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ABSTRACT

A modification of the Effros-Handelman-Shen Theorem with Z2

actions

by

Bit Na Choi

In this thesis, we show that if we have a Z2 action on a lattice-

ordered dimension group, then it will arise as an inductive limit of Z2

actions on simplicial groups. This work was motivated by the range of

the invariant problem in Elliott and Su’s classification of AF type Z2 ac-

tions. In order to show this, we modify the proof of Effros-Handelman-

Shen theorem to include Z2 actions at every stage of the arguments.
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CHAPTER 1

Introduction

This is a thesis in Ordered Group Theory devoted to the study

of actions on dimension groups. Dimension groups arise naturally as

invariants in the classification of C∗-algebras.

The classification of AF-algebras started with Glimm’s supernatu-

ral numbers, which he used to classify UHF-algebras [8]. Also, Bratteli

showed how diagrams could be used to classify AF-algebras. The Brat-

teli diagram is a systematic way to write down inductive sequences of

finite dimensional C∗-algebras [2]. For example, we encode a sequence

C → M2

⊕
C
⊕

M2

⊕
M2 → M6

⊕
M3 as a Bratteli diagram. In

the diagram below, the dots in each horizontal row represent the di-

rect summands in the algebras in the inductive system, the number of

arrows between dots counts the multiplicity of the partial embedding

between those two summands. The Bratteli diagram below gives one

sequence of maps such as above.

·

· · · ·

· ·

For AF algebras, the Bratteli diagram carries on downwards infinitely.

After that, George Elliott used K-theory to classify AF-algebras.

He clarified the classification of these algebras by using invariants [5].

Elliott’s invariant was the K0 group of the C∗-algebras. The group K0

of an AF algebra is an example of an ordered abelian group, a group

with a partial order that is translation invariant.

3



1. INTRODUCTION 4

An ordered abelian group (G,G+) is said to be unperforated if every

x ∈ G for which nx ≥ 0 for some n ∈ N satisfies x ≥ 0. An ordered

abelian group (G,G+) is said to have the Riesz interpolation property

if for every x1, x2, y1, y2 ∈ G where xi ≤ yj for i, j = 1, 2, there exists

z ∈ G with xi ≤ z ≤ yj for i, j = 1, 2 [14]. The Effros-Handelman-Shen

theorem says that a countable ordered abelian group (G,G+) is the K0

group of an AF-algebra if and only if it is unperforated and has the

Riesz interpolation property[4]. After the classification of AF-algebras

was done, people began to add more things to the invariant besides K0

in order to classify more algebras.

We mentioned the generalization of the classification of AF algebras

above. Now, we would like to talk about the generalization of the

classification of AF algebras to classifications of algebras with actions

on them. First, Handelman and Rossmann assumed that the algebra

was a UHF algebra and the action was product type in [10]. After

that, they generalized the content of their previous paper [10] to locally

representable action on an AF algebra in [11]. In [1], Blackadar showed

that there were actions of Z2 that were not locally representable even on

UHF algebras. Elliott and Su generalized the K-theoretic classification

of Handelman and Rossman in [11] by removing locally representable.

They still keep AF inductive limit type and they restricted the action

to the group Z2 [7].

The range of the invariant that Elliott and Su used has still not

been completely determined. In this thesis, we tried to generalize the

Effros-Handelman-Shen theorem to apply to the invariant of Elliott

and Su. Our main theorem is a step towards the generalization. This

thesis is organized as follows. In chapter 2, we discuss classification,

especially, using a functor. We discuss C∗-algebra facts in chapter

3. We describe the semi-groups D(A), the K0 group of a unital C∗-

algebra, and inductive limits in chapter 4. In chapter 5, we discuss

Elliott’s intertwining argument that is the pattern to prove Elliott’s AF

classification theorem. Chapter 6 contains the range of the invariant

problem for the classification that goes with the theorem Elliott and

Su found. Chapter 7 is our main result of this thesis. It contains a
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modification of the Effros-Handelman-Shen theorem where we restrict

the dimension group to a lattice-ordered one but include Z2 actions.



CHAPTER 2

Classification

This chapter explains about classification, in particular, a classifi-

cation by using a functor.

As we see in [6], there are lots of classifications as follows:

– A complete list

– A complete list using labels

– A functor

Here are examples of each kind of classification.

Example 2.1.

(1) An example of a complete list is the classification of finite

simple groups. As we see in [3], the Hölder program is the

project to classify those groups.

(2) An example of a complete list using labels is the classifica-

tion of complex simple Lie algebras, of which there are four

sequences An, Bn, Cn, Dn, and five exceptions(E6, E7, E8, F4,

and G2). These Lie algebras are classified by their Dynkin

diagrams.

(3) The last example is the classifying functors that are used in

the Elliott classification program.

We would like to explain about a functor in detail. Before explain-

ing about a functor, we have to know what a category is. Here is the

definition of a category.

Definition 2.1. [14, 3.2.1] A category C consists of a class O(C)

of objects and for each pair of objects A,B in O(C) a set Mor(A,B)

of morphisms from A to B with an associative rule of composition

Mor(A,B)×Mor(B,C)→ Mor(A,C), (ϕ, ψ) 7→ ψ ◦ ϕ
6



2. CLASSIFICATION 7

such that for each object X there is an element idX in Mor(X,X) which

satisfies idY ◦ ϕ = ϕ = ϕ ◦ idX for every ϕ in Mor(X, Y ).

Here are various examples of categories.

Example 2.2 (Category (Objects, Morphisms)).

– (Groups, Group homomorphisms)

– (Rings, Ring homomorphisms)

– (Vector spaces, Linear maps)

– (Sets, Functions)

– (Topological spaces, Continuous maps)

– (Pointed spaces, Pointed maps)

– (C∗-algebras, *-homomorphisms)

– (Partially ordered abelian groups, ordered group homomor-

phisms)

From now on, C∗ denotes the category that consists of C∗-algebras

and *-homomorphisms, and AbG denotes the category that consists

of partially ordered abelian groups and ordered group homomorphisms.

Based on the definition of category, we define the two types of

functors.

Definition 2.2. [14, 3.2.1] Let C1 and C2 be categories. For each

object A in C1, we have an object F (A) in C2. Also, for each morphism

ϕ : A→ B in C1,

We can define F (ϕ) in two different ways.

(1) we have F (ϕ) : F (A)→ F (B), F (idA) = idF (A), and

F (f ◦ g) = F (f) ◦ F (g) where f and g are morphisms in C1.

A functor F such as this is called a covariant functor.

This functor preserves identity morphisms and composition of

morphisms.

(2) we have F (ϕ) : F (B)→ F (A), F (idA) = idF (A), and

F (f ◦ g) = F (g) ◦ F (f) where f and g are morphisms in C1.

A functor F such as this is called a contravariant functor.

This functor reverses the direction of composition.
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Here are examples of functors.

Example 2.3.

(1) K0 is a covariant functor from approximately finite dimen-

sional C∗ (AF C∗) to AbG.

(2) Fundamental group is a contravariant functor from pointed

topological spaces to groups.

(3) A forgetful functor, which is covariant, forgets or drops some

or all of the input’s structure or properties before mapping to

the output. For example, a mapping from vector space to set,

and a mapping from linear maps to functions.

We will explain more about the first one of the above examples in

chapter 4.

When we have classification by a functor, we have a class of objects

that we want to classify with their homomorphisms, and a simpler

category for the functor to take its values in. We want a functor to

have the property that an isomorphism between invariants comes from

an isomorphism between objects. In fact, if ψ : F (A) → F (B) is

an isomorphism, then we want a ψ̃ : A → B that is an isomorphism

with ψ = F (ψ̃). In this case, trivial automorphisms should go to the

identity maps. The advantage of using functors for classification is

giving more information about the relationship between objects than

isomorphism. We usually get a homomorphism theorem which tells us

when one object embeds into another one.

In order to classify a category, we would like to have a functor which

ignores certain automorphisms considered to be trivial. So, here are

some definitions.

Definition 2.3. Let R be a ring. Suppose x is an invertible element

in R. The map ϕ(y) = xyx−1 is an isomorphism of R with itself, also

known as an automorphism. Such an automorphism is called an inner

automorphism of R. With a C∗-algebra A, if u satisfies uu∗ = u∗u =

1, then x 7→ uxu∗ is called an inner *-automorphism.
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There exist automorphisms that are not inner. For instance, con-

sider the ring C ⊕ C. Then, there is an automorphism (x, y) 7→ (y, x)

where x, y ∈ C. Since the ring is commutative, the only inner auto-

morphism is the identity. In this case, the automorphism is not inner.

We would like to consider the case of inner automorphisms as a

trivial one. Here is a brief example, a classification using a functor.

Example 2.4. Consider the domain category, being classified, which

consists of matrix algebras over complex number as objects and uni-

tal *-homomorphisms as morphisms, i.e., (Matrix algebras(Mn), unital

*-homomorphisms), and trivial automorphism in this case is inner au-

tomorphism.

An order unit for an ordered group G is any positive element u in

G+ such that for any element g in G, there is some positive integer n

for which |g| ≤ nu. Define the target category, ((Z, Z+, n), positive

unital group homomorphism). Then, we can get a functor (K0, K
+
0 , [1])

from the domain category to the target category such that

(K0(Mn), K0(Mn)+, [1]) ∼= (Z,Z+, n).

In this case, each unital homomorphism looks like down below;

Mn →Mnk
∼= Mn ⊗Mk, by x 7→ u(x⊗ 1k)u

∗ for some unitary u

Z→ Z by x 7→ kx for some k ≥ 0

In particular, the map x 7→ kx is the image under the functor of

the map x 7→ x ⊗ 1k from Mn → Mnk. It means that K0 ignores the

inner automorphism part.

We explain more this example in the next chapter.



CHAPTER 3

C∗-algebras

As we mentioned above, we would like to describe C∗-algebras in

this chapter. In particular, we define AF algebras, one of the most

interesting classes of C∗-algebras. First of all, we define the category

of C∗-algebras, *-homomorphism, and unital.

Definition 3.1. [14, Definition 1.1.1]

(1) A C∗-algebra A is an algebra over C with a norm a 7→ ‖a‖
and an involution a 7→ a∗, a ∈ A, such that A is complete

with respect to the norm, and such that ‖ab‖ ≤ ‖a‖ ‖b‖ and

‖aa∗‖ = ‖a‖2 for every a, b in A.

An involution is a conjugate linear function that is its own

inverse, i.e., a∗∗ = a.

(2) A *-homomorphism ϕ : A→ B between C∗-algebras A, B is

a linear and multiplicative map which satisfies ϕ(a∗) = ϕ(a)∗.

(3) A C∗-algebra A is called unital if it has a multiplicative iden-

tity, which will be denoted by 1 or 1A.

(4) If A and B are unital and ϕ(1A) = 1B, then ϕ is called unital.

Here are some examples of C∗-algebras.

Example 3.1.

(1) C0(X), the complex valued continuous function on X vanish-

ing at infinity, where X is a locally compact Hausdorff space

with pointwise multiplication (fg)(x) = f(x)g(x), the involu-

tion f ∗(x) = f(x), and the norm ‖f(x)‖ = sup |f(x)|
(2) Mn(C), complex n × n matrices with the involution A∗ = Aᵀ

and the norm such that

‖A‖ = sup{‖Ax‖ | x ∈ Cn with ‖x‖ = 1}
10



3. C∗-ALGEBRAS 11

(3) B(H), the Banach space consisting of all bounded operators

from H to H for H a complex Hilbert space, where the involu-

tion is the Hilbert adjoint, defined by < x|Ty >=< T ∗x|y >.

In this case, the norm is

‖T‖ = sup{‖Ty‖ | y ∈ H with ‖y‖ ≤ 1}.

In order to clarify the AF C∗ that we mentioned in Chapter 2, we

move on to the definition of AF-algebra.

Definition 3.2. [14, Definition 7.2.1] An AF-algebra A is a C∗-

algebra that satisfies that there is an increasing sequence An of finite

dimensional C∗-algebras such that A =
⋃∞
n=1An

The term “AF” is an abbreviation of Approximately Finite dimen-

sional.

In order to fully understand the above definition, we need to know

a bit about finite dimensional C∗-algebras.

In [12], it is shown that an arbitrary finite dimensional C∗-algebra

A takes the form

Mn1 ⊕Mn2 ⊕ · · · ⊕Mnk

for some integers n1, n2, · · · , nk where Mn is the algebra of n× n ma-

tricies over the complex numbers.

We can define a unital map between matrix algebras;

Mn →Mk
∼= Mn ⊗Mm, by x 7→ u(x⊗ 1m)u∗

for some unitary u ∈ Mk. In fact, any unital ∗− homomorphism be-

tween full matrix algebras is of this form.

By generalizing these unital maps, we can define *-homomorphisms

between finite dimensional C∗-algebras. Define

π : Mn1 ⊕Mn2 ⊕ · · · ⊕Mnk →Ml

by

π(x) =


π1(x)

π2(x)
. . .

πk(x)

 ,
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where πi : Mni →Mnih by x 7→ u(x⊗1h)u
∗ for each i = 1, 2, · · · , k and

for some unitary u ∈ Mnih, and there are, possibly, some zero maps,

for example, C⊕ C→ C by (x, y) 7→ x for any x, y ∈ C.
This is what unital homomorphisms Mn1⊕Mn2⊕· · ·⊕Mnk →Ml all

look like, in other words, any *-homomorphism is conjugate to one of

this forms, i.e., ϕ(x) = vψ(x)v∗ for some unitary v. In general, unital

*-homomorphisms between finite dimensional algebras are direct sums

of maps like above. Since the injective *-homomorphisms are norm

preserving, we can define a norm for the union of an increasing sequence

of finite dimensional algebras. In this way, we can take a completion.

Therefore, we can get an AF-algebra.



CHAPTER 4

K-theory

In this chapter, we shall introduce the semi-group D(A) and the

K0 groups that arise from the semi-group. We will show that K0 is a

functor from AF C∗ to AbG as we mentioned in Chapter 2.

1. The Semi-Groups D(A)

In this section, we would like to describe a specific semi-group,

D(A). First, we describe the set of projections, P∞(A).

Here are definitions of a projection and P∞(A).

Definition 4.1. [14, Definition 2.2.1] An element p in a C∗-algebra

is a projection if p = p2 = p∗. The set of all projections in a C∗-

algebra A is denoted by P (A).

Definition 4.2. [14, Definition 2.3.1] Put

Pn(A) = P(Mn(A)), P∞(A) =
⋃∞
n=1Pn(A),

where A is a C∗-algebra and n is a positive integer.

Define the relation ∼0 on P∞(A) as follows. Suppose that p is a

projection in Pn(A) and q is a projection in Pm(A). Then p ∼0 q if

there is an element v in Mm,n(A) with p = vv∗ and q = v∗v.

Define a binary operation ⊕ on P∞(A) by

p⊕ q = diag(p, q) =

(
p 0

0 q

)
.

Based on the P∞(A), we would like to introduce the definition of

semi-group D(A).

Definition 4.3. [14, Definition 2.3.3] With (P∞(A),∼0,⊕), set

D(A) = P∞(A)/ ∼0.

13
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For each p in P∞(A), let [p]D in D(A) denote the equivalence class

containing p. Define addition on D(A) by

[p]D + [q]D = [p⊕ q]D, for p, q ∈ P∞(A).

Then, (D,+) is an abelian semi-group.

Here are some examples about the semi-groups D(A).

Example 4.1.

– D(C) ∼= N
– D(Mn(C)) ∼= N
– D(B(H)) ∼= N ∪∞ when H is an infinite dimensional Hilbert

space.

In each case, we get the isomorphism by taking the trace of any pro-

jection in an equivalence class.

2. The K0 Group of a unital C∗-algebra

Before explaining theK0 group, we should explain what the Grothendieck

construction is.

Definition 4.4. [14, 3.1.1] Let (S,+) be an abelian semi-group.

We say that the semi-group (S,+) has the cancellation property if,

whenever x, y, and z are elements in S with x+z = y+z, it follows that

x = y. Define an equivalence relation ∼ on S×S by (x1, y1) ∼ (x2, y2)

if there exists z in S such that x1 + y2 + z = x2 + y1 + z.

Let G(S) be the quotient (S × S)/ ∼, and let < x, y > denote the

equivalence class in G(S) containing (x, y) in S × S. Then, the opera-

tion

< x1, y1 > + < x2, y2 >=< x1 + x2, y1 + y2 >

is well-defined and (G(S),+) is an abelian group. The group (G(S),+)

is called the Grothendieck group of S. Define a map

γS: S → G(S), x 7→< x+ y, y >

for every y. This map γS is additive. It is called the Grothendieck

map . It is injective if S has the cancellation property.
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The Grothendieck construction generalizes how we obtain the inte-

gers Z from the natural numbers N.

Example 4.2. Consider the abelian semi-group (N,+). When we

use the Grothendieck group construction, we obtain the formal differences

between natural numbers as elements n−m. Since this semi-group has

the cancellation property, we don’t need the extra element added on

the equivalence relation below

n−m ∼ n′ −m′ if n+m′ = n′ +m.

Now, define for all n ∈ N, n := n− 0

−n := 0− n

This defines the integer Z.

We consider another example. Consider the semi-group N∪∞ with

addition and n+∞ =∞ for all n ∈ N ∪∞. In this case, every pair is

equal to every other pair. There is only one equivalence class. So, the

Grothendieck group of this is {0} and the semi-group (N∪∞,+) does

not have the cancellation property.

By using the semi-group and Grothendieck construction, we begin

to introduce K0 groups. K0 groups are defined in two cases, unital

C∗-algebras and non-unital C∗-algebras. In this thesis, we concentrate

on unital C∗-algebras.

Definition 4.5. [14, Definition 3.1.4] Let A be a unital C∗-algebra,

and let (D(A),+) be the abelian semi-group. Define K0(A) to be the

Grothendieck group of D(A), in other words, K0(A) = G(D(A)).

Define a map [·]0 : P∞(A)→ K0(A) by

[p]0 = γ([p]D) ∈ K0(A), for p ∈ P∞(A),

where γ : D(A)→ K0(A) is the Grothendieck map.

Here is the example when we apply K0 to the example 4.1.

Example 4.3.

– K0(C) = Z
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– K0(Mn(C)) = Z
– K0(B(H)) = 0

Now, we would like to explain the functoriality of K0.

Proposition 4.1. [14, Proposition 3.1.8] Let A and B be a unital

C∗-algebra. Given a *-homomorphism ϕ : A→ B, we get a group ho-

momorphism K0(ϕ) such that K0(ϕ)([p]) = [ϕ(p)] for every projection

p ∈ P∞(A).

With the definitions above we have a proposition below.

Proposition 4.2. [14, Proposition 3.2.4] [13, Proposition 9.151]

The K0 is a covariant functor from the category of unital C∗-algebras

to the category of abelian groups, in other words,

(1) For each unital C∗-algebra A, K0(idA) = idK0(A)

(2) If A,B and C are unital C∗-algebras, and if ϕ : A→ B and ψ :

B → C are *-homomorphisms, then K0(ψ◦ϕ) = K0(ψ)◦K0(ϕ)

If the C∗-algebras are AF-algebras, then the following statement is

true. The Grothendieck map γ is injective and its image in K0 is the

positive cone for an order of the group.

The functor K0 moves an inductive sequence to another inductive

sequence and an inductive limit to another inductive limit, i.e.,

K0(lim−→An) = lim−→K0(An). In other words, K0 is continuous with re-

spect to inductive limits. This will be explained in the next sec-

tion. Here is another property: K0(Mn1 ⊕ · · · ⊕ Mnk) is isomorphic

to Z⊕ · · · ⊕ Z︸ ︷︷ ︸
k−times

where the image of the Grothendieck map is the posi-

tive cone N⊕ · · · ⊕ N︸ ︷︷ ︸
k−times

.

3. Inductive Limits

The purpose of this section is to explain what an inductive limit is

and what characteristics the inductive limit with actions have.
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Definition 4.6. An inductive sequence in a category C is con-

sist of a sequence {An}∞n=1 of objects in C and a sequence ϕn : An →
An+1 of morphisms in C. We write the inductive sequence like

A1

ϕ1 // A2

ϕ2 // A3

ϕ3 // · · ·

For m > n, we consider the composed morphisms

ϕm,n = ϕm−1 ◦ ϕm−2 ◦ · · · ◦ ϕn : An → Am,

which are called the connecting morphisms (or connecting maps).

Definition 4.7. [14, Definition 6.2.2]

An inductive limit of the inductive sequence

A1

ϕ1 // A2

ϕ2 // A3

ϕ3 // · · ·

in a category C is a system (A, {µn}∞n=1), where A is an object in C,

where µn : An → A is a morphism in C for each n in N, and where the

following two conditions hold.

(1) The diagram

An
ϕn //

µn   

An+1

µn+1}}
A

commutes for each n in N.

(2) If (B, {λn}∞n=1) is a system, where B is an object in C, λn :

An → B is a morphism in C for each n in N, and where

λn = λn+1 ◦ ϕn for all n in N, then there is one and only one

morphism λ : A→ B making the diagram

An
λn

!!

µn

~~
A

λ
// B

commutative for each n in N.
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Here are examples of inductive limits. These examples clear up the

definition and illustrate what inductive limits look like.

Example 4.4.

(1) [14, Example 6.2.3] Let D be a C∗-algebra and let {An}∞n=1

be an increasing sequence of finite dimensional subalgebras of

D. Put

A =
∞⋃
n=1

An,

and for each n let ιn : An → A be the inclusion map. Then

(A, {ιn}) is the inductive limit of the sequence A1 → A2 →
A3 → · · · where the connecting maps are the inclusion maps.

(2) This is an example of a non-unital AF algebra.

Consider the sequence

C
ϕ1 // M2(C)

ϕ2 // M3(C)
ϕ3 // · · · ,

where the connecting map ϕn maps an n× n matrix into the

upper left corner of an (n+ 1)× (n+ 1) matrix whose last row

and last column are zero. The inductive limit of this sequence

is isomorphic to K, the C∗-algebra of compact operators on a

separable infinite dimensional Hilbert space. Its K0 group is

Z, with the usual order relation, but there is no class of the

unit.

(3) This is an example of a UHF algebra called M2∞ .

Consider the sequence

C // M2(C) // M4(C) // · · · ,

with x 7→

(
x 0

0 x

)
in each case.

When we apply the functor K0 to the above sequence, we get

(Z,Z+, 1)
×2 // (Z,Z+, 2)

×2 // (Z,Z+, 4)
×2 // · · · ,
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which has a inductive limit (Z[1
2
],Z[1

2
]+, 1),

where Z[1
2
] = { k

2n
| n = 1, 2, 3, · · · and k ∈ Z}.

We use that K0 is a continuous functor in (2) and (3).

Now, we are going to show explicitely the construction of inductive

limits for partially ordered abelian groups with actions of a fixed group

and equivariant connecting maps.

Let {Gn, ϕn,n+1} be an inductive system of abelian groups. (In

other words, for each n, ϕn,n+1 is a group homomorphism and ϕn,n+1 :

Gn → Gn+1. Write ϕn,m for ϕm−1,m ◦ · · · ◦ϕn,n+1 when m > n.) Define∏∞
n=1Gn = {(g1, g2, g3, · · · ) | gn ∈ Gn} and

⊕∞
n=1Gn = {(g1, g2, g3, · · · ) ∈∏∞

n=1Gn | gk = 0 for all but finitely many k}.
In this case,

∏∞
n=1Gn is an abelian group with operation

(g1, g2, g3, · · · ) + (h1, h2, h3, · · · ) = (g1 + h1, g2 + h2, g3 + h3, · · · ) and⊕∞
n=1Gn is a subgroup of

∏∞
n=1Gn.

Proposition 4.3. Define a map in : Gn →
∏∞

n=1Gn by

in(x) = (0, · · · , 0, x, ϕn,n+1(x), ϕn,n+2(x), ϕn,n+3(x), · · · )

where there are n − 1 zeros at the beginning. Then in is a group

homomorphism.

Proposition 4.4. Define a map

gn,∞ := π ◦ in : Gn →
∞∏
n=1

Gn/
∞⊕
n=1

Gn

where π :
∏∞

n=1Gn →
∏∞

n=1Gn/
⊕∞

n=1Gn is the quotient map and let

G∞ =
⋃∞
n=1 gn,∞(Gn).

Then, G∞ is a subgroup of
∏∞

n=1Gn/
⊕∞

n=1Gn.

Straightforward calculations show proposition 4.3 and 4.4.

Theorem 4.1. If H is an abelian group and ψn : Gn → H is a

collection of homomorphisms such that ψn+1 ◦ ϕn,n+1 = ψn for every

n, then there exists a unique homomorphism ψ∞ : G∞ → H such that
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ψn = ψ∞ ◦ ϕn,∞ for every n.

Gn

ϕn,n+1
//

ψn
++

Gn+1
//

ψn+1

((

· · · // G∞

ψ∞
��
H

Proof. First of all, we need to show the existence of this homo-

morphism. Pick an element of gn,∞(Gn),

ϕn,∞(g) = (0, 0, · · · , 0, g, ϕn,n+1(g), ϕn,n+2(g), · · · ),

where g ∈ Gn. We define ψ∞(ϕn,∞(g)) = ψn(g). We need to show

that ψ∞ is well defined. Suppose ϕm,∞(h) = ϕn,∞(g) where h ∈ Gm.

Since they represent the same class, they are eventually equivalent. By

the commutativity of the diagram, we could go further along in the

sequence before applying the maps ψ. Therefore, we could go past

where the two agree. Since G∞ =
⋃∞
n=1 gn,∞(Gn) and the property of

the commutative diagram determines what ψ∞ must be on gn,∞(Gn),

uniqueness follows. Therefore, there exists the unique homomorphism.

�

This shows that G∞ is the inductive limit of the system {Gn, ϕn}
in the category of abelian groups and group homomorphisms.

Proposition 4.5. Suppose that K is a group and that for each n,

αn is an action of K on Gn. Then, we get an action α of K on
∏∞

n=1Gn

defined by

α(k)(g1, g2, g3, · · · ) = (α1(k)(g1), α2(k)(g2), α3(k)(g3), · · · )

for each k ∈ K.

Proof. We need to show that α(k), which is an automorphism

of the group for each k ∈ K, is an action. Let K be a group and

k1, k2 ∈ K. Since αn is action for each n, αn(k1k2) = αn(k1)(αn(k2))
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So,

α(k1k2)(g1, g2, g3, · · · )

=(α1(k1k2)(g1), α2(k1k2)(g2), α3(k1k2)(g3), · · · )

=(α1(k1)(α1(k2)(g1)), α2(k1)(α2(k2)(g2)), α3(k1)(α3(k2)(g3)), · · · )

=α(k1)(α(k2)(g1, g2, g3, · · · ))

Suppose e is an identiy element of K. Then, αn(e)(gn) = gn for

each n. So,

α(e)(g1, g2, g3, · · · ) = (α1(e)(g1), α2(e)(g2), α3(e)(g3), · · · )

= (g1, g2, g3, · · · ).

�

Proposition 4.6. With the action α of K on
∏∞

n=1Gn defined

above,we have α(k)(
⊕∞

n=1Gn) ⊆
⊕∞

n=1Gn. Also, we get an action α̃ of

K on
∏∞

n=1Gn/
⊕∞

n=1Gn defined by α̃(k)((g1, g2, g3, · · · )+
⊕∞

n=1Gn) =

α(k)(g1, g2, g3, · · · ) +
⊕∞

n=1Gn for k ∈ K.

Proof. By the definition of the action α, α(k)(g1, g2, g3, · · · ) =

(α1(k)(g1), α2(k)(g2), α3(k)(g3), · · · ) where (g1, g2, g3, · · · ) ∈
∏∞

n=1Gn.

If (g1, g2, g3, · · · ) belongs to
⊕∞

n=1Gn, then, since αn(k)(0) = 0 for all

n, (α1(k)(g1), α2(k)(g2), α3(k)(g3), · · · ) becomes 0 when it passes some

point. So, α(k)(
⊕∞

n=1Gn) ⊆
⊕∞

n=1Gn.

Now, we need to check that the action α̃ is well defined. Take

two sequences g = (g1, g2, g3, · · · ) and h = (h1, h2, h3, · · · ) in
∏∞

n=1Gn

such that (g1 − h1, g2 − h2, g3 − h3, · · · ) belongs to
⊕∞

n=1Gn. Then,

α(k)(g)− α(k)(h) ∈
⊕∞

n=1Gn. �

Proposition 4.7. If the connecting maps ϕn,n+1 are equivariant,

that is to say αn+1(k)◦ϕn,n+1 = ϕn,n+1◦αn(k) for all n ∈ N and k ∈ K,

then α̃(k)(G∞) ⊆ G∞ for all k ∈ K, so we get an action of K on G∞.

Proof. Suppose g ∈ G∞. Then,

g = (0, 0, · · · , 0, g, ϕn,n+1(g), ϕn,n+2(g), · · · ).
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If we apply α(k) to the element g, then α̃(k)(g) =

(0, 0, · · · , 0, αn(k)(g), αn+1(k)(ϕn,n+1(g)), αn+2(k)(ϕn,n+2(g)), · · · ).
If we have equivariant, we can interchange the order of the maps. So, we

can replace αn+1(k)(ϕn,n+1(g)) with ϕn,n+1(αn(k)(g)), αn+2(k)(ϕn,n+2(g))

with ϕn,n+2(αn(k)(g)), and similarly for following elements in the se-

quence. So, α̃(k)(g) ∈ G∞. �

One can show that (G∞, α̃) is the inductive limit of the (Gn, αn) in

the category of abelian groups with K actions and equivariant group

homomorphisms.

Proposition 4.8. If each Gn is an ordered group, we get an or-

der on G∞ by defining G+
∞ =

⋃∞
n=1 gn,∞(G+

n ) that makes G∞ into an

ordered group.

Proof. Since gn,∞ is a positive group homomorphism, it preserves

the group structure. Since Gn is an ordered group for each n, Gn

satisfies three conditions; (1) G+
n +G+

n ⊆ G+
n , (2) G+

n ∩G−n = {0}, and

(3) G+
n +G−n = Gn for each n. Now, we need to show that G∞ satisfies

the three conditions as well.

(1) Suppose g1 = (0, 0, · · · , 0, g1, ϕn,n+1(g1), ϕn,n+2(g1), · · · ),
g2 = (0, 0, · · · , 0, g2, ϕn,n+1(g2), ϕn,n+2(g2), · · · ) are in G+

∞.

Since each term of g1 and g2 is in G+
n , the addition of each term

is in G+
n . So, g1+g2 ∈ G+

∞. We may suppose that the elements

g1 and g2 are in the same G+
n . Therefore, G+

∞ +G+
∞ ⊆ G+

∞

(2) Suppose the element g ∈ G+
∞ ∩G−∞.

Then, g,−g ∈
⋃∞
n=1 gn,∞(G+

n ). Since the images of gn,∞ are

all compositions of these maps, g,−g ∈ gm,∞(G+
m) for some

m. Then, there are h1, h2 ∈ G+
m such that gm,∞(h1) = g

and gm,∞(h2) = −g. Since gm,∞(−h2) = g = gm,∞(h1),

gm,l(−h2) = gm,l(h1) for some m > l. Since gm,l is a posi-

tive map and h2 is a positive element of Gm, gm,l(h2) ≥ 0 and

gm,l(−h2) ≥ 0. So, the image of h2 in Gl is 0. So, the image in

G∞ is also 0. Therefore, g = 0, and hence, G+
∞ ∩G−∞ = {0}.
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(3) Suppose g = (0, 0, · · · , 0, g, ϕn,n+1(g), ϕn,n+2(g), · · · ) ∈ G+
∞

and −g ∈ G−∞. Then, each term of g is in G+
n and each term of

−g is in G−n for each n. Since G+
n +G−n ⊆ Gn, G+

∞+G−∞ ⊆ G∞.

Now, we need to show that G∞ ⊆ G+
∞ +G−∞. Suppose the

element g ∈ G∞. Since each term of g is in Gn ⊆ G+
n +G−n for

each n, the element g is in G+
∞ +G−∞.

Therefore, G∞ is an ordered group. �

One can show that (G∞, G
+
∞) is the inductive limit of (Gn, G

+
n ) in

the category of partially ordered abelian groups with positive group

homomorphisms.

With the order defined in the above proposition, it is obviouse that

an element (0, 0, · · · , 0, gn, gn+1, gn+2, · · · ) ∈ G∞ is positive if, and only

if, for some l ≥ n, gt ≥ 0 for every t ≥ l. In other words, elements are

positive if, and only if, they are eventually positive.

Proposition 4.9. If we have actions by positive automorphisms

on the ordered groups, then these give an action by positive automor-

phisms on the ordered groups inductive limit.

Proof. LetG1 → G2 → G3 → · · · → G∞ be an inductive sequence

where Gi is an ordered group for each i. Suppose that H is a fixed

group and each αn is an action by possitive automorphisms. Then we

need to check that α∞(h)(G+
∞) ⊆ G+

∞ for all h ∈ H. By the definition

of action and the construction of an element in G+
∞, each term of an

element in α∞(h)(G+
∞) is in αi(Gi), and hence, α∞(h)(G+

∞) ⊆ G+
∞. So,

it preserves group structures. Therefore, the action of H on G∞ is by

positive automorphisms on the ordered group inductive limit. �

Define a category of H actions on partially ordered groups G. In

this case, object is (G,G+, α(h)) and a morphism is an ordered group

homomorphism ϕ : G1 → G2 with ϕ(G+
1 ) ⊆ G+

2 and ϕ(α(h)(g)) =

α(h)(ϕ(g)). Then, we have constructed an inductive limit which one
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can show satisfies the universial mapping property;

(G1, G
+
1 ) (G2, G

+
2 ) · · · (G∞, G

+
∞)

G

α1 α2 α∞

α

In other words, (G∞, G
+
∞, α∞) is the inductive limit of the induc-

tive system in the category of partially ordered abelian groups with H

actions and equivariant group homomorphisms.

In this section, we have shown how the group G∞ is defined, how

its positive cone is defined, and how the action on it is defined.



CHAPTER 5

Elliott’s Intertwining Argument

We will discuss three important theorems; Elliott’s AF classifica-

tion theorem, the Effros-Handelman-Shen theorem, and the Elliott-Su

theorem that is the motivation for our main theorem.

In this chapter, we discuss the Elliott’s AF classification theorem

and Elliott’s intertwining argument that is used to prove the theorem.

Theorem 5.1 (Elliott). [14, Theorem 7.3.4] If (K0(A), K0(A)+, [1A])
∼= (K0(B), K0(B)+, [1B]), then A ∼= B for AF-algebras. Moreover, if

α : K0(A) → K0(B) is an isomorphism that satisfies α(K0(A)+) =

K0(B)+ and α([1A]) = [1B], then A ∼= B and there is an isomorphism

ϕ : A→ B with K0(ϕ) = α.

Before we prove this theorem, there are a couple of lemmas to know.

Lemma 5.1. [14, Lemma 7.3.2]

(1) (Existence) Let A and B be AF-algebras. For each posi-

tive group homomorphism α : K0(A) → K0(B) satisfying

α([1A]) ≤ [1B] there is a *-homomorphism ϕ : A → B with

K0(ϕ) = α. If α([1A]) = [1B], then ϕ is necessarily unit pre-

serving.

(2) (Uniqueness) Let A and B be finite dimensional algebras and

let ϕ, ψ : A→ B be *-homomorphisms. Then K0(ϕ) = K0(ψ)

if and only if there exists an unitary u in B such that ψ(x) =

Adu ◦ ϕ(x) for every x.

We will prove (2), but only a special case of (1) when we go through

the proof below.

Here is the proof of Theorem 5.1.

25
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Proof. This proof uses the Elliott’s intertwining argument. It con-

sists of four parts; pull back the invariant, existence lemma, uniqueness

lemma, and intertwining. We will explain about each parts of the El-

liott’s intertwining argument.

Let

A1
// A2

// · · · // A InA

ϕ

��
B1

// B2
// · · · // B InB

ψ

OO

be sequences where Ai and Bi are finite dimensional algebras for all i,

and ϕ, ψ are isomorphisms of invariants.

(1) (Pull back the invariant) Suppose an invariant is continuous

with respect to inductive limits. When we apply the invariant

to sequences, the invariant turns the inductive system into

another inductive system. With a continuous invariant, such

as K0, the inductive limit of invariants is the invariant of the

inductive limit. We want a commutative diagram:

InA1
//

ϕ1

$$

InA2
//

ϕ2

""

· · · // InA

ϕ

��
InB1

// InB2
//

ψ1

OO

· · · // InB

ψ

OO

 (∗),

where InC is invariant of C.

We need to show that there are, possibly after passing to

subsequences, maps ϕi and ψi that make the above diagram

commutative.

Since Ai and Bj are finite dimensional algebras, the values

of invariants are finitely generated. Suppose InA1 = Zn. Take

the simplicial basis x1, x2, · · · , xn in InA1. We make x1 go

along the horizontal maps to InA and down to InB by ϕ.

Since InB is the union of the images of InBl’s, there exists yl

which is the image along the bottom horizontal row of some

element of InBl such that ϕ(x1) = yl. So, we can do this

for each of xi’s. Then, there exists a homomorphism ϕ1 from

InA1 to InBk for some k that makes a commuting diagram.
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If we renumber Bk as B2, then we get the homomorphism ϕ1:

InA1 → InB2. We do the same thing to the simplicial basis

of InB2. Then we can get a map ψ1 from InB2 to some InAn.

Similarly, we renumber An as A2. Finally, we get the map ψ1:

InB2 → InA2.

Now, we need to show that we can make the first trian-

gle that consists of the maps ϕ1, ψ1, and the horizontal map

InA1 → InA2 in (∗) commutative by going further along the

top row and renumbering if necessary. The diagram that con-

sists of ϕ1, ψ, a map from InA1 to InA, and a map from InB2

to InB is commutative. Also, the diagram that consists of

ψ1, ϕ, a map from InA2 to InA, and a map from InB2 to

InB is commutative. Therefore, the result when the element

goes along the horizontal maps to InA is eventually same as

the result when we take maps ϕ1, ψ1 and the horizontal maps

to InA. Therefore, by moving out to some An further along

the top row and renumbering, we can make the first triangle

is commutative. Once we have done this, we can apply this to

each triangle in turn. So, the diagram (∗) commutes. We can

ensure all the maps are positive and preserve the class of the

unit as well.

(2) (Existence Lemma) We stated the existence lemma in gen-

eral above. We show explicitly a special case of the existence

lemma here.

We have a map Zk → Zl such that
n1

n2

...

nk

 7→

m1

m2

...

ml

 .

In this case, those two columns mean the class of the unit

for each Zn. Since the homomorphism is positive and unital,

we have a class of the unit which is the single vector in Zk

and our matrix M = [aij]i,j where aij ∈ N that preserves
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the unit. So, we need to show that there exists a unital *-

homomorphism from A to B which induces the map Zk → Zl

where A = Mn1 ⊕ · · · ⊕Mnk and B = Mm1 ⊕ · · · ⊕Mml .

Consider the case B = Mm1 . In this case,

M =
(
a11 a12 · · · a1k

)
.

Then, M


n1

n2

...

nk

 = a11n1 + a12n2 + · · ·+ a1knk = m1

If we take a look an element z ∈ A where

z =


z1

z2
...

zk

 ∈Mn1 ⊕Mn2 ⊕ · · · ⊕Mnk ,

then we can define a ∗−homomorphism by a map

z 7→ diag(z1, · · · , z1︸ ︷︷ ︸
a11times

, z2, · · · , z2︸ ︷︷ ︸
a12times

, · · · , zk, · · · , zk︸ ︷︷ ︸
a1ktimes

)

and the size of this matrix is m1. We can do this one direct

summand at a time to get the expanded case, B = Mm1 ⊕
· · ·Mml . This proves the existence lemma.

So, we get a diagram below that does not commute by

applying existence lemma to (∗).

A1
//

ϕ̃1

��

A2
//

ϕ̃2

��

· · · // A

B1
//

ψ̃1
>>

B2

ψ̃2

>>

// · · · // B

Once we have got this diagram, this is not commuting. We

need to fix this diagram so that it is commuting and induces

the original one on the invariant. In order to fix the diagram,

we need the uniqueness lemma.
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(3) (Uniqueness Lemma) Now, we show the uniqueness lemma

stated above. Consider the case A = Mn1 ⊕ · · · ⊕Mnk and

B = Mm1 . Assume that ϕ and ψ are unital homomorphisms.

We have K0(ϕ) = K0(ψ). Consider ϕ(Mn1) ⊆ B, ψ(Mn1) ⊆
B, and e11 ∈ Mn1 . Since K0(ϕ(e11)) = K0(ψ(e11)), ψ(e11) ∼
ϕ(e11) . There exists an element v ∈ B such that vv∗ = ψ(e11)

and v∗v = ϕ(e11). Let u1 =
∑n1

j=1 ψ(ej1) v ϕ(e1j). Then u1u
∗
1 =

ψ(
∑n1

s=1 ess) and u∗1u1 = ϕ(
∑n1

s=1 ess). By direct calculations,

u1ϕ(ekl)u
∗
1 = ψ(ekl) if ekl ∈Mn1 ⊆ A. Now, we do the same for

Mn2 , · · · ,Mnk , and let u = u1 + u2 + · · ·+ uk. We can do this

one summand at a time for the general case on B. Then we

get uϕ(x)u∗ = ψ(x) for all x ∈ A. This proves the uniqueness

lemma.

Now, we use the uniqueness lemma one at a time to adjust

all of the maps to make the diagram commute. Apply inner

automorphims Ai → Ai and Bj → Bj where i, j = 1, 2, 3, · · ·
to make the diagram commutative.

A1 A2 · · · A

B1 B2 · · · B

ϕ̃1 ϕ̃2

ψ̃1 ψ̃2

Since it does not change the image at the level of the invariant,

the diagram in (2) commutes and we get the diagram (∗) when

we apply the invariant.

(4) (Intertwining) If we have the commutative diagram like the

diagram in (2), then we get maps between A and B that make

the whole diagram commutative [15].

A1
//

ϕ̃1

��

A2
//

ϕ̃2

��

· · · // A

ϕ̃
��

B1
//

ψ̃1
>>

B2
//

ψ̃2

>>

· · · // B

ψ̃

OO
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The maps ψ̃ and ϕ̃ induce the maps ψ and ϕ when we apply

the invariant. Since this diagram is commutative, the maps

are isomorphisms.

�

The same pattern of Elliott’s intertwining argument has been used

in other classification arguments. In particular, Elliott and Su used

this pattern for classification with Z2 actions.



CHAPTER 6

The Range of Invariant Problem

We discussed that the functor K0 sends AF algebras to partially

ordered abelian groups. What partially ordered abelian groups arise

as K0 groups of AF C∗-algebras is the natural question of the range

of invariant problem. The Effros-Handelman-Shen theorem gives the

answer to the range of invariant problem for AF C∗-algebras. In order

to precisely understand the Effros-Handelman-Shen theorem, there are

some terms to know: a dimension group and a simplicial group.

To clarify the definition of dimension group, we would like to de-

fine new terminologies that help to understand the meaning. We have

previously mentioned the definition of these words earlier in the thesis.

Definition 6.1. [9]

– Directed means that every element has the form x − y for

x, y ∈ G+.

– Unperforated means that if x ∈ G, n ∈ N\0, nx ≥ 0, then

x ≥ 0.

For instance, if G = Z and G+ = Z+ = {0, 1, 2, · · · } = N, then

(G,G+) is directed and unperforated. Consider the different

example. If G = Z and G+ = {0, 2, 3, 4, · · · }, then (G,G+) is

directed but not unperforated because 1+1 ∈ G+, but 1 /∈ G+.

– Interpolation means that for every x1, x2, y1, y2 ∈ G, where

xi ≤ yj for all i, j, there exists an element z ∈ G with xi ≤
z ≤ yj for all i, j.

Definition 6.2. [9] A dimension group (G,G+) is any directed,

unperforated, interpolation group.

Also, we want to define a simplicial group. Here is the definition.

31
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Definition 6.3. [9] A simplicial group is any partially ordered

abelian group that is isomorphic (as an ordered group) to Zn for some

nonnegative integer n. A simplicial basis for a simplicial group G

is any basis {x1, · · · , xn} for G as a free abelian group such that also

G+ =
∑

Z+xi. By convention, the empty set is considered to be a

simplicial basis for the zero simplicial group.

Theorem 6.1 (Effros-Handelman-Shen). [9, Theorem 3.19]

Any dimension group is isomorphic to a direct limit (or inductive

limit) of a direct system of simplicial groups (in the category of partially

ordered abelian groups).

This theorem points out that simplical groups are dimension groups

and inductive limits of a sequence of simplicial groups are dimension

groups.

Now, we would like to move on the range of invariant problem for

the Elliott-Su classification of actions. In [7] , Elliott and Su generalized

the Elliott AF classification theorem to classifying the inductive limit

of dynamical systems where the actions are by the group Z2.

A1 A2 · · · A

Z2 Z2 Z2

We need to know what certain crossed products are. We shall only

be concerned with the special case of crossed product where the group

is Z2. Here is the definition of a crossed product (o), dual action , and

special element that we will use in this thesis.

Definition 6.4. Let A be a unital C∗-algebra and let α be a Z2

action on A. There is a canonical embedding of A into AoαZ2. There

is also a dual action of Z2 on Aoα Z2. In general, (Aoα Z2) oα̂∗ Z2
∼=

M2(A) and with the inclusions

a 7→

(
a 0

0 α(a)

)
, g 7→

(
0 1

1 0

)
, γ 7→

(
1 0

0 −1

)
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So,
Aoα Z2 = {a+ bg | a, b ∈ A}

= {

(
a b

α(b) α(a)

)
| a, b ∈ A}

and the dual action is given by γ, α̂∗(x) = γxγ∗. The special element

mentioned below is 1+g
2

= 1
2

(
1 1

1 1

)
.

The K-theory data we need here is the following:

– (K0(A), K0(A)+, [1A], α∗)

– (K0(Aoα Z2), K0(Aoα Z2)
+, the special element, α̂∗)

– The map K0(A)→ K0(Aoα Z2)

Consider the following special cases of the invariant in [7].

Example 6.1.

(1) Consider A = Mn and α(x) = uxu∗

where u = diag(1, 1, · · · , 1︸ ︷︷ ︸
k

,−1,−1, · · · ,−1︸ ︷︷ ︸
l

) with k + l = n.

Then, Mnoα Z2
∼= Mn⊕Mn. In this case, the special element

is, by the definition,

[1+g
2 ] = ([1+u

2 ], [1−u
2 ]) = (k, l)

So, the invariant is

– (K0(A), K0(A)+, [1A], α∗) ∼= (Z,Z+, n, id) where n is a

dimension.

– (K0(Aoα Z2), K0(Aoα Z2)
+, the special element, α̂∗)

∼= (Z⊕ Z, Z+ ⊕ Z+, (k, l), (a, b) 7→ (b, a))

– The map k ∈ Z 7→ (k, k) ∈ Z⊕ Z
(2) A UHF-algebra(“Uniformly Hyper-Finite C∗-algebra”) is a C∗-

algebra which is isomorphic to the inductive limit of the se-

quence

Mk1(C)
ϕ1 // Mk2(C)

ϕ2 // Mk3(C)
ϕ3 // · · ·
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for some natural numbers k1, k2, k3, · · · and some unit pre-

serving connecting *-homomorphisms ϕ1, ϕ2, ϕ3, · · · ([14, Def-

inition 7.4.1]).

Consider UHF-algebra A and α(x) = vxv∗,

where v = diag(1, 1, · · · , 1︸ ︷︷ ︸
p

,−1,−1, · · · ,−1︸ ︷︷ ︸
q

) with p + q = r.

Suppose r = k1. Then, v ∈Mk1(C)

In this case, the invariant is

– (K0(A), K0(A)+, [1A], α∗) ∼= (G,G+, r, id) where G is a

subgroup of Q and r is a class of unit.

– (K0(Aoα Z2), K0(Aoα Z2)
+, the special element, α̂∗)

∼= (G⊕G,G+ ⊕G+,(p, q), (s, t) 7→ (t, s))

– The map x 7→ (x, x)

(3) Consider A = Mn ⊕Mn, α(x, y) = (y, x)

The invariant is

– (K0(A), K0(A)+, [1A], α∗)
∼= (Z⊕ Z, Z+ ⊕ Z+, (n, n), (x, y) 7→ (y, x))

– (K0(Aoα Z2), K0(Aoα Z2)
+, the special element, α̂∗)

∼= (Z, Z+, n, id)

– The map (x, y) 7→ x+ y

In [7], Elliott and Su used this invariant to classify certain actions

by using the pattern of the Elliott intertwining argument. As we would

like to get an Effros-Handelman-Shen theorem for this invariant from

the type of action Elliott and Su classified, we try to show what kind

of action we can get on a dimension group arising from a Z2 action of

inductive limit type. What we were able to show is that if the dimension

group is a lattice-ordered group, then any action of Z2 comes from the

direct limit of Z2 actions on simplicial groups.



CHAPTER 7

A Modification of the Effros-Handelman-Shen

Theorem

The purpose of this chapter is to check that the Effros-Handalman-

Shen theorem, any countable dimension group is isomorphic to a direct

limit of a countable sequence of simplicial groups, is still valid if we re-

strict the dimension group to lattice-ordered groups but with Z2 actions

added. Before starting to prove a modificaton of the theorem, we need

to check a few propositions that support our main theorem.

First of all, we would like to talk about lattice-ordered groups, the

relation between lattice ordered groups and dimension groups, and a

few examples.

Definition 7.1. [9, pp. xxi & 5]

– If every finite subset of a partially ordered set X has a least

upper bound and a greatest lower bound in X, then X is called

a lattice .

– A lattice-ordered abelian group is any partially ordered

abelian group which, as a partially ordered set, is a lattice.

Example 7.1. A group Zn with the usual order is a lattice-ordered

group. Such groups are called simplicial groups.

Proposition 7.1. [9, Proposition 1.22 & pp.44] Any lattice-ordered

abelian group is a dimension group.

Example 7.2. [9, pp.44] The group Q2 equipped with the strict

ordering is a dimension group which is not lattice-ordered.

Lemma 7.1. If G is lattice-ordered dimension group, and α is an

action of Z2 on G, then the fixed-point subgroup Gα is also a lattice-

ordered dimension group.

35
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Proof. Suppose x, y ∈ Gα, i.e., α(x) = x and α(y) = y. In G,

there exists an element x ∧ y such that x ∧ y ≤ x, y and if z ≤ x, y,

then z ≤ x ∧ y for any z ∈ G. If x ∧ y ∈ Gα, then this will do.

We will show that in general α(x ∧ y) = α(x) ∧ α(y) for an ordered

automorphism α of period 2. Suppose z ≤ α(x) and z ≤ α(y). Then

α(z) ≤ x and α(z) ≤ y. So, α(z) ≤ x∧y and z ≤ α(x∧y). In particular,

since α(x)∧α(y) ≤ α(x) and α(x)∧α(y) ≤ α(y), α(x)∧α(y) ≤ α(x∧y).

Since x ∧ y ≤ x, we have α(x ∧ y) ≤ α(x). Similarly, x ∧ y ≤ y, so

α(x ∧ y) ≤ α(y). Thus, α(x ∧ y) ≤ α(x) ∧ α(y). Therefore, α(x ∧ y) =

α(x) ∧ α(y) = x ∧ y. �

The following propositions and theorem are modifications of Effros,

Handelman and Shen’s original [4].

Proposition 7.2. Let G be a lattice-ordered dimension group,

and α be an action of Z2 on G. Suppose x1, · · · , xn are elements of

G+ such that α acts on {x1, · · · , xn} by a permutation σn. Suppose

p1, · · · , pn are integers such that p1x1 + p2x2 + · · · + pnxn = 0. Then

there exist elements y1, · · · , yt in G+ such that α acts on {y1, · · · , yt}
by permutation σt and nonnegative integers qij (for i = 1, · · ·n, and

j = 1, · · · , t) such that

xi = qi1y1 + · · ·+ qityt and p1q1j + · · ·+ pnqnj = 0

for all i = 1, · · · , n and j = 1, · · · , t, and MnQ = QMt, where Mn,Mt

are the permutation matrices giving σn, σt respectively, and Q is the

matrix of the qij’s.

Proof. The proof closely follows Goodearl’s treatment [9, pp. 51-

53]. We consider the relationship between Zn and G. From the hy-

pothesis of this proposition, we get a diagram below.

Zn

G

ϕ

αn

α

,



7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 37

where ϕ is a positive homomorphism sending the simplicial basis for

Zn to the elements xi and αn is given by the permutation σn. The map

ϕ sends an element p = p1e1 + · · · + pnen ∈ Zn to p1x1 + · · · + pnxn

which is 0.

The conclusion of the proposition is that we can construct a com-

muting diagram below.

Zn Zm

G

ϕ

ψ

αn αm

ϕ2

α


(∗)

where the map ψ is given by the matrix Qᵀ in the statement of the

proposition. We get new maps ψ and ϕ2, a new action αm, and ψ(p) =

0. Two new maps also intertwine the action; ψ ◦ αn = αm ◦ ψ and

ϕ2 ◦ αm = α ◦ ϕ2.

We will show that we may assume that for each i, either α(xi) = xi

or α(xi) ∧ xi = 0. Since G is a lattice-ordered group, we can consider

xi ∧ α(xi) = ri

xi − (xi ∧ α(xi)) = si

α(xi)− (xi ∧ α(xi)) = ti

Then, we get a new set of variables;

α(ri) = ri

α(si) = ti

α(ti) = si

si ∧ ti = 0

xi = si + ri

α(xi) = ti + ri

We are going to show that we can replace our original xi with the

new list ri, si, and ti the variables of which satisfy the conditions.
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We consider two cases; xi = α(xi) and xi 6= α(xi). We look at the

first case, xi = α(xi). Two variables si and ti are 0. In this case, we

use only ri. Otherwise, we use variables ri, si, and ti.

Now, we need to check that the proposition still works if we use the

new lists. First of all, we need to show that there is a commutative

diagram like (*) above with Zn, Zm, where m is the number of variable

in our new list, and G. From the hypothesis of the proposition, we get

the relationship between Zn, and G. We can consider two cases, one

is ei is fixed by αn and the other is not. Suppose e1, · · · , el are fixed

and el+1, · · · , en are flipped in pairs by the action αm. Then, we take

a simplicial basis of Zm, {a1, · · · , an, bl+1, · · · , bn, cl+1, · · · , cn}. We let

ai 7→ ri, αm(ai) = ai

bi 7→ si, αm(bi) = ci

ci 7→ ti, αm(ci) = bi

for each i. Now, we consider the map ψ : Zn → Zm. We look at an

element ei ∈ Zn such that ei goes to xi ∈ G for each i. Since xi = ri

when i = 1, · · · , l and xi = ri + si when i = l + 1, · · · , n, we can send

ei to ai when i = 1, · · · , l and ei to ai + bi when i = l+ 1, · · · , n. If we

adapt this process to all basis, then we can get the map ψ. Then, we

get a commutative diagram below.

Zn Zm

G

ϕ

ψ

αn αm

ϕ1

α

By the proposition, with our new assumption, applied to our new

variables and the image of p under ψ, we get a commutative diagram
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below.

Zm Zm′

G

ϕ1

ψ2

αm
αm′

ϕ2

α

We put two diagrams together.

Zn Zm Zm′

G

ϕ

ψ

αn αm

ϕ2

ψ2

αm′

ϕ3

α

where p ∈ Zn and ϕ : ei → xi. This whole diagram commutes. In

this diagram, the maps ψ2 ◦ ψ and ϕ3 solve the problem with original

variables. From now on, we may assume two conditions; either α(xi) =

xi or α(xi) ∧ xi = 0 for each i.

First of all, we need to consider the case in which all the pi ≥ 0. If

any pi > 0, then

0 ≤ xi ≤ pixi ≤ p1x1 + · · ·+ pnxn = 0,

and hence xi = 0. In particular, if all the pi > 0, then all the xi = 0.

In case all the pi ≤ 0 , we apply the same process to the relation

(−p1)x1 + · · ·+ (−pn)xn = 0.

For the general case, we assign a degree to the coeficient list p1, · · · , pn,

and proceed by an induction on degree. The degree of a list p1, · · · , pn
means the ordered pair (p, λ) where p is the maximum of the values

|pi|, and λ is how many times p appears in the list |p1|, · · · |pn|.
Next, we show that we can divide the problem into two special

cases. If ϕ(p) = 0, then ϕ(αn(p)) = 0. So, ϕ(p + αn(p)) = 0 and

ϕ(p−αn(p)) = 0. Conversely, If ϕ(p+αn(p)) = 0 and ϕ(p−αn(p)) = 0,

then ϕ(2p) = 0. Since G is torsion free, ϕ(p) = 0. Here, we devide

two special cases; αn(p) = −p and αn(p) = p. Now, we look at q1 =
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p+ αn(p) and q2 = p− αn(p). Then, αn(q1) = q1 and αn(q2) = −q2. If

we use the first special case, then, we get two maps ϕ2 : Zm1 → G and

ψ1, both equivariant, such that we have a commuting diagram:

Zn Zm1

G

ϕ

ψ1

αn αm1

ϕ2

α

.

Since ψ1 and ϕ2 are equivariant, they intertwine the two actions. By

the first case, ψ1(q2) = 0. We get ϕ2(ψ1(q2)) = ϕ(q2) = 0.

If we use the second special case, we can replace q2 with ψ1(q2).

Then we can define a new map ψ2 : Zm1 → Zm2 , and a new commuta-

tive diagram

Zm1 Zm2

G

ϕ2

ψ2

αm1 αm2

ϕ3

α

.

Then, we get ψ2(ψ1(q2)) = 0.

Put these diagrams together.

Zn Zm1 Zm2

G

ϕ

ψ1

αn αm1

ϕ2

ψ2

αm2

ϕ2

α
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We need to check what result we can get about p. Let ψ = ψ2 ◦ ψ1.

Then,

ψ(2p)

= ψ(q1 + q2)

= ψ2(ψ1(q1) + ψ1(q2))

= ψ2(ψ1(q1))

= 0

Therefore, we can consider two cases,

Case 1 αn(p) = −p and

Case 2 αn(p) = p

Now, we look at Case 1, αn(p) = −p.
Suppose e1, e2, · · · , ej are fixed and ej+1, αn(ej+1), ej+2, αn(ej+2), · · · ,
ek, αn(ek) are flipped by αn. Then

p = p1e1+p2e2+· · ·+pjej+pj+1ej+1+p
′
j+1αn(ej+1)+· · ·+pkek+p′kαn(ek)

If αn(p) = −p, then p1 = p2 = · · · = pj = 0 and pl = −p′l where l =

j+1, · · · , k. Our relation becomes pj+1xj+1+· · ·+pnxn = pj+1α(xj+1)+

· · · + pkα(xk) where all pl ≥ 0, and we may assume pj+1 is the largest

coefficient. We may assume xl∧α(xl) = 0 for all l = j+1, · · · , k. With

the relation like above, we have pj+1xj+1 ≤ pj+1α(xj+1)+ · · ·+pkα(xk).

From lattice-ordered and the condition, pj+1xj+1 ≤ (pj+1α(xj+1)+· · ·+
pkα(xk)) ∧ pj+1xj+1 and pj+1xj+1 ∧ (pj+2α(xj+2) + · · ·+ pkα(xk)) = 0.

Then, it implies

pj+1xj+1 ≤ pj+2α(xj+2) + · · ·+ pkα(xk)

≤ pj+1α(xj+2) + · · ·+ pj+1α(xk)

= pj+1(α(xj+2) + · · ·+ α(xk))

xj+1 ≤ α(xj+2) + · · ·+ α(xk)

By Riesz decomposition, xj+1 = zj+2 + · · · + zk for some elements

zi ∈ G+ such that zi ≤ α(xi) for each i = j+ 2, · · · , k. Also, α(xj+1) =
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α(zj+2) + · · · + α(zk), α(zi) ≤ xi, and α(zi) ∧ zi = 0 for each i =

j + 2, · · · , k.

Observe that,

pj+1xj+1 + · · ·+ pkxk = pj+1α(xj+1) + · · ·+ pkα(xk)

⇒ pj+1(zj+2 + · · ·+ zk) + pj+2xj+2 + · · ·+ pkxk

= pj+1(α(zj+2) + · · ·+ α(zn)) + pj+2α(xj+2) + · · ·+ pkα(xk)

⇒ pj+1(zj+2 + · · ·+ zk) + pj+2xj+2 + pj+2zj+2 − pj+2zj+2

+ · · ·+ pkxk + pkzk − pkzk
= pj+1(α(zj+2) + · · ·+ α(zk)) + pj+2α(xj+2)

+ pj+2α(zj+2)− pj+2α(zj+2) + · · ·+ pkα(xk) + pkα(zk)− pkα(zk)

⇒ (pj+1 − pj+2)zj+2 + · · ·+ (pj+1 − pk)zk + pj+2(xj+2 − α(zj+2))

+ · · ·+ pk(xk − α(zk))

= (pj+1 − pj+2)α(zj+2) + · · ·+ (pj+1 − pk)α(zk)

+ pj+2(α(xj+2)− zj+2) + · · ·+ pk(α(xk)− zk)

⇒
k∑

i=j+2

(pj+1 − pi)zi +
k∑

i=j+2

pi(xi − α(zi))

=
k∑

i=j+2

(pj+1 − pi)α(zi) +
k∑

i=j+2

pi(α(xi)− zi)

We label the collection of the new variables; zj+2, · · · , zk︸ ︷︷ ︸
~z

,

xj+2 − α(zj+2), · · · , xk − α(zk)︸ ︷︷ ︸
~x−α(~z)

, α(zj+2), · · · , α(zk)︸ ︷︷ ︸
α(~z)

,

α(xj+2)− zj+2, · · · , α(xk)− zk︸ ︷︷ ︸
α(~x)−~z

This relation has smaller degree and

satisfies condition 1. If p1 still occurs, it occurs one time less. By

induction hypothesis, there exist elements y1, · · · , yt in G+ such that

α permutes these with a permutation σ′ and nonnegative integers ril,

sil, r
′
il, and s′il for i = j + 2, · · · , k and l = 1, · · · t such that

zi = ri1y1 + · · ·+ rityt
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xi − α(zi) = s(i)1y1 + · · ·+ sityt

α(zi) = α(ri1y1 + · · ·+ rityt) = r′i1y1 + · · ·+ r′ityt

α(xi)− zi = α(xi − α(zi)) = s′i1y1 + · · ·+ s′ityt

for i = j + 2, · · · , k.

We get a matrix R =


r

s

r′

s′

 where r, s, r′, and s′ are matrices. Then

there exists a permutation matrix Mσ =


0 0 Ek 0

0 0 0 Ek

Ek 0 0 0

0 Ek 0 0

 which

gives a permutation of the generators ~z, ~x − α(~z), α(~z), and α(~x) − ~z
such that 

0 0 Ek 0

0 0 0 Ek

Ek 0 0 0

0 Ek 0 0




~z

~x− α(~z)

α(~z)

α(~x)− ~z

 =


α(~z)

α(~x)− ~z
~z

~x− α(~z)


where Ek is a k × k identity matrix.

Also, we get a permutation σ′ that yt’s undergo by the action α. Then

there exists a permutation matrix Mσ′ of yt’s. MσR = RMσ′ follows

by induction hypothesis.

By using a matrix

(
0 Ek Ek 0

Ek 0 0 Ek

)
, we get

(
~x

α(~x)

)

from


~z

~x− α(~z)

α(~z)

α(~x)− ~z

, i.e.,

(
~x

α(~x)

)
=

(
0 Ek Ek 0

Ek 0 0 Ek

) 
~z

~x− α(~z)

α(~z)

α(~x)− ~z


Also, there exists a matrix Mσ′′ =

(
0 Ek

Ek 0

)
that gives a permutation

from ~x and α(~x) such that

(
0 Ek

Ek 0

) (
~x

α(~x)

)
=

(
α(~x)

~x

)
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Then, Mσ′′

(
0 Ek Ek 0

Ek 0 0 Ek

)
=

(
0 Ek Ek 0

Ek 0 0 Ek

)
Mσ

Now, we need to check that Mσ′′Q = QMσ′

where Q =

(
0 Ek Ek 0

Ek 0 0 Ek

)
R.

We get

Mσ′′Q = Mσ′′

(
0 Ek Ek 0

Ek 0 0 Ek

)
R

=

(
0 Ek Ek 0

Ek 0 0 Ek

)
MσR

=

(
0 Ek Ek 0

Ek 0 0 Ek

)
RMσ′

= QMσ′

Finally, suppose Q =

(
0 Ek Ek 0

Ek 0 0 Ek

)
R. Then

Q~y =

(
0 Ek Ek 0

Ek 0 0 Ek

)
R~y

=

(
0 Ek Ek 0

Ek 0 0 Ek

)
~z

~x− α(~z)

α(~z)

α(~x)− ~z


=

(
~x

α(~x)

)
Next, we look at Case 2, αn(p) = p.

In this case, coefficient of ei is equal to coefficient of αn(ei).

Suppose e1, · · · , eh, and em+1, · · · , es are fixed, and eh+1, αn(eh+1), · · · ,
em, αn(em) and es+1, αn(es+1), · · · , el, αn(el) are flipped by αn. Then,

p = p1e1+ · · ·+pheh+ph+1eh+1+ph+1αn(ph+1)+ · · ·+pmem+pmαn(em)

−pm+1em+1−· · ·−pses−ps+1es+1−ps+1αn(es+1)−· · ·−plel−plαn(el)
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with all pi ≥ 0. Then our relation becomes

p1x1 + · · ·+ phxh + ph+1xh+1 + ph+1α(xh+1) + · · ·+ pmxm + pmα(xm)

= pm+1xm+1+ · · ·+psxs+ps+1xs+1+ps+1α(xs+1)+ · · ·+plxl+plα(xl)

in G. We label the collection of variables in the original relation;

x1, · · · , xh︸ ︷︷ ︸
X1

, xh+1, · · · , xm︸ ︷︷ ︸
X2

, α(xh+1), · · · , α(xm)︸ ︷︷ ︸
α(X2)

,

xm+1, · · · , xs︸ ︷︷ ︸
X3

, xs+1, · · · , xl︸ ︷︷ ︸
X4

, α(xs+1), · · · , α(xl)︸ ︷︷ ︸
α(X4)

. So, we put these to-

gether in one vector ~x =



X1

X2

α(X2)

X3

X4

α(X4)


, and we get a permutation

Mσ′′ =



Ek1 0 0 0 0 0

0 0 Ek2 0 0 0

0 Ek2 0 0 0 0

0 0 0 Ek3 0 0

0 0 0 0 0 Ek4
0 0 0 0 Ek4 0


where Ek1 , Ek2 , Ek3 and Ek4 are the square identity matrices for k1 =

h, k2 = m− h, k3 = s−m, and k4 = l − s
In the case 2, we have two situations to consider: whether the

biggest coefficient is one of the fixed ones or one of the flipped ones.

Suppose it is one of the fixed ones, p1. We have p1x1 ≤ q with

q = pm+1xm+1 + · · ·+ psxs + ps+1(xs+1 +α(xs+1)) + · · ·+ pl(xl +α(xl)).

Suppose xi+α(xi) = wi. We have x1, xm+1, · · · , xs, ws+1, · · · , wl are all

inGα, the fixed point subgroup. SinceGα is a lattice-ordered dimension

group, we can write x1 = zm+1+· · ·+zs+ys+1+· · ·+yl with 0 ≤ zi ≤ xi

and 0 ≤ yj ≤ wj where zi, yj ∈ Gα. We have wj = xj + α(xj) with

xj ∧ α(xj) = 0, yj ≤ wj, and write yj = zj + z′j with zj ≤ xj and

z′j ≤ α(xj). Since xi ∧ α(xi) = 0, we get zj = yj ∧ xj, z′j = yj ∧ α(xj).
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Also, since α(yj) = yj, we get α(zj) = z′j. Then, we get x1 = zm+1 +

· · ·+ zs + zs+1 + α(zs+1) + · · ·+ zl + α(zl)

Observe that,

p1x1 + · · ·+ phxh + ph+1xh+1 + ph+1α(xh+1) + · · ·

+ pmxm + pmα(xm)

= pm+1xm+1 + · · ·+ psxs + ps+1xs+1 + ps+1α(xs+1) + · · ·

+ plxl + plα(xl)

⇒ p1(zm+1 + · · ·+ zs + zs+1 + α(zs+1) + · · ·+ zl + α(zl)) + p2x2

+ · · ·+ phxh + ph+1xh+1 + ph+1α(xh+1) + · · ·+ pmxm + pmα(xm)

= pm+1xm+1 + · · ·+ psxs + ps+1xs+1 + ps+1α(xs+1)

+ · · ·+ plxl + plα(xl)

⇒ (p1 − pm+1)zm+1 + · · ·+ (p1 − ps)zs
+ (p1 − ps+1)(zs+1 + α(zs+1)) + · · ·+ (p1 − pl)(zl + α(zl))

+ p2x2 + · · ·+ phxh + ph+1xh+1 + ph+1α(xh+1) + · · ·

+ pmxm + pmα(xm)

= pm+1(xm+1 − zm+1) + · · ·+ ps(xs − zs)

+ ps+1((xs+1 − zs+1) + (α(xs+1)− α(zz+1))) + · · ·

+ pl((xl − zl) + (α(xl)− α(zl)))

⇒
s∑

i=m+1

(p1 − pi)zi +
l∑

i=s+1

(p1 − pi)(zi + α(zi)) +
h∑
i=2

pixi

+
m∑

i=h+1

pi(xi + α(xi))

=
s∑

i=m+1

pi(xi − zi) +
l∑

i=s+1

pi((xi − zi) + (α(xi)− α(zi)))
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⇒
s∑

i=m+1

(p1 − pi)zi +
l∑

i=s+1

(p1 − pi)zi +
l∑

i=s+1

(p1 − pi)α(zi)

+
h∑
i=2

pixi +
m∑

i=h+1

pixi +
m∑

i=h+1

piα(xi)

=
s∑

i=m+1

pi(xi − zi) +
l∑

i=s+1

pi(xi − zi) +
l∑

i=s+1

pi(α(xi)− α(zi))

We label the collection of the new variables; zm+1, · · · , zs︸ ︷︷ ︸
Z1

, zs+1, · · · , zl︸ ︷︷ ︸
Z2

,

α(zs+1), · · · , α(zl)︸ ︷︷ ︸
α(Z2)

, x2, · · · , xh︸ ︷︷ ︸
X ′1

, xh+1, · · · , xm︸ ︷︷ ︸
X2

, α(xh+1), · · · , α(xm)︸ ︷︷ ︸
α(X2)

,

xm+1 − zm+1, · · · , xs − zs︸ ︷︷ ︸
X3−Z1

, xs+1 − zs+1, · · · , xl − zl︸ ︷︷ ︸
X4−Z2

,

α(xs+1 − zs+1), · · · , α(xl − zl)︸ ︷︷ ︸
α(X4)−α(Z2)

. This relation has smaller degree and

satisfies condition 2, i.e., the relation is invariant under the automor-

phism. If p1 still occurs, it occurs one time less. By induction hypothe-

sis, there exists ~y =
(
y1 · · · yt

)
for yi ∈ G+ such that α permutes these

with a permutation σ′ and matrices r, s, t, r′, s′, t′, r′′, s′′ and t′′ whose

entries are nonnegative integers such that

Z1 = r~y>

Z2 = r′~y>

α(Z2) = α(r′~y>) = r′′~y>

X ′1 = s~y>

X2 = s′~y>

α(X2) = α(s′~y>) = s′′~y>

X3 −Z1 = t~y>

X4 −Z2 = t′~y>

α(X4)− α(Z2) = α(s′~y>) = t′′~y>
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We get a matrix R> =
(
r r′ r′′ s s′ s′′ t t′ t′′

)
.

Then there exists permutation matrix

Mσ =



Ek3 0 0 0 0 0 0 0 0

0 0 Ek4 0 0 0 0 0 0

0 Ek4 0 0 0 0 0 0 0

0 0 0 Ek′1 0 0 0 0 0

0 0 0 0 0 Ek2 0 0 0

0 0 0 0 Ek2 0 0 0 0

0 0 0 0 0 0 Ek3 0 0

0 0 0 0 0 0 0 0 Ek4
0 0 0 0 0 0 0 Ek4 0


where Eki is the square identity matrix for k′1 = h− 1,

k2 = m − h, k3 = s − m, and k4 = l − s gives permutation from the

generators Z1,Z2, α(Z2),X ′1,X2, α(X2),X3 −Z1,X4 −Z2, and α(X4)−
α(Z2) such that

Mσ



Z1

Z2

α(Z2)

X ′1
X2

α(X2)

X3 −Z1

X4 −Z2

α(X4)− α(Z2)


=



Z1

α(Z2)

Z2

X ′1
α(X2)

X2

X3 −Z1

α(X4)− α(Z2)

X4 −Z2


.

Also, we get a permutation σ′ that yt’s undergo by the action α.

Then there exists a permutation matrix Mσ′ of yt’s. By induction

hypothesis, we get a relationship such that MσR = RMσ′ . So, we get

a commutative diagram below.
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Zm Zm′

G

R>

Mσ
M ′σ

α

We denote

X1 =

(
x1

X ′1

)
=

(
(1, · · · , 1) 0

0 Ek′1

)
Z1

Z2

α(Z2)

X ′1


where Ek′1 is the (h − 1) × (h − 1) identity matrix. From the above

block matrix, we can define the new matrices

Pki =

(
1, · · · , 1

0

)
and Ẽk′1 =

(
0, · · · , 0
Ek′1

)
for i = 3, 4. By using a matrix

R′ =



Pk3 Pk4 Pk4 Ẽk′1 0 0 0 0 0

0 0 0 0 Ek2 0 0 0 0

0 0 0 0 0 Ek2 0 0 0

Ek3 0 0 0 0 0 Ek3 0 0

0 Ek4 0 0 0 0 0 Ek4 0

0 0 Ek4 0 0 0 0 0 Ek4


,
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we get old variables



X1

X2

α(X2)

X3

X4

α(X4)


from new ones



Z1

Z2

α(Z2)

X ′1
X2

α(X2)

X3 −Z1

X4 −Z2

α(X4)− α(Z2)


.

Also, there exists a permutation matrix Mσ′′ that gives a permuta-

tion from the original variables. One can check that R′Mσ = Mσ′′R
′.

So, we get a commuting diagram below.

Zn Zm

G

R′>

M ′′σ Mσ

α

If we put together two above diagrams, then we get the result that

Mσ′′Q = QMσ′ where Q = R′R.

Now, suppose the largest coefficient is one of the flipped ones, ph+1.

We have ph+1(xh+1 + α(xh+1)) ≤ q where q = pm+1xm+1 + · · ·+ psxs +

ps+1xs+1 + ps+1α(xs+1) + · · ·+ plxl + plα(xl). Suppose xj +α(xj) = vj.

Then vj ∈ Gα for each j. Since Gα is a lattice-ordered dimension group,

we can write xh+1 + α(xh+1) = zm+1 + · · · + zs + rs+1 + · · · + rl with

0 ≤ zi ≤ xi and 0 ≤ rj ≤ vj where zi, rj ∈ Gα. We have vj = xj+α(xj)

with xj ∧ α(xj) = 0, rj ≤ vj, and write rj = zj + z′j with zj ≤ xj and

z′j ≤ α(xj). Since xi∧α(xi) = 0, we get zj = vj∧xj and z′j = vj∧α(zj).

Also, since α(vj) = vj, we get α(zj) = z′j. Then, we get

xh+1 +α(xh+1) = zm+1 + · · ·+ zs + (zs+1 +α(zs+1)) + · · ·+ (zl +α(zl)).
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Observe that,

p1x1 + · · ·+ phxh + ph+1xh+1 + ph+1α(xh+1) + · · ·

+ pmxm + pmα(xm)

= pm+1xm+1 + · · ·+ psxs + ps+1xs+1 + ps+1α(xs+1) + · · ·

+ plxl + plα(xl)

⇒ p1x1 + · · ·+ phxh + ph+1(zm+1 + · · ·+ zs + (zs+1 + α(zs+1)) + · · ·

+ (zl + α(zl))) + ph+2(xh+2 + α(xh+2)) + · · ·+ pm(xm + α(xm))

= pm+1xm+1 + · · ·+ psxs + ps+1xs+1 + ps+1α(xs+1)

+ · · ·+ plxl + plα(xl)

⇒ p1x1 + · · ·+ phxh + (ph+1 − pm+1)zm+1 + · · ·+ (ph+1 − ps)zs
+ (ph+1 − ps+1)(zs+1 + α(zs+1)) + · · ·+ (ph+1 − pl)(zl + α(zl))

+ ph+2(xh+2 + α(xh+2)) + · · ·+ pm(xm + α(xm))

= pm+1(xm+1 − zm+1) + · · ·+ ps(xs − zs)

+ ps+1((xs+1 − zs+1) + (α(xs+1)− α(xz+1)))

+ · · ·+ pl((xl − zl) + (α(xl)− α(zl)))

⇒
∑h

i=1 pixi +
∑s

i=m+1(ph+1 − pi)zi +
∑l

i=s+1(ph+1 − pi)zi

+
∑l

i=s+1(ph+1 − pi)α(zi) +
∑m

i=h+2 pi(xi + α(xi))

=
∑s

i=m+1 pi(xi − zi) +
∑l

i=s+1 pi(xi − zi)

+
∑l

i=s+1 pi(α(xi)− α(zi))


(†)

We need to split the xh+1 + α(xh+1) to xh+1 and α(xh+1). Define

the new variables;

tm+1, · · · , ts where ti = zi ∧ xh+1

rm+1, · · · , rs where ri = zi ∧ α(xh+1)

}
α(ti) = ri

vs+1, · · · , vl where vj = zj ∧ xh+1

α(vs+1), · · · , α(vl)

ws+1, · · · , wl where wj = zj ∧ α(xh+1)

α(ws+1), · · · , α(wl)
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Then, xh+1 = tm+1 + · · ·+ ts+vs+1 + · · ·+vl+α(ws+1)+ · · ·+α(wl),

α(xh+1) = rm+1 + · · · + rs + α(vs+1) + · · · + α(vl) + ws+1 + · · · + wl,

zi = ti + ri for i = m+ 1, · · · , s, zj = vi + wi for j = s+ 1, · · · , l.
We label the collection of the new variables; x1, · · · , xh︸ ︷︷ ︸

X1

, tm+1, · · · , ts︸ ︷︷ ︸
T

,

rm+1, · · · , rs︸ ︷︷ ︸
R

, vs+1, · · · , vl︸ ︷︷ ︸
V

, α(vs+1), · · · , α(vl)︸ ︷︷ ︸
α(V)

, ws+1, · · · , wl︸ ︷︷ ︸
W

,

α(ws+1), · · · , α(wl)︸ ︷︷ ︸
α(W)

, xh+2, · · · , xm︸ ︷︷ ︸
X ′2

, α(xh+2), · · · , α(xm)︸ ︷︷ ︸
α(X ′2)

,

xm+1 − zm+1, · · · , xs − zs︸ ︷︷ ︸
X3−Z1

, xs+1 − zs+1, · · · , xl − zl︸ ︷︷ ︸
X4−Z2

,

α(xs+1)− α(xl), · · · , α(xl)− α(zl)︸ ︷︷ ︸
α(X4)−α(Z2)

. This relation that we get from (†)

has smaller degree and satisfies condition 2. If ph+1 still occurs, it oc-

curs one time less. By induction hypothesis, there exists ~y =
(
y1 · · · yt

)
for yi ∈ G+ such that α permutes these with a perutation σ′ and ma-

trices a, a′, a′′, b, c, d, d′, e,

e′, f, f ′, and f ′′ whose entries are nonnegative integers such that

X1 = a~y>

X ′2 = a′~y>

α(X ′2) = a′′~y>

T = b~y>

R = c~y>

V = d~y>

α(V) = d′~y>

W = e~y>

α(W) = e′~y>

X3 −Z1 = f~y>

X4 −Z2 = f ′~y>

α(X4)− α(Z2) = f ′′~y>



7. A MODIFICATION OF THE EFFROS-HANDELMAN-SHEN THEOREM 53

We get a matrix

R> =
(
a a′ a′′ b c d d′ e e′ f f ′ f ′′

)
Then there exists a permutation matrix

Mσ =



Ek1 0 0 0 0 0 0 0 0 0 0 0

0 0 Ek′2 0 0 0 0 0 0 0 0 0

0 Ek′2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 Ek3 0 0 0 0 0 0 0

0 0 0 Ek3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Ek4 0 0 0 0 0

0 0 0 0 0 Ek4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 Ek4 0 0 0

0 0 0 0 0 0 0 Ek4 0 0 0 0

0 0 0 0 0 0 0 0 0 Ek3 0 0

0 0 0 0 0 0 0 0 0 0 0 Ek4
0 0 0 0 0 0 0 0 0 0 Ek4 0


where Eki is the square identity matirix for k1 = h, k′2 = m−h−1, k3 =

s−m, and k4 = l− s which gives the permutation from the generators

such that

Mσ



X1

X ′2
α(X ′2)
T
R
V

α(V)

W
α(W)

X3 −Z1

X4 −Z2

α(X4)− α(Z2)



=



X1

α(X ′2)
X ′2
R
T

α(V)

V
α(W)

W
X3 −Z1

α(X4)− α(Z2)

X4 −Z2



.

Also, we get a permutation σ′ that yt’s undergo by the action α. Then

there exists a permutation matrix Mσ′ of yt’s. By induction hypothesis,
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we get a relationship such that MσR = RMσ′ . So, one can check that

we get a commutative diagram below.

Zm Zm′

G

R>

Mσ
M ′σ

α

We denote

X2 =

(
xh+1

X ′2

)
=

(
(1, · · · , 1) 0

0 Ek′2

)
T
V

α(W)

X ′2


and

α(X2) =

(
α(xh+1)

α(X ′2)

)
=

(
(1, · · · , 1) 0

0 Ek′2

)
R
α(V)

W
α(X ′2)


From the above block matrix, we can define the new matrices

Pki =

(
1, · · · , 1

0

)
and Ẽk′2 =

(
0, · · · , 0
Ek′2

)
for i = 3, 4. By using a matrix

R′ =



Ek1 0 0 0 0 0 0 0 0 0 0 0

0 Ẽk′2 0 Pk3 0 Pk4 0 0 Pk4 0 0 0

0 0 Ẽk′2 0 Pk3 0 Pk4 Pk4 0 0 0 0

0 0 0 Ek3 Ek3 0 0 0 0 Ek3 0 0

0 0 0 0 0 Ek4 0 Ek4 0 0 Ek4 0

0 0 0 0 0 0 Ek4 0 Ek4 0 0 Ek4


,
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we get old variables



X1

X2

α(X2)

X3

X4

α(X4)


from new ones



X1

X ′2
α(X ′2)
T
R
V

α(V)

W
α(W)

X3 −Z1

X4 −Z2

α(X4)− α(Z2)



.

Also, there exists a permutation matrix Mσ′′ that gives a permu-

tation from the original variables. So, we get a commuting diagram

below.

Zn Zm

G

R′>

M ′′σ Mσ

α

If we put together two above diagrams, then we get the result that

Mσ′′Q = QMσ′ where Q = R′R.

�

The following Lemma will aid to prove the proposition 7.3.

Lemma 7.2. [13, Corollary 4.96]All subgroups of a finitely gener-

ated abelian group are finitely generated.

Proposition 7.3. Let G1 be a simplicial group with simplicial

basis {e1, · · · , en} and Z2 action α1 given by the permutation σn. Let

G be a lattice-ordered dimension group with Z2 action α, and let g1 :

G1 → G be a positive equivariant homomorphism. Then there exist

a simplicial group G2 with an Z2 action α2, and positive equivariant
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homomorphisms h and g2 such that g1 = g2h, ker(g1) = ker(h).

G1 G2

G

h

α1

g1
g2

α2

α

Proof. The proof closely follows Goodearl’s treatment [9, pp.53–

54]. We would like to show that finite generators a1, · · · , ak in ker(g1)

also lie in ker(h) by induction hypothesis. First, we need to check

when k = 1. If G1 is a zero group, then G2 is also zero group and

we define homomorphisms h, g2 are zero maps. Now, we assume that

G1 is nonzero. Let {e1, · · · , en} be the simplicial basis for G1, and let

σn be the permutation of the simplicial basis that gives the action α1.

Let {x1, · · · , xn} ∈ G+ be the images of {e1, · · · , en} and ker(g1) be

finitely generated by a1. Set xi = g1(ei) for each i = 1, · · · , n. Since g1

is an equivariant homomorphism, it follows that α(xi) = α(g1(ei)) =

g1(α1(ei)) for each i = 1, · · · , n. Write a1 = p1e1 + · · ·+ pnen for some

integers pi, and observe that

p1x1 + · · ·+ pnxn = g1(a1) = 0.

According to proposition 7.2, there exist elements y1, · · · , yt in G+ such

that α acts on {y1, · · · , yt} by permutation σt and nonnegative integers

qij (for i = 1, · · ·n, and j = 1, · · · , t) such that

xi = qi1y1 + · · ·+ qityt and p1q1j + · · ·+ pnqnj = 0

for all i and j, and MnQ = QMt, where Mn,Mt are the permutation

matrices giving σn, σt respectively, and Q is the matrix of the qij’s.

Set G2 = Zt, and let {f1, · · · , ft} be simplicial basis for G2. Define

group homomorphisms h : G1 → G2 and g2 : G2 → G so that

h(ei) = qi1f1 + · · ·+ qitft
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for i = 1, · · · , n and g2(fj) = yj for j = 1, · · · , t. Define an Z2 action

α2 on G2 by the permuation matrix Mt. Then it follows that

h(α1(ei)) = qi1α2(f1) + · · ·+ qitα2(ft) = α2(h(ei))

for i = 1, · · · , n and α(g2(fj)) = α(yj) = g2(α2(fj)) for j = 1, · · · , t.
So, the maps intertwine the actions.

As each qij ∈ Z+ and each yj ∈ G+, we see that h and g2 are

positive homomorphisms. Since

g2h(ei) = g2(qi1f1 + · · ·+ qitft) = qi1y1 + · · ·+ qityt = xi = g1(ei)

for all i = 1, · · · , n, we obtain g2h = g1. Also,

h(a1) = h(
n∑
i=1

piei) =
n∑
i=1

t∑
j=1

piqijfj =
t∑

j=1

(
n∑
i=1

piqij)fj = 0,

so that a1 ∈ ker(h).

Now, we show that the induction step. Let k > 1. Assume that

there exist a simplicial group G3 with Z2 action α3 by the permutation

matrix Ms, positive homomorphisms h1 : G1 → G3 and g3 : G3 → G

such that g1 = g3h1. Assume that a1, · · · , ak−1 lie in ker(h1). Since

g3h1(ak) = g1(ak) = 0, the element h1(ak) lies in ker(g3). Hence,

by the above result, there exist a simplicial group G2 and positive

equivariant homomorphisms h2 : G3 → G2 and g2 : G2 → G such that

g3 = g2h2 and h1(ak) ∈ ker(h2). Set h = h2h1, which is a positive

equivariant homomorphism from G1 to G2 such that g2h = g2h2h1 =

g3h1 = g1. Since a1, · · · , ak−1 lie in ker(h1), they also lie in ker(h).

Because h1(ak) lies in ker(h2), the element ak lies in ker(h). This

completes the induction step.

Since G1 is finitely generated as an abelian group, all its subgroups

are finitely generated. Hence, we may choose generators of ker(g1) as

a group. By the result of above induction step, there exist a simplicial

group G2 and positive equivariant homomorphisms h : G1 → G2 and

g2 : G2 → G such that g1 = g2h and a1, · · · , ak all lie in ker(h). Thus

ker(g1) ⊆ ker(h). The reverse inclusion, ker(g1) ⊇ ker(h), follows

from the factorization g1 = g2h. Therefore, ker(g1) = ker(h).
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�

With aid of previous proposition, we prove our main theorem.

Main Theorem. If there exists a Z2 action on a countable lattice-

ordered dimension group, then it can be expressed as an inductive limit

of Z2 actions on simplicial groups.

Proof. This proof closely follow Goodearl’s treatment[9, pp.54-

55].

Let G be a countable lattice-ordered dimension group with the ac-

tion α and {x1, x2, · · · } = G+. We construct a countable sequnce with

simplicial groups G1, G2, · · · with the actions α1, α2, · · · and positive

equivariant homomorphisms gn : Gn → G and hn : Gn → Gn+1 for all

n ∈ N such that xn ∈ gn(G+
n ), gn+1 ◦ hn = gn, and ker(gn) = ker(hn)

for all n ∈ N. Also, we define the limit of the sequence that we con-

struct, G∞ with a positive equivariant homomorphism g∞ : G∞ → G,

and a Z2 action on G∞, α∞.

G1 G2 G3 · · · G∞

G

h1

α1

g1

h2

g2

α2

h3

g3

α3

h∞

α∞

g∞

α

First of all, we set G1 = Z2 with a Z2 action α1 that flips the

elements, i.e., α1(e1) = e2 and α1(e2) = e1. We define a positive homo-

morphism g1 : G1 → G so that g1(e1) = x1 and g1(e2) = g1(α1(e1)) =

α(x1). Suppose that we have constructed g1, G1, α1, · · · , gn, Gn, αn

which meet the requirements. We would like to construct the next

one; gn+1, Gn+1, αn+1. The direct product H = Gn ⊕ Z2 is a simplicial

group and we define a positive homomorphism g : H → G by the rule

g(a, k, l) = gn(a) + kxn+1 + lα(xn+1), and a Z2 action α′ such that

gn(αn(ei)) = α′(g(xi)) for all i.
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By the proposition 7.3, there exist a simplicial group Gn+1 with a

Z2 action αn+1, positive homomorphisms h : H → Gn+1 and gn+1 :

Gn+1 → G such that g = gn+1h, and ker(g) = ker(h). By the

rule, gn+1h(0, 1) = g(0, 1) = xn+1 with h(0, 1) ∈ G+
n+1. So xn+1 ∈

gn+1(G
+
n+1). Since Gn ⊆ H, we can construct the map from Gn to

Gn+1 which composes with the inclusion map from Gn to H and h.

Let G∞ be the direct limit and qn : Gn → G∞ be the canonical map.

Since the condition gn+1hn = gn, there exists a positive homomorphism

g∞ : G∞ → G such that g∞qn = gn for all n ∈ N. Given x ∈ ker(g∞),

write xn = qn(y) for some n ∈ N and some y ∈ Gn. Then

gn(y) = g∞qn(y) = g∞(x) = 0,

and hn(y) = 0 becasue ker(gn) = ker(hn). Thus, g∞ is injective.

Next, we would like to show that g∞ is surjective. Since xn ∈
gn(G+

n ), we obtain xn ∈ gn(G+
n ) = g∞qn(G+

n ) ⊆ g∞(G+
∞) for all n, and

hence g∞(G+
∞) = G+. It follows that g∞ is surjective. Therefore g∞ is

a group isomorphism and it is equivariant. �

Here is an example related to our main theorem.

Example 7.3. LetG = Q×Q with strict order, i.e., G+ = {(0, 0)}∪
{(x, y) | x > 0 and y > 0}.

y

x

Let α(x, y) = (y, x). Suppose we have (x, y) ∈ G and n(x, y) ≥ 0

where n ∈ N\0. Then,

0 ≤ n(x, y) = (nx, ny)⇒

nx = ny = 0 or

nx > 0, ny > 0
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So, (x, y) ∈ G+. Therefore, (G,G+) is unperforated. Also, G+ ∩G− =

{(0, 0)} and G+ +G− = G.

Suppose x1, x2, y1, y2 ∈ G such that yj ≤ xi for i, j = 1, 2. Then,

we get a figure below.

x1

x2

y1

y2

Figure 1

The points in the dashed rectangle are the interpolation points.

We consider speical cases, (A) xi’s are in the same horizontal line,

(B) xi’s are in the same vertical line, (C) yj’s are in the same horizontal

line, and (D) yj’s are in the same vertical line.

x2

y1

y2

x1

(A)

x1

y1

y2

x2

(B)

x1

x2

y2y1

(C)

x1

x2

y1

y2

(D)
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We also consider xi = yj. In this case, xi = yj = z. So, (G,G+) is

an interpolation group. Therfore, (G,G+) is dimension group. Since

the above dashed rectangle in figure 1 is open, there is no biggest

element in the rectangle. So, there is no greatest lower bound for x1

and x2 in figure 1. Therefore, (G,G+) is not a lattice-ordered group.

Now, define Ak =

(
2mk 1

1 2mk

)
such that Ak : Z2 → Z2 commutes

with the actions α that flip the coordinates. Then, we get an induc-

tive system, {(Z2, α), Ak}. We need to check the inductive limit of this

inductive system is a dimension group but is not a lattice-ordered di-

mension group. We will construct maps ϕk that will give us a diagram:

Z2 Z2 Z2 · · · lim{Z2, ψn}

G1 G2 G3 · · · G∞ =
⋃∞
k=1Gk ⊆ G

α

A1

ϕ1 ϕ2

A2

α

ϕ3

α α

ϕ∞

⊆ ⊆ ⊆ ⊆

Now, we define the xk and yk in G as follows. Since Ak is invertible,

we get Bk = A−1k = 1
22mk−1

(
2mk −1

−1 2mk

)
. Define a sequence (xk, yk) ∈

G × G by x1 = (2, 1), y1 = α(x1) = (2, 1) and

(
xk+1

yk+1

)
= Bk

(
xk

yk

)
where xk, yk ∈ G. Define Gk to be the subgroup of G generated

by xk and yk. Since

(
xk

yk

)
= Ak

(
xk+1

yk+1

)
, Gk ⊆ Gk+1. Consider the

homomorphism ϕk from Z2 with the flip automorphism α to Gk given

by e1 7→ xk and e2 7→ yk. When k = 1, if ax1 + by1 = 0, then

a = 0 and b = 0. So, ϕ1 is injective. Suppose ϕk is injective. Then(
a b

)(xk
yk

)
= 0 implies (a, b) = (0, 0). Now, we need to check ϕk+1

is injective. Suppose
(
a b

)(xk+1

yk+1

)
=
(
a b

)
Bk

(
xk

yk

)
= 0. Since

Bk is invertible, a = 0 and b = 0. Therefore, the map ϕk+1 is injective.
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Next, we would like to check the image in each G+
k is in the first

quadrant. By the definition, x1 and y1 are in G+. Suppose xk and

yk are in G+. We choose mk so that xk and yk lie between two lines

made by the column of Ak in the first quadrant. Then we apply Bk

to the coordinates. Then, xk+1 and yk+1 are still in the first quadrant.

At every stage, the angles between the lines made by xk and yk are

getting wider. However, these lines converge to some lines between the

positive x-axis and positive y-axis.

Finally, we need to check the union of the images is dense. The

lengths of xk and yk is tending to zero and they are linearly indepen-

dent. This implies that the union of the images is dense. The positive

cone is an open wedge in the first quadrant, so the same argument as

for G above shows that it is not lattice-ordered.

According to the above example, the hypothesis of the main theo-

rem that the group is lattice-ordered is not necessary. Therefore, we

suggest that there would be more research needed to generalize the

theorem.
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