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Abstract

Quadrotors are a recent popular consumer product, prompting further developments with re-
gards to combining attitude and position control for such unmanned aerial vehicles (UAVs). The
quadrotor’s attitude (orientation) can be controlled using measurements from small and inexpen-
sive sensors such as gyroscopes, accelerometers, and magnetometers combined in a complemen-
tary filter.

The quadrotor’s position can be controlled using a global positioning system (GPS); this has
shown to be an effective method but is not reliable in urban or indoor environments where quadro-
tors may be flown. An alternative method such as visual servoing may provide reliable position
control in urban environments. Visual servoing uses one or more on-board cameras to detect
visual features in their field-of-view. If more than one camera is used, a more accurate position
can be determined.

This work discusses the the application of stereo visual servoing to a quadrotor for position con-
trol combined in a Kalman filter with IMU readings to provide a better estimate of its position.
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Chapter 1

Introduction

The multirotor Unmanned Arial Vehicle (UAV) has evolved into a versatile and popular flight
platform. Its popularity is primarily due to its mechanical simplicity. This simplicity lends itself
well to research in a number of different fields including control theory, navigation, real time
systems, and robotics. A multirotor UAV refers to a UAV with more than one rotor (a motor with
a vertical rotation axis); however, contemporary multirotors have three to twelve rotors on three
to eight arms. The quadrotor platform consists of four or eight rotors mounted on four arms. A
quadrotor which used four rotors was the platform used for the purposes of this work.

The simplicity of the quadrotor UAV is due to the fact that there are only four moving mechanical
components: the four motors. These four motors are mounted at a sufficient distance from the
central body of the quadrotor to create large lever arms to induce larger torques along the Carte-
sian axes. The long lever arms, along with the large thrust-to-weight ratio make the quadrotor a
highly agile platform. The low number of moving parts also allows an ease of repair and mainte-
nance. This allows a quadrotor to find uses in a variety of fields such as spreading pesticides on
commercial crops [1] or surveillance [2].

1.1 History

Quadrotors have existed for more than a century and were among the first successful Vertical
Take-Off and Landing (VTOL) vehicles. Quadrotors didn’t gain popularity during their early
iterations and were built mainly as military prototypes. Recent advances in low-cost sensors and
lightweight materials have revived interest in the quadrotor UAV since they allow construction
of a relatively simple and cheap platform capable of robust performance. The first quadrotor was
constructed in 1907 by the Bréguet brothers and was capable of liftoff with a human pilot. The
Bréguet-Richet Gyroplane No. 1 was constructed of heavy steel girders in a cross configuration
with propellers made from four cloth covered surfaces. There was no way to control this vehicle
other than varying the speeds of the rotors which made it very unstable. The next significant
attempt at building a quadrotor was made by Etienne Oemichen in 1922. His most successful
vehicle was the Oemichen No. 2. In 1922 the US army made its first serious attempt to develop a
quadrotor aircraft. Dr. George de Bothezat designed a quadrotor vehicle in a cross configuration
with six-bladed propellers on each rotor. This aircraft was only able to achieve a maximum
altitude of 5m and was abandoned [3]. In the 1950s, D.H. Kaplan designed a more refined
quadrotor which utilized differential thrusts of opposing rotors for attitude control. This method
of controlling a quadrotor is the method that is widely used today. Smaller, unmanned quadrotors
are currently the most popular platform because they do not require large amounts of thrust which
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a large manned quadrotor would require. One of the first modern small quadrotor UAVs was the
Draganflyer, built in Canada by RCToys [4]. Although intended as a toy, it showed that quadrotor
technology could be realised on low-cost, mass-produced platform.

1.2 Thesis Organisation

This thesis is divided into nine chapters with Chapter 1 providing a brief introduction into the
background of the quadrotor.

Chapter 2 provides a review of the literature related to the work performed within this thesis.

Chapter 3 describes methods to transform a vector expressed in one coordinate frame to be
expressed in another coordinate frame.

Chapter 4 explains the theory and implementation of the attitude estimation algorithm which
was chosen for this work.

Chapter 5 focuses on the mathematical model of a quadrotor.

Chapter 6 details the hardware of the experimental platform which was used for this experiment.

Chapter 7 shows how the sensors of the experimental platform were calibrated.

In Chapter 8, the determination and control of the linear position and velocity are presented as
well as experimental results.

Finally, a conclusion of the presented work and suggestions for future work are given in Chapter
9.
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Chapter 2

Literature Review and Thesis
Contribution

This chapter discusses the literature that was utilized to complete this work. The final goal of this
work was to control the position of a quadrotor unmanned aerial vehicle (UAV) using inexpensive
sensors in an environment which does not have access to the Global Positioning System (GPS).
A quadrotor is a robot which uses four rotors (vertically mounted propellers) as its actuators to
control its movement. It is of particular interest because it is an aerial vehicle which is capable
of vertical take-off and landing (VTOL) manoeuvres, can be built small enough for indoor use,
and it is much simpler mechanically than a helicopter. The simplicity of a quadrotor over a
helicopter is due to a quadrotor being able to use propellers which have a fixed pitch; the pitch
of a propeller is the angle of tilt that the propeller has with respect to its plane of rotation. This
simplicity allows a quadrotor to be more easily miniaturized which is useful if there is a desire to
operate the quadrotor indoors. Operating a quadrotor indoors is useful for recreational or research
purposes. Research applications benefit from operating a quadrotor indoors since any equipment
which may be required doesn’t need to be moved to an alternate location, the lab equipment can
remain as permanent fixtures which allows for a faster transition from experimentation to data
analysis. An indoor environment can also be advantageous because it is capable of simulating an
urban environment which can be deprived of GPS signals due to the tall buildings.

Movement of the quadrotor is accomplished by changing the speeds at which its rotors are spin-
ning which rotates the quadrotor and allows its thrust to be directed in a desired direction. The
rotation, or orientation, of an object with respect to a reference is referred to as its attitude; con-
trol of a quadrotor’s attitude is the first step toward being able to control its position. The first
section of this chapter explains the literature which was used to first determine the attitude and
then to control it. The subsequent section of this chapter discusses methods of position control
of UAVs in a general way. The following section specifically focuses on vision-based position
control of UAVs. The final section outlines the accomplishments and contributions of this work.

2.1 Rigid-Body Attitude Control

2.1.1 Attitude Estimation

The rotation, or orientation, of an object with respect to a reference is referred to as its atti-
tude. Rotations around the x-y-z Cartesian axes in aerospace applications are referred to as the
roll, pitch, and yaw rotations, respectively. To control the attitude of an aerial rigid-body, the



Chapter 2. Literature Review and Thesis Contribution 4

attitude must first be determined. The three dimensional (3D) attitude of an object cannot be
directly measured. Due to this, the attitude must be estimated based upon measurements from
sensors – such as a magnetometer, a gyroscope, and an accelerometer – or inferred from other
parameters. Each of these sensors provide different measurements with respect to a coordinate
frame that is attached to the rigid-body; these measurements are therefore referred to as “body-
referenced.” The magnetometer provides a body-referenced measurement of the local magnetic
field, the gyroscope measures the body-referenced angular velocity, and the accelerometer pro-
vides a body-referenced measurement of acceleration forces acting on the rigid body. The topic
of coordinate frames and how they are related to one another through a rotation are explained in
detail in chapter 3.

Some simple methods exist for attitude determination. The simplest method would be to directly
integrate the gyroscope measurements to determine the rotation. Unfortunately, direct integration
of the gyroscope measurements may cause the attitude estimation to diverge due to measurement
noise or bias. Other simple methods of attitude estimation which rely solely on inertial vector
measurements such as the Three Axis Attitude Determination (TRIAD) [5], QUaternion ESTi-
mator (QUEST) [6], or Singular Value Decomposition (SVD) of the rotation matrix [7]. The
TRIAD algorithm was one of the earliest attitude estimation algorithms proposed in 1964 by H.
D. Black. The TRIAD algorithm uses inertial measurements and requires two non-collinear vec-
tors and independent knowledge of the position of the rigid body to determine its attitude. The
TRIAD algorithm was used primarily on man-made Earth satellites and celestial bodies were
used for position determination. Attempts were made to improve on the TRIAD algorithm which
resulted in the QUEST and SVD algorithms. The QUEST algorithm was a proposed solution to
an optimization problem known as Wahba’s problem [8]. Wahba’s problem was to determine a
solution to minimize a cost function of two vectors that are related by a rotation. The QUEST
algorithm’s innovation was to use a quaternion (a four parameter vector) to relate the two vectors
instead of the nine parameter rotation matrix. Another solution to Wahba’s problem was to deter-
mine the SVD of the rotation matrix. This had the benefit of providing a convenient method for
the computation of the covariance matrix of the attitude estimation and providing the eigenvalues
and eigenvector of the covariance matrix. Knowing the maximum eigenvalue and the eigenvec-
tor provided knowledge about the maximum magnitude and direction of the largest component
of the attitude uncertainty. Unfortunately, imperfect measurements or imprecise knowledge of
the considered inertial vectors can generate significant errors using these methods; therefore, an
alternate method needs to be considered.

One particular method which was proposed in 1960 was the Kalman Filter (KF) [9]. The KF
operates using a two step process:

1. Predict the current state variables based upon previous state variable estimates using the
dynamical model of the system.

2. Update the state variable estimates using weighted state variable predictions and noisy
sensor data.

The KF was not adopted immediately because it was originally designed to work with linear
systems and the dynamics of an aerial vehicle are inherently non-linear due to the rotational
dynamics. The Extended Kalman Filter (EKF) [10], [11] was introduced in 1970 and solves this
problem by linearising the system around the current best estimate of the attitude to then make
the next estimate of the attitude. The EKF and its variants have since become the workhorse of
satellite attitude estimation. Variants of the EKF can be divided into three general classes:
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1. Minimal representation EKF which uses three parameters (the minimum number of pa-
rameters required) to represent the attitude. These three parameters are the Euler angles
which are explained in detail in section 3.2.

2. Multiplicative EKF (MEKF) which uses the product of the estimated attitude (expressed by
a non-singular representation) and a deviation from this estimate to estimate the attitude.

3. Additive EKF (AEKF) which uses the sum of the attitude estimate (expressed by a non-
singular representation) and the attitude error to estimate the attitude.

A key drawback of using the minimum number of parameters for the attitude representation is
that three-dimensional parametrization cannot exist without singularities for the rotation group
[12]. The minimum number of parameters required for a singularity free representation is four.
Four-dimensional parametrizations are known as “quaternions” and are discussed in more detail
in section 3.3.

Recently, computationally efficient, non-linear attitude estimation methods have been used [13]–
[20]. These methods are referred to as “complementary” filters because they rely on the fusion of
data from different sensors. The complementary aspect is that one sensor has its higher frequen-
cies filtered out and the other sensor has its lower frequencies filtered out. The measurements
from the accelerometer are filtered with a low-pass filter and the gyroscope measurements are
filtered with a high-pass filter and are merged to obtain an attitude estimation. The complemen-
tary filter has proven popular in recent years because it is a nonlinear filter and can be used to
more accurately estimate the attitude. A key assumption that complementary filters employ is
that the accelerometer is measuring only the gravitational acceleration force exerted on the aerial
vehicle, expressed in the body-fixed frame. This works for low linear acceleration applications
such as satellites; however, for agile applications such as quadrotors, if the accelerometer mea-
surements contain relatively high linear accelerations of the body then the previous assumption
cannot be relied upon to guarantee an accurate attitude estimate. To compensate for this issue,
a velocity-aided observer could be employed [17], [20]. These methods use an additional linear
velocity estimate function in the innovation term of the observer to obtain a more accurate es-
timate of the direction of the gravitational force to obtain a better estimate of the attitude. The
translational velocity could be obtained using the GPS; however, the goal of this work was to
implement a position control system which can operate without the use of the GPS. The attitude
estimation method used within this work was the “conditioned observer” complementary filter
and is presented in detail in chapter 4.

2.1.2 Attitude Control

Attitude control of rigid bodies consists of determining an appropriate control torque using an
estimated attitude and angular velocity. Early work of attitude control mainly dealt with man-
made Earth satellites. Methods of early attitude control included using gas reaction jets, rockets,
vapour jets, or momentum exchange devices [21]–[23] which are still used to varying degrees
today [24]. Within the context of quadrotors, torque is generated through the speed differentials
of the rotors. In practice, these torques have been controlled using linear approaches such as Pro-
portional Integral Derivative (PID) [25] or Linear Quadratic Regulator (LQR) [26] controllers.
However, these approaches fail to work in the presence of agile manoeuvres or manoeuvres caus-
ing large attitude errors since the linearisation around the operating point is unable to encapsulate
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a domain beyond the linearised domain. An approach which has had success in quadrotor appli-
cations is a hierarchical method which consists of an inner control loop for the body angular rate
and an outer loop for the attitude control [27], [28]. The inner loop operates at a much higher
frequency than the outer loop allowing for the inner loop to converge before it receives the com-
mand signal from the outer loop. The advantage of this control scheme is that it simplifies the
controller design. Nonlinear techniques such as backstepping, feedback linearisation, and sliding
mode control have been successfully implemented [29]–[31] with the caveat that they are model
dependent. A model-independent, Proportional Derivative (PD) controller is proposed in [32]
where the proportional part is in terms of the vector part of the quaternion and the derivative part
is in terms of the angular velocity. This model-independent controller has been proven to provide
Global Asymptotic Stability (GAS) and was utilized for this work.

2.2 Position Control

2.2.1 Position Estimation

To control the position of a mobile robot or UAV, the position must first be estimated. One of
the most common methods of determining the position is the Global Positioning System (GPS).
The method the GPS uses for localization is Timed Delay of Arrival (TDOA). The GPS performs
this using signals received from Earth-orbiting satellites. GPS measurements can be fused with
additional sensors such as rate gyroscopes, magnetometers, odometers, and heading sensors [33],
[34] to improve the position estimation. For position estimation methods which utilise the GPS,
the inertial sensors are used primarily during periods of GPS unavailability because GPS sig-
nals are transmitted at a frequency (1176.45MHz)[35] which is not able to bend around objects
so requires continuous line-of-sight (LoS) to determine position. This makes GPS unreliable
in indoor or urban environments and therefore necessitates the use of alternate methods. Other
methods of position localization are performed using odometry [36], [37], vision [38], or other
wireless signals such as ultrasonic range finders, Ultra Wide Band (UWB), or cell phone signals
[39]–[41]; a survey of the methods utilised with wireless signals is presented in [41]. Odometry
is used to determine a vehicle’s translation and rotation by mathematically integrating the change
in position over time (linear velocity) and change in rotation over time (angular velocity); how-
ever, as mentioned above, direct integration of sensor data can cause divergence over time due to
noise or bias. Ultrasonic range finders have been used on aerial vehicles for obstacle avoidance
and low-level altitude measurements [42]; however, position estimation would require the envi-
ronment to be known which will be avoided if possible. UWB position estimation uses a series
of transmitters/receivers and TDOA to determine position, similar to the GPS but is able to travel
through objects due to the frequencies used [43]; however, UWB requires transmitter/receiver
nodes to be set up in the environment where position control will be performed. Visual servo-
ing using computer vision was chosen for this work for position estimation and control. The
literature of computer vision will be discussed further in the following section.

2.2.2 Computer Vision

Computer vision that is used to control the position of a robot is called “visual servoing.” The
concept of visual servoing seems simple to humans because most use it in their daily lives to
walk, read, or drive. There are two methods of visual servoing:
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1. Stand-alone [44] visual servoing: where the cameras are mounted independently from the
robot, observe the robot, and provide feedback for future movements.

2. Eye-in-hand visual servoing: the camera is mounted on the robot itself.

Fixed-camera visual servoing has more limited applications since to properly utilise this type of
visual servoing the robot must remain in the Field of View (FoV) of the camera. This method
has been used mainly with fixed-position robots [45], [46]. Most mobile robots use the eye-in-
hand visual servoing method. This work utilises eye-in-hand cameras to control the position of a
quadrotor.

To perform visual servoing, the cameras must first be calibrated to eliminate distortion and be
able to transform points captured by the camera into world coordinates [47]–[49]. The camera
calibration methods utilised in this work are presented in section 7.4.1. Some literature assumes
an ideal camera without calibration, briefly mention the calibration, or perform work with uncal-
ibrated cameras [50]–[52]. However, most experiments using visual servoing utilise calibrated
cameras [44], [53], [54], even if it isn’t stated [55], and their results suffer due to poor cali-
bration [54], [56], [57]. Camera calibration is performed using a known pattern to estimate the
intrinsic parameters of the camera. Estimating these parameters is a tedious process [54], how-
ever libraries which contain calibration algorithms, such as Open Computer Vision (OpenCV),
are freely available. The calibration method utilised follows the method of [58] for individual
camera calibration and a version of the eight-point algorithm [59]–[62] for the stereo vision cal-
ibration.

After the cameras have been calibrated, the cameras are then used to determine their position with
respect to the observed scene using simple triangulation; however, to perform the triangulation,
visual features must be found which are common to both observing cameras. Matching features
between stereo vision images, also known as the correspondence problem, is considered to be
the hardest and most significant problem of stereo vision [63]. Some of the earliest methods of
detecting features in an image are the Moravec Corner Detector and the Canny Edge Detector
[64]–[66]. The Moravec Corner Detector relied on directional variance in small square areas
to find maxima which could be correlated between multiple images to detect corners but could
not distinguish between the true corner of an object or the edge of an object in the background
intersecting with the line of an object in the foreground. The Canny Edge Detector uses the
first derivative of a Gaussian function to find steps of intensity within an image and providing
an output showing linear contours of the most likely places for edges to occur. A problem with
edge detection and contour matching is that a simple object like a square could be matched with
salt noise (single white pixels) or the chosen object may be mismatched if the matching criteria
are not chosen carefully. This work attempted to use a square, encountered these problems,
and used a more complex shape as a reference. More recent feature detectors are designed so
that scale or orientation do not affect the detected features used for correspondence. A popular
method is the Scale Invariant Feature Transform (SIFT) algorithm [67]. The SIFT algorithm
builds on the work of Moravec and Canny by detecting points of high contrast and is able to
detect features that are invariant to scale due to its method of subsampling the image. Despite its
age, the SIFT algorithm is still the best method of feature detection and continues to see use [68].
Other methods of feature detection are the Speeded-Up Robust Features (SURF) and Oriented
FAST [69] and Rotated BRIEF (ORB) algorithms [70], [71]. In [71], the SIFT, SURF, and ORB
algorithms are compared and the conclusion is that the SIFT algorithm achieves the most correct
matches but is slow and the ORB algorithm achieves the second most correct matches but is
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faster than the other two algorithms. Other algorithms can find position relative to known objects
as pre-defined 3D models [54]. Matched points can either be utilised by detecting the motion
of the camera through optical flow [72], [73] or by matching points of images captured by two
different cameras [48], [68], [71]. Simplified methods of feature extraction also exist which
binary images such as contour detection [74] or linear feature detection and extraction [75]. This
work used the SURF algorithm and borrows from the work of [68] to utilise the GPU of the base
station computer to allow for real time processing of the captured images and feature matching.

Computer vision for robots has mostly been used with robot manipulators [44], [54], [76] and
mobile robots [77]–[79]. Early work which combines vision and VTOL UAVs used custom
hardware for the vision task [80]–[82]. Off-the-shelf hardware and eye-in-hand cameras (camera
mounted on the robot) have been used mainly for autonomous landing of VTOL UAVs [83]–[86]
and obstacle avoidance [87], [88]. Position control of UAVs has mainly been performed using
monocular vision [75], [89], [90] while position control using stereo vision has mostly been
performed using mobile robots.

2.3 Thesis Contributions

• Real-time implementation of a stereo-vision based position estimation using a Kalman
filter.

• Real-time implementation of a stereo-vision based position control scheme on a quadrotor
UAV.
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Chapter 3

Attitude Representation

The attitude of an object refers to the orientation of that object in space. The orientation of an
object describes the rotation of that object with respect to a reference coordinate frame. The
reference frame is typically attached to a large object such as the Earth or the Sun. There are
many different methods of expressing the attitude of an object, depending on the need of the ap-
plication. The most common methods of attitude representation are: the direction cosine matrix,
Euler angles, and the unit quaternion; a detailed survey of attitude representations is presented by
Schuster in [91]. In aerospace applications, coordinate frames are represented by the right-hand,
North-East-Down (NED) coordinate system. NED means the unit vectors which form the x-y-z
axes and are oriented to point forward, right, and down, respectively. The following discussion
refers to two coordinate frames which are differentiated from one another by their subscripts.
The static coordinate frame, called the reference or inertial frame, is denoted by the subscript
I. The inertial frame is used as a fixed reference point with respect to any other frames. The
coordinate frame affixed to the center of mass of the aircraft, called the body-fixed frame, is de-
noted by the subscript B. The body-fixed is used to represent the aircraft and rotates with the
aircraft. The aircraft’s orientation can then be described be determining a rotation which aligns
the body-fixed frame to the inertial frame. These subscripts are used in the following subsections
to describe vectors expressed in its respective coordinate frame. An example of the coordinate
frames is shown in fig. 3.1.

This chapter describes methods to transform a vector expressed in one coordinate frame to be ex-
pressed in another coordinate frame. First, the direction cosine matrix is discussed in section 3.1.
In section 3.2, the Euler angles are discussed and a rotation matrix is constructed using the Euler

P
x

z

I

y

B
R

FIGURE 3.1: NED inertial and body-fixed coordinate frames.
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angles. Then the unit quaternion is discussed in section 3.3 and a rotation matrix is constructed
using the quaternion parameters. Last, the methods are compared in section 3.4.

3.1 Direction Cosine Matrix

The direction cosine matrix, also simply called the rotation matrix, provides a global and unique
representation of an object’s attitude. Let x̂I , ŷI , ẑI and x̂B, ŷB, ẑB be the unit vectors which
form the axes of the inertial and body-fixed frames respectively. The direction cosine matrix
expresses the rotation of the body-fixed frame, B, with respect to the inertial frame, I, and is
given by:

I
BR =

 x̂B · x̂I ŷB · x̂I ẑB · x̂I
x̂B · ŷI ŷB · ŷI ẑB · ŷI
x̂B · ẑI ŷB · ẑI ẑB · ẑI

 . (3.1)

Here, u · v = ‖u‖‖v‖ cos (θ) is the dot product between two vectors and θ is the angle between
these vectors. The direction cosine matrix, R, is a member of the special orthogonal group in
three dimensions denoted by SO(3) and defined as:

SO(3) :=
{
R ∈ R3×3 | R>R = I3, det (R) = ±1

}
, (3.2)

where I3 is the square identity matrix of size three. If both coordinate frames which are related
through a rotation matrix are right-handed, then det (R) = +1 [92]. Successive rotations of
a coordinate frame can be performed by multiplication of the rotation matrices in the same se-
quential order that the rotations were performed. The result of combining rotation matrices in
this way will result in a single rotation matrix that contains the totality of the rotations, i.e.

B
DR
A
BR ≡ A

DR (3.3)

Let vI , vB ∈ R3 be vectors in I and B respectively. Assuming there is no displacement between
the origins of the two coordinate frames, these vectors are related by

vB = R>vI . (3.4)

Though the direction cosine matrix is a global and unique representation of an object’s attitude, a
key drawback is that this representation requires the estimation of nine unique parameters which
makes it computationally expensive. In the following section, the Euler angles will be presented
which only use three parameters for expressing an object’s attitude.

3.2 Euler Angles

The Euler angles of an object are three parameters which can describe the attitude of an object.
The Euler angles of a body are obtained through three successive rotations of a coordinate frame
and intermediate frames which are obtained after each rotation. Two successive rotations cannot
be about the same axis; however, the first and third rotation can be about the same axis. There
are twelve different sets of Euler angles; six symmetric sets whose first and third rotations are
about the same axis and six asymmetric sets where each rotation occurs about a different axis.
The twelve different sets of rotations are:
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x-y-x, x-z-x,

y-x-y, y-z-y,

z-x-z, z-y-z,

x-y-z, x-z-y,

y-x-z, y-z-x,

z-x-y, z-y-x,
In each set of rotations, the rotation axis is chosen from left to right. Within this work, the Euler
angle representation used is the z-y-x rotation sequence. Rotations about these axes using this
rotation sequence are referred to as the yaw, pitch, and roll angles respectively.

The Euler angles can be used to construct a rotation matrix by expressing each axis rotation as a
direction cosine matrix. A rotation about the z-axis by an angle of ψ is expressed as

Rz(ψ) =

cψ −sψ 0
sψ cψ 0
0 0 1

 , (3.5)

where cψ = cos (ψ) and sψ = sin (ψ). Similarly, rotations about the y- and x-axes by angles of
θ and φ, respectively, are expressed as

Ry(θ) =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 , (3.6)

Rx(φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

 , (3.7)

where cφ = cos (φ), sφ = sin (φ), cψ = cos (ψ), and sψ = sin (ψ). The above axis rotations
about individual axes are then combined using matrix multiplication to yield a rotation matrix
which expresses an object’s rotation using the Euler angles. The rotation matrix using the z-y-x
sequence of rotations is expressed as:

R = Rz(ψ)Ry(θ)Rx(φ) =

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 . (3.8)

The Euler angles are useful because they provide an attitude representation which uses only
three parameters, the minimum number of parameters required to represent the attitude. The
Euler angles are also an intuitive method of visualising an object’s rotation and they provide a
unique representation for each orientation. The key drawback of the Euler angles is that they do
not provide a global representation of the attitude. At a rotation of θ = π/2, the dynamics of the
Euler angles are singular. The most commonly used non-singular attitude representation is the
unit quaternion which is presented in the following section.



Chapter 3. Attitude Representation 12

3.3 Unit Quaternion

The unit quaternion is an attitude representation which uses only four parameters and is global.
A unit quaternion is defined on the four dimensional Hamiltonian space as:

H :=
{
Q ∈ R4 | ‖Q‖2 = 1

}
, (3.9)

where ‖x‖ denotes the vector norm of x and

Q =


cos (γ/2)

k̂x sin (γ/2)

k̂y sin (γ/2)

k̂z sin (γ/2)

 =

[
cos (γ/2)

k̂ sin (γ/2)

]
=

[
q0

q

]
. (3.10)

The unit vector k̂ = [k̂x k̂y k̂z]
> is the axis of rotation and γ is the rotation about k̂. In

eq. (3.10), q ∈ R3 such that q = [q1, q2, q3]>. A unit quaternion is bound by the restriction
that q2

0 + q>q = 1. The unit quaternion is capable of representing every orientation and angu-
lar velocity; however, it is not unique [93] since there are two quaternions for every orientation
[12]. To combine two quaternions, they may be directly multiplied together following the rules
of quaternion multiplication. Two quaternions, P,Q ∈ H, can be combined through quaternion
multiplication which is given by:

P�Q =

[
p0

p

]
�
[
q0

q

]
=

[
p0q0 − p>q

p0q + q0p + p× q

]
. (3.11)

Here, P,Q ∈ H are two arbitrary quaternions and � is the quaternion multiplication symbol;
quaternion multiplication is non-commutative.

Given Q from eq. (3.10), a rotation with the same magnitude but in the reverse direction is given
by

Q−1 =

[
q0

−q

]
, (3.12)

so that
Q−1 �Q = Q�Q−1 =

[
1 0 0 0

]>
:= QI , (3.13)

where QI is defined as the identity element. The identity element expresses the same rotation as
a rotation matrix evaluated as an identity matrix.

For an arbitrary vector, v ∈ R3, where vI = RvB, an equivalent expression using quaternions is

v̄I = Q� v̄B �Q−1, (3.14)

where Q is the quaternion associated with R, v̄I =
[
0 v>I

]>, and v̄B =
[
0 v>B

]>. A quater-
nion can also be expressed as a rotation matrix through the Rodrigues map

R (Q) : H→ SO(3) , (3.15)

such that
R (Q) =

(
q2

0 − ‖q‖2
)
I3 + 2qq> + 2q0 sk(q) , (3.16)
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where sk(·) represents the skew symmetric matrix which is defined as

sk(x) :=

 0 −x3 x2

x3 0 −x1

−x2 −x1 0

 , (3.17)

and is associated with the cross product, i.e. x × y = sk(x) y for any two vectors x,y ∈ R3,
where × is the cross-product operator. Evaluating eq. (3.16) and simplifying yields:

R (Q) =

1− 2
(
q2

2 + q2
3

)
2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) 1− 2
(
q2

1 + q2
3

)
2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) 1− 2
(
q2

1 + q2
2

)
 , (3.18)

which is a rotation matrix populated with the elements from a unit quaternion. Each quaternion
element in eq. (3.18) is multiplied by another quaternion element. Due to this, the rotational
representation given by a unit quaternion is ambiguous, i.e. R(Q) = R(−Q). This means the
unit quaternion has a 2:1 mapping of quaternions to any particular attitude, i.e. it is non-unique
for any given attitude. Despite the non-uniqueness of the unit quaternion, it is still incredibly
useful because it is a global method of attitude representation using the minimum number of
parameters. In the following section, the different attitude representations are compared through
the number of parameters required to express the attitude, their uniqueness, and whether or not
they are global.

3.4 Attitude Representation Comparison

TABLE 3.1: Attitude representation comparison

Representation No. of Parameters Global Unique
Direction Cosine Matrix 9 Yes Yes

Euler Angles 3 No Yes
Unit Quaternion 4 Yes No

Shown in table 3.1 is a comparison of the above attitude representations. While the direction
cosine matrix is a global and unique representation, it is also very computationally expensive
and therefore slow due to the requirement of estimating nine unique parameters. The Euler an-
gles provide an intuitive method of visualising attitude using only three parameters; however, it
has the major disadvantage of a discontinuity in its pitch dynamics when θ = π/2. The unit
quaternion provides a continuous global representation but has two different mathematical rep-
resentations for each physical orientation. Within this work, these representations are used in
concert to exploit their strengths while compensating for each representation’s respective weak-
ness. Since multiple methods of attitude representation are used, conversion between them may
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be necessary. The Euler angles may be converted to a unit quaternion by:

[
q0

q

]
=


cos
(
φ
2

)
cos
(
θ
2

)
cos
(
ψ
2

)
+ sin

(
φ
2

)
sin
(
θ
2

)
sin
(
ψ
2

)
sin
(
φ
2

)
cos
(
θ
2

)
cos
(
ψ
2

)
− cos

(
φ
2

)
sin
(
θ
2

)
sin
(
ψ
2

)
cos
(
φ
2

)
sin
(
θ
2

)
cos
(
ψ
2

)
+ sin

(
φ
2

)
cos
(
θ
2

)
sin
(
ψ
2

)
cos
(
φ
2

)
cos
(
θ
2

)
sin
(
ψ
2

)
− sin

(
φ
2

)
sin
(
θ
2

)
cos
(
ψ
2

)

 , (3.19)

and the quaternion may be converted to Euler angles by:φθ
ψ

 =

arctan2
(
q0q1 + q2q3, 1− 2(q2

1 + q2
2)
)

arcsin
(
q0q2 − q1q3

)
arctan2

(
q0q3 + q1q2, 1− 2(q2

2 + q2
3)
)
 , (3.20)

where atan2(y, x) is the arctan operator that returns an unambiguous angle based on the Cartesian
coordinates of x and y that preserves the quadrant of x and y.



15

Chapter 4

Attitude Estimation

This chapter describes the theory and implementation of the attitude estimation algorithm which
was chosen for this work. The goal of attitude estimation is to find a set of kinematics to make an
estimate of the attitude, or rotation matrix, R ∈ SO(3). The rotation matrix is described in more
detail in chapter 3. The algorithm was written using Arduino C/C++ programming language
and was programmed onto the ArduPilot Mega (APM) 2.5 device. The measurement devices
installed within the APM 2.5 that were utilised for the attitude estimation are:

• An Invensense MPU-6000 Inertial Measurement Unit (IMU).

• A Honeywell HMC5883L magnetometer.

The APM 2.5, the IMU, and the magnetometer are described in more detail in chapter 6. The
topics covered in this chapter are as follows:

1. Complementary Filter.

2. Conditioned Observer.

3. Discrete Implementation.

4.1 Complementary Filter

A complementary filter is a type of observer which fuses multiple independent noisy measure-
ments having complementary characteristics; it is termed an observer because the values which
are being estimated cannot be directly measured. The measurements which are being fused are:

1. The linear acceleration exerted on the quadrotor body by gravity and the movement of the
quadrotor.

2. The body-referenced magnetic field at the quadrotor.

3. The angular velocity of the quadrotor around the body-referenced axes.

The kinematics of the rotation matrix satisfy

Ṙ = Rsk(Ω) , (4.1)

where Ω ∈ R3 is the true, body-referenced angular velocity. Defining the measured angular
velocity as

Ωm := Ω + b, Ωm ∈ R3, (4.2)
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where b ∈ R3 is an unknown, slowly time-varying bias. The complementary filter requires two
non-collinear vectors to operate. Defining the following unit vectors:

uI := êz, vI :=
mI
‖mI‖

, (4.3a)

uB := −aB
g
, vB :=

mB
‖mB‖

, (4.3b)

where êz = [0, 0, 1]T denotes the unit vector of the z-axis of I which points toward the center
of the Earth, aB are measurements from the accelerometer on the quadrotor expressed in B, mI
is the local magnetic field expressed in I, mB are measurements from the magnetometer on
the quadrotor expressed in B, and g is the gravitational constant. The measurements from the
accelerometer, aB, and magnetometer, mB are assumed to be non-collinear. Additionally, the
accelerometer measurements are assumed to capture only the acceleration force exerted on the
quadrotor by gravity. The observer from [13] is given by:

˙̂
R = R̂ sk

(
Ωm − b̂ + σR

)
˙̂
b = −kIσR

σR = k1 sk(uB) ûB + k2 sk(vB) v̂B,

(4.4)

where
ûB := R̂uI , v̂B := R̂vI , (4.5)

R̂ is the estimate of the rotation matrix R, and b̂ is the estimate of the bias. The innovation term
is denoted by σR and kI , k1, and k2 are positive real gains. The filter given by eq. (4.4) was
proven in [13] to ensure almost global asymptotic stability and local exponential stability of the
equilibrium (R̃, b̃) = (I3, 0) where

R̃ := R̂>R, b̃ := b− b̂. (4.6)

It can be easily seen that σR will vanish when the estimated attitude matches the true attitude.
However, usage of the integral action in the bias estimation may lead to a drift over time in the
presence of measurement noise [18], [20]. This problem was solved through the introduction of
a saturation function in [18] and [20]. Another improvement proposed in [20] was to modify the
unit vectors defined in eq. (4.3) to locally decouple the roll and pitch estimations from the yaw
estimation to isolate the magnetometer perturbations from affecting the roll and pitch estimates.
These developments will be presented in the following section.

4.2 Conditioned Observer

The complementary filter given in [20] develops upon the work of [13], [18] and is termed “con-
ditioned observer.” The observer is “conditioned” by altering the innovation term and the unit
vectors defined in eq. (4.3). The purpose of these alterations is to ensure local decoupling of the
roll and pitch estimations from the magnetometer measurements and from the yaw estimation.
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The unit vectors defined in eq. (4.3) are redefined as:

uI := e3, vI :=
πuImI
‖πuImI‖

, (4.7)

uB := −aB
g
, vB :=

πuBmB
‖πuImI‖

, (4.8)

where πx := ‖x‖I3 − xx>, ∀x ∈ R3 denotes the projection onto the plane orthogonal to x. The
conditioned observer is given by:

˙̂
R = R̂ sk

(
Ωm − b̂ + σR

)
˙̂
b = −kbb̂ + kbsat∆(b̂) + σb, ‖b̂(0)‖ < ∆

σR = k1 sk(uB) ûB + k2ûBû
>
B sk(vB) v̂B

σb = −k3 sk(uB) ûB − k4 sk(vB) v̂B,

(4.9)

where kb, k1, k2, k3, k4, and ∆ are positive real numbers and sat∆(x) := x min(1,∆/‖x‖).
In this observer, if the measured accelerometer and magnetometer projection align with the es-
timated accelerometer and magnetometer projection then the innovation terms σR and σb will
vanish; however, in practice this will never happen due to measurement noise.

It is computationally expensive to compute the proposed observer given by eq. (4.9). Chapter 3
provides more details on attitude representation and how the different representations relate to
one another. To simplify the calculation of the attitude, the unit quaternion can be utilised to
express the attitude using four unique variables rather than use the rotation matrix with requires
nine unique variables to be estimated. The conditioned observer expressed using the quaternion
becomes: 

˙̂q =
1

2
A
(
Ω̂
)

q̂

˙̂
b = −kbb̂ + kbsat∆

(
b̂
)

+ σb, ‖b̂ (0)‖ < ∆

Ω̂ := Ωm − b̂ + σR, A
(
Ω̂
)

:=

 0 −Ω̂
T

Ω̂ − sk
(
Ω̂
)  .

(4.10)

4.3 Discrete Implementation

Implementation of the conditioned observer on the digital system of the APM 2.5, is performed
through discretisation. To accomplish this, Ω̂ and σb are assumed to remain constant over every
time period Sk := [(k − 1)T, kT ] , ∀k ∈ N given a small enough sample time T . Under this
assumption, the continuous values of Ω̂ and σb over the time period Sk are denoted as Ω̂k and
σb,k, respectively. The discretised attitude dynamics equation from eq. (4.10) can be expressed
as:

q̂k+1 = exp

(
T

2
A
(
Ω̂k

))
q̂k. (4.11)
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Expanding the exponential from eq. (4.11) using the Taylor expansion yields:

exp

(
T

2
A
(
Ω̂k

))
=
∞∑
i=0

1

i!

(
T

2
A
(
Ω̂k

))i
=I4 +

T

2
A
(
Ω̂k

)
+

1

2

(
T

2
A
(
Ω̂k

))2

+
1

6

(
T

2
A
(
Ω̂k

))3

+ · · ·

(4.12)

Equation (4.12) can then be simplified using the fact that

A
(
Ω̂k

)2
= −‖Ωk‖2I4, (4.13)

where I4 is the square identity matrix of size four. This allows eq. (4.12) to be simplified as

exp

(
T

2
A
(
Ω̂k

))
= cos

(
T‖Ω̂k‖

2

)
I4 +

T

2
sinc

(
T‖Ω̂k‖

2

)
A
(
Ω̂k

)
, (4.14)

where sinc(x) = sin (x)/x. Substituting eq. (4.14) into eq. (4.11) then yields

q̂k+1 =

(
cos

(
T‖Ω̂k‖

2

)
I4 +

T

2
sinc

(
T‖Ω̂k‖

2

)
A
(
Ω̂k

))
q̂k. (4.15)

From eq. (4.9), the gyro-bias is assumed to be bounded in norm by ∆, i.e., ‖b‖ ≤ ∆. As stated
above, the bias innovation term, σb, was assumed to be constant over every time period Sk. The
bias estimation discretisation was obtained using the Euler approach as follows:

b̂k+1 − b̂k
(k + 1)T − kT

= −kbb̂k + kbsat∆

(
b̂k

)
+ σb,k, (4.16)

which was rearranged to yield:

b̂k+1 = T
(
−kbb̂k + kb sat∆

(
b̂k

)
+ σb,k

)
+ b̂k. (4.17)

Expressing eq. (4.15) and eq. (4.17) together yields the following discrete observer:
q̂k+1 =

(
cos

(
T‖Ω̂k‖

2

)
I4 +

T

2
sinc

(
T‖Ω̂k‖

2

)
A
(
Ω̂k

))
q̂k

b̂k+1 = T
(
−kbb̂k + kb sat∆

(
b̂k

)
+ σb,k

)
+ b̂k.

(4.18)

The observer given by eq. (4.18) is a discretized version of the observer given by eq. (4.10). In
practice, the trigonometric functions of eq. (4.18) are taken as a second order approximation for
computational efficiency. This was the observer that was implemented for this work on the APM
2.5.
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Chapter 5

Mathematical Model of a Quadrotor

This chapter focuses on the mathematical model of a quadrotor. In the first section, the math-
ematical equations used to represent the model of a quadrotor are presented. The more widely
used model which uses the rotation matrix is presented first and is followed with an equivalent
model which uses the unit quaternion. Once that’s done, the control inputs will be discussed and
will show how the actuators on the quadrotor generate the control inputs.

5.1 Model Definition

The mathematical model which will be established considers a quadrotor UAV. The mathematical
model describes the dynamic equations and is also referred to as the dynamical model. The model
includes the rotation matrix and refers to coordinate frames which are related by the rotation
matrix. The rotation matrix and coordinate frames are described in more detail in section 3.1 The
dynamical model described in [94] is given as

ṗ = v (5.1a)

mv̇ = mgêz + F (5.1b)

Ṙ = Rsk(Ω) (5.1c)

IqΩ̇ = sk(Ω) IqΩ + τ q (5.1d)

where p = [x, y, z]> denotes the position of the center of mass of the quadrotor expressed in I,
m denotes the mass of the quadrotor in kilograms, v = [vx, vy, vz]

> denotes the linear velocity
of the center of mass of the quadrotor expressed in I, êz = [0, 0, 1]> denotes the unit vector of
the z-axis of I, F denotes the force applied to the quadrotor expressed in I, Ω = [Ω1,Ω2,Ω3]>

denotes the angular velocity of the quadrotor expressed in B whose origin is the center of mass
of the quadrotor, Iq ∈ {R3x3 | Iq = ITq > 0} denotes the symmetric, positive-definite constant
inertia matrix of the quadrotor expressed in B, and τ q = [τ1, τ2, τ3]> denotes the control torque
vector expressed in B. These symbols are summarized in table 5.1.

The dynamical model described in eq. (5.1) uses the rotation matrix which contains nine pa-
rameters. For computational efficiency, the quadrotor’s mathematical model can be expressed
using the unit quaternion which uses only four parameters. The unit quaternion is discussed in
more detail in section 3.3. Due to the orientation of the rotors mounted on the quadrotor, the
force which the rotors exert is in the direction of ê3, the unit vector which corresponds to the
downward axis of B. The force, F, that the quadrotor exerts is equal to the thrust output by the
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TABLE 5.1: Summary of symbols used in the mathematical model.

Symbol Definition

I = {êx, êy, êz} Inertial referenced coordinate frame oriented in NED.

B = {ê1, ê2, ê3} Body referenced coordinate frame oriented in NED.

p = [x, y, z]> Position of the origin of B expressed in I.

v = [vx, vy, vz]
> Velocity of the origin of B expressed in I.

m Mass of the quadrotor.

g Gravity constant.

F Force exerted by the quadrotor.

R> Rotation of B with respect to I.

Ω = [Ω1,Ω2,Ω3]> Angular velocity of the quadrotor around B.

Iq 3x3 inertial matrix of the quadrotor expressed in >.

τ q = [τ1, τ2, τ3]> Control torques of the quadrotor.

propellers and can be expressed as
F := −T R>êz, (5.2)

where T is the total thrust exerted by the rotors and êz = [0, 0, 1]> denotes the unit vector of
the z-axis of I. The thrust is negative because the coordinate frames are NED and the rotors are
accelerating the quadrotor in an upwards direction. The thrust is defined as

T :=
4∑
i=1

fi = b
4∑
i=1

ω̄2
i , (5.3)

where fi = b ω̄2
i is the thrust exerted by a single rotor and i = {f, l, b, r} corresponds respec-

tively to the front, left, back, and right rotors of the quadrotor. The constant b is a positive
proportionality constant depending on the density of air and ω̄i is the angular velocity of a single
rotor. The control torques, τ q, can be expressed as functions of the angular velocities of the four
rotors:

τ1 = db
(
ω̄2
l − ω̄2

r

)
(5.4a)

τ2 = db
(
ω̄2
f − ω̄2

b

)
(5.4b)

τ3 = κ
(
ω̄2
f + ω̄2

b − ω̄2
l − ω̄2

r

)
, (5.4c)

where d > 0 is the distance from ê3 to a rotor’s axis of rotation that is orthogonal to ê3 and κ > 0
is a constant which depends on the shape of the propellers. It was assumed that d is the same for
each rotor. The thrust and control torques were combined into a control vector which is defined
as

T :=


T
τ1

τ2

τ3

 = M ω̄ (5.5)
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where

M :=


b b b b
0 db 0 −db
db 0 −db 0
κ −κ κ −κ

 , (5.6)

and
ω̄ :=

[
ω̄2
f , ω̄

2
l , ω̄

2
b , ω̄

2
r

]T
. (5.7)

The matrix M is always invertible for d, b, κ > 0. The control vector, T, given in eq. (5.5) can
then be used to specify the required angular velocities of the rotors as

ω̄ = M−1T =


(4b)−1 0 (2db)−1 (4κ)−1

(4b)−1 (2db)−1 0 −(4κ)−1

(4b)−1 0 −(2db)−1 (4κ)−1

(4b)−1 −(2db)−1 0 −(4κ)−1

T. (5.8)

In certain cases, M−1T may result in some elements of ω̄ being negative suggesting a reversal
of rotation of the rotor which is not practical. This is unlikely to occur if the total thrust, T , is
sufficiently large with respect to the control torques [32].

The mathematical model used within this work for designing the control system can now be
expressed. Replacing F with the expression given by eq. (5.2), the rotation matrix in eq. (5.1c)
with the unit quaternion, and including eq. (5.8) as part of the mathematical model yields:

ṗ = v (5.9a)

mv̇ = mgêz − T RTê3 (5.9b)

Q̇ =
1

2
Q�

[
0
Ω

]
(5.9c)

IqΩ̇ = sk(Ω) IqΩ + τ q (5.9d)

ω̄ = M−1T, (5.9e)

where � is the quaternion multiplier described in section 3.3.
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Chapter 6

Experimental Platform: Hardware

This chapter details the hardware of the experimental platform which was used for this experi-
ment. Figure 6.1 shows a block diagram of the experimental platform. The experimental platform
consists of a quadrotor UAV with two downward facing cameras to enable stereo vision and a
desktop computer to perform the required image processing. The cameras and IMU are used to
estimate the position and linear velocity of the quadrotor. Section 6.1 details the airframe of the
quadrotor UAV and hardware which were needed for flight; this includes the body of the quadro-
tor, the motors and ESCs, the control unit which was mounted on the quadrotor, and the hardware
which was used for control communication. Next, section 6.2 details the cameras which were
used and the hardware associated with transmitting the camera image to the base station. Sec-
tion 6.3 shows the desktop computer which was used for image processing. The final section of
this chapter details the methods which were used to calibrate the sensors used for this experiment.
The sensors which were used are the IMU, which contains an accelerometer, a gyroscope, and a
magnetometer, and the cameras. Chapter 7 also presents the results of the calibration process.

6.1 Airframe and Flight Hardware

A large number of open source platforms exist for quadrotor UAVs; a survey of the most popular
platforms is given in [42]. A block diagram of the experimental setup is shown in fig. 6.1. Note
that the cameras are on the quadrotor but do not have a connection to the other hardware. This
is because the cameras act independently to the rest of the hardware on the quadrotor, capturing

Quadrotor

APM 2.5

Cameras

T2

T1

XBee

Serial

Motor
f

Motor
l

Motor
b

Motor
r

Rs

Base Station

R1

R2

Ts

Image

Processing

Position of
feature in

left camera
frame

FIGURE 6.1: Block diagram of the experimental platform.
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images and transmitting them to the base station computer when ready. The position extraction
performed by the base station computer calculates the position of the detected feature in the
camera frame of the left camera and a rotation must still be applied to this position vector to
bring it into the inertial frame.

The airframe for this experiment was the 3DRobotics Quad-C [95] quadrotor platform, previ-
ously available from 3DRobotics, shown in fig. 6.2. The setup used the legacy APM Copter [96]
hardware, the APM 2.5. The APM 2.5 was programmed using the Arduino C/C++ language and
is mounted on the quadrotor body.

FIGURE 6.2: Quadrotor experimental platform.

6.1.1 Quadrotor Frame and Body

The quadrotor consisted of a cross frame of square aluminium channels for the arms, bolted to
each arm are two composite plates which act as the landing legs. The central body consisted of
two composite plates bolted to the top and bottom of the aluminium arms, as shown in fig. 6.2.
Mounted above the central body were smaller composite plates to which the electronics are
mounted. Shown in fig. 6.3 are the two configurations for a quadrotor which are named by the
shape of the arms when viewed from above. This work uses the plus (+) configuration for the
four motors, where a single motor was mounted on the front, another to the left, one behind, and
the last to the right, all respective to the central body. The motors and ESCs are discussed further
in the following subsection.
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Front

(A) Plus or “+” configuration.

Front

(B) Cross or “X” configuration.

FIGURE 6.3: Quadrotor motor configurations.

6.1.2 Motors, Electronic Speed Controllers (ESCs), and Power Supply

The four motors, where one was mounted at the end of each arm, are A2830-12, 850Kv motors
from 3DRobotics [97]. These motors are brushless Direct Current (DC) outrunner motors; out-
runner motors produce motion by spinning their outer shell around the stationary central wind-
ings. Specifications for the motors are shown in table 6.1, where RPM denotes Rotations Per
Minute. Each motor spins a slow flyer propeller which is ten inches in diameter and has a pitch

FIGURE 6.4: A2830-12 outrunner motor with 4.7in/rev propeller attached.

of 4.7in/rev. Shown in fig. 6.4 is one of the motors used with the propeller mounted on the
motor. The propeller pitch is defined as follows:

pitch :=
vprop
n

, (6.1)

where vprop is the forward speed of the propeller in in/s and n is the propeller angular velocity
in rev/s. The pitch ratio is the forward distance the propeller would move in one revolution if
it were unimpeded by negative forces [98], [99]. The quadrotor had four ESCs installed, one
for each of its motors, and were mounted to the sides of the its arms. An example of one of the
ESCs is shown in fig. 6.5. These ESCs were purchased from 3DRobotics as part of the Quad-C
platform [95]. The ESCs are capable of driving motors at a continuous current of 20A up to a



Chapter 6. Experimental Platform: Hardware 25

TABLE 6.1: Motor characteristics

Model Input Voltage Angular Speed Thrust Mass Max Power
A2830-12 7.4-15V 850Kv (RPM/V) 880g 52g 200W

FIGURE 6.5: 20Amp ESC used for this work.

speed of 35000RPM [100]; however, the propellers are limited by their manufacturing design
to revolution speeds up to 6500RPM [101]. The quadrotor was powered by a 3-cell, 4000mAh
lithium-polymer (LiPo) battery which had a full charge at 12.6V and was fully discharged at
9.9V . A power distribution board was used to provide power to the ESCs. The voltage of the
battery was regulated to 5V in order to power the electronics on-board the quadrotor, including
the microcontroller and cameras. The microcontroller then provided power to the remote control
(RC) receiver and XBee serial communication device. The control unit and microcontrollers are
discussed in the following subsection.

6.1.3 Control Unit

The control unit used was the APM 2.5, a custom Arduino board from 3DRobotics. The control
system consisted of two microcontrollers and two measurement devices which are discussed as
follows.

Microcontrollers

The APM 2.5 uses an ATmega2560 microcontroller from Atmel as its main microcontroller.
The ATmega2560 is a low-power complementary metal-oxide semiconductor (CMOS) eight-
bit microcontroller based on the enhanced reduced instruction set computer (RISC) architecture
designed by AVR. The ATmega2560 has a clock speed of 16MHz and communicated with
peripheral devices through two methods:

1. A hardware serial peripheral interface (SPI).

2. Inter-integrated circuit (I2C) ports.

The APM 2.5 also includes a secondary microcontroller: an ATmega32U2 from Amtel. The
ATmega32U2 is responsible for the programming of the ATmega2560 and some low level op-
erations, such as Pulse-Position Modulation (PPM) control of the motor speeds and processing
received Remote Control (RC) signals. The main control loop operates on the ATmega2560
was programmed to operate update every 1/100s to ensure that new measurements would be
available at the beginning of the control loop.
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Measurement Devices

There are two measurement units installed on the APM 2.5: an Invensense MPU-6000 [102] iner-
tial measurement unit (IMU) and a Honeywell HMC5883L [103] magnetometer. The MPU-6000
contains a three-axis accelerometer and a three-axis gyroscope, which measure linear accelera-
tion and angular velocity respectively. The MPU-6000 includes its own configurable Digital
Low-Pass Filter (DLPF). Possible configurations for the DLPF are shown in table 6.2, for more
information see [104]. For this work the DLPF was configured to a cut-off frequency of 20Hz

TABLE 6.2: DLPF configurations for the MPU-6000.

Accelerometer (Fs = 1kHz) Gyroscope
Bandwidth (Hz) Delay (ms) Bandwidth (Hz) Delay (ms) Fs (1kHz)

260 0.0 256 0.98 8
184 2.0 188 1.9 1
94 3.0 98 2.8 1
44 4.9 42 4.8 1
21 8.5 20 8.3 1
10 13.8 10 13.4 1
5 19.0 5 18.6 1

for the gyroscope to ensure acceptable noise filtering; this configuration ensured that new data
measurements would be available every time the control loop ran.

The HMC5883L magnetometer is designed for low-field magnetic sensing. It contains a three-
axis magnetoresistive sensors with twelve-bit analogue to digital conversion (ADC) which en-
ables 1 − 2◦ of accuracy. The HMC5883L is configurable to provide a continuous output rate
of 0.75− 75Hz averaged over one, two, four, or eight samples. This experiment was performed
with an output rate of 75Hz due to the agile performance of the quadrotor, averaged over the
maximum quantity of eight samples. These measurement devices were used in conjunction with
a hand-held remote controller or the cameras to control the position and orientation of the quadro-
tor. The remote controller is discussed below.

6.1.4 Remote Control

The remote control (RC) radio transmitter and receiver pair used in this work were the FlySky
FS-TH9X, a hand-held, eight-channel transmitter, and a Flysky FS-R8B receiver [105]. These
devices operate on a base frequency of 2.4GHz and data is sent between the transmitter and
receiver using PPM signals. For this work, six channels are actively used. These channels are
used to control the attitude (roll, pitch, and yaw), adjust the throttle, enable or disable the motors,
and switch between manual and automatic position control. The PPM values for the attitude
and thrust vary from approximately 1000 to 2000 with a midpoint at approximately 1500. The
PPM values for the motor enable/disable and operation mode were set to toggle switches which
set them to the minimum value of 1000 or the maximum value of 2000. The controls for the
attitude are automatically returned to the midpoint when not in use by springs internal to the
transmitter. This is done to allow positive or negative adjustment of the quadrotor’s attitude where
the midpoint is treated as 0◦. The thrust control does not have a spring because while adjusting
the thrust it was often desirable to set the thrust to a constant value to hover the quadrotor.
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The transmitted attitude controls are converted to a desired quaternion through [32]

Qd =


cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)
sin(φ/2) cos(θ/2) cos(ψ/2)− cos(φ/2) sin(θ/2) sin(ψ/2)
cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)
cos(φ/2) cos(θ/2) sin(ψ/2)− sin(φ/2) sin(θ/2) cos(ψ/2)

 , (6.2)

where φ, θ, and ψ are the Euler angles for the roll, pitch, and yaw, respectively, of the quadrotor.
This Qd is used by the control law to generate the required control torques to determine the
rotor speeds to control how the quadrotor moves. The yaw control differs from the roll and pitch
by considering the yaw control as a desired angular velocity rather than a desired angle. This
treatment of yaw by the control system ensures that releasing the manual yaw control stick will
not be interpreted as a command to return to a yaw angle of 0◦. This was done because it was
sometimes desirable to rotate the quadrotor in a complete circle rather than the minor adjustments
which were needed for the roll and pitch.

6.1.5 Serial Communication

Telemetry data was sent and received on-board the quadrotor using a XBee Series 1 RF Module
[106] from Digi International, where RF represents Radio Frequency. This module communi-
cates with the APM 2.5 using the SPI. This data was sent and received at the base station com-
puter by a paired XStick USB Adapter [107] shown in fig. 6.6, where USB represents Universal
Serial Bus. This module was used to receive position data from the base station, position data
which was extracted from stereo vision images. The module was also utilized to send other data
to the base station, such as attitude calculations, accelerometer measurements, and data which
was utilized for code or hardware troubleshooting.

6.2 Cameras

The cameras which were used in this work were mounted on the bottom of the quadrotor in hor-
izontal stereo configuration as shown in fig. 6.7. They are mounted like this to mimic the stereo
vision of human eyes which allows for intuitive analysis of the images. The data captured by the
cameras is transmitted as an analogue signal by a wireless transmitter to receivers mounted at
the base station computer. The wireless transmitters and receivers are discussed in the following
subsections.

6.2.1 Image Capturing

The device which was used to capture images from the environment is a CMOS camera module
made by SparkFun Electronics [108]. The camera lenses were capable of capturing a field of
view (FoV) of 130◦. The CMOS detector inside the camera is a PC1089K [109]; it contains an
array of pixels with dimensions of 728 × 488. The detector is configured to output a composite
analogue signal which is capable of 30 frames per second (fps).

6.2.2 Wireless Transmitter/Receiver

The transmitters mounted on the quadrotor were responsible for sending visual data to the base
station computer. The transmitters used were two model TS-351 wireless transmitters from
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FIGURE 6.6: Base station computer with XStick (circled in red) and video re-
ceivers (circled in yellow).

BosCam [110]. These transmitters operated at 5.8GHz and could be configured to operate on
one of sixteen possible channels. The power the transmitters required for operation was 200mW .
Cloverleaf-style antennas were used on the transmitters and receivers. The receivers (shown in
fig. 6.6) are connected to the base station computer via a composite-to-USB video converter from
StarTech [111]. The base station computer is discussed in the following section.

6.3 Base Station Computer

The base station computer was a Lenovo IdeaCentre K430. It contained an i7-3770 Central Pro-
cessing Unit (CPU), 12GB of Random Access Memory (RAM), and a NVidia GeForce GT640
Graphics Processing Unit (GPU). The XStick, discussed in section 6.1.5, was insterted into one
of the front-facing USB ports to ensure line of sight transmission between the base station and
the quadrotor. The software used on the base station was written in C++ language. The software
libraries used were the Open Computer Vision (OpenCV) libraries, version 4.0.0, and the NVidia
GPU Computing Toolkit, version 10.1.
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FIGURE 6.7: Cameras mounted on the bottom of the quadrotor in horizontal
stereo.
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Chapter 7

Experimental Platform: Sensor
Calibration

Each sensor was calibrated before its use since electronics are prone to biases which must be
compensated for in order to improve the accuracy and consistency of the measurements. For
example, accelerometers and gyroscopes are prone to slowly varying or constant measurement
biases. Magnetometers, which measure ambient magnetic fields, cannot distinguish between
the Earth’s magnetic field (which was used as the reference magnetic field) and locally induced
magnetic fields. The lenses of cameras have a curved shape in order to capture a wider field of
view; unfortunately, this curvature results in what is referred to as lens distortion when capturing
images. These aforementioned inaccuracies must therefore be compensated for via calibrations.
The following discussion details the calibration techniques applied for each of the quadrotor’s
sensors and the results which were acquired.

7.1 Accelerometer

The accelerometer measured the instantaneous linear acceleration of the quadrotor. The ac-
celerometer measurements are expressed as

aB = R> (aI − gêz) + ba + ηa, (7.1)

where a is linear acceleration, B as a subscript represents a vector expressed in the body-fixed
frame, R is the rotation matrix, I as a subscript represents a vector expressed in the inertial
frame, g is the gravity constant, êz is a unit vector which represents the down axis of the inertial
frame, ba is a constant bias term of the accelerometer, and ηa is additive white Gaussian noise
(AWGN) affecting the accelerometer measurements. To compensate for the bias term, ba, the
drone was kept stationary at the identity orientation, i.e. aB = [0 0 0]T and R = I3, and the bias
estimate was calculated as

ba =
1

N

N∑
i=1

aB,i + gêz, (7.2)

where N is some number of samples and i is the sample index. This bias value was then sub-
tracted from accelerometer measurements to compensate for this initial offset.
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7.2 Gyroscope

The gyroscope measured the instantaneous angular velocity of the quadrotor. The gyroscope
measurements are expressed as

ΩB = R>ΩI + bω + ηω (7.3)

where ω is angular velocity, bω is a constant bias term of the gyroscope, and ηω is AWGN
affecting the gyroscope measurements. To compensate for the bias term, bω, the drone was kept
stationary at the identity orientation and the bias estimate was calculated as

bω =
1

N

N∑
i=1

ΩB(i) . (7.4)

Similar to the accelerometer, this bias value was then subtracted from gyroscope measurements
to compensate for this initial offset.

7.3 Magnetometer

The magnetometer measured the ambient magnetic field. The magnetometer measurements are
expressed as

mB = DR>mI + bm + ηm, (7.5)

where m is the measured ambient magnetic field, D is the distortion of the magnetic field, bm is
a constant bias term of the magnetometer, and ηm is AWGN affecting magnetometer measure-
ments. The distortion was determined using the method described in [43], [86], [112], [113].
The distortion matrix, D ∈ R3×3 is given as

D =

 ε1 0 0
ε2 sin(δ1) ε2 cos(δ1)

ε3 sin(δ2) cos(δ3) ε3 sin(δ3) ε3 cos(δ2) cos(δ3)

 (7.6)

where εi is a total scale error and δi is a sensor misalignment angle, for i = {1, 2, 3}. If the noise
is neglected, then eq. (7.5) can be written as

R>mI = D−1 (mB − bm) , (7.7)

where

D−1 =

D1 0 0
D2 D3 0
D4 D5 D6

 , (7.8)
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and

D1 =
1

ε1
(7.9)

D2 = −tan δ1

ε1
(7.10)

D3 =
1

ε2 cos δ1
(7.11)

D4 =
tan δ1 tan δ3 − tan δ2 cos δ2

ε1 cos δ2
(7.12)

D5 = − tan δ3

ε2 cos δ1 cos δ2
(7.13)

D6 =
ε1 cos δ2

cos δ3
. (7.14)

Taking the norm of eq. (7.7) results in

C1m
2
Bx + C2mBxmBy + C3mBxmBz + C4m

2
By + C5mBymBz + C6m

2
Bz

+ C7mBx + C8mBy + C9mBz = C10 (7.15)

where the coefficients, Ci, are nonlinear functions of ε, δ, b, and ‖mI‖. The value of ‖mI‖
was found using the global magnetic field calculator in [114]. A set of N data points from the
magnetometer are collected. Rewriting the system as

MC = I (7.16)

where

M =

m
2
Bx,1 mBx,1mBy,1 · · · mBz,1
...

...
. . .

...
m2
Bx,N mBx,NmBy,N · · · mBz,N

 , C =

C1/C10
...

C9/C10

 , I =

1
...
1

 . (7.17)

Isolating C in eq. (7.16) yields
Cest =

(
MTM

)−1 MT I, (7.18)

where Cest is a least-squares solution for C. This system of nine nonlinear equations, with nine
unknowns (ε, δ, and b), can then be solved numerically. Planar plots, and a three dimensional
plot, of the uncalibrated and calibrated data are shown in fig. 7.1 The values obtained for this
experiment were:

δ =

0.8949
0.8767
0.8423

 , ε =

−0.0387
0.0200
−0.0412

 , b =

0.0611
0.0165
0.0777

 . (7.19)

These values were then substituted into eqs. (7.9) to (7.14) to be used in eq. (7.7) as the values
of D−1.
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FIGURE 7.1: Magnetometer calibration results.

7.4 Cameras

Cameras suffer from inherent distortion caused by the way that light is bent by the camera lens.
To correct for this distortion, inherent parameters of the camera must be determined. A method
similar to Tsai [58] was used from the OpenCV libraries to determine the intrinsic parameters
of the camera. This is discussed in terms of individual camera calibration and in terms of stereo
camera calibration in the following subsections.

7.4.1 Individual Camera Calibration

The first step from [58] was to find a rigid body transformation between the inertial frame I and
the camera frame C: xCyC

zC

 = I
CR

xIyI
zI

+

TxTy
Tz

 . (7.20)

The rotation matrix, ICR, and translation vector, T = [Tx, Ty, Tz], are known as extrinsic param-
eters; they are parameters which are external to the camera and affect how captured points are
expressed as coordinates. The rotation matrix is defined such that

xC = C
IR
> xI . (7.21)
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The OpenCV calibration does not provide these parameters and they must be determined inde-
pendently. The pinhole camera projection showing the rotation and translation from C to I is
presented in fig. 7.2 [115]. Due to how the cameras were mounted on the quadrotor, a simpli-
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FIGURE 7.2: Pinhole camera projection.

fied approach was taken. Since the cameras rotate and translate with the quadrotor, the attitude
determined by the quadrotor could be used to transform the quadrotor’s position from B to I.
Therefore, it was sufficient to find

C
BR =

0 −1 0
1 0 0
0 0 1

 , C
BT =

 0.057
−0.057
0.055

 , (7.22)

which transformed pC to pB.

Next, the intrinsic (internal) parameters of the camera were determined. This was done using
a perspective transformation with pinhole camera geometry from the three-dimensional camera
coordinates to the ideal image coordinate:

u = f
x

z
, (7.23a)

v = f
y

z
, (7.23b)

where pu = [u, v, 1]T is the homogeneous position vector of ideal, undistorted pixel coordinates
in the image, f is the focal length of the camera which is defined as the distance from the ocular
center to the image plane in pixels, and [x, y, z]T are the 3D coordinates of the detected point
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with respect to C. The third step was to determine the radial lens distortion such that

XdD = u, (7.24a)

YdD = v, (7.24b)

where [Xd, Yd] are the detected image coordinate, and

D = 1 + κ1r
2 + κ2r

4 + κ3r
6 + · · · , (7.25)

where κi, i ∈ N are the distortion parameters. The final calibration step was to transform from
the detected image coordinates to the computer image coordinates by

Xf = sXd + cx, (7.26a)

Yf = Xd + cy, (7.26b)

where s is a scale factor defined by the ratio between the length and width of a CMOS element
and [cx, cy] are the coordinates of the center of the image in pixels. In [58], the center of the
image buffer was considered to be the image center for this calibration step; however, these
coordinates can be changed to translate the undistorted image in the computer display. Using the
OpenCV libraries and a series of images showing a known pattern, the intrinsic parameters of
the cameras were determined and are shown in table 7.1. The intrinsic calibration procedure was
performed for the left and right cameras independently.

TABLE 7.1: Individual intrinsic camera parameters.

Parameter Left Camera Right Camera
f 456.4 461.5
s 1.059 1.059
cx 331.4 341.6
cy 211.4 244.4
κ1 -0.5176 -0.4976
κ2 0.3257 0.2730
κ3 -0.1186 -0.0791

7.4.2 Stereo Camera Calibration

Shown in fig. 7.3 is a generalised version of data being captured from a scene in two viewpoints.
A line drawn through the optical center of one viewpoint, C1, and the optical center of the second
viewpoint, C2, is called the baseline. The points where this line intersects the image planes are
called the epipoles. Lines which pass through a detected image point and the epipole are called
epipolar lines. Stereo camera calibration has two goals:

1. Rotate the image planes such that the epipoles are at infinity; and

2. Translate the image planes such they are coplanar and the epipolar lines of each plane are
collinear.
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FIGURE 7.3: Generalized imaging of a scene using two viewpoints.[49]

A rectified pair of image planes with collinear epipolar lines is shown in Figure 7.4. Having
collinear epipolar lines is useful because it allows faster matching between the two views using
only horizontal scanlines. Appropriate scanlines can also be calculated if the fundamental matrix
of the two viewpoint system is known. The fundamental matrix relates homogeneous image co-
ordinates between the two images and can be determined using the normalized 8-point algorithm
[59]–[62]. The fundamental matrix is defined through

x′>Fx = 0, (7.27)

where x = [u, v, 1]> is the homogeneous coordinates of a detected point in the first image,
x′ = [u′, v′, 1]> is the homogeneous coordinates of a matching point in the second image, and

F ∈ {R3×3| rank(F ) = 2} (7.28)

is the fundamental matrix. If a point in the first image and F are known, then

l′ = Fx (7.29)

describes a line, l′, in the second image upon which the matching point will lie. Observing
fig. 7.3, if the fundamental matrix between the two image frames were known, then the line
upon which P2 lies can be calculated using the homogeneous coordinates of P1 in eq. (7.29). To
determine the values of F , eq. (7.28) is first rewritten as a linear equation:

u>i f = 0, (7.30)

where
ui = [uiu

′
i, viu

′
i, u
′
i, uiv

′
i, viv

′
i, v
′
i, ui, vi, 1]>, (7.31a)

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]>, (7.31b)

and Fij is the element of F at row i and column j. Given n point matches, eq. (7.28) can be
stacked to obtain

Unf = 0, (7.32)
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C2
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FIGURE 7.4: Rectified imaging of a scene using two viewpoints.[115]

where
Un =

[
u1 u2 · · · un

]>
. (7.33)

This set of linear equations can then be used to solve the for values of F , up to a scale, using a
least-squares solution. For more details, see [60].

The stereo vision system was rectified using the OpenCV libraries and a known pattern which
was captured simultaneously by the left and right cameras. The rotation matrices to rotate the
image planes of the left and right views to be coplanar were found to respectively be

Rl =

0.998 −0.002 0.07
0.003 0.9999 −0.011
−0.07 0.011 0.997

 , Rr =

 0.997 0.061 0.050
−0.061 0.998 0.011
−0.049 −0.014 0.999

 , (7.34)

and the fundamental matrix was found to be

F =

−8.86× 10−7 −6.20× 10−6 1.09× 10−2
1.97× 10−4 2.11× 10−5 −2.49× 10−1

7.89× 10−4 2.37× 10−1 1

 . (7.35)

The camera calibration also modified the scale and positioning of the images displayed by the
computer to align the scanlines which makes the epipolar lines collinear. The modified intrinsic
parameters of the stereo vision system are shown in table 7.2. The intrinsic camera parame-
ters for individual and stereo calibration were used as inputs for the “initUndistortRectifyMap”
OpenCV function [116] which calculated remapping matrices. These remapping matrices were
then applied to the captured image matrices which allowed rectification of the images for feature
detection, feature matching, and position determination.
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TABLE 7.2: Stereo intrinsic camera parameters.

Parameter Left Camera Right Camera
f 458.9 458.9
s 1.059 1.059
cx 280.0 280.0
cy 170.8 170.8
κ1 -0.5176 -0.4976
κ2 0.3257 0.2730
κ3 -0.1186 -0.0791
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Chapter 8

Position and Velocity Estimation and
Control Using Stereo Vision and
Kalman Filtering

This chapter details the linear position and velocity control of the quadrotor. A block-flow di-
agram of the overall control system is shown in fig. 8.1. In section 8.1, the position estimation
using stereo computer vision is detailed; the methods of filtering stereo vision point matches
and the geometry necessary for position determination of the quadrotor are discussed. The dis-
crete implementation of a Kalman filter is presented in section 8.2. Next, section 8.3 details the
determination of the control variables and how the position is ultimately controlled through ma-
nipulation of the attitude dynamics. Finally, in section 8.4 the performance of the implemented
position controller using stereo computer vision to estimate the position of a quadrotor is shown.

8.1 Position Estimation Using Stereo Computer Vision

The position of the quadrotor was estimated using the stereo vision cameras mounted on the
bottom of the quadrotor which faced downwards. Within the images, an object which closely
matched the desired star contour and enclosed the greatest number of pixels was utilised to de-
termine its position using the centroid of the contour. These centroids were used to determine the
position of the quadrotor relative to the detected contour using simple triangulation. To calculate
the depth of the observed centroid from the quadrotor, the geometry of the observation must be
established. The geometry of the camera, including the observed point and the captured point is

Control
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Rd
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Ω

R
Control
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Generate ωf
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Experimental
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FIGURE 8.1: Block diagram of the quadrotor’s control system.
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called the camera projection. The most commonly used camera projection is the pinhole camera
projection. It is the most common projection because of its simplicity. The simplicity is due to
the linear geometry which avoids nonlinearities that could be caused by the lens. The pinhole
camera method treats the camera lens as a single point to avoid nonlinear equations which would
be caused by the curvature of light on its way to the detector. These nonlinearities are accounted
for in the camera calibration which is discussed in detail in section 7.4. The geometry of the
pinhole camera projection is shown in fig. 8.2. Intuitively, the image capture plane can be moved
in front of the camera lens to avoid the need of inverting the image to determine the pixel coordi-
nates of the captured image feature. In fig. 8.2, Π is the image capture plane, p = [u, v, 1]T is the

Π

Oc

P

p

f Z

(A) A simplification of the camera’s physical layout.

p

Oc

Π

p

P

f

Z

(B) The utilised geometry of the pinhole camera projection.

FIGURE 8.2: The geometry of the pinhole camera projection where Π is the
image capture plane, p is the detected point in the image, Oc is the center of
mass of the camera, P is the detected physical point, f is the focal length of the

camera, and Z is the calculated depth of the detected point.

vector representing the homogeneous coordinates of the point in the image detector expressed in
pixels, P = [X,Y, Z]T is the point of interest in the environment relative to the camera expressed
in metres in the camera referenced frame C, 0c is the origin of the camera coordinate frame, also
called the ocular center, and is at the center of mass of the camera lens, and f is the focal length
of the camera in pixels. Due to the geometry of the pinhole camera projection, the ratio

X

p
=
Z

f
(8.1)

cannot be relied upon to determine the distance of a point from the camera because as long
as the point P lies along the line passing through OcP, the above ratio cannot be determined.
This is what causes the need of having two cameras. Two well-calibrated cameras with coplanar
image planes can be used to perform simple triangulation. Shown in fig. 8.3 is the geometry of
calibrated stereo cameras using the pinhole camera geometry where the subscripts l and r denote
features of the left and right camera’s pinhole camera projections, respectively, and b represents
the physical distance between the centres of mass of the camera lenses, is known as the baseline,
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FIGURE 8.3: Stereo pinhole camera geometry.

and is expressed in metres. Using the shown geometry, similar triangles can be constructed to
determine the depth of the point using a simple triangular ratio. The first triangle is created by
the detected point and the camera lens centres. The second triangle uses only internal aspects of
the cameras. The image planes are translated so that they share the same area of the plane they
occupy and the ocular centres become one point but the values of ul and ur are not changed. The
second triangle is then created by the points pl, pr, and Oc (Ocl and Ocr are a single point). The
ratio created by the similar triangles is therefore:

Z

b
=

f

ul − ur
, (8.2)

which can be solved to determine the image depth as:

Z =
fb

ul − ur
. (8.3)

After calculating the depth of the image, the remaining two dimensions of the three-dimensional
position of the cameras relative to the observed scene can be solved using a single camera and
similar triangles. The left camera was arbitrarily chosen. The values for X and Y can then be
found as:

X =
Z (ul − cl,x)

f
(8.4a)

Y =
Z (vl − cl,y)

f
. (8.4b)

To see how these ratios were constructed, see fig. 7.2.

The image depth was found using a single known object matched in the left and right camera
images. To determine the quadrotor’s horizontal position coordinates, this object was also used.
For this work, the four-pointed star shown in fig. 8.4 was used as the known object. The shape
was detected by finding closed contours in one image of the stereo pair. The detected closed
contours were then compared to a stored ideal contour by performing a correlation between the
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FIGURE 8.4: Four-pointed star used for horizontal position reference.

detected contours and the stored contour. The first step to finding a contour which could be
matched with the star was to detect all the contours within the image. The contours in the image
frame were detected using the following algorithm:

1. Convert the image to greyscale.

2. Invert the image.

3. Threshold the image so that regions which are currently very bright (originally very dark)
are solid white shapes and the reset of the image is black.

4. Perform morphological operations on the image to smooth edges.

5. Use the OpenCV function “findContours” on the image to detect closed shape contours.

The OpenCV function “findContours” uses the line detection algorithm from [117]. The “find-
Contours” function finds the contours of white shapes in the image, not dark shapes, which is
why the greyscale image was inverted.

Due to how the CMOS image sensors within the cameras capture an image, during high veloc-
ity manoeuvres the detected image could be distorted. The movement of the camera during the
16.67ms between the camera capturing the even and odd numbered lines would cause the image
to become distorted. This caused the contours to appear as much more complex than they truly
were. To smooth the objects in the thresholded image, a sequence of morphological operations
were performed. First, the shapes within the image were eroded; this means pixels with fewer
than four neighbouring white pixels would be set to black. Next, the white objects within the
image were dilated twice. Dilation sets any pixel with three or more neighbouring white pixels
to white. Finally, the image was eroded a second time. It was found that these morphological op-
erations allowed the contour of the star to be detected even under fast manoeuvres. The contours
were expressed by a minimal vector of points.
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Once the contours within the image were detected, a filtering process was performed to eliminate
any contours that would be poor matches. The contours were filtered out based on the following
five criteria:

1. The contour must be at least two pixels away from the edge of the image.

2. The contour must contain more than 350 pixels.

3. The ratio of the height to the width of the contour must be between 0.7 and 0.7−1.

4. The absolute difference between the number of points which describe the desired contour
and the number of points required to describe the detected contour must be less than or
equal to one.

5. The sum of absolute differences between the inverse of the first seven Hu invariant mo-
ments [118] must be less than 0.5 and greater than 10−7.

Contours too close to the edge of the image were discarded because the contour of an object par-
tially within the image frame could have the necessary geometry to provide a stronger correlation
to the star’s shape. This constraint was imposed after finding that the detected position would
step approximately 0.5m between image frames. It was found that most of the false positives
were filtered out and successful detection of the star was significantly increased after contours
near the edge of the image were filtered. Contours which enveloped less than 350 pixels were
chosen to be discarded because salt noise (random single white pixels) were found to have strong
correlations with the desired object due to the salt noise having perfect symmetry. Also, the
pixel area of the star’s contour was found to be greater than 350 pixels when the quadrotor was
at a distance of approximately 2.6m, the chosen maximum height due to hanging lights in the
experiment area. The hight:width ratios were chosen to be approximately square; the value 0.7
was chosen to ensure that at relatively extreme rotations for the application the star would still be
detected. The number of points contained within the minimal contour vector was the fourth cri-
teria. The difference between the number of points for the ideal star (eight points each describing
a vertex of the star) and the detected contour should be minimized. An absolute difference of
one was chosen because the star’s contour was not guaranteed to have exactly eight points de-
scribing it so some leeway was allowed (mostly described by eight points and sometimes nine).
Finally, the Hu invariants were used to compare contours. The contour matching algorithm from
the OpenCV libraries uses the Hu invariant image moments to compare contours. Hu invariant
moments are used because they are invariant to orientation and scale differences between two
objects. The bounds of the sum of absolute differences between the Hu invariant moments were
chosen as they are through testing. The lower bound of 10−7 was chosen because salt noise
was providing false positives. The upper bound of 0.5 was found empirically. If the star was
successfully detected, the position of the cameras relative to the observed scene could be easily
determined.

The above image processing was performed on the base station computer due to the processing
power that was required for the stereo image rectification and contour detection. The hardware
used made integration of the microcontroller with the cameras difficult since the cameras output
an analogue signal which the transmitter and receiver discussed in section 6.2.2 handled. The
software on the base station estimated the position of the camera relative to the detected features.
The duration of time required to perform this algorithm was transmitted to the quadrotor along
with the estimated position vector of the camera. A loop of the base station software was ap-
proximately 30ms, the duration of time between frame captures of the cameras. The position was
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then transformed from the image coordinate frame to the inertial frame by:

pI = I
BR
( B
CR

(
pC + B

CT
))
, (8.5)

where pI is the position of the quadrotor in I, IBR is a rotation matrix which rotates a vector
from B to I, BCR is a rotation matrix which rotates a vector from C to B, pC is the position of
the quadrotor in C, and BCT is a linear transformation from the origin of C to B. The transformed
position and time were used to fully estimate the position using the Kalman filter described in
the next section.

8.2 Discrete Kalman Filter

The data from multiple sensors must be fused on the quadrotor to estimate the position. The
Kalman filter was used in this work because the data was used to estimate the linear position
and velocity. The Kalman filter was implemented on a discrete system which necessitated that
the dynamics be discretized. The discretized version is based on the work from [119]. From
eq. (5.1), the translational dynamics of the quadrotor are:

ṗ = v

v̇ = u,
(8.6)

with
u := gêz + R̂aB, (8.7)

where R̂ is the estimated rotation matrix determined using the method described in chapter 4 and
aB is the accelerometer measurement. The state-space representation of the system is given by:[

ṗ
v̇

]
=

[
0 I3

0 0

] [
p
v

]
+

[
0
I3

]
u

y =
[
I3 0

] [p
v

] (8.8a)

ẋ = Ax +Bu

y = Cx,
(8.8b)

where x = [pT,vT]T. Discretizing eq. (8.8b) yields:

xk+1 = Fxk +Guk

yk = Hxk,
(8.9)

where

F =

[
I3 TI3

0 I3

]
, G =

[
1
2T

2I3

TI3

]
, H =

[
I3 0

]
, (8.10)

xk is the system state vector at time tk, uk is the linear virtual acceleration of the quadrotor
expressed in I at time tk, yk is a measurement at time tk, and T is the elapsed time between
iterations of the Kalman filter.
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The model used for the linearized Kalman filter is as follows:

A priori estimate :

{
x̂−k+1 = F x̂k +Guk

P−k+1 = FPkF
T +Qk

(8.11a)

A posteriori update :


Kk = P−k+1H

T
(
HP−k+1H

T + Ek

)−1

x̂k+1 = x̂−k +Kk

(
yk −Hx̂−k+1

)
Pk+1 = (I6 −KkH)P−k+1,

(8.11b)

where Pk is the estimate covariance matrix at time tk, Q is the process covariance matrix at time
tk, and Ek is the measurement covariance matrix at time tk. A hyphen as a superscript denotes
the value as an a priori estimate. The a priori estimate equations operate at a much higher
frequency than the a posteriori update equations. The a posteriori equations are calculated only
when a new measurement has been received and therefore act as a filter of the measurements. The
calculations were simplified to increase the speed of the algorithm by assuming the variances of
each axis were independent from one another. This assumption allowed Pk ∈ R2×2,Qk ∈ R2×2,
Ek ∈ R, and Kk ∈ R2 reducing the number of calculations required dramatically.

The process and measurement covariance matrices for each axis are given by

Qk =

[
σ2
q,pT 0

0 σ2
q,vT

]
(8.12a)

Ek = σ2
r , (8.12b)

where σ2 represents a particular variance. The variances for Q were estimated and then updated
between experiments to improve results. The variances forR were determined by calculating the
measurement variance of the camera system from multiple static points with known location and
averaging those variances.

A conceptualization of the Kalman filter is shown in fig. 8.5. The a priori estimates cycle con-
tinuously and whenever a measurement has been received, the switch closes after the state has
been estimated for that cycle and then the measurement is filtered.

8.3 Position Controller

Consider the following translational dynamics of the quadrotor:

ṗ = v

v̇ = µ
(8.13)

where µ = gêz − TmR
>êz .

The position controller operates using a hierarchical method. The attitude controller operates at a
much higher frequency than the position controller. The output of the position controller is used
as the control input for the attitude controller. For the design of the position controller, the linear
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x̂−k+1 = F x̂k +Guk

P−k+1 = FPkF
T +Qk

Kk = P−k+1H
T
(
HP−k+1H

T + Ek
)−1

x̂k+1 = x̂−k +Kk

(
yk −Hx̂−k+1

)
Pk+1 = (I2 −KkH)P−k+1

x̂−k = x̂k x̂k+1

A priori estimate.

A posteriori update.

FIGURE 8.5: Kalman filter block diagram.

dynamical errors are defined as:

p̃ := p− pd

ṽ := v − ṗd,
(8.14)

where pd is the desired position and ṗd is the desired linear velocity. Taking the derivative of the
errors yields:

˙̃p = ṗ− ṗd

˙̃v = v̇ − p̈d.
(8.15)

The virtual acceleration is then substituted into the error equations for the velocity derivative:

˙̃p = ṗ− ṗd

˙̃v = µ− p̈d.
(8.16)

The virtual acceleration error is defined as:

µ̃ := µ− µd, (8.17)

where µd = gêz − TmR
>
d êz . The virtual acceleration in eq. (8.16) is substituted with µd + µ̃ to

achieve:

˙̃p = ṗ− ṗd

˙̃v = µd + µ̃− p̈d.
(8.18)
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For simplicity, it was assumed that the desired virtual acceleration closely followed the virtual
acceleration and that µ̃ ≈ 0. Therefore:

˙̃p = ṗ− ṗd

˙̃v = µd − p̈d.
(8.19)

It was desired for µd to be a priori bounded, therefore it was designed as follows:

µd = p̈d −Kp tanh (p̃)−Kv tanh (ṽ), (8.20)

where

Kp =

kp,x 0 0
0 kp,y 0
0 0 kp,z

 , Kv =

kv,x 0 0
0 kv,y 0
0 0 kv,z

 , (8.21)

all diagonal elements of Kp and Kv are positive real values, and the hyperbolic functions act
element-wise on the vectors. To prove the asymptotic stability of the desired virtual acceleration,
consider the following positive definite Lyapunov function candidate:

V̇ = ṽ>Kp tanh (p̃) + ṽT ˙̃v (8.22)

whose time derivative is

V̇ =
[
1 1 1

]
Kpṽ tanh (p̃) + ṽT ˙̃v. (8.23)

In view of eq. (8.19) and eq. (8.20), the time derivative becomes

V̇ = −ṽTKv tanh (ṽ), (8.24)

which is negative semi-definite which guarantees that ṽ is bounded. The convergence of p̃ to
zero can be shown through LaSalle’s Invariance Theorem. Setting eq. (8.24) to zero, then:

V̇ = 0 =⇒ ṽ = 0 =⇒ ˙̃v = 0. (8.25)

The position error can then be shown to converge by substituting eq. (8.20) into eq. (8.19) to
obtain:

˙̃v = −Kp tanh (p̃)−Kv tanh (ṽ), (8.26)

then setting to zero the states shown in eq. (8.25) yields:

˙̃v = 0 = −Kp tanh (p̃)−Kv tanh (0) =⇒ p̃ = 0, (8.27)

since tanh (0) = 0.

To extract the desired orientation, Rd, and thrust, T , the following procedure was performed:

T
m
R>d êz = gêz − µd, (8.28)
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with µ given in eq. (8.20). The norm of eq. (8.28) was then taken yielding:∥∥∥∥TmR>d êz

∥∥∥∥ = ‖gêz − µd‖. (8.29)

Finally, eq. (8.29) was solved for T :

T = m‖gêz − µd‖, (8.30)

since ∥∥∥∥TmR>d êz

∥∥∥∥ =

√(
T
m
R>d êz

)>(T
m
R>d êz

)
=
T
m

√
ê>z RdR

>
d êz =

T
m
, (8.31)

since RR> = I3 and êTê = 1.

With the thrust known, the control torques must then be found. First, eq. (8.30) is substituted
into eq. (8.28) and rearranged to yield:

Rd
gêz − µd
‖gêz − µd‖

= ez, (8.32)

which has the form
Rdu = v, (8.33)

where u, v ∈ R3, ‖u‖ = ‖v‖ 6= 0, and u 6= −v. The expression given by eq. (8.33) is
mathematically equivalent to [

0
v

]
= Q−1

d �
[

0
u

]
�Qd, (8.34)

whereQd is the desired unit quaternion associated with the rotation matrix. Given the restrictions
placed on u and v, the solution found [17] for Qd that satisfies eq. (8.34) is given by

qd0 =
1

‖u‖

√
‖u‖2 + uTv

2
(8.35a)

qd =
1

‖u‖

√
1

2(‖u‖2 + uTv)
sk(v) u. (8.35b)

The proof of eq. (8.35) can be found in [17]. Substituting

u =
gêz − µd
‖gêz − µd‖

, v = êz (8.36)

into eq. (8.35) then yields

qd0 =

√
1

2

(
1 +

gêz − µd
‖gêz − µd‖

)
(8.37a)

qd =
1

2‖gêz − µd‖qd0

 µd3

−µd1

0

 , (8.37b)
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which provides the desired quaternion that was used to find the control torques. The attitude
error was then defined as:

Q̃ := Q−1
d �Q. (8.38)

The attitude error was used in the model independent control law from [32] given by:

τ = −αq̃− ΓΩ, (8.39)

where α ∈ R > 0 and Γ ∈
{
R3×3 | Γ = ΓT > 0

}
. The proof of global asymptotic stability of

eq. (8.39) is shown in [32]. The thrust and torque are then used to determine the propeller speeds
through

ω̄ = M−1T, (8.40)

from eq. (5.9), where ω̄ is defined in eq. (5.7), M−1 is defined in eq. (5.8), and T is defined in
eq. (5.5).

8.4 Experimental Results

Implementation results for a position hold command are presented here. To perform a position
hold, the quadrotor was manually controlled to fly above its target and then the autonomous flight
routine was initiated. The control gains used in the hovering experiment are shown in table 8.1.

TABLE 8.1: Control gains.

Parameter Value

k1 1

k2 0.2

k3 0.03125

k4 0.00625

kb 16

∆ 0.03

α 3.0

Γ I3[0.625, 0.625, 0.5]>

Q I2T

Kp I3[3.625, 3.625, 3.625]>

Kv I3[11.875, 11.875, 3.5]>

For the following results, pd = [0, 0,−1.5]>. In fig. 8.6, the position can be seen to converge to
the neighbourhood of the desired values. The x and y positions vary by ±20cm with standard
deviations of 8.5cm. The altitude (y position) of the quadrotor converges to the set point after
approximately one minute. The spikes that appear in the altitude were caused by transmission
errors of the image frames. These errors could be eliminated by moving the image processing on
board the quadrotor.

In fig. 8.7, the data spikes due to frame errors were removed to better show how the quadrotor’s
2D positions. The 2D plots in fig. 8.7 are each shown as viewed from the negative remaining axis,
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i.e. the X-Y plot (top left) is viewed from the negative z-axis, the X-Z plot (top right) is viewed
from the negative y-axis, and the Y-Z plot (bottom left) is viewed from the negative x-axis.

In fig. 8.8, there are velocity spikes similar to fig. 8.6 which are also due to frame errors. The
velocity of the quadrotor is otherwise consistent.

FIGURE 8.6: Position of the quadrotor in each Cartesian axis vs. time expressed
in I.
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FIGURE 8.7: 3D position from autonomous flight using stereo vision for position
estimation in metres.
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FIGURE 8.8: Velocity of the quadrotor in each Cartesian axis vs. time expressed
in I.
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Chapter 9

Conclusion and Future Work

In this thesis a stereo computer vision system for position determination and control was designed
and implemented. A position tracking control scheme which relied on IMU and stereo computer
vision measurements was successfully implemented on a quadrotor UAV.

The attitude estimation technique used in this work was a complementary filter; it was chosen
because it is a computationally efficient method of estimating the nonlinear dynamics. The “con-
ditioned observer” complementary filter was chosen due to its decoupling of the roll and pitch
dynamics from its yaw dynamics and for its anti-integral windup capabilities.

A Kalman filter based linear position and velocity estimator was implemented using stereo com-
puter vision and accelerometer data. The position was estimated using stereo matching and
triangulation to determine the depth and contour matching to determine the horizontal position.
The covariance values for the Kalman filter were determined empirically.

Recommendations for continuation of this work are:

1. If a base station computer is desired, a more powerful GPU should be used to increase the
speed of image processing. This would also allow higher resolution cameras to be used.

2. Implement a stereo vision system which does not require a base station computer so as to
synchronise the position and IMU measurements and to ensure that image frames are not
lost or distorted due to their wireless transmission.

3. A method that detects and tracks a general feature should be used to increase the robustness
of position estimation and reduce the computational load caused by image analysis.

4. A smaller drone would be desirable to reduce risk to lab personnel, to reduce the inertial
of the drone allowing for a more agile platform, and to reduce the air movement in the lab
creating less environmental disturbance.

5. A frame whose landing legs are affixed to the central structure and/or motor arms with less
play should be used; this would prevent hard landings from changing the resting orientation
of the centrally mounted sensors.
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