{W})}{\mathcal{X}_{2}^{\prime}}
\end{array}\right)
$$

and

$$
\alpha\left(\mathcal{X}_{2}\right)=\binom{\alpha\left(x_{h+1}\right)}{\alpha\left(\mathcal{X}_{2}^{\prime}\right)}=\left(\begin{array}{c|c}
(1, \cdots, 1) & 0 \\
\hline 0 & E_{k_{2}^{\prime}}
\end{array}\right)\left(\begin{array}{c}
\mathcal{R} \\
\alpha(\mathcal{V}) \\
\mathcal{W} \\
\hline \alpha\left(\mathcal{X}_{2}^{\prime}\right)
\end{array}\right)
$$

From the above block matrix, we can define the new matrices

$$
P_{k_{i}}=\left(\frac{1, \cdots, 1}{0}\right) \text { and } \widetilde{E_{k_{2}^{\prime}}}=\left(\frac{0, \cdots, 0}{E_{k_{2}^{\prime}}}\right)
$$

for $i=3,4$. By using a matrix

$$
R^{\prime}=\left(\begin{array}{cccccccccccc}
E_{k_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \widetilde{E_{k_{2}^{\prime}}} & 0 & P_{k_{3}} & 0 & P_{k_{4}} & 0 & 0 & P_{k_{4}} & 0 & 0 & 0 \\
0 & 0 & E_{k_{2}^{\prime}} & 0 & P_{k_{3}} & 0 & P_{k_{4}} & P_{k_{4}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & E_{k_{3}} & E_{k_{3}} & 0 & 0 & 0 & 0 & E_{k_{3}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 & E_{k_{4}} & 0 & 0 & E_{k_{4}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & E_{k_{4}} & 0 & E_{k_{4}} & 0 & 0 & E_{k_{4}}
\end{array}\right),
$$

$$
\text { we get old variables }\left(\begin{array}{c}
\mathcal{X}_{1} \\
\mathcal{X}_{2} \\
\alpha\left(\mathcal{X}_{2}\right) \\
\mathcal{X}_{3} \\
\mathcal{X}_{4} \\
\alpha\left(\mathcal{X}_{4}\right)
\end{array}\right) \text { from new ones }\left(\begin{array}{c}
\mathcal{T} \\
\mathcal{R} \\
\mathcal{V} \\
\alpha(\mathcal{V}) \\
\mathcal{W} \\
\alpha(\mathcal{W}) \\
\mathcal{X}_{3}-\mathcal{Z}_{1} \\
\mathcal{X}_{4}-\mathcal{Z}_{2} \\
\alpha\left(\mathcal{X}_{4}\right)-\alpha\left(\mathcal{Z}_{2}\right)
\end{array}\right) \text {. }
$$

Also, there exists a permutation matrix $M_{\sigma^{\prime \prime}}$ that gives a permutation from the original variables. So, we get a commuting diagram below.


If we put together two above diagrams, then we get the result that $M_{\sigma^{\prime \prime}} Q=Q M_{\sigma^{\prime}}$ where $Q=R^{\prime} R$.

The following Lemma will aid to prove the proposition 7.3.

Lemma 7.2. [13, Corollary 4.96]All subgroups of a finitely generated abelian group are finitely generated.

Proposition 7.3. Let $G_{1}$ be a simplicial group with simplicial basis $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\mathbb{Z}_{2}$ action $\alpha_{1}$ given by the permutation $\sigma_{n}$. Let $G$ be a lattice-ordered dimension group with $\mathbb{Z}_{2}$ action $\alpha$, and let $g_{1}$ : $G_{1} \rightarrow G$ be a positive equivariant homomorphism. Then there exist a simplicial group $G_{2}$ with an $\mathbb{Z}_{2}$ action $\alpha_{2}$, and positive equivariant
homomorphisms $h$ and $g_{2}$ such that $g_{1}=g_{2} h, \operatorname{ker}\left(g_{1}\right)=\operatorname{ker}(h)$.


Proof. The proof closely follows Goodearl's treatment [9, pp.5354]. We would like to show that finite generators $a_{1}, \cdots, a_{k}$ in $\operatorname{ker}\left(g_{1}\right)$ also lie in $\operatorname{ker}(h)$ by induction hypothesis. First, we need to check when $k=1$. If $G_{1}$ is a zero group, then $G_{2}$ is also zero group and we define homomorphisms $h, g_{2}$ are zero maps. Now, we assume that $G_{1}$ is nonzero. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be the simplicial basis for $G_{1}$, and let $\sigma_{n}$ be the permutation of the simplicial basis that gives the action $\alpha_{1}$. Let $\left\{x_{1}, \cdots, x_{n}\right\} \in G^{+}$be the images of $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\operatorname{ker}\left(g_{1}\right)$ be finitely generated by $a_{1}$. Set $x_{i}=g_{1}\left(e_{i}\right)$ for each $i=1, \cdots, n$. Since $g_{1}$ is an equivariant homomorphism, it follows that $\alpha\left(x_{i}\right)=\alpha\left(g_{1}\left(e_{i}\right)\right)=$ $g_{1}\left(\alpha_{1}\left(e_{i}\right)\right)$ for each $i=1, \cdots, n$. Write $a_{1}=p_{1} e_{1}+\cdots+p_{n} e_{n}$ for some integers $p_{i}$, and observe that

$$
p_{1} x_{1}+\cdots+p_{n} x_{n}=g_{1}\left(a_{1}\right)=0 .
$$

According to proposition 7.2, there exist elements $y_{1}, \cdots, y_{t}$ in $G^{+}$such that $\alpha$ acts on $\left\{y_{1}, \cdots, y_{t}\right\}$ by permutation $\sigma_{t}$ and nonnegative integers $q_{i j}($ for $i=1, \cdots n$, and $j=1, \cdots, t)$ such that

$$
x_{i}=q_{i 1} y_{1}+\cdots+q_{i t} y_{t} \text { and } p_{1} q_{1 j}+\cdots+p_{n} q_{n j}=0
$$

for all $i$ and $j$, and $M_{n} Q=Q M_{t}$, where $M_{n}, M_{t}$ are the permutation matrices giving $\sigma_{n}, \sigma_{t}$ respectively, and $Q$ is the matrix of the $q_{i j}$ 's.

Set $G_{2}=\mathbb{Z}^{t}$, and let $\left\{f_{1}, \cdots, f_{t}\right\}$ be simplicial basis for $G_{2}$. Define group homomorphisms $h: G_{1} \rightarrow G_{2}$ and $g_{2}: G_{2} \rightarrow G$ so that

$$
h\left(e_{i}\right)=q_{i 1} f_{1}+\cdots+q_{i t} f_{t}
$$

for $i=1, \cdots, n$ and $g_{2}\left(f_{j}\right)=y_{j}$ for $j=1, \cdots, t$. Define an $\mathbb{Z}_{2}$ action $\alpha_{2}$ on $G_{2}$ by the permuation matrix $M_{t}$. Then it follows that

$$
h\left(\alpha_{1}\left(e_{i}\right)\right)=q_{i 1} \alpha_{2}\left(f_{1}\right)+\cdots+q_{i t} \alpha_{2}\left(f_{t}\right)=\alpha_{2}\left(h\left(e_{i}\right)\right)
$$

for $i=1, \cdots, n$ and $\alpha\left(g_{2}\left(f_{j}\right)\right)=\alpha\left(y_{j}\right)=g_{2}\left(\alpha_{2}\left(f_{j}\right)\right)$ for $j=1, \cdots, t$. So, the maps intertwine the actions.

As each $q_{i j} \in \mathbb{Z}^{+}$and each $y_{j} \in G^{+}$, we see that $h$ and $g_{2}$ are positive homomorphisms. Since

$$
g_{2} h\left(e_{i}\right)=g_{2}\left(q_{i 1} f_{1}+\cdots+q_{i t} f_{t}\right)=q_{i 1} y_{1}+\cdots+q_{i t} y_{t}=x_{i}=g_{1}\left(e_{i}\right)
$$

for all $i=1, \cdots, n$, we obtain $g_{2} h=g_{1}$. Also,

$$
h\left(a_{1}\right)=h\left(\sum_{i=1}^{n} p_{i} e_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{t} p_{i} q_{i j} f_{j}=\sum_{j=1}^{t}\left(\sum_{i=1}^{n} p_{i} q_{i j}\right) f_{j}=0
$$

so that $a_{1} \in \operatorname{ker}(h)$.
Now, we show that the induction step. Let $k>1$. Assume that there exist a simplicial group $G_{3}$ with $\mathbb{Z}_{2}$ action $\alpha_{3}$ by the permutation matrix $M_{s}$, positive homomorphisms $h_{1}: G_{1} \rightarrow G_{3}$ and $g_{3}: G_{3} \rightarrow G$ such that $g_{1}=g_{3} h_{1}$. Assume that $a_{1}, \cdots, a_{k-1}$ lie in $\operatorname{ker}\left(h_{1}\right)$. Since $g_{3} h_{1}\left(a_{k}\right)=g_{1}\left(a_{k}\right)=0$, the element $h_{1}\left(a_{k}\right)$ lies in $\operatorname{ker}\left(g_{3}\right)$. Hence, by the above result, there exist a simplicial group $G_{2}$ and positive equivariant homomorphisms $h_{2}: G_{3} \rightarrow G_{2}$ and $g_{2}: G_{2} \rightarrow G$ such that $g_{3}=g_{2} h_{2}$ and $h_{1}\left(a_{k}\right) \in \operatorname{ker}\left(h_{2}\right)$. Set $h=h_{2} h_{1}$, which is a positive equivariant homomorphism from $G_{1}$ to $G_{2}$ such that $g_{2} h=g_{2} h_{2} h_{1}=$ $g_{3} h_{1}=g_{1}$. Since $a_{1}, \cdots, a_{k-1}$ lie in $\operatorname{ker}\left(h_{1}\right)$, they also lie in $\operatorname{ker}(h)$. Because $h_{1}\left(a_{k}\right)$ lies in $\operatorname{ker}\left(h_{2}\right)$, the element $a_{k}$ lies in $\operatorname{ker}(h)$. This completes the induction step.

Since $G_{1}$ is finitely generated as an abelian group, all its subgroups are finitely generated. Hence, we may choose generators of $\operatorname{ker}\left(g_{1}\right)$ as a group. By the result of above induction step, there exist a simplicial group $G_{2}$ and positive equivariant homomorphisms $h: G_{1} \rightarrow G_{2}$ and $g_{2}: G_{2} \rightarrow G$ such that $g_{1}=g_{2} h$ and $a_{1}, \cdots, a_{k}$ all lie in $\operatorname{ker}(h)$. Thus $\operatorname{ker}\left(g_{1}\right) \subseteq \operatorname{ker}(h)$. The reverse inclusion, $\operatorname{ker}\left(g_{1}\right) \supseteq \operatorname{ker}(h)$, follows from the factorization $g_{1}=g_{2} h$. Therefore, $\operatorname{ker}\left(g_{1}\right)=\operatorname{ker}(h)$.

With aid of previous proposition, we prove our main theorem.
Main Theorem. If there exists a $\mathbb{Z}_{2}$ action on a countable latticeordered dimension group, then it can be expressed as an inductive limit of $\mathbb{Z}_{2}$ actions on simplicial groups.

Proof. This proof closely follow Goodearl's treatment[9, pp.5455].

Let $G$ be a countable lattice-ordered dimension group with the action $\alpha$ and $\left\{x_{1}, x_{2}, \cdots\right\}=G^{+}$. We construct a countable sequnce with simplicial groups $G_{1}, G_{2}, \cdots$ with the actions $\alpha_{1}, \alpha_{2}, \cdots$ and positive equivariant homomorphisms $g_{n}: G_{n} \rightarrow G$ and $h_{n}: G_{n} \rightarrow G_{n+1}$ for all $n \in \mathbb{N}$ such that $x_{n} \in g_{n}\left(G_{n}^{+}\right), g_{n+1} \circ h_{n}=g_{n}$, and $\operatorname{ker}\left(g_{n}\right)=\operatorname{ker}\left(h_{n}\right)$ for all $n \in \mathbb{N}$. Also, we define the limit of the sequence that we construct, $G_{\infty}$ with a positive equivariant homomorphism $g_{\infty}: G_{\infty} \rightarrow G$, and a $\mathbb{Z}_{2}$ action on $G_{\infty}, \alpha_{\infty}$.


First of all, we set $G_{1}=\mathbb{Z}^{2}$ with a $\mathbb{Z}_{2}$ action $\alpha_{1}$ that flips the elements, i.e., $\alpha_{1}\left(e_{1}\right)=e_{2}$ and $\alpha_{1}\left(e_{2}\right)=e_{1}$. We define a positive homomorphism $g_{1}: G_{1} \rightarrow G$ so that $g_{1}\left(e_{1}\right)=x_{1}$ and $g_{1}\left(e_{2}\right)=g_{1}\left(\alpha_{1}\left(e_{1}\right)\right)=$ $\alpha\left(x_{1}\right)$. Suppose that we have constructed $g_{1}, G_{1}, \alpha_{1}, \cdots, g_{n}, G_{n}, \alpha_{n}$ which meet the requirements. We would like to construct the next one; $g_{n+1}, G_{n+1}, \alpha_{n+1}$. The direct product $H=G_{n} \oplus \mathbb{Z}^{2}$ is a simplicial group and we define a positive homomorphism $g: H \rightarrow G$ by the rule $g(a, k, l)=g_{n}(a)+k x_{n+1}+l \alpha\left(x_{n+1}\right)$, and a $\mathbb{Z}_{2}$ action $\alpha^{\prime}$ such that $g_{n}\left(\alpha_{n}\left(e_{i}\right)\right)=\alpha^{\prime}\left(g\left(x_{i}\right)\right)$ for all $i$.

By the proposition 7.3, there exist a simplicial group $G_{n+1}$ with a $\mathbb{Z}_{2}$ action $\alpha_{n+1}$, positive homomorphisms $h: H \rightarrow G_{n+1}$ and $g_{n+1}$ : $G_{n+1} \rightarrow G$ such that $g=g_{n+1} h$, and $\operatorname{ker}(g)=\operatorname{ker}(h)$. By the rule, $g_{n+1} h(0,1)=g(0,1)=x_{n+1}$ with $h(0,1) \in G_{n+1}^{+}$. So $x_{n+1} \in$ $g_{n+1}\left(G_{n+1}^{+}\right)$. Since $G_{n} \subseteq H$, we can construct the map from $G_{n}$ to $G_{n+1}$ which composes with the inclusion map from $G_{n}$ to $H$ and $h$.

Let $G_{\infty}$ be the direct limit and $q_{n}: G_{n} \rightarrow G_{\infty}$ be the canonical map. Since the condition $g_{n+1} h_{n}=g_{n}$, there exists a positive homomorphism $g_{\infty}: G_{\infty} \rightarrow G$ such that $g_{\infty} q_{n}=g_{n}$ for all $n \in \mathbb{N}$. Given $x \in \operatorname{ker}\left(g_{\infty}\right)$, write $x_{n}=q_{n}(y)$ for some $n \in \mathbb{N}$ and some $y \in G_{n}$. Then

$$
g_{n}(y)=g_{\infty} q_{n}(y)=g_{\infty}(x)=0
$$

and $h_{n}(y)=0$ becasue $\operatorname{ker}\left(g_{n}\right)=\operatorname{ker}\left(h_{n}\right)$. Thus, $g_{\infty}$ is injective.
Next, we would like to show that $g_{\infty}$ is surjective. Since $x_{n} \in$ $g_{n}\left(G_{n}^{+}\right)$, we obtain $x_{n} \in g_{n}\left(G_{n}^{+}\right)=g_{\infty} q_{n}\left(G_{n}^{+}\right) \subseteq g_{\infty}\left(G_{\infty}^{+}\right)$for all $n$, and hence $g_{\infty}\left(G_{\infty}^{+}\right)=G^{+}$. It follows that $g_{\infty}$ is surjective. Therefore $g_{\infty}$ is a group isomorphism and it is equivariant.

Here is an example related to our main theorem.
Example 7.3. Let $G=\mathbb{Q} \times \mathbb{Q}$ with strict order, i.e., $G^{+}=\{(0,0)\} \cup$ $\{(x, y) \mid x>0$ and $y>0\}$.


Let $\alpha(x, y)=(y, x)$. Suppose we have $(x, y) \in G$ and $n(x, y) \geq 0$ where $n \in \mathbb{N} \backslash 0$. Then,

$$
0 \leq n(x, y)=(n x, n y) \Rightarrow\left\{\begin{array}{l}
n x=n y=0 \text { or } \\
n x>0, n y>0
\end{array}\right.
$$

So, $(x, y) \in G^{+}$. Therefore, $\left(G, G^{+}\right)$is unperforated. Also, $G^{+} \cap G^{-}=$ $\{(0,0)\}$ and $G^{+}+G^{-}=G$.

Suppose $x_{1}, x_{2}, y_{1}, y_{2} \in G$ such that $y_{j} \leq x_{i}$ for $i, j=1,2$. Then, we get a figure below.


## Figure 1

The points in the dashed rectangle are the interpolation points.
We consider speical cases, (A) $x_{i}$ 's are in the same horizontal line, (B) $x_{i}$ 's are in the same vertical line, (C) $y_{j}$ 's are in the same horizontal line, and (D) $y_{j}$ 's are in the same vertical line.

(A)

(C)

(B)

(D)

We also consider $x_{i}=y_{j}$. In this case, $x_{i}=y_{j}=z$. So, $\left(G, G^{+}\right)$is an interpolation group. Therfore, $\left(G, G^{+}\right)$is dimension group. Since the above dashed rectangle in figure 1 is open, there is no biggest element in the rectangle. So, there is no greatest lower bound for $x_{1}$ and $x_{2}$ in figure 1. Therefore, $\left(G, G^{+}\right)$is not a lattice-ordered group.

Now, define $A_{k}=\left(\begin{array}{cc}2^{m_{k}} & 1 \\ 1 & 2^{m_{k}}\end{array}\right)$ such that $A_{k}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ commutes with the actions $\alpha$ that flip the coordinates. Then, we get an inductive system, $\left\{\left(\mathbb{Z}^{2}, \alpha\right), A_{k}\right\}$. We need to check the inductive limit of this inductive system is a dimension group but is not a lattice-ordered dimension group. We will construct maps $\varphi_{k}$ that will give us a diagram:


Now, we define the $x_{k}$ and $y_{k}$ in $G$ as follows. Since $A_{k}$ is invertible, we get $B_{k}=A_{k}^{-1}=\frac{1}{2^{2 m_{k}-1}}\left(\begin{array}{cc}2^{m_{k}} & -1 \\ -1 & 2^{m_{k}}\end{array}\right)$. Define a sequence $\left(x_{k}, y_{k}\right) \in$ $G \times G$ by $x_{1}=(2,1), y_{1}=\alpha\left(x_{1}\right)=(2,1)$ and $\binom{x_{k+1}}{y_{k+1}}=B_{k}\binom{x_{k}}{y_{k}}$ where $x_{k}, y_{k} \in G$. Define $G_{k}$ to be the subgroup of $G$ generated by $x_{k}$ and $y_{k}$. Since $\binom{x_{k}}{y_{k}}=A_{k}\binom{x_{k+1}}{y_{k+1}}, G_{k} \subseteq G_{k+1}$. Consider the homomorphism $\varphi_{k}$ from $\mathbb{Z}^{2}$ with the flip automorphism $\alpha$ to $G_{k}$ given by $e_{1} \mapsto x_{k}$ and $e_{2} \mapsto y_{k}$. When $k=1$, if $a x_{1}+b y_{1}=0$, then $a=0$ and $b=0$. So, $\varphi_{1}$ is injective. Suppose $\varphi_{k}$ is injective. Then $\left(\begin{array}{ll}a & b\end{array}\right)\binom{x_{k}}{y_{k}}=0$ implies $(a, b)=(0,0)$. Now, we need to check $\varphi_{k+1}$ is injective. Suppose $\left(\begin{array}{ll}a & b\end{array}\right)\binom{x_{k+1}}{y_{k+1}}=\left(\begin{array}{ll}a & b\end{array}\right) B_{k}\binom{x_{k}}{y_{k}}=0$. Since $B_{k}$ is invertible, $a=0$ and $b=0$. Therefore, the map $\varphi_{k+1}$ is injective.

Next, we would like to check the image in each $G_{k}^{+}$is in the first quadrant. By the definition, $x_{1}$ and $y_{1}$ are in $G^{+}$. Suppose $x_{k}$ and $y_{k}$ are in $G^{+}$. We choose $m_{k}$ so that $x_{k}$ and $y_{k}$ lie between two lines made by the column of $A_{k}$ in the first quadrant. Then we apply $B_{k}$ to the coordinates. Then, $x_{k+1}$ and $y_{k+1}$ are still in the first quadrant. At every stage, the angles between the lines made by $x_{k}$ and $y_{k}$ are getting wider. However, these lines converge to some lines between the positive $x$-axis and positive $y$-axis.

Finally, we need to check the union of the images is dense. The lengths of $x_{k}$ and $y_{k}$ is tending to zero and they are linearly independent. This implies that the union of the images is dense. The positive cone is an open wedge in the first quadrant, so the same argument as for $G$ above shows that it is not lattice-ordered.

According to the above example, the hypothesis of the main theorem that the group is lattice-ordered is not necessary. Therefore, we suggest that there would be more research needed to generalize the theorem.

## Bibliography

[1] B. Blackadar. Symmetries of the CAR algebra, Annals of Mathematics Second Series 131(3) (1990), 589 - 623.
[2] O. Bratteli. Inductive limits of finite dimensional $C^{*}$-algebras, Transactions of the American Mathematical Society 171 (1972), 195 - 234.
[3] D. S. Dummit and R. M. Foote. Abstract algebra, John Wiley \& Sons, Inc., Hoboken, 2004.
[4] E. G. Effros, D. E. Handelman, and C-L. Shen, Dimension groups and their affine representations, American Journal of Mathematics 102(2) (1980), 385 - 407.
[5] G. A. Elliott. On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, Journal of Algebra 38 (1976), 29 - 44.
[6] G. A. Elliott. Towards a theory of classification, Advances in Mathematics 223 (2010), $30-48$.
[7] G. A. Elliott and H. Su. $K$-theoretic classification for inductive limit $Z_{2}$ actions on AF algebras, Canadian Journal of Mathematics 48(5) (1996), 946-958.
[8] J. G. Glimm. On a certain classs of operator algebras, Transactions of the American Mathematical Society, 95(2) (1960), 318 - 340.
[9] K. R. Goodearl. Partially ordered abelian groups with interpolation, American Mathematical Society, Providence, 1986.
[10] D. Handelman and W. Rossmann. Product type actions of finite and compact groups, Indiana University Mathematics Journal 33(4) (1984), 479 - 509.
[11] D. Handelman and W. Rossmann. Actions of compact groups on AF $C^{*}$ algebras, Illinois Journal of Mathematics 29(1) (1985), 51-95.
[12] G. J. Murphy. $C^{*}$-algebras and operator theory, Academic press, Inc., San Diego, 1990.
[13] J. J. Rotman. Advanced Modern Algebra, American Mathematical Society, Providence, 2002.
[14] M. Rørdam, F. Larsen, and N. J. Laustsen. An introduction to K-Theory for $C^{*}$-algebras, Cambridge university press, Cambridge, 2000.
[15] M. Rørdam and E. Stømer, Classification of nuclear $C^{*}$-algebras. Entropy in operator algebras, Encyclopedia of Mathematical Sciences, 126. Operator Algebras and Non-commutative Geometry 7, Springer-Verlag, Berlin, 2002.

## Index

$C^{*}$-algebra, 10
$K_{0}, 15$
*-homomorphism, 10
AF-algebra, 11

Cancellation property, 14
Category, 6
Contravariant functor, 7
Covariant functor, 7
Crossed product, 32

Directed, 31
Dual action, 32

Effros-Handelman-Shen
theorem, 32
Elliott's intertwining argument, 26

Grothendieck group, 14
Grothendieck map, 14

Inductive limit, 17
Inductive sequence, 17
Inner *-automorphism, 8
Inner automorphism, 8
Interpolation, 31

Lattice, 35
Lattice-ordered abelian group, 35

Order unit, 9

Projection, 13

Semi-group ( $\mathcal{D},+$ ), 14
Simplicial basis, 32
Simplicial group, 32

Unital, 10
Unperforated, 31

