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ABSTRACT 

Robichaud, N.D. 2019. Lichen detectability under varying canopy closure. 55pp.  
 
Keywords: boreal forest, caribou, Dryden, lichen, Near Infrared (NIR), Normalized-
Difference Vegetation Index (NDVI), unmanned aerial vehicle (UAV), Visible-Band 
Difference Vegetation Index (VDVI). 
 

Monitoring lichen distribution is of increasing concern as mapping is critical in 
characterizing habitat for woodland caribou. Aerial photography collected using drones, 
the method used for this study, is a common method of lichen detection and is usually 
paired with field data collection. It employs cameras that provide images with red green 
blue (RGB) and near-infrared (NIR) bands. Low accuracies obtained from aerial drone 
imagery have been attributed to stand and site features restricting accurate readings. 
Thus, before lichen mapping can be utilized on a broad scale, it is important to identify 
the amount of canopy closure under which classification accuracy is negatively affected. 
This was determined by classifying seven sites with varying canopy closure, resulting in 
classification accuracies corresponding to each plot. This report provides a current 
analysis of lichen detection under varying canopy closure. The objective of this study is 
to determine the crown closure percentage, as calculated by the winSCANOPY program, 
and its effect on lichen detection using drone imagery. The study was conducted in 
Dryden, Ontario, where the correlation between canopy closure and lichen detection was 
made. It was found that below 88% canopy closure, lichen classification accuracy 
significantly decreases and below 77% canopy closure, overall image classification is 
affected. The findings in this study support the hypothesis that canopy closure is directly 
correlated to the classification efficiency of UAV imagery, however further investigation 
into improving classification is required. Further investigation into the effects of bare 
ground and rock outcrop misclassification should also be conducted, as this played a 
significant role in lichen classification.  
 

 

 

 



v 
 

CONTENTS 

 
LIBRARY RIGHTS STATEMENT ii 

A CAUTION TO THE READER iii 

ABSTRACT iv 

TABLES vii 

FIGURES viii 

ACKNOWLEDGEMENTS ix 

INTRODUCTION 1 

LITERATURE REVIEW 4 

REMOTE SENSING OF LICHEN COVER IN FORESTED ENVIRONMENTS 4 

PROCESSING METHODS USING LANDSAT FOR LICHEN DETECTION 5 

AERIAL PHOTOPGRAPHY FOR LICHEN DETECTION 7 

LIMITATIONS DUE TO CANOPY COVER SURROUNDING LICHEN 

DETECTION 8 

USING A DIGITAL ELEVATION MODEL LAYER TO IMPROVE ACCURACY 9 

WINSCANOPY AS A TOOL FOR CALCULATING CANOPY CLOSURE 9 

THE IMPORTANCE OF MONITORING LICHEN 10 

LICHEN DETECTION 11 

MATERIALS AND METHODS 13 



vi 
 

MAPPING AND IMAGE COLLECTION 13 

DATA PROCESSING 14 

RESULTS 19 

DISCUSSION 23 

CONCLUSION 30 

LITERATURE CITED 31 

APPENDIX I - NCASI PLOT INFORMATION 35 

APPENDIX II - PLOT 220 RULESET 36 

APPENDIX III - PLOT 223 RULESET 37 

APPENDIX IV - PLOT 242 RULESET 38 

APPENDIX V - PLOT 267 RULESET 39 

APPENDIX VI - PLOT 464 RULESET 40 

APPENDIX VII - PLOT 568 RULESET 41 

APPENDIX VIII - ACCURACY ASSESSMENT RAW DATA – PLOTS 464, 568, 220, 

AND 223 42 

APPENDIX IX - ACCURACY ASSESSMENT RAW DATA – PLOTS 242, 267, AND 

268 43 

APPENDIX X - IMAGE CLASSIFICATION VALUES 44 

APPENDIX XI – CLASSIFIED PLOT IMAGES 45 

APPENDIX XII – WINSCANOPY ANALYSIS 50 



vii 
 

 

TABLES 

Table           Page 

1. Accuracy of image classification (%) with corresponding canopy closure    21 

 (%) for each plot             

 

 

 

 

 

 



viii 
 

FIGURES 

Figure            Page 

1. Location of six plots visited in Dryden, Ontario       13 

2. Location of plots 267 and 268 visited in Dryden, Ontario        14 

3. Universal ruleset for image classification         17 

4. Classified image of Plot 242          19 

5. Plot 267 WinSCANOPY analysed image with percent canopy closure    20 

 

 

 

 

 

 

 



ix 
 

ACKNOWLEDGEMENTS 

 I would like to acknowledge my thesis advisor Dr. Ashley Thomson and my 

second reader Alex Bilyk for their invaluable input in shaping my thesis. I would like to 

thank Ryan Wilkie for providing advice and data pertaining to the data analysis portion 

of this thesis. I would also like to thank Robert Glover for participating in the data 

collection portion of this thesis. Finally, I would like to give an extended thanks to Frank 

Luckai, who provided insight, encouragement and support throughout this analysis. His 

knowledge of winSCANOPY software served invaluable in ensuring my data analysis 

was completed.  

 

 

 

 



1 
 

 INTRODUCTION 

The reindeer lichen (Cladonia rangiferina (L.) F. H. Wigg.) is a fructicose 

ground lichen that occurs in boreal pine forests and open, low-alpine sites in a wide 

range of habitats from humid, open forests, to rocks and heaths. As the name suggests, it 

is an important food for woodland caribou (Rangifer tarandus caribou), a threatened 

species, having great ecological importance as a result. Monitoring lichen distribution is 

therefore of increasing concern as mapping lichen distribution is critical in 

characterizing habitat for woodland caribou (Gilichinsky et al. 2011). 

 Studies have been carried out using multiple technologies to identify reflectance 

characteristics of different ground lichen species. Reindeer lichen have a strong 

absorption of ultraviolet, blue and yellow wavelengths (Petzold and Goward 1988; Rees 

et al. 2004; Nelson et al. 2013), with a high influence of view and sun angles (Solheim et 

al. 2000). Bioactive compounds found within reindeer lichen with exposure to ultra 

violet B (UV-B) radiation induces the accumulation of usnic acid and melanic 

compounds, which is found to have a spectral signature. The reflectance from blue 

wavelengths are significant in Cladonia lichen responses however, the spectral 

distinction of usnic acid in this lichen increase accuracy in detecting yellow pigments, 

allowing for better classification results (Peltoniemi et al. 2005; Nelson et al. 2013). 

 Satellite remote sensing has facilitated the determination of vegetation richness 

and cover distribution and has great potential for areas with limited access. Most studies 

considering lichen detection are based on the analysis of the Normalized Difference 

Vegetation Index (NDVI) (Jarcuska et al. 2010). NDVI has been used to indicate the 
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presence of chlorophyll in an image, detecting visible red light and near-infrared (NIR) 

(Nelson et al. 2013). Aerial photography collected using drones is a common method of 

lichen detection and is usually paired with field data collection. Aerial and LiDAR 

imagery has resulted in varying resulting accuracy; however, all have fallen at an 

average below 70% (Waser et al. 2007; Waser et al. 2004; Korpela 2008). These low 

accuracies from aerial drone imagery are thought to correlate to canopy-condition 

restricting accurate readings.  

Under a canopy, the understory is in direct light, shade, or full shadow, and in 

optical remote sensing the reflected signal from the understory is mixed with that from 

the upper canopy, which may complicate the interpretation of images (Korpela 2008). It 

is therefore difficult to separate understory species using satellite images, limiting 

detection of understory species through canopy closure. Many types of equipment have 

been employed in studies aimed at detecting the occurrence of lichen using remote 

sensing technologies such as Landsat data, hyperspectral image scanner data, aerial 

photographs, and LiDAR. Aerial photography collected using drones is a common 

method of lichen detection that usually employs cameras that provide images with red 

green blue (RGB) and NIR bands (Waser et al. 2007; Waser et al. 2004). Literature 

suggests low accuracies obtained from aerial drone imagery have been attributed to 

canopy-closure restricting accurate readings (Rautiainenetal et al. 2007; Korpela 2008). 

Thus, before lichen mapping can be widely utilized, it is important to identify the 

amount of canopy closure under which accurate detection is affected.  

WinSCANOPY is a digital image analyser for canopy and solar radiation 

analysis that measures leaf area index (LAI), canopy openness, site factors, NDVI, and 

other characteristics of the crown (Jarcuska et al. 2010). The images taken using this 
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technology are hemispherical, allowing for the classification of canopy cover and sky. 

The system can be used in a laboratory, at remote locations, or in the field on portable 

computers (Murray 2013). This technology is therefore expected to have potential for 

determining the range of percent canopy-closure under which lichen detection is 

possible.  

This report provides a current analysis of lichen detection under varying canopy 

closure. It will serve to delineate the amount of crown closure that significantly reduces 

image classification accuracy. This study is important as classification accuracy is vital 

for the application of lichen detection using aerial imagery for management purposes. 

The objective of this study is to determine the crown closure percentage, as calculated 

by the winSCANOPY program, and its effect on lichen detection using drone imagery. 

Plots used for the purpose of this study were in Dryden, Ontario, allowing for the 

correlation between canopy closure and lichen detection in a Boreal forest landscape.  
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LITERATURE REVIEW 

REMOTE SENSING OF LICHEN COVER IN FORESTED ENVIRONMENTS 

Lichen detection through variable forest canopy cover using remote sensing 

techniques is a practice that is faced with numerous challenges in technology and 

accuracy. These challenges include classification accuracy and precision, limited camera 

qualities and environmental constraints. A large body of scientific research has been 

aimed at developing new remote sensing tools and processing software (Falldorf et al. 

2014; Theay et al. 2004; Nordberg and Allard 2002; Murray 2013). Therefore, it is 

important to consider the various possible uses of available equipment, the processing 

software used to build images and detection platforms, the methodology of collecting 

data, and the applicability of a digital image analyser for canopy and solar radiation 

analysis within this research. 

 Many types of equipment have been employed in studies aimed at detecting the 

occurrence of lichen using remote sensing technologies (Faldorf et al. 2014; Theau and 

Deguay 2004; Faldoff et al. 2013; Theau and Duguay 2004; Nordberg and Allard 2002; 

Korpela 2008; Waser et al. 2007). The various imagery types that have been used 

include Landsat data (Faldorf et al. 2014), hyperspectral image scanner data (Nordberg 

and Allard 2002), aerial photographs (Waser et al. 2007) and LiDAR (Korpela 2008). 

Falldorf et al. (2014) determined that bands 2, 4, and 5 of Landsat imagery provided 

improved results in lichen detection when compared to other bands. A modest 

correlation between the normalized difference lichen index (NDLI) and lichen volume 

was found with the strongest sensitivity at intermediate lichen cover but poorer estimates 

were obtained at low and high volumes of lichen (Theau and Duguay 2004; Faldorf et al. 
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2013). Theau and Duguay (2004) found that radiometrically normalized Landsat 

thematic mapper images have high utility for monitoring lichen cover over large, remote 

areas, returning 80 to 90% accuracy. A validation test run during this study displayed a 

good linear relation between lichen fraction estimated in the field and that obtained with 

the spectral mixture analysis (SMA) procedure developed by Theau and Duguay (2004). 

SMA is a sub-pixel classification technique, depending on spectral response of land 

cover components (Theau and Duguay 2004). Nordberg and Allard (2002) found that the 

camera position, atmospheric interference (e.g. cloud cover), and seasonal timing (i.e. 

varying phenological states between image dates) influenced the effectiveness of multi-

temporal satellite image data for lichen change detection. As presented by Korpela 

(2008), LiDAR held similar potential for lichen detection when compared to Landsat 

images. Lichen surfaces had a higher NIR value where normalization of intensities 

allowed for increased seperability of lichens from other surfaces, thereby improving 

accuracy. Nordberg and Allard (2002) assessed hyperspectral imaging scanner data as 

another lichen detection technology. However, hyperspectral imaging proved ineffective 

for use with lichen detection as the instrument response was too low in the middle 

infrared (MIR) part of the spectrum. Airborne digital color infrared (CIR) ortho-images 

were used in a study by Waser et al. (2007), combining multispectral bands with 

Quickbird satellite data. Using airborne remote sensing data proved moderately 

effective, with 45% accuracy as demonstrated by Waser et al. (2004).  

PROCESSING METHODS USING LANDSAT FOR LICHEN DETECTION 

 Several different methods used to detect lichen cover based on Landsat imagery 

differ in their effectiveness (Falldorf et al. 2014; Rees et al. 2004; Neta et al. 2010; 

Nordberg and Allard 2002). Normalized difference moisture index (NDMI) is a 
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processing method that contrasts NIR, a band that is sensitive to the reflectance of leaf 

chlorophyll content, to the MIR band, which is sensitive to the absorption of leaf 

moisture. This method was utilized by Falldorf et al. (2014) resulting in successful 

identification on various lichen volume classes. Rees et al. (2004) demonstrated that 

lichens of the species Cladonia, Stereocaulon, and Flavocetraria are easily separated 

from each other using MIR, and Neta et al. (2010) demonstrated that this technology is 

also effective for detecting wet lichen. Falldorf et al. (2014) further displayed the utility 

of a lichen volume estimator (LVE) which was developed using remote sensing and field 

measurements. A Landsat TM land cover mask was used to separate lichen heath 

communities from other vegetation types and lichen volume was estimated, resulting in 

an average accuracy of 67% (Falldorf et al. 2014). This model can be a valuable tool to 

predict quality of pastures for reindeer and caribou. It also performs better than any other 

prediction model developed for quantifying lichen abundance. Falldorf et al. (2014) used 

orthorectified United States Geological Survey (USGS) images, processed using 

ERDAS Imagine based on a digital elevation model (DEM) and ground control points, 

and concluded that NDMI and NDLI both function in identifying lichen volume. These 

models, however, returned much lower accuracies than the LVE, with 61% and 37% 

accuracy, respectively. Furthermore, NDLI was significantly less effective for volume 

classes below 60m³/m³. Promising results were shown by Nordberg and Allard (2002) 

for vegetation-index differencing as a means of lichen change detection using Landsat 

Thematic Mapper (TM) data, especially when using NIR wavelengths, resulting in a 

mean overall accuracy of 85%. A study conducted by Theau and Duguay (2004) used 

the classification procedure named the enhancement-classification method (ECM), 
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which operated on three input channels and produces a classification in which all 

relevant spectral content is extracted. The suitability of ECMs and an SMA to identify 

lichen land cover over large areas was then analysed. The ECM and SMA methods are 

appropriate for different aspects of lichen mapping. The ECM method provides good 

discrimination between lichen and non-lichen classes resulting in an overall 

classification accuracy of 83.9%. Conversely, SMA provides additional lichen 

information not available from classification but important for environmental 

application. The SMA procedure resulted in 79.7% of lichen sites being accurately 

selected. For this reason, Theau and Duguay (2004) recommended to use a combination 

of both SMA and ECM for future research. The use of a matched filtering algorithm, 

which partially unmixes images to aid in detection of a given material, performed by 

Casanovas et al. (2015) allowed for lichen detection using MIR satellite imagery. The 

matched filtering failed to detect the presence of lichens in only 7% of the sites studied, 

whereas the NDVI failed to detect 47% of lichen on the site. Therefore, a significant 

improvement in accuracy was observed when using this algorithm. Another processing 

method included using spectral bands when running analysis. Nelson et al. (2013) 

utilized this method where a regression against spectral and environmental predictor 

variables with non-parametric multiplicative regression (NPMR) in the program 

HyperNiche was run where lichen with usnic, an acid with a pale-yellow pigment found 

in most lichen caribou eat, increased accuracy by 31% as it is spectrally distinct.  

AERIAL PHOTOPGRAPHY FOR LICHEN DETECTION 

 Aerial photography collecting using drones is a common method of lichen 

detection and is usually paired with field data collection. Using cameras that provide 

images with RGB and NIR bands is a standardized method of airborne lichen detection 
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(Wilkie 2018; Waser et al. 2007; Waser et al. 2004), where various processing methods 

may then be applied. Waser et al. (2004) reported 48% accuracy for detecting ground 

lichen using aerial photography. Wilkie (2018) reported higher accuracies, averaging 

68%. Low accuracies from aerial drone imagery, as discussed by Wilkie (2018) and 

Waser et al. (2004), may be due to canopy-closure restricting accurate readings. Korpela 

(2008) concurred with this finding, discussing the reduced accuracy that was 

experienced using airborne LiDAR data under high canopy-closure. The large-scale 

aerial images utilized by Korpela (2008) were taken using a Vexcel UltraCam D digital 

camera which is a multi-lens, multispectral, two-resolution frame sensor. This resulted 

in 65-75% accuracy, an insufficient accuracy for most monitoring applications. 

Identifying the amount of canopy closure that impedes accuracy in lichen detection is 

therefore crucial if wanting to apply these methods to management programs. 

LIMITATIONS DUE TO CANOPY COVER SURROUNDING LICHEN DETECTION 

Under a canopy, the understory is in direct light, shade, or full shadow, and in 

optical remote sensing the reflected signal from the understory is mixed with that from 

the upper canopy, which may complicate the interpretation of images (Korpela 2008). 

Korpela (2008) concluded that LiDAR is particularly effective in its ability to map 

topographic relief under forested conditions, as it provides a means of finding gaps in 

the canopy, where the understory flora, such as lichen, can be sampled without 

interruption from canopy closure. It is an active instrument which remains largely 

unaffected by the occurrence of forest canopy. Using simulations with a forest 

reflectance model, Rautiainenetal et al. (2007) concluded that the distribution of the 

understory to total nadir reflectance had a broad range, depending on canopy cover. 

These results suggest that the separation of understory species using satellite images 
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may be possible using visible bands of satellite images in thin canopies.  

USING A DIGITAL ELEVATION MODEL LAYER TO IMPROVE ACCURACY 

 A DEM is an array of regularly spaced elevation values that are referenced to a 

Universal Transverse Mercator (UTM) projection or to a geographic coordinate system 

(Li and Chen 2005). The addition of a DEM layer to improve accuracy has been 

explored by a multitude of authors, allowing for another vector to improve precision 

(Franklin et al. 1991; Franklin 1994; Nagendra 2001). Franklin et al. (1991) used a 

Compact Airborne Spectrographic Imager (CASI), a hyper-spectral sensor, where 

classification improved from 81% to 90% when a DEM was incorporated into the 

analysis. In a similar study by Franklin (1994), using the Système Pour l’Observation de 

la Terre (SPOT) and Landsat TM data, accuracy was improved by 11% with the addition 

of a DEM layer into the classification scheme. Therefore, it has been found that the 

addition of a DEM layer into classifications has the potential to significantly improve 

accuracy, especially when considering shrub and bare ground (Nagendra 2001; Franklin 

et al. 1991; Franklin 1994).  

WINSCANOPY AS A TOOL FOR CALCULATING CANOPY CLOSURE 

 WinSCANOPY is a digital image analyser for canopy and solar radiation 

analysis measuring LAI, gap fraction, canopy openness, site factors, NDVI, and other 

factors (Jarcuska et al. 2010). Jarcuska et al. (2010) and Murray (2013) utilized 

winSCANOPY technology for calculating accuracy for relative diffuse and relative 

direct transmittance, canopy openness, and LAI, where pixel classification was the main 

method applied. Jarcuska et al. (2010) used a Nikon P5000 digital camera and Nikon 

FC-E8 fisheye lens converter with 183˚ view angle from Régent winSCANOPY 

accessories. Jarcuska et al (2010) examined the utility of winSCANOPY in pixel 
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classification when analysing hemispherical images. It was determined that the 

technology functions well in identifying diffuse under-canopy radiation and leaf area 

index. Murray (2013) used winSCANOPY to assess availability of light to herb-layer 

vegetation with similar results. A pixel classification based on grey scale was used for 

processing, allowing for effective identification of diffuse under-canopy radiation and 

LAI. The images taken using this technology were hemispherical, allowing for the 

classification of canopy cover and sky. This technology is therefore postulated to have 

potential to be used for determining the range of percent canopy-closure under which 

lichen detection is possible. However, there have been no studies to date that have 

examined the effectiveness of winSCANOPY for the previously mentioned purpose. 

THE IMPORTANCE OF MONITORING LICHEN 

Ground lichens that are a preferred food source for woodland caribou (Rangifer 

tarandus caribou) and various studies on this species of lichen have been conducted in 

remote sensing literature (Petzold and Goward 1988; Colpaert et al. 1995; Arseneault et 

al. 1997; Nordberg and Allard 2002; Rees et al. 2003; Gilichinsky et al. 2011). Most 

reindeer lichen classification studies have focused on methods of pixel-wise supervised 

classification and have produced thematic classes of lichen cover (Petzold and Goward 

1988; Colpaert et al. 1995; Arseneault et al. 1997). Recent studies have put greater 

emphasis on integrating remote-sensing data and ancillary forest cover data for mapping 

ground lichens for future application in management and monitoring (Nordberg and 

Allard 2002; Rees et al. 2003; Gilichinsky et al. 2011). Monitoring lichen distribution is 

of increasing concern due to increased soil temperatures in northern latitudes, leading to 

tree and shrub expansion, as concluded by Nelson et al. (2013). The need for new tools 

for measuring large-scale woody plant encroachment is discussed, as such tools would 
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allow for the detection of changes in foraging resources (Nelson et al. 2013). Gilichinsky 

et al. (2011) discusses how lichen distribution is critical for characterising habitat for 

woodland caribou, a threatened species.  

LICHEN DETECTION 

Studies have been carried out using multiple technologies to identify reflectance 

characteristics of different ground lichen species (Petzold and Goward 1988; Solheim et 

al. 2000; Rapalee et al. 2001; Solheim et al. 2000; Peltoniemi et al. 2005; Nelson et al. 

2013). Using a radiometer and spectrometer, Petzold and Goward (1988) found that 

Cladina lichen had a strong absorption of ultraviolet and blue wavelengths. Rees et al. 

(2004) used a spectroradiometer to study species reflectance of various lichen samples 

from subarctic tundra habitats in northern Sweden, finding no reflectance peak in the 

green wavelength. Solheim et al. (2000) measured spectral properties of Cladina lichens 

and moss using a goniospectrometer, concluding lichen reflectance varied significantly 

according to view and sun-angles. It was determined by Peltoniemi et al. (2005) that 

Cladina lichens display strong backscattering and are distinct from other vegetation and 

soil. These studies have suggested that reflectance from blue wavelengths are significant 

in Cladina lichen spectral responses. Rapalee et al. (2001) found, using Landsat TM and 

Advanced Very High-Resolution Radiometer (AVHRR) data, that ground cover, 

overstory composition, and density were significant predictor variables in determining 

accuracy of classified lichen. Nelson et al. (2013) concluded that Cladonia lichen are 

lighter colored, reflecting more light in blue to yellow wavelengths when compared to 

green vegetation. Although no study has focused on the continuous mapping of usnic 

lichen, Nelson et al. (2013) discussed that usnic lichen is in most lichen that caribou eat, 

having a pale-yellow pigment. This renders the lichen spectrally distinct which is a 
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useful characteristic in remote sensing.  

 



13 
 

MATERIALS AND METHODS 

 MAPPING AND IMAGE COLLECTION 

 The imagery used in this report was collected by the NCASI caribou project team 

as a part of a study to examine the potential for lichen detection using drone imagery as 

outlined in Wilkie (2018). Briefly, aerial images were obtained for seven plots near the 

town of Dryden, Ontario (Figures 1 and 2) using a DJI Inspire 1 drone equipped with 

two sensors (stock X3 RGB colour camera and a modified X3 camera capable of 

capturing NIR) at 90 m elevation. Images of crown closure were obtained using a 

winSCANOPY unit outfitted with a fisheye lens to capture plot centre images looking 

upward.   

 
Figure 1. Location of six plots visited in Dryden, Ontario 

246 

242 

568 

464 
223 

220 
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Figure 2. Location of plots 267 and 268 visited in Dryden, Ontario  

DATA PROCESSING 

The NIR and RGB layers of each flight were stacked along with the DEM layer, 

resulting in seven images to be classified. Sites 267 and 268 fell under the lichen “stand” 

type one, sites 242 and 568 fall under type two, 246 and 464 are type three, while 220, 

223, and 568 again are type four (Appendix I). Images were then classified to extract 

features such as lichen in eCognition. Classifications were then exported as shapefiles 

where accuracy assessments could be done on each site. Accuracy assessments could 

then be reviewed to compare the classification rules and if lichen extents can be 

extracted from unmanned aerial imagery.   

Image data provided by the NCASI team were organized by site number, sensor 

type (RGB or NIR) and flight elevation (Wilkie 2018). The NIR camera captures three 

bands, therefore the NIR bands were added to the RGB image file in eCognition. In the 

Modify open project tab, layers were reduced resulting in five layers in the final 

267 268 
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processed image, which included a DEM layer. These layers were then used to develop 

the ruleset that would drive the classification of images, across each site. The goal of 

classification was to create an automated classifier that could be applied broadly, to 

many different photos at many different resolutions. Therefore, the rules start with a 

broad spectral separation into the prospective classes with sequential rules to aid in 

refining the overall classification. Custom rulesets were developed for each image to 

then further refine classification accuracy. 

Within these classifications, a Visible-Band Difference Vegetation Index (VDVI) 

was made as a customized arithmetic function presented below (Xiaoqin et al. 2015). 

This layer is commonly used for classifying vegetation. 

𝑉𝐷𝑉𝐼 =  
2∗[𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛]− [𝑀𝑒𝑎𝑛 𝑅𝑒𝑑]− [𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒]

2∗[𝑀𝑒𝑎𝑛 𝐺𝑟𝑒𝑒𝑛]+ [𝑀𝑒𝑎𝑛 𝑅𝑒𝑑]+ [𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒]
  Equation (1) 

The Normalized Difference Vegetation Index (NDVI) layer was developed for 

application to UAS imagery and the equation used is presented below; 

𝑁𝐷𝑉𝐼 =
[𝑀𝑒𝑎𝑛 𝑁𝐼𝑅]−[𝑀𝑒𝑎𝑛 𝑅𝑒𝑑]

[𝑀𝑒𝑎𝑛 𝑁𝐼𝑅]+[𝑀𝑒𝑎𝑛 𝑅𝑒𝑑]
   Equation (2) 

The Vegetation Index (VI) layer was developed for application to RGB imagery 

to increase vegetation classification accuracy using the below equation (Jiang et al. 

2008).  

𝑉𝐼 =  
2.5 (𝑀𝑒𝑎𝑛 𝑁𝐼𝑅−𝑀𝑒𝑎𝑛 𝑅𝑒𝑑)

𝐿+𝑀𝑒𝑎𝑛 𝑁𝐼𝑅+ 𝐶1 𝑀𝑒𝑎𝑛 𝑅𝑒𝑑− 𝐶2 𝑀𝑒𝑎𝑛 𝐵𝑙𝑢𝑒 
  Equation (3) 

This equation is for an enhanced vegetation index, where the variable L 

represents 1, variable C₁ represents 6, and variable C₂ represents 7.5. This layer will 

improve sensitivity to a wider, global range of vegetation conditions and better depict 

vegetation canopy structural parameters. 

The ruleset for image classification was then built, as can be seen in Figure 3, 
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focusing on using values from the NDVI, VDVI, VI layers, mean layer values, DEM 

layers, and ratio layer values. The additional rules made for each image was based 

around the DEM layer and ratio NIR classifications and can found in the Appendices.  

 
Source: eCognition 2019 

Figure 3. Universal ruleset for image classification 

Once classification was completed to a satisfactory level, files were exported as 

shapefiles. All classes were selected for export excluding the ‘unclassified’ class. The 

features selected include the relations to classification class name and the ‘object 

features geometry extent area’. Once exported, the classified shapefile was then opened 

in ArcGIS and clipped to the plot extent.  

An excel spreadsheet with two columns, class names and class number, was 

created. This sheet was used to ensure precision throughout each analysis (Appendix X). 

Next, the polygon specific to each site was loaded into ArcGIS. For each of the 7 sites, 

100 random points were created, where a polygon was used as the constraining feature 
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class. A quality control (QC) image for each site was loaded. For each sample point 

layer, a new column is added, called reference class. Editing was enabled, and using the 

QC image, each point was labelled the class it represented on the ground and the 

classification it was assigned. This process was executed in ArcGIS for each of the 

seven images.  

In ArcGIS, the classified shapefile was loaded. The quality control points, the 

Excel reference table, and the clipped 4-band image were opened. This resulted in a 

point layer with class name, term ‘Classification’, and a reference value for each point 

within the block. Each reference class point was also assigned a ‘Real’ number (1 to 4), 

signifying what the classification should have been. Once all points had both columns 

filled out, the table was exported to excel. In excel, the percent accuracy of both image 

classification and lichen classification was computed. This was done through a binary 

process, each point being classified as either 1, correctly classified, or 0, being 

incorrectly classified. These columns were then averaged and multiplied by 100.  

 Seven photos taken with the winSCANOPY unit were uploaded to eCognition 

and classified into sky and tree cover using the nearest neighbour method. Once each 

image was classified, a screen grab of the classified image was saved as a JPEG file, 

later used in the winSCANOPY program. Each image file was uploaded to the 

winSCANOPY program and a horizon was built to delineate the border of the circular 

photo. A grey scale pixel classification was then run, for the program to better 

understand which areas were sky and which were tree cover. A canopy analysis was then 

run, providing information on canopy closure, LAI, gap fraction, and other site factors. 

Screen grabs of each analysis were taken, and image analysis data was saved as TIFF 

files. The percent canopy closure observed from each plot was recorded onto an excel 
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sheet.  
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RESULTS 

A strong correlation was found between lichen classification accuracy and 

percent canopy closure. Canopy cover ranged from 6 to 88% while lichen classification 

accuracy ranged from 30 to 82%. Figure 4 displays one of the classified images, plot 

242, which was put into ArcGIS to undergo an accuracy assessment, resulting in a 

classification accuracy. The red areas in the image represent the lichen feature class, the 

blue represents not lichen, the green is the classified vegetation feature class, and the 

black represents shadows. This plot classified lichen with 82% accuracy and had an 

overall pixel-based accuracy of 86%.  

 
Source: eCognition 2019 

Figure 4. Classified image of Plot 242  
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 Figure 5 displays an image that has been analyzed using winSCANOPY, after 

being classified in eCognition. The left margin displays global data, site factors, and 

various other light values. Within this column, openness is listed, which is the value 

used for the percent of canopy closure. This image displays site 267 which had 49% 

canopy closure. 

 

 

 

 

 

 

 

 

 
 

Source: WinSCANOPY 2018 
Figure 5. Plot 267 WinSCANOPY analysed image with percent canopy closure. 

Table 1 depicts the calculated canopy closure percentage of each plot calculated 

by the winSCANOPY program after classification in eCognition.  It also shows the 

summary of the flight accuracy assessments run in ArcGIS after classification in 

eCognition. In the summary table, the traditional, pixel-based classifications are shown 

as well as lichen classification accuracy overall scores. It displays the ascending 

accuracies of each plot image with the respective canopy closure (%), where the 

relationship between canopy closure and accuracy may be seen. An average image 

classification accuracy of 68% was observed, while an average of 57% accuracy was 
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documented for lichen classification. Flight 242 returned the highest classification 

accuracy at 86%, also having the highest canopy closure percentage at 88%. 

Furthermore, the lowest classification accuracy was returned from plot 223, with a 

correspondingly low canopy closure percentage. Therefore, if seeking a classification 

accuracy above or equal to 80%, one should avoid stands with less than 77% canopy 

closure. However, if the goal is to only use sites that may classify lichen with greater 

than 80% classification accuracy, then one should use sites with less than or equal to 

88% canopy closure.  

Table 1. Accuracy of image classification (%) with corresponding canopy closure (%) 
for each plot.  

Plot Canopy Closure (%) 
Pixel-based Accuracy of 

Entire Image (%) 

Lichen Classification 

Accuracy (%) 

242 88 86 82 

568 77 80 62 

220 39 56 68 

268 66 71 58 

267 49 66 59 

464 39 64 40 

223 6 56 30 

Source: ArcGIS and WinSCANOPY 2018 

The reduced classification accuracy associated with looking at lichen 

classification alone is indicative of the effect of classifying other factors in each image. 

For example, plot 568 had exceptional accuracy in classifying shadows, driving up the 

overall classification accuracy, however bare ground was wrongly classified as lichen 

often, leading to the lower lichen classification accuracy. It is also important to note that 
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the reduced overall accuracy of plot 220 was due to shadow being classified as 

vegetation, which does not affect results if solely concerned with lichen classification 

accuracy. 
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DISCUSSION  

 The aim of the study has been to assess the effects of forest canopy closure on 

the accuracy of UAV imagery classification using eCognition and winSCANOPY 

software. Under a canopy, the understory layers are in direct light, shade, or become 

submerged in shadow depending on camera angle. In optical remote sensing the 

understory reflectance may mix with the overstory, leading to complications in image 

interpretation and classification (Korpela 2008). Identifying the amount of canopy 

closure that impedes classification accuracy in lichen detection is therefore crucial if 

wanting to apply these remote sensing lichen detection techniques to management 

programs (Rautiainenetal et al. 2007). An evaluation of the effects of canopy cover on 

the seven selected sites were analysed, however further study with more variable canopy 

cover is required. The number of samples used in the study are too few to make an 

accurate statistical analysis based on literature by Hogg and Tanis (2005), stating a 

sample size greater than 25 to 30 samples is required to run a statistical analysis. 

Nevertheless, classification of lichen species and its relationship to canopy cover are 

rare, therefore the results of this study constitute a preliminary assessment on this topic, 

contributing further knowledge to the subject.  

Typically, an overall accuracy score of 75% is ideal (ARSET 2018) for image 

classification. This is easier with coarse imagery than it is with very high-resolution 

imagery, as there is a significant growth of detail and information. Increasing the 

number of classes as part of the classification process increases the potential for error 

and lowers the overall score with 4-band imagery. To mitigate this source of error, only 
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four classes were used. These included a lichen class, not lichen class, shadow class, and 

vegetation class. This was to ensure accuracy was based on the correct classification of 

lichen rather than vegetation or shadow. An assessment of lichen classification alone 

was also computed, to better represent the effects of canopy closure on lichen detection 

specifically.  

 Overall, forest vegetation was classified consistently while lichen was difficult to 

separate from other landcover types. This is thought to be due to the strong shadows that 

cover the ground and lichen (Solheim et al. 2000). Another contributing feature is the 

time of image collection, being mid-summer, the peak of vegetation cover. The 

classifications heavily rely on reflectance values, leading to lower classification 

accuracies because the algorithms have trouble distinguishing between rocks and lichen 

(Rapalee et al. 2001). This was alleviated by using an additional DEM layer, leading to 

height values combined with reflectance values, increasing accuracy in each custom rule 

set. In the future, lichen surveys conducted soon after snow melt, during leaf-off season, 

could help to improve these shortcomings.  

 The addition of a DEM layer to the classified images was an addition which 

attempted to aid in the delineation between vegetation, bare ground, and lichen, all of 

which were difficult to accurately classify based on spectral characteristics. Studies have 

found that the addition of this layer into the classification scheme has the potential to 

improve accuracy (Franklin et al. 1991; Franklin 1994; Li and Chen 2005; Nagendra 

2001), which was further exemplified by this study. It was found, during the 

classification process, that the addition of a DEM layer greatly improves accuracy of 

classifications, allowing the distinction between other features and lichen when shadows 

and shade impedes this process. Vegetation and lichen, especially the shrub layer within 
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stands, posed a major challenge for classification. Most custom rule sets were based 

around the DEM layer, allowing a quick and simple delineation between the lichen and 

shrubs and surrounding trees. A shortcoming of the use of this layer exists with 

delineating bare ground from the lichen layer. It was found that although the DEM layer 

aided significantly in reducing misclassification with vegetation, the bare ground and 

rock features were highly misclassified. This resulted in better classifications under 

higher canopy closure, as lichen classification was based on trees and lichen. It is 

suggested that a more detailed DEM layer, with better coverage, would be applied in the 

future. This is due to the constraint experienced with the DEM layer used for the 

purpose of this study, which was not accurate enough to distinguish lichen from the bare 

ground under the canopy.  

Reindeer lichen are lighter colored, reflecting more light in blue to yellow 

wavelengths when compared to green vegetation (Nelson et al. 2013). Although no 

study has focused on the continuous mapping of usnic lichen, it has been discussed that 

this substance is in most lichen that caribou eat, having a pale-yellow pigment. This 

renders the lichen spectrally distinct which is a useful characteristic in remote sensing 

(Peltoniemi et al. 2005; Nelson et al. 2013). This was utilized in rules made extracting 

the green band in the UAV imagery classification. The research also suggests additional 

rules focused on these spectral characteristics could improve accuracy, especially in the 

delineation of vegetation and lichen, which were difficult to accurately classify. Due to 

the findings by Nelson et al. (2013) the NIR layer was extensively used during rule set 

classification. It has been concluded that dark lichens absorb electromagnetic spectrums, 

but their reflectance is distinct in the NIR band (Nelson et al. 2013), correlating to the 

increased classification accuracy when utilizing this layer. Although these bands did 
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ensure adequate classification of the UAV imagery, increased accuracy was achieved 

when other feature classes and layers were utilized in conjunction with this.  

The result of this study supports my hypothesis in that canopy openness will 

affect lichen classification accuracy, however not in the way that was previously 

thought. It was postulated that as canopy closure increased, classification accuracy 

would correspondingly decrease. It was found however, that as canopy closure 

increases, classification accuracy increases. Overall, the classification accuracy was 

below an applicable accuracy for management uses, however, the knowledge gained 

from this study demonstrates the point at which canopy closure becomes a factor in 

lichen classification accuracy. The knowledge gained from this study may be applied in 

the future for mapping of lichen, potentially for the NCASI Caribou project, where the 

universal ruleset may be applied. However, the information gathered from this study 

suggests that UAV image classification for lichen detection should be reserved for 

stands with more than 77% canopy closure, as the accuracy of assessments significantly 

decreases after this point.  

Although the classification accuracies observed in this study are correlated to the 

percent canopy closure, it may be extrapolated that bare ground spectral signatures play 

a more significant role in misclassification. Ground surfaces and understory components 

contribute to spectral variation (Nagendra 2010). Therefore, the reduced accuracy 

associated with canopy openness is directly associated to the bare ground and rock found 

throughout open sites. The light colouration of these features make classification by both 

computer software and human interpretation limited as there is difficulty in 

identification. The DEM layer used in abundance throughout this study aided 

significantly with these limitations, however the accuracy of the DEM was insufficient 
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in delineating the difference in inches that was experienced between lichen and bare 

ground.  

During the data collection period, time was restricted where rain and wind played 

a major role (Wilkie 2018). The resulting image collection occurred on days with full 

sun or slight cloud. Image collection in full sun results in images with high amounts of 

shadows. Combining this with the change in sun angles between flights, shadows caused 

a major processing issue, post-flight. Shadows mean reduced information picked up by 

the camera in those areas, resulting in wrong or no classifications (Solheim et al. 2000). 

In open areas a trees shadow may extend over several feet, leading to misinterpretation, 

whereas in a closed canopy the shadow is interrupted by surrounding trees. This source 

of error may have played a role in the increased classification accuracy experienced 

under greater canopy closure. This was managed by creating a shadow feature class and 

classifying those areas as such, however identification of shadows and classifying them 

accurately was a challenge. Ideally, UAV imagery would be collected on overcast days 

which would minimize the presence of shadows and reduce high levels of contrast 

between features like rock, aggregates, coarse woody debris, and lichen.  

 The winSCANOPY software used in this study was a version suited to black and 

white images, where an updated version could process colour images. In lieu of this, the 

colour images collected using the winSCANOPY unit in the field had to be classified in 

eCognition where two classes, one being tree, one being sky, was used. This may have 

affected the results tabulated in winSCANOPY as the classified images were saved as 

screen grabs, subjected to pixilation and misclassification during this process.  

 The universal rule set developed for the purpose of this study was applied across 

all sites. This was done to ensure it could be applied broadly across different forests 
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stands, where the rule set was applied on known locations that can later be applied to 

new, unknown areas to classify the forest cover. However, to improve accuracy on each 

image, unique rule sets were created. This reduced the applicability of results for future, 

however, increased the accuracy of each classification to ensure the correlation between 

canopy closure and UAV imagery collection could be identified.  

The lighting conditions for various sites were different, based on weather 

conditions. Therefore, the image stacking process struggled to align the RGB and NIR 

bands. This could be an artifact of the lighting conditions or that Agisoft didn’t create 

the ortho-imagery equally (Wilkie 2018). Unfortunately, there was no way to colour 

correct all the imagery together to have the same values with changing sun angles. The 

best way to avoid these problems is to have a larger image acquisition window and fly 

with better lighting conditions. Otherwise, some features that are the same between 

different photos, flight heights and sites may look different and so be classed as 

different. 

Each classified image was approximately 0.5 ha, where photos collected for 

winSCANOPY were collected in the center of the plot. Therefore, a limited amount of 

the stand was accounted for in the analysed photographs. It is recommended in future to 

take multiple canopy closure photos, either randomly throughout the plot or through a 

systematic graphing system. Currently, the canopy closure percentages tabulated are 

representative of a very small portion of the stand which were classified. An average of 

various canopy closure percentages throughout each stand should be recorded and used 

for future studies to allow for representativeness and accuracy.  

It is recommended that further time be spent on classification of non-lichen 

classes, as this oversight may have reduced accuracy on the overall image classification. 
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This is exemplified for plot 220, returning much higher accuracies for lichen 

classification compared to overall image classification. Additionally, for future studies it 

is recommended that imagery should be collected during “leaf-off” seasons. While this 

may not affect accuracy in dense conifer stands such as young jack pine sites, it would 

otherwise. Imagery taken in these seasons would result in less interference between the 

ground and the sensor. It was also noted that in some areas, varying vertical layers of 

vegetation above the lichen beds being mapped, blocked all sight of the lichen and 

prevented image capture. Mapping during leaf-off would remove all deciduous 

vegetation and allow optical sensors to see further down into the forest cover. It should 

be noted that most lichen mapping occurs in coniferous stands where caribou overwinter 

(Korpela 2008; Nordberg and Allard 2014; Peltoniemi et al. 2005; Rautiainen et al. 

2007). Therefore, the time of year imagery is collected in Boreal coniferous dominated 

stands would not greatly affect classification accuracy. Another modification outside of 

controlling environmental factors includes using a bigger sensor, or a multispectral 

camera. The NIR camera used had trouble even at 40 meters separating the lichen based 

on reflectance values alone (Wilkie 2018). A multi-spectral camera could potentially 

capture narrower spectral bands that would differentiate lichen from the surrounding 

vegetation. Classification accuracies could be increased in the future given the 

understandings gained from this project, which could then potentially be applied to the 

larger portions of the NCASI Caribou project.    
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CONCLUSION 

 The conclusion, that at under 77% canopy closure accuracy is affected, supports 

the finding that canopy closure is directly correlated to the classification efficiency of 

UAV imagery.  Therefore, the findings of this study can contribute to the ongoing 

analysis of lichen detection for management purposes. However, further investigation to 

better understand the limits of using UAVs to map lichen is required.  The controversies 

within this field surround the technology used for lichen detection as well as the 

accuracy and precision each one offers ((Faldorf et al. 2014; Theau and Deguay 2004; 

Faldoff et al. 2013; Theau and Duguay 2004; Nordberg and Allard 2002; Korpela 2008; 

Waser et al. 2007). WinSCANOPY technology was found useful in determining the 

range of percent canopy-closure under which lichen detection is possible. An average 

classification accuracy of 68% was recorded using UAV imagery with NIR, RGB, and 

DEM layers, proving effective but limited in its application. This classification method 

can be applied for management purposes when canopy closure is low enough to allow 

for accurate classifications. This study falls within the Boreal forest biome, therefore, the 

results obtained herein over the entire area make this methodology very stable and 

illustrate its potential application over various land covers. 
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APPENDIX I 

NCASI PLOT INFORMATION 

Plot PEN (plot #) SBST Total Lichen 

Biomass 

(Kg/ha) 

Lichen 

‘stand’ type 

Lichen 

Stand Code 

267/268 172 I 2206.8 Dense, 

continuous 

lichen mats 

1 

464 2 III 1756.5 Lichen/rock 

outcrop 

mosaic 

3 

220 114 I 1027.51 Open 

forest/lichen 

intermixes 

4 

568 57 III 981.92 Unsure 

(2 or 4) 

2/4 

242 146 III 714.83 Dense, 

continuous 

lichen mats 

2 

246 150 III 553.51 Lichen/rock 

outcrop 

mosaic 

3 

223 118 I 199.86 Open 

forest/lichen 

intermixes 

4 



36 
 

APPENDIX II  

PLOT 220 RULESET 
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APPENDIX III  

PLOT 223 RULESET 
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APPENDIX IV 

PLOT 242 RULESET 
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APPENDIX V 

PLOT 267 RULESET 
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APPENDIX VI  

PLOT 464 RULESET 
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APPENDIX VII 

PLOT 568 RULESET 
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APPENDIX VIII  

ACCURACY ASSESSMENT RAW DATA – PLOTS 464, 568, 220, AND 223 

     

Point Number Classification Real (Plot 2)
1 3 1
2 3 3
3 1 1
4 1 1
5 3 2
6 3 4
7 3 3
8 3 3
9 3 1

10 1 1
11 3 4
12 3 4
13 3 4
14 3 3
15 3 3
16 3 1
17 4 4
18 3 1
19 3 3
20 3 1
21 3 3
22 3 3
23 4 4
24 2 4
25 3 3
26 3 3
27 1 2
28 1 1
29 3 3
30 1 1
31 3 1
32 1 2
33 3 3
34 3 3
35 1 4
36 1 1
37 3 4
38 3 3
39 2 2
40 2 2
41 1 2
42 1 2
43 2 2
44 2 2
45 3 3
46 3 3
47 3 1
48 3 1
49 1 4
50 4 4
51 2 2
52 1 1
53 1 1
54 1 1
55 1 4
56 4 4
57 3 1
58 2 2
59 4 4
60 3 3
61 1 4
62 1 1
63 1 1
64 3 3
65 2 2
66 4 4
67 3 3
68 3 1
69 1 1
70 1 1
71 3 3
72 4 4
73 3 2
74 3 3
75 3 3
76 3 3
77 1 2
78 3 3
79 3 4
80 3 3
81 1 1
82 4 4
83 3 3
84 1 2
85 3 4
86 3 1
87 3 1
88 3 1
89 1 1
90 3 3
91 1 1
92 1 1
93 3 1
94 3 3
95 3 3
96 3 3
97 4 4
98 1 1
99 3 2
100 1 3

Accuracy (all) 63.63636364
Accuracy (lichen) 40

Point Classification Real (Plot 57)
1 1 4
2 4 4
3 4 4
4 1 1
5 1 1
6 1 2
7 4 4
8 1 1
9 2 2

10 2 2
11 4 4
12 2 2
13 3 3
14 4 3
15 4 4
16 2 2
17 4 4
18 4 4
19 4 4
20 3 3
21 2 3
22 4 2
23 3 3
24 1 1
25 2 2
26 1 1
27 1 1
28 3 3
29 4 4
30 4 4
31 1 1
32 1 2
33 1 2
34 4 4
35 1 1
36 3 3
37 1 1
38 2 2
39 3 3
40 3 3
41 1 2
42 4 4
43 1 2
44 3 3
45 1 1
46 2 2
47 1 2
48 2 3
49 3 3
50 1 1
51 4 4
52 4 4
53 1 2
54 1 1
55 2 2
56 4 4
57 4 4
58 1 1
59 4 4
60 4 4
61 1 1
62 1 1
63 4 4
64 1 1
65 1 1
66 4 4
67 4 4
68 2 2
69 1 1
70 1 1
71 4 4
72 4 4
73 3 3
74 2 4
75 4 4
76 4 4
77 4 4
78 2 2
79 1 1
80 3 3
81 1 2
82 3 3
83 3 2
84 1 1
85 1 2
86 1 1
87 3 3
88 3 3
89 4 4
90 1 2
91 1 2
92 4 4
93 2 2
94 4 4
95 1 1
96 2 1
97 3 3
98 1 2
99 2 2
100 2 2

Accuracy (all) 80
Accuracy (lichen) 62

Point Classification Real
1 2 4
2 2 4
3 1 1
4 2 4
5 3 2
6 3 3
7 2 4
8 3 4
9 1 1

10 3 3
11 3 4
12 2 4
13 3 1
14 3 3
15 1 1
16 2 4
17 3 3
18 3 2
19 3 3
20 3 4
21 2 4
22 3 3
23 1 3
24 3 3
25 3 3
26 3 2
27 1 1
28 1 1
29 3 4
30 2 4
31 1 1
32 1 1
33 2 2
34 1 1
35 3 3
36 3 4
37 1 1
38 3 3
39 2 2
40 3 3
41 1 1
42 3 3
43 1 3
44 1 3
45 1 3
46 1 4
47 3 3
48 1 3
49 3 1
50 1 1
51 2 4
52 3 3
53 3 3
54 1 1
55 3 3
56 3 3
57 3 4
58 3 3
59 3 2
60 3 3
61 3 3
62 3 3
63 3 4
64 1 1
65 3 2
66 2 1
67 3 3
68 3 3
69 3 3
70 3 1
71 3 2
72 1 1
73 3 2
74 1 1
75 1 1
76 1 1
77 1 1
78 3 2
79 3 3
80 3 3
81 3 4
82 3 4
83 3 3
84 1 1
85 3 3
86 2 2
87 1 1
88 3 3
89 3 3
90 2 3
91 3 4
92 3 4
93 3 2
94 3 1
95 3 2
96 3 3
97 3 2
98 3 4
99 1 1
100 1 1

Accuracy (all) 56
Accuracy (lichen) 68

Point Classification Real (Plot 118)
1 3 3
2 1 1
3 2 2
4 3 2
5 3 1
6 3 3
7 1 2
8 3 3
9 3 3

10 2 3
11 3 3
12 3 2
13 3 2
14 3 2
15 3 3
16 3 1
17 3 3
18 3 1
19 1 1
20 3 2
21 4 4
22 3 2
23 3 3
24 3 3
25 3 3
26 2 2
27 2 2
28 3 2
29 4 4
30 3 2
31 3 3
32 3 3
33 3 3
34 3 2
35 2 2
36 3 3
37 3 4
38 3 3
39 3 3
40 2 2
41 3 3
42 3 3
43 3 3
44 3 3
45 3 3
46 1 1
47 3 2
48 1 1
49 4 3
50 3 1
51 1 1
52 3 3
53 3 1
54 1 3
55 3 1
56 3 3
57 3 3
58 1 1
59 4 3
60 3 2
61 1 2
62 3 2
63 1 3
64 1 2
65 3 2
66 4 2
67 3 3
68 3 3
69 3 2
70 3 1
71 2 2
72 3 3
73 3 2
74 3 1
75 3 2
76 4 4
77 3 3
78 1 1
79 1 1
80 3 3
81 1 1
82 1 3
83 2 2
84 3 3
85 1 2
86 3 3
87 3 2
88 3 3
89 1 1
90 1 1
91 3 3
92 4 4
93 1 1
94 3 3
95 4 4
96 2 2
97 2 2
98 3 3
99 3 3
100 4 4

Accuracy (all) 51
Accuracy (lichen) 45
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APPENDIX IX  

ACCURACY ASSESSMENT RAW DATA – PLOTS 242, 267, AND 268 

     

Point Classification Real (Plot 146)
1 3 3
2 1 1
3 2 2
4 1 1
5 1 1
6 3 3
7 3 3
8 2 2
9 1 3

10 3 3
11 3 2
12 3 3
13 4 4
14 1 1
15 1 1
16 1 1
17 3 3
18 2 2
19 3 3
20 2 2
21 4 4
22 3 3
23 2 2
24 3 3
25 3 3
26 3 4
27 3 4
28 1 1
29 4 1
30 4 4
31 1 4
32 2 2
33 1 1
34 4 4
35 2 2
36 3 3
37 1 2
38 1 1
39 3 3
40 3 3
41 1 2
42 3 3
43 4 4
44 2 2
45 2 2
46 2 2
47 1 1
48 3 3
49 4 4
50 3 3
51 1 1
52 1 1
53 3 3
54 1 1
55 1 1
56 4 4
57 1 1
58 1 1
59 3 3
60 1 1
61 3 4
62 4 4
63 1 1
64 3 4
65 2 2
66 2 2
67 3 4
68 4 4
69 2 2
70 4 4
71 3 3
72 3 3
73 4 4
74 2 2
75 1 1
76 3 3
77 1 4
78 4 4
79 1 1
80 1 1
81 1 1
82 4 1
83 3 3
84 1 1
85 1 1
86 1 1
87 3 2
88 1 1
89 3 3
90 4 4
91 2 2
92 3 3
93 1 1
94 4 4
95 1 1
96 3 3
97 2 2
98 3 3
99 4 4
100 4 4

Accuracy (all) 86
Accuracy (lichen) 82

Point Classification Real (Plot 267)
1 4 3
2 1 4
3 1 1
4 1 1
5 3 3
6 3 3
7 2 2
8 1 1
9 1 2

10 3 3
11 1 1
12 1 2
13 4 4
14 1 4
15 2 2
16 1 1
17 3 3
18 3 3
19 1 2
20 3 3
21 3 3
22 3 3
23 3 4
24 1 2
25 3 3
26 3 3
27 3 3
28 1 1
29 2 2
30 1 1
31 1 2
32 2 2
33 3 4
34 3 2
35 3 3
36 3 2
37 1 1
38 1 1
39 2 2
40 3 3
41 1 1
42 2 2
43 3 3
44 1 2
45 1 1
46 1 1
47 1 4
48 3 3
49 1 1
50 1 2
51 3 4
52 3 2
53 4 4
54 3 4
55 3 3
56 3 4
57 3 4
58 4 4
59 3 3
60 3 3
61 1 4
62 1 4
63 1 1
64 2 2
65 1 1
66 4 4
67 3 3
68 1 1
69 1 1
70 1 2
71 1 1
72 2 2
73 4 4
74 2 2
75 3 3
76 1 1
77 2 2
78 2 2
79 3 3
80 3 4
81 4 4
82 4 2
83 3 1
84 3 3
85 3 3
86 1 3
87 2 4
88 1 4
89 4 4
90 1 1
91 1 1
92 1 1
93 3 4
94 4 2
95 3 3
96 3 1
97 4 2
98 1 1
99 3 2
100 1 1

Accuracy (all) 66
Accuracy (lichen) 59

Point Classification Real (Plot 268)
1 3 3
2 1 4
3 1 3
4 1 1
5 3 3
6 3 3
7 2 2
8 1 1
9 1 2

10 3 3
11 1 1
12 1 2
13 4 4
14 1 4
15 2 2
16 1 1
17 3 3
18 3 3
19 1 2
20 3 3
21 3 3
22 3 3
23 3 4
24 1 2
25 3 3
26 3 3
27 3 3
28 1 1
29 2 2
30 1 1
31 1 2
32 2 2
33 3 4
34 3 2
35 3 3
36 3 2
37 1 1
38 1 1
39 2 2
40 3 3
41 1 1
42 2 2
43 3 3
44 1 2
45 1 1
46 1 1
47 1 4
48 3 3
49 1 1
50 1 2
51 3 4
52 3 2
53 4 4
54 3 4
55 3 3
56 3 4
57 3 4
58 4 4
59 3 3
60 3 3
61 1 4
62 1 4
63 1 1
64 2 2
65 1 1
66 4 4
67 3 3
68 1 1
69 1 1
70 1 2
71 1 1
72 2 2
73 4 4
74 2 2
75 3 3
76 1 1
77 2 2
78 2 2
79 3 3
80 3 4
81 4 4
82 2 2
83 3 1
84 3 3
85 3 3
86 1 3
87 4 4
88 1 4
89 4 4
90 1 1
91 1 1
92 1 1
93 3 4
94 2 2
95 3 3
96 3 3
97 2 2
98 1 1
99 3 2
100 1 1

Accuracy (all) 71
Accuracy (lichen) 58
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APPENDIX X 

IMAGE CLASSIFICATION VALUES 

Value Classification 

1 Lichen 

2 Not Lichen 

3 Vegetation 

4 Shadow 
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APPENDIX XI  

CLASSIFIED PLOT IMAGES 

PLOT 220 
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PLOT 568 
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PLOT 464 
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PLOT 267 AND PLOT 268  

 

 

 

 



49 
 

 

 

PLOT 223 
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APPENDIX XII 

WINSCANOPY ANALYSIS 

PLOT 220 
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PLOT 568 
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PLOT 464 
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PLOT 268
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PLOT 242 
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PLOT 223

 


