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ABSTRACT 

 Sixty-seven streams located south-west of Lake Nipigon, Ontario, were sampled 

for brook trout and macroinvertebrate orders. Sixteen orders were used to determine if 

their community structure significantly changed in different brook trout habitat and 

different brook trout densities (no brook trout, one to fifteen brook trout or more than 

fifteen brook trout). Though the orders Odonata, Oligochaeta, Trichoptera, 

Chironomidae, Nematoda, Simuliidae, Gastropoda and Plecypoda varied in response to 

brook trout habitat quality and abundance, the community structures did not change 

significantly. Pollutant sensitive orders, Trichoptera, Ephemeroptera, and Plecoptera 

that are used as indicators and share similar habitat to brook trout did not significantly 

change in response to brook trout densities. Future direction may involve identifying 

macroinvertebrates to family or genus level to detect community changes, or analyzing 

further data such as invertebrate biomass, diversity or richness in these streams.  

Keywords  

Aquatic macroinvertebrate community structure, brook trout, EPT index, Groundwater, 

habitat quality, predator and prey relationships, taxa abundance, taxa biomass, taxa 

diversity, stream health.  
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INTRODUCTION 

 Streams have environmental and anthropogenic values (Meyer 1997).  

Environmental values include healthy aquatic ecosystems that are home to many 

organisms such as semi-aquatic mammals (Lacoul and Freedman 2006), like beavers, 

macroinvertebrates, and fish (Lacoul and Freedman 2006).  Streams are also significant 

for fish spawning (Schlosser 1991).  

 Stream health and quality is reflected by an ecosystem that is sustainable and 

able to support and maintain ecological function over time while also serving human 

values (Meyer 1997). Stream health is determined by assessing for bacteria levels and 

pollution, which lowers the water quality (Meng et al. 2009). Anthropogenic values 

include recreation such as fishing, swimming, kayaking, provision of drinking water, 

(Gossling et al. 2012), education, and scientific study. If water quality becomes poor, 

important habitat and stream values can be lost (Able et al. 1999).   

 Water quality is often at risk from agriculture, industry (Olness 1995) and 

recreational runoff (Green 1998). Natural ecosystem processes in streams may be altered 

by poor water quality, such as different usage by organisms, negative effects on 

reproduction, and die-off (Karr and Dudley 1981). If pollution worsens, habitat quality 

will degrade which may cause the entire ecosystem or food web of a stream to collapse 

(Cao et al. 2018), by decreasing prey numbers drastically so there is not enough to 

support predators, which die off as well (Karr and Dudley 1981). Conversely, wetlands, 

high groundwater discharge areas, and tributaries may help improve the quality of the 

water (Mitsch and Gosselink 2000).  
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 Brook trout (Salvelinus fontinalis) are sensitive to pollution, degrading 

environmental conditions or altered habitat and are indicators for stream health (Smith 

and Sklarew 2013). When water is polluted, it can cause aquatic macroinvertebrates to 

die off, causing the brook trout to move to other streams (Smith and Sklarew 2013). 

Water that becomes contaminated from sources like sewage may cause brook trout to 

leave the area, as they depend on sight to hunt (Smith and Sklarew 2013). Therefore, the 

presence of brook trout can be used to indicate a healthy stream and good water quality 

(Smith and Sklarew 2013).  

 Brook trout prefer cold clear streams with cover but can occupy cold lakes (Kerr 

and Grant 2000). Adults spawn preferentially in streams during the day in the fall, 

usually in areas where there is groundwater discharge (Kerr and Grant 2000). Brook 

trout lay up to six-hundred eggs, which hatch around March when larvae 

macroinvertebrates are available to feed on (Kerr and Grant 2000). The temperature of 

the water and precipitation play a secondary role in where and when brook trout spawn 

(Kerr and Grant 2000).  

 Brook trout usually select spawning areas in relation to groundwater discharge 

(Curry and Noakes 1995). Groundwater discharge can be a source of nutrients for rivers 

and streams (Maavara et al. 2018) and is an important factor in brook trout spawning 

sites. Groundwater occurs beneath the water table, where water is trapped in sediment 

(Kornelson and Coulibaly 2014). Groundwater discharge is determined by the water 

table, surface water levels, and rate of flow of the area (Kornelson and Coulibaly 2014). 

Groundwater can purify water, maintain ecosystem health, and mitigate erosion 

(Kornelson and Coulibaly 2014).  
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 Brook trout frequently choose spawning areas where there is groundwater 

seepage, often near headwaters (Witzel and Maccrimmon 1983). Upwelling groundwater 

also provides thermal conditions and oxygen needed for incubation in spawning areas 

(Nuhfer et al. 2015). Upwelling groundwater flow is also important for protecting 

spawning areas from cold surface waters in winter (Nuhfer et al. 2015). Upwelling 

groundwater also produces flowing water, chemical, and temperature gradients in 

surface waters that could be used by brook trout to identify ideal spawning sites (Curry 

and Noakes 1995).  

 Groundwater is warmer than surface waters during the winter (Nuhfer et al. 

2015), and during these times, brook trout often forms aggregations in pools close to 

groundwater discharge (Cunjak and Power 1986). These groups of brook trout are 

increasingly common when water temperature decreases. Cunjak and Power (1986) 

reported that the temperature was up to six degrees warmer in these groundwater 

discharge areas compared to the rest of the stream. Brook trout can also be found in 

groups in summer using groundwater seepage to escape warmer streams (Cunjak and 

Power 1986).  

 In areas where groundwater flow is low, temperature becomes the main factor in 

determining brook trout population responses to habitat (Nuhfer et al. 2015). Brook trout 

populations can be self-sustaining in the presence of distinct groundwater discharge with 

spawning occurring in these areas (Curry and Noakes 1995). Brook trout and 

groundwater relationships can be used for management to stress the importance of 

groundwater hydrology protection (Curry and Noakes 1995).  
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 Groundwater contains dissolved organic matter, which is transferred into streams 

when groundwater is discharged (Cooney and Simon 2009). Groundwater plays an 

important part in trophic level interactions (Cooney and Simon 2009). Aquatic 

invertebrate densities are often higher below a depth of ten centimeters (Hynes 1983). 

These high densities are often in areas where there is access to groundwater discharge 

and therefore dissolved organic matter that invertebrates can feed on (Cooney and 

Simon 2009). Aquatic invertebrates may also be found in these areas where they feed on 

microbial, which in turn feed on dissolved organic material (Cooney and Simon 2009).  

 Groundwater and surface interactions can influence the aquatic invertebrate 

abundance, richness and benthic productivity and high groundwater discharge sites can 

have up to 35% greater invertebrate abundance than sites where there is low 

groundwater discharge (Hunt et al. 2006). Sites with weak groundwater discharges were 

found to have up to 27% aquatic invertebrate abundance and 19% greater richness than 

sites that had only one groundwater discharge source (Hunt et al. 2006). Groundwater 

can increase algae growth, which can increase the numbers algae-feeding 

macroinvertebrates in these streams (Hunt et al. 2006).  

 Groundwater can also affect the riparian vegetation, which in turn provides 

resources and creates habitat (Swanson 1980). This vegetation helps determine what 

type of invertebrate feeding groups are found in certain streams and also the structure of 

the invertebrate community of the entire stream (Swanson 1980).   

 Brook trout are opportunistic predators, consuming a variety of invertebrate 

larvae, small fish, and crustaceans (Kerr and Grant 2000). Aquatic macroinvertebrates 

are important to trout (Kerr and Grant 2000).  Mayflies (Ephemeroptera), stoneflies 
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(Plecoptera), caddisflies (Trichoptera) and other immature flies make up most of the 

brook trout diet and occupy the similar habitat of cold, clean streams (Allan 1981).   

 Aquatic macroinvertebrates are organisms that spend at least part of their life 

cycle in water and include Hexapoda (insects), Gastropoda (snails), phylum Annelida 

(leeches and worms), mussels, clams and Crustacea (crayfish and fairy shrimp). Most 

live on the bottom of lakes, rivers, and wetlands (Thorp and Covich 2001). Aquatic 

macroinvertebrates are usually found in the sediment, in vegetation or on rocks (Thorp 

and Covich 2001). They are important to the food chain of aquatic environments, 

playing an important role in processing and cycling of nutrients (Thorp and Covich 

2001) as well as being a food source for aquatic animals. There are approximately 

10,000 species of aquatic macroinvertebrates in stream systems in Ontario (Cummins 

and Merritt 2008). 

 Some aquatic macroinvertebrates spend their entire lives in water, such as 

crayfish and leeches (Contreras-Ramos 2010). Aquatic macroinvertebrates may either 

have complete or incomplete metamorphosis (Contreras-Ramos 2010). Incomplete 

metamorphosis has three stages: the egg stage, a nymph stage, and the adult stage 

(Contreras-Ramos 2010). Aquatic macroinvertebrates that go through incomplete 

metamorphosis include dragonflies, damselflies, mayflies, and stoneflies (Contreras-

Ramos 2010).  

 Complete metamorphosis includes four distinct stages: the egg stage, the larval 

stage, the pupal stage, and the adult stage (Contreras-Ramos 2010). Most aquatic 

macroinvertebrates go through complete metamorphosis such as many types of flies 

(Contreras-Ramos 2010). Larvae of some species can spend up to five years in streams, 
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then enter the pupal stage where the macroinvertebrates develop wings and structures for 

mating and reproduction (Contreras-Ramos 2010).  

 In some species, the pupal stage is completed on land, but others transfer to 

terrestrial life in their adult stage (Contreras-Ramos 2010). In many cases, the insects are 

adults for a very short time (Brittain and Sartori 2009). Many mayflies live in streams 

for up to several years but have a terrestrial adult phase of a few days (Brittain and 

Sartori 2009). Terrestrial adults’ mate and lay their eggs in or near water so the cycle can 

continue (Contreras-Ramos 2010).  

 Aquatic macroinvertebrates that spend their whole lives in the water, such as 

water beetles, usually live for a couple of years while some species can live up to ten 

years, such as crayfish and some leeches (Ahmed et al. 2015). Leeches lay eggs in 

cocoons, which hatch into juvenile leeches that grow into adults who look identical to 

those in the juvenile stage (Ahmed et al. 2015). Many species of leeches die after 

reproduction (Ahmed et al. 2015). Aquatic worms have a lifespan between a couple of 

weeks to several years and can reproduce sexually or asexually (Edwards 1996). Worms 

have a similar lifecycle to leeches, where their eggs are laid in cocoons and hatch as 

juveniles (Edwards 1996).    

 Aquatic macroinvertebrates have different feeding guilds, including shredders, 

scrapers, collectors, filterers and predators (Goodyear and Mcneill 1999). Shredders, 

common of some crustacean species, break down plant material that has fallen into the 

streams and are found in areas of streams where there is a canopy cover (Goodyear and 

Mcneill 1999). Scrapers, a common feeding method of snails, scrape algae off rocks and 

are found in areas of streams that obtain enough light that causes algae to grow 
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(Goodyear and Mcneill 1999). Collectors like mayflies gather food such as algae, 

bacteria, and plants that are at the bottom of the stream (Goodyear and Mcneill 1999). 

Filterers like clams and some species of crayfish feed on suspended matter and bacteria 

(Goodyear and Mcneill 1999). Predators, such as stoneflies, dragonflies, and beetles, eat 

live organisms and can be found in different habitats in the stream (Goodyear and 

Mcneill 1999).  

 Aquatic macroinvertebrates have different habitat requirements. Habitat and 

physicochemical variables that aquatic invertebrates depend on are canopy cover, stream 

size and depth, oxygen levels, woody debris, and organic matter, substratum sediment, 

clarity, level of pollution, pH levels, temperature and flow speed, and slopes of the 

stream banks (LeCraw and Mackereth 2012). Aquatic macroinvertebrates usually prefer 

pools and riffles, where temperature and organic matter availability are primary factors 

for habitat selection (LeCraw and Mackereth 2012).   

 Aquatic macroinvertebrates serve as a biological indicator for stream health; 

identify cumulative environmental impacts and environmental changes (Joao et al. 

2012). Macroinvertebrates are good indicators because they have little mobility, are 

abundant, spend a significant amount of time in streams, are primary food sources, and 

are easy to sample (Jao et al. 2012). Macroinvertebrates are affected by many 

environmental factors, such as sediment composition and quality, habitat loss, pollution, 

water quality, and hydrology (Joao et al. 2012).   

 Many macroinvertebrates are sensitive to changes in pH, dissolved oxygen, 

temperature, salinity, turbidity, and other changes in their habitat (Selvanayagam 2016). 

Pollution-sensitive species such as mayflies, stoneflies, and caddisflies require higher 
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dissolved oxygen levels, neutral pH, and cold water (Chadde 2005). When present in 

large numbers, these macroinvertebrates suggest the stream is in good condition 

(Hodkinson and Jackson 2005). 

 Somewhat pollution tolerant species include dragonflies, crayfish, and 

damselflies (Chadde 2005). Pollution tolerant species can tolerate low oxygen; lower or 

higher pH and warmer water and include aquatic worms, leeches, blackfly larvae, and 

midge larvae (Chadde 2005). An abundance of these organisms suggests that 

environmental conditions have deteriorated (Hodkinson and Jackson 2005).  

 By looking at aquatic invertebrate abundance and distribution, knowledge of the 

water quality and water health can be gained (Hodkinson and Jackson 2005). Nematodes 

and caddisflies can be useful as indicators for heavy metals and toxicants (Fenske and 

Gunter 2001). Heavy metals can alter nematode behavior, migration activity, and 

numbers that migrate (Fenske and Gunter 2001). Dragonflies can be used to detect 

pesticides in aquatic ecosystems due to their long lifecycles, as dragonfly nymphs cannot 

recover their abundance as quickly as other larvae (Takamura et al. 1991).   

 Aquatic macroinvertebrates populations can be affected by many disturbances. 

Pesticides, pollution, deforestation, soil erosion, natural disasters such as floods and 

artificial stream modification are some problems that can change macroinvertebrate 

community structure (Hussain 2012). This can cause brook trout populations to decrease 

because the habitat becomes unsuitable, especially if there are no close-by suitable 

habitats for these fish to move to (Hussain 2012). Examining the effects that 

disturbances have on the macroinvertebrates populations and their responses can be used 

to determine the health of the stream and water quality (Hussain 2012). Factors such as 
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aquatic macroinvertebrates tolerance to these changes can help determine brook trout 

survivability in different streams (Hussain 2012).  

 The EPT (Ephemeroptera, Plecoptera, and Trichoptera) index is based on the 

concept that higher abundance of species in these orders is indicative of higher water 

quality. Ephemeroptera Plecoptera and Trichoptera are common orders found in 

streams and rivers (Hamid and Rawi 2017). These orders are intolerant to pollution and 

therefore make good indicators of water quality (Hamid and Rawi 2017). Any habitat 

changes, pollutants and contaminants can cause observable effects in the life cycle of 

aquatic invertebrates both in the short-term and long-term (Hamid and Rawi 2017). 

Anthropogenic disturbances near streams can affect diversity and abundance of the EPT 

orders (Hamid and Rawi 2017). Stoneflies are the most sensitive to changes in water 

quality due to low motility (Hamid and Rawi 2017).   

 The EPT index predicts that high-quality waters are expected to have higher 

species richness while polluted water will have lower species richness (Hamid and Rawi 

2017). This is because the pollution intolerant EPT orders will be in high-quality water 

and not in polluted waters (Hamid and Rawi 2017). If these orders are present, then the 

habitat characteristics are within tolerance limits of these species (Hamid and Rawi 

2017).  

 The EPT index can be important to assess the effects of spills or runoff and the 

amount of damage that is caused to rivers and streams (Forrester 1992). Brook trout 

abundance is predicted to be higher when there are higher aquatic macroinvertebrate 

diversity and abundance. Brook trout are predicted to have higher numbers in streams 

where there are high numbers of EPT orders found. 
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 The predator-prey relationship between the brook trout and aquatic invertebrates, 

especially those of the EPT index, should mean that the brook trout will be where their 

prey is available. Predator-prey relationships are more complex than this, however, and 

consumption behavior and presence in areas varies (Forrester 1992). Consumption 

behavior and occupancy of habitats can differ with prey density, abundance, distribution, 

and with the preferences of the trout (Forrester 1992).  
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OBJECTIVE 

 The objective of this thesis is to determine if there is a difference in invertebrate 

community structure between streams with three abundance classes of brook trout: no 

brook trout, low abundance of brook trout and high abundance of brook trout. The 

purpose of this study was to examine invertebrate taxa richness, abundance, and 

community structure for differences relating to brook trout abundance and stream sizes.  

A relationship between brook trout and the EPT orders will also be examined. Since the 

EPT orders are popular prey of brook trout, and they share similar habitats, it is 

hypothesized that the EPT orders can be used as an indicator for the presence of brook 

trout. Since the EPT orders are popular prey of brook trout, and they share similar 

habitats, it is hypothesized that the EPT abundance can be used as an indicator for the 

presence of brook trout and that EPT abundance will be positively related to brook trout 

abundance. It is hypothesized that there will be differences in macroinvertebrate 

composition, abundance, and richness, in different brook trout abundance classes based 

on different preferable stream characteristics and predation. Community composition 

will be examined to determine what differences there are among streams differing in 

brook trout abundance and stream size. 
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MATERIALS AND METHODS 

Sixty-seven cold water stream systems were sampled South-west of Lake 

Nipigon (figure 1). Sampling took place between 1997 and 2003 in May through 

August. These streams were divided into four different size classes, depending on 

catchment size: 1-3, 5-10, 30-50 and 100+ sq. Km. There is no reported agriculture 

runoff or significant pollution, though there is forest management occurring in these 

areas.  

 

Figure 1. Location of the sixty-seven sampled streams.  
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All the streams, brook trout, and invertebrates were measured and caught 

following the Stream Survey Data Collection Manual (2011). This manual was 

developed by the Centre for Northern Forest Ecosystem Research for the Comparative 

Aquatic Effects Program. 

 Brook trout were sampled by single pass electrofishing. A fifteen to thirty-foot 

blocker net was placed across the streams to catch shocked fish that weren’t originally 

caught after the original shock. Each brook trout had its weight and total length 

recorded, then it was released back into the stream. Streams were divided based on 

brook trout abundance: no brook trout present, 1-15 brook trout present, 15+ brook trout 

present.  These abundance classes were created based on a catch per unit effort, which 

indirectly measures the abundance of brook trout; any change in this measurement can 

mean that brook trout abundance has changed.  

 Macroinvertebrates were caught using 30-centimeter sample squares; a D-net 

was placed downstream to collect the dislodged invertebrates. They were carried to 

shore and placed into a dishpan, then identified to order level though lab processing. 

Twenty-seven macroinvertebrate orders were sampled in these streams, but only sixteen 

significant aquatic macroinvertebrate orders were present and therefore used to analyze 

community structure changes.  

 The null hypotheses tested in the study were: 

1. There is no difference in invertebrate taxa richness among the streams in the three 

brook trout abundance classes. That there is no difference in the taxa richness 

concerning four stream size classes. These hypotheses were tested using a two-way 
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ANOVA with brook trout abundance class as a fixed effect and stream size class as a 

random effect. The results can be seen in Figure 2, 3, 4, and Table 1.  

2. That there is no difference in the EPT orders for the three brook trout classes. There 

are no significant differences in the Trichoptera, Ephemeroptera, and Plecoptera values 

concerning brook trout abundance. There are no significant differences in the 

Trichoptera, Ephemeroptera, and Plecoptera values concerning stream size class. There 

are no significant differences in the Trichoptera, Ephemeroptera, and Plecoptera values 

concerning brook trout abundances and stream size class interactions. These hypotheses 

were tested using a two-way ANOVA with brook trout abundance class as a fixed effect 

and stream size class as a random effect. The results can be seen in Figure 5, 6, 7, and 

Table 2.  

3. That there is no difference in invertebrate abundance for the three brook trout 

abundances. That there are no significant differences in the number of aquatic 

invertebrate taxa concerning stream size classes. That there are no significant differences 

in the number of aquatic invertebrate taxa concerning brook trout abundances and 

stream size class interactions. These hypotheses were tested using a two-way ANOVA 

with brook trout abundance class as a fixed effect and stream size class as a random 

effect. The results can be seen in Figure 8, 9, 10, and Table 3.  

4. There is no difference in invertebrate community composition among streams in the 

three brook trout abundance classes.  This hypothesis was tested using a discriminate 

function analysis with the abundance of each of the twenty-two taxa of invertebrates as 

independent variables and brook trout abundance class as the categorical variable. The 

results can be seen in Figure 11.  
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The linear model for the experimental design for the Anovas is:  

Yijk = μ + BTAi + SCj + BTA*SCij + ε(ij)k. 

i = 1, 2, 3; j = 1, 2,3,4; k = variable. 

For Table 1, Yijk = the number of aquatic invertebrate taxa of the kth experimental unit 

in the jth level of factor SC and the ith level of factor BTA. 

For Table 2, Yijk = the Trichoptera, Ephemeroptera, and Plecoptera values of the kth 

experimental unit in the jth level of factor SC and the ith level of factor BTA. 

μ = the overall mean 

BTAi = Brook Trout Abundance class; the fixed effect of the ith of a levels of factor 

BTA 

SCj = Size Class; the fixed effect of the jth of b levels of factor SC, 

BTA*SCij = the fixed effect of the ith level of factor BTA with the jth level of factor 

SC, 

ε(ij)k = the random effect of the kth plot in the ijth treatment combination. The ε(ij)k are 

assumed to be iid N (0, σ2). 
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RESULTS 

Taxa Richness: 

 There was no significant difference in taxa richness among stream in the three 

brook trout abundance classes (F=0.583, p=0.591, Fig 2).  Taxa richness was variable 

within all brook trout abundance classes with the no brook trout streams showing the 

highest level of variability, ranging from 4-16 classes.  The median taxa abundance in 

the high brook trout density sites was slightly lower than the other sites, although not 

significantly. There was also no significant difference in taxa richness among the 

different stream size classes (F=0.297, p=0.839, Fig 3).  Taxa richness was highly 

variable within each size class.  There was a significant interaction between brook trout 

abundance class and stream size class (F=2.48, p=0.04, Fig 4).  

 The most variability in taxa richness was seen in stream class three, from three to 

fifteen taxa (Fig 3). The smallest amount of variability was seen in stream class four, 

from nine to eleven. Three outliers are seen in stream class one. 

 The most variability in taxa richness in Fig 4 was in no brook trout abundance, 

size class 2 streams. Taxa ranged from six to sixteen. The lowest taxa richness was in a 

no brook trout abundance, size four stream with ten taxa. Taxa richness differed 

significantly as stream size class, and brook trout abundance increased. Taxa richness 

decreased as stream size class increased with high brook trout abundance. Taxa richness 

decreased by stream size class 3 in all three brook trout abundances.  
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Fig 2. Taxa richness vs. brook trout abundance. 
 
 

 
 
 
Fig 3. Taxa richness vs. stream size class. 
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Fig 4. Taxa richness vs. stream size class and brook trout abundance interactions. 

EPT Orders:  

 Ephemeroptera, Plecoptera, and Trichoptera numbers were similar in all 

abundance classes (Figure 5). Low brook trout abundance class exhibited the most 

variability and the highest amount of the EPT orders. The lowest sum of the EPT orders 

found in any of the streams was zero, in an abundance class 1 stream. The highest sum 

of the EPT orders found in any of the streams was five-hundred and ten, in an abundance 

class 2 stream. Upon visual inspection of the box plots, the hypothesis has failed to 

reject, meaning there were no significant differences.    

 The number of invertebrates in the EPT orders found in the different brook trout 

abundance streams varied between zero and five-hundred and ten taxa. Abundances of 

invertebrates varied between three and nine hundred seventy-seven in different brook 
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trout abundance streams. Large streams had the largest range of taxa found, while very 

large streams had the smallest range of taxa. 

 There was no significant difference in the EPT orders among stream in the three 

brook trout abundance classes (F=3.497, p=0.102, Fig 5).  EPT orders were variable 

within all brook trout abundance classes with the low abundance brook trout streams 

showing the highest level of variability, ranging from 0 to five-hundred and ten EPT 

taxa.  The EPT orders in the high brook trout density and no brook trout absence sites 

were slightly lower than the other sites although not significantly. There was also no 

significant difference in EPT orders among the different stream size classes (F=2.502, 

p=0.145, Table 2).  There was no significant interaction between brook trout abundances 

and stream size classes (F=.733, p=.602, Table 2). 

 The most variable stream size class was stream size class 2 (Fig 6), which ranged 

from zero EPT taxa to five-hundred and ten. The lowest variability was in stream size 

class 4, from twenty-nine to one-hundred and eighty-nine EPT taxa.  

 The most variable EPT orders occurred in low brook trout abundance in size 

class two streams (Fig 7). The least variable EPT orders occurred in high brook trout 

abundance, size class three streams.   
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Invertebrate Community Structure: 

 Streams with no brook trout had higher proportions of black flies, snails and 

slugs, and mollusks. Streams with some brook trout abundance had a higher portion of 

dragonflies and damselflies, worms, and caddisflies.  Streams with high brook trout 

abundance did not have higher proportions of any invertebrate orders but had some 

biased towards dragonflies and damselflies, caddisflies, nematodes, and non-biting 

midge’s presence. Caddisflies, worms, non-biting midges, nematodes, and dragonflies 

were found in lower levels in streams with no brook trout. Streams with some brook 

trout had lower levels of black flies, snails, mollusks, dragonflies, nematodes, non-biting 

midges, and caddisflies. 

There were some differences in the invertebrate community among streams in the brook 

trout abundance classes, but overall, the community differences were not significant 

(Wilks lambda= 0.544, p= 0.353).  Although the difference among the groups is not 

significant the discriminate functions did summarize approximately 35% and 15% of 

community structure variability respectively (function 1: eigenvalue= 0.56, canonical 

correlation = 0.599, function 2: eigenvalue= 0.178, canonical correlation = 0.389). There 

is some separation of group 1 from 2 and 3 on axis 1 and group 3 from 1 and 2 on axis 2 

(Fig 11). 
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Fig 11. Discriminate functions illustrating differences in invertebrate community 

structure among streams in each brook trout abundance class.  
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DISCUSSION 

 There were no clear differences in invertebrate community structure, abundance 

or richness based on brook trout abundance and stream size class. EPT orders also did 

not differ significantly in different brook trout abundances or stream class sizes. The 

only significant difference that occurred was between taxa richness and brook trout 

abundance and stream size class.  

 Currently, only forest management occurs near the streams that were sampled. 

Factors that may have influenced brook trout presence and abundance are natural or 

anthropogenic landscape and climate changes to the water systems (Merriam et al. 

2018). Habitat quality and habitat degradation would also be important based on brook 

trout’s preference for cold, clear bodies of water (Merriam et al. 2018). Water systems 

near agriculture, residential and commercial development, or historic mining are also 

expected to have less brook trout occupying them (Merriam et al. 2018). Streams that 

were not occupied or had less abundance may have had historical degradation, and the 

habitat is yet to recover (Merriam et al. 2018).  

 EPT richness was found to be highest in streams with high forest cover, large 

catchments, and low temperatures in a study by Tonkin et al. (2015). EPT richness was 

also promoted in areas with high broadleaf tree cover, high elevation and slope, large 

catchment size, and low mean temperature (Tonkin et al. 2015). Ephemeroptera 

favoured areas with high forest cover, medium-to-large catchment sizes, and high-

temperature seasonality (Tonkin et al. 2015). Plecoptera favored low-temperature 

seasonality, high slope and elevation, and rainfall (Tonkin et al. 2015). Trichoptera 

favoured high elevation areas, with high forest cover, and low mean temperature 



27 
 

(Tonkin et al. 2015). EPT orders did not differ among stream classes; this means that 

these preferences were not all met in the streams that were sampled. EPT orders in large 

catchment streams likely did not have other suitable characteristics such as forest cover 

or water temperature.  

 EPT order levels between low and high abundance brook trout streams likely did 

not differ significantly due to the preference of similar habitat (Vandusen et al. 2005). 

Brook trout and EPT orders prefer stable temperature streams with no disturbances. Both 

also prefer alkalinity, total dissolved solid amounts, and specific conductivity (Vandusen 

et al. 2005). EPT order levels were similar in no brook trout abundance streams 

indicating that the habitat is suitable for brook trout. However, their absence may be 

explained by several possibilities. There may have been recent, in the last thirty years, 

forest disturbances close to the streams that the EPT orders have recently recolonized, 

while brook trout have yet to recolonize (Vandusen et al. 2005). The streams with no 

brook trout may have harder accessibility that can be accessed by the EPT orders easier 

due to terrestrial adult stages (Vandusen et al. 2015). Lastly, brook trout occupation of 

the stream may have been missed by the timing of the sampling. Occupation may differ 

based on the age of the fish or stream characteristics that would make it preferable for 

different needs, such as spawning, or areas utilized by juveniles (Vandusen et al. 2015).  

 Fish predation has been more obvious in more mobile invertebrates than in 

smaller, less mobile taxa (Diehl 1992).  However, stocking of non-native trout has been 

found to significantly alter community structure (Alexiades and Kraft 2016). The density 

changed for only a few macroinvertebrate taxa, Diptera, and Annelida (Alexiades and 

Kraft 2016). Their abundances increased after stocking. Ephemeroptera, Coleoptera, 
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Plecoptera, Trichoptera were not altered significantly in the community structure 

(Alexiades and Kraft 2016). Diptera and Annelida were broken down into families for 

this study. Leeches were not found in any significant numbers in this study, while 

families within Diptera showed no significant changes within the community structure. 

Though the families, Simuliidae and Chironomidae, did demonstrate small variation in 

different trout densities, as seen in Figure 11, maybe due to habitat or stream 

characteristics. 

 Common perch (Perca fluviatilis) were stocked at three densities (no fish, and 

low and high natural densities), densities that were also used for the brook trout in this 

analysis, into pond enclosures with either dense vegetation present or absent in a study 

by Diehl (1992). The aquatic invertebrates were monitored, in the summer, in terms of 

biomass, abundance, community size and structure, and diversity (Diehl 1992). Perch 

stomach contents were also checked to observe what prey they consumed (Diehl 1992). 

 Community structure changes in the absence of the perch, with the herbivorous 

aquatic invertebrates decreasing as a result of increased invertebrate predation (Diehl 

1992). Herbivorous macroinvertebrates that were found to increase in abundance in the 

presence of perch were mainly Trichoptera and Diptera, even though they were being 

preyed upon by non-fish. (Diehl 1992). Even with predation, their biomass did not 

decrease (Diehl 1992). Trichoptera were found in high amounts in many of the streams 

sampled in this study and could mean that brook trout at any abundance, though preying 

on this taxon, have no overall impact on abundance.  

 The abundance of invertebrates and taxa richness may not have differed 

significantly among stream size classes due to the lack of major filters that would block 
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certain orders or significant amounts of invertebrates to enter a stream (Buendia et al. 

2013). Such filters could be sediment, which can prevent certain taxa such as Plecoptera 

and Simuliidae from colonizing a stream (Buendia et al. 2013). Other filters could be 

geologic, climatic or riparian characteristics that would prevent access to a stream 

(Buendia et al. 2013). These would be absent from the streams sampled, allowing 

similar amounts of taxa and invertebrates abundance in all size streams. Riparian 

vegetation may also be present in the streams sampled in amounts that would mitigate 

filter effects (Buendia et al. 2013).   

 Decreasing taxa richness differed significantly in stream size class and brook 

trout abundance class interactions. Taxa richness significantly varied in stream size class 

3 and 4. Larger stream sizes can decrease canopy cover that is available (Lenat 1983). 

Decreased canopy cover can create different niches that invertebrate taxa can utilize, 

favoring invertebrates depending on what feeding strategy is used (Lenat 1983). 

Temperature and organic matter is the primary factor (LeCraw and Mackereth 2012) that 

may be changed by forest cover. Shaded, clear areas of the large streams would be ideal 

hunting areas for brook trout (Kerr and Grant 2000), increasing predation. This may 

lower the number of taxa that are present in a large (size class 3 or 4) stream with a high 

abundance of brook trout.  

 Sediment in larger streams may create preferred habitat for brook trout but lower 

quality habitat for many invertebrates (Hartman and Hakala 2006), lowering their 

richness in the streams. Taxa richness was higher in no brook trout abundant streams in 

smaller sizes (class 1 and 2) likely due to canopy cover, creating appropriate niches for 

different types of feeding strategists (Lenat 1983). Small streams may offer refugia from 
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predation such as brook trout that can decrease invertebrate richness (Lenat 1983). 

Competition may also be reduced if there are enough resources created by canopy cover 

for niches (Lenat 1983).  

 Black flies, snails, mollusks, dragonflies, nematodes, non-biting midges, and 

caddisflies (from Fig 11) usually prefer high water quality habitat that brook trout are 

also found in (Clifford 1991). Aquatic invertebrate families have more specific habitat 

requirements than at the order level, so the streams with low levels of invertebrate orders 

may have been lacking characteristics that invertebrate families need (Dijkstra and 

Lewington 2015) such as the speed of running water, if a stream is temporary or 

permanent, tolerance to water level changes, or changes in temperatures. Amount and 

type of vegetation in these streams may also be important in determining why 

macroinvertebrate orders levels were lower (Dijkstra and Lewington 2015). Stream 

characteristics can also influence whether invertebrate orders or families are found in 

higher levels (Dijkstra and Lewington 2015). 

 Proportions of non-biting midges and aquatic worms could be related to food 

availability in streams (Saether 1979). Non-biting midges are also used to examine water 

quality, such as pollution and oxygen levels (Saether 1979). There also may be increased 

organic matter in these high brook trout abundance streams (Saether 1979). Non-biting 

midges dominated streams that change to an oligochaete dominated community can be a 

sign of eutrophication (Saether 1979). Aquatic worm dominated streams were not found 

in this study, so it can be assumed that high brook trout abundant streams are likely of 

good quality or have enough food resources to cause proportions of the oligochaete 

worms and non-biting midges orders. Streams with no brook trout that had higher levels 
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of aquatic worm taxa probably mean that there was enough food resources or higher 

quality of habitat for the oligochaete worms, but the habitat was not suitable enough for 

brook trout. There was likely no sign of eutrophication in any streams where proportions 

of aquatic worm taxa were found. 

 Community structure varied mainly with the orders blackflies, snails, mollusks, 

dragonflies, damselflies, nematodes, non-biting midges, aquatic worms, and caddisflies. 

Black flies, snails, and mollusks are usually generalists, but the specific families may 

prefer habitat that would be unsuitable for brook trout (Clifford 1991). This could 

explain why these orders are in higher proportions in streams with no brook trout 

(Clifford 1991).  

 Diversity of macroinvertebrates are likely to be decreased by the density of 

predators rather than simply the abundance of them (Diehl 1992). Only brook trout 

abundance was looked at in this study, which may not have had any significant effects 

on macroinvertebrates. The ability of macroinvertebrates to be resilient to fish predation 

is also an important feature depending on the co-evolution of the species (Diehl 1992). 

Community structure may not have changed significantly as the macroinvertebrates 

sampled in the sixty-seven streams may have co-evolved with brook trout and have a 

strong resilience against their predation or presence  

 Biomass of Ephemeroptera and Chironomidae larvae decreased significantly in 

the study by Diehl (1992), which may have been caused by their timing of emergence 

into the streams, allowing for greater predation. Macroinvertebrate biomass was not 

sampled in this study, so while there were no significant differences in community 

structure, biomass may have been altered significantly by brook trout.  
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 The frequencies and magnitudes of droughts within streams may also influence 

invertebrate community structure differences, abundance, or number of taxa (Bogan et 

al. 2017). The factors may contribute to similar structures in temporary, permanent 

streams, and different size streams (Bogan et al. 2017). Shorter drought periods and 

continuous water flow in temporary streams may allow for higher macroinvertebrate 

diversity, as these conditions create longer recolonization times (Bogan et al. 2017). The 

streams that were sampled likely do not undergo significant droughts as the community 

structure did not significantly differ and because of the abundance brook trout that were 

found would indicate likely permanent streams. No abundance brook trout streams are 

likely permanent too based on the invertebrate abundance.  

 Species richness recovered completely after each drought season; a study done 

by Bogan et al. (2017) found. Aquatic invertebrate communities recovered in less than 

six months in temporary pools (Bogan et al. 2017). These recoveries are assisted by 

hyporheic zones, areas saturated with a mixture of local and regional groundwater and 

stream water, that can provide refuge to aquatic invertebrates when stream flow ceases 

(Bogan et al. 2017). Permanent pools left when a stream flow ceases may also be 

important for invertebrates for survival and may be a contributing factor in addition to 

temporary pools. Also, aquatic invertebrates may travel upstream to recolonize from 

pools quickly (Bogan et al. 2017). Hyporheic zones would allow taxa richness in the 

sampled streams in this study to be significantly affected by periods of droughts and 

allow them to recolonize streams. This would happen independently from brook trout 

abundance, which would likely recolonize much later, and their presence would not 

affect taxa richness.   
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 High macroinvertebrate diversity is found usually in permanent groundwater-fed 

streams with various catchments (Crossman et al. 2011). Also, permanent streams create 

stability in environmental conditions, which allows for an increased distribution of 

diversity found within these streams (Crossman et al. 2011).  Permanent groundwater-

fed streams of any size likely caused similar macroinvertebrate abundance. Any 

temporary groundwater-fed streams that were sampled likely compensated by having 

preferable habitat for brook trout and invertebrates.  

 Variation in the community structure of aquatic macroinvertebrates may be a 

result of uneven distribution within the system while sampling, anthropogenic effects 

such as runoff, or macroinvertebrates response to predators (Alexiades and Kraft 2016). 

Depending on the water system, the community structure has been found to vary in 

response to trout (Alexiades and Kraft 2016). 

 The variability seen in the macroinvertebrate community structure could relate to 

water and sediment chemistry variables (Cai et al. 2012). Water may be hypertrophic, 

due to eutrophication or runoff from machinery, or pollution (Cai et al. 2012). These 

conditions create unsuitable environments for aquatic macroinvertebrates with changes 

to community structure, often being due to eutrophication (Cai et al. 2012). In Meiliang 

Bay, of Lake Taihu, China, Cai et al. (2012) found that benthic aquatic invertebrate 

communities shifted from the dominant species being C. fluminea, the Asian clam, and 

gastropods to a dominant community of tubificids (aquatic oligochaete worms), and 

non-biting midges due to eutrophication (Cai et al. 2012). These changes demonstrate 

the increase of macroinvertebrates that are gatherers instead of filterers (Cai et al. 2012). 

Gathers take advantage of the organic pollution in the water systems, which could 
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increase their abundance in the community (Cai et al. 2012). Pollution may be present in 

some streams sampled, but not insignificant amounts to cause major community 

differences, but rather some variability. The orders that varied the most in this study as 

listed above and found in Fig 6 covered a variety of different feeding types, further 

evidence at a lack of any significant pollution in the streams.  

 Brook trout had little effect on prey populations in two streams in a study by 

Reice and Edwards (1986). In one of the streams, nearly 50 of the recorded 65 taxa had 

decreased mean abundance (Reice and Edwards 1986). When the trout were present, 

abundance was reduced across the stream (Reice and Edwards 1986). Though the 

abundance was decreased, brook trout did not significantly alter the community structure 

(Reice and Edwards 1986). Species diversity and richness were not affected by brook 

trout (Reice and Edwards 1986). Only the genus Oxyethira belonging to the Trichoptera 

order was shown to be significantly reduced in the other sampled stream, while 

invertebrate density remained relatively stable (Reice and Edwards 1986). Feeding 

tendencies of brook trout are general, and the availability of prey minimize the effect of 

trout on invertebrate taxa (Reice and Edwards 1986).  

 A relationship between prey migration and the impacts of local predatory brook 

trout density on local prey abundance was examined in Cooper et al. (1990). The spatial 

distribution of predators may affect the abundance of the invertebrates (Cooper et al. 

1990). Predation can lower migration rates of invertebrates into habitats, which can 

cause abundance to decrease (Cooper et al. 1990). The usually less mobile, non-

migratory taxa in this study would be less susceptible to predation of this type but still 

may have caused variation if there were migratory taxa.   
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 Vegetation may alter the flow in the stream, which can also change the 

invertebrate community structure (Diehl 1992). Streams with vegetation generally have 

higher species richness, as it favors both herbivorous and predatory invertebrates by 

offering protection and ambush locations, respectively (Diehl 1992).  Structural 

complexity created by vegetation can reduce foraging efficiency, but ambush predators 

such as dragonflies may have high foraging efficiency (Diehl 1992). Vegetation also 

provides resources for the invertebrate community (Diehl 1992). Vegetation can 

promote algae growth, which favors invertebrate grazers (Diehl 1992). Different types or 

abundance of vegetation may also be responsible for community structure changes, as 

grazers tend to be detritivores (Diehl 1992). Their presence may increase the number of 

predatory macroinvertebrates, or of other predators (Diehl 1992). This can also inversely 

shift grazer populations in the community (Diehl 1992). Grazers such as snails varied in 

all densities of brook trout in this analysis, which could be related to available 

appropriate vegetation, or predation rates in areas with brook trout. 

 Vegetation also promoted species richness of all macroinvertebrates (Diehl 

1992). When it comes to native predators, predation may have more to do with effecting 

invertebrate diversity, biomass, and individual taxonomic order abundance than it does 

with changing the community structure (Diehl 1992).    
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CONCLUSION 

 Significant differences in aquatic invertebrate structure, abundance, taxa 

richness, or EPT orders did not occur among the streams that differed in brook trout 

abundances or stream size class in this study, though there was variation. There were, 

however, significant differences between taxa richness and stream class size and brook 

trout abundance interactions. Other studies indicate that community structure has co-

evolved with predatory fish and may be more resilient towards predation. Aquatic 

invertebrate biomass, diversity, and abundance have also been shown to differ due to 

predation, rather than the community structure. Future studies may be needed to 

examine these characteristics in relation to brook trout in the streams for a relationship. 

Timing of sampling may also play an important role, as brook trout consumption of 

invertebrates may have previously altered the community structure before sampling 

occurred, and the community may have stabilized during the sampling periods. 

Examining invertebrates at genus, or family level could provide specific evidence of a 

community structure, biomass, abundance or richness change that isn’t obvious from an 

order level. 
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APPENDICES  

Table 1. ANOVA for taxa richness, brook trout abundance and size classes.                                                                                                                 

 

 

 

 

 

 

 

 

 

Tests of Between-Subjects Effects 
Dependent Variable:   #taxa   

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Intercept Hypothesi

s 

4854.045 1 4854.045 855.013 .000 

Error 34.999 6.165 5.677a   
BrookTroutAbundance Hypothesi

s 

20.849 2 10.424 .583 .591 

Error 93.239 5.211 17.891b   
Sizeclass Hypothesi

s 

14.386 3 4.795 .279 .839 

Error 94.992 5.524 17.195c   
BrookTroutAbundance* 

Sizeclass 

Hypothesi

s 

92.166 5 18.433 2.477 .043 

Error 416.789 56 7.443d   
a. .817 MS(Sizeclass_A) + .036 MS(BrookTroutAbundance_A * Sizeclass_A) + .147 MS(Error) 

b. .951 MS(BrookTroutAbundance_A * Sizeclass_A) + .049 MS(Error) 

c. .887 MS(BrookTroutAbundance_A * Sizeclass_A) + .113 MS(Error) 

d.  MS(Error) 
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Table 2. ANOVA for Trichoptera, Ephemeroptera, and Plecoptera orders, brook trout 

abundance and size classes.  

 

Table 3. Total aquatic invertebrate abundance in each Brook trout abundance and size. 

 

Tests of Between-Subjects Effects 
Dependent Variable:   EPT   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept Hypothesis 202259.624 1 202259.624 20.365 .013 

Error 36758.430 3.701 9931.956a   
BrookTroutAbundance Hypothesis 29897.656 2 14948.828 3.497 .102 

Error 24499.741 5.731 4275.169b   
Sizeclass Hypothesis 32819.179 3 10939.726 2.502 .145 

Error 30011.897 6.864 4372.211c   
BrookTroutAbundance * 

Sizeclass 

Hypothesis 20997.814 5 4199.563 .733 .602 

Error 321016.523 56 5732.438d   
a. .817 MS(Sizeclass) + .036 MS(BrookTroutAbundance * Sizeclass) + .147 MS(Error) 

b. .951 MS(BrookTroutAbundance * Sizeclass) + .049 MS(Error) 

c. .887 MS(BrookTroutAbundance * Sizeclass) + .113 MS(Error) 

d.  MS(Error) 
 

Tests of Between-Subjects Effects 
Dependent Variable:   Ln Abun   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Intercept Hypothesis 1102.560 1 1102.560 841.045 .000 

Error 6.241 4.761 1.311a   
BrookTroutAbundance Hypothesis 1.441 2 .721 .328 .734 

Error 11.645 5.307 2.194b   
Sizeclass Hypothesis 3.810 3 1.270 .595 .642 

Error 12.313 5.767 2.135c   
BrookTroutAbundance * 

Sizeclass 

Hypothesis 11.200 5 2.240 1.711 .147 

Error 73.329 56 1.309d   
a. .817 MS(Sizeclass) + .036 MS(BrookTroutAbundance * Sizeclass) + .147 MS(Error) 

b. .951 MS(BrookTroutAbundance * Sizeclass) + .049 MS(Error) 

c. .887 MS(BrookTroutAbundance * Sizeclass) + .113 MS(Error) 

d.  MS(Error) 
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Table 4. Discriminate Analysis Results testing the null hypothesis.

 

Table 5. Eigenvalues  

 

Table 6. Lambda probability distribution of brook trout abundance.  

 

Table 7. Standardized Canonical Discriminant Function Coefficients of the Invertebrate 

Orders 

Discriminate Analysis Results: 
 
 
Box's Test of Equality of Covariance Matrices 
 

Test Results 
Box's M 1792.809 

F Approx. 4.022 

df1 272 

df2 8248.338 

Sig. .000 

Tests null hypothesis of equal 

population covariance matrices. 

 

Eigenvalues 

Function Eigenvalue % of Variance Cumulative % 

Canonical 

Correlation 

1 .560a 75.8 75.8 .599 

2 .178a 24.2 100.0 .389 

a. First 2 canonical discriminant functions were used in the analysis. 
 

Wilks' Lambda 
Test of Function(s) Wilks' Lambda Chi-square df Sig. 

1 through 2 .544 34.405 32 .353 

2 .849 9.274 15 .863 
 



x 
 

 

 

 

Standardized Canonical Discriminant 
Function Coefficients 

 
Function 

1 2 

Ceratopogonidae .409 .244 

Chironimidae -.254 -.393 

Coleoptera .077 .642 

Collembola -.279 .490 

Ephemeroptera .100 -.176 

Gastropoda .488 -.198 

Hemiptera .078 .481 

Hydracarina -.098 -1.181 

Nematoda .078 -.294 

Odonata-Anisoptera -.564 .453 

Oligochaeta .661 .920 

Pelecypoda .442 -.012 

Plecoptera .279 -.149 

Simulidae .507 .020 

Terrestrial -.319 .107 

Trichoptera -.356 .270 
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Table 8. Structure matrix of the invertebrate orders.

 

Tabe 9. Functions at Group Centroids showing brook trout abundance differences  

 

Structure Matrix 

 
Function 

1 2 

Simulidae .508* .133 

Gastropoda .399* .106 

Pelecypoda .330* .133 

Hemiptera .267* .209 

Nematoda .255* .100 

Hydracarina .151* .096 

Terrestrial .145* .036 

Odonata-Anisoptera -.086 .607* 

Ephemeroptera .026 .463* 

Coleoptera .156 .446* 

Trichoptera -.161 .403* 

Ceratopogonidae .193 .396* 

Collembola -.189 .386* 

Oligochaeta .248 .284* 

Chironimidae .018 .164* 

Plecoptera .037 .085* 

Pooled within-groups correlations between 

discriminating variables and standardized canonical 

discriminant functions  

 Variables ordered by absolute size of correlation within 

function. 

*. Largest absolute correlation between each variable 

and any discriminant function 
 

Functions at Group Centroids 

Brook Trout Abundance 

Function 

1 2 

1 .926 .115 

2 -.715 .352 

3 -.311 -.686 

Unstandardized canonical discriminant functions evaluated 

at group means 
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