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ABSTRACT 

 

Towell, D.A. 2020. Properties Of Fire-Salvaged Woody Biomass In Northern 

Ontario And Potential Utilization  

Key Words: salvage logging, biomass, biofuel, bioenergy, pyrolysis, carbon, 

charcoal, forest fires, downed woody debris. 

 

 Due to the suppression of forest fires and lack of implementation of 
management tools such as prescribed burning, there has been a change in the 
fire regime of Northern Ontario. This has led to larger, more intense fires which 
are further influenced by climate change. There has been interest in recent 
years into the potential to utilize salvaged wood from such fires, especially for 
biomass because of the dryness of the wood. However, there is need for more 
information on the properties of salvaged wood as it relates to fire intensity, and 
time since fire. Downed woody debris also provides habitat for insects and other 
wildlife, so it is important to understand what negative affects there may be from 
harvesting this resource. In this study, samples of Northern Ontario tree species 
were taken from stems with varying levels of burn and insect damage to 
determine their moisture content, calorific qualities, and other general properties. 
Sample plots from the locations where the samples were collected were taken to 
provide information on estimated total volume based on fire intensity and pre-fire 
stocking. The sample plots also provided information on the presence (or lack 
of) of wildlife, specifically feeding excavations made by woodpeckers in burned 
stems. The results of this study concluded that salvaged wood from forest fires 
in the Boreal have properties which are advantageous in their use as biomass, 
however more information is needed on utilizing this resource without causing 
negative effects to wildlife habitat.  
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INTRODUCTION 

The transition to renewable energy sources is a challenge faced by 

everyone and is unavoidable as the world addresses climate change. It is 

necessary that our energy sector is diversified to include as many different 

sources of renewable energy as possible. Biomass is considered a renewable 

energy because the carbon it releases is replaced when trees are replanted. 

Bioenergy makes up 6% of Canada’s total energy sources, and is a sector 

showing growth potential (NRCAN, 2019). An advantage that biomass has over 

other sources of clean energy is the diversity of products that it can provide. 

Biomass can be directly converted into heat and electricity or can be refined into 

biofuels which can be used to replace petroleum used for transportation and 

petroleum-based products. One of the challenges associated with the industry is 

finding enough sources of biomass to support large scale biorefineries. 

Woody biomass from forestry and arboriculture operations currently 

accounts for the majority of Canada’s available biomass. Residues from logging 

and the wood processing industry provide biomass in the form of hog fuel, slabs, 

sawdust, shavings, and bark. Other sources include plantations and used wood 

(pallets, wood packages, other wood waste). One possible source of biomass 

that is not being harvested is residue from forest fires and other natural 

disturbances. This potential biomass feedstock could be utilized through salvage 

logging. Salvage logging faces some challenges due to ecological concerns and 

economic viability which will be covered in the literature review section.  
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1.1. OBJECTIVE  

The objective of this study is to find what the properties of salvaged wood 

from forest fires are and how it relates to utilization of salvaged wood compared 

to other sources of biomass. The physical properties of salvaged wood such as 

density, moisture content, and calorific value will be tested. Samples with 

varying degrees of burn and insect damage will be tested to determine how 

these factors may affect physical properties. The Dog River- Matawin forest 

located in the boreal forest North of Thunder Bay will be the focus area for this 

study as forest fires occur here frequently and often near roads which can be 

used to transport the biomass. Three species will be tested; Jack pine, trembling 

aspen, and black spruce, which are abundant species in the area with 

commercial importance in the forest industry. 

1.2. HYPOTHESIS 

The null hypothesis of this study is that tree species, component of tree 

(upper stem, lower stem, branches, cones, knot wood), and level of burn does 

not influence moisture content, density, or calorific value of fire-salvaged wood. 

An alternative hypothesis is that the properties of fire-salvaged wood are 

dependent on one or more of these factors. This will be tested using a series of 

one-way ANOVAS using tree species, tree component, and level of burn as 

each of the factorials, and a post-hoc test will be used if the null hypothesis is 

rejected. 
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LITERATURE REVIEW 

2.1. BIOMASS ENERGY 

Wood has been one of the most important sources of heat and energy in 

the world for a long part of human history. Wood is still regarded as the most 

vital source of energy in many countries who rely on it for cooking and heating. 

With the uncertainty of future energy supply from oil and a need to reduce 

greenhouse gas emissions to meet climate objectives, many have suggested 

the use of biomass and biofuels to decrease dependence on fossil fuels 

(Pandey 2011; Hakeem 2014; Wetzel 2006). Carbon emissions from the use of 

biomass are considered to be neutral because the same emissions would be 

made if the biomass was left to decompose, and the carbon dioxide emissions 

are sequestered from the atmosphere as long as the biomass source is 

replanted or renewed (Hakeem et al. 2014; Rosillo-Calle 2007).   

 The annual production of biomass created from photosynthesis is 

estimated to be eight times the world’s current energy use from all other sources 

(of course not all of this biomass can be utilized as this would not be 

sustainable), while only 7% of this annual production is utilized (Hakeem et al. 

2014). In Canada, biomass is the second largest source of renewable energy 

after hydro and provides heat and electricity to industry and residential needs 

(NRCAN 2019). In 2017 there were 36 pulp and paper mill co-generation units 

with a total electrical capacity of 3,427 MW, total heat capacity of 1,384 MW, 

and 41 Independent Power Providers (IPP) with capacities of 794 MW and 400 

MW for electricity and heat (NRCAN 2019). Woody biomass is by far the most 
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abundant and utilized source of biomass in Canada, coming from sources such 

as trees that are not suitable for lumber or other uses, material from forest 

thinning, harvest residues, trees killed by disturbance (fire, insect, disease), 

trees from energy plantations, and from by-products of the forest processing 

industry in the form of sawdust, bark, chips, etc. (NRCAN 2019). The Canadian 

production of biomass in 2017 can be seen in figure 1, which shows a slow 

increase in pellet production while other production has been relatively steady 

 

 

Figure 1.0. Canadian Production of Biomass 2017 (NRCAN 2019). 

 

In order to be used effectively, the quality of biomass must be optimal, it 

must be supplied at as low a cost as possible and in a sustainable manner 

which causes minimal ecological damage (Rosillo-Calle 2007; Wetzel 2006; 

NRCAN 2019). The major costs associated with biomass are transportation, 

storage, and energy needed for the conversion process (Wetzel et al. 2006).  
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2.1.1. Properties of Woody Biomass 

Biomass is created through the process of photosynthesis, where trees 

and plants store energy from the sun in the form of chemical bonds (Hakeem et 

al. 2014). The elementary chemical composition of wood is 49-50% carbon, 6% 

hydrogen, 44-45% oxygen, a small amount (<1%) of nitrogen, plus small 

amounts of minerals such as calcium, potassium, and magnesium in the ash 

content of wood (Tsoumis 1991). During photosynthesis carbon dioxide from the 

atmosphere reacts with water from the earth to produce carbohydrates (sugars 

such as glucose) and oxygen, the formula for this reaction is 6H2O+6CO2 → 

C6H12O6+6O2 (Hakeem et al. 2014). The premise of bioenergy production from 

biomass is the reversal of the photosynthesis process, i.e. CO2+2H2O subject to 

light and/or heat → ([CH2O] + H2O) + O2 (Hakeem et al. 2014:192-193). The 

main components of woody biomass are cellulose (main component, makes up 

40-50%), hemicellulose (15-30%), and lignin (15-30%), collectively known as 

lignocellulose (Pandey et al. 2011). There are also a small percentage (4%) of 

extraneous organic compounds such as extractives, proteins, and inorganic 

constituents (Tsoumis 1991).  

2.1.1.1. Cellulose  

Biomass is 40-50% cellulose on average (Pandey et al. 2011), 30-60% in 

softwoods and 31-64% in hardwoods (Tsoumis 1991). Cellulose is a compound 

of long chains of glucose (C6H12O6) which is a monosaccharide created through 

photosynthesis of carbon dioxide (Desche and Dinwoodie 1996) and has a 

heating value of 4150-4350 kcal / kg (Tsoumis 1991). Cellulose is extracted 
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during the pulp process to make paper, and has other applications such as a 

non-binding agent in shredded cheese and a thickener for ice cream (CIF 2020). 

2.1.1.2. Hemicellulose 

 Hemicellulose is related to cellulose as it is also a carbohydrate, the two 

are distinguished based on their solubility in alkali (Tsoumis 1991). 

Hemicellulose is composed of different monosaccharides, while cellulose is only 

composed of glucose (Desche and Dinwoodie 1996). In softwoods, 

hemicellulose is mostly composed of mannose and some xylose, and 

hardwoods are mostly xylose with little mannose (Tsoumis 1991) with 

hardwoods generally having a larger percentage of hemicellulose than 

softwoods (Desche and Dinwoodie 1996). 

2.1.1.3. Lignin 

 Lignin is a cell wall component that separates wood from other cellulosic 

materials in nature (Tsoumis 1991) and is concentrated around the outer layers 

of fibers leading to structural rigidity (Pandey et al. 2011). Softwoods generally 

contain more lignin than hardwoods (Pandey et al. 2011; Tsoumis 1991), the 

composition of lignin differs between hardwoods (syringyl lignin) and softwoods 

(guaiacyl lignin), and between species (Tsoumis 1991). Unlike cellulose and 

hemicellulose, lignin is not a carbohydrate, it is mostly aromatic however the 

chemical structure of lignin is still partially unknown, which is why there is much 

interest in its use as a base for other chemicals (Pandey et al. 2011; Tsoumis 

1991).  
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2.1.1.4. Extractives 

 Extractives are the waxes, fatty acids, resins, and terpenes produced by 

the tree that can be extracted with solvents (Pandey et al. 2011). These 

compounds are responsible for imparting colour to the heartwood of some 

species, as well as odor and taste to wood. The literature suggests that the fuel 

value of extractives is as much as two times that of regular wood substance 

(Desche and Dinwoodie 1996). For this reason, softwoods with high resin 

content (such as pines) can have a higher calorific value than some hardwoods, 

despite the general rule that hardwoods have a higher calorific value than 

softwoods (Tsoumis 1991).  

2.1.1.5. Density 

 Biomass quality depends on four main factors: moisture content, ash 

content, density and energy value (Rosillo-Calle 2007). Density and moisture 

are the two main factors affecting net energy contents of a biomass feedstock 

(Rosillo-calle 2007). Density refers to the mass of a material per a certain unit of 

volume, using the metric system it is usually expressed as kg/m3. This is 

determined by weighing a sample of wood on a scale, and then submerging the 

sample in a beaker of distilled water that has been tared on a scale to get the 

volume from the weight of displaced water (water has a density of 1 g/cm3 ), the 

mass is then divided by the volume of water displaced to give the specific 

gravity, that is the relative density of the sample to the density of water (Hoadley 

1990).This property is dependent on both moisture content, and chemical 

composition (presence of extractives) (Desche and Dinwoodie 1996). Density of 
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wood varies from species to species and from heartwood to sapwood in trees, 

and therefore if weight is used to determine volume, density must also be 

considered (Rosillo-calle 2007). The physical state of wood can be logs, split 

firewood, wood chips, pellets, sawdust etc. which all have different 

weights/volume when stacked or piled together (Rosillo-calle 2007). Therefore, 

the actual density of wood as well as the state at which it is collected for 

transport is important in the utilization of woody biomass, as transportation costs 

are one of the biggest bottlenecks to the biomass industry. Because density has 

a high influence on energy content, one way of improving the energy content of 

biomass is through different densification processes. A promising technology for 

increasing the density of wood is torrefaction, which heats wood between 200-

300°C in an inert atmosphere releasing volatile compounds and increasing 

carbon content (Niu et al. 2019). This process also lowers moisture content, 

improves water repelling properties, and increases the grindability of biomass. 

2.1.1.6. Moisture Content 

Perhaps the most influential property of wood as it relates to heating 

value is moisture content. When wood is burned some of the energy is lost as 

the heat transforms water into steam, therefore the higher the moisture content 

(MC) the less energy produced from the biomass (Rosillo-Calle 2007). This 

difference can be as much as a 15% loss of heating value between air-dry and 

oven-dry wood (Tsoumis 1991). MC can either be measured on a wet or dry 

basis, for example a 100 tonnes of woody biomass at 15% MC would have 15 

tonnes of water (Pandey et al. 2011). Moisture content on an oven-dry basis is 
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calculated from the formula: : 𝑀𝐶% = (!"#	!"%&'#	()	*((+,-./	!"%&'#	()	*((+
-./	!"%&'#	()	*((+

)𝑥100 

and is determined by first weighing a sample of wood in the “green” condition or 

at another level of dryness, and then drying the wood in an oven before cooling 

the sample and weighing again to get the “dry weight” (Desche and Dinwoodie 

1996). Other methods of determining moisture content include the distillation 

method and electric moisture meters. In the distillation method water and 

extractives are removed from the sample in a special lab apparatus and 

weighed separately, then taken as a percentage of the initial weight of the wood 

sample (Desche and Dinwoodie 1981). This method is useful for woods with 

high resin / extractive contents, giving a more accurate measure of the 

percentage of moisture without the influence of extractives. Electric moisture 

meters determine moisture content by measuring an electrical property of wood 

that is affected by moisture (Desche and Dinwoodie 1981). 

2.1.1.7. Heating Value 

 Heating value is either expressed as gross calorific value or high heating 

value (HHV), that is the heating value of biomass without moisture, or as net 

calorific value / low heating value, the heating value of biomass and included 

moisture (Pandey et al. 2011). Heating value is affected by density, moisture 

content, extractives, chemical composition of wood, and varies between species 

and regions (Tsoumis 1991; Rosillo-calle 2007). Hardwoods are generally 

denser than softwoods and have a higher calorific value (Desche and Dinwoodie 

1981) however extractive content can influence the heating value of wood, and 

softwoods with high resin content can burn hotter than hardwoods (Tsoumis 
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1991). The heating value of wood also varies by region and climatic conditions, 

the heating values of tree species and their components in Northwestern Ontario 

where this study was conducted were explored by Hosegood (2010) and are 

shown in Table 1.0. 

Table 1.0. Average Heating Value of Northwestern Ontario Tree Species. 

 

Source: Hosegood (2010). 

2.1.1.8. Ash Content 

Ash is the leftover material after combustion, therefore the higher the ash 

content, the lower the energy value of biomass (Rosillo-calle 2007). Ash poses 

another issue, the leftover organic compounds that do not fully combust cause 

corrosion, slagging, and fouling of the components of biomass systems leading 

to increased maintenance costs and a decreased life span (Monti et al. 2008). 
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Wood ash is questionably viewed as a waste product and in many cases ends 

up in a landfill. However, ash produced from contaminant-free woody biomass 

has been suggested as a liming agent and source of nutrients for plants (e.g., 

calcium magnesium, potassium, and phosphorous) and could therefore be used 

as a soil amendment to return nutrients to the soil and raise pH levels, emulating 

the effects of wildfire (Hannam et al. 2016). 

2.1.1.9. Stock and Yield 

Stock, the total weight of dry biomass, and yield, the increase in biomass 

over a certain time period and area including removed biomass, are important 

factors to consider when estimating availability of biomass (Rosillo-Calle 2007). 

For biomass to be considered a renewable source of energy, the annual 

increment cannot be exceeded by the amount of biomass harvested (Rosillo-

Calle 2007). Yield is expressed as current annual increment (CAI), the total 

yearly production of biomass for an area, or as mean annual increment (MAI), 

the total production of biomass of an area divided by the time taken to grow 

(Rosillo-Calle 2007)
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2.1.2. Heat and Energy 

With modern technology biomass can be converted into heat, electricity, 

and liquid or gaseous biofuels, these processes are summarized in Table 2.0. 

Technologies available for biomass are direct combustion, co-firing, gasification, 

pyrolysis, Combined Heat and Power (CHP), etherification / pressing, 

fermentation / hydrolysis, and anaerobic digestion, all of which except 

etherification and anaerobic digestion, generally utilize woody biomass (Rosillo-

Calle 2007).  

2.1.2.1. Direct combustion 

Direct combustion is the most basic and most utilized technology for 

processing woody biomass. It is any system which burns wood directly for heat 

and can be paired with a steam turbine that, as generated heat boils water into 

steam, the force of steam turns the turbine creating electricity. While direct 

combustion is the most basic and most commercialized process, the efficiency 

can be much lower than other systems especially if the focus is on electricity 

generation rather than heat (Rosillo-calle 2007). Nevertheless, direct 

combustion makes up 90% of all energy produced from biomass, and it is a low-

cost, reliable, and well understood technology (Pandey et al. 2011). During 

combustion of wood the chemical components of wood are broken down and 

flammable gas is released (Tsoumis 1991). 
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Table 2.0. Summary of the main characteristics of biomass technology

Conversion 
Technology 

Biomass Type Example of fuel 
used 

Main Product 

Combustion Dry Biomass Wood logs, chips, 
pellets, other solid 
biomass 

Heat 

Co-firing Dry Biomass 
(woody and 
herbaceous)  

Agro-forestry 
residues (straw, 
waste) 

Heat / electricity 

Gasification Dry Biomass Wood chips, pellets 
and solid wastes 

Syngas 

Pyrolysis 
 
 

Dry Biomass Wood chips, pellets 
and solid wastes 

Pyrolysis oil and by-
products 

CHP Dry Biomass, 
Biogas 

Straw, forest 
residues, wastes, 
biogas 

Heat and electricity 

Etherification / 
Pressing 

Olaeginous 
crops 

Oilseed rape Biodiesel 

Fermentation / 
Hydrolysis 

Sugar and 
starches, 
cellulosic 
material 

Sugarcane, corn, 
woody biomass 

Ethanol 

Anaerobic 
Digestion 

Wet biomass Manure, sludge, 
vegetable waste 

Biogas and by-
products 
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Table 2.0. (Continued) 

Source: Rosillo-Calle (2007) 

End-use Technology Status Remarks 

Heat and Electricity 
(steam turbine) 

Commercial Efficiencies vary e.g. >15-40% 
electrical; >80% thermal 

Electricity and Heat 
(steam turbines) 

Commercial (direct 
combustion), 
demonstration stage 
(advanced gasification 
and pyrolysis) 

Large potential for use of various types 
of biomass; reduced pollution, lower 
investment costs, Some technical, 
supply and quality problems 

Heat (boiler), 
electricity (engine, 
gas turbine, fuel 
cell, combined 
cycles), transport 
fuels (methanol, 
hydrogen) 

Demonstration to early 
commercial stage 

Advanced gasification technologies 
offer very good opportunities for using 
a range of biomass sources for 
different end-uses 

Heat (boiler), 
electricity (engine) 

Demonstration to early 
commercial stage 

Issues remain with the quality of 
pyrolysis oil and suitable end uses 

Combine use of 
heat and electric 
power (combustion 
and gasification 
processes) 

Commercial (medium 
to large scale) 
Commercial 
demonstration (small 
scale) 

Political priority in UK, high efficiency, 
e.g. c.90%; potential for fuel cell 
applications (small plants) 

Heat (boiler), 
electricity (engine), 
transport fuel 

Commercial High costs 

Liquid fuels (e.g. 
transport) and 
chemical feedstock 

Commercial. Under 
development for 
cellulosic biomass 

Cellulosic 5-10 years for 
commercialization 

Heat (boiler), 
electricity (engine, 
gas turbine, fuel 
cells) 

Commercial, except 
fuel cells 

Localized use 
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The steps involved during combustion of wood according to Tsoumis (1991) are: 

a. Evaporation of moisture (up to 100°C) 
b. Evaporation of volatile substances (95-150°C and higher) 
c. Superficial carbonization and slow exit of flammable gas (150-200°C)      
d. Faster exit of flammable gases, followed by ignition and glow (200-370°C)      
e. Fast ignition of flammable gases and formation of glowing charcoal (370-

500°C) 

Direct combustion reactors can be categorized as fixed-bed combustion 

systems or fluidized-bed systems (Pandey et al. 2011). Two main types of fixed-

bed systems exist, underfeed stokers and grate firings, both systems  involve air 

being supplied mostly from underneath through the grate and combustion of 

solid fuel occurs on top of the grate with some gasification that /can be 

combusted in a secondary chamber (Pandey et al. 2011). Fixed-bed systems 

utilize biomass with low ash content and are generally used in small scale 

applications (Pandey et al. 2011). Underfeed stokers have a mechanism that 

feeds biomass from below, pushing them onto the grate where combustion 

occurs (Pandey et al. 2011). These systems require biomass with low ash 

content as ash can build up and block the flow of air into the combustion 

chamber (Pandey et al. 2011).  

2.1.2.2. Co-firing 

Co-firing involves the substitution of a certain percentage of coal with 

biomass (between 2 and 25 percent but possibly more) in conventional coal-

fueled boilers, reducing carbon emissions and possibly costs (Rosillo-Calle 

2007).  The main advantages of co-firing are; an established market, a smaller 

investment required to modify existing coal plants to use biomass, lower 

environmental impact, lower feedstock costs if sourced locally, potentially large 
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amounts of biomass feedstock available, and higher efficiency (between 33-37 

percent for electricity conversion (Rosillo-calle 2007).  

2.1.2.3. Gasification 

 Gasification is not by any means a new technology and has been used 

for almost two centuries, as it was used in the mid 1800’s to produce gas to 

power city lights in London which they called “town gas” (Rosillo-calle 2007) and 

as a secondary source of fuel during World War II when resources were being 

prioritized to the war effort (Lafontaine and Zimmerman 1989). The process 

involves solid fuels such as woody biomass being converted into a gaseous fuel 

called syngas or “producer gas” through an endothermal reaction that slowly 

combusts wood at atmospheric conditions with a small amount of oxygen 

separating volatiles and moisture from carbonic materials (Rosillo-calle 2007; 

Lafontaine and Zimmerman 1989). The process is more efficient in producing 

electricity compared to direct combustion (40 percent or more compared to 26-

30 percent for direct combustion) (Rosillo-calle 2007). Wood gas could 

potentially be used as a replacement of fuels such as gasoline, natural gas, and 

diesel in internal combustion engines (Lafontaine and Zimmerman 1989) or for 

more advanced uses such as gas turbines and fuel cells (Rosillo-calle 2007; 

Kozlov et al. 2019). While gasification is not at a full commercial level now 

(Rosillo-calle 2007) it can be easily applied on a small scale as gasification units 

can be made with widely available materials with some general knowledge of 

fabrication (Lafontaine and Zimmerman 1989). Kozlov et al. (2019) provided an 

overview of modern wood biomass gasification technologies, pointing to multi-
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stage gasification as the most economically efficient and most promising 

technology available. This process involves a separation of the initial fuel 

pyrolysis stage and charcoal gasification stage to reduce tar content in syngas 

which is one of the biggest technological issues that gasification faces 

(Lafontaine and Zimmerman 1989). Besides producing syngas, gasification also 

results in by-products of biochar and pyro-oil (also known as bio-oil) which have 

their own uses for energy production, chemicals, and other applications. There 

are about 160 projects in OECD countries using biomass gasification 

technology, which mostly use a layer or fluidized bed reactor (Pandey et al. 

2011). 

2.1.2.4. Pyrolysis 

 Pyrolysis is another promising technology available to process woody 

biomass into fuels, either liquid or solid (Rosillo-calle 2007; Pandey et al. 2011). 

There is little to no oxygen present during thermochemical reaction of the woody 

biomass resulting in products such as syngas, bio-oil, and bio char (Pandey et 

al. 2011). While gasification is a form of pyrolysis, it introduces a higher amount 

of air to the reaction resulting in higher yields of syngas and bio-oil rather than 

char. These products are useful to replace liquid petroleum fuels, or pyrolysis oil 

can be refined into biochemicals (which will be further discussed in the next 

section) (Pandey et al. 2011). Biochar has seen a recent surge in research and 

development as a soil amendment, along with other uses such as a carbon 

neutral coal replacement (bio-coal), as a de-odorizer, water filtration medium, 

and in beauty products, to name a few (IBI 2018). Biochar has the potential to 
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store large amounts of carbon in the soil for hundreds, if not thousands of years, 

while also improving soil fertility and inherently food security (IBI 2018). It is 

worth mentioning here the process of torrefaction is the slow pyrolysis of woody 

biomass at temperatures between 200-300 degrees Celsius, to create a more 

energy dense product when combined with densification (Niu et al. 2019). 

Torrefied wood has an increased heating value and is more easily grindable, 

making it possible to densify the product into wood pellets or briquettes which 

have better hygroscopic properties, higher energy densities, and more 

resistance to decay from biological properties than the parent biomass (Niu et al. 

2019). 

2.1.2.5. Combined heat and power (CHP) 

Combined heat and power is a process that generates heat and electricity 

at the same time, and is also referred to as co-generation (Pandey et al. 2011; 

Rosillo-calle 2007). CHP systems capture the exhaust heat released from 

combustion using a heat exchanger that then converts the heat energy into 

electricity by turning an electric generator (Rosillo-calle 2007; Pandey et al. 

2011). Cogeneration is an attractive technology as it is more efficient than direct 

combustion generators and reduces carbon emissions (Rosillo-calle 2007). This 

technology is especially attractive to wood processing industries as they can 

produce electricity and heat to supply their needs while also selling heat and 

electricity back to the grid (NRCAN 2019). 
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2.1.3. Biorefinery / Biochemicals 

The chemicals industry today largely relies on petroleum-based products 

that have been shown to be unsustainable and problematic in terms of 

environmental and economic concerns (Pandey et al. 2011). Through recent 

research and technology, there is growing interest in the wide range of 

biochemicals that can be refined from the chemical components of wood that 

are cellulose, hemicellulose, and particularly of interest, lignin. While there are 

numerous renewable energy technologies for electricity production, biomass is 

now perceived as possibly the only renewable source for transportation fuels 

and chemicals (Pandey et al. 2011). Ethanol and biodiesel converted from 

cellulose has shown some potential for the replacement of fossil fuels, however 

it has also raised concerns about the allocation of land, water usage, and 

pressure added to food security (Rosillo-Calle 2007; Gerbens-Leenesa et al. 

2009). The use of non-food crops and woody biomass for production of biofuels 

and chemicals might reduce the strain on food supplies and increased prices, 

however, lignocellulosic biomass presents its own set of challenges and issues. 

The chemical components of wood make it a strong and light material, however 

it is also what makes it difficult to break down, separate, and extract chemicals 

from woody biomass (Pandey et al. 2011). For most of the technologies 

available for biomass conversion into biofuels and chemicals, a pretreatment 

process is required beforehand to separate the lignin, cellulose, and 

hemicellulose so that they can then be further refined into chemicals such as 

benzene, toluene, xylene (BTX), ethylene, propylene, butane, and other bulk 

chemicals (Pandey et al. 2011). The range of chemicals that can be derived 
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from wood are shown in Table 3.0. 

Table 3.0. Chemicals Derived from Forest-based Feedstocks. 

 

Source: Wetzel et al. (2006) 
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A pretreatment is required to separate the cellulose, hemicellulose, and lignin 

components, these include mechanical, thermal, chemical, biological, or a 

combination of these methods (Pandey et al. 2011). Once pretreated the 

biomass can then be converted to liquid or gaseous form through processes 

such as gasification, pyrolysis, hydrolysis, hydrogenation, fermentation, etc. 

(Pandey et al. 2011; Rosillo-Calle 2007). The pretreatment and conversion 

processes are one of the bottlenecks to producing biofuels or chemicals at a 

cost that could compete with the highly developed petroleum industry. 

Nevertheless, research and development is now going into the conversion of 

lignocellulosic biomass into biofuels and chemicals, and with time and continued 

development this will likely lead to the replacement of petroleum based products 

as the world slowly transitions away from fossil fuels (Pandey et al. 2011; Wetzel 

et al. 2006)  

2.2. SALVAGE LOGGING 

 Natural disturbances and tree mortality are a natural part of the boreal 

forest ecosystem, requiring forest managers to plan and adapt to these factors 

(Mansuy et al. 2015; Barrette et al. 2017). A management strategy that has 

become increasingly popular in recent years is salvage logging, which is the 

harvesting of dead trees from areas that have been disturbed, either by fire, 

insect, or windstorm (Purdon et al. 2002; Thorn et al. 2018; Barrette et al. 2017). 

Salvage logging utilizes similar equipment to that used for roundwood 

harvesting, while other feedstocks such as harvesting residues are collected 

using a grapple on a forwarder or slash bundler (Barrette et al. 2017). Dead 
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trees generally have different properties than live, mainly lower moisture content 

and more decay or rot making them unappreciated for conventional uses such 

as lumber and pulp (Mansuy et al. 2015; Barrette et al. 2017). This leads to 

other possibilities for utilizing vast volumes of dead trees from disturbances in 

the bioenergy sector, either in the form of wood pellets (Mansuy et al. 2015; 

Dymond et al. 2010) or in the emerging biofuel market (Barrette et al. 2017). 

While biomass feedstocks are primarily from industrial residues or harvesting 

residues, these supply chains can be disrupted with a downturn in the market 

(Mansuy et al. 2015; Barrette et al. 2017). Many have suggested that 

diversification of feedstock options is an important factor in growing Canada’s 

bioenergy sector (Wetzel et al. 2006; Leduc et al. 2015; NRCAN 2019). 

However, there are challenges related to salvage logging for biomass, mainly 

cost of supply, ecological concerns, and policies.  

2.2.2. Salvaged Wood Properties 

The properties of salvaged wood vary from type, time since, and intensity 

of disturbance (Thorn et al. 2018; Barrette et al. 2017; Meincken et al. 2010) and 

with stand level factors such as tree species and age class (Barrette et al. 

2017). Structure of salvageable volume also depends on type of disturbance, for 

example a windstorm may create uprooted trees, a forest fire may create 

standing dead stems, and an insect outbreak may leave dead or partially dead 

trees (Thorn et al. 2018). Dead trees have been found to be dryer and 

susceptible to varying amounts of decay, which has deterred their use in the 

major industries of pulp, paper, and lumber (Barrette et al. 2017; Mansuy et al. 
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2015). The dryness of dead wood makes it attractive as a biomass feedstock, as 

this reduces the cost of drying (Barrette et al. 2017), and the loss of energy 

during combustion to evaporate moisture is much lower (Rosillo-calle 2007). 

Furthermore, decay has adverse effects on using wood for pulping and lumber, 

however Barrette et al. (2017) found that degradation caused by certain fungi, 

specifically brown-rot fungus, can increase the portion of lignin in wood, which 

serves as a natural binding agent and could save costs related to pelletizing. 

 Wood salvaged from forest fires exhibits different physical and chemical 

properties depending on the temperature of burn as well as the duration 

(Meincken et al. 2010; Watson and Potter 2004). Immediately after fire, there is 

minimal effects on wood properties other than charring and some chemical 

changes in the outer layers of the wood (Watson and Potter 2004). This is due 

to the fact that wood has a low thermal conductivity and insulating properties 

especially in live stems containing moisture, which protects the inner stem of 

wood from fire damage (Watson and Potter 2004).  It is generally understood 

that salvage of fire-damaged wood should be done within the first year after fire, 

as wood begins to dry to the fiber saturation point after this point, causing 

checking, which produces entrances for biological agents such as fungi causing 

further decay of the wood (Watson and Potter 2004). Smaller diameter trees 

should be harvested first as they degrade quicker than large diameter stems 

(Watson and Potter 2004) 

Meincken et al. (2010) studied the affects of different levels of burn after a 

forest fire on mechanical and physical properties in samples of Patula Pine 
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Pinus Patula. Specifically, they found that burnt wood may require a different 

drying schedule than green or slightly burnt wood, which they attributed to 

chemical and structural modifications in the wood cell such as plastification and 

densification that happen at elevated temperatures. Meincken et al. (2010) also 

observed thickening in the cell wall accompanied by a decrease in lumen 

diameter (Figure 2.0.) while another finding from the study was the darkening of 

boards caused by the migration of extractives and other degradation products to 

the surface during heating. A lowered MOR and higher MOE as a result of 

chemical changes were also observed by Meincken et al. (2010). 

 

 

Figure 2.0. SEM Images of (a) green wood (b) slightly burnt wood and (c) burnt 

wood (Meincken et al. 2010).  
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Araki (2002) found a higher recovery of chips from burned aspen logs as 

the trees aged, which they attributed to the deterioration of the bond between 

the bark and stem that allowed debarking without damaging wood fiber. Watson 

and Potter (2004) also observed a demarcation between the outer and inner 

layers of burnt wood. For wood to be used in the pulp industry it must contain as 

little charcoal as possible, therefore aggressive debarking is required to remove 

the charred outer layer of burnt stems (Watson and Potter 2004; Araki 2002). It 

was also observed that after long periods left after fire, moisture content of chips 

from small diameter conifers was too low to use for pulping, while large diameter 

conifers were also too dry and produced over-thick and over-sized chips (Araki 

2002). Small diameter aspen had acceptable moisture contents for pulping and 

chip size, and large diameter aspen had acceptable moisture content for pulping 

but produced unacceptable levels of over-sized chips (Araki 2002). 

2.2.3. Legislation and Costs 

Salvaging logging of disturbed stands has become an increasingly 

popular management strategy to recover lost value of damaged timber, and to 

reduce spread of disturbance causing insects (Barrette et al. 2017; Thorn et al. 

2018). Fires cause a sudden loss of available volume for harvest when they 

occur within a management unit, requiring managers to respond with strategic 

solutions (Leduc et al. 2015; Mansuy et al. 2015; Purdon et al. 2002). This has 

led to some concern from the public and other stakeholders who are required to 

be included in management plan objectives (Purdon et al. 2002). However, 

current management strategies are based on the emulation of natural 
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disturbances (in the boreal forest this is mainly fire), which includes the retention 

of downed woody debris and standing dead timber, therefore salvage logging 

has been generally discouraged to promote these elements of forest structure in 

manuals such as Forest Management Guide for Natural Disturbance Pattern 

Emulation (OMNR 2001). More recent guides such as the Stand and Site Guide 

(OMNR 2010) outline the guidelines and best management practices to follow 

during salvage logging operations to reduce negative effects. 

2.2.4 Ecological Impacts of Salvage Logging 

Many studies have been done to quantify the effects of salvage logging 

on species biodiversity, stand regeneration, and soil health (Purdon et. al. 2002; 

Lamers et al. 2013; Thorn et al. 2018). A specific concern when considering the 

use of salvage logging on disturbed stands is the influence of habitat 

fragmentation of otherwise untouched forest patches by roads and logging 

activities changing predator prey relationships and threatening survival of 

endangered species (Lamers et al. 2013). This fragmentation can also occur on 

areas where regular harvesting is not allowed such as in protected areas and 

parks (Thorn et al. 2018). Salvage logging can also alter the amount of habitat 

for wood-boring beetles such as the white-spotted sawyer Monochamus 

scutellatus, which lay their eggs in the moist inner wood layer of standing dead 

trees (Purdon et al. 2002; Thorn et al. 2018).  Type of disturbance influences 

potential soil impacts, for example windthrow salvaged wood may have foliage 

but fire salvaged wood may not, leading to different effects on nutrient 

availability in soil after harvest of biomass (Lamers et al. 2013). Thorn et al. 
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(2018) recommended an inclusion of green tree retention such as that done 

during regular harvests to reduce the negative environmental effects of salvage 

logging. Lamers et al. (2013) suggest that sites with only a low number of killed 

trees should not be salvaged, because of the carbon storage and potential 

products from trees which have survived a disturbance. 

 MATERIALS AND METHODS 

3.1. TREE SPECIES SAMPLED 

3.1.1. Jack Pine Pinus banksiana 

 Jack pine is a fast-growing, shade-intolerant conifer species commonly 

found in the Boreal forest and Great Lakes Region. The size and form can range 

from short and bushy on dry sites to tall straight trees with short conical crowns 

on good sites (Barnes and Wagner 2004). The wood is light, moderately hard, 

close-grained, light brown, with a wide layer of whitish sapwood (Barnes and 

Wagner 2004). The maximum heating value of pine wood is between 4780-6790 

kcal/kg and between 5040-5980 kcal/kg for Bark (Tsoumis 1991). The high resin 

content of pine gives it a higher heating value compared to other softwood 

species and some hardwoods (Tsoumis 1991). Jack pine is a fire adapted 

species as it has serotinous cones that may persist on branches for 10-20 years 

until opened by heat, such as that released during a forest fire. Jack pine was 

selected for this study because of it’s abundance in the region, and because it is 

one of the major fuel types susceptible to forest fires. It is also one of the major 

tree species regularly harvested in the DRMF. Another attractive property of jack 
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pine is it’s serotinous cones, which could have potentially high heating values 

due to their high resin and extractive contents. 

3.1.2. Trembling Aspen Populus tremuloides 

 Trembling aspen is a medium to large-sized deciduous tree between 16-

32 meters tall with a diameter of 30-60 cm (Barnes and Wagner 2004). It 

typically forms multi-stemmed clones that originate from suckering of killed 

parent trees by fire, harvest, or browse. The wood is light, soft, weak, close-

grained, light brown with thin whitish sapwood, and it’s main use is for pulpwood 

(Barnes and Wagner 2004). Trembling aspen is the most widely distributed 

native North American tree species and is abundant throughout the Boreal and 

Great Lakes region (Barnes and Wagner 2004).  It is a fast-growing, and very 

shade-intolerant species, and its individual stems are short lived (Barnes and 

Wagner 2004). The maximum heating value of poplar wood is between 4120-

5350 kcal/kg and for bark 4240-4670 kcal/kg (Tsoumis 1991). Trembling aspen 

was selected for this study because of the abundance in the region, it’s fast 

growth rates, and it’s adaptation to fires through root suckering.  

3.1.3. Black Spruce Picea mariana 

 Black spruce is a wide-spread species found across Canada and Ontario. 

It is a slow-growing, shade-tolerant tree that ranges in size from 5-15 meters tall, 

reaching heights of up to 30 meters with a dbh of 60 cm on upland sites with rich 

soils. (Barnes and Wagner 2004). The wood is light and soft, with a yellowish 

white heartwood and pure white sapwood (USDA 2010). It is used mainly for 

pulpwood, poles, and for lumber. It is also a fire-adapted species with semi-
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serotinous cones that open during fire, seeds are not destroyed by fire and 

germinate readily on seedbeds prepared by fire (Barnes and Wagner 2004). 

Frequently found in bogs and swamps with slow movement of water and low 

oxygen availability (Barnes and Wagner 2004). 

3.2. AREA DESCRIPTION 

The samples were collected in the Dog River-Matawin Forest 

management unit (DRMF) north-west of Thunder Bay in Northwestern Ontario. It 

is located between 48°:16’ and 49°:28’ latitude North and 89°:30’ and 91°:50’ 

longitude West. Figure 3.0. shows the location of the DRMF management unit. 

 

Figure 3.0. Location of Dog River- Matawin Forest Management Unit (MNRF, 
2019). 

The area has several different ecosites, with Hardwood-Fir-Spruce 

Mixedwoods and Fir-Spruce Mixedwoods being the main forest types. Other 
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ecosites include Spruce-Pine / Feathermoss, Spruce-Pine, Jack-Pine Conifer, 

and Pine-Spruce Mixedwood. 

3.3. FIRE DESCRIPTION  

The fire where samples were collected was identified with help from the 

Thunder Bay Fire Management Headquarters. The fire was selected due to its 

proximity to Thunder Bay and representative size. It occurred in 2016 in the 

Eastern corner of the DRMF, around 40 km up the Dog River rd. and was 

named THU 019. The location of the fire is at the coordinates 49°11'29.1"N 

89°55'01.5"W. 

 

Figure 4.0. Location and area of 2016 Thunder Bay Fire 019. (Towell 2019). 
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3.4. SAMPLE COLLECTION 

 Samples were collected by cutting discs from jack pine, black spruce, and 

trembling aspen for determination of moisture content and calorific value. 

Sample trees were selected from downed trees that had mostly straight stems 

with little defect and varying levels of burn damage. Any defects or other factors 

that could affect the properties of wood were recorded. Discs with a width of 2 

inches were cut using a chainsaw at intervals of 2 meters along the stems 

starting at 2 meters from the base of the tree. The discs were labeled with 

numbers using a permanent marker to identify the species and position on the 

stem where the sample was taken. The side of the tree that was more severely 

burnt (direction of the fire) was also labelled. Cones from jack pine were also 

collected from burnt and unburnt trees to test calorific value. Samples of twigs 

and branches were also collected for calorific testing. The discs and other 

samples were then brought back to the Lakehead University Wood Science and 

Testing Facility (LUWSTF) for sample preparation and testing. 

3.5. SAMPLE PREPARATION 

 First, the bark and any charcoal was removed using a screw driver and 

other hand tools. The bark was placed in plastic containers and labelled with 

tree species and the letter “d” (i.e. Pj1d). The bark samples were placed in an 

oven at 103°C for 48 hours and weighed periodically to ensure a moisture 

content of 0% had been reached. Samples of completely charred wood were 

also collected from the disc by scraping away the charred outer layers of discs. 

These were then ground by hand using a mortar and pestle, as the charred 



32 
 

 

material was unsuitable to be used in the Wiley mill. Charred samples were 

labelled with the species ID and the letter “a” (i.e. Pj1a). Once the bark and 

charcoal was removed from the discs, a bandsaw was used to remove small 

enough pieces to be ground into shavings using a Wiley mill, these samples 

were labelled with species ID and the letter “b” for slightly burnt wood or “c” for 

unburnt. The shavings were placed in labelled containers and put into the drying 

oven at 103°C for 48 hours. Once all samples were dried in the oven, they were 

run through a Wiley mill to grind samples into small enough fragments to be 

used in the oxygen bomb calorimeter. Before samples were ran through the 

Wiley mill, it was first cleaned using compressed air and a shop vacuum to 

reduce cross contamination, this was also conducted between each sample 

ground in the mill. The samples were collected then placed in airtight containers 

and labelled to await calorific testing. Some sample IDs with descriptions are 

shown in Table 4.0. for clarification. 

Table 4.0. Description of samples 

Sample ID Description Sample ID Description 

Po1a Charred wood PoBrU Branch wood unburnt 

Po1b Slightly burnt wood PoBrB Branch wood burnt 

Po1c Unburnt wood PjCoU Cones unburnt 

Po1d Bark PjCoB Cones burnt 

PoKW Knotwood  

Source: (Towell 2019). 
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 Samples were prepared for determination of density and moisture content 

prior to drying the samples. A block from each disc of approximately 2.5 x 2.5 

cm was cut from the juvenile wood (near the pith of the tree) of each disc as well 

as from the mature wood (outer portion of the stem) using a bandsaw. Each 

individual block was labelled using a permanent marker to identify species, 

juvenile/ mature, and from which disc it was sampled. Representative cones 

were also selected to determine moisture content / density. 

3.6. DENSITY / SPECIFIC GRAVITY 

The juvenile and mature wood samples were tested following ASTM 

standard D2395-07 to determine specific gravity. The green weight of each 

block was measured using a weight scale to 0.0001 mg accuracy. The volume 

of each sample was determined using the water-displacement method. First a 

glass beaker was placed on a weight scale with enough distilled water inside it 

so that the blocks could be submerged fully without spilling any water. The scale 

was reset to zero to account for the weight of both the water and glass beaker. 

The blocks were stuck with a long needle pointed instrument and then 

submerged in the glass beaker filled with water. The weight of the displaced 

water was measured by the weight scale to an accuracy of 0.01 mg, giving the 

volume of the sample because water has a density of 1 (1 g per cm3). The 

blocks were then removed from the water and the scale was reset to zero again 

to account for any water soaked up from the wood. This process was repeated 

until all the green weights and volumes of samples were measured. The 

samples were then placed in an oven at around 103°C for 48 hours to reach an 
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assumed moisture content of 0%. The samples were then brought to room 

temperature before being weighed again as the heat released from a hot sample 

can heat the air above it, making the air lighter and affecting the weight given by 

the balance. The weights and volumes of the oven-dry samples were then 

measured using the same methods as explained above. From the weight in 

grams of the initial “green” mass of the sample and of the oven-dry sample, the 

moisture content was then determined on an oven-dry basis using the formula:    

  𝑀𝐶	% =	!"#	!"%&'#,-./	!"%&'#
-./	!"%&'#

	𝑥	100. 

The oven-dry weight and weight of displaced water were used to 

determine the specific gravity based on the formula: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝐺𝑟𝑎𝑣𝑖𝑡𝑦 = 	
𝑂𝐷	𝑤𝑒𝑖𝑔ℎ𝑡

𝑊𝑒𝑖𝑔ℎ𝑡	𝑜𝑓	𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑	𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝑤𝑎𝑡𝑒𝑟 

Moisture content and specific gravity were recorded for each sample of juvenile 

and mature wood for each species and location obtained from on the stem. 

3.7. CALORIFIC HEATING VALUE 

 Calorific values were determined using a Parr 6200 Oxygen bomb 

Calorimeter and Parr 6510 water handling system according to the Parr 

Operating Instruction Manual, following  ASTM D5468. The shavings collected 

from the procedure explained in section 3.5. were used to test calorific content 

of fire-killed trees. An empty plastic container was placed on a weight scale and 

the scale was reset to zero so that the scale would automatically subtract the 

weight of the container. The samples in their plastic containers were then 
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weighed. For testing, the weight of the samples had to be close to 1 gram, which 

was achieved by removing shavings from the container. The exact weight in 

grams and milligrams was then measured before testing in the bomb 

calorimeter. Each sample was placed in the “bomb”, a metal vessel built to 

withstand high pressures, a fuse wire was installed in the bomb and then sealed. 

The bomb was then filled with pure Oxygen to 450 psi to ensure complete 

combustion of the material. The bomb was then placed into a bucket filled with 

2000 ml of distilled water that was 3-5°C below the jacket temperature of 30°C. 

These temperatures were regulated by the Parr 6510 water handling system. 

The submerged bomb in the bucket was then placed in the calorimeter and the 

fuse wires connected. The lid was closed, and the calorimeter was then run 

which combusted the contents of the bomb, increasing the temperature of the 

water it is submerged in. The calorimeter detects and records the temperature 

change until final equilibrium of the water was recorded. The calorimeter then 

takes a final reading of temperature and calculates the gross heat of combustion 

using the following equation: 

𝐻0 =	
(𝑊	𝑥	𝑇) − 𝑒1 − 𝑒2 −	𝑒3

𝑚  

Where,  

Hc = Gross heat of combustion (MJ/kg) 

T = Observed temperature rise (°C) 

W = Energy equivalent of the calorimeter and bomb bucket combination being 

used (MJ/°C). 

e1 = Heat produced by the burning the nitrogen portion of the air trapped in the 



36 
 

 

bomb to form nitric (MJ). 

e2 = Heat produced by the formation of sulphuric acid from the reaction of 
Sulphur dioxide, water and oxygen (MJ). 

e3 = Heat produced by the fuse wire and cotton thread (MJ). 

m = The mass of the sample (kg). 

 

3.8. STATISTICAL ANALYSIS 

 A one-way ANOVA was done on the oxygen bomb calorimeter data to 

look for a significant variance in one or more of the values. The values were 

grouped by species and tested with the ANOVA to test the null hypothesis that 

tree species affects heating values of fire-salvaged wood. Another ANOVA was 

done by grouping the data by component (burnt, unburnt, cones, etc.) to test the 

null hypothesis that level of burn in fire-salvaged wood does not significantly 

affect calorific value. The data for moisture content was not extensive enough to 

justify any testing using an ANOVA. If results of the ANOVA indicated a 

significant result and the null hypothesis was rejected, a Fisher’s least significant 

difference test was used to identify where the statistically different means were. 
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4.0. RESULTS 

 This section will present the results of all data collected. This includes 

values for moisture content, specific gravity, and calorific values of samples. 

Tables and figures will show which species or tree component had the highest 

and lowest for each of these values / properties and the general variation and 

distribution of the data. ANOVA results will also be shown for the data that 

constituted this type of statistical analysis. Original data can be found in 

Appendix 1 and 2. 

4.1. MOISTURE CONTENT / DENSITY 

 The results of specific gravity and moisture content are shown in Table 

5.0. Jack pine cones were found to be much denser than the wood samples 

(0.82, 0.94, and 0.93) and had a much lower moisture content (about 5%). Of 

the wood samples, jack pine was also found to have the highest oven-dry 

specific gravity at 0.45 for mature wood and 0.43 for juvenile, which was about  

Table 5.0. Density and Moisture Content Results 

________________________________________________________________ 
  

Specific gravity (g/cm3) MC%   
Green Oven-Dry 

 

Jack Pine Mature 0.49 0.45 17.83  
Juvenile 0.47 0.43 14.12 

Poplar Mature 0.44 0.40 16.06  
Juvenile 0.44 0.41 12.53 

Black Spruce Mature 0.41 0.39 13.73  
Juvenile 0.43 0.39 14.54 

Pj Cones 1.00 0.82 0.82 5.47  
2.00 0.95 0.94 5.61  
3.00 0.90 0.93 4.46 

________________________________________________________________ 

Source: (Towell 2019).  
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Poplar charred wood had the highest calorific value of 31 MJ/Kg followed 

by black spruce charred wood at 26.5 MJ/Kg and jack pine charred wood at 26.2 

MJ/Kg. The lowest calorific content was found in black spruce unburnt wood at 

18.4 MJ/Kg followed by unburnt jack pine cones at 19.3 MJ/Kg, jack pine 

unburnt wood at 19.4 MJ/Kg, and burnt jack pine cones at 19.5 MJ/Kg.  

The calorific value of all samples can be seen in Table 6.0.   

Table 6.0. Oxygen Bomb Calorimeter Results 

Bomb Calorimeter Results 
Poplar Jack pine Black spruce 

SampleID Heat (MJ/Kg) SampleID Heat (MJ/Kg) SampleID Heat (MJ/Kg) 
Po1a 30.8414 PJ1a 26.2158 Sb1a 26.4735 
Po1b 20.1707 PJ1b 21.3661 Sb1b 20.2797 
Po1c 21.135 PJ1c 19.3911 Sb1c 18.3772 
Po1d 20.7348 PJ1d 20.8852 Sb1d 19.8634 
PoBrU 20.6149 PjBrU 20.203 SbBrU 20.852 
PoBrB 21.6303 PjBrB 20.843 SbBrB 21.095 
PoKW 21.4954 PJCoU 19.3394   
    PJCoB 19.4967     

Source: (Towell 2019). 

 The results of the single-factor ANOVA on calorimeter results, grouped by 

species and using an alpha level of 0.05 show that the P-value is higher than 

0.05, therefore this means no significant variance was found, accepting the null 

hypothesis that species does not affect calorific value of fire-salvaged wood. The 

ANOVA results also show that poplar had the highest variance in calorific values 

out of all groups, and jack pine the least. Another insight that can be made from 

the ANOVA is that variance was much higher within groups than between 
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groups. The table summarizing the results for the one-way ANOVA is shown in 

Table 7.0. 

Table 7.0. Calorific ANOVA Results Grouped by Species. 

SUMMARY       
Groups Count Sum Average Variance   

Po 6 135.1271 22.52118 16.85821   
Pj 6 128.9042 21.48403 5.838893   
Sb 6 126.9408 21.1568 7.706477   
       
       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 6.088607 2 3.044304 0.300389 0.744882 3.68232 
Within Groups 152.0179 15 10.13453    
       
Total 158.1065 17         

Source: (Towell 2019). 

 Another one-way ANOVA was done at alpha level 0.05, this time using 

the sample type (a, b, c, d, BrU, BrB) to group the results. These results are 

shown in Table 8.0.  

Table 8.0. Calorimeter ANOVA Results Grouped by Sample Type. 

Groups Count Sum Average Variance   
a 3 83.5307 27.84357 6.756856   
b 3 61.8165 20.6055 0.436855   
c 3 58.9033 19.63443 1.945774   
d 3 61.4834 20.49447 0.304339   
bru 3 61.6699 20.55663 0.107847   
brb 3 63.5683 21.18943 0.161649                 
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 138.68 5 27.73597 17.13275 
4.27034E-

05 3.105875 
Within Groups 19.4266 12 1.618886           
Total 158.106 17         

Source: (Towell 2019). 
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 Again, the null hypothesis was accepted, as the P-value is higher than 

0.05, showing that sample type did not significantly affect calorific value. Group 

“a”, the charred wood samples had the highest level of variance, while branch 

wood unburnt and burnt had the lowest variance. This time the variance 

between groups was higher than within as the data was grouped by sample type 

rather than species.  

 Descriptive statistics were determined for the data to determine how the 

data is distributed around the mean, and how confidently the data predicts the 

mean. Table 9.0. summarizes the descriptive statistics for the data. A mean of 

21.5 MJ/Kg was given with a 95% confidence level that the actual mean is within 

1.3 +/- MJ/Kg of the given mean. 

Table 9.0. Descriptive Statistics of Calorific Values. 

Column1 

   
Mean 21.49064762  
Standard Error 0.631820149  
Median 20.843  
Mode #N/A  
Standard Deviation 2.895363656  
Sample Variance 8.383130702  
Kurtosis 5.071179653  
Skewness 2.224471278  
Range 12.4642  
Minimum 18.3772  
Maximum 30.8414  
Sum 451.3036  
Count 21  
Confidence Level(95.0%) 1.317953735   

 

Source: (Towell 2019). 
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5.0. DISCUSSION 

The resulting moisture contents were lower than what would be expected 

for “green” wood. This could be due to the long time since fire, which allowed the 

dead trees to air-dry for three summers. One factor that could have affected 

these results however, is that the samples were inside for some time before 

blocks were cut for moisture content and density. Moisture content results 

suggested that jack pine cones had a lower moisture content than wood, which 

is not surprising considering the serotinous nature of the cones keeps them 

sealed, and the density leaves little room for moisture to get in. However, it 

should be noted that determining density and moisture content of cones was 

difficult using the traditional oven-dry method used for wood. This is because of 

the shape of the cones, and the fact that when cones were dried in the oven, 

this also led to the opening of the cones and removal of some of the seeds, 

which could have affected the results. Nevertheless, the high density and low 

moisture content of cones, along with the high resin content, suggests that they 

could be used as a hot burning solid fuel. The high moisture content and density 

found in jack pine mature wood could be attributed to the high resin content of 

pines, which was not considered in determination of density and moisture 

content using the oven-dry method. If the wood was tested using the distillation 

method an accurate measure of resin content could be taken and used to find a 

more accurate measure of moisture content and density. Overall, the density 

determined for each sample of juvenile and mature wood for each species, was  

close to the published values. 



43 
 

 

Although the statistical analysis did not show a significant result 

disproving the null hypothesis, this is most likely due to the small sample size 

that was used. Given a higher sample size with more repetitions the results may 

have suggested a different outcome. Despite the statistical analysis failing to 

disprove the null hypothesis, it can be seen from the data that the charred wood 

samples had higher calorific values than the rest of the samples tested, which is 

consistent with what the literature suggested, that is that carbonization of wood 

leads to a denser fuel, thus giving it a higher calorific heating value. Niu et al. 

(2019) describe a 30% increase in energy density from parent woody biomass to 

torrefied wood (wood that has undergone thermochemical reaction at a 

temperature of 200-300°C), which is similar to the increase in heating value 

seen between unburnt wood and charred wood. Some factors that could have 

affected the results of calorific testing include possible oil residue on the 

samples caused by the chainsaw used to cut the disks, and also the fact that 

samples were stored for some time at room temperature before testing possibly 

resulting in a lower moisture content. The drying of samples in the oven may 

have also removed some of the volatiles / extractives of wood or tree 

components, which have a high heating value, as jack pine cones were 

expected to have a high heating value but resulted in some of the lowest values 

out of all samples, despite the high density found in the cones. These findings 

suggest that calorific heating value is affected by a lot of different factors, and 

even within a single tree, the different components of the tree will have various 

heating values as was presented by Hosegood (2010). 
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CONCLUSION 

 The potential for salvaged wood from forest fires and other natural 

disturbances to be utilized as a biomass feedstock is mostly justified by the low 

moisture content of dead wood, and the fact that damage caused by the 

disturbance and subsequent degradation of wood from fungi and insects lowers 

the merchantability of the wood in other industries such as lumber and pulp 

(Araki 2002; Watson and Potter 2004). However ecological concerns of salvage 

logging and current policies have prevented the wide-spread utilization of this 

resource in Ontario, while other provinces such as Quebec and British Columbia 

have been more active in the implementation of salvage logging activities 

(Mansuy et al. 2015; Barrette et al. 2017). Major barriers to the wide-spread use 

of biomass for energy production include high transportation costs because of 

the low density of the fuel, lack of policies that would allow biomass to compete 

with cheap petroleum fuels (carbon pricing, etc.), and availability of sustainable 

biomass feedstocks. For these reasons it is important that biomass resources 

are utilized in the most efficient way possible. The literature and results of this 

study show the importance of technologies for densification of biomass, namely 

carbonization processes which remove moisture and volatile components of 

wood resulting in a high-carbon charcoal-like solid fuel. Gasification systems are 

likely the most promising of these technologies as they not only remove volatiles 

from wood, but turn these compounds into liquid fuels (bio-oil) and gasses 

(syngas) that can be utilized immediately or stored and transported for further 

use and/or refinement. Forestry operations could theoretically implement 
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gasification technologies on-site of operations to provide for the energy needs of 

equipment, reducing fuel costs and reducing carbon emissions. If these 

technologies were to become more portable and effective, they could potentially 

be used by forest firefighters to power water pumps, reducing fuel costs and 

environmental concerns. Although salvage logging has been a controversial 

practice in some instances, it could potentially provide for a large amount of 

biomass while rehabilitating stands if implemented with best management 

practices and the following of guidelines. More research into the properties of 

fire-salvaged woody biomass and technologies is needed to guide salvage 

logging operations for optimum and efficient utilization of this resource.  
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APPENDIX I 

CALORIFIC VALUES RAW DATA 

 

  ___________________________________________  

             Species        Component                  MJ/Kg  

  ___________________________________________  

   

Po Charred Wood 30.8414 
Po Slightly Burnt Wood 20.1707 
Po Unburnt Wood 21.135 
Po Bark 20.7348 
Po Branch Wood Unburnt 20.6149 
Po Branch Wood Burnt 21.6303 
Po Knot Wood 21.4954 
Pj Charred Wood 26.2158 
Pj Slightly Burnt Wood 21.3661 
Pj Unburnt Wood 19.3911 
Pj Bark 20.8852 
Pj Branch Wood Unburnt 20.203 
Pj Branch Wood Burnt 20.843 
Pj Cone Unburnt 19.3394 
Pj Cone Burnt 19.4967 
Sb Charred Wood 26.4735 
Sb Slightly Burnt Wood 20.2797 
Sb Unburnt Wood 18.3772 
Sb Bark 19.8634 
Sb Branch Wood Unburnt 20.852 
Sb Branch Wood Burnt 21.095 

  ___________________________________________ 
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APPENDIX II 

DENSITY RAW DATA 

________________________________________________________________ 

_____________________________________________________ 

Species  Sample Condition Mass 
(g) 

Volume 
(cm3) 

Specific 
gravity 
(g/cm3) 

Pj  Mature Green 16.14 33.12 0.49 
Pj  Juvenile Green 17.42 37.06 0.47 
Pj  Cone 1 Green 13.54 16.50 0.82 
Pj  Cone 2 Green 7.62 8.03 0.95 
Pj  Cone 3 Green 7.85 8.72 0.90 
Po Mature Green 15.8285 36.29 0.44 
Po Juvenile Green 19.3287 43.46 0.44 
Sb Mature Green 11.5728 28.3 0.41 
Sb Juvenile Green 17.4813 40.22 0.43 
Pj  Mature Oven-Dry 13.70 30.11 0.45 
Pj  Juvenile Oven-Dry 15.26 35.55 0.43 
Pj  Cone 1 Oven-Dry 12.84 15.56 0.82 
Pj  Cone 2 Oven-Dry 7.21 7.70 0.94 
Pj  Cone 3 Oven-Dry 7.51 8.05 0.93 
Po Mature Oven-Dry 13.638 34.32 0.40 
Po Juvenile Oven-Dry 17.176 41.65 0.41 
Sb Mature Oven-Dry 10.176 25.82 0.39 
Sb Juvenile Oven-Dry 15.262 39.32 0.39 

  _____________________________________________________ 

 




