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ABSTRACT

We anticipate that there will be an enormous amount of wireless devices connected

to the Internet through the future-generation wireless networks. Those wireless de-

vices vary from self-driving vehicles to smart wearable devices and intelligent house-

hold electrical appliances. Under such circumstances, the network resource optimiza-

tion faces the challenge of the requirement of both flexibility and performance. Cur-

rent wireless communication still relies on one-size-fits-all optimization algorithms,

which require meticulous design and elaborate maintenance, thus not flexible and

cannot meet the growing requirements well. The future-generation wireless networks

should be “smarter”, which means that the artificial intelligence-driven software-level

design will play a more significant role in network optimization.

In this thesis, we present three different ways of leveraging artificial intelligence

(AI) and machine learning (ML) to design network optimization algorithms for three

wireless Internet of things network optimization problems. Our ML-based approaches

cover the use of multi-layer feed-forward artificial neural network and the graph con-

volutional network as the core of our AI decision-makers. The learning methods

are supervised learning (for static decision-making) and reinforcement learning (for

dynamic decision-making). We demonstrate the viability of applying ML in future-

generation wireless network optimizations through extensive simulations. We sum-

marize our discovery on the advantage of using ML in wireless network optimizations

as the following three aspects:

1. Enabling the distributed decision-making to achieve the performance that near

a centralized solution, without the requirement of multi-hop information;

2. Tackling with dynamic optimization through distributed self-learning decision-

making agents, instead of designing a sophisticated optimization algorithm;

3. Reducing the time used in optimizing the solution of a combinatorial optimiza-

tion problem.

We envision that in the foreseeable future, AI and ML could help network service

designers and operators to improve the network quality of experience swiftly and less

expensively.
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Chapter 1

Introduction

The past decade has witnessed two significant evolutions in commercial telecommu-

nication, from 3G to 4G, then to 5G. To most customers, the direct experience of

each upgrade is the faster data rate and better reliability (lower latency, less packet

loss). For instance, the maximum data rate of 3G is 2 Mbps (allows video streaming),

whereas the data rate of 4G is up to 1 Gbps (provides broadband Internet experience)

[28]. More and more mobile services emerge in the past decade, such as video chat,

mobile gaming, and video streaming. One objective of the future-generation telecom-

munication is to connect the items in our daily life to the Internet, which is known as

the Internet of Things (IoT) [6]. Some examples of IoT are smart wearable devices

(such as smartwatches), vehicular networks, and smart home [72]. The telecommu-

nication plays a significant role in the realization of IoT because most IoT devices

require a wireless connection. Although the 3G and 4G technologies are widely used

in today’s IoT devices, they are not fully optimized for IoT applications [3]. For

example, notwithstanding the 4G network supports connecting many devices to the

Internet within a region, it can not meet the requirement of connecting a massive

amount of devices. Therefore, many IoT devices such as smartwatches still need

to access the Internet through some host devices such as mobile phones. Besides,

the connections between those IoT devices and the host devices are often established

via WiFi and Bluetooth technologies, which leverage unlicensed wireless channels and

cannot guarantee a high quality of service (QoS). To support a ubiquitous IoT or even

Internet of Everything (IoE) [87], new telecommunication technologies (both hard-

ware and software) are necessary. In the IEEE 5G and Beyond Technology Roadmap

White Paper [39], the better implementation of the IoT is listed as an objective of

5G and beyond 5G (B5G). Some key technologies of 5G not only support a much
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higher data rate and extremely low latency but also pave the road for connecting a

massive amount of IoT devices. We briefly summarize the different generations of

telecommunication technologies (from 3G to B5G) in Table 1.1, to present a better

comparison.

3G 4G 5G B5G

Introduced in 1998 2001 to 2002 2000s -

Commercialized in 2001 2009 - -

Frequency up to 2.5 GHz 2 to 8 GHz
sub-6 GHz;
24 to 100 GHz

sub-6 GHz;
24 to 100 GHz;
>100 GHz

Rate (up to) 2 Mbps 2 Mbps to 1 Gbps 1 Gbps 100 Gbps

Latency 100 to 500 ms < 100 ms 8 to 12 ms 1 ms

Key technologies
CDMA;
Beam-forming;
Link adaptation

OFDM;
MIMO;
IP telephony

Beam-forming;
mmWave;
D2D communication;
Massive MIMO;
Full duplex

Software-centric
design;
Artificial intelligence;
Blockchain

Applications Video streaming
Mobile gaming;
Cloud computing;
IoT

Vehicular network;
UAV network;
Video game stream-
ing;
Smart grid;
Edge computing;
Network slicing;
Remote surgery

VR/AR application;
IoE;
ICN

References: [19, 28, 39, 93, 104, 111].

“-” denotes unclear or has not happened. Some abbreviations see Appendix B.

Table 1.1: A Brief Summary of 3G, 4G, 5G, and B5G

Apart from IoT, artificial intelligence (AI), especially machine learning (ML),

was also thriving in the past decade. One reason is that the computing power of

today’s computing devices satisfies most AI and ML algorithms; the other reason is

that enabling the machine to learn and act as human intelligence is a trend in the

development of modern technologies. Sun et al. pointed out that the 5G networks will

be more complex, which in turn leads to more complex mathematical formulations

in developing conventional algorithms to optimize the network [117]. Moreover, the

traditional algorithms can be infeasible due to a large number of network nodes in the

5G networks. Therefore, exploring the application of AI and ML in future-generation

wireless network optimization problems is promising. We list some potential benefits

of integrating ML with the future-generation wireless network optimization in below:

1. Achieving better performance than the conventional algorithms;

2. Achieving similar performance but with much lower complexity than the con-
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ventional algorithms;

3. Saving the cost of designing a complex mathematical model;

4. Improving the flexibility and adaptability of the algorithm;

5. Helping realize the self-optimization of distributed network nodes;

6. Making better use of the hidden patterns of the network.

© Peizhi Yan

Figure 1.1: An outlook of some technologies and applications in the future-generation
(5G and B5G) wireless networks.

In this thesis, we explore and demonstrate the potential applications of ML ap-

proaches/algorithms in three particular future-generation IoT network optimization

problems. Figure 1.1 provides an outlook of the radio-frequency identification (RFID)

networks, mobile edge computing (MEC) networks, and wireless ad-hoc IoT (WAIoT)

networks in the future-generation wireless communication. We envision that the ap-

plication of artificial intelligence and machine learning in wireless IoT optimization

will be ubiquitous due to the increase of device computing power and the improvement

in network performance. The rest of this thesis is organized as follows. Chapter 2

gives a review of the fundamental concepts, theories, and methods used in this thesis.

Chapter 3 presents the first problem, dense RFID network collision avoidance [138].

RFID is an important component of IoT, which allows quick and automatic identifi-

cation of the objects with RFID tags [99]. RFID is widespread in industries such as

supply-chain management and logistics due to its low-cost feature. One often needs

to leverage a considerable amount of RFID readers to cover a large area. Due to
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the overlapping coverage of different RFID readers, the collision problem is likely to

happen and need to be handled. We first introduce a distributed collision avoidance

algorithm, which only leverages one-hop information. In our experiment, there is a

performance gap between the distributed algorithm and its centralized counterpart.

To reduce this gap, we utilize the centralized algorithm to generate training data

and train (supervised learning) a fully-connected artificial neural network (ANN) to

help the distributed algorithm at the early decision-making stage. Experimental re-

sults show that the distributed algorithm with ML auxiliary can get almost the same

performance as its centralized counterpart.

Chapter 4 presents the second problem, task-offloading optimization in MEC. We

consider the scenario that in a large crowded area (such as a stadium, a concert

hall, or a shopping mall), multiple wireless edge gateways (each edge gateway has

an edge server) are deployed to provide MEC services. The concept of this type of

MEC network is similar to the idea of the personal cloud network [108]. We do not

require the direct-wired connection between each pair of edge gateways. Instead,

edge gateways can communicate with each other wirelessly. The reason is that this

way allows the deployment of the edge gateways to be more flexible. For example,

the organizers can rent the edge gateways only when needed, to save the cost. The

user device could offload tasks to its nearby edge server to achieve a better QoS.

However, when the edge server is overload, offloading a task to the edge server might

reduce the QoS. Thus, the task-offloading scheduler needs to make task offloading

decisions in terms of the current system (both the device itself and the network

system) status. We also consider the situation when the user devices are not evenly

distributed. For instance, people might gather around some places. In this case, some

edge servers might be overload, while other edge servers are relatively idle. Therefore,

we enable the edge servers to offload tasks to their neighbor edge servers further. We

model this task-offloading optimization problem as a multi-level (device-level and

edge-level) joint optimization problem and apply deep Q-learning (a reinforcement

learning method) for each level of optimization [137]. Simulation results demonstrate

the prominent trade-off (delay and energy consumption) performance of our proposed

approach.

Chapter 5 presents the third problem, energy-efficient topology control in WAIoT

networks [97]. Conventional commercial telecommunications either not support device-

to-device (D2D) communications or do not make the best of D2D technology. Whereas,

in 5G, D2D communication is encouraged in helping with the massive connectivity
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[39]. The WAIoT network is formed by IoT devices that can communicate with their

neighbor devices through D2D connections. Such network paradigm could also ben-

efit the information-centric network (ICN) or content-centric network (CCN) [77].

However, most wireless IoT devices have a limited power supply, such as a battery.

Thus, when some devices are run out of energy, the WAIoT network will be discon-

nected. We assume that by reducing the number of connections of the devices with

less energy and increasing the number of connections of the devices with more energy

could improve the overall network lifetime. Based on this assumption, we propose a

centralized topology control algorithm, named EDTC [136]. The proposed algorithm

achieves better performance than the state-of-the-art in terms of network lifetime. To

reduce the topology optimization time, we further train a graph convolutional net-

work (GCN) to imitate the proposed algorithm. Experimental results show that the

GCN-based approach can achieve similar performance to EDTC while significantly

reduce the running time.

Finally, we conclude our work and put forward some future research directions in

Chapter 6.
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Chapter 2

Background

This chapter gives a review of three types of wireless network technologies, as well as

the existing theories and methods that are fundamental for the rest of this thesis.

2.1 Radio-Frequency Identification Networks . . . . . . . . . . . . . . . . 6

2.2 Mobile Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Wireless Ad-hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Graph Theory Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Multi-Layer Feed-Forward Network . . . . . . . . . . . . . . . 11

2.5.2 Graph Convolutional Network . . . . . . . . . . . . . . . . . . 13

2.5.3 Learning the Weights: Gradient Descent with Backpropagation 16

2.6 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Radio-Frequency Identification Networks

Radio-frequency identification (RFID) is an automatic identification and data capture

technology, using radio-frequency electromagnetic waves to transmit signals [122]. A

normal RFID system has three major types of components: RFID reader(s), RFID

tag(s), and the host system (or central computer) [99]. The RFID reader can read

(collect) the information stored on the RFID tag. The collected information will be

sent to the host system for further processing (such as saving into the database).
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Because RFID tags are inexpensive and extremely portable, RFID technology is an

essential part of the modern IoT world [18]. Some common usages of RFID systems

are product identification (to replace the traditional bar code), theft-detection, and

contact-less payment [55, 110]. In addition, RFID can also be applied in positioning

[30, 126, 128]. Both RFID readers and tags have antenna for communication. Based

on the type of power source, RFID tags can be categorized into active RFID tags

and passive RFID tags. The antenna of a passive RFID tag serves as both the power

receiver and the signal transmitter. To read the information recorded on a passive

RFID tag, the RFID reader needs to emit the electromagnetic wave to power the

passive RFID tag. Whereas, an active RFID tag should have an internal power

source (usually a battery) to power the antenna and the microchip. Due to this

reason, the transmission range of an active RFID tag is usually much more extensive

than the transmission range of a passive RFID tag. However, active RFID tags are

more expensive and larger than passive RFID tags [99]. In contrary, the passive RFID

tags are much smaller (often as thin as paper), so they can be installed in a passport,

a luggage tag, or even a book [7, 8].

2.2 Mobile Edge Computing

Mobile edge computing (MEC) is one of the promising technologies in future IoT

networks [116]. The context of the application of MEC varies from virtual reality

[141] to smart vehicular network [89]. MEC aims to reduce latency, ensure network

efficiency, and improve user experience. To implement MEC, we need the virtualized

platform, which is supported by 5G [48]. Moreover, it is anticipated that the MEC

will become an essential component in the 5G network, which supports diverse novel

applications and services [1]. MEC reduces the reliance of smart mobile end devices

(such as cellphones) to the cloud service and allows many functions to be performed

“offline” (on the edge server). In MEC, edge servers could collect and process the

data locally. Thereby, some sensitive information does not need to go through the

cloud server. The cloud servers are usually remote, which is inefficient to some time-

sensitive tasks [109]. MEC could reduce the overhead of the communication with

the remote cloud server. In summary, some advantages of MEC include low latency,

end device battery conserving, privacy protection, robustness, and bandwidth saving.

Figure 2.1 depicts the concept of an MEC network.
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Figure 2.1: The MEC conceptual architecture.

2.3 Wireless Ad-hoc Networks

Many IoT networks are also wireless ad-hoc networks (WANET) because such net-

works have the advantages of flexibility, better fault tolerance, and the support of

rapid deployment. Some examples of wireless ad-hoc IoT (WAIoT) networks are

wireless sensor networks (WSN) [5], unmanned aerial vehicle networks [41, 100], and

smart vehicular networks [43]. Conventionally, one has to leverage technologies such

as WiFi and Bluetooth to form WAIoT networks over unlicensed channels. However,

the quality of service is not guaranteed for those approaches. One objective of 5G

and beyond 5G (B5G) is to connect almost everything ubiquitously and also provide

a high data rate. Thus, it is promising to take advantage of the WAIoT paradigm

to meet the growing demand for next-generation cellular networks. [120] provided an

outlook of the D2D use cases in 5G cellular networks. One scenario is to allow the

WAIoT network to provide Internet services in congested areas such as a stadium and

a shopping mall. Unmanned aerial vehicles (UAVs) can also form an ad-hoc network

and act as flying base stations to assist communications for the 5G devices [73]. In [58]

and [147], the authors envisioned the scenarios of implementing the content-centric

paradigm over WAIoT networks in the future-generation cellular networks.
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2.4 Graph Theory Basics

This section refers to Reinhard Diestel’s book Graph Theory [21]. Graph theory is

a sub-field of mathematics (more specifically, discrete mathematics), which studies

the structure (named graph) of modeling objects and the relationships among those

objects. We can represent a graph G (denote as G = (V,E)) as the combination of a

set of vertices (nodes) V and a set of edges (links) E. Denote vi ∈ V as the ith vertex

in V . An edge evi,vj ∈ E represents that there is direct relationship between the vi

and vj in G. If there is an edge evi,vj in G, then we say vi and vj are neighbors, or

vi and vj are adjacent. We denote neighbors(G, vi) as the set of all the neighbors of

vi in G. In terms of whether the order of two vertices appears in evi,vj has meaning

or not, we can classify a graph as either un-directed graph or directed graph (also

known as digraph). In an un-directed graph, evi,vj = evj ,vi . Whereas, in a digraph,

evi,vj means that there is an edge start from vi and end at vj; thus, evi,vj 6= evj ,vi . The

degree of a vertex vi (denoted as deg(vi)) is the number of edges with that vertex

as an end-point (e.g., in evi,vj , vj is the end-point). We can also assign weights to

vertices and/or edges, to represent some quantitative attributes. In this thesis, we

use w(vi) to represent the weight of vi; use w(evi,vj) to represent the weight of an edge

evi,vj . Figure 2.2a shows an example of un-directed graph with four vertices and four

edges in form of a diagram. We often use the adjacency matrix to represent a graph.

If the edges have no weights, we can use a binary adjacency matrix Ȧ ∈ {0, 1}|V |×|V |

to represent the graph. Ȧij = 1 represents that there is an edge between vi and vj.

Figure 2.2b depicts the adjacency matrix of the graph in Figure 2.2a. For un-directed

graph, Ȧij = Ȧji, therefore, the Ȧ is symmetric along the diagonal (see the dashed

line in Figure 2.2b). For the same graph, there could have different adjacency matrix

representations of it. For example, the adjacency matrix shown in Figure 2.2c also

represents the graph in Figure 2.2a. If the edges have weights, we can use the weighted

adjacency matrix A ∈ R|V |×|V | to represent the graph, where Aij = w(evi,vj).

A path represents a sequence of distinct vertices (except for the initial vertex could

be the final vertex), where each pair of adjacent vertices is connected by an edge, and

the edges are also distinct. The number of vertices in a path minus 1 represents the

length of the path. For instance, v0 → v1 → v3 represents the path (length is 2)

starting from v0 (initial vertex) and ending at v3 (final vertex). We say a graph is

connected if there exists a path between each pair of vertices. A bipartite graph is a

special type of graph if the vertex set can be split into two disjoint sets so that each
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Figure 2.2: An example un-directed graph (a) and its two possible adjacency matrix
representations (b, c).

edge of G connects a vertex from one set to a vertex from the other set. We denote

a bipartite graph as G = (Va, Vb, E), where Va ∩ Vb = ∅; Va ∪ Vb = V ; and evi,vj ∈ E
if and only if vi ∈ Va, vj ∈ Vb. If the initial vertex is also the final vertex, we say the

path is a cycle. The graph contains no cycle is known as the acyclic graph. Acyclic

graphs are bipartite graphs. The connected acyclic graph is also known as a tree.

2.5 Artificial Neural Networks

Artificial neural networks (ANN) are mathematical models designed to solve a vari-

ety of problems such as pattern recognition, autonomous control, and optimization,

through learning [54]. A biological neural system contains an enormous amount of

information/signal processing units called biological neurons. Compared with the

Von Neumann architecture computer [125], which relies on a centralized controller to

execute manually defined sequential procedures, the biological neural system has a

significant advantage due to its parallel processing nature and the massive amount of

connections between neurons [54]. Biological neural networks inspired the invention

of ANN, and the study on ANNs can also help us understand how the biological

brain works [83]. The fundamental work on the birth and development of ANN may

date back to Frank Rosenblatt’s perceptron machine [101]. In 1957, Frank Rosen-

blatt proposed the perceptron machine to imitate the biological nerve net in learning

to perform binary classification on linearly separable signals. The perceptron can

be either implemented on a hardware-level or simulated through computer programs

[102]. Figure 2.3 depicts two connected biological neurons. The connections between

two biological neurons are established through synapses and dendrites. The synapses
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of the first neuron (the left neuron) can release chemicals called neurotransmitters

to pass a signal to the second neuron (the right neuron). Similar to the biological

neural network, the basic building block of an ANN is called an artificial neuron. We

show an example architecture of the artificial neuron with two inputs (x0 and x1)

in Figure 2.3. Computation inside the artificial neuron is represented through the

computational graph. We can use an equation to summarize the computation:

o = activation(
1∑
i=0

aixi + b), (2.1)

where o is the output of the neuron; ai is the weight for input xi; b is bias; activation(·)
is the activation function. The main idea of an artificial neuron is to compute a

weighted sum of the inputs, add a bias value to the weighted sum, and pass the result

to a non-linear activation function to get the final output of this neuron. Weights

and biases in an ANN can be trained to enable the ANN to perform some tasks.

The application of an activation function is to introduce non-linearity to the ANN,

because the activation of a biological neuron is non-linear, and most of the real-world

patterns/signals are also non-linear. Some frequently-used activation functions are

sigmoid (see Equation 2.2, e is the Euler’s number), hyperbolic tangent (or tanh, see

Equation 2.3), and rectified linear unit function (or ReLU [91], see Equation 2.4).

sigmoid(x) =
1

1 + e−x
(2.2)

tanh(x) =
ex − e−x

ex + e−x
(2.3)

ReLU(x) = max(0, x) (2.4)

In the rest of this section, we review two types of ANNs and some algorithms for

training ANNs.

2.5.1 Multi-Layer Feed-Forward Network

The multi-layer feed-forward (MLF) networks are universal function approximators

with one or more hidden layers [47]. The term “layer” here refers to a group of

artificial neurons, where the neurons in the same layer have no direct connections with

each other. The architecture of an MLF network can be represented by a digraph,
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Figure 2.3: Biological neurons and artificial neuron. Dashed lines represent a concep-
tual match between the biological neuron and artificial neuron but not a reflection of
how a biological neuron works.

where the vertices represent neurons, and the edges represent the pass of signal.

Different from recurrent/feedback neural networks, an MLF network graph has no

loop. Besides the hidden layer(s), an MLF network has one input layer (the first

layer) and one output layer (the last layer). The input layer has no weights, and it

does no computation. It is like a placeholder to pass the input signal to the next

layer (the first hidden layer). The purpose of using multiple layers (with non-linear

activation) in an MLF network is to enable the MLF network to learn non-linear

features/patterns. Figure 2.4 depicts an MLF network with two hidden layers; each

hidden layer has four neurons; the input and output layers have three and two neurons,

respectively.

Each layer (except the output layer) of an MLF network can only pass the signal

to the next layer, which is known as feed-forward. Two nearest layers are fully

connected, which means that each neuron in the previous layer passes the signal to

every neuron in the next layer. We use vector ~x = {x0, x1, ..., xp} ∈ R1×p to represent

the input p-dimensional signal, use vector ~o = {o0, o1, ..., oq} ∈ R1×q to represent the

output q-dimensional signal. Suppose the MLF network has L hidden layers. The

vector ~h(l−1) = {h(l−1)
0 , h

(l−1)
1 , ..., h

(l−1)
nn(l−1)} ∈ R1×nn(l−1) represents the output of the
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Figure 2.4: The digraph-representation of an example MLF network.

Layer Output of this layer

Input layer ~x = {x0, x1, ..., xp}

lst hidden layer (l = 1) ~h(0) = activation(~xW (0) +~b(0))

lst hidden layer (l > 1) ~h(l−1) = activation(~h(l−2)W (l−1) +~b(l−1))

Output layer ~o = activation(~h(L−1)W (L) +~b(L))

The choice of activation function for each layer could be different.

Table 2.1: Signal Propagation in an MLF Network

lth hidden layer (1 ≤ l ≤ L, l ∈ Z+), where nn(l − 1) is the number of neurons in

the lth layer. We use two-dimensional matrix W to represent the layer weights. The

weights of the lth hidden layer is W (l−1) ∈ Rnn(l−2)×nn(l−1), except for the first hidden

layer W (0) ∈ Rp×nn(0). The output layer weights is W (L) ∈ Rnn(L−1)×q. Similarly, we

define the bias of the lth hidden layer as a vector ~b(l−1) ∈ R1×nn(l−1), and the output

layer biases as a vector ~b(L) ∈ R1×q. Based on the definitions, we summarize the feed-

forward propagation of each layer in an MLF network in Table 2.1. For convenience,

we represent the MLF network as a function with input ~x and the set of parameters

θ (the collection of weights and biases): zθ(~x) = ~o.

2.5.2 Graph Convolutional Network

Convolutional neural networks (CNNs) [70] are powerful tools in learning on the spa-

tially structured data such as sound wave signals (1D data), pixel images (2D data),
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and voxel representation of 3D models (3D data). Different from the densely con-

necting each input value to a neuron (usually seen in the MLF networks), the CNN

utilizes the trainable kernels (filters) and the convolution operation to detect similar

patterns on the signals. In summary, the primary features of a CNN are local connec-

tion, shared filter weights, and multi-layer deep feature extraction [71]. These features

significantly reduce the number of neurons and dramatically improve the convergence

speed of a CNN. Intuitively, we want to apply the same idea on graph structures,

because a graph structure could contain repetitive and similar patterns. However,

the graph structure belongs to the non-Euclidean data structure, and the traditional

CNN does not work in the non-Euclidean domain [149]. To address this issue, Kipf

et al. proposed the graph convolutional network (GCN), which is based on the idea

of graph Fourier transform [67]. In this section, we summarize the GCN algorithm

and review some applications of GCN in combinatorial optimization problems.

Mathematical Representation

Denote the undirected graph G = (V,E). We can represent the graph G as an

adjacency matrix (binary or weighted) A ∈ R|V |×|V |. If A is a binary matrix, Aij

indicates whether there is an edge between vertex i and vertex j. For weighted

matrix A, Aij is the weight of the edge between vertex i and vertex j. The degree of

each vertex is recorded in matrix D ∈ R|V |×|V | (Dij = 0 if i 6= j), where Dii =
∑

j Aij

is the degree of vertex i. For graph G, the order of vertices could be different; A and D

are dependent on the order of vertices. Therefore, there could be different adjacency

matrices represent the same graph, which makes directly learning on A infeasible.

Based on the theory that the convolution in one domain is equivalent to the point-

wise production in the other domain, GCN leverages graph Fourier transform to

enable the spectral graph convolution.

Define Ã = A + I|V |, where I|V | is the identity matrix of shape |V | × |V |. Cor-

respondingly, define D̃ii =
∑

j Ãij. Assume X ∈ R|V |×C is a signal. Each row in

X represents a C-dimensional feature vector of the corresponding vertex. Denote

W ∈ RC×F as the matrix of filter parameters (F represents the number of filters),

the spectral graph convolution operation is defined in Equation 2.5:

Z = D̃−
1
2 ÃD̃−

1
2XW, (2.5)

where Z ∈ R|V |×F is the derived new signal; D̃−
1
2 ÃD̃−

1
2 is the normalized graph
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Laplacian. We use S̃ = D̃−
1
2 ÃD̃−

1
2 to abbreviate the normalized graph Laplacian.

We call S̃ the support matrix.

In a GCN, there could be more than one graph convolution layers. Equation 2.6

represents the layer-wise propagation:

H(l+1) = activation(S̃H(l)W (l)), (2.6)

where l represents the lth layer; activation(·) is the general representation of element-

wise activation function, which could be ReLU(·) (see Equation 2.4), sigmoid(·) (see

Equation 2.2), etc. In the first layer, H(0) = X. The time complexity of GCN is

O(|E|).

Applications in Combinatorial Problems

One can modify the original GCN architecture to achieve different objectives. Some

applications of GCN include graph-level classification, vertex-level classification or

clustering, and link prediction [146]. Li et al. [78] propose a GCN-based heuristic

function that treats the GCN output as a likelihood map over vertices and leverages

the greedy tree search algorithm to derive the final solution. This approach increases

the speed of tree search and achieves satisfactory performance on the maximum in-

dependent set problem (MWIS) [119]. However, there are some limitations to this

approach. For instance, this approach cannot solve the maximal clique problem on

large and dense network graphs. A similar approach was introduced in [56], which

uses the GCN to predict the link likelihood map, and leverages the heuristic-based

beam search to find the optimal route for traveling salesman problem. In [37], the

researchers formulated the branch-and-bound scheme, which is a method for solving

NP-hard mixed-integer linear programming problems, as a Markov decision process.

They trained the GCN to imitate the branching policies. The experiment shows that

the GCN trained on relatively small instances could generalize to larger instances.

In summary, the merit of applying GCN in combinatorial optimization problems

is either reducing the optimization time or improving the local-optimal solution, or

both. A typical way of using GCN in solving combinatorial optimization problems is

to train the GCN to imitate the conventional algorithms. Because GCN adopts the

idea of the convolution operation, theoretically, the input graph could be any size.

This feature enables one to train the GCN on small instances and generalize it on

large instances (computationally prohibitive to conventional algorithms) later.
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2.5.3 Learning the Weights: Gradient Descent with Back-

propagation

Different ANN architectures might require different weights learning (or training) al-

gorithms. Some famous learning algorithms are perceptron learning algorithm [112]

(for training a perceptron), support vector machine algorithm [107] (for training a

support vector machine), extreme learning machine algorithm [49] (for training an ex-

treme learning machine), and gradient descent-based algorithms (capable of training

a wide variety of ANNs). In this subsection, we focus on the gradient descent-based

ANN optimization scheme with the error backpropagation technique.

The foundation of backpropagation (BP) could date back to the Henry J. Kel-

ley’s gradient-based optimization technique (proposed in 1960) in the domain of con-

trol theory [61]. In 1974, Paul Werbos first proposed the BP algorithm [132, 133].

In 1986, David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams defined

the term “backpropagation” and demonstrated its promising application in training

ANNs [103]. In the recent decade, the studies on deep learning further proved the

effectiveness and robustness of BP-based ANN optimization algorithms in training

deep ANNs [71]. The main idea of gradient descent with BP is to reduce the ANN

prediction error (or loss) through back-propagating the error to tune the ANN weights

layer-by-layer. Therefore, to train an ANN in this way, one needs to define a loss func-

tion to evaluate the difference between the ANN prediction and the desired output

(also known as the target). We use the MLF network as an example to briefly explain

the process of BP and gradient descent.

We represent the training data as a pair of input vector and the corresponding

target vector (~x, ~y), where ~y ∈ R1×q. According to zθ(~x) = ~o, the objective is to tune

the weights and biases in θ to let ~o as close to ~y as possible. We define the loss function

L(~o, ~y) as a metric of the distance between ~o and ~y. For different problems, we often

need to design different loss function to better guide the optimization algorithm.

Some commonly used loss functions are squared error (LSE(~o, ~y) = ||~o − ~y||2) and

absolute error (LAE(~o, ~y) = ||~o − ~y||). For classification problems, especially multi-

class classification, cross-entropy loss function is highly recommended.

Given the randomly initialized network parameters θ, the gradient descent ap-

proach first calculate the partial derivatives of the loss function with respect to each

parameter

δ =
∂L(zθ(~x), ~y)

∂θ
=
∂L(~o, ~y)

∂θ
, (2.7)
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where δ is called the gradient. Then, based on the gradient, update the network

parameters through

θnew = θ − αδ, (2.8)

where θnew represents the updated parameters; α is called learning rate, to control the

speed of training. We can repeat the training multiple times on the training dataset

to ensure the loss converges to an acceptable local optimal.

However, Equation 2.7 and Equation 2.8 are generalized representations. In prac-

tice, we need to compute the gradient for each layer, and update the parameters

respectively. We start the BP by computing

∂L(~o, ~y)

∂~o
. (2.9)

The gradient of the output layer weights is derived through the chain rule

δ
(L)
W =

∂L(~o, ~y)

∂W (L)
=
∂L(~o, ~y)

∂~o︸ ︷︷ ︸
term 1

· ∂~o

∂W (L)
. (2.10)

Similarly, for the previous layer, we can compute the gradient of its weights through

δ
(L−1)
W =

∂L(~o, ~y)

∂W (L−1)
=

term 1︷ ︸︸ ︷
∂L(~o, ~y)

∂~o
· ∂~o

∂h(L−1)︸ ︷︷ ︸
term 2

· ∂h
(L−1)

∂W (L−1)
. (2.11)

By calculating the gradient of layer weights in a backward order, we can reuse the

previous calculation. In Equation 2.10, the “term 1” was derived from Equation 2.9.

We can further use the previously calculated “term 1” in Equation 2.11. If there is

the (L − 1)th hidden layer, we can reuse the “term 2” derived in Equation 2.11 in

computing the δ
(L−2)
W . We can repeat this procedure to derive the gradient for the

weights of all the layers. Similarly, we can also derive the gradient for the biases

of all the layers. Based on the derived gradients, we can update the corresponding

parameter through Equation 2.8.
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2.6 Deep Reinforcement Learning

The idea of reinforcement learning came from the way an individual with intelligence

interacts with the environment and learns from the feedback of the environment

to achieve some objective [59]. In other words, reinforcement learning deals with

learning sequential decision-making. In a typical reinforcement learning process, the

agent (a computer program) repeatedly performs the series of steps: observing the

environment, making the decision of action, completing the action, learning from the

feedback of the environment. To simplify the learning process, one typically model

the dynamic process of the agent interacts with the environment as a Markov decision

process (MDP) [123]. The MDP is usually defined by a set of states S (s ∈ S); a

set of actions A (a ∈ A); a probabilistic transition function P(s′|s, a), where s is the

current state, a is the action regarding s, and s′ is the expected next state; a reward

function of a given state R(s); an initial state s0, and a terminal state send if possible.

The MDP assumes that the future state is independent of the past states given the

present state (Markov property).

A model-free reinforcement learning algorithm Q-learning was proposed in [131]

to find the optimal policy which maximizes the total reward for any finite state MDP.

The Q-learning policy is dependent on a table of the Q-values of a finite number of

state-action pairs, which is called Q-table (Q : S × A → R). To maximize the total

reward, the Q-learning agent tends to choose an action a at a particular state s which

has the largest Q-value (argmax
a
Q(s, a)). In practice, we need the Q-learning agent

to explore actions other than argmax
a
Q(s, a). To balance the exploration and the

exploitation, we can apply an exploration rate ε (0 ≤ ε ≤ 1) in the decision making

process (the algorithm is named ε-greedy algorithm). Each time the agent is making

a decision, it first generates a random value between 0 and 1. If the random value is

greater than ε, then the agent chooses argmax
a
Q(s, a) as the action; otherwise, the

agent chooses a random action from A. The Q-table is randomly initialized before

the Q-value updating process. The algorithm for updating the Q-table (to maximize

the reward) is formulated as

Q(s, a) = Q(s, a) + α�[r + γmax
a′
Q(s′, a′)−Q(s, a)], (2.12)

where s is the current state; a is the current action; r is the instant reward after

performing a; s′ is the next state; a′ is the next action; α� is the learning rate (different
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from the gradient descent learning rate α); γ is the discount factor (0 ≤ γ ≤ 1, γ = 0

means the Q-learning agent only focuses on the instant reward).

Although Q-learning is an effective reinforcement learning algorithm, it is ineffi-

cient when the state-action space is huge. One solution is to combine similar states

to reduce the size of state space by explicitly calculating the similarity between states

[32]. Inspired by the predictive power of multi-layer ANNs on unseen data, researchers

explored a way of using the ANN as Q-table, which is called deep Q-learning (DQL).

Correspondingly, the artificial neural network used as the Q-table is called deep Q

network (DQN) [88]. We denote the DQN parameters as θ, Qθ(s) represents the out-

put of the DQN on input state s, and we have Qθ(s) =
⋃
a∈A
Qθ(s, a). For a transition

of MDP (s, a, r, s′), the target Q-value is defined as

y(s, a) = r + γmax
a′
Qθ′(s′, a′), (2.13)

where θ′ is a history copy of θ to avoid oscillations during training. Different from

(2.12), in DQL we need to use gradient descent-based optimizer to update the DQN

parameters θ through minimizing the following loss function

Lθ = [y(s, a)−Qθ(s, a)]2. (2.14)
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Chapter 3

Dense RFID Network Collision

Avoidance

Radio-frequency identification (RFID) is widespread in industries such as supply-

chain management and logistics due to its low-cost feature. In many real-world prob-

lems, one often needs to leverage a considerable amount of RFID readers to cover a

large area. We call this type of system a dense RFID network. Many graph-based

dense RFID network anti-collision algorithms were proposed to address the collision

problems. However, state-of-the-art collision avoidance algorithms are centralized

algorithms. In a dense RFID network, the graphs generated by the centralized al-

gorithms could be very complicated. Therefore, a centralized algorithm increases

the computational workload of the central server. We propose a distributed anti-

collision algorithm based on the idea of a centralized collision avoidance algorithm

called MWISBAII [86]. We found that due to the lack of global information, there

is a gap between the performance of our distributed algorithm and the centralized

MWISBAII. To narrow this gap, we introduce machine learning into the proposed

algorithm. The machine learning model is an empirical model that mitigates the

deficiency of the lack of global information. The experimental results show that the

proposed distributed algorithm with machine learning can get almost the same per-

formance as the centralized MWISBAII under different experimental settings.

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
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3.1 Introduction

Since the RFID reader provides energy for passive RFID tags, and the valid energy

transmission range is small, the coverage of a single RFID reader is limited. There-

fore, in many real-world applications, one generally uses multiple readers to increase

the coverage of the RFID system [9, 10, 11, 90]. This kind of RFID systems are

referred to as dense RFID readers systems. Tags within the activated interrogation

range of a reader can be read by the system if there is no collision. In reality, since

the electromagnetic wave will not disappear beyond the interrogation range, there is

an interference range, which is larger than the interrogation range [63]. In Figure 3.1

(a), for the reader r1, the radii of the interrogation range and the interference range

are denoted by d and d′, respectively. We can use a coefficient β to represent the

relationship between d and d′: d′ = dβ (β > 1.0). The value of β can be measured

through the experiment [64]. Whereas, in our work, the model of interrogation and

interference ranges satisfies ideal assumptions. For instance, the interference signals

of multiple RFID readers will not accumulate, and the wireless transmission is in free-

space. We define the interference region as the region which is within the interference

range but beyond the interrogation range. If we only deploy the RFID readers and

tags on a two-dimensional plane, then we can abstract the interrogation and inter-

ference range to circles. To get full coverage of a field, the ranges of different readers

may overlap (as shown in Figure 3.1), which may lead to some types of collisions.

Reader-to-reader collision (frequency interference) and reader-to-tag collision (tag

interference) are two primary types of collisions in a dense RFID readers system [26,
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34, 60, 144, 148]. There are two types of reader-to-reader collisions. Type-a reader-to-

reader collision (see Figure 3.1a) occurs when a reader is within the interrogation range

of another reader, and both readers are active. The radio-frequency electromagnetic

wave emitted by the second reader prevents the first reader from communicating

with tags within its interrogation range. Figure 3.1b depicts type-b reader-to-reader

collision, which occurs when a tag is in the interrogation range of one reader (r1), but

also in the interference region of another reader (r2). If r1 wants to read the tag and r2

is also active, then the signal of r2 may interfere with the signal of the tag; meaning,

r1 may not able to read the tag. Reader-to-tag collision occurs when one or more tags

are in the activated interrogation ranges of more than one readers (see Figure 3.1c).

In this example, if r1 and r2 attempt to communicate with the tag simultaneously,

the reader-to-tag collision will occur. Furthermore, if the number of tags within an

RFID reader’s interrogation range is greater than the maximum number of tags that

can be read by an RFID reader (we use limit to represent this upper bound), this

RFID reader cannot be activated. This scenario can also be considered as a type of

collision.

© Peizhi Yan

Figure 3.1: Some types of collisions in a dense RFID readers system.

In some scenarios, passive RFID tags not only serve as the object identifiers but
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Figure 3.2: An example RFID system with four readers (r1, r2, r3, and r4). r2 and
r3 are active, while r1 and r4 are off. The rhombuses represent tags, where green
indicates can be read by the system, and black indicates cannot be read by the system.
The dashed circle represents the rim of the interference range, and the solid circle
represents the rim of the interrogation range.

also have some complex functionalities. For instance, the wireless sensor could be

integrated into an RFID tag, which leverages the energy harvested by the tag’s an-

tenna to drive the wireless sensor module and transmit the data collected by the

sensor module [31, 145]. Because the wireless sensors need to work uninterruptedly,

one needs to sacrifice some sensor nodes (deactivating some of the RFID readers could

help to avoid the collision, but some RFID tags might be inaccessible by the system),

and allow the whole system to enable as many sensor nodes online as possible. The

problem of selectively activate or deactivate the interrogation ranges in a dense RFID

readers system to allow the system to read as many tags at the same time as possible

is known as reader-coverage collision avoidance (RCCA) problem [79]. Figure 3.2

depicts an example RFID system, where only two readers are active to enable the

system to keep communicating with the maximum number of tags. One of the state-

of-the-art RCCA algorithms is MWISBAII [86]. This algorithm first transforms the

RCCA problem into a Maximum-Weight-Independent-Set (MWIS) problem and uses

graph theory to solve the MWIS problem. The objective of the MWIS problem is to

find a subset of graph vertices, where the vertices have no direct connections with

each other in the graph, and the sum of their weights is as large as possible. In a dense

RFID reader system, the graph representation of the MWIS problem could be huge,
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increasing the burden on the central computer. We first present our initial distributed

version of the MWISBAII in [138], which enables each reader to be involved in the

decision-making process. To keep the performance of the centralized MWISBAII as

much as possible, we further propose a machine learning assisted distributed RCCA

algorithm [139]. We leverage the centralized MWISBAII to label the training data

for machine learning and apply the trained model to our initial algorithm. We call

the new algorithm a distributed MWISBAII with machine learning (DMWISBAII

w/ ML). DMWISBAII w/ ML first utilizes the trained model to predict whether to

activate and deactivate some of the readers and then use our initial algorithm to han-

dle the rest of the readers. To the best of our knowledge, no machine learning-based

approach has been proposed to solve the RCCA problem.

The remainder of this chapter is organized as follows. Section 3.2 provides a

review of the existing dense RFID system anti-collision algorithms. We state the

RCCA problem in detail in Section 3.3. In Section 3.4, we review a few algorithms

that solve the MWIS problem and the MWISBAII, which is based on MWIS. We

introduce our distributed MWISBAII algorithm in Section 3.5. Section 3.6 presents

the machine learning auxiliary approach and gives an example of using this algorithm

in solving the RCCA problem. Section 3.7 presents the experimental results of the

performance of MWISBAII and our distributed algorithm (with or without machine

learning auxiliary). In the end (in Section 3.8), we conclude this work and put forward

some ideas for future work.

3.2 Related Works

The objective of most dense RFID readers system collision avoidance algorithms is

to minimize the total time used for identifying (reading) all the tags without colli-

sion. Alternatively, to increase the read throughput (generally defined as the number

of tags read per time slot). Based on access schemes, such algorithms are usually

classified into time-division multiple access (TDMA), frequency-division multiple ac-

cess (FDMA), and carrier-sense multiple access (CSMA) [45, 57, 85, 98, 105, 143].

Considering TDMA has a relatively low implementation complexity and operational

cost, most of such algorithms are TDMA-based, which can be further divided into

ALOHA-based and tree-based algorithms [114]. The basic idea of access scheme-

based algorithms is to reduce or eliminate collision by optimally allocating temporal

or frequency resources. Rezaie et al. [98] propose a centralized reader-to-reader col-
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lision avoidance protocol which combines TDMA and FDMA mechanisms. Ho et

al. [45] propose a distributed hierarchical Q-learning (HiQ) algorithm for minimizing

the collision rate of a dense RFID readers system. HiQ makes the optimization by

assigning different time and frequency resources to RFID readers. However, the ob-

jective of HiQ is to reduce the collision but not guarantee the elimination of collision.

Moreover, it is not efficient to train when the network size is large [113]. A CSMA-

based collision avoidance algorithm (named GENTLE) for mobile RFID networks is

proposed in [143]. GENTLE assumes that the reader-to-reader collision problem is

more severe than the reader-to-tag collision problem in a mobile RFID network (the

RFID readers could be mobile phones). The basic idea of GENTLE is to use beacon

messages to eliminate reader-to-tag collision and use the multi-channel solution to

avoid the reader-to-reader collision. Su et al. [115] propose a tree splitting-based

anti-collision algorithm for ultra-high frequency RFID systems. This algorithm ac-

celerates the splitting process as well as increases the system read throughput. A

dense RFID network anti-collision protocol stack named Season is proposed in [140].

Season does not assume the existence of the interference range, which may lead to a

different result than the theoretical expectation in practice. Season utilizes one phase

(at the beginning) to collect data from the tags which are not within the overlapping

interrogation ranges of different readers. After the first phase, Season converts the

anti-collision problem to the MWIS problem and employs two phases to selectively

active some readers. Those two phases might be executed multiple iterations until

all the tags have been read. The algorithm proposed in [151] requires a planned

deployment of RFID readers, which makes it possible for the algorithm to get the

accurate location information of each reader. Based on the interrogation and inter-

ference regions of RFID readers, this algorithm schedules the activation of readers

to enable all the areas to be covered at least once at the end. Zhu et al. [152]

presents a distributed approach (ADRA) for the scenarios when a central server does

not exist. ADRA assumes that there could be multiple applications running in the

system and issue identification requests. Based on the assumption, ADRA works in

an adaptive way to make the idle readers not to participate in the coordination. A

common limitation of the algorithms, as mentioned earlier, is that the readers cannot

read tags within their overlapped interrogation ranges simultaneously, which causes

delays. MRTI-BT addressed this issue through bit tracking [29]. Besides, MRTI-BT

also prevents common tags from being identified multiple times by different readers.
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3.3 Problem Statement

Reader-coverage collision avoidance (RCCA) problem [79] is about which reader(s) in

a dense RFID readers system should be activated to allow the whole system read as

many RFID tags without collision as possible at the same time. It is a combinatorial

problem and is NP-hard [79]. We suppose that the readers in the dense RFID readers

system have identical technical specification such as the radius of the interrogation

range d; the radius of the interference range d′ = dβ (β > 1.0); and the maximum

number of tags can be read by each reader (denoted by limit). Assume the dense

RFID network has N readers and M tags, then we define the set of readers as R =

{ri|1 ≤ i ≤ N, i ∈ N}, and the set of tags as T = {ti|1 ≤ i ≤ M, i ∈ N}. For

the ith reader ri, we use Tri ⊆ T and T ′ri ⊆ T to represent the set of tags within

its interrogation range and the set of tags within its interference range respectively.

Because d′ is greater than d, Tri ⊆ T ′ri . |Tri | is the number of tags in Tri , and |T ′ri | is

the number of tags in T ′ri . The result of the RCCA algorithm can be represented as

a subset R ⊆ R. Only the readers in R should be activated. The result should meet

the following constraints:

1. if ri and rj ∈ R, i 6= j, then Tri
⋂
T ′rj = ∅ and T ′ri

⋂
Trj = ∅;

2. if ri ∈ R, then |Tri | ≤ limit and |Tri | > 0.

We define that T = {Tri : ri ∈ R}, which is the set of tags can be read by the

RFID system. The goal of the RCCA algorithm is to find a set R, such that |T | is as

large as possible. In practice, we also consider the total energy consumption of the

system. Therefore, besides maximizing |T |, we also want to minimize the number of

activated readers |R|. An efficient RCCA algorithm should also derive a solution with

a high T/R ratio (the number of readable tags divided by the number of activated

readers): |T |/|R|.

3.4 MWIS Algorithms and MWISBAII

The purpose of the MWIS problem is to find a set of vertices for any given undirected

graph G = (V,E), where no two vertices are adjacent in the original undirected

graph and the total weight of vertices should be as large as possible. Since the MWIS

problem is NP-hard [36], when the graph is complex, often we can only derive a near

optimal solution.
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A few simple, yet effective greedy algorithms for solving the MWIS problem are

GMIN [27], GMAX [38], and GWMIN2 [106]. The GMIN algorithm repeats the

following process until no vertex can be selected (the graph is empty): select a vertex

of the minimum degree from the graph and put it into the set I (I is an empty

set at the beginning of the algorithm), then remove this vertex and its neighbors.

The GMAX algorithm deletes a vertex of the maximum degree at each step until no

vertex can be deleted (no edge in the graph), then puts all the remaining vertices

into the set I. The result set I is the MWIS. Sakai et al. [106] show that both

GMIN and GMAX can give a MWIS where the total weight is greater than or equal

to
∑

vi∈V w(vi)/(deg(vi) + 1), while GWMIN2 can give a MWIS that the total weight

is greater than or equal to
∑

vi∈V w(vi)
2/
∑

vj∈neighbors(G,vi) w(vj).

Du et al. [22] propose a distributed MWIS algorithm. Their algorithm allows

each node to make a partial solution, where each node broadcasts the partial solution

as a message to each of its neighbors. To achieve the different trade-off between

approximation accuracy and space complexity, they introduced a parameter h to lead

the nodes to truncate some partial solutions before broadcasting the message. The

higher the h value, the more accurate approximation their algorithm can achieve.

When h = +∞, the nodes will not truncate any partial solution. The problem

of this algorithm is when the number of nodes is huge, the message size could be

exponentially large.

3.4.1 GWMIN2 Algorithm

To find the MWIS on a given undirected graph G = (V,E), the first step in GWMIN2

algorithm is to evaluate the cost of each vertex vi ∈ V (Equation 3.1).

cost(G, vi) =
w(vi)∑

vj∈neighbors(G,vi) w(vj) + w(vi)
(3.1)

The second step in GWMIN2 is to pick the vertex vi with the highest cost and

then add vi into the independent set I. Finally, delete vi and its neighbors from G,

and repeat the first and the second steps until no vertex can be selected. Set I is the

solution.

In a simple example MWIS problem depicted in Figure 3.3, there are four vertices

{v1, v2, v3, v4} with weights {7, 7, 9, 6} respectively. We use Equation 3.1 to get the

cost of each of them:
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• cost(G, v1) = 7/23 ≈ 0.3043478261

• cost(G, v2) = 7/20 = 0.35

• cost(G, v3) = 9/22 ≈ 0.4090909091

• cost(G, v4) = 3/11 ≈ 0.2727272727

Vertex v3 has the highest cost value. Thus, we add v3 to I, and remove v3 and

its neighbors from G. By repeating the above steps, we get the MWIS: I = {v3, v2}.
The total weight of vertices in I is 16. Because this example is straightforward, the

result is the best possible solution. However, when the graph is large, GWMIN2 can

only guarantee a relatively optimal solution.

Figure 3.3: An example MWIS problem. Each circle represents a vertex; the red
number beside each vertex represents the weight of that vertex.

3.4.2 MWISBAII

Maximum Weight Independent Set Based Algorithm (MWISBA) [79] ideally assumes

that the interference range does not exist. Thereby, in nature, it cannot detect

and avoid type-b reader-to-reader collisions. Based on MWISBA, MWISBAII [86]

considers the interference range, which allows the RFID system to avoid all types of

collisions depicted in Figure 3.1. The main idea of the MWISBAII is to transform

the reader-coverage collision avoidance (RCCA) problem into a MWIS problem. The

GEMIN2 algorithm is then used to solve this MWIS problem. Lastly, the solution of

MWIS problem can be transformed back to the solution of RCCA problem.

For example (see Figure 3.4), there are four readers in a dense RFID reader system.

Assume each reader only has one interrogation range, and the maximum number of

tags that can be read by each reader is limit = 10. We use integer i to represent the ith

reader. In this example, i ∈ {1, 2, 3, 4}. To transform this RCCA problem into MWIS
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problem, first, the MWISBAII will append a vertex vi to graph G if the number of

tags within the interrogation range of the ith reader is less than or equal to limit.

If there are any tags within both the interrogation range of the ith reader and the

interference/interrogation range of the jth reader, an edge will be associated to vi and

vj in G. Therefore, this RCCA problem will be transformed into the MWIS problem

shown in Figure 3.3. The solution of the above MWIS problem is I = {v3, v2}. This

means that r3 and r1 should be activated to allow the RFID system to read as many

tags as possible without collision.

Figure 3.4: An example RFID system with four readers (r1, r2, r3, and r4).

3.5 The Distributed MWISBAII

To allow each RFID reader to be involved in the computation and decision process, we

propose a distributed MWISBAII [138]. In our distributed algorithm, we assume that

each reader already has the information on how many tags within its interrogation

and interference range (in practice, one could use RFID positioning technology to

collect that information [130]). Besides, each reader should have a local data field

that contains the following components:

• A local undirected graph (or local graph) G = (V,E).

• The status of reader (STAT) that has four possible values:

– LOCK: The reader will not receive signal from neighbor readers.
– OPEN: The reader is waiting for signals from neighbor readers.
– ACTIVE: The reader is activated.
– OFF: The reader cannot be activated.
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• A sender buffer BUFFERout.

• A receiver buffer BUFFERin.

Readers communicate with each other through signals, which we define as a six-

tuple: (i , j ,CODE,VALUE). Here, we assume that communication among readers

will not interfere with the process of reading tags. The readers are using the commu-

nication range, which has a radius that is at least twice larger than d′, to ensure two

readers can communicate with each other if there is any tag with each others’ ranges

that could cause a collision. The main idea of the distributed MWISBAII is to let

each reader build a local graph with the one-hop information. Then, let each reader

compute and broadcast the cost. Readers make local decisions (whether to activate

or not) regarding their local graphs. If a reader cannot decide on this iteration, it

will move on to the next iteration until the decision been made.

The algorithm can be described as the following steps (suppose this reader is the

ith reader):

Step-1: Initialize the graph G = (V,E). First, set STAT to LOCK. For the

ith reader, if |Tvi | ≤ limit, then we associate a vertex vi in G. The weight of vi is

equivalent to |Tvi |. We call vi a local vertex. For all readers, other than the ith reader

(∀j ∈ {j|1 ≤ j ≤ N}): if T ′vi ∩ T
′
vj
6= ∅, we associate a vertex vj (we call it non-local

vertex) and an edge (vi, vj) to G. Go to step-3 (skip step-2).

Step-2: Remove all the redundant vertices in G (if the program just finished

executing step 1, then this step will be skipped). For each non-local vertex vj(j 6=
i, vj ⊆ V ), if the status (STAT) of the jth reader is OFF, we simply remove vj from

G. If the status (STAT) of the jth reader is ACTIVE, we remove vj and its neighbors

from G. Go to step-3.

Step-3: Compute the cost value of the local vertex. For each local vertex vi, the

cost value of it is calculated by Equation 3.1. Go to step-4.

Step-4: Prepare the signals to be sent. For each non-local vertex vj in G, if

there is an edge (vi, vj) between it and a local vertex, we create a signal (i = i, j =

j,CODE=UPDATE, VALUE= cost(G, vi)). Afterwards, we put this signal into the

sender buffer BUFFERout. Go to step-5.

Step-5: Send and receive signals alternatively. Set the status (STAT) to LOCK.

For each signal (i , j ,CODE, VALUE) in BUFFERout; if the i th reader’s status

(STAT) is ACTIVE, we send this signal to the i th reader (put into the i th reader’s

BUFFERin), and remove this signal from BUFFERout. Change the status (STAT)

to OPEN. If there are non-local vertices in G, wait for a short period of time to
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receive signals. Repeat step 5 until BUFFERout is empty and the number of signals

in BUFFERin equals the number of non-local vertices in G. Go to step-6.

Step-6: Process the signals in BUFFERin. Set the status (STAT) to LOCK.

For each signal (i , j , CODE, VALUE) in BUFFERin: if the CODE = UPDATE, we

update the cost value of vi to VALUE; else, if CODE = ACTIVATED, we remove the

vertex vi and the vertex vj from G (just ignore it if vj has already been removed);

else (CODE = DEACTIVATED), we simply remove vi from G. Go to Step-7.

Step-7: Make a local decision. If G is empty, change the status (STAT) to OFF,

and for each non-local vertex vj, send a signal (i = i, j = j, CODE=DEACTIVATED,

VALUE=N/A) to the jth reader. Following this, stop the algorithm. If G is not empty,

find the vertex with the highest cost value. If this vertex is a local vertex vi: change

the status (STAT) to ACTIVATE, and for each non-local vertex vj, send a signal

(i = i, j = j,CODE=ACTIVATED, VALUE=N/A) to the jth reader, and stop the

algorithm. If the vertex with the highest cost value is not a local vertex, then go to

step-2 (next iteration).

The deletion of vertices in a reader’s local graph may cause the need for its neigh-

bor readers to delete some of the vertices in their local graph. This may result in a

domino effect. Due to the consideration of efficiency, we need to reduce the number of

messages transmitted between readers. Therefore, in some cases, when a reader has

made the decision, it will not send any signal to the other readers. This may finally

cause a deadlock in the system [17] . To resolve the deadlock problem and assure a

higher efficiency, we set a threshold of time limit for each reader. If the amount of

time that a reader spends in any step is larger than the threshold, the reader will

spontaneously set its status to OFF and stop the algorithm.

Each step in this algorithm has a time complexity of O(|V |), and the time com-

plexity of each iteration is also O(|V |). Moreover, because each reader only needs

to get its one-hop neighbor readers updated, the complexity of message exchange is

O(|V |). In Figure 3.5, we show the execution of the distributed MWISBAII on the

example in Figure 3.4 step by step. After the first iteration, reader 2 (r2) and reader 3

(r3) are activated. In the second iteration (which is not shown in Figure 3.5), reader 1

(r1) and reader 4 (r4) will receive and process the signals sent by reader 2 and reader

3. At the end of the second iteration, reader 1 and reader 4 will be deactivated.
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Figure 3.5: The first iteration by applying the distributed MWISBAII algorithm on
a simple example. “w” denotes vertex weight; “c” denotes vertex cost.
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3.6 Machine Learning Auxiliary Approach

In practice, the tags are randomly distributed in the RFID system. Some RFID read-

ers may have more tags, while other RFID readers may have fewer tags. This uneven

distribution could be highly skewed. If the RFID readers merely make decisions on

their local (1-hop) information, some valuable RFID readers (contribute more tags to

the whole system) may not be successfully activated. We assume that there are hid-

den patterns that can help the distributed algorithm to make a better decision if the

geological position of each RFID reader is fixed. This means that, with only the 1-hop

local information and some empirical knowledge on the system environment, we could

improve the performance of the distributed algorithm. Based on the assumption, we

propose a machine learning auxiliary approach for our initial distributed MWISBAII

algorithm. We use DMWISBAII w/o ML and DMWISBAII w/ ML to represent our

initial algorithm and the algorithm with ML auxiliary, respectively.

To implement the proposed approach, we require that each RFID reader has

a neural network model and a local ego-network graph. The RFID readers could

communicate with their nearby readers through a wired connection. However, if

the wireless connection among RFID readers is required, the communication should

leverage a channel that will not interfere with the RFID interrogation. Moreover, the

wireless communication range should be at least d + d′. Because when the distance

between two RFID readers is greater than d+d′, the collisions we mentioned previously

will not happen, and these two readers do not need to contact each other directly.

There are two stages in the proposed approach. The first stage is the machine

learning stage, which is required only when the dense RFID system is set up. This

stage primarily happens on the central server because running simulations and train-

ing a neural network model require high-performance computing resources. At the

end of the machine learning stage, the central server broadcasts the trained neural

network weights to each reader, and each reader updates its neural network model

with the received weights. The second stage is the application stage, which runs in

each reader. In this stage, each reader collects the information from its neighbor read-

ers to initialize a local graph. The neural network model is used to score each reader

afterward. A reader will be activated if it has the highest score among its neighbor

readers. Finally, the initial distributed MWISBAII algorithm is used to arrange the

rest of the readers. In this section, we describe the proposed approach in detail.
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3.6.1 Machine Learning Stage

This stage has three sub-phases: (1) data collection, (2) training the neural network,

and (3) broadcasting the trained weights. We run simulations in the data collection

phase to collect training data. We assume the simulated area is 100m×100m (m

is the unit meter), each reader has the identical specification (same limit and β),

and the readers are uniformly distributed (see Figure 3.6). At the start of each

simulation, we record the following information of each reader (ri denotes the ith

reader): weight wi, cost ci, average weight of neighbors $i, and average cost of

neighbors ιi. Weight wi denotes the number of tags within the ith reader; cost ci is

computed through Equation. 3.1. Then, we run the MWISBAII to get the solution.

The solution is recorded in Λ, where Λi ∈ {0, 1} (Λi = 0 represents the ith reader is

not active; Λi = 1 represents the ith reader is active;). Each sample is a quintuple:

(wi, ci, $i, ιi,Λi), where (wi, ci, $i, ιi) is the input to the neural network, and Λi is the

target output. If the number of positive samples (Λi = 1) and the number of negative

samples (Λi = 0) are not equal, we randomly drop some samples from the majority

group of samples to make the number of samples in both groups are equal.

Figure 3.6: A 100m×100m simulated area with 500 randomly assigned tags (tags are
shown as dots). The interval of nearest readers is 7m; d = 5m; β = 1.25. A darker
circle represents the interrogation range; and a lighter circle, which is slightly larger
than that interrogation range, represents the interference range.

The neural network architecture we use is a fully-connected feed-forward network

with two hidden layers. Each hidden layer has 16 neurons; the input layer has 4
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Figure 3.7: The flowchart of machine learning stage.

neurons which match the 4 input values (wi, ci, $i, ιi); the output layer only has 1

neuron. The reason for using a two-hidden-layer architecture is that, with two hidden

layers, the architecture can represent an arbitrary decision boundary [54]; whereas

adding more hidden layers will significantly increase the computational complexity.

The selection of the number of neurons in each hidden layer is based on the considera-

tion among experimental performance, model complexity, and network generalization

trade-off. Because the neural network weights can be represented as matrices, the

total amount of weights of this neural network is 4× 16 + 16× 16 + 16× 1 = 336 (not

consider biases). We use 32-bit floating-point data type for neural network weights.

Therefore the network weights take 10,752 bits (equivalent to 1,344 bytes) memory.

We use ReLU as the activation function of the hidden layers, and use the sigmoid
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activation function in the output layer. The neural network loss value is the mean

squared error (MSE) of the neural network outputs and the target outputs. We use

Adam optimizer [65] with a fixed learning rate (10−3) to optimize the neural network

(minimize the loss value). We train the neural network on the training samples 500

times (epochs), and the training batch size is 16 (each training step takes 16 sam-

ples). After training, we broadcast the trained neural network weights to each reader,

and each reader assigns the received weights to its neural network model. Figure 3.7

depicts the flowchart of machine learning stage.

3.6.2 Application Stage

This stage has two sub-phases. In the first sub-phase, we first let each reader estab-

lish its local ego-network graph G. The center node (ego node) of the local graph

represents the reader itself, where the other nodes (external nodes) represent the

neighbor readers that have a conflict with this reader (if we active this reader, all of

its neighbor readers should not be activated; otherwise, if any of its neighbor readers

is activated, this reader cannot be activated). Each node in the local graph should

contain the following information (i denotes the ith reader): weight wi, cost ci, score

si, and status Θi. The score si is initialized to 0 and will be generated by the neural

network once this reader has all the input information ready. The status Θi is an

indicator of the corresponding reader’s status (STAT). Θi = −1 represents the STAT

of the ith reader is either LOCK or OPEN; Θi = 0 or 1 represent the STAT of the

ith reader is OFF or ACTIVE, respectively. If wi is either 0 or greater than limit,

the ith reader should be deactivated. Here, we skip the detail of the communication

between readers. We can run our previously proposed distributed algorithm up to

step-6 (include step-6) to complete the node cost information in the local graph.

Based on the information (w and c of each node) stored in G, each reader computes

$i and ιi. Then, each reader (reader i) inputs (wi, ci, $i, ιi) to its neural network,

and use the neural network output as its score si. Once a reader updated the score of

all the graph nodes (both the ego node and the external nodes), this reader will find

the node that has the highest score in its local graph. If the node with the highest

score is the ego node, this reader is activated (set Θi to 1). If any neighbor readers of

a reader are activated before this reader, this reader should be deactivated (set Θi to

0). If there are more than one nodes (include the ego node) have the highest score,

or the only node with the highest score is an external node, this reader will enter
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the second sub-phase which leverages the algorithm proposed in [138] to let the rest

of the readers whose STAT is neither OFF nor ACTIVE (Θ = −1) make decision.

Figure 3.8 depicts the flowchart of application stage.

The time complexity (each iteration) of the previously proposed distributed algo-

rithm is O(|V |). Thereby, the time complexity for initializing G in the application

stage is O(|V |). The time complexity for computing either $i or ιi is also O(|V |),
because there are |V | − 1 external nodes in G on average. The neural network has a

fixed number of parameters and operations. Thus, the time complexity for computing

si is O(1). In summary, the time complexity of the application stage is equivalent to

the previously proposed distribute algorithm.

Figure 3.8: The flowchart of application stage.
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Figure 3.9: The testing ROC curves on setting 2 (a), setting 5 (b), and setting 8 (c).

3.7 Experimental Results

In the experiments, we simulated a square area (100m ×100m) to deploy the readers

and tags. We assume the interrogation range d of each reader is 5m; the interference

range d′ of each reader is d′ = dβ, where β can be 1.15, 1.25, or 1.35. Each reader can

read at most 10 tags (limit = 10). The positions of tags are randomly generated. The

readers are uniformly assigned. The interval (horizontally and vertically) between two

nearest readers can be 6m, 7m, or 8m. Figure 3.6 depicts an example simulated area

where the number of tags is 500, the reader interval is 7m, and β is 1.25.

Table 3.1 depicts the settings of the simulations for training the neural network.

To collect data with more variety, for each setting, we simulate ten times for each

number of tags in {100, 200, 300, 400, 500}. Therefore, in the later experiments of

evaluating the performance of the proposed algorithm, the number of deployed tags

can be from 100 to 500. We randomly sampled 60% of the collected data points as

training data, 20% data points as the validation data, and use the other 20% data

points as testing data. Figure 3.9 shows the testing receiver operating characteristic

(ROC) curves under setting 2, 5, and 8. In all of the experiments, the area under the

curve (AUC) is greater than or equal to 0.8.

To get some visual insights into the simulation, under simulation setting 5, we

apply k-means clustering algorithm on the readers (k = 2, 3, 4). Note well, each

reader has the average wi, ci, $i, and ιi over simulations as its fingerprint. When

k = 2, as shown in Figure 3.10 (the leftmost sub-figure), the readers at the edge

are classified into one cluster. The reason is that in our simulations, the readers at

the edge has a different number of neighbors than the other readers. When k = 3

or k = 4, the pattern of clusters is not obvious. Because theoretically, under our

simulation setting, only the readers at the edge and the readers surrounded by the
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readers at the edge have an evident difference.

Figure 3.10: Readers clustered by k-means clustering algorithm. From left to right,
the number of clusters (k) are two, three, and four. Each color represents a cluster.
The circle represents the interference range.

In the performance evaluation experiments, we use all the simulation settings in

Table 3.1. For each setting, we ran the centralized MWISBAII, the proposed machine

learning auxiliary approach (DMWISBAII w/ ML), and the distributed MWISBAII

algorithm without machine learning assistance (DMWISBAII w/o ML) separately.

The number of deployed tags is from set {100, 150, 200, 250, 300, 350, 400, 450, 500},
for each, we ran the simulation ten times and show the average results in Figure 3.11,

Figure 3.12, and Figure 3.13. The evaluation metrics are the number of tags can be

read by the RFID system and the T/R ratio. From the experiments, we can see that

the proposed algorithm with machine learning assistance can get almost the same

performance as the centralized MWISBAII. Besides, the proposed algorithm with

machine learning assistance is always better than the one without machine learning

assistance.

Setting 1 2 3 4 5 6 7 8 9

Interval 6m 6m 6m 7m 7m 7m 8m 8m 8m

β 1.15 1.25 1.35 1.15 1.25 1.35 1.15 1.25 1.35

Number of tags {100, 200, 300, 400, 500}
Table 3.1: Simulation Settings for Training

An interesting phenomenon in the performance evaluation results is that the num-

ber of tags that can be read by the system is less than the number of deployed tags.

Also, with the number of deployed tags increases, the number of tags can be read

increases slower. The explanation is that since each reader can read at most 10 tags
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(limit = 10), once the number of deployed tags within the interrogation range of a

reader is greater than 10, this reader cannot be activated (this situation can be seen

as a type of collision), the system might fail to read those tags.

Figure 3.11: Performance evaluation results when reader interval is 6m.
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Figure 3.12: Performance evaluation results when reader interval is 7m.
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Figure 3.13: Performance evaluation results when reader interval is 8m.

3.8 Summary

We proposed the distributed MWISBAII (w/o ML) at first. However, we found that

due to the lack of global information, there is a gap in performance between the
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distributed MWISBAII and the centralized MWISBAII. The centralized MWISBAII

algorithm will active the reader with the highest cost value in each iteration, and

this highest cost value is a global highest cost. However, in [138], the distributed

algorithm tends to miss some critical readers, which should be activated. To solve

this problem, we proposed a machine learning auxiliary approach to help each reader

make a better decision. The machine learning model is a multi-layer neural network,

which is trained on a central server only when the whole RFID system is set up for

the first time. The training data is generated by running MWISBAII on multiple

simulations. Therefore, the neural network is a supervised learning empirical model.

The trained neural network model will be broadcast to each reader to predict the

score of each reader. Although the training process is binary classification learning,

we can interpret the output generated by the trained neural network model as some

confidence level or score. Because of the constraint of the sigmoid activation function,

the score is a continuous value between 0 and 1. A higher score means the neural

network predicts that there is a higher probability of activating this reader to achieve

better performance. The experimental results proved that the machine learning aux-

iliary approach helps the proposed distributed algorithm to make a more effective

solution.

The experiments in this work followed the assumption that RFID readers are

uniformly distributed. Nevertheless, in many real-world scenarios, the distribution of

RFID readers could be manifold. Therefore, merely training a single neural network

model and broadcast the trained model to every RFID reader might not improve

the performance significantly. In the future, we can employ unsupervised learning

clustering algorithm such as k-means and mean-shift clustering to divide the RFID

readers into groups based on the features (wi, ci, $i, ιi), and train a neural network

model for each group of RFID readers individually. One challenge of this approach is

that it is difficult to find an appropriate k value (the number of clusters). The other

challenge is that, once the neural network model is trained for each cluster of readers,

distributing the trained models to each cluster of readers increases the communication

overhead. Besides the above-mentioned challenges, a significant limitation of the

supervised learning-based approach is lack of flexibility. For instance, once the RFID

system is deployed, the position of each RFID reader should not change, or we need to

re-train the artificial neural network from scratch. Therefore, dealing with dynamic

dense RFID readers systems is also a future research direction.
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Chapter 4

Mobile Edge Computing Task

Offloading Optimization

In a mobile edge computing (MEC) network, mobile devices could selectively offload

tasks to the edge server(s) to save time and energy. However, we should consider many

dynamic factors in task offloading optimization, which increases the complexity of this

problem. Instead of executing the traditional optimization algorithm repeatedly, a

well-trained empirical model such as an artificial neural network could be more effi-

cient in decision making. In this research, considering the potential uneven spatial

distribution of mobile devices in an MEC network with multiple wireless edge gate-

ways, we allow an edge gateway to offload tasks to a nearby edge gateway further.

We propose a deep reinforcement learning-based joint optimization approach for both

device-level and edge-level task offloading. Experimental results show that the pro-

posed approach achieves a near-optimal task delay performance and a better trade-off

between the task delay and the energy consumption on tasks.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Local Computing Mode Cost . . . . . . . . . . . . . . . . . . 49

4.4.2 Task Offloading Modes Cost . . . . . . . . . . . . . . . . . . . 50

4.4.3 Optimization Objective . . . . . . . . . . . . . . . . . . . . . . 51
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4.5 The Proposed Optimization Approach . . . . . . . . . . . . . . . . . 51

4.6 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . 54

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Introduction

The process of transferring a task from the local device to the cloud server or the

edge server for execution and getting the result back is referred to as task offloading

[1]. However, in many scenarios, task offloading may not always achieve satisfac-

tory performance without optimization. Many energy-efficient MEC task offloading

optimization problems consider minimizing mobile device energy consumption while

meeting the demand for delays. In [42], Hao et al. introduce a new concept of opti-

mizing task caching and task offloading jointly. They model the task caching problem

as a 0-1 programming problem and model the task offloading problem as a mixed-

integer nonlinear programming problem. Whereas, this approach has a limited use

case since it does not support many types of computing tasks. Liu et al. propose

an optimization approach to minimize computation and transmit power subject to

latency and reliability constraints [80]. Different from many similar works, they con-

sider the co-channel interference, queuing latency and offloading reliability. They also

leverage the extreme value theory to deal with unusual extreme events.

The objective of energy-efficient task offloading optimization can also be achieved

by optimizing the task offloading scheduling [84, 127]. Mao et al. consider the sit-

uation that all the computation tasks need to be offloaded due to extremely limited

computational resources in mobile devices. However, they fail to take the potential

dependency among tasks into consideration [84]. In [127], Wang et al. represent

the dependency of tasks as a directed acyclic graph and utilize deep neural network-

based reinforcement learning to make optimal task offloading schedule. The deep

neural network includes an encoder for embedding the task graph and a decoder for

predicting the offloading action for each task.

In this work, we assume that in a wireless MEC network, multiple edge gateways

are deployed to cover a large area, and each edge gateway has a dedicated edge server.

An end device can offload tasks to the nearest edge gateway (device-level offloading).

Whereas, in some real-world scenarios, devices are not evenly distributed spatially

[118]. Therefore, we allow a relatively-overloaded edge server to further offload a
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task to one of its nearby edge gateways through wireless communication (edge-level

offloading). For instance, in Figure 4.1, the left edge gateway could further offload

the tasks to the right edge gateway, because the left edge gateway has relatively

more connected devices. We leverage deep reinforcement learning to optimize this

multi-level joint task offloading problem. In some relative studies, the objective of

task offloading is to minimize energy consumption and latency [81, 150]. Similarly,

the objective of our deep reinforcement learning algorithm is to minimize the average

task execution delay and the end device energy consumption on each task.

© Peizhi Yan

Figure 4.1: A wireless edge computing network with two edge gateways.

The rest of this chapter is organized as follows. We review some related works

in Section 4.2. In Section 4.3, we introduce the MEC network model. Section 4.4

depicts the proposed joint task offloading optimization problem and formulates the

optimization objective. In Section 4.5, we propose the multi-level task offloading joint

optimization approach. Section 4.6 shows the experimental results. We conclude this

chapter in Section 4.7 and outline some directions for future work.

4.2 Related Work

In ultra-dense wireless networks such as 5G network with overlapping small base

stations, an end device could choose to communicate with one of many small base

stations. Some task offloading approaches allow multiple edge servers to provide ser-

vice for a single end device [14, 23, 51]. Du et al. [23] propose an online optimization

algorithm based on Lyapunov optimization to maximize the number of end devices

served with minimum service cost in the long term. A deep reinforcement learning-

based approach proposed in [51] assumes that each end device can choose to execute
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a task locally, or offload the task to one of many base stations (each base station is

equipped with an edge server), or offload the task to the cloud server through one of

those base stations. However, this approach is not flexible since the neural network

architecture is fixed, and once the network topology changes (such as the removal or

addition of base station), one needs to rebuild a neural network and retrain it through

reinforcement learning.

Traditional reinforcement learning-based approaches allow distributed decision

making in nature since it simulates the learning process of an individual agent [81, 96].

Whereas, the capability of a traditional reinforcement learning-based approach is lim-

ited. Because many dynamic and stochastic factors affect the decision making of

task offloading, exploring all the possibilities is infeasible. The deep reinforcement

learning-based approach can address this limitation by storing the empirical knowl-

edge into a deep neural network that works well on the input with an extensive and

continuous range [14, 51, 82, 127]. Furthermore, most deep reinforcement learning-

based optimization approach has a linear inference time complexity given the states

with a fixed amount of features.

4.3 Network Model

We consider the MEC network with multiple end devices and multiple wireless edge

gateways (see Figure 4.1). Each end device communicates to the nearest wireless edge

gateway. Wireless edge gateways can communicate with each other if they are within

each others’ wireless communication range. The wireless channel access scheme is

time division multiple access. Therefore we do not consider the interference of end

devices. Each edge gateway is equipped with a dedicated edge server. We assume that

every wireless edge gateway has the same configuration, and so does every end device.

We use U = {u1, u2, ..., un} to denote the set of mobile end devices, and ui denotes the

ith end device in U . We denote the set of edge gateways as E = {ε1, ε2, ..., εm} (in most

scenarios, n >> m), and the jth edge gateway is εj. We represent the connectivity

between end devices and edge gateways as a bipartite graph G = (U , E , E), where E

is the set of edges. If ui can communicate with εj, then edge euiεj ∈ E. We do not

allow an end device to communicate with more than one edge gateways, therefore,

@k 6= j, euiεj ∈ E and euiεk ∈ E. Because an edge gateway could communicate

with its nearby edge gateways, we represent this gateway-level connectivity as graph

G∗ = (E , E∗), where E∗ = {eεjεk |j 6= k, εj ∈ E , εk ∈ E}.
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We denote the frequency of the wireless channel as ϕ (Hz); the frequency band-

width is denoted as ϑ (Hz). The additive white Gaussian noise of the channel is

denoted as σ. We assume that the power (measure in watts) received by the wireless

receiver’s antenna obey the Friis transmission equation [33]

prx =
ptxgtxgrxλ

2

(4πdtx,rx)2
, (4.1)

where prx, ptx represent the received power and the transmit power respectively;

gtx, grx represent the gain (watt) of transmitter’s antenna and the receiver’s antenna

respectively; λ represents the wavelength which is approximately equivalent to (3.0×
108)/ϕ; dtx,rx denotes the distance between the transmitter and the receiver. The

wireless transmission rate (bit/s) is estimated by

rtx,rx = ϑlog2(1 +
prx
σ

). (4.2)

It should be noted that the Equation 4.2 is only used in the simulation, to simplify

the communication model. Therefore, the simulation assumes that: 1) the antenna is

an ideal isotropic antenna that radiates its power uniformly in all directions; 2) the

space is obstacle (such as the walls, ceilings, etc.) free.

4.4 Problem Statement

We use T to represent the queue of tasks. Tasks in T are processed in a first-in-first-

out way. The task queues of an end device ui and an edge gateway εj are denoted

as Tui = {τui,1, τui,2, ..., τui,l} and Tεj = {τεj ,1, τεj ,2, ..., τεj ,h} respectively. A task τ has

two properties ℘(τ) and ω(τ), where ℘(τ) denotes the task size (measured in bits),

and ω(τ) denotes the workload (average number of CPU cycles for processing each

bit). In this research, we assume that each end device ui will make a device-level

task offloading decision ℵ (ℵ ∈ {0, 1}, where 0 represents not to offload; 1 represents

to offload) for each task. The edge gateway also makes an edge-level task offloading

decision Ψ (Ψ ∈ {0, 1}) for each task directly offloaded by the connected end device.

This means that each task τui,h generated by an end device ui could be offloaded to εj

if euiεj ∈ E (one-hop offloading, or device-level offloading); and τεj ,h could be further

offloaded by εj to another edge gateway εk if eεiεk ∈ E∗ (two-hop offloading, or device-

level plus edge-level offloading). We do not allow any task offloading that is more than
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two-hop to prevent chaos and fail in executing a task timely. We also assume that

the size of the result after each execution of a task is negligible [13]. Therefore, we do

not consider the efficiency of the transmission of results. In the rest of this section,

we formulate the costs (delay and energy consumption) of local computing mode and

two levels of task offloading modes and introduce the optimization objective.

4.4.1 Local Computing Mode Cost

Suppose an end device ui has τui,1 as the first task in Tui , ui needs to make a device-

level decision ℵ(τui,1) for this task. If ℵ(τui,1) = 0, ui executes τui,1 locally. We use fui
(Hz) to denote the CPU frequency of ui, which represents the amount of CPU cycles

per second. The total amount of CPU cycles for executing τui,1 is ℘(τui,1)ω(τui,1).

Therefore, the approximate local execution time consumption on τui,1 is

texe local =
℘(τui,1)ω(τui,1)

fu
. (4.3)

We define the local waiting time of τui,1, which is the time delay from the time

τui,1 is generated to the time τui,1 is retrieved from Tui , as twait local. The estimated

total delay of local computing mode (time consumption) on τui,1 is

tlocal = texe local + twait local. (4.4)

Assume the average CPU working power consumption of end device is ρ (watt). Then,

the estimated CPU energy consumption for executing τui,1 is

eexe local = ρtexe local. (4.5)

The estimated total cost on τui,1 in local computing mode is

clocal = tlocal + κeexe local, (4.6)

where κ is the weight factor because time cost and energy consumption could have

different scales; moreover, we may want to make an adjustable trade-off between time

cost and energy consumption in practice.
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4.4.2 Task Offloading Modes Cost

If the device-level decision made by ui is ℵ(τui,1) = 1, ui will offload τui,1 to the

edge gateway εj (euiεj ∈ E). Suppose the transmit power of ui is pui ; the antenna

gain of ui and εj are gui and gεj respectively. Based on Equation 4.1, we calculate the

received signal power prx (ptx = pui ; gtx = gui ; grx = gεj ; dtx,rx = dui,εj). The estimated

transmission rate from ui to εj is derived by Equation 4.2, denoted as rui,εj . We define

the transmission time for offloading τui,1 from ui to εj as

ttrans = ℘(τui,1)/rui,εj . (4.7)

The transmission energy consumption is derived by

etrans = puittrans. (4.8)

Once εj retrieves τεj ,1 (assume this task used to be τui,1) from Tεj , εj also make

an edge-level decision Ψ(τεj ,1). Suppose eεjεk ∈ E∗ (also, @εz ∈ E , eεjεz ∈ E∗, k 6= z),

if Ψ(τεj ,1) = 0, εj will not further offload τεj ,1 to εk. Assume the CPU frequency of

εj is fεj , then the execution time consumption of τεj ,1 is denoted by

texe edge =
℘(τεj ,1)ω(τεj ,1)

fεj
. (4.9)

We denote the waiting time of τεj ,1 in Tεj as twait edge. The estimated total cost on

τεj ,1 in device-level task offloading mode is defined as

cdevice level = texe edge + twait local + twait edge + ttrans + κetrans. (4.10)

Then we consider the situation when Ψ(τεj ,1) = 1. In this situation, εj decides

to offload τεj ,1 to εk, which we call edge-level task offloading. The transmission rate

from εj to εk is denoted as rεj ,εk , which is derived by Equation 4.1 and Equation 4.2,

where ptx = pεj ; gtx = gεj ; grx = gεk ; dtx,rx = dεj ,εk . The transmission time for this

edge-level offloading is

t′trans = ℘(τεj ,1)/rεj ,εk . (4.11)

We denote the waiting time of τεk,1 (used to be τεj ,1) in Tεk as t′wait edge. Because we

assume that edge servers have same configuration, fεk is equivalent to fεj . Therefore,
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the estimated total cost on τεk,1 with this task offloading mode is calculated by

cedge level = cdevice level + t′wait edge + t′trans. (4.12)

4.4.3 Optimization Objective

In practice, mobile end devices have limited power reserve. Thereby, we consider the

energy consumption of mobile end devices in optimization. Regarding Equation 4.6,

Equation 4.10, and Equation 4.12, the objective of an end device ui is to optimize

the device-level task offloading policy πℵ to minimize the following equation:

Cui =

∑
τ∈T ∗ui

[[
1− ℵ(τ)

]
clocal + ℵ(τ)

[[
1−Ψ(τ)

]
cdevice level + Ψ(τ)cedge level

]]
|T ∗ui |

,

(4.13)

where T ∗ui is the set of completed tasks of ui. It is worth noting that, the edge-level

offloading decision Ψ(τ) is dependent on edge gateway.

Unlike the mobile end device, an edge gateway usually equipped with a stable

power source. Therefore, we do not consider the energy consumption of edge gateways.

The objective of an edge gateway εj is to optimize the edge-level task offloading policy

πΨ to minimize

Cεj =

∑
τ∈T ∗εj

[
twait edge + Ψ(τ)(t′wait edge + t′trans)

]
|T ∗εj |

, (4.14)

similarly, T ∗εj represents the set of completed tasks of εj.

4.5 The Proposed Optimization Approach

In this section, we present the joint optimization approach for the proposed edge

computing network model. We model each level of task offloading as a continuous

state Markov decision process [121]. In continuous state MDP, the values of a state

belong to continuous ranges. Therefore, there is an infinite number of potential states.

Since traditional Q-learning only deals with finite-state MDP, using traditional Q-

learning requires discretizing the infinite set of states into a finite set of states, which

in turn will lead to the loss of accuracy. Deep Q-learning (DQL) leverages an artificial

neural network to imitate the function of Q-table in traditional Q-learning, while an
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artificial neural network can take the arbitrary value(s) as the input, thus supports

continuous state MDP.

We apply DQL for both device-level and edge-level task offloading optimizations.

Each level of task offloading has a dedicated deep Q-network (DQN). We define the

device-level DQN parameters as θℵ, and edge-level DQN parameters as θΨ. Both

levels of policy (πℵ and πΨ) have the same action space A = {0, 1}. Suppose the

end device is ui, and ui is connected to εj. The input state of device-level DQN

is defined as sℵ, which is a quintuple (rui,εj , |Tui |, `ui , |Tεj |, `εj)∈ Sℵ = R5, where

`ui and `εj are the current workload of ui and εj respectively. The workload ` is

defined as ` =
∑

τ∈T ℘(τ)ω(τ), which is the sum of required CPU cycles of each

task in the task queue. Then, the probabilistic transition function can be defined as

Pℵ(s′ℵ|sℵ, a) : Sℵ×Sℵ×A = R5×R5×{0, 1} → [0, 1], which represents the probability

of the transition from a state sℵ to another state s′ℵ under action a.

In edge-level task offloading, given an edge gateway εj, Nεj denotes the set of

neighbor edge gateways of εj (∀εk ∈ Nεj , eεjεk ∈ E∗). The input state of edge-

level DQN is defined as sΨ, which is a septuple (rεj ,εk , |Tεj |, `εj , |Tεk |, `εk , |Dεj |, |Dεk |)∈
SΨ = R7, where |Dεj | and |Dεk | represent the number of connected end devices of εj

and εk respectively. Same as device-level task offloading, the probabilistic transition

function of edge-level task offloading can be defined as PΨ(s′Ψ|sΨ, a) : SΨ×SΨ×A =

R7 × R7 × {0, 1} → [0, 1], which represents the probability of the transition from a

state sΨ to another state s′Ψ under action a.

Instead of maximizing the total discounted reward, we modify Equation 2.13 to

minimize the total discounted cost

y(s, a) = c+ γmin
a′
Qθ′(s′, a′), (4.15)

where c is the immediate cost. For device-level task offloading, we use Equation 4.13 to

calculate the immediate cost, and for edge-level task offloading, we use Equation 4.14

to derive the immediate cost. Therefore, the corresponding action of a state s is

argmin
a
Qθ(s, a), and a transition is defined as (s, a, c, s′).

Algorithm 1 depicts the proposed device-level task offloading and optimization

approach. One can initialize the DQN parameters θℵ randomly, or load the pre-

trained parameters during the initialization stage. There are learning mode and non-

learning mode. If the learning mode is on, the device needs to store the transitions

into a transition history memory Mℵ for experience replay learning. The Mℵ has a
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limited size of ψ transitions. Once the memory is full, the earliest transition will be

removed for adding a new transition. It should be noted that we do not update the

DQN instantly after the execution of each task. Instead, we train the DQN on Mℵ

after the successful execution of κ tasks (a training step). Because we use gradient

descent-based optimizer to optimize the DQN parameters, we define α as the network

learning rate (different from the learning rate α� in Q-learning). We also decrease

the exploration rate ε after each training step, the exploration rate decay factor is ζ

(0 < ζ ≤ 1).

Algorithm 1: Device-level task offloading algorithm.

1 initialize the transition history memory Mℵ;
2 initialize the DQN parameters θℵ;
3 do in parallel
4 while device ui in operation do
5 τui,1 ← retrieve task from Tui ;
6 sℵ ← collect current state info.;
7 if learning mode is on then
8 if random value from [0, 1] ≥ ε then
9 aℵ ← argminaQθℵ(sℵ, a);

10 else
11 aℵ ← random value from ℵ;
12 create a transition (sℵ, aℵ,−,−) for τui,1;

13 else
14 aℵ ← argminaQθℵ(sℵ, a);
15 if aℵ = 0 then
16 execute τui,1;
17 else
18 offload τui,1 to edge gateway;

19 do in parallel
20 counter ← 0;
21 while learning mode is on do
22 if τui,1 is done then
23 cℵ ← compute the current average cost through Equation 4.13;
24 s′ℵ ← collect next state info.;
25 complete the transition (sℵ, aℵ, cℵ, s

′
ℵ);

26 store (sℵ, aℵ, cℵ, s
′
ℵ) to Mℵ;

27 counter ← counter + 1;

28 if counter mod κ = 0 then
29 θ′ℵ ← θℵ;
30 train θℵ on Mℵ;
31 ε← ζε;

The proposed edge-level task offloading approach (see Algorithm 2) is similar to
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the device-level task offloading approach. The difference is that each edge gateway

could communicate with more than one nearby edge gateways. Assume the current

edge gateway is εj. For each of its neighbor gateway εk ∈ Nεj , we first get the

corresponding status sΨ, and then get the corresponding Q-values from the DQN:

QθΨ(sΨ). Based on the Q-values, we get the list of neighbour gateways to which

the current gateway that could offload the current task. If there are more than one

neighbour gateways in the list, we choose the gateway εk with the lowest Q-value

for a = 1, and let εj to offload the task to εk. Furthermore, if the current task was

offloaded by another edge gateway, this edge gateway should execute the current task

instantly without any further offloading. Figure 4.2 depicts the proposed multi-level

task offloading approach.

© Peizhi Yan

Figure 4.2: The proposed multi-level task offloading pipeline.

Assume during the simulation-based training stage, the average total executed

tasks of each end device is k. Then, the total executed tasks in the MEC system

is nk. For device-level Q-learning, the number of neural network training steps is

O(nkψ
κ

). For edge-level Q-learning, the number of neural network training steps is also

O(nkψ
κ

). The number of decision-making steps in device-level Q-learning is nk; for

edge-level Q-learning is nmk in the worst case. Therefore, the overall time complexity

of the simulation-based training is O(nmk + nkψ
κ

). If m << n, and κ < ψ, the time-

complexity can be simplified to O(nkψ
κ

).

4.6 Simulation and Experimental Results

We simulate a 100m×100m area to deploy the wireless edge gateways and end devices.

We represent the square area in a Cartesian coordinate system, where the locations of

four corners are (0, 0), (0, 100), (100, 0), and (100, 100). There are four wireless edge
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Algorithm 2: Edge-level task offloading algorithm.

1 initialize the transition history memory MΨ;
2 initialize the DQN parameters θΨ;
3 Procedure choose gateway()
4 Q← empty set;
5 foreach εk ∈ Nεj do
6 sΨ ← collect current state info.;
7 if argminaQθΨ(sΨ, a) = 1 then
8 Q← Q ∪ {(εk,QθΨ(sΨ, 1))};
9 if Q = ∅ then

10 εk ← random edge gateway from Nεj ; aΨ ← 0;
11 else
12 get the pair (εk,QθΨ(sΨ, 1)) from Q where QθΨ(sΨ, 1) is the smallest; aΨ ← 1;
13 return εk, aΨ;

14 do in parallel
15 while server εj in operation do
16 τεj ,1 ← retrieve task from TE ;
17 if τεj ,1 offloaded by another edge gateway then
18 execute τεj ,1; skip the rest steps and continue the while loop;
19 if learning mode is on then
20 if random value from [0, 1] ≥ ε then
21 εk, aΨ ← choose gateway();
22 else
23 aΨ ← random value from Ψ; εk ← random from Nεj ;
24 sΨ ← collect current state info.;
25 create a transition (sΨ, aΨ,−,−) for τεj ,1;

26 else
27 εk, aΨ ← choose gateway();
28 if aΨ = 0 then
29 execute τεj ,1;
30 else
31 offload τεj ,1 to edge gateway εk;

32 do in parallel
33 counter ← 0;
34 while learning mode is on do
35 if τεj ,1 is done then
36 cΨ ← compute the current average cost through Equation 4.14;
37 s′Ψ ← collect next state info.;
38 complete the transition (sΨ, aΨ, cΨ, s

′
Ψ);

39 store (sΨ, aΨ, cΨ, s
′
Ψ) to MΨ;

40 counter ← counter + 1;

41 if counter mod κ = 0 then
42 θ′Ψ ← θΨ; train θΨ on MΨ; ε← ζε;
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Parameter Value

Transmit power of end device: pu 0.04 (watt)
Transmit power of edge gateway: pE 0.1 (watt)

Gain of end device: gu 3 (dB)
Gain of edge gateway: gE 10 (dB)

Channel frequency: ϕ 2.4 (GHz)
Bandwidth: ϑ 20 (MHz)

Gaussian noise∗: σ M:−80, SD:10 (dB)
Task size∗: ℘ M:25, SD:10 (Kbit)

Task workload∗: ω M:500, SD:100 (cycles/bit)
CPU frequency of end device: fu 1 (GHz) × 1 core
CPU frequency of edge server: fE 3 (GHz) × 4 cores

End device CPU power: ρ 1 (watt)
Time slot: ν; task probability: ξ 10 (ms); 0.5

Deep Q-learning hyperparameters: 0.01; 0.1; 0.2; 0.999; 0.9; 100;
α; κ; ε; ζ; γ; κ; ψ; batch size 10,000; 32

∗ : random value from a normal distribution.
M: mean; SD: standard deviation.

Table 4.1: Experimental Parameters [2, 52, 92]

gateways evenly deployed at four locations: (25, 25), (25, 75), (75, 25), and (75, 75) to

cover the experiment field. In the reinforcement learning stage, we consider the uneven

spatial distribution of mobile end devices. We only utilize half of the experiment field

to randomly deploy the end devices (suppose the location of an end device is (x, y),

then 0 ≤ x ≤ 50, and 0 ≤ y ≤ 100). The position of each end device is fixed in

our simulation. In theory, two edge gateways will be much busier than the other two

edge gateways due to this biased spatial distribution of end devices. We assume that

in each time slot ν, a task has a chance of ξ to arrive. Considering the efficiency

of training, we do not train a DQN for each end device or edge gateway separately.

Instead, all the end devices share the identical DQN parameters θℵ, and all the edge

gateways share the identical DQN parameters θΨ. To implement this idea, we store

the transitions collected from all the end devices and edge gateways to Mℵ, and

MΨ respectively. During the training process, the number of deployed end devices

is 400 (we assume that this is the maximum capacity for this MEC system). Each

end device needs to execute 100 tasks in total in each simulation. A detailed list

of the simulation parameters and the deep Q-learning hyper-parameters is shown in

Table 4.1. Figure 4.3 depicts the training loss curves of both levels of DQL.
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(a) Device-level Q-learning loss curve.

(b) Edge-level Q-learning loss curve.

Figure 4.3: Deep Q-learning loss curves.
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We carry out two groups of experiments (namely, experiment 1 and 2). In exper-

iment 1, we only use half of the experiment field to randomly deploy the end devices

(similar to the reinforcement learning stage). Figure 4.4 and Figure 4.5 depicts the

experimental results of experiment one. Figure 4.4 shows the change of the average

cumulative delay on an end device with the increase of the number of completed tasks.

Figure 4.5 shows the change of the average cumulative energy consumption on an end

device with the increase of the number of completed tasks. “Random” denotes the

stochastic task offloading policy, which means that in both levels of task offloading,

the decision is made randomly (each action has the same probability of been chosen).

“Edge 1” denotes the uniform task offloading policy, where each end device always of-

floads the task to the edge gateway, but there is no edge-level task offloading. Similar

to “Edge 1”, “Edge 2” has the same uniform device-level offloading policy. However,

“Edge 2” allows stochastic edge-level task offloading. “Local” indicates that there is

no task offloading allowed, which means that all the tasks should be executed locally.

Experiment 2 has the identical simulation setting as experiment 1, except that the

deployment range of each end device is the full 100m ×100m experiment field. The

experimental results of experiment two are shown in Figure 4.6 and Figure 4.7.

In Figure 4.4, we can see that when the number of deployed end devices is greater

than 100, both “Edge 1” and “Edge 2” policies will cause higher delay than the

“Local” policy. That is because the edge servers need to process all the tasks generated

by all the end devices. Even edge servers have more computing power than each of

the end devices, and the overload issue will break this advantage. With the number

of deployed end devices increases, the gap between “Edge” policies and the “Local”

policy becomes larger. Whereas, the proposed task offloading approach can always

achieve a performance (in terms of delay), which is close to the “Local” policy. In

Figure 4.5, because under both “Edge” policies, the end devices only need to consume

energy on task transmission, the energy consumption of both “Edge” policies are

lowest. On the contrary, under “Local” policy, the device energy consumption is the

highest. “Edge” and “Local” policies tend to achieve the best performance in terms

of either delay metric or energy consumption metric, whereas, also get the worst

performance in terms of the other metric. The “Random” policy achieves a relatively

balanced performance in terms of both metrics. However, the proposed method can

always achieve near-optimal performance in terms of delay, but also have a reasonable

energy consumption compared with the other polices. The results shown in Figure 4.6

and Figure 4.7 are similar with the results in Figure 4.4 and Figure 4.5. However, in
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Figure 4.6a, “Edge 2” achieves the lowest delay, and “Local” gets the highest delay.

The reason is that, because we use the full experimental field to deploy devices, the

density of devices is not very high. Moreover, since the proposed task offloading

policies are learned under the situation that the number of deployed devices is 400

(high density), when the number of density of devices is not very high, the proposed

approach may not be able to achieve the best performance. However, the proposed

method still achieves near-optimal performance.

In summary, the “Local” approach always has the highest energy consumption

than the other approaches under our experimental settings. Since all the tasks should

be offloaded in both “Edge 1” and “Edge 2” approaches, the end device energy con-

sumption in these two approaches is the lowest (only transmit energy consumption).

The “Random” approach makes a balance between the “Local” approach, and the

“Edge” approaches. The proposed approach achieves the near-optimal (compared

with the other approaches) task delay performance while achieves a better trade-off

of the task delay and the energy consumption than the stochastic approach.
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(a) 100 deployed devices (b) 200 deployed devices

(c) 300 deployed devices (d) 400 deployed devices

Figure 4.4: Average cumulative delay (Experiment 1).
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(a) 100 deployed devices (b) 200 deployed devices

(c) 300 deployed devices (d) 400 deployed devices

Figure 4.5: Average cumulative energy consumption (Experiment 1).
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(a) 100 deployed devices (b) 200 deployed devices

(c) 300 deployed devices (d) 400 deployed devices

Figure 4.6: Average cumulative delay (Experiment 2).
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(a) 100 deployed devices (b) 200 deployed devices

(c) 300 deployed devices (d) 400 deployed devices

Figure 4.7: Average cumulative energy consumption (Experiment 2).
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4.7 Summary

This work considers the situation that in a mobile edge computing network, mobile

end devices can offload tasks to edge gateways (device-level task offloading), and edge

gateways can further offload tasks to nearby edge gateways (edge-level task offload-

ing). We formulate the problem of jointly optimizing the multi-level task offloading as

a reinforcement learning problem and utilize the deep reinforcement learning method

to solve the optimization problem. Experimental results indicate that the proposed

approach achieves a near-optimal task delay performance and a better trade-off perfor-

mance on task delay and task energy consumption than other task-offloading schemes.

In the future, we will enable “on-device” reinforcement learning to handle the hetero-

geneity of end devices (such as different CPU and antenna configurations), and use

the federated learning [68] approach to get the high-quality global model for initializ-

ing the Q-network of newly joined devices. Besides, we will investigate the feasibility

of combining multiple tasks into a batch and make the batch-wise offloading decision.
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Chapter 5

Wireless Ad-hoc Network

Topology Control

Wireless ad-hoc IoT (WAIoT) is promising in providing connections for a considerable

amount of devices in the next generation (5G and beyond 5G) networks. A challenge

in WAIoT networks is that most network nodes are not stable due to the limited

power supply (such as a battery). In this work, we focus on balancing node residual

energy and node degree to prolong the network lifetime. We first present a statistic-

based algorithm (named ED-index) for evaluating the network topology and further

develop an energy-efficient topology control algorithm (named EDTC). The EDTC

algorithm leverages the maximum spanning tree algorithm to build a robust backbone

topology and utilizes the proposed ED-index algorithm to re-introduce some edges to

the topology. We also present a graph convolutional network (GCN) based algorithm

to imitate the initial EDTC algorithm through learning. Simulation results show that

the proposed EDTC algorithm achieves better performance than the state-of-the-art

topology control algorithm in terms of network lifetime. The GCN-based EDTC

algorithm significantly reduces the topology construction time and also achieves a

satisfactory performance compared with the initial EDTC algorithm.

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Existing Topology Control Algorithms . . . . . . . . . . . . . . . . . 68

5.3 System Model and Problem Statement . . . . . . . . . . . . . . . . . 72

5.4 The Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 75
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5.4.1 Energy Distribution Index . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Energy-Degree Topology Control Algorithm . . . . . . . . . . 78

5.4.3 Graph Convolutional Network Based Energy-Degree Topology

Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Introduction

One challenge in WAIoT networks is that most WAIoT nodes have an independent

but limited power source, such as a battery. Therefore, WAIoT nodes have a limited

lifetime before the recharge/replacement of a battery. Moreover, the WAIoT network

nodes could serve as both end-devices and relay-devices, yet the computing resources

such as computing power, memory, and wireless bandwidth are scarce. A particular

case of the WAIoT is the WSN, which is extremely resource-constrained [16]. Topol-

ogy control is essential in prolonging network life and improving the efficiency of the

network, considering the issues as mentioned above [50]. The primary methods of

topology control include antenna power adjusting and neighbor node selection (we

use “neighbor node” to represent the neighbor node appears in the topology graph,

not the geographical neighbor). Different application scenarios often bring diverse

requirements, so different kinds of topology control algorithms usually have entirely

different assumptions and design goals.

We usually model a WAIoT as a topology graph, where the graph nodes represent

wireless devices; edges represent the links between those wireless devices [95, 142].

Since the original graph often includes lots of redundant edges, one goal of most

topology control algorithms is to eliminate the redundancy in the original graph

[62]. Besides, a good topology control algorithm should be able to generate a sub-

graph that keeps the connectivity of the original graph as far as possible, and also

meet some specific requirements such as high energy efficiency [62] (can be measured

by the lifetime of the network) and high robustness (fault tolerance). Additionally,

the run-time efficiency of the topology control algorithm itself is also significant. An

ideal case of the WAIoT assumes that every device has the same wireless transmission

range (not affected by the environment), and all the devices are arranged on a two-

dimensional plane (Euclidean plane). One also assumes that there are no barriers that
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could impede the wireless signal, and the communication between each pair of devices

is bi-directional. In this ideal case, researchers often use a unit disk graph to model

the network [129]. A unit disk graph regards each device’s wireless transmission range

as a circle with equal (for example, unit-length) radius. There is an edge between

two devices only if those two devices are within each other’s transmission range.

In this research, we assume that the network devices (nodes) have different resid-

ual energy. In fact, even the network nodes have the same residual energy at the

start, they are likely to have different residual energy after some time of operation

due to the uneven workload distribution. Theoretically, to prolong the overall net-

work lifetime, we do not expect the network nodes with less residual energy to be

the hub nodes (which have many neighbor nodes); whereas, we anticipate the net-

work nodes with more residual energy to serve as the hub nodes. That is to say,

the more residual energy a network node has, the more neighbor nodes it should

possess; in contrast, if a network node has less residual energy, it should have a rel-

atively small number of neighbor nodes. Based on the assumption, we introduce a

statistic method-based topology evaluation algorithm (named ED-index algorithm)

and further propose a novel energy-aware topology control algorithm (named EDTC

algorithm). The proposed EDTC algorithm leverages the maximum spanning tree al-

gorithm to establish an initial network topology. Then, EDTC utilizes the ED-index

algorithm to re-introduce some edges into the initial topology to increase the network

robustness. Different from many other energy-aware topology control algorithms, the

EDTC algorithm does not require any location information. We also present a ma-

chine learning version of the proposed EDTC algorithm, which leverages the trained

graph convolutional network (GCN) to predict the edges to be re-introduced into the

maximum spanning tree topology. We summarize the contributions of this work as

the following three points:

1. We propose an ED-index which can reflect whether a network topology satisfies

our assumption and the extent;

2. We develop the EDTC algorithm, which leverages the maximum spanning tree

algorithm and the proposed ED-index to optimize the network topology;

3. We present a GCN-based algorithm to imitate the initial EDTC through learn-

ing. We show that the GCN-based EDTC achieves satisfactory performance

and much faster than the initial EDTC.
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Algorithm Algorithm Mode
(and Informa-
tion Type)

Location
Info.

Residual
Energy
Info.

Method

MST Centralized (global
information)

* * Neighbor node selection

DT Centralized (global
information)

3 7 Neighbor node selection

GG Centralized (global
information)

3 7 Antenna power adjusting

IATC Centralized (global
information)

7 7 MST, antenna power adjusting

CTEF Centralized (global
information)

7 3 Clustering

EFTCG Centralized (one-
hop information)

7 3 Game theory, antenna power
adjusting

LEACH Distributed (k-hop
information)

7 7 Clustering

EBTG Distributed (one-
hop information)

7 3 Game theory, antenna power
adjusting

ECTC Distributed (k-hop
information)

3 7 MST, antenna power adjusting

LMST Distributed
(global/two-hop
information)

* 7 MST, neighbor node selection

ERTO Distributed (one-
hop information)

3 3 Antenna power adjusting

LTCA Distributed (one-
hop information)

7 7 Neighbor node selection

*: (3/7) depends on different scenarios.

Table 5.1: The Comparison of Different Topology Control Algorithms

The rest of this chapter is organized as follows. In Section 5.2, we review some

existing topology control algorithms, including state-of-the-art algorithms, as well

as classic algorithms. We formulate the network system model and describe the

problem in Section 5.3. Section 5.4 introduces the proposed ED-index algorithm and

the EDTC algorithm (w/o and w/ GCN). We analyze the experimental results in

Section 5.5. Finally, we conclude our work in Section 5.6.

5.2 Existing Topology Control Algorithms

One of the straightforward but efficient approaches to reduce the redundant edges in

a connected graph without destroying the connectivity is to generate a minimum/-

maximum weight spanning tree (MST) of the original graph. The most famous MST

algorithms are Kruskal’s algorithm (1956) [69] and Prim’s algorithm (1957) [94]. The
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advantage of modeling a network topology control problem into an MST problem is

that, if the costs (such as energy consumption or physical distance between nodes) of

communication between each pair of wireless nodes are known, the MST-based topol-

ogy control algorithm might significantly reduce the total cost of the whole network.

Delaunay triangulation (DT) algorithm (1934) [20] can also be used for topology

control. The basic idea of Delaunay triangulation is to establish edges between nodes

where no node is inside any triangle formed of the established edges. Delaunay also

tends to maximize the minimum inner angles of the triangles. However, the edges

established by the Delaunay triangulation may not exist in a unit disk graph, which

means that some of the nodes may not be able to communicate with each other,

but there could be an edge between them in the Delaunay triangulation. Another

problem of Delaunay triangulation is that the communication and computation load

of the whole network could be huge. The Gabriel graph (1969) [35] is a sub-graph

of the Delaunay triangulation. In a Gabriel graph (GG), if we draw a circle using

any pair of nodes as the endpoints of the line segment of the diameter, then no other

nodes are inside this circle.

Besides the optimization of energy consumption, minimizing the interference in

a WAIoT network is also important. For instance, when two nodes communicating

with each other, the other nodes within either of both nodes’ communication ranges

might interfere. Li et al. take the low interference as a goal and proposed several

interference-aware topology control (IATC) algorithms in terms of various criteria to

measure the interference quality of a structure [76]. By considering the interference

issue, their algorithms can reduce the number of re-transmissions.

Hong et al. proposed an energy forecast based clustering-tree topology control

algorithm (CTEF) [46]. CTEF algorithm selects cluster heads at each round in terms

of a synthesized cost function and their distance. The cost function is based on an

energy model which estimates the difference between the ideal average residual en-

ergy and the actual average residual energy to obtain the average energy of network

at the next round. Besides selecting cluster nodes, CTEF also chooses several non-

cluster head nodes in each cluster to be relay nodes for multi-hop communication

to reduce the burden of the cluster head. The experimental results proved that the

CTEF algorithm could prolong the network lifetime by optimizing energy consump-

tion. According to the assumptions of CTEF, each network node should be able to

communicate with the base station. However, in most WAIoT networks, due to the

limitation of communication range, not all the nodes have the ability to communicate
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with the base station directly.

The low-energy adaptive clustering hierarchy (LEACH) algorithm is a dynamic

scheme that allows different nodes to be chosen as cluster-heads at different iterations

(rounds) to prevent nodes from running out of energy quickly [44]. The cluster-

heads of the current round cannot be cluster-heads in the next several rounds. As a

distributed algorithm, LEACH enables each network node to decide whether or not

to be the cluster-head independently. Each non-cluster-head node determines which

cluster it should belong to in order to minimize the communication energy. The

cluster-heads are required to aggregate and compress the data before forwarding the

data to the base station. One issue of the LEACH algorithm is that the node residual

energy is not considered for choosing the cluster-heads. Moreover, the distribution of

cluster-heads is random; therefore the distribution could be uneven [124].

Du et al. proposed an energy balance topology control game algorithm (EBTG)

based on game theory [24]. In EBTG, the Thiel-index, which is primarily used in

measuring economic inequality, is applied in a unity function to measure the com-

petition between nodes and the balance of energy consumption. The goal of EBTG

is to maximize the unity function by allowing each participant node adjusts power

in a selfish manner. EBTG has an adaptation phase and a topology maintenance

phase. Each node determines its transmit power in the adaptation phase; topology

maintenance phase mitigates the imbalance between nodes dynamically.

Based on the idea of minimum spanning tree, the local minimum spanning tree

topology control algorithm (LMST) was proposed in [74]. LMST models the trans-

mission power between each pair of nodes as the weight of the corresponding edge.

Therefore, the result derived by LMST is power efficient. However, in LMST, each

node needs to build its LMST independently at the start, which is not very flexible

for future maintenance of the network topology. Moreover, because many redundant

paths are eliminated by LMST, if one or more nodes die, the network may suffer from

malfunction for a while. This problem also pointed out by the authors.

Most topology control algorithms consider energy efficiency but fail to take the op-

timization of end-to-end capacity between different nodes into consideration. In [40],

the authors proposed a multi-objective topology control algorithm (ECTC), which

jointly optimizes the network capacity and energy efficiency. The ECTC algorithm is

based on a localized minimum spanning tree. ECTC also considers the heterogeneity

of network nodes, such as the nodes might have different computing power, battery

level, bandwidth, and path loss. One drawback is that ECTC assumes that each node
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1 3 4 2

(a) Original topology.

1 3 4 2

(b) Topology derived by LTCA.

Figure 5.1: An example topology graph with four wireless network nodes before (a)
and after (b) the application of LTCA. The value on each node represents the node
ID.

is equipped with the Global Position System (GPS), which is expensive and not very

accurate.

In [75], Li et al. introduced a topology control based opportunistic WSNs routing

algorithm (ERTO). They proposed a packet delivery ratio between source node and

candidate set calculation model (PDRsc) that considers the network interference. The

topology control part of ERTO is a multi-objective optimization, which optimizes

PDRsc, the expected energy consumption, and the degree of relay nodes. However,

similar to ECTC, ERTO also requires each node to know its geolocation, which is

usually done with GPS technology.

The localized topology control algorithm (LTCA) [53] only considers node IDs,

which requires a meager amount of information exchange between nodes, thus con-

serves the energy consumption for topology construction. In LTCA, each node broad-

casts its ID (assume the ID is unique) to its neighbor nodes, and also records the

received IDs of the neighbor nodes. Later, each node decides whether or not to keep

the connection with each neighbor node by comparing the IDs. However, on a gen-

eral undirected graph, LTCA may not able to preserve the connectivity. For instance,

in Figure 5.1, the original graph is connected (see Figure 5.1a), whereas the graph

derived by LTCA is not connected (see Figure 5.1b).

In [25], a state-of-the-art non-cooperative game-based algorithm EFTCG was pro-

posed to establish energy-efficient topology for wireless sensor networks. EFTCG

leverages a dedicated utility function to balance the transmit power, residual energy,

and network connectivity. In EFTCG, each node is modeled as a player who tends

to maximize its benefit. There are two phases in EFTCG, topology information col-

lection phase, and topology game phase. Players use their maximum transmission

power to broadcast “Hello Message” to their neighbors and initialize strategy sets
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regarding the collected information in the first phase. The second phase lasts for

many iterations to guarantee that each player can converge to the Nash equilibrium

state.

A comparison of the algorithms mentioned above is in Table 5.1, whereas there

are many other topology control algorithms for WAIoT networks, which are summa-

rized in [12]. From previous literature (not limited to topology control algorithms),

the centralized algorithm usually achieves a better result than its distributed coun-

terpart. That is because a centralized algorithm has omniscience of the global infor-

mation, which allows the algorithm to find the near global-optimal. A drawback of

the centralized algorithm is that the number of message transmissions could be huge,

especially when there are hundreds, even thousands of nodes. Moreover, to preserve

connectivity, even distributed algorithms require many message transmissions.

5.3 System Model and Problem Statement

In this research, we assume that the network system has two types of wireless nodes:

normal nodes and sink nodes. Normal nodes could be wireless sensor nodes, or other

types of wireless IoT devices. We use V ∗ = {v∗1, v∗2, ..., v∗n} to represent the set of

normal nodes, where n is the number of normal nodes (n = |V ∗|). Similarly, we use

V + = {v+
1 , v

+
2 , ..., v

+
m} to represent the set of sink nodes, where m denotes the number

of sink nodes. The set of all network nodes is V = V ∗ ∪ V + = {v1, v2, ..., vn+m}. To

eliminate redundant nodes, we set the minimum distance between each pair of normal

nodes to be d. Therefore,

∀{v∗i , v∗j} ⊆ V ∗, dv∗i ,v∗j ≥ d.

Assume that every node (normal node or sink node) in V has an identical maximum

communication range r. Then, there is an edge between vi and vj (denoted by evi,vj)

if the Euclidean distance between vi and vj (denoted by dvi,vj) is less than or equal

to r. We use E to represent the set of edges, then,

∀evi,vj ∈ E, dvi,vj ≤ r.
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The residual energy of node vi is denoted by Evi . We assume that the sink node has

a stable power supply, therefore,

vi ∈ V + ⇒ Evi = +∞.

We represent the original network topology (assume that every node uses its maximum

transmission power) as an undirected graph G = (V,E). If we have the accurate loca-

tion of each node, building a global topology graph will be straightforward. However,

accurate positioning is expensive and faces many technical challenges (for instance,

the accuracy of consumer-level GPS [134] is not acceptable in many topology control

scenarios), we do not require the location information of each network node. In this

case, network nodes can find their neighbors by broadcasting “Hello Messages” with

their IDs (the ID should be unique, such as MAC address). We denote the set of

neighbor nodes of vi as Nvi , then,

∀vi ∈ V, vj ∈ Nvi ⇒ evi,vj ∈ E.

We define the node degree of vi as Dvi . In an undirected graph G, the node degree

of vi equals to the number of its neighbor nodes |Nvi | (Dvi = |Nvi |).
We use vtx and vrx to represent the transmitter node and the receiver node, re-

spectively. The received signal power by vrx’s antenna is denoted by prx, which can

be estimated through the Friss wireless transmission formula [33]:

prx =
ptxgtxgrxλ

2

(4πdvtx,vrx)2
, (5.1)

where ptx is the transmitter’s antenna power; gtx and grx represent the antenna gain

of the transmitter and the receiver respectively; λ is the wavelength of the wireless

signal. The relationship between λ and the channel frequency ϕ is λ ≈ (3.0× 108)/ϕ.

Assume the bandwidth is ϑ, and the additive white Gaussian noise of the channel is

σ, we use the following equation to estimate the data transmission rate (bits/s):

rtx,rx = ϑlog2(1 +
prx
σ

). (5.2)

We have the same assumptions as mentioned in Chapter 4 (Equation 4.2), for using

Equation 5.2. If the data transmission rate is fixed (to ensure the communication

efficiency), we can derive the required prx through Equation 5.2. Further, through
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Equation 5.1, we can estimate the required transmission power ptx:

ptx =
prx(4πdvtx,vrx)2

gtxgrxλ2
. (5.3)

Define the size of data as ð. According to Equation 5.2, the transmission time for

the data of ð is

t(ð) =
ð

rtx,rx
=

ð
ϑlog2(1 + prx

σ
)
. (5.4)

Through Equation 5.3 and Equation 5.4, we can estimate the transmitter’s power

consumption (in joule) on transmitting the data of size ð to the receiver:

J (ð) = ptx × t(ð) =
prx(4πdvtx,vrx)2ð

gtxgrxλ2ϑlog2(1 + prx
σ

)
. (5.5)

(a) Initial topology (with-
out topology control).

(b) Topology with topology
control.

(c) Topology after one node
failed.

Figure 5.2: A demonstration of unsatisfactory network topologies. The size of the
node has a positive correlation with the corresponding node residual energy.

The common objective of most topology control algorithms is to reduce the re-

dundancy (to find a G′ = (V ′, E ′), where V ′ ⊆ V , and E ′ ⊆ E) and, as a result,

prolong the network lifetime. Whereas, if we allow a normal node with relatively

low residual energy to have more neighbors, it will speed up the energy consump-

tion of that node, and could impact on the network connectivity once that node fails

(run out of energy). For example, Figure 5.2a is the original topology, where the

average node degree is high (node degree equals to the number of neighbor nodes).

In this topology, nodes need to use their maximum transmission power, and each of

the nodes needs to communicate with a large number of neighbor nodes. Therefore,

the original topology is not efficient. Suppose Figure 5.2b shows the topology after
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removing some redundant edges from Figure 5.2a. In this topology, the average node

degree is much lower. However, if some critical nodes failed, the network will be

disconnected. Figure 5.2c demonstrates the situation when one node in Figure 5.2b

failed, the network became three disconnected sub-networks.

We assume that besides reducing the redundancy of network topology, we should

also let the node with more residual energy to have a larger node degree, and let the

node with less residual energy to have a smaller node degree. In different networks,

the distribution of network node residual energy could be different. Therefore, it is

tricky to design a standard for general network topologies. Whereas, if there are

enough network nodes (enough sample size), we can leverage statistic methods in

optimizing the network topology.

5.4 The Proposed Approach

The proposed topology control algorithm is based on our assumption that the node

with relatively more residual energy should have a larger node degree; on the oppo-

site, the node with relatively less residual energy should have a smaller node degree.

In this section, we first introduce a statistic method-based algorithm (we name it

energy distribution index or ED index) to evaluate whether and what is the extent a

network topology meets our objective. Then, we present a maximum spanning tree-

based baseline topology control algorithm (in the rest of this chapter, we use MST

to represent this algorithm). In our proposed topology control algorithm (we name

it energy-degree topology control or EDTC), we leverage the ED index to associate a

small number of edges to the topology derived by the MST-based baseline algorithm,

to increase the robustness of the network topology. We also introduce a GCN-based

algorithm to imitate the EDTC algorithm, which could reduce the topology optimiza-

tion time. In the rest of this chapter, we use EDTC w/o GCN to represent the initial

EDTC algorithm and use EDTC w/ GCN to represent the GCN-based algorithm.

5.4.1 Energy Distribution Index

To measure to what extent a network topology meets our objective, we propose a

statistic method-based metric named energy distribution index (ED index). Because

the objective (more residual energy, larger node degree, and vice-versa) is based on

our assumption that a network topology which meets the objective will have a longer
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lifetime, we prove its validity through extensive simulation experiments in Section 5.5.

For different networks, the distributions of node residual energy and node degree

are different. Thus, we need to normalize them to a controllable value range. We

do not take the sink nodes into consideration in our ED index, that is because the

normal node residual energy scale does not apply on the sink nodes (Ev+
i

= +∞).

Assume xmin and xmax denote the minimum and maximum values among all samples.

For a given value x, we compute its min-max normalized value through the following

formula,

z(x, xmin, xmax) =
x− xmin

xmax − xmin
. (5.6)

Take the node residual energy as an example. Figure 5.3a shows the visualization

of the original value range. First, we normalize the node residual energy value range

to [0, 1] (see Figure 5.3b) through Equation 5.6. We further normalize the range to

[−1, 1] (see Figure 5.3c) via subtracting each value by the mean. We also define a

positive value η > 0 as the scale coefficient. Through multiplying each value by η,

we can extend/shrink the value range to [−η, η] (see Figure 5.3d). The choice of

η’s value is not important. However, it should be noted that, when we compare the

ED indices of different spanning graphs, the value of η should be consistent. We use

the same method to normalize the value range of node degree to [−η, η]. Denote the

normalized node residual energy as Ẽv∗i , and the normalized node degree as D̃v∗i
, then,

Ẽv∗i , D̃v∗i
⊆ [−η, η].

After normalization, for each node v∗i , we multiply its normalized node residual

energy and normalized node degree together. The reason is that, if Ẽv∗i → η and

D̃v∗i
→ η, then Ẽv∗i × D̃v∗i

is a relatively large positive value. Similarly, if Ẽv∗i → −η
and D̃v∗i

→ −η, then Ẽv∗i×D̃v∗i
still is a relatively large positive value. On the contrary,

if Ẽv∗i → η and D̃v∗i
→ −η, or Ẽv∗i → −η and D̃v∗i

→ η, then Ẽv∗i × D̃v∗i
will be a

relatively small negative value. We compute the mean value of the multiplications,

and theoretically, the more a network topology satisfies our objective, the larger the

mean value is. Finally, we use sigmoid function to normalize the mean value to [0, 1],

which is the final ED index.

Algorithm 3 depicts the proposed ED index algorithm. The time complexity of

each step in Algorithm 3 is O(n). Therefore, the overall time complexity of the ED

index algorithm is O(n).
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Figure 5.3: The demonstration of our normalization process. Blue bar represents the
value range.

Algorithm 3: The ED index algorithm

Input: The topology: G; η
Result: The ED index of a given topology G: ED(G, η)

1 // STEP 1: normalize the value ranges to [0,1]

2 Emin,Emax ← the minimum and maximum node residual energy of V ∗;
3 Dmin,Dmax ← the minimum and maximum node degree of V ∗ ;
4 foreach v∗i ∈ V ∗ do

5 Ẽv∗i ← z(Ev∗i ,Emin,Emax) ;

6 D̃v∗i
← z(Dv∗i

,Dmin,Dmax) ;

7 // STEP 2: further normalize the value ranges to [-1,1]

8 Ẽmean ← the mean of Ẽv∗i , where v∗i ∈ V ∗;
9 D̃mean ← the mean of D̃v∗i

, where v∗i ∈ V ∗;
10 foreach v∗i ∈ V ∗ do

11 Ẽv∗i ← Ẽv∗i − Ẽmean ;

12 D̃v∗i
← D̃v∗i

− D̃mean ;

13 // STEP 3: extend/shrink the value ranges to [-η,η]
14 foreach v∗i ∈ V ∗ do

15 Ẽv∗i ← η × Ẽv∗i ;

16 D̃v∗i
← η × D̃v∗i

;

17 // STEP 4: calculate the ED index

18 result← 0;
19 foreach v∗i ∈ V ∗ do

20 result← result+ Ẽv∗i × D̃v∗i
;

21 result← result/n;
22 return sigmoid(result);
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(a) G.
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(b) G′MST .

Figure 5.4: An example of the original topology G and the maximum spanning tree
derived by the Kruskal’s algorithm G′MST . Value on each vertex represents the cor-
responding node residual energy; value on each edge represents the edge weight.

5.4.2 Energy-Degree Topology Control Algorithm

The proposed topology control algorithm is based on the maximum spanning tree

algorithm and the proposed ED index. We name the proposed algorithm energy-

degree topology control algorithm (EDTC) because it focuses on the balance between

the node residual energy and node degree.

To utilize the maximum spanning tree algorithm to approach our objective, we

need to define the weights of edges appropriately. We expect that an edge should

have more chance to be in the maximum spanning tree if its two endpoints (network

nodes) have more average residual energy. Thereby, we define the weight of an edge

evi,vj as

w(evi,vj) =
Evi + Evj

2
. (5.7)

We use Kruskal’s algorithm to find the maximum spanning tree G′MST = (V,E ′MST )

of the original topology G = (V,E), where E ′MST ⊆ E. The time-complexity of

Kruskal’s algorithm is O(|E|log|E|). Because we define the residual energy of sink

nodes to be infinity, any edge in E, which connects a sink node, will be included in

E ′MST . Figure 5.4 demonstrates a simple example of G and G′MST . A problem with the

maximum spanning tree topology is that there is only one path (in which all vertices

are distinct) between any pair of nodes. In practice, we often allow some redundancy

in the network topology (such as that there could be multiple paths between a pair of

nodes), to enhance the robustness of the network. Therefore, in EDTC, we leverage

the ED index to provide guidance of re-introducing some edges from E to E ′MST . We

define a variable φ to represent the maximum number of edges to be re-introduced

(0 ≤ φ ≤ |E|−|E ′MST |). The actual number of re-introduced edges could be less than

or equal to φ, depends on different situations. The detailed implementation of EDTC
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Algorithm 4: The proposed EDTC (w/o GCN) algorithm

Input: The original topology: G; η; φ
Result: G′EDTC

1 // STEP 1: find the maximum spanning tree G′MST

2 G′MST = (V,E ′MST )← apply Kruskal’s algorithm on G = (V,E);
3 E ′EDTC ← make a copy of E ′MST ;
4 edMST ← ED(G′MST , η);
5 // STEP 2: evaluate the edges in E \ E ′MST

6 Etemporary ← E \ E ′MST ;
7 foreach evi,vj ∈ Etemporary do
8 E ′EDTC ← E ′EDTC ∪ {evi,vj};
9 G′temporary ← (V,E ′EDTC);

10 w′(evi,vj)← ED(G′temporary, η);

11 E ′EDTC ← E ′EDTC \ {evi,vj};
12 Etemporary ← sort Etemporary by weights w′ in descending order;
13 // STEP 3: re-introduce edges to E ′EDTC
14 counter ← 0;
15 foreach evi,vj ∈ Etemporary do
16 if w′(evi,vj) ≤ edMST or counter ≥ φ then
17 break the loop;
18 E ′EDTC ← E ′EDTC ∪ {evi,vj};
19 counter ← counter + 1;

20 G′EDTC ← (V,E ′EDTC);
21 return G′EDTC ;
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is shown in Algorithm 4. In STEP 1, we use Kruskal’s algorithm to find the maximum

spanning tree G′MST = (V,E ′MST ) of the original topology graph G = (V,E). We also

make a copy of the set of edges E ′MST , and define it as E ′EDTC . We run the ED-index

algorithm to evaluate the ED-index of G′MST . In STEP 2, for each edge evi,vj that

belongs to E but not in E ′MST , we temperately introduce it to E ′EDTC , and evaluate

the ED-index of graph G′EDTC = (V,E ′EDTC). We record the evaluated ED-index as

the new weight of evi,vj , which is defined as w′(evi,vj). Then we remove evi,vj from

E ′EDTC . By repeating the procedures, we can get the new weights of every edge that

is in Etemporary = E \ E ′MST . We sort the edges in Etemporary by their new weights in

descending order. In STEP 3, we go over the edges in Etemporary. If the new weight

of an edge is greater than the ED-index of G′MST , and the number of re-introduced

edges is less than the limit φ we set, we re-introduce the edge into E ′EDTC .

The STEP 1 in Algorithm 4 has the time-complexity of O(|E|log|E| + n). The

time-complexity of STEP 2 is O(n|E| + |E|log|E|). The last step has the time-

complexity of O(φ). Because φ < |E|, the overall time-complexity of the proposed

EDTC (w/o GCN) algorithm is O(n|E|+ |E|log|E|).

5.4.3 Graph Convolutional Network Based Energy-Degree

Topology Control Algorithm

Because the topology derived by EDTC (w/o GCN) is based on MST, we use G† =

(V,E†), where E† = E ′EDTC \E ′MST , to represent the graph of the re-introduced links.

Inspired by [78], we design and train a GCN model to predict the probability map

which leads us to generate the approximate set Ê† (the set of edges to be added to

G′MST ). For convenience, we list some important notations used in this sub-section

in Table 5.2. The weights in A are the min-max normalized edge weights of G.

Each vertex has two features, min-max normalized residual energy and vertex degree.

Therefore, C = 2. We use a fixed number of filters in each GCN layer, F = 32.

To get a large receptive field, we use 20 graph convolution layers (L = 20) in our

GCN model. We use ReLU as the activation function for each graph convolution

layer except the last layer. The output of the first graph convolution layer is H(1) =

ReLU(S̃XW (0)); the output of the last GCN layer is H(L) = S̃H(L−1)W (L−1). For

each graph convolution layer, W (l) ∈ RF×F , except for W 0 ∈ RC×F . We use the

similar method used in graph auto-encoder model [66] to reconstruct the output to
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Notation Description

− Element-wise matrix subtraction operation

◦ Element-wise matrix multiplication opera-
tion

ᵀ Matrix transpose operation

A The weighted adjacency matrix of G

Ȧ The binary adjacency matrix of G

Ȧ(MST ) The binary adjacency matrix of G′MST

Ȧ(EDTC) The binary adjacency matrix of G′EDTC

Ȧ† = Ȧ(EDTC) − Ȧ(MST ) The binary adjacency matrix of G†

S̃ The normalized graph Laplacian of G based
on A

C The number of features of each vertex

F The number of filters in each GCN layer

L The number of GCN layers

X The matrix of vertex feature

W (l) The filter weight matrix at the (l+1)th GCN
layer

H(l) The output of the lth GCN layer

Some notations already defined previously, some notations are the first time appear.

Table 5.2: Some Mathematical Notations

M̃ ∈ R|V |×|V |:
M̃ = sigmoid(H(L)H(L)ᵀ). (5.8)

To eventually use M̃ as the probability map, we need to add some constraints to

it. Some edges of G are already in G′MST , and we do not need to get the probability

of those edges. Therefore, the probability map M̂ is defined as:

M̂ = M̃ ◦ (Ȧ− Ȧ(MST )). (5.9)

Define θ = {W (l−1)|1 ≤ l ≤ L, l ∈ Z+} as the set of trainable parameters. We then

use Fθ(A, Ȧ, Ȧ(MST ), X) = M̂ to represent our neural network model as a function,
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where (A, Ȧ, Ȧ(MST ), X) is the neural network input, and M̂ is the output. We use

Ȧ† as the target to define the loss function:

L =

∑|V |
i=1

∑|V |
j=1(M̂ij − Ȧ†ij)2∑|V |

i=1

∑|V |
j=1(Ȧij − Ȧ(MST )

ij )
. (5.10)

Algorithm 5: The proposed EDTC (w/ GCN) algorithm

Input: The original topology: G; φ
Result: G′EDTC−GCN

1 // STEP 1: generate the MST of G
2 G′MST ← apply Kruskal’s algorithm on G;
3 // STEP 2: run the GCN model

4 (A, Ȧ, Ȧ(MST ), X) ← prepare the neural network input;

5 M̂ ← Fθ(A, Ȧ, Ȧ(MST ), X);
6 // STEP 3: sort the link-level probabilities

7 list← create a list;
8 foreach evi,vj ∈ E do

9 if M̂i,j > 0 then

10 list← list ∪ {(M̂i,j, vi, vj)};
11 list← sort the list in descending order in terms of the first element of each

triplet;
12 // STEP 4: re-introduce edges to G′MST

13 counter ← 0;

14 foreach (M̂i,j, vi, vj) ∈ list do
15 if counter ≥ φ then
16 break the loop;
17 G′MST ← add edge evi,vj to G′MST ;
18 counter ← counter + 1;

19 G′EDTC−GCN ← G′MST ;
20 return G′EDTC−GCN ;

We run extensive simulations to generate a large set of graphs G. For each

graph G ∈ G, we generate G′MST and G′EDTC . Eventually, we get an input 4-tuple

(A, Ȧ, Ȧ(MST ), X), and a target Ȧ† for each G ∈ G. We train the neural network

model through gradient descent and backpropagation-based optimizer to minimize

the loss L. The proposed GCN-based EDTC algorithm (EDTC w/ GCN) leverages

the trained GCN Fθ to predict a link-level probability map M̂ , and add some edges

to the maximum spanning tree in terms of M̂ . Algorithm 5 shows the detail of the

GCN-based EDTC. The time-complexity for each step is O(|E|log|E|), O(|E|log|E|),
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O(|E|log|E|), and O(φ) respectively. Therefore, the overall time-complexity of Algo-

rithm 5 is O(|E|log|E|).
Define k as the average degree of network nodes, then |E| = kn

2
. Therefore, the

time-complexity of Algorithm 4 can be written as O(kn2 +kn · log(kn)), and the time-

complexity of Algorithm 5 can be written as O(kn · log(kn)). In the worst case, when

the initial topology is a complete graph, |E| = n2−n
2

. Because limn→+∞[log(n
2−n
2

)/n] =

0, O(log(|E|) = O(log(n
2−n
2

)) ∈ O(n). In this situation, the time-complexity of

both Algorithm 4 and Algorithm 5 is O(n|E|) ∈ O(n3). This means that, only

when k → n − 1, the time-complexities of both versions of EDTC algorithm will be

same. However, in practice, if n → +∞, k << n. Thus, O(kn2 + kn · log(kn)) ∈
O(n2 + nlog(n)) ∈ O(n2), and O(kn · log(kn)) ∈ O(nlog(n)). Therefore, the time-

complexity of the GCN-based EDTC algorithm (Algorithm 5: O(nlog(n))) is lower

than the initial EDTC algorithm (Algorithm 4: O(n2)).

To better explain the GCN-based EDTC, we visualize an example in Figure 5.5.

Figure 5.5b is an example graph G with 50 normal nodes, and Figure 5.5a is the

weighted adjacency matrix of G. Figure 5.5c is the support matrix S̃. The predicted

link-level probability map M̂ is shown in Figure 5.5e. In Figure 5.5d, the black edges

represent the edges of G′MST ; and the widths of the red edges are proportional to the

probabilities in M̂ . Figure 5.5f is the topology derived by the GCN-based EDTC.

5.5 Experiments

We demonstrate the viability of the proposed ED index algorithm through a straight-

forward experiment. Denote the randomly generated original network topology as

G (n = 100, m = 0). The edge weights are calculated through Equation 5.7. The

maximum spanning tree and the minimum spanning tree of G are denoted as G′max

and G′min, respectively. Figure 5.6 shows an example of G, G′max, and G′min. We

randomly simulate 1,000 times, Figure 5.7 shows the distribution of the ED indices

(curves are smoothed). Theoretically, the nodes with more residual energy in G′max

will have more neighbors, whereas the nodes with less residual energy in G′max will

have fewer neighbors. Therefore, G′max should have a higher ED index than G. On

the opposite, G′min should have a lower ED index than G. The result in Figure 5.7

is consistent with our theoretical assumption. Because the curves in Figure 5.7 are

bell-shaped, we assume the ED indices (from random simulation) obey normal dis-

tribution. We conduct the following goodness-of-fit test to verify this assumption.
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(a) Weighted adjacency matrix A. (b) Initial topology G.

(c) Support matrix S̃. (d) G′MST and probability map.

(e) Probability map matrix M̂ . (f) Final topology G′EDTC−GCN .

Figure 5.5: The visualization of some matrices and graphs.
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First, we make the null-hypothesis H0: the ED indices are not consistent with the

normal distribution. Accordingly, the alternative hypothesis HA is the negate of H0.

Then, we suppose the significance level is 0.05, which means that if the p-value is

less than 0.05, we believe that the ED indices are not consistent with the normal

distribution (reject H0 and accept HA). We perform the D’Agostino’s K2 test and the

Shapiro-Wilk test separately (see Table 5.3). Regarding the goodness-of-fit testing

results, we cannot reject H0. Hence, we conclude that the ED index is very likely to

follow a normal distribution.

Figure 5.6: Comparison of the original topology G (a), the maximum spanning tree
G′max (b), and the minimum spanning tree G′min (c).

Figure 5.7: The distribution of ED index (η = 5) on 1,000 simulations.
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D’Agostino’s K2 Normality Test Results

Topology Type Test Statistic P-value Interpretation

Original topology 1.35 0.508 Fail to reject H0

LTCA 2.71 0.257 Fail to reject H0

EFTCG 1.52 0.466 Fail to reject H0

Minimum Spanning Tree 2.47 0.289 Fail to reject H0

Maximum Spanning Tree 1.03 0.595 Fail to reject H0

EDTC 1.74 0.418 Fail to reject H0

Shapiro-Wilk Normality Test Results

Topology Type Test Statistic P-value Interpretation

Original topology 0.911 0.292 Fail to reject H0

LTCA 0.897 0.207 Fail to reject H0

EFTCG 0.908 0.273 Fail to reject H0

Minimum Spanning Tree 0.909 0.278 Fail to reject H0

Maximum Spanning Tree 0.928 0.433 Fail to reject H0

EDTC 0.926 0.418 Fail to reject H0

Table 5.3: Goodness-of-Fit Test Results

In the following experiments, we simulate communication among network nodes

on topologies derived by different topology control algorithms. Figure 5.8 shows the

example topologies derived by different algorithms. We can find the potential issues

that exist in LTCA and EFTCG, where some network nodes with low remaining

energy have many connections or act as backbone nodes. We allow each node to

adjust its antenna power (through Equation 5.2 and Equation 5.3) to ensure it can

have a data transmission rate of r′ with its farthest neighbor node. The sink node

always communicates with its maximum antenna power (to ensure the minimum

communication rate with any of its neighbor nodes is r′). We also assume that the

minimum distance between any pair of nodes is dmin, to reduce node redundancy.

Other experimental parameters are shown in Table 5.4. In addition, the GCN model

used in our experiments is trained on 1,000 randomly simulated graphs (n = 100,m =

0).
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(a) Original topology. (b) LTCA. (c) EFTCG.

(d) MST. (e) EDTC (w/o GCN). (f) EDTC (w/ GCN).

Figure 5.8: Topologies derived by different topology control algorithms. In (b) and
(c), some potential issues are circled. In (e) and (f), the red edges represent the
re-introduced edges.
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Parameter Value

Simulation area
n ≤ 200: 80 × 80 (m2)

200 < n ≤ 800: 180 × 180 (m2)

Maximum communication range: r 10 (m)

Residual energy: E 1.0 ∼ 10.0 (J)

Minimum node distance: dmin 4 (m)

φ b0.05× (|E| − |E ′MST |)c
Antenna gain: g −6 (dB)

Channel frequency: ϕ 916 (MHz)

Bandwidth: ϑ 1 (MHz)

Gaussian white noise: σ −80 (dB)

Data size: ð 1 (Mbits)

Minimum data transmission rate: r′ 10 (Kbits/s)

Table 5.4: Experimental Parameters [4], [135]

In the second experiment, we assume that there is a sink node deployed at the

center of the simulation area. In each time-step, every normal node in V ∗ sends a

message of size s to the sink node. We suppose the length of a time step is enough for

every normal node’s message to be delivered to the sink node. Note that the length

of each time-step could be different. As long as all the communications are complete,

the simulation proceeds to the next time step. In each simulation, we randomly

generate a network model and run 100 time steps to record the number of nodes (alive

nodes) still can communicate with the sink node. For each experimental setting (the

number of deployed normal nodes n), we run the simulation 100 times to compute

the average number of alive nodes at each time-step. Figure 5.9 and Figure 5.10 show

the experimental results. Take Figure 5.9f as an example, the number of alive nodes

drops rapidly in the first 60 simulation time steps for both LTCA and EFTCG. For

instance, at the 20th time step, the number of alive nodes for both LTCA and EFTCG

are below 60%, whereas, our approaches still maintain more than 80% alive nodes.

However, we can notice that after 60 simulation time steps, the numbers of alive

nodes for all the approaches are similar. That is because we let all the alive nodes to

send a message to the sink node in each time step. Therefore, the more nodes are still

alive, the higher the overall consumption the network will have. We can also notice

this effect by comparing the results, when the number of deployed network nodes

increases, the curves are more skewed to the left. To compare the performance of the
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Number
of Nodes

LTCA EFTCG MST EDTC
w/o
GCN

EDTC
w/
GCN

n = 50 2661.0 2847.8 3303.7 3509.6 3505.2

n = 60 2890.4 3263.1 3692.9 4019.6 4055.9

n = 70 3264.3 3689.2 4114.3 4627.7 4672.2

n = 80 2616.8 2964.2 3426.0 3749.7 3731.6

n = 90 2802.5 3256.3 3778.3 4170.1 4203.2

n = 100 3034.4 3361.4 4028.1 4479.3 4560.3

n = 110 2663.0 3080.0 3308.5 3606.2 3538.4

n = 120 3031.0 3023.8 3563.1 4015.3 3877.0

n = 130 2933.5 3572.2 4089.2 4473.8 4326.3

n = 140 2724.5 2591.0 3304.9 3807.8 3519.8

n = 150 2683.6 2787.9 3293.7 3549.3 3539.9

n = 160 3018.0 3020.2 3590.5 3993.6 3679.6

The best results are in bold font; the second-best results are underlined.

Table 5.5: Area Under the Curve (The Second Experiment)

topology control algorithms quantitatively, we calculated the area-under-the-curve

(see Table 5.5). A larger area-under-the-curve means that the more nodes are alive

on average over the 100 time-steps. The proposed EDTC algorithm (w/ or w/o GCN)

achieves the best performance under this metric. Figure 5.11 depicts the distribution

of the ED indices of different typologies (n = 100), which further proved the viability

of using the ED index as an evaluation metric.

We also collect the average node degree and the average topology construction

time (see Figure 5.12). The proposed EDTC algorithm (w/ and w/o GCN) has a

slightly higher average node degree than the other algorithms. However, in terms of

Table 5.5, we conclude that the sacrifice in the average node degree helps to improve

the network lifetime. Moreover, since the EFTCG algorithm is game-based, which

requires multiple optimization iterations, the topology construction time is much

higher than the other topology control algorithms (see Figure 5.12b, note that the

vertical axis is log-scaled). The GCN-based EDTC is faster than the EDTC (w/o

GCN) in our experiments.
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(a) n = 50. (b) n = 60.

(c) n = 70. (d) n = 80.

(e) n = 90. (f) n = 100.

Figure 5.9: The change of the number of alive nodes over 100 time-steps (the second
experiment). n ∈ {50, 60, 70, 80, 90, 100}.
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(a) n = 110. (b) n = 120.

(c) n = 130. (d) n = 140.

(e) n = 150. (f) n = 160.

Figure 5.10: The change of the number of alive nodes over 100 time-steps (the second
experiment). n ∈ {110, 120, 130, 140, 150, 160}.
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Figure 5.11: The distribution of ED indices (η = 5) of different topologies.

(a) Average node degree.

(b) Average topology construction time.

Figure 5.12: Bar plots of other experimental results.
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In the third experiment, we do not deploy any sink node. We let each network

node randomly communicate with one of the other network nodes in each time-step.

The length of each time-step is still enough for the network nodes to complete the

communication. Other experimental settings are the same as the second experiment.

When some nodes run out of their energy, the network will be disconnected. Neverthe-

less, in practice, as long as the majority of the nodes are still connected, we continue

the simulation on the largest connected sub-network. We define the connectivity

threshold as k, which represents the minimum allowed proportion of the number of

nodes in the largest sub-network to the total number of network nodes in the original

topology. For example, k = 80% means that if a network has 100 nodes initially, as

long as there are more than 79 nodes are connected, we see the network to be alive and

continue the simulation. The experimental results are shown in Figure 5.13 (smaller

instances, n ≤ 200) and Figure 5.14 (larger instances, 200 < n ≤ 800). For smaller in-

stances, when the connectivity threshold is 90%, the proposed approaches can achieve

up to around three times an extended network lifetime than LTCA and EFTCG. If

we reduce the connectivity threshold, the proposed approaches still can achieve up to

around two times an extended network lifetime than LTCA and EFTCG. However,

the initial EDTC algorithm is not very stable for smaller instances. For example,

sometimes, the topology generated by EDTC even get less network lifetime than the

original maximum spanning tree topology. That is because the proposed EDTC lever-

ages the statistical-based ED-index algorithm, and for smaller instances, the number

of samples might not be enough. For larger instances, we can see that both versions

of EDTC algorithms can always achieve a better result than the original maximum

spanning tree algorithm. Under different threshold and number of deployed network

nodes settings, the proposed EDTC algorithms achieve the most extended average

network lifetime than the other algorithms.
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(a) k = 70%. (b) k = 70%.

(c) k = 80%. (d) k = 80%.

(e) k = 90%. (f) k = 90%.

Figure 5.13: Network lifetime (the number of time-steps) in free communication ex-
periment under different connectivity threshold settings.
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(a) k = 60%;
n ∈ {300, 400, 500, 600, 700, 800}.

(b) k = 70%;
n ∈ {300, 400, 500, 600, 700, 800}.

(c) k = 80%;
n ∈ {300, 400, 500, 600, 700, 800}.

(d) k = 90%;
n ∈ {300, 400, 500, 600, 700, 800}.

Figure 5.14: Network lifetime (the number of time-steps) in free communication ex-
periment under different connectivity threshold settings.

5.6 Summary

In this work, we optimize the network lifetime by considering the balance between

node residual energy and node degree. We assume that if a network topology allows

the nodes with more residual energy to have a relatively higher degree, while the nodes
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with less residual energy have a relatively lower degree, then the network lifetime

will be prolonged. Based on this assumption, we introduce an energy distribution

index (ED-index) algorithm as an evaluation metric, and further propose a novel

topology control algorithm named EDTC. The EDTC (w/o GCN) leverages MST

as the backbone of the network and re-introduces some edges to improve the ED-

index. To reduce the topology construction time, we also design a GCN-based EDTC.

We train the GCN to imitate the initial EDTC algorithm by predicting a link-level

probability map, which is used as a guidance to re-introduce some edges to the MST.

Simulation results show the prominent performance of the proposed EDTC algorithm

(both versions) comparing with the state-of-the-art.

Since both versions of our EDTC algorithm are centralized algorithms, we require

the existence of a central computer as the topology optimizer. When the amount of

network nodes is not too large (depends on the central computer’s computing power),

one can deploy either of the GCN-based EDTC algorithm or the initial EDTC algo-

rithm on the central computer to optimize the network topology in real-time. How-

ever, if the amount of network nodes is large and the central computer’s computing

power does not support real-time optimization via the initial EDTC algorithm, we

suggest using the GCN-based EDTC algorithm. Note that, because the GCN-based

EDTC algorithm requires training, we need to tune the simulation parameters in

terms of different network characteristics and run massive simulations to train the

GCN model before we implement the algorithm for real-time optimization.

We find that although the GCN-based method has satisfactory generalization abil-

ity (train on small instances and apply on large instances), when the size of an instance

is very large (for instance, 1, 000 nodes), the performance will be compromised. A

straightforward approach for dealing with large instances is divide-and-conquer. By

using this approach, we need to divide the original topology graph into several smaller

sub-graphs, optimize the topology of each sub-graphs, and finally combine the local

solutions into the global solution. In the future, we plan to leverage graph-based clus-

tering methods to ensure the nodes in each sub-graph as close to each other as possible

and explore the viability of using this approach in dealing with large instances.
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Chapter 6

Conclusion

In this thesis, we explore how to apply machine learning in future-generation

wireless network optimization problems. Just as the name implies, machine learning is

the technique to enable the computer to learn from data. Therefore, how to derive the

data contains hidden patterns, which can be learned by machine learning algorithms,

is the first question we need to answer. For supervised learning, the data should

be a collection of input and target pairs. Whereas, for reinforcement learning, the

data is generated dynamically through the interaction of the learning agent with

the environment (in our context, the environment is the network system). Because

we have the centralized algorithms for both the dense RFID anti-collision problem

and the energy-efficient topology control problem, we use the existing algorithms as

“mentors” to “teach” the machine learning models. The process is to simulate a

large set of situations, and leverage the existing algorithm to derive the solution,

finally convert the situations and corresponding solutions to input and target pairs to

enable supervised learning. However, for the mobile edge computing multi-level task-

offloading problem, there is no existing algorithm. Also, the task-offloading is dynamic

and sequential decision-making task. Instead of manually design an optimization

algorithm, we can use the existing deep reinforcement learning algorithm to let the

agents (in our case, agents are end devices and edge servers) to learn the optimized

task-offloading policies through “playing”. The input (or observation) to an agent is

the current network status, and the agent needs to predict a value (in our case, value

is the cost) for each possible action (to offload or not) in terms of the observation.
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To guide the agent to make reasonable predictions, we use our objective (minimizing

latency and energy consumption) to design the cost function. As long as the agent

learned to make reasonable predictions and picks the action with the lowest predicted

cost each time, we deem the agent learned to make optimal task-offloading policy.

What types of machine learning models are appropriate to wireless network opti-

mization problems is the second question. The answer is multi-fold because wireless

network optimization problems are abstract and diverse. For instance, in our RFID

anti-collision problem and topology control problem, we use graphs to represent the

network systems, and leverage graph optimization approaches to solve the problems.

We use the multi-layer feed-forward network for the RFID anti-collision problem be-

cause we only need one-hop node information, and thus we can compress the neighbor

nodes’ information into a fixed-dimension vector. However, in the topology control

problem, we need the whole topology graph as the neural network input, it is infeasi-

ble to compress the arbitrary size graph into a fixed-dimension vector without losing

much information. Moreover, a graph could have a considerable amount of matrix

representations, which is also a challenge for training the machine learning model. In

this situation, we choose graph convolutional network as the machine learning model.

The advantage of graph convolution is that it can take an arbitrary size graph as

input and not sensitive to different matrix representations of the same graph.

DMWISBAII (w/ ML)1 DRL-MEC2 EDTC (w/ GCN)3

Type
Distributed algorithm
(learning stage is
centralized)

Distributed algorithm Centralized algorithm

ANN
Multi-layer feed-forward
network

Multi-layer feed-forward
network

Graph convolutional
network

Learning
type

Supervised learning Reinforcement learning Supervised learning

Design
philosophy

Imitate the centralized
algorithm

Optimize through interaction
and experience

Imitate the centralized
algorithm

Objective
Maximize the total number
of RFID tags can be read by
the system at the same time

Reduce task execution
latency;
reduce end device energy
consumption

Balance network connectivity
and device residual energy

Superiority
Distribute workload;
preserve performance

Dynamic optimization;
support on-device learning

Reduce optimization time
consumption

1 The distributed MWISBAII algorithm with machine learning auxiliary.
2 The deep reinforcement learning-based MEC network task offloading optimization algorithm.
3 The graph convolutional network-based WAIoT network optimization algorithm.

Table 6.1: Summary of the Proposed Machine Learning-Based Algorithms

Our proposed machine learning-based algorithms achieve satisfactory performance

in our simulation experiments. Table 6.1 provides a summary of the proposed machine

learning-based wireless IoT network optimization algorithms. We conclude this thesis
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by putting forward several future research directions:

• Introduce graph convolutional network and deep reinforcement learn-

ing to distributed RFID anti-collision algorithm. We have demonstrated

two specific network optimization tasks that could be done through the help of

deep reinforcement learning or the graph convolutional network. In our future

work, we can explore modeling each RFID reader as a reinforcement learning

agent, and modeling our optimization problem as a sequence of interactions

among RFID readers. The environment state could be the ego graph. A graph

convolutional network is used to evaluate the value of actions that can be made

at the current state. We can keep the agents interact with each other, learn to

maximize the total number of tags that can be read by the system at the same

time.

• Utilize federated learning in learning optimal task-offloading policy.

The concept of federated learning is to get a global model through the dis-

tributed on-device learning and the centralized integration of distributed models

[68]. Take the device-level task-offloading as an example. We can let each user

device learns its task-offloading policy (in forms of a Q-network), and upload

the trained Q-network model to the central server. The central server integrates

the received Q-networks to a global Q-network, and let each user device to up-

date its local Q-network to the global Q-network. We repeat this process to

derive a high-quality centralized Q-network model. The goal is to leverage the

computing power of user devices for training the models, but also get a global

model with good generalization ability at last. The trained global model can

be used to initialize the local models of new devices (new devices may join the

network at any time).

• Deal with large instances in the topology control problem through

clustering. Theoretically, the graph convolutional network can take an arbi-

trary size graph as the input, meaning that we can train the graph convolutional

network on small instances and apply it on large instances. Here, the size of an

instance indicates the number of graph nodes. Whereas, in practice, if the size

of an instance is too large, the optimization performance could be compromised.

A straightforward approach to handle the large instance is to split the graph

into several smaller sub-graphs (through clustering methods), then optimize the

topology of each sub-graph. Finally, connect the sub-topologies to get the final
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topology. In the future, we will investigate the viability and efficiency of using

graph-based clustering methods to derive the sub-graphs, where the nodes in a

cluster should be as close as possible, and the corresponding sub-graph should

be a connected graph.
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Appendix A

List of Symbols and Notations

Some symbols or notations mentioned in Chapter 2 are also used in the later chapters.

Chapter 2

G: graph

V : the set of graph vertices

E: the set of graph edges

vi: the ith vertex in vertex set V

evi,vj : edge between vertex vi and vertex vj

deg(vi): the degree of vi

neighbors(G, vi): the set of all the neighbor vertices of vi in graph G

w(vi): weight of vertex vi

w(evi,vj): weight of edge evi,vj
Ȧ: binary adjacency matrix

R: the set of real numbers

x: the ith input value of a single artificial neuron

a: weight for the ith input value

b: bias of a single artificial neuron

activation(·): general representation of an element-wise activation function

o: output of a single artificial neuron

e: the Euler’s number (approximately equals to 2.71828)

sigmoid(x): sigmoid activation function

tanh(x): hyperbolic tangent activation function

ReLU(x): rectified linear unit activation function
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max(x, y): the maximum value of x and y

~x: input vector of an MLF network

p: dimension of the input vector ~x

~o: output vector of an MLF network

q: dimension of the output vector ~o

L: the number of hidden layers
~h(l−1): the lth hidden layer of MLF

nn(l − 1): the number of neurons in the lth hidden layer of MLF

W (l−1): weights of the lth hidden layer of MLF

W (L): weights of the MLF output layer
~b(l−1): biases of the lth hidden layer of MLF
~b(L): biases of the MLF output layer

θ: the collection of weights and biases in an MLF

zθ(~x) = ~o: function representation of an MLF

A: adjacency matrix (binary or weighted) of graph G

D: vertex degree matrix

Ã: adjacency matrix of graph G with added self-loops

D̃: degree matrix of Ã

I|V |: the identity matrix of shape |V | × |V |
X: input signal of graph convolution

W : graph convolution filters

F : the number of graph convolution filters

Z: output signal of graph convolution

S̃: normalized graph Laplacian matrix (support matrix)

H(l): the lth graph convolution layer output signal

W (l): filters of the lth graph convolution layer

O( ): big-o notation of algorithm time-complexity

L(~o, ~y): loss function of target ~y and neural network output ~o

δ: gradient

α: artificial neural network learning rate

s: an MDP state

s0: start state

send: terminal state

S: the MDP state space

a: an MDP action



103

A: the MDP action space

P(s′|s, a): the probabilistic transition function

R(s): reward at state s

Q: Q-table

argmax: the arguments of the maxima

max: the maxima

Q(s, a): the Q-value of action a at state s

ε: Q-learning exploration rate

γ: Q-learning discount faction

α�: Q-learning learning rate

Qθ: deep Q network with the set of parameters θ

Lθ: deep Q network loss function

Chapter 3

d: radius of the interrogation range

d′: radius of the interference range

β: ratio of d′/d

limit: the maximum number of RFID tags can be read by the RFID reader

N: the set of natural numbers

N : the number of RFID readers in a dense RFID system

M : the number of RFID tags in a dense RFID system

R: the set of RFID readers in a dense RFID system

T: the set of RFID tags in a dense RFID system

ri: the ith RFID reader

ti: the ith RFID tag

Tri : the set of RFID tags within reader ri’s interrogation range

T ′ri : the set of RFID tags within reader ri’s interference range

R: the result set of RFID readers that should be activated

T : the result set of RFID tags that can be read by the RFID system

I: the maximum weight independent set

h: the parameter used in [22] to control the truncation of partial solution

cost(G, vi): cost function of GWMIN2 algorithm

STAT: RFID reader status variable

BUFFERout: The buffer of signals waiting to be sent
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BUFFERout: The buffer of signals received signals waiting to be processed

CODE: the code of a signal

VALUE: the value of a signal

wi: weight of the vertex that represents the ith RFID reader

ci: cost of the vertex that represents the ith RFID reader

$i: average weight of the ith RFID reader’s neighbors

ιi: average cost of the ith RFID reader’s neighbors

Λ: MWISBAII solution set

Θi: status of the ith RFID reader

si: neural network predicted score of the ith RFID reader

Chapter 4

U : the set of user devices

ui: the ith user device

E : the set of edge gateways

εi: the ith edge gateway

G∗: gateway-level connectivity graph

ϕ: frequency of the wireless channel

ϑ: the frequency bandwidth

σ: additive white Gaussian noise

prx: received power

ptx: transmit power

grx: receiver’s antenna gain

grx: transmitter’s antenna gain

dtx,rx: the spatial distance between the transmitter and the receiver

π: the ratio of the circumference of a circle to its diameter

λ: wavelength

rtx,rx: wireless transmission data rate

T : task queue

Tui : user device ui’s task queue

Tεi : edge gateway εi’s task queue

τ : task

T ∗: the set of completed tasks

℘(τ): task size
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ω(τ): task workload

ℵ: device-level task offloading decision

Ψ: edge-level task offloading decision

f : CPU frequency

texe local: local (on user device) execution time consumption of a task τ

twait local: local (on user device) waiting time consumption of a task τ

tlocal: overall local time consumption of a task τ

ρ: average CPU working power consumption of user device

eexe local: CPU energy consumption for executing a task τ

κ: weight factor

clocal: local computing mode cost on task τ

ttrans: transmission time consumption on a task τ

etrans: transmission energy consumption on a task τ

texe edge: edge (on edge server) execution time consumption on a task τ

twait edge: edge (on edge server) waiting time consumption on a task τ

cdevice level: device-level task offloading mode cost on a task τ

t′trans: edge-level transmission time consumption on a task τ

t′wait edge: edge (on the second edge server) waiting time consumption on a task τ

cedge level: edge-level task offloading mode cost on a task τ

πℵ: device-level task offloading policy

πΨ: edge-level task offloading policy

Cui : average cost on user device ui

Cεi : average cost on edge gateway εi

`: current total workload

Dεi : the set of connected user devices of edge gateway εi

θℵ: device-level task offloading deep Q network parameters

θΨ: edge-level task offloading deep Q network parameters

M: transition history memory

ψ: size (number of transitions) of the transition history memory

κ: deep Q-learning experience replay step size

ζ: exploration rate decay factor

Nεi : the set of neighbor edge gateways of edge gateway εi

ν: time slot length

ξ: the change (probability) that a new task will come in each time slot
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Chapter 5

V ∗: the set of normal nodes

v∗i : the ith normal node

n: the number of normal nodes

V +: the set of sink nodes

v+
i : the ith sink node

m: the number of sink nodes

V : the set of all network nodes

vi: the ith network node

d: the minimum distance between each pair of normal nodes

r: the maximum wireless communication range radius

Evi : residual energy of node vi

Nvi : the set of neighbor nodes of vi

Dvi : degree of node vi

ϕ: frequency of the wireless channel

ϑ: the frequency bandwidth

σ: additive white Gaussian noise

prx: received power

ptx: transmit power

grx: receiver’s antenna gain

grx: transmitter’s antenna gain

dvtx,vrx : the spatial distance between the transmitter node and the receiver node

π: the ratio of the circumference of a circle to its diameter

λ: wavelength

rtx,rx: wireless transmission data rate

ð: the size of data

t(ð): time consumption of transferring data of size ð
J (ð): energy consumption of transferring data of size ð
G′: the optimized network topology graph

z(x, xmin, xmax): min-max normalization of given value x in terms of the minimum

and maximum values (xmin and xmax) among all the samples

η: scale coefficient

Ẽ: normalized node residual energy

D̃: normalized node degree
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φ: the maximum number of edges to be re-introduced

E†: the set of re-introduced links (edges)

G†: G† = (V,E†)

C: dimension of vertex feature vector

F : the number of graph convolution filters for each graph convolution layer

L: the number of graph convolution layers

H(l): the output of the lth graph convolution layer

W (l): graph convolution filters of the lth graph convolution layer

M̃ : re-constructed output of the last graph convolution layer

M̂ : probability map

Z+: the set of positive integers

Fθ(A, Ȧ, Ȧ(MST ), X) = M̂ : the function representation of our graph convolution net-

work model

◦: element-wise matrix multiplication operation

ᵀ: matrix transpose operation

Ȧ†: the binary adjacency matrix of G†

L: loss function

G: the set of randomly simulated graphs

H0: null-hypothesis

HA: alternative hypothesis

r′: expected lowest data transmission rate

k: network connectivity threshold
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Appendix B

List of Abbreviations

3G: The third generation telecommunication

4G: The forth generation telecommunication

5G: The fifth generation telecommunication

A
AE: Absolute error

AR: Augmented reality

AI: Artificial intelligence

ANN: Artificial neural network

AUC: Area under the curve

B
B5G: Beyond 5G

BP: Backpropagation

C
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CDMA: Code division multiple access

CSMA: Carrier-sense multiple access

CCN: Content-centric network

CNN: Convolutional neural network

CPU: Central processing unit

D
D2D: Device-to-device

DQN: Deep Q-network

DQL: Deep Q-learning

DT: Delaunay triangulation

E
ED-index: Energy distribution index

EDTC: Energy-degree topology control

F
FDMA: Frequency-division multiple access

G
GCN: Graph convolutional network

GG: Gabriel graph

GPS: Global Position System
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I
ID: Identity

IoE: Internet of Everything

IoT: Internet of Things

ICN: Information-centric network

IP: Internet protocol

L
LTCA: Localized topology control algorithm

M
MEC: Mobile edge computing

MIMO: Multiple input, multiple out

mmWave: Millimeter wave

ML: Machine learning

MLF: Multi-layer feed-forward

MDP: Markov decision process

MWIS: Maximum weight independent set

MSE: Mean squared error

MST: Maximum/minimum spanning tree

O
OFDM: Orthogonal frequency-division multiplexing

Q
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QoS: Quality of service

R
RCCA: Reader-coverage collision avoidanc

ReLU: Rectified linear units

RFID: Radio-frequency identification

ROC: Receiver operating characteristic

S
SE: Squared error

T
TDMA: Time-division multiple access

U
UAV: Unmanned aerial vehicle

V
VR: Virtual reality

W
WAIoT: Wireless ad-hoc IoT

WANET: Wireless ad-hoc network

WSN: Wireless sensor network
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