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Abstract 

There is a significant demand for renewable energy systems to ensure sustainable and 

environmentally friendly living. Shifting from the use of fossil fuels to renewable energy sources 

will decrease both the reliance on these fossil fuels and associated pollution. By decreasing 

greenhouse gas emissions from energy generation, human induced global warming and 

environment destruction will slow. According to Environment and Climate Change Canada, 

Canada has committed, along with other leading countries in greenhouse gas emissions, to 

maintain the total global temperature increase below 2°C. Solar photovoltaic (PV) energy 

systems are of particular interest due to the availability and portability of such systems. 

According to Natural Resources Canada (NRCan), Canada’s reliance on solar energy as a 

renewable energy source is rapidly growing. NRCan claims that Canada’s total quantity of 

installed solar energy reached 1834 MW in 2014. 

Therefore, the main objective of this thesis is to design an intelligent controller-based 

efficient solar energy conversion system in order to meet the growing demand for clean energy. 

Solar energy systems consist of a PV cell array (solar panel) that uses the sunlight to generate 

direct current (DC) power. To maximize efficiency of the energy conversion, a novel maximum 

power point tracking (MPPT) algorithm is developed to deliver maximum power from the PV 

panel to the load. The conversion system must be designed to transfer maximum power 

regardless of the intensity of the sunlight and size of the load. Due to this requirement, the buck 

boost converter with an intelligent controller generating its control signal is the ideal solution. 

The converter is able to both step up and step down the input hence transferring maximum 

possible power at all times. Intelligent algorithms do not need exact mathematical models of the 

system and can handle any nonlinearity of the system. As an intelligent controller, a neuro-fuzzy 

controller (NFC), specifically an adaptive neuro-fuzzy inference system (ANFIS), will be 

developed to generate the control signal for the DC-DC converter while coping with variable 

weather conditions. A hybrid training algorithm is developed that implements particle swarm 

optimization to train nonlinear system parameters and the least squares estimator to train the 

linear parameters. The power at the output of the DC-DC converter can be either stored directly 

in batteries or converted to alternating current (AC) power. For simulation purposes of this 

thesis, the DC power available at the output of the converter is fed into a three phase, two level 
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voltage source inverter that is controlled using proportional-integral controllers to control the d 

and q axis output voltages. Three phase output with constant amplitude and constant frequency is 

required to connect the system to the grid. The AC inverter output is filtered with an L filter and 

is interfaced with the grid to achieve effective grid connection.  

Simulations of the proposed energy conversion system and the proposed ANFIS training 

algorithm are completed in MATLAB/Simulink. The simulation results prove the effectiveness 

of the designed ANFIS and proposed training algorithm as the ANFIS-based MPPT controller is 

able to extract maximum power from the solar panel for varying irradiance conditions. The 

simulations further prove that grid connection is possible while obtaining three phase output 

voltage and current with low total harmonic distortion. The real-time implementation of the 

system is performed using the dSPACE DS1104 development board for communication to and 

from Simulink running on a PC. The proposed ANFIS-based MPPT controller and the proposed 

training algorithm are verified in real-time for a wide range of irradiance condition and changes 

in load. As determined by real-time implementation, however, the grid connection poses a 

significant challenge due to unknown factors in the Centennial building at Lakehead University 

as well as a lack of funds preventing the purchase of vital equipment. As such, stand-alone mode 

of operation is attempted in which the output of the buck boost converter is connected to a 

resistive load. The real time results prove the efficacy of the proposed ANFIS-based control and 

training algorithms. 
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Chapter 1 

Introduction 

 

1.1 Research Motivation 

 

As a result of the shift away from fossil fuel energy sources, advances in renewable energy 

systems have increased the efficiency and decreased the cost of such systems. Of particular 

interest are solar photovoltaic systems as they are readily available and portable. However, 

depending on the load connected to the solar array, the maximum power might not be extracted 

from the solar array if no control is implemented. It is desirable to control the solar array in order 

that maximum power is always extracted regardless of weather or load conditions. This type of 

control is known as maximum power point tracking (MPPT) and can be performed in a variety of 

ways [3, 6-15, 19-31, 33-37]. Currently in industry, the most common MPPT controller is known 

as Perturb and Observe. This method has a myriad of problems which motivates the requirement 

for more effective MPPT controllers to improve system efficiency by extracting maximum 

power from the array with little to no oscillations once the maximum power point is reached. 

Usually, a DC-DC power electronic converter [16-18] is implemented to match the load 

impedance to the solar array’s output impedance which forces the solar array to output its 

maximum power for a given set of weather conditions. The power extracted from the solar array 

can either be used to charge a battery or converted into AC for either single phase operation or 

grid connection [32]. As such, the main objective of this thesis is to develop an efficient solar 

energy conversion system that implements an intelligent MPPT controller [1, 2, 4, 5]. The 

proposed system is an improvement to the existing MPPT methods and is a step towards the 

necessity for clean renewable energy systems as a replacement to fossil fuel-based energy 

generation. 
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1.2 Literature Review 

 

This section of the thesis provides an overview of the existing maximum power point 

tracking control techniques for DC-DC converters. Significant research has been completed 

based on conventional MPPT techniques such as Perturb and Observe (P&O) and Incremental 

Conductance (IncC) [7, 9-13]. Substantial work has also been completed that focuses on 

intelligent fuzzy logic (FL) based MPPT [7, 11, 13]. Some work has been completed on other 

intelligent controllers such as neural networks and adaptive neuro-fuzzy inference system 

(ANFIS) based control algorithms [3, 5-8, 14]. Maximum power point tracking methods can be 

classified into two categories: 

 

1. Conventional MPPT controllers 

2. Intelligent MPPT controllers 

 

1.2.1 Conventional MPPT Controllers 

 

Conventional maximum power point tracking algorithms/controllers are relatively simple to 

implement but inherent oscillations occur at the maximum power point. This results in a 

reduction of the available power that can be transferred to the DC link. To improve the efficiency 

of the conventional methods, additional control efforts or modified techniques are required. Most 

research now is based on intelligent controllers due to their inherent benefits and uses the 

conventional techniques as a comparison to validate the new intelligent controller based 

research. 

In [10] the authors have provided a detailed analysis with simulation and experimental 

results of various MPPT methods for PV systems. Specifically, they find that both incremental 

conductance and perturb and observe have very similar responses with a similar tracking 

efficiency. Many other conventional MPPT methods are also compared in this work. Similarly, 

[11] provides another comparison of MPPT methods focussing on P&O, fuzzy logic and 

backstepping control. The authors found that their proposed backstepping controller 

outperformed both fuzzy logic and P&O based tracking algorithms. In [12] a hybrid MPPT 
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algorithm is proposed that combines P&O and the fractional short circuit current measurement 

methods. It is proven that the proposed hybrid algorithm is significantly more effective at 

tracking the MPP with reduced oscillations. The authors prove by simulation and experimental 

results that their proposed hybrid algorithm has less power loss from oscillations and a high 

convergence speed at the downfall of the more complex nature of the proposed system. 

Generally, improving the efficiency of the MPPT algorithm comes at a cost of a higher 

complexity and a longer computation time. In [13] the authors provide a wide variety of 

available MPPT techniques and analyses them based on various factors such as cost, complexity, 

applications, type of converter etc. This work only outlines each method with corresponding 

theory and provides no design, simulation or implementation of the discussed methods. [7] 

provides a theoretical discussion of both conventional and intelligent MPPT algorithms. This 

work provides advantages and disadvantages of the algorithms and allows for quick reference of 

various conventional MPPT features. [9] proposes an adaptive P&O technique in which a PI 

controller is used to calculate the perturb value used in the P&O algorithm and applies it to a 

microgrid. In this case, DC-AC conversion is not required as the authors store the DC energy 

directly in a battery for storage purposes in a microgrid. 

 

1.2.2 Intelligent MPPT Controllers 

 

Intelligent maximum power point tracking controllers are generally more complex and more 

difficult to implement as compared to the conventional ones. These methods however, provide a 

much better response with increased efficiency and better tracking of the maximum power point. 

Intelligent controllers are classified into three categories: fuzzy logic, neural networks and 

ANFIS. Fuzzy logic controllers generally require an expert knowledge of the system under 

consideration while neural networks rely on training data and training algorithms to tune link 

weights that model the desired system. ANFIS is a hybrid system that combines features of both 

fuzzy logic and neural networks. The main benefits of intelligent controllers are: they operate 

without any system model, they handle any nonlinearity in the system well and they do not 

depend on system parameters. These three benefits make intelligent controllers of growing 

interest for MPPT implementation in PV solar energy conversion systems.  
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Many works have analyzed fuzzy logic based MPPT, neural network based MPPT and 

ANFIS based MPPT. In all previous research the intelligent methods outperform the 

conventional MPPT methods. In [3], the authors compare a variety of intelligent MPPT 

algorithms and discuss their associated features. They assert that neuro-fuzzy systems are 

medium to complex algorithms, have a fast tracking speed with high efficiency and are a 

medium to complex implementation. They develop an ANFIS and use MATLAB’s built in 

NeuroFuzzyDesigner to create and train the ANFIS. The authors of [5] propose an ANFIS that 

uses a modified particle swarm optimization (PSO) to train the system in which they implement 

the selection operator from genetic algorithms to remove the worst member of the population 

during training with PSO. This work only discusses ANFIS training and does not apply the 

ANFIS to a solar energy conversion system for maximum power point tracking. In [6], an 

improved PSO is used directly to search for the maximum power point. The authors do not use 

the PSO for training an ANFIS but instead use it for online MPP searching. This method 

eliminates almost all oscillations once the maximum power point is reached. [8] proposes a fuzzy 

logic controller for maximum power point tracking and applies the controller to a single-ended 

primary inductor converter (SEPIC) converter. The author further applies a fuzzy logic controller 

to a single phase inverter in order to generate a single phase AC voltage. This previous research 

is the closest to the full practical grid connected system that is discussed in this thesis. The 

authors of this work prove that the fuzzy controller is able to effectively track the maximum 

power point with a higher power extraction than a conventional proportional-integral (PI) 

controller based MPPT. They further prove that the designed inverter control is effective at 

creating the desired sinusoidal output voltage and current with a total harmonic distortion (THD) 

less than 5%. The authors of [14] design a basic ANFIS using the NeuroFuzzyDesigner and 

apply the ANFIS directly to a quasi-z-source inverter for maximum power point tracking and 

DC-three phase AC conversion. Grid connection was not completed in this work as the inverter 

was not connected to the grid. Applying MPPT directly to the inverter removes the need for a 

DC-DC converter used for impedance matching and hence maximum power point tracking. As a 

result, the system in [14] is less expensive to build than the conventional systems that use a DC-

DC converter for maximum power point tracking and an inverter for DC-AC conversion. 

Further, [14] does not provide any comparisons between the proposed algorithms and 

conventional or alternate MPPT methods. 
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Since intelligent methods are more complicated and some require parameter training, faster 

computations are required in order to maintain the same operating speed as the simpler 

conventional methods. As a result, intelligent MPPT controller implementation is more 

financially costly than the implementation of conventional methods. These aforementioned 

works have mainly focussed only on the DC-DC converter and have not converted the DC 

signals into three phase AC signals through the use of an inverter for grid connection. It is of 

interest to consider DC-AC conversion for grid connection thus creating a practical energy 

conversion system. Therefore, this thesis develops a grid connected PV solar energy conversion 

system as a more practical system than the previous work in this area. 

 

1.3 Objectives 

 

The main objective of this thesis is to design, test and implement an adaptive neuro-fuzzy 

inference system based maximum power point tracking algorithm to control a buck boost 

converter. Further extension is also completed applying an inverter to generate a three phase AC 

signal for grid connection. In practical implementation, the goal is to prove the operation of the 

proposed training algorithm and the ANFIS based MPPT controller. This thesis will satisfy the 

following objectives: 

 

a. To design a buck boost converter to be used as an impedance matcher that will 

guarantee maximum power delivery to the dc link 

b. To design an adaptive neuro-fuzzy inference system based maximum power point 

tracking algorithm and to design the control scheme for the inverter 

c. To develop a recursive least squares estimator – particle swarm optimization 

based training algorithm for ANFIS parameter training 

d. To simulate the proposed system and validate its operation by comparing it to a 

conventional P&O based system 

e. To perform real time implementation of the proposed system to confirm the 

operation of the proposed ANFIS based MPPT algorithm 
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1.4 Thesis Organization 

 

Chapters in this thesis focus on main topics and the subsections in each chapter focus on a 

specific detail or feature relating to the main topic. Chapter 1 provides the motivation for the 

work outlined in this thesis and includes a review of previous works relating to maximum power 

point tracking algorithms. Chapter 2 provides detailed derivations of the system model: solar 

panel model, buck boost converter, and 3 phase voltage source inverter. Chapter 3 discusses the 

theory relating to intelligent controllers such as fuzzy logic, artificial neural networks (ANN) and 

ANFIS. Chapter 4 discusses maximum power transfer, the perturb and observe MPPT algorithm, 

theory pertaining to three phase voltage source inverters: control schemes, direct-quadrature (dq) 

reference frame transformations, and filter theory. Chapter 5 outlines the design of the buck 

boost converter and the proposed MPPT algorithm. Chapter 6 provides the results from 

MATLAB/Simulink simulations. The performance of the proposed algorithm is validated by 

altering weather conditions and comparing the response to the conventional P&O response. 

Chapter 7 delivers the results from real time implementation of the proposed MPPT controller. 

Chapter 8 offers a summary of the thesis and results obtained from simulation and real time 

implementation and outlines possible future work with the proposed system. 
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Chapter 2 

System Modelling 

 

This chapter provides a discussion on the modelling of solar panels and buck boost 

converter. Mathematical analysis is provided with associated derivations. 

 

2.1 Solar Photovoltaic Panel Modelling 

 

This section outlines the modelling of a PV cell and the effects of changing irradiance and 

temperature of the panel. The equivalent circuit of a solar cell is shown in Fig. 2-1. A solar panel 

is composed many solar cells and a solar array is composed of a combination of solar panels 

connected in series or in parallel to achieve the desired output voltage and current from the array. 

 

 

Fig. 2-1: Equivalent circuit of a solar cell. 

 

From the equivalent circuit and Kirchhoff’s current law, an equation for the cell’s output current 

can be found as: 

𝐼 = 𝐼𝑔 − 𝐼𝑜 − 𝐼𝑝     (1) 

𝐼 = 𝐼𝑔 − 𝐼𝑠 {𝑒
[
𝑉+𝐼𝑅𝑠
𝑛𝑉𝑇

]
} −

𝑉+𝐼𝑅𝑠

𝑅𝑝
     (2) 

 

 

 

+ 

V 

- 
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where, 

Ig is the generated current from photons 

Is is the reverse saturation current of the diode 

I is the output current of the cell 

n is the ideality factor 

VT is the thermal voltage 

Rs is the series resistance 

Rp is the shunt resistance 

 

From knowledge of solar panel operation and construction, it is clear that the current 

outputted by the panel is directly related to the intensity of the sunlight reaching the panel. 

Further, the voltage produced by the panel is directly related to the temperature of the panel. If 

the irradiance increases, the current produced by the panel increases and if the temperature of the 

panel decreases, the voltage produced by the panel increases. As such, solar panels are more 

efficient at lower temperatures as they produce a larger voltage for a given irradiance level. It is 

important to realize the solar panel has a highly nonlinear output impedance which changes 

significantly with changing weather conditions. Thus, it is difficult to match the output 

impedance of the panel to a load. If the load is constant, there is only one scenario when the 

output impedance of the panel is the same as the load and hence maximum power is transferred 

to the load. As a result, it is desirable to have a controller that will always match the solar panel 

output impedance to the load impedance. This controller is known as a maximum power point 

tracker. Maximum power point tracking and associated types of trackers will be discussed in 

later chapters. 

The characteristic equations that model a solar panel are used to plot the relationship 

between voltage, current and power output of a solar panel. Fig. 2-2 shows the power-voltage 

and current-voltage curves for a solar panel with varying irradiance and a constant temperature 

of 25°C. Fig. 2-3 shows the power-voltage and current-voltage curves for a solar panel with 

varying temperature and a constant irradiance of 1000W/m2. Note that the LG300N1C-G3 

module is used in Simulink for simulation purposes. 
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Fig. 2-2: Solar panel characteristic curves with constant temperature and varying irradiance. 

 

 

Fig. 2-3: Solar panel characteristic curves with constant irradiance and varying temperature. 
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It is clearly illustrated in Fig. 2-2 that as the irradiance increases (with a constant 

temperature), the maximum power point (MPP) current and hence, the power generated by the 

solar panel increases, while the MPP voltage remains constant. The maximum power points are 

labelled on the above figures with a circle (please ignore the circle on the horizontal axis). The 

MPPs occur at the maximum power on the P-V curves. As a higher intensity of sunlight reaches 

the photodiodes that create the solar panel, more electron-hole pairs are created and hence a 

larger current is established. It is clearly illustrated in Fig. 2-3 that as the temperature increases 

(with a constant irradiance) the MPP voltage and hence the power generated by the solar panel 

decreases while the MPP current remains constant. Any changes in irradiance levels prove to 

affect the maximum power point significantly more than changes in panel temperature. 

Therefore, for this thesis, the solar panel is assumed to remain at a constant temperature of 25°C 

while the irradiance level changes. Further, the solar emulator used for real time implementation 

has no options for temperature change. The emulator only allows for the irradiance to be varied. 

Due to these two reasons, the system is designed to operate at a single temperature. 

 

2.2 Buck Boost Converter Modelling 

 

The buck boost converter is a popular DC-DC converter as it has the ability to both step up 

and step down the input voltage applied to the converter [32], [33]. The converter consists of a 

switch, a diode, a capacitor and an inductor arranged in a circuit configuration corresponding to 

the buck boost converter topology. This section provides a theoretical analysis of the inverting 

buck boost converter. Provided in this section is: the circuit diagram, various waveforms of 

currents and voltages in the circuit and derivations of various parameters and component values 

for operation in continuous conduction mode. For the purposes of this thesis, the converter 

operating in continuous conduction mode (CCM) is considered as it is undesirable to allow the 

inductor current to reach zero and become discontinuous.  

Fig. 2-4 shows the circuit diagram for the inverting buck boost converter. Two modes of 

operation occur. Fig. 2-5 shows the first mode of operation when the switch is on. Fig. 2-6 shows 

the second mode of operation when the switch is off. Fig. 2-7 shows the waveforms of various 

voltages and currents in the converter.  
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Fig. 2-4: Inverting buck boost converter circuit diagram. 

 

 

Fig. 2-5: Mode 1 of operation.                        Fig. 2-6: Mode 2 of operation. 

 

 

 

(or iQ) 

(or Vd) 
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Fig. 2-7: Waveforms of voltages and currents in the converter. 

 

It is important to note that all derivations are done under the assumption that the converter is 

100% efficient. Further assume the switch is on for a time of ton (or DTs). 

 

Using Kirchhoff’s current law, it is found that, 

𝑖𝐿 = 𝑖𝑆 + 𝑖𝐷         (3) 

 



13 
 

where, D is the duty ratio of the switch 

 Ts is the period 

 iL is the inductor current 

 is is the source current 

 iD is the diode current 

 

During mode 1 (0<t<ton), 

𝑣𝐿 = 𝑉𝑠 = 𝐿
∆𝑖𝐿
𝐷𝑇𝑠

 

∆𝑖𝐿 =
𝑉𝑠𝐷𝑇𝑠

𝐿
      (4) 

 

In this mode, the switch is on and the diode is off. Here, the inductor is in series with the 

source and the inductor’s current increases while accumulating energy. The capacitor is in series 

with the load and hence the capacitor discharges supplying energy to the load. 

 

During mode 2 (ton<t<Ts), 

𝑣𝐿 = −𝑉𝑜 = 𝐿
(−∆𝑖𝐿)

(1 − 𝐷)𝑇𝑠
 

∆𝑖𝐿 =
𝑉𝑜(1−𝐷)𝑇𝑠

𝐿
     (5) 

 

In this mode, the switch is on and the diode is off. Here the inductor and capacitor are in 

parallel with the load. The energy stored in the inductor charges the capacitor and provides 

energy to the load. 

 

From (4) and (5),  

𝑉𝑜(1 − 𝐷)𝑇𝑠

𝐿
=

𝑉𝑠𝐷𝑇𝑠

𝐿
 

𝑉𝑜(1 − 𝐷) = 𝑉𝑠𝐷 

𝑉𝑜

𝑉𝑠
=

𝐷

1−𝐷
      (6) 
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Another method to derive (6) is as follows: 

 

The average inductor current must be equal to zero.  

 

Therefore, 

𝑉𝑠𝐷𝑇𝑠 = 𝑉𝑜(1 − 𝐷)𝑇𝑠 

𝑉𝑜

𝑉𝑠
=

𝐷

1−𝐷
= 𝐴𝑣      (7) 

 

If the duty ratio is greater than 0.5, the output voltage will be larger than the input voltage 

and hence boost operation is achieved. If the duty ratio is less than or equal to 0.5, the output 

voltage is less than the input voltage and buck operation is achieved. Therefore, depending on 

the value of the duty ratio, the buck boost converter is able to both step up and step down input 

voltages. 

 

Various relations between the average currents of the components can be found. Referring to the 

converter waveforms it is easily determined that, 

 

𝐼𝐷 = 𝐼𝑜 = (1 − 𝐷)𝐼𝐿 

𝐼𝐿 =
𝐼𝑜

1−𝐷
      (8) 

And,  

𝐼𝑠 = 𝐷𝐼𝐿      (9) 

where, ID is the average diode current 

 Io is the average output current 

 IL is the average inductor current 

 Is is the average switch current 

 

Since the converter is assumed to be 100% efficient, 

 

   𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡       (10) 

𝑉𝑠𝐼𝑖𝑛 = 𝑉𝑜𝐼𝑜 
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𝑉𝑜
𝑉𝑠

=
𝐼𝑖𝑛
𝐼𝑜

 

𝐼𝑖𝑛

𝐼𝑜
=

𝐷

1−𝐷
=

1

𝐴𝑖
       (11) 

 

To prove that the buck boost converter can match the load resistance to the optimal PV panel 

resistance corresponding to the MPP, a relationship between RL and Ropt can be found. From the 

gains of the converter, 

𝑉𝑜 = 𝐴𝑣𝑉𝑚𝑝𝑝, where Vmpp=Vs 

𝐼𝑜 = 𝐴𝑖𝐼𝑚𝑝𝑝, where Impp=Iin 

And, 

𝑅𝑜𝑝𝑡 =
𝑉𝑚𝑝𝑝

𝐼𝑚𝑝𝑝
       (12) 

Then, 

𝑅𝑜𝑝𝑡 =
(1−𝐷)2

𝐷2 𝑅𝐿      (13) 

 

Therefore, if the duty cycle is greater than 50%, the optimal resistance is less than the load 

resistance and if the duty cycle is less than 50%, the optimal resistance is greater than the load 

resistance. As a result, the buck boost converter can match the load to the optimal panel 

resistance for all weather conditions. The buck converter and boost converter cannot achieve 

such results. For the buck converter, the optimal resistance is always greater than the load 

resistance and for the boost converter the optimal resistance is always less than the load 

resistance. If the load resistance is less than the PV panel’s output resistance, then the converter 

operates in buck mode and if the load resistance is greater than the PV panel’s output resistance 

then the converter operates in boost mode. 

 

To determine the output voltage ripple it is assumed that I1≥Io and the ripple current only flows 

through the capacitor. 

𝑞 = 𝐶𝑣          (14) 

𝐼 =
𝑞

𝑡
 

𝑞 = 𝐼𝑡            (15) 
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∆𝑣𝑜 =
∆𝑄

𝑐
=

𝐼𝑜𝐷𝑇𝑠

𝑐
      (16) 

 

Thus, the equations for output ripple voltage and inductor ripple current are: 

 

∆𝑖𝐿 =
𝑉𝑠𝐷𝑇𝑠

𝐿
       (17) 

∆𝑣𝑜 =
𝐼𝑜𝐷𝑇𝑠

𝑐
       (18) 

 

From (17) and (18), the values of the inductor and capacitor can be found as: 

 

𝐿 =
𝑉𝑠𝐷𝑇𝑠

∆𝑖𝐿
       (19) 

𝑐 =
𝐼𝑜𝐷𝑇𝑠

∆𝑣𝑜
       (20) 

 

The converter could operate in discontinuous mode. The boundary between continuous and 

discontinuous modes of operation is when I1=0 (See Fig. 2-7). 

 

When I1=0,  

𝐼𝐿𝐵 =
∆𝑖𝐿

2
              (21) 

𝐼𝐿𝐵 =
(1−𝐷)𝑉𝑜𝑇𝑠

2𝐿
       (22) 

𝐼𝑂𝐵 = (1 − 𝐷)𝐼𝐿𝐵 =
(1−𝐷)2𝑉𝑜𝑇𝑠

2𝐿
      (23) 

 

To ensure operation in continuous mode, Io>IOB. Note that the inductor is chosen so that 

continuous mode of operation is achieved. 
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Chapter 3 

Artificial Intelligence Theory 

 

 

This chapter provides a theoretical analysis and explanation of various artificial intelligence 

systems such as fuzzy logic (FL), artificial neural networks (ANN) and adaptive neuro-fuzzy 

inference systems (ANFIS). The most commonly used hybrid training method for ANFIS is 

discussed and a new hybrid algorithm is proposed for ANFIS training. 

 

3.1 Fuzzy Logic 

 

This section outlines the first order Tagaki-Sugeno-Kang (TSK-1) or Sugeno fuzzy 

reasoning. Note that there are many types of fuzzy reasoning but for this thesis, Sugeno fuzzy 

reasoning is the focus. 

Consider a simple fuzzy system with two inputs (x, y), one output (z), two rules and two 

membership functions per input. Let A1= µA1 and A2 = µA2 be the membership functions for the 

first input and let B1 = µB1 and B2 =µB2 be the membership functions for the second input. 

Further assume the input is fuzzified using the singleton fuzzifier. This means that instead of the 

input variable being a fuzzy set (or having a membership function), the input is a single value 

corresponding to the inputted value. For example, if the input is x=2 then the fuzzified input will 

also be x=2.  

The input membership functions can be continuous or piecewise continuous functions. Some 

commonly used membership functions are: triangular, trapezoidal, Gaussian, Bell or generalized 

Bell. The designer determines which membership function is best for a given system. To design 

a fuzzy logic system, no mathematical model of the system is required. This feature is beneficial 

because many physical systems are complex and difficult to model. Further, fuzzy logic is 

superior at handling system nonlinearities. If the fuzzy logic system is used as a controller, it is 

more advantageous than the classical linear controllers such as the proportional-integral-

derivative (PID) controller The PID controller cannot effectively control highly nonlinear 
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systems since a linear approximation around the operating point is usually performed to design a 

PID controller for a nonlinear system. Also, classical controllers have the downfall of being 

designed to control a system at a specific operating point. If the operating point is changes, the 

controller needs to be re-tuned or a different more complex PID controller is required. For a 

fuzzy logic controller, there is a range of operating points defined by the universe of discourse 

for a specific application. Therefore, if the operating point changes, the fuzzy logic controller 

will still be effective at controlling the system under the condition that the new operating point is 

within the designed universe of discourse. 

 

The fuzzy system is designed as: 

 

R1: If x is A1 and y is B1 then z is f1 

R2: If x is A2 and y is B2 then z is f2 

 

where, f1= p1x+q1y+r1 

 f2= p2x+q2y+r2 

(p, q, r) are linear parameters in the consequent part that will be optimized when used in           

an ANFIS. 

The graphical method for Sugeno fuzzy reasoning is shown below: 

 

Fig. 3-1: Graphical method for Sugeno fuzzy reasoning. 
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The defuzzified normalized output of the fuzzy logic system is: 

 

𝑧 =
𝑊1𝑧1+𝑊2𝑧2

𝑊1+𝑊2
=

𝑊1(p1x + q1y + r1)+𝑊2(p2x + q2y + 𝑟2) 
𝑊1+𝑊2

   (24) 

 

Therefore, given any input pair (x, y), the fuzzy system will generate an output using the 

designed rule base. It should be noted that any t-norm operator can be used in place of the 

product operator. It is the designer’s decision on which t-norm to use. Two commonly used t-

norm operators are the minimum and product t-norm. 

 

3.2 Artificial Neural Networks 

 

Neural networks are system representations intended to model the human brain. These 

networks consist of neurons (or nodes) connected with links. Each link has a corresponding 

weight and each neuron has an activation function. Activation functions are similar to fuzzy 

membership functions however the activation functions’ parameters remain unchanged. When 

training the neural network only the link weights are optimized while activation functions are 

constant. Most commonly, the sigmoid activation function is used for the neurons. To train the 

network, input data is presented to the system and each node output is calculated until the final 

output layer is reached. After the total network output is calculated, the error is calculated based 

on the desired system output and the error signal is then propagated backward toward the input in 

order to update the link weights using gradient descent. This method for link weight update is 

called back propagation. [2] provides a detailed derivation of the back propagation learning 

algorithm. 

The sigmoid function is defined as: 

𝑓(𝑥) =
1

1+𝑒−𝑥
       (25) 

Taking the derivative with respect to x gives: 

𝑓′(𝑥) =
𝑒−𝑥

(1+𝑒−𝑥)2
      (26) 

Representing the derivative in terms of the function yields: 
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𝑓′(𝑥) = 𝑓(1 − 𝑓)      (27) 

This representation proves useful in calculating the error signals at each layer [2]. A general 

neural network representation is shown in the figure below: 

 

Fig. 3-2: General Neural Network [2]. 

 

Fig. 3-2 shows a multi-layer perceptron neural network model. Each circle is a neuron with 

an activation function and each arrow connecting a neuron in one layer to a neuron in a 

succeeding layer is the link. There is one input layer, one output layer and N hidden layers. As 

previously discussed, the link weights are updated by the back propagation algorithm.  

If only one perceptron is used, there are only link weights between the input and the neuron. 

The single perceptron generally uses the signum function to calculate the perceptron’s output and 

is then compared with the target. If each input data pair in a given epoch produces an output that 

is equal to the target, the training stops otherwise link weights are updated. Training continues 

until all input data pairs have been classified. 
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3.3 Adaptive Neuro-Fuzzy Inference System 

 

ANFIS is a system that uses benefitting features of both fuzzy logic and neural networks. It 

was developed by Jang in the early 1990’s [1]. An ANFIS is a fuzzy system that uses neural 

network training methods to optimize the membership function parameters and the consequent 

function parameters. As such, ANFIS proves to be a useful system in artificial intelligence based 

applications. As shown in the figure below, fuzzy logic and neural networks have advantages and 

disadvantages. By combining both systems into a new system (ANFIS), the ANFIS takes 

benefits from the advantages of both. Table 3-1 outlines the features of fuzzy logic systems and 

neural networks of which ANFIS benefits from. 

 

Table 3-1: Fuzzy logic and neural network features [2] 

 

 

The general structure of a neuro-fuzzy system is shown in Fig. 3-3 [2].  
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Fig. 3-3: General neuro-fuzzy system. 

 

The neuro-fuzzy system in the above figure is a fuzzy system that has been transformed into 

a parallel network arrangement. Each layer in the network has its own function as related to the 

fuzzy system. By arranging the fuzzy system in network representation, neural network training 

can be applied. 

A Sugeno-based adaptive neuro-fuzzy inference system is a fuzzy system that uses neural 

network based training algorithms to optimize the nonlinear membership parameters and linear 

consequent parameters. As such, ANFIS is considered to be an intelligent system as there is a 

type of system learning involved. Instead of the general fuzzy system representation, the fuzzy 

system can be transformed into a five layer network representation as shown in Fig. 3-4. For this 

representation, there are two inputs with two membership functions per input and one output. 

There are also four rules used in this ANFIS. Here, the output of layer 1 is the membership 

function’s value at the specified input (fuzzification). The output of layer 2 is the firing strengths 

corresponding to each rule. The output of layer 3 is the normalized firing strengths. The output of 

layer 4 is the final output of each rule. The output of layer 5 is the defuzzified overall system 

output. 
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Fig. 3-4: Five layer ANFIS [2]. 

 

Using knowledge of Sugeno fuzzy reasoning, the outputs of each layer can be written as 

follows. Note that neural network training methods are only used to optimize the parameters in 

layer 1 and in layer 4. 

The outputs of the fuzzification layer (layer 1) are: 

 

𝑂11 = 𝜇𝐴1
1 = 𝜇𝐴1

2 = 𝜇𝐴1(𝑥1)     (28) 

𝑂12 = 𝜇𝐴1
3 = 𝜇𝐴1

4 = 𝜇𝐴2(𝑥1)     (29) 

𝑂21 = 𝜇𝐴2
1 = 𝜇𝐴2

2 = 𝜇𝐵1(𝑥2)     (30) 

𝑂22 = 𝜇𝐴2
3 = 𝜇𝐴2

4 = 𝜇𝐵2(𝑥2)     (31) 

 

where, µA1 and µA2 are the membership functions for the first input 

µB1 and µB2 are the membership functions for the second input 
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The input membership functions are chosen to be Gaussian functions as follows: 

 

µ𝐴1(𝑥1) = 𝑒
−0.5(

𝑥1−𝑐1
𝜎1

)
2

    (32) 

µ𝐴2(𝑥1) = 𝑒
−0.5(

𝑥1−𝑐2
𝜎2

)
2

    (33) 

µ𝐵1(𝑥2) = 𝑒
−0.5(

𝑥2−𝑐3
𝜎3

)
2

    (34) 

µ𝐵2(𝑥2) = 𝑒
−0.5(

𝑥2−𝑐4
𝜎4

)
2

    (35) 

 

where, (ci, σi), i=1, 2, 3, 4 are the nonlinear parameters 

 

The outputs of the t-norm operation layer (using product t-norm) are: 

 

𝑊1 = 𝑂11𝑂21      (36) 

𝑊2 = 𝑂11𝑂22     (37) 

𝑊3 = 𝑂12𝑂21     (38) 

𝑊4 = 𝑂12𝑂22     (39) 

 

The outputs of the normalization layer are: 

 

𝑊1
̅̅ ̅̅ =

𝑊1

𝑊1+𝑊2+𝑊3+𝑊4
    (40) 

𝑊2
̅̅ ̅̅ =

𝑊2

𝑊1+𝑊2+𝑊3+𝑊4
    (41) 

𝑊3
̅̅ ̅̅ =

𝑊3

𝑊1+𝑊2+𝑊3+𝑊4
    (42) 

𝑊4
̅̅ ̅̅ =

𝑊4

𝑊1+𝑊2+𝑊3+𝑊4
    (43) 
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The outputs of the consequent layer are shown in Fig. 3-5. 

Here,  

𝑜1 = p1x1  + q1𝑥2  +  r1     (44) 

𝑜2 = p2x1  +  q2𝑥2  + r2    (45) 

𝑜3 = p3x1  +  q3𝑥2  + r3    (46) 

𝑜4 = p4x1  +  q4𝑥2  +  r4    (47) 

 

The output of the aggregation layer is: 

 

𝑜∗ = 𝑊1̅̅ ̅̅ 𝑜1 + 𝑊2̅̅ ̅̅ 𝑜2 + 𝑊3̅̅ ̅̅ 𝑜3 + 𝑊4̅̅ ̅̅ 𝑜4    (48) 

 

With this representation, the training algorithms discussed in the next section can be applied. 

Nodes in the first and fourth layers contain the nonlinear and linear parameters respectively and 

hence are referred to as adaptive nodes. All other nodes in the other layers have no parameters 

and hence are fixed nodes [1]. 

 

3.3.1 ANFIS Training 

 

This section will provide the two types of training algorithms used to train the general 

Sugeno-based ANFIS and will propose a new hybrid training method that implements particle 

swarm optimization. The general ANFIS uses a hybrid algorithm in which the forward pass is 

used to optimize the linear parameters and the backward pass is used to update the nonlinear 

parameters. It is important to note that ANFIS has no link weights or neurons. Thus the back 

propagation learning algorithm for link weight update cannot be applied to ANFIS training. See 

the table below for the process of hybrid learning in ANFIS. 

 

Table 3-2: Hybrid learning algorithm passes [1] 
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3.3.1.1 Recursive Least Squares Estimator 

 

The recursive least-squares estimator (RLSE) [1] is used to optimize the linear parameters in 

the consequent part of the Sugeno fuzzy rules. The RLSE tries to solve the problem y=Aθ by 

using training data pairs to estimate the parameters located in θ. Since on-line training is 

performed, the recursive estimator is required. If offline (or batch) learning is required, then the 

basic least-squares estimator (LSE) can be used.  

The least-squares estimator for batch training will be derived. Then the recursive least-

squares estimator will be derived from the LSE equations. The least-squares estimator requires 

all training data to be inputted at the same time whereas the recursive LSE only requires one 

training data pair at a time so optimization can be performed as more training data becomes 

available. As such, LSE is an offline batch learning algorithm whereas RLSE is an online 

training algorithm and can be performed on a running system as new data becomes available. 

RLSE is also used in the hybrid training algorithm for ANFIS training. 

Consider a system with input 𝑢⃑  with 𝜃  containing the linear parameters to be optimized 

The system output is defined as: 

𝑦 = 𝜃1𝑓1(𝑢⃑ ) + 𝜃2𝑓2(𝑢⃑ ) + ⋯+ 𝜃𝑛𝑓𝑛(𝑢⃑ )              (49) 

Now assume training data is gathered from the system.  

Training data pairs are formed as (𝑢⃑ 1, 𝑦1), (𝑢⃑ 2, 𝑦2), … , (𝑢⃑ 𝑖, 𝑦𝑖),… , (𝑢⃑ 𝑚, 𝑦𝑚)  

 where, y is the desired output of the system. 

Consider the output of the system for each training data pair, 

𝑦1 = 𝜃1𝑓1(𝑢1⃑⃑⃑⃑ ) + 𝜃2𝑓2(𝑢1⃑⃑⃑⃑ ) + ⋯+ 𝜃𝑛𝑓𝑛(𝑢1⃑⃑⃑⃑ ) 

𝑦2 = 𝜃1𝑓1(𝑢2⃑⃑⃑⃑ ) + 𝜃2𝑓2(𝑢2⃑⃑⃑⃑ ) + ⋯+ 𝜃𝑛𝑓𝑛(𝑢2⃑⃑⃑⃑ ) 

.

.

.
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𝑦𝑚 = 𝜃1𝑓1(𝑢𝑚⃑⃑ ⃑⃑  ⃑) + 𝜃2𝑓2(𝑢𝑚⃑⃑ ⃑⃑  ⃑) + ⋯+ 𝜃𝑛𝑓𝑛(𝑢𝑚⃑⃑ ⃑⃑  ⃑)    (50) 

In matrix notation, the output becomes, 

[
 
 
 
 
 
𝑓1(𝑢1⃑⃑⃑⃑ ) 𝑓2(𝑢1⃑⃑⃑⃑ ) … 𝑓𝑖(𝑢1⃑⃑⃑⃑ ) … 𝑓𝑛(𝑢1⃑⃑⃑⃑ )

𝑓1(𝑢2⃑⃑⃑⃑ ) 𝑓2(𝑢2⃑⃑⃑⃑ ) … 𝑓𝑖(𝑢2⃑⃑⃑⃑ ) … 𝑓𝑛(𝑢2⃑⃑⃑⃑ )

⋮
𝑓1(𝑢𝑖⃑⃑  ⃑)

⋮
𝑓1(𝑢𝑚⃑⃑ ⃑⃑  ⃑)

⋮
𝑓2(𝑢𝑖⃑⃑  ⃑)

⋮
𝑓2(𝑢𝑚⃑⃑ ⃑⃑  ⃑)

 
…

⋮
𝑓𝑖(𝑢𝑖⃑⃑  ⃑)

 
…

⋮
𝑓𝑖(𝑢𝑚⃑⃑ ⃑⃑  ⃑)

 
…

⋮
𝑓𝑛(𝑢𝑖⃑⃑  ⃑)

⋮ 
… 𝑓𝑛(𝑢𝑚⃑⃑ ⃑⃑  ⃑)]

 
 
 
 
 

[
 
 
 
 
 
𝜃1

𝜃2

⋮
𝜃𝑖

⋮
𝜃𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
𝑦1

𝑦2

⋮
𝑦𝑖

⋮
𝑦𝑚]

 
 
 
 
 

  (51) 

𝐴𝜃 = 𝑦        (52) 

where,  

𝐴 =

[
 
 
 
 
 
𝑓1(𝑢1⃑⃑⃑⃑ ) 𝑓2(𝑢1⃑⃑⃑⃑ ) … 𝑓𝑖(𝑢1⃑⃑⃑⃑ ) … 𝑓𝑛(𝑢1⃑⃑⃑⃑ )

𝑓1(𝑢2⃑⃑⃑⃑ ) 𝑓2(𝑢2⃑⃑⃑⃑ ) … 𝑓𝑖(𝑢2⃑⃑⃑⃑ ) … 𝑓𝑛(𝑢2⃑⃑⃑⃑ )

⋮
𝑓1(𝑢𝑖⃑⃑  ⃑)

⋮
𝑓1(𝑢𝑚⃑⃑ ⃑⃑  ⃑)

⋮
𝑓2(𝑢𝑖⃑⃑  ⃑)

⋮
𝑓2(𝑢𝑚⃑⃑ ⃑⃑  ⃑)

 
…

⋮
𝑓𝑖(𝑢𝑖⃑⃑  ⃑)

 
…

⋮
𝑓𝑖(𝑢𝑚⃑⃑ ⃑⃑  ⃑)

 
…

⋮
𝑓𝑛(𝑢𝑖⃑⃑  ⃑)

⋮ 
… 𝑓𝑛(𝑢𝑚⃑⃑ ⃑⃑  ⃑)]

 
 
 
 
 

,         𝜃 =

[
 
 
 
 
 
𝜃1

𝜃2

⋮
𝜃𝑖

⋮
𝜃𝑛]

 
 
 
 
 

,         𝑦 =

[
 
 
 
 
 
𝑦1

𝑦2

⋮
𝑦𝑖

⋮
𝑦𝑚]

 
 
 
 
 

 

Rewriting A gives, 

𝐴 =

[
 
 
 
 
 
 𝑎1⃑⃑⃑⃑ 

𝑇

𝑎2⃑⃑⃑⃑ 
𝑇

⋮

𝑎𝑖⃑⃑  ⃑
𝑇

⋮

𝑎𝑚⃑⃑ ⃑⃑  ⃑
𝑇
]
 
 
 
 
 
 

       (53) 

Rearranging 𝑦 = 𝐴𝜃  gives,                       𝜃 = 𝐴+𝑦                    (54) 

Now, the error between the actual system output and the desired output is defined as, 

𝑒 = 𝑦 − 𝐴𝜃        (55) 

Usually there are more training data pairs than there are parameters to be optimized. Thus, 

𝑚 ≫ 𝑛 
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The objective function is defined as, 

𝐸(𝑒 ) = (𝑦1 − 𝑎 1
𝑇𝜃 )2 + (𝑦2 − 𝑎 2

𝑇𝜃 )2 + ⋯+ (𝑦𝑚 − 𝑎 𝑚
𝑇 𝜃 )2 

𝐸(𝑒 ) = ∑ 

𝑚

𝑖=1

(𝑦𝑖 − 𝑎 𝑖
𝑇𝜃 )2 

𝐸(𝜃 ) = 𝑒 𝑇𝑒 = (𝑦 − 𝐴𝜃 )𝑇(𝑦 − 𝐴𝜃 )     (56) 

Using some matrix manipulations, the error function becomes, 

𝐸(𝜃 ) = [𝑦 𝑇 − (𝐴𝜃 )𝑇](𝑦 − 𝐴𝜃 ) 

= [𝑦 𝑇 − 𝜃 𝑇𝐴𝑇](𝑦 − 𝐴𝜃 ) 

= 𝑦 𝑇𝑦 − 𝑦 𝑇𝐴𝜃 − 𝜃 𝑇𝐴𝑇𝑦 + 𝜃 𝑇𝐴𝑇𝐴𝜃  

𝐸(𝜃 ) = 𝑦 𝑇𝑦 − 2𝑦 𝑇𝐴𝜃 + 𝜃 𝑇𝐴𝑇𝐴𝜃         (57) 

To find 𝜃 corresponding to the minimum of the error function, the derivative is found and set to 

zero, 

𝜕𝐸(𝜃 )

𝜕𝜃 
= 0⃑ = −2(𝑦 𝑇𝐴)𝑇 + 𝐴𝑇𝐴𝜃 + (𝜃 𝑇𝐴𝑇𝐴)

𝑇
 

= −2𝐴𝑇𝑦 + 𝐴𝑇𝐴𝜃 + 𝐴𝑇𝐴𝜃  

0 = −2𝐴𝑇𝑦 + 2𝐴𝑇𝐴𝜃  

𝐴𝑇𝑦 = 𝐴𝑇𝐴𝜃  

(𝐴𝑇𝐴)−1𝐴𝑇𝑦 = (𝐴𝑇𝐴)−1𝐴𝑇𝐴𝜃  

𝜃 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦       (58) 

Using (58), any linear parameters in the system can be estimated by using all of the training data 

pairs. 
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To derive the recursive LSE, it is assumed that at each time step there is a new training data set 

available. 

𝜃 𝑘 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦 = 𝑃𝑘𝐴
𝑇𝑦       (59) 

where,   

𝑃𝑘 = (𝐴𝑇𝐴)−1 

By definition, 

𝜃 𝑘+1 = (𝐴𝑇
𝑘+1

𝐴𝑘+1)
−1𝐴𝑇

𝑘+1
𝑦 𝑘+1        (60) 

Rewriting 𝜃 𝑘+1 gives, 

𝜃 𝑘+1 = {[
𝐴
𝑎 𝑇]

𝑇

[
𝐴
𝑎 𝑇]}

−1

[
𝐴
𝑎 𝑇]

𝑇

(
𝑦 
𝑦
)       (61) 

where, 𝑦 and 𝑎 𝑇 correspond to the new training data pair at time k+1 

Define, 

𝑃𝑘
−1 = 𝐴𝑇𝐴 

𝑃𝑘+1
−1 = {[

𝐴
𝑎 𝑇]

𝑇

[
𝐴
𝑎 𝑇]}

 

 

𝑃𝑘+1
−1 = {𝐴𝑇𝐴 + 𝑎 𝑎 𝑇} = 𝑃𝑘

−1 + 𝑎 𝑎 𝑇         (62) 

Now, 

𝜃 𝑘+1 = 𝑃𝑘+1[𝐴𝑇 𝑎 ] [
𝑦 
𝑦
] 

= 𝑃𝑘+1[𝐴
𝑇𝑦 + 𝑎 𝑦]        (63) 

Since, 

𝜃 𝑘 = 𝑃𝑘𝐴
𝑇𝑦        (64) 
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It is found that, 

𝑃𝑘
−1𝜃 𝑘 = 𝐴𝑇𝑦       (65) 

𝜃 𝑘+1 becomes, 

𝜃 𝑘+1 = 𝑃𝑘+1[𝑃𝑘
−1𝜃 𝑘 + 𝑎 𝑦] 

= 𝑃𝑘+1[(𝑃𝑘+1
−1 − 𝑎 𝑎 𝑇)𝜃 𝑘 + 𝑎 𝑦] 

= 𝑃𝑘+1[𝑃𝑘+1
−1𝜃 𝑘 − 𝑎 𝑎 𝑇𝜃 𝑘 + 𝑎 𝑦] 

= 𝜃 𝑘 + 𝑃𝑘+1(𝑎 𝑦 − 𝑎 𝑎 𝑇𝜃 𝑘) 

𝜃 𝑘+1 = 𝜃 𝑘 + 𝑃𝑘+1𝑎 (𝑦 − 𝑎 𝑇𝜃 𝑘)     (66) 

And, 

𝑃𝑘+1
 = (𝑃𝑘

−1 + 𝑎 𝑎 𝑇)
−1

           (67) 

Using matrix inversion lemma [𝐴 + 𝐵𝐶]−1 = 𝐴−1 − 𝐴−1𝐵(𝐼 + 𝐶𝐴−1𝐵)−1𝐶𝐴−1, 𝑃𝑘+1
 becomes, 

𝑃𝑘+1 = 𝑃𝑘 −
𝑃𝑘𝑎⃑ 𝑘+1𝑎⃑ 

𝑇
𝑘+1𝑃𝑘

1+𝑎⃑ 𝑇𝑘+1𝑃𝑘𝑎⃑ 𝑘+1
             (68) 

(68) is only valid if the denominator is non-singular. 

Therefore, the recursive least squares estimator is defined by the two equations below: 

 

𝑃𝑘+1 = 𝑃𝑘 −
𝑃𝑘𝑎⃑ 𝑘+1𝑎⃑ 𝑘+1

𝑇 𝑃𝑘

1+𝑎⃑ 𝑘+1
𝑇 𝑃𝑘𝑎⃑ 𝑘+1

              (69) 

 

𝜃 𝑘+1 = 𝜃𝑘 + 𝑃𝑘+1𝑎 𝑘+1(𝑦𝑘+1 − 𝑎 𝑘+1
𝑇 𝜃𝑘)            (70) 

 

where, 

 Pk+1 is the adaptation matrix; 𝑃𝑘+1𝑎 𝑘+1 is the adaptation gain vector 

Өk+1 is the estimator and contains an estimate of the optimal linear parameter values 
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ak+1 is a vector containing the coefficients of the linear parameters to be optimized 

yk+1 is the desired system output; (𝑦𝑘+1 − 𝑎 𝑘+1
𝑇 𝜃𝑘) is the prediction error vector 

Po=αI, where α is a large number 

Өo is usually initialized to a vector of zeros 

k=1, 2, …, N 

N is the number of training data pairs 

 

Applying the RLSE to the five layer ANFIS model described, the input signals propagate 

through the network until layer 4 at which point RLSE is applied to obtain an estimate for all the 

linear parameters in this layer. It is important that while using the least squares estimator, the 

nonlinear input membership parameters must be held constant. 

 

3.3.1.2 Gradient Descent Algorithm 

 

The method of gradient descent is usually used to optimize the nonlinear input membership 

function parameters. This method works by finding the derivative of the objective (or error) 

function to determine the gradient. A simple equation is then applied to update the parameters. A 

detailed discussion on gradient descent can be found in Jang’s book [1]. The error function is 

defined as: 

 

𝐸 = (𝑍𝑜𝑢𝑡 − 𝑍𝑜𝑢𝑡
𝑑)

2
      (71) 

 

where Zout is the ANFIS output and 𝑍𝑜𝑢𝑡
𝑑 is the desired system output 

 

Assume in this case that ‘a’ is a nonlinear parameter to be optimized. Since Zout depends on the 

nonlinear parameters, the chain rule is used to find the derivative of the error function as follows: 

 

𝜕𝐸

𝜕𝑎
=

𝜕𝐸

𝜕𝑍𝑜𝑢𝑡
∗

𝜕𝑍𝑜𝑢𝑡

𝜕𝑎
      (72) 
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With the error function defined as in (71),  

 

𝜕𝐸

𝜕𝑎
= 2 ∗ (𝑍𝑜𝑢𝑡 − 𝑍𝑜𝑢𝑡

𝑑) ∗
𝜕𝑍𝑜𝑢𝑡

𝜕𝑎
     (73) 

 

Once this derivative is found, parameter ‘a’ can be updated as follows: 

 

𝑎𝑘+1 = 𝑎𝑘 − 𝜂
𝜕𝐸

𝜕𝑎
      (74) 

 

where, η is the learning rate (or step size) 

 k is the current step or position 

 k+1 is the next step or position 

 

To force the predicted output to be as close as possible to the desired output, minimum error 

is desired. Since the gradient points in the direction of steepest increase, a negative step is used 

in the parameter update equation to ensure a minimum is found. 

For gradient descent, the linear parameters are held constant and the error signal is applied 

from the last layer and propagated backward until layer 1 at which point the nonlinear 

parameters can be estimated. The main issue with gradient descent is that the algorithm may ‘get 

stuck’ in a local minimum rather than the global minimum and hence will not provide the 

optimum parameters for the system. More complex methods such as genetic algorithms have 

been developed that do not require the use of the derivative.  

If gradient descent is used for the four rule ANFIS as described in section 3.3 with Gaussian 

input membership functions, the equations used for training can be derived.  

 

To update parameter c1 in the first input membership function, the derivative of the error is 

required: 

𝜕𝐸

𝜕𝑐1
= 2 ∗ (𝑥𝑜𝑢𝑡 − 𝑥𝑜𝑢𝑡

𝑑) ∗
𝜕𝑥𝑜𝑢𝑡

𝜕𝑐1
     (75) 
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And, 

𝑥𝑜𝑢𝑡 =
1

𝑊1+𝑊2+𝑊3+𝑊4
∗ (𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3 + 𝑊4𝑓4)    (76) 

 

To find the derivative of xout with respect to the nonlinear parameters, the product or quotient 

rule can be used. In this case, the product rule is used: 

𝜕𝑥𝑜𝑢𝑡

𝜕𝑐1
=

−1

(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)2
[
𝜕𝑊1

𝜕𝑐1
+

𝜕𝑊2

𝜕𝑐1
] (𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3 + 𝑊4𝑓4)

+
1

𝑊1 + 𝑊2 + 𝑊3 + 𝑊4
[
𝜕𝑊1

𝜕𝑐1
𝑓1 +

𝜕𝑊2

𝜕𝑐1
𝑓2] 

 

=
−1

(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)2
[
𝑥1 − 𝑐1

𝜎1
2 𝜇𝐴1𝜇𝐵1 +

𝑥1 − 𝑐1

𝜎1
2 𝜇𝐴1𝜇𝐵2] (𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3 + 𝑊4𝑓4)

+
1

𝑊1 + 𝑊2 + 𝑊3 + 𝑊4
[
𝑥1 − 𝑐1

𝜎1
2 𝜇𝐴1𝜇𝐵1𝑓1 +

𝑥1 − 𝑐1

𝜎1
2 𝜇𝐴1𝜇𝐵2𝑓2] 

 

=
(𝑥1 − 𝑐1)𝜇𝐴1

𝜎1
2(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)

(𝜇𝐵1𝑓1 + 𝜇𝐵2𝑓2 − 𝜇𝐵1𝑥𝑜𝑢𝑡 − 𝜇𝐵2𝑥𝑜𝑢𝑡) 

 

=
(𝑥1 − 𝑐1)

𝜎1
2(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)

(𝑊1𝑓1 + 𝑊2𝑓2 − 𝑊1𝑥𝑜𝑢𝑡 − 𝑊2𝑥𝑜𝑢𝑡) 

 

=
𝑥1 − 𝑐1

𝜎1
2

(𝑊1
̅̅ ̅̅ (𝑓1 − 𝑥𝑜𝑢𝑡) + 𝑊2

̅̅ ̅̅ (𝑓2 − 𝑥𝑜𝑢𝑡)) 

 

𝜕𝑥𝑜𝑢𝑡

𝜕𝑐1
=

𝑥1−𝑐1

𝜎1
2 (𝑂1 + 𝑂2 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊2
̅̅ ̅̅ ))           (77) 
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Therefore,  

𝜕𝐸

𝜕𝑐1
= 2 ∗ (𝑥𝑜𝑢𝑡 − 𝑥𝑜𝑢𝑡

𝑑) ∗
𝑥1−𝑐1

𝜎1
2 ∗ (𝑂1 + 𝑂2 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊2
̅̅ ̅̅ ))   (78) 

 

Relating the derivative to the error function, the following representation of the derivative is 

obtained: 

𝜕𝐸

𝜕𝑐1
= 2 ∗ √𝐸 ∗

𝑥1−𝑐1

𝜎1
2 ∗ (𝑂1 + 𝑂2 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊2
̅̅ ̅̅ ))    (79) 

 

Similarly the derivatives of the error with respect to the remaining three ‘c’ parameters can be 

found as: 

𝜕𝐸

𝜕𝑐2
= 2 ∗ √𝐸 ∗

𝑥1−𝑐2

𝜎2
2 ∗ (𝑂3 + 𝑂4 − 𝑥𝑜𝑢𝑡(𝑊3

̅̅ ̅̅ + 𝑊4
̅̅ ̅̅ ))    (80) 

 

𝜕𝐸

𝜕𝑐3
= 2 ∗ √𝐸 ∗

𝑥2−𝑐3

𝜎3
2 ∗ (𝑂1 + 𝑂3 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊3
̅̅ ̅̅ ))    (81) 

 

𝜕𝐸

𝜕𝑐4
= 2 ∗ √𝐸 ∗

𝑥2−𝑐4

𝜎4
2 ∗ (𝑂2 + 𝑂4 − 𝑥𝑜𝑢𝑡(𝑊2

̅̅ ̅̅ + 𝑊4
̅̅ ̅̅ ))    (82) 

 

 

With these derivatives, parameter ‘c’ in each input membership can be updated using: 

𝑐𝑖,𝑘+1 = 𝑐𝑖,𝑘 − 𝜂
𝜕𝐸

𝜕𝑐𝑖
,    𝑖 = 1, 2, 3, 4     (83) 

 

Now, to update parameter σ1 in the first input membership function, the derivative of the error is 

required. Note that a similar process as parameter ‘c’ is used to determine the derivative of the 

error with respect to σ. 

𝜕𝐸

𝜕𝜎1
= 2 ∗ (𝑥𝑜𝑢𝑡 − 𝑥𝑜𝑢𝑡

𝑑) ∗
𝜕𝑥𝑜𝑢𝑡

𝜕𝜎1
     (84) 
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And, 

 

𝑥𝑜𝑢𝑡 =
1

𝑊1+𝑊2+𝑊3+𝑊4
∗ (𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3 + 𝑊4𝑓4)          (85) 

 

To find the derivative of xout with respect to the nonlinear parameters, the product or quotient 

rule can be used. In this case, the product rule is used: 

𝜕𝑥𝑜𝑢𝑡

𝜕𝜎1
=

−1

(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)2
[
𝜕𝑊1

𝜕𝜎1
+

𝜕𝑊2

𝜕𝜎1
] (𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3 + 𝑊4𝑓4)

+
1

𝑊1 + 𝑊2 + 𝑊3 + 𝑊4
[
𝜕𝑊1

𝜕𝜎1
𝑓1 +

𝜕𝑊2

𝜕𝜎1
𝑓2] 

 

=
−1

(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)2
[
(𝑥1 − 𝑐1)

2

𝜎1
3 𝜇𝐴1𝜇𝐵1 +

(𝑥1 − 𝑐1)
2

𝜎1
3 𝜇𝐴1𝜇𝐵2] (𝑊1𝑓1 + 𝑊2𝑓2 + 𝑊3𝑓3

+ 𝑊4𝑓4) +
1

𝑊1 + 𝑊2 + 𝑊3 + 𝑊4
[
(𝑥1 − 𝑐1)

2

𝜎1
3 𝜇𝐴1𝜇𝐵1𝑓1 +

(𝑥1 − 𝑐1)
2

𝜎1
3 𝜇𝐴1𝜇𝐵2𝑓2] 

 

=
(𝑥1 − 𝑐1)

2𝜇𝐴1

𝜎1
3(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)

(𝜇𝐵1𝑓1 + 𝜇𝐵2𝑓2 − 𝜇𝐵1𝑥𝑜𝑢𝑡 − 𝜇𝐵2𝑥𝑜𝑢𝑡) 

 

=
(𝑥1 − 𝑐1)

2

𝜎1
3(𝑊1 + 𝑊2 + 𝑊3 + 𝑊4)

(𝑊1𝑓1 + 𝑊2𝑓2 − 𝑊1𝑥𝑜𝑢𝑡 − 𝑊2𝑥𝑜𝑢𝑡) 

 

=
(𝑥1 − 𝑐1)

2

𝜎1
3

(𝑊1
̅̅ ̅̅ (𝑓1 − 𝑥𝑜𝑢𝑡) + 𝑊2

̅̅ ̅̅ (𝑓2 − 𝑥𝑜𝑢𝑡)) 

𝜕𝑥𝑜𝑢𝑡

𝜕𝜎1
=

(𝑥1−𝑐1)2

𝜎1
3 (𝑂1 + 𝑂2 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊2
̅̅ ̅̅ ))    (86) 
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Therefore,  

𝜕𝐸

𝜕𝜎1
= 2 ∗ (𝑥𝑜𝑢𝑡 − 𝑥𝑜𝑢𝑡

𝑑) ∗
(𝑥1−𝑐1)2

𝜎1
3 ∗ (𝑂1 + 𝑂2 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊2
̅̅ ̅̅ ))   (87) 

 

Relating the derivative to the error function, the following representation of the derivative is 

obtained: 

𝜕𝐸

𝜕𝜎1
= 2 ∗ √𝐸 ∗

(𝑥1−𝑐1)2

𝜎1
3 ∗ (𝑂1 + 𝑂2 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊2
̅̅ ̅̅ ))       (88) 

 

Similarly the derivatives of the error with respect to the remaining three ‘σ’ parameters can be 

found as: 

𝜕𝐸

𝜕𝜎2
= 2 ∗ √𝐸 ∗

(𝑥1−𝑐2)2

𝜎2
3 ∗ (𝑂3 + 𝑂4 − 𝑥𝑜𝑢𝑡(𝑊3

̅̅ ̅̅ + 𝑊4
̅̅ ̅̅ ))   (89) 

 

𝜕𝐸

𝜕𝜎3
= 2 ∗ √𝐸 ∗

(𝑥2−𝑐3)2

𝜎3
3 ∗ (𝑂1 + 𝑂3 − 𝑥𝑜𝑢𝑡(𝑊1

̅̅ ̅̅ + 𝑊3
̅̅ ̅̅ ))   (90) 

 

𝜕𝐸

𝜕𝜎4
= 2 ∗ √𝐸 ∗

(𝑥2−𝑐4)2

𝜎4
3 ∗ (𝑂2 + 𝑂4 − 𝑥𝑜𝑢𝑡(𝑊2

̅̅ ̅̅ + 𝑊4
̅̅ ̅̅ ))   (91) 

 

 

With these derivatives, parameter ‘σ’ in each input membership can be updated using: 

 

𝜎𝑖,𝑘+1 = 𝜎𝑖,𝑘 − 𝜂
𝜕𝐸

𝜕𝜎𝑖
,    𝑖 = 1, 2, 3, 4     (92) 

 

3.3.1.3 Proposed Hybrid Training Method 

 

Since the basic training method using LSE and gradient descent (GD) has many problems, a 

new hybrid training method is proposed. The proposed algorithm uses RLSE for linear 
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consequent parameter training and particle swarm optimization (PSO) for nonlinear membership 

function parameter training. To the author’s knowledge, RLSE-PSO training has not been 

applied to a solar photovoltaic energy conversion system using a buck boost converter for 

MPPT. The proposed algorithm is used to train the designed ANFIS to produce a duty cycle for 

the converter in order to deliver maximum power from the panel to the load at all times 

regardless of irradiance conditions. 

The proposed hybrid training algorithm proves more beneficial to ANFIS training, when 

compared to LSE-GD, as no derivative of the objective function is required. Thus, if the 

derivative does not exists or there are discontinuities in the objective function, the proposed 

algorithm can still find the optimal parameters corresponding to the minimum of the objective 

function. Further, PSO has the ability to search for the global minimum of the objective function 

and avoid any local minima. By changing two parameters (the personal and global learning rates) 

in the PSO algorithm, the global optimum can be found.  

The designed ANFIS with RLSE-PSO training is used as the maximum power point tracking 

controller for the solar panel. The proposed training algorithm uses system data obtained while 

running the perturb and observe MPPT algorithm. Training the ANFIS will allow the MPPT 

controller to effectively calculate the duty cycle for the converter corresponding to the maximum 

power point based on any given panel output voltage and current within the specified region of 

operation. Maximum power point tracking is discussed in the next chapter. Table 3-2 below 

shows the process of the proposed hybrid learning algorithm. 

 

Table 3-3: Proposed hybrid learning algorithm passes 

 Forward Pass Backward Pass 

Premise parameters Fixed Particle swarm optimization 

Consequent parameters Least-squares estimator Fixed 

Signals Node outputs Error signals 
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3.3.1.3.1 Particle Swarm Optimization 

 

This section provides a discussion on particle swarm optimization and addresses some of the 

benefits of implementing it for optimization purposes. Further, its relation to ANFIS training will 

also be explored. 

Particle swarm optimization is an evolutionary algorithm that is modeled after the behaviour 

of a flock of birds [6] or a school of fish. In the PSO algorithm, a random population is set with a 

number of members (called particles). Each member in the population contains a solution to the 

given problem. Imagine a flock of birds. Each bird in the flock moves according to its velocity 

and position and is also influenced by the other birds’ position. If the flock is searching for food, 

one bird in the flock will have the position best suited to find the food (the global best). All other 

birds will change their velocity and position based on this globally best position and their own 

best position in order to reach the food. As a result, the swarm (or flock) moves towards the best 

solution for a given problem. Therefore, by using PSO, the global minimum of the objective 

function is usually found depending on the initial positions of the members in the population and 

improves the tracking of the maximum power point as compared to conventional MPPT 

methods. 

The PSO algorithm is outlined below [4]. The population originally consists of randomly 

generated members. Each particle in the population has its own current position and best position 

called pbest. The globally best solution (called gbest) is the best solution among all of the particle’s 

pbest. The goal of the PSO algorithm is to move the particles towards their pbest and the overall 

gbest.  

 

Fig. 3-5: Particle position update [4]. 
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Fig. 3-5 above shows the process of updating a particle’s position using PSO [4]. Pk is the 

particles current position, Pk+1 is the particle’s new update position, Vini is the initial velocity of 

the particle, Vmod  is the new velocity, Vpbest and Vgbest show the velocity due to pbest and gbest 

respectively. The particle swarm optimization algorithm is as follows: 

 

 

1. Initialize a population of M particles with randomly generated positions and velocities 

2. For each particle, compute its fitness value according to the optimization problem 

3. Compare each particle’s current fitness value with its best fitness value (pbest’s fitness). If 

the current value is less than the value from pbest, update pbest with the current position. 

4.  Compare each particle’s current fitness value with the best fitness value among all 

particle (gbest’s fitness). If the current value is less than the value from gbest, update gbest 

with the current position. 

5. Update each particle’s velocity and position according to the equations below 

6. Repeat steps 2-5 until a desired fitness level is achieved or a defined number of iterations 

is reached. 

 

𝑣 = 𝑤 ∗ 𝑣 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑝𝑏𝑒𝑠𝑡 − 𝑥) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥)  (93) 

 

𝑥 = 𝑥 + 𝑣            (94) 

where,  

v is the velocity of each particle 

w is an inertia weight that reduces the effect of the previous velocity as the search 

progresses 

c1 and c2 are the local and global learning rates respectively. Generally c1=c2 [38] 

rand(0,1) is a random number between 0 and 1 

gbest is the best position among all members (globally best position) 

pbest is the best position for a given member (personal best position) 

x is the current position of the particle 
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The choice of the parameters in PSO can significantly affect the algorithm’s ability to 

perform optimization effectively. Therefore, care must be taken in order for PSO to have the best 

chance at finding the optimal solution for a problem. Trial and error method can be used to 

determine: the ideal number of particles in the population, the inertia coefficient, the personal 

and global learning rates and the limits on the particle’s positions. [4] provides an explanation on 

how each of the parameters affects the searching ability of the PSO algorithm. It is important to 

note that limits should be placed on the generated solutions in order to avoid the particle’s 

movements outside the search space. If the position of a particle exceeds the limits, its value is 

set to the limits and the search continues. Fig. 3-6 below shows a flow chart outlining the PSO 

algorithm. 
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Fig. 3-6: PSO algorithm. 

 

For the proposed RLSE-PSO algorithm applied to the designed ANFIS, the nonlinear input 

membership function parameters are to be optimized. Thus, each particle in the population 

contains values of these parameters corresponding to a possible solution that minimizes the error 
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function. In this case, the error (or cost) function is defined as the root mean squared difference 

between the desired system output and the actual calculated system output (i.e. the root mean 

square error). For the purposes of this thesis, the system output is chosen as the duty cycle 

applied to the MOSFET of the buck-boost converter. Each particle is generated as an array with 

the center and standard deviation of the function as the columns and each row is associated with 

one membership function. For example, if there are two membership functions with two 

parameters per function to be optimized, each particle will be a 2x2 matrix where position (1,1) 

is the center of the first membership function, position (1,2) is the standard deviation of the first 

membership function, position (2,1) is the center of the second membership function and 

position (2,2) is the standard deviation of the second membership function. The proposed 

algorithm can be used to train any ANFIS system where both linear and nonlinear parameters 

exist. If the Gaussian membership function is not used, the RLSE-PSO algorithm can still be 

used; only minor modifications to the Matlab program are required The RLSE trains the linear 

parameters and the PSO trains the nonlinear parameters. 
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Chapter 4 

Maximum Power Point Tracking and Inverter Control 

Theory 

 

This chapter delivers a discussion on the maximum power transfer theorem and the perturb 

and observe (P&O) MPPT algorithm. It also provides inverter control and filter theory as related 

to the scope of the thesis. 

 

4.1 Maximum Power Transfer Theorem 

 

It is desirable to determine how to transfer maximum power from the source to the load for 

various applications. The case where the load is purely resistive will be considered and an 

expression derived that guarantees maximum power transfer.  

Consider a simple series circuit as shown in Fig. 4-1 with a voltage source, source resistance 

and load resistance. The goal of this derivation is to determine the relationship between the 

source and load resistances that guarantee maximum power will be transferred to the load.  

 

 

Fig. 4-1: Series circuit with resistive load. 

 

An expression can be found for the current flowing in the circuit and the power dissipated in the 

load: 
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𝐼 =
𝑉𝑠

𝑅𝐿+𝑅𝑠
       (95) 

𝑃𝑙𝑜𝑎𝑑 = (
𝑉𝑠

𝑅𝐿+𝑅𝑠
)
2

𝑅𝐿            (96) 

Expanding and simplifying gives, 

𝑃𝑙𝑜𝑎𝑑 =
𝑉𝑠

2

𝑅𝑠
2

𝑅𝐿
+2𝑅𝑠+𝑅𝐿

           (97) 

 

The maximum load power occurs when Pload is maximized. Pload is maximized when the 

derivative of the denominator with respect to RL is equal to zero.  

 

Taking the derivative of the denominator of (97) with respect to RL gives, 

 

𝑑(
𝑅𝑠
2

𝑅𝐿
+2𝑅𝑠+𝑅𝐿)

𝑑𝑅𝐿
= −

𝑅𝑠
2

𝑅𝐿
+ 1      (98) 

 

Setting (98) equal to zero and solving for RL,  

 

𝑅𝑠
2

𝑅𝐿
= 1 

𝑅𝐿 = ±𝑅𝑠      (99) 

 

Resistance cannot be negative so the positive solution is chosen. Taking the second 

derivative yields a negative value. Therefore, maximum power is transferred to the load when -

RL=Rs.  

 As such, for maximum power transfer from a solar panel to a load, the load resistance 

must be equal to the source resistance. Due to the nonlinear characteristics of the solar panel, the 

output resistance of the solar panel varies significantly with changing weather conditions. For 

this reason, a DC-DC converter is used in order to match the panel’s nonlinear output impedance 

to the load regardless of weather conditions or changes in the load. 
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4.2 Maximum Power Point Tracking 

 

Maximum power point tracking is used to guarantee maximum power is delivered from the 

solar panel to the load of the system. Usually the maximum power point tracking is performed by 

a DC-DC converter but it can also be implemented directly with the inverter. If only the inverter 

is used for MPPT and three phase generation, the control of the inverter becomes much more 

complicated but the need for a DC-DC converter is removed. As a result, the system that only 

uses the inverter for MPPT is less expensive than the system proposed in this thesis; however, 

the computational cost is greater due to the requirement of a significantly more complex control 

algorithm. The MPPT algorithm calculates a duty cycle corresponding to the MPP and hence 

changes the duty cycle that is applied to the DC-DC converter. By changing the duty cycle, the 

impedance apparent to the solar panel is changed to match the load impedance to the solar panel 

impedance. For a given temperature and irradiance, there is a solar panel output voltage (Vmpp) 

and current (Impp) corresponding to the maximum power point. These values give an optimal 

resistance of 𝑅𝑜𝑝𝑡 =
𝑉𝑚𝑝𝑝

𝐼𝑚𝑝𝑝
. The optimal resistance is the resistance that the solar panel needs to be 

connected to in order to achieve maximum power output from the panel. Since the load cannot 

be changed at all times for varying weather conditions, a DC-DC converter is used to match any 

load resistance to the optimal resistance of the panel. By this application, the load will always be 

matched to the changing optimal solar panel resistance. As such, the DC-DC converter is used as 

an impedance matcher for MPPT purposes. Thus, the DC-DC converter can effectively match 

the impedance of the load to the solar panel. A buck boost converter or single ended primary 

inductor converter (SEPIC) are two desirable converters for maximum power point tracking as 

they both can step up or step down an input voltage. As a result, both converters can track the 

maximum power point regardless of weather or load conditions. If the load changes, the 

converter is still able to match the solar panel output impedance to the load. Assume the 

temperature, irradiance or the load changes, the MPPT algorithm will recalculate a duty cycle 

that will allow the converter to achieve load matching and draw maximum power from the solar 

panel. For the purposes of this thesis, the temperature is assumed to remain constant at all times 

(constant solar panel voltage at the MPP) and the irradiance is allowed to change (changing solar 

panel output current). If changes in temperature are to be included, the training data set becomes 
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larger and the training will take more resources and computational time. The designed training 

algorithm for the ANFIS can easily be applied if the temperature is allowed to change by 

gathering more data over the allowed temperature and irradiance operating range.  

Further, it is not necessary to design the system to operate at temperatures below 0°C as 

these temperatures occur in winter months. As such, the solar irradiance is much lower than on a 

spring or summer day so the solar panels do not work well (unless the panels are not snow 

covered; then the albedo effect helps). Also, when the temperatures are cold, snow usually 

covers the solar panels blocking most solar irradiation from reaching the panel. For these 

reasons, the panels do not generate enough energy to require operation at negative temperatures. 

 

4.2.1 Perturb and Observe Algorithm 

 

The perturb and observe MPPT algorithm is one of the simplest MPPT algorithms to 

understand and implement. For this reason, it is the most widely used MPPT algorithm in 

industry today. This algorithm perturbs the duty cycle (it either increases or decreases the duty 

cycle) and observes the effect on the power generated by the solar panel. Depending on the 

change in power and change in voltage, the duty cycle is increased or decreased accordingly. The 

main disadvantage of the P&O algorithm is the inherent oscillations around the maximum power 

point. These oscillations result in a loss of available power and hence decrease the efficiency of 

the solar panel. Thus, it is desirable to develop new MPPT algorithms that provide a more stable 

response at the MPP. The operation of the P&O algorithm is shown in Fig. 4-2 below. 
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Fig. 4-2: Perturb and Observe MPPT Algorithm. 

 

4.3 Two Level Voltage Source Inverter Control 

 

This section provides a brief analysis of a voltage source inverter, outlines the Park 

transform and the sinusoidal PWM control method as well as the closed loop dq axis-based 

voltage control for a two level voltage source inverter. 
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4.3.1 Park Transform 

 

The Park transform converts a time varying three phase signal into two dc components in the 

rotating reference frame. The inverse Park transform converts the dq0 components in the rotating 

reference frame into the corresponding abc components in time domain. To find the inverse Park 

transform, the inverse of the 3x3 matrix in (100) below must be found. To convert the abc 

signals to dq0 components or to perform the inverse operation, Simulink has a built in block that 

will perform these calculations. For implementation purposes, the abc to dq0 transformation is 

not available as a Simulink block and hence the conversion must be realized as a subsystem and 

the associated equations drawn. 

 

When the rotating frame is aligned with the ‘a’ axis, the Park transform is defined by, 

 

[

𝑉𝑑

𝑉𝑞
𝑉0

] =
2

3

[
 
 
 cos(𝜃) cos(𝜃 − 2𝜋

3⁄ ) cos(𝜃 + 2𝜋
3⁄ )

−sin(𝜃) −sin(𝜃 − 2𝜋
3⁄ ) −sin(𝜃 + 2𝜋

3⁄ )

1
2⁄

1
2⁄

1
2⁄ ]

 
 
 

[
𝑉𝑎
𝑉𝑏

𝑉𝑐

]       (100) 

 

The inverse Park transform for the same case is defined by, 

 

[
𝑉𝑎
𝑉𝑏

𝑉𝑐

] = [

cos(𝜃) −sin(𝜃) 1

cos(𝜃 − 2𝜋
3⁄ ) −sin(𝜃 − 2𝜋

3⁄ ) 1

cos(𝜃 + 2𝜋
3⁄ ) −sin(𝜃 + 2𝜋

3⁄ ) 1

] [
𝑉𝑑

𝑉𝑞
0

]             (101) 

 

where,  

Va¸Vb, Vc are the balanced three phase signals in the time varying abc reference frame 

Vd, Vq are the dc signals in the rotating reference frame 

θ is the angle between phase ‘a’ in the time varying reference frame and the q axis in the 

rotating reference frame 
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4.3.2 Sinusoidal PWM 

 

The section discusses the sinusoidal PWM method to control a three phase voltage source 

inverter. The circuit configuration and the output waveforms are provided along with a 

mathematical expression for the output waveforms. A controller can be used to generate the 

reference control signals (Vcontol,A, Vcontrol,B and Vcontrol,C) and hence closed loop control is 

established. Fig. 4-3 shows a three phase inverter [17]. Six switches are used to make three legs 

of the inverter. A pulse width modulation (PWM) signal is applied to all six switches in order to 

convert the DC voltage into a three phase AC voltage. A capacitor is used at the input of the 

inverter to maintain a constant dc link voltage required by the inverter for proper operation. 

 

.  

Fig. 4-3: Three phase inverter. 

 

By choosing an appropriate switching scheme, the filtered output of the inverter can be 

made almost perfectly sinusoidal with a phase shift of 120° between phases. The frequency of 

the AC waveforms is determined by the switching scheme and the topology of the full system. If 

the inverter is connected to the grid, the grid frequency can be measured and used in the 

generation of the PWM signals for control of the inverter. If stand-alone operation is required, 

more complicated methods are required to control the VSI as the grid frequency is not available 

and as such, must be generated with the control scheme. 

 

Consider the perfect case in which only the fundamental component of the output 

waveforms exist. For abc sequence, the phase voltages (line to neutral) can be expressed as: 
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𝑉𝐴𝑛 = 𝑉𝑚 sin𝑤𝑡      (102) 

 𝑉𝐵𝑛 = 𝑉𝑚 sin(𝑤𝑡 − 120°)     (103) 

𝑉𝐶𝑛 = 𝑉𝑚 sin(𝑤𝑡 + 120°)     (104) 

 

where Vm is the peak value of the signal 

 

The line voltages are obtained as: 

𝑉𝐴𝐵 = 𝑉𝐴𝑛 − 𝑉𝐵𝑛         (105) 

𝑉𝐵𝐶 = 𝑉𝐵𝑛 − 𝑉𝐶𝑛        (106) 

𝑉𝐶𝐴 = 𝑉𝐶𝑛 − 𝑉𝐴𝑛        (107) 

 

To control the inverter and generate PWM pulses for the gate of the switches using bipolar 

PWM switching, a reference signal is compared with a triangular signal and hence the PWM 

generated. Three control signals are required (one for each phase) and are compared to the same 

triangle waveform. Note that the reference signal is the desired phase voltage output of the 

inverter for each phase. Fig. 4-4 shows how the comparison of the triangle and reference control 

signals generate the unfiltered phase voltages at the output of the inverter. 
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Fig. 4-4: Phase voltage generation [17]. 

 

The operation of the PWM generation and application to the inverter switches is as follows: 

 

When Vcontrol, k > Vtri, Tk
+ is on and Tk

- is off 

When Vcontrol, k < Vtri, Tk
- is on and Tk

+ is off 

 

where,  

k= A, B, C 

 

To prevent over modulation and achieve linear modulation, the amplitude of the control 

signal must be less than the triangle signal. This fact introduces the amplitude modulation index, 



52 
 

ma. ma is defined as the ratio of the peak value of the control signal to the peak value of the 

triangle signal.  

𝑚𝑎 =
𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑉𝑡𝑟𝑖
      (108) 

 

where, ma is the amplitude modulation index 

𝑉̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the peak value of the control signal 

𝑉̂𝑡𝑟𝑖 is the peak value of the triangle signal 

 

Usually ma is less than or equal to 0.8 [17] which means the peak voltage level of the control 

signal is at most 80 percent of the peak voltage of the triangle signal. Further, the frequency of 

the triangle signal must be much higher than the control signal’s frequency. The frequency of the 

triangle signal determines the frequency of the PWM signal. As such, a frequency modulation 

index is introduced as, 

 

𝑚𝑓 =
𝑓𝑡𝑟𝑖

𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙
      (109) 

 

where, mf is the frequency modulation index 

ftri is the frequency of the triangle signal 

fcontrol is the frequency of the control signal 

 

It is important that mf is chosen to be an odd number. If mf is and odd number then the 

output signals of the inverter have odd symmetry and half-wave symmetry [17]. Due to these 

features, the even harmonics are not found in the signals and only the odd harmonics exist. This 

reduces the THD of the three phase output and allows for simpler filtering. Further, if mf is 

chosen as a large integer, the harmonics in the output voltage waveforms are located at high 

frequencies. As such, filtering the harmonics out of the waveform is easier than if a lower mf was 

used. Table 4-1 below shows the generalized harmonics in the phase voltages for a large mf 

value. 
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Table 4-1: Generalized harmonics in the phase voltages for large mf [17] 

 

 

If the switching frequency of the inverter is high (i.e. a large mf is chosen), then the need for 

a precise filter is relaxed since the harmonics will be located at high frequencies. As such, an 

inductor filter would be sufficient to remove harmonics in the phase voltages even though the 

attenuation of an inductor filter is -20dB/decade over all frequencies. If a smaller mf value is 

used, the harmonics are located closer to the fundamental frequency and a better filter must be 

designed for these harmonics to effectively be removed without affecting the fundamental 

component. A trade-off between filter complexity and switching noise arises with different mf 

values. A low mf requires a more complex and precise filter to remove the harmonics but the 

noise generated due to the IGBTs switching is low. For high values of mf, the filter requirements 

are relaxed, however, the switching noise is much greater than when a low mf is used. Therefore, 

when considering switching noise and harmonics, some care must be taken to satisfy relatively 

low switching noise and effective harmonic filtering. A more in-depth discussion of inverter 

control can be found in [17], [18]. 
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4.3.3 d-q Axis Control 

 

This control technique uses the dq axis components of the three phase signals to control the 

voltage at the output of the inverter. In this thesis, this control method is used for voltage control 

of the inverter. For grid connection, the voltage of the incoming signals must be slightly higher 

than the grid voltage. As such, voltage control is required to ensure proper grid connection. In 

this thesis, no current control is applied to the inverter and hence, the inverter output current can 

vary according to the dc link. The three phase output voltage of the inverter is measured and a 

phase locked loop (PLL) is used to determine the angle of the grid for synchronization purposes. 

Park’s transformation is applied to the three phase signals to generate the dq components 

corresponding to this three phase signal. Next, the d and q axis errors are calculated. The desired 

d axis voltage is set to the peak value of the desired three phase output voltages and the desired q 

axis voltage is set to zero. Then, the two error signals are then applied to a PI controller that 

generates the dq reference voltages for inverter control. The dq reference voltages are then 

converted into abc reference signals by applying the inverse Park transform. Finally, the abc 

reference signals are fed into the 2-level PWM generator block and these pulses are then sent to 

the gates of the transistors in the inverter. By controlling the voltage and achieving the desired 

peak or root mean square (RMS) value at the output of the inverter, effective grid connection is 

possible. For simulation purposes, the schematic of the control algorithm can be found in 

Appendix B. 

Here, a three phase reference signal is generated by a PI controller for output voltage 

control. The q-axis reference voltage is set to zero so the controller forces Vq to be zero. The d-

axis reference voltage is set to the desired peak voltage level of the inverter’s output voltage. 

Note that the total reference voltage in the dq frame is defined by the vector sum of the d and q 

axis voltage components. The magnitude of the reference voltage is defined as, 

𝑉𝑟𝑒𝑓 = √𝑉𝑑
2 + 𝑉𝑞2           (110) 

By setting the q-axis to zero and the d-axis to the desired peak output voltage level, the 

reference voltage, Vref, becomes equal to the desired peak output voltage level. This concept 

proves the validity of the inverter voltage control scheme used in this thesis. 
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4.4 LC Filter 

 

This section provides the theory and design equations for a LC filter. Fig. 4-5 shows the 

circuit diagram for the LC filter.  

 

Fig. 4-5: LC Filter. 

 

Note that this filter is for one phase of the three phase inverter output. As such, three LC 

filters will be connected to filter all three phases of the inverter output. The inductor is 

responsible for smoothing out the current while the capacitor is responsible for smoothing out the 

voltage. In the configuration chosen, the filter is a low pass filter with its cut-off frequency 

determined by the values of the inductor and capacitor. For a system with a fundamental 

frequency of 60Hz as discussed in this thesis, it is desirable to make the cut-off frequency 60Hz 

or slightly higher in order to remove higher order harmonics and only keep the fundamental 

component of the signal. By filtering out the higher order harmonics, the total harmonic 

distortion of the voltage and current is much less than if the other harmonics were included. The 

filtering effectively generates an almost purely sinusoidal signal at the output of the filter. 

Converting the filter into s-domain is shown in Fig. 4-6.  

 

Fig. 4-6: Filter in s-domain. 
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Referring to Fig. 4-6, Kirchhoff’s voltage law (KVL) can be applied and the transfer function of 

the filter obtained.  

𝑉𝑜𝑢𝑡(𝑠) =
𝑉𝑖𝑛(𝑠) (

1
𝑠𝐶)

1
𝑠𝐶 + 𝑠𝐿

 

𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
=

1

𝐿𝐶𝑠2+1
      (111) 

 

Note that s=jw, where jwL is the impedance of the inductor and 1/jwC is the impedance of 

the capacitor. With this transfer function, the frequency response of the filter can be obtained. 

The frequency response of the filter is discussed in more detail in Chapter 5. Further, the cut-off 

frequency of the filter is defined as, 

𝑓𝑐 =
1

2𝜋√𝐿𝐶
      (112) 

 

This equation can be used to determine the inductor and capacitor values required to achieve 

a desired cut-off frequency for the filter. 
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Chapter 5 

System Design 

 

 

This chapter offers a discussion on the design of the proposed solar photovoltaic energy 

conversion system. The design of the buck boost converter, the RLSE algorithm and the filter is 

outlined in this section. Note that the PSO algorithm used is the same as the one discussed in 

Chapter 3. The ANFIS structure used for this thesis is the same as the ANFIS discussed in 

Chapter 3.  

For the simulation, the designed system consists of a solar panel, a buck boost converter 

controlled with the proposed MPPT algorithm, a two level three phase voltage source inverter 

with a LC filter, a three phase load and connection to the grid. Fig. 5-1 below shows the general 

structure of a solar energy conversion system. Fig. 5-2 outlines the solar energy conversion 

proposed in this thesis. 

 

 

Fig. 5-1: General solar energy conversion system. 
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Fig. 5-2: Proposed solar energy conversion system. 

 

Note that the MPPT block shown in Fig. 5-2 above is an adaptive neuro-fuzzy inference 

system that uses the proposed RLSE-PSO training algorithm to train the ANFIS and provide a 

superior maximum power point tracking response. Further, note that for real time 

implementation, instead of a LC filter, an inductor filter is used and the three phase resistive load 

is removed. Without the load, direct connection to the grid is achieved and all power from the 

inverter is fed to the grid. 

To tune the PI controllers used for inverter control, the trial and error method is used to 

determine the four gains of the two controllers. The controllers were tuned until the desired 

response for voltage and current was obtained at the output of the inverter. With changing values 

of the proportional and integral gains of the d-axis component controller, the three phase output 

voltage and current can be made almost perfectly sinusoidal with the desired voltage level. The 

q-axis component controller has a very small effect on the response of the inverter. The desired 

output voltage of the converter is a three phase sinusoidal signal that has 30V peak phase voltage 

and a frequency of 60Hz.  

A purely resistive three phase load is used for the proposed system in full scale system 

simulations (see 5.2 and 5.3). For the real time system simulations, the resistive load is removed. 

Depending on the resistance value of the load, the peak value of the current through the load will 

change according to I=30/R. Since the load is purely resistive, the power factor of the inverter 

ANFIS-based 

Controller 
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output is one. As such, the RMS output power of the inverter (power of the load) can be 

calculated as, 

 

𝑃𝑜𝑢𝑡,𝐴𝐶 = 𝑉𝑙𝑜𝑎𝑑,𝑅𝑀𝑆𝐼𝑙𝑜𝑎𝑑,𝑅𝑀𝑆     (113) 

  

The PV output power is calculated as, 

 

𝑃𝑃𝑉,𝑑𝑐 = 𝑉𝑃𝑉𝐼𝑃𝑉            (114) 

 

The efficiency of the energy conversion system is defined as, 

 

𝜂 =
𝑃𝑜𝑢𝑡,𝐴𝐶

𝑃𝑖𝑛,𝑑𝑐
         (115) 

where, Pin,dc=PPV,dc 

 

Note that the duty cycle of the PWM signal applied to the gate of the switch affects the 

efficiency of the converter. When the duty cycle varies, the conduction losses and the switching 

losses of the diode and switch change. Since the losses change with a varying duty cycle, the 

efficiency of the converter must also change. 

Assume there are no losses from the solar panel to the grid (i.e. 100% efficient converter and 

inverter). If the PV output power is equal to this RMS AC output power, the current from the 

inverter is fully consumed by the load and no current is fed to the grid. If the PV output power is 

less than the required AC RMS load power, all of the inverter output current will be consumed 

by the load and extra current will be supplied by the grid to the load. If the PV output power is 

greater than the required AC RMS load power, the load draws its required current and the 

remaining current is fed into the grid. The efficiency of the DC-AC conversion depends on the 

solar panel output power as well as the three phase load connected to the inverter output. The 

grid voltage is assumed to be fixed so a change in load changes the output current hence 

changing the output power. Further, the MPP voltage of the solar panel is fixed since the system 

is designed for 25°C. The irradiance level changes the MPP current outputted by the panel and 

hence changes the DC power supplied by the panel. Therefore, if the irradiance changes or the 

load changes, the efficiency of the energy conversion system also changes.  
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5.1 Recursive Least Squares Estimator Design 

 

Chapter 6 discusses the training and response of the system. As such, the trial and error 

based design of the particle swarm optimization algorithm is discussed there. For the ANFIS 

design in this thesis, all input membership functions are chosen to be Gaussian functions. The 

input membership functions are: 

µ𝐴1(𝑣𝑝𝑣) = 𝑒
−0.5(

𝑣𝑝𝑣−𝑐1

𝜎1
)
2

    (116) 

µ𝐴2(𝑣𝑝𝑣) = 𝑒
−0.5(

𝑣𝑝𝑣−𝑐2

𝜎2
)
2

    (117) 

µ𝐵1(𝑖𝑝𝑣) = 𝑒
−0.5(

𝑖𝑝𝑣−𝑐3

𝜎3
)
2

    (118) 

µ𝐵2(𝑖𝑝𝑣) = 𝑒
−0.5(

𝑖𝑝𝑣−𝑐4

𝜎4
)
2

    (119) 

where,  

(ci, σi), i=1, 2, 3, 4 are the nonlinear parameters 

(pi, qi, ri), i=1, 2, 3, 4 are the linear parameters 

 

With four rules and two membership functions per input, there are eight nonlinear 

parameters and 12 linear parameters to optimize. As explained in the theory section, since online 

training is used, the recursive least squares estimator will be used to train the linear consequent 

parameters of the fuzzy system. For the designed system, the system output is: 

 

𝑥𝑜𝑢𝑡 = 𝑊1
̅̅ ̅̅ 𝐹1 + 𝑊2

̅̅ ̅̅ 𝐹2 + 𝑊3
̅̅ ̅̅ 𝐹3 + 𝑊4

̅̅ ̅̅ 𝐹4 

 

= (𝑊1
̅̅ ̅̅ 𝑣𝑝𝑣)𝑝1 + (𝑊1

̅̅ ̅̅ 𝑖𝑝𝑣)𝑞1 + (𝑊1
̅̅ ̅̅ )𝑟1 + (𝑊2

̅̅ ̅̅ 𝑣𝑝𝑣)𝑝2 + (𝑊2
̅̅ ̅̅ 𝑖𝑝𝑣)𝑞2 + (𝑊2

̅̅ ̅̅ )𝑟2 + (𝑊3
̅̅ ̅̅ 𝑣𝑝𝑣)𝑝3 +

(𝑊3
̅̅ ̅̅ 𝑖𝑝𝑣)𝑞3 + (𝑊3

̅̅ ̅̅ )𝑟3 + (𝑊4
̅̅ ̅̅ 𝑣𝑝𝑣)𝑝4 + (𝑊4

̅̅ ̅̅ 𝑖𝑝𝑣)𝑞4 + (𝑊4
̅̅ ̅̅ )𝑟4   (120) 

In matrix form, the above equation can be represented as: 

 

𝑥𝑜𝑢𝑡 = 𝑎𝜃      (121) 
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where,  

𝑎 = [𝑊1
̅̅ ̅̅ 𝑣𝑝𝑣,  𝑊1

̅̅ ̅̅̅𝑖𝑝𝑣,  𝑊1
̅̅ ̅̅̅,  𝑊2

̅̅ ̅̅ ̅𝑣𝑝𝑣,  𝑊2
̅̅ ̅̅ ̅𝑖𝑝𝑣,  𝑊2

̅̅ ̅̅ ̅,  𝑊3
̅̅ ̅̅ ̅𝑣𝑝𝑣,  𝑊3

̅̅ ̅̅ ̅𝑖𝑝𝑣,  𝑊3
̅̅ ̅̅ ̅,  𝑊4

̅̅ ̅̅̅𝑣𝑝𝑣,  𝑊4
̅̅ ̅̅̅𝑖𝑝𝑣,  𝑊4

̅̅ ̅̅̅] 

               𝜃 = [𝑝1,  𝑞1, 𝑟1,𝑝2,  𝑞2, 𝑟2,𝑝3,  𝑞3, 𝑟3,𝑝4,  𝑞4, 𝑟4]
𝑇 

 

Thus, the above a and θ vectors are used in programming the RLSE to optimize the linear 

parameters for the designed ANFIS. 

 

5.2 Full-scale Converter Design 

 

This section provides a detailed discussion on the design of the full-scale buck boost 

converter used for simulation. The proposed MPPT algorithm is originally designed and tested 

through simulation on a full size grid connected system. The inverter peak output phase voltage 

is chosen to be 169.71V as this is the peak grid voltage. The input voltage of the converter (or 

solar panel maximum power point voltage) is chosen as 96V. The output voltage ripple is chosen 

as 1V and the inductor current ripple is chosen as 0.5A. The converter is designed as if it has a 

10Ω load resistor. In practice, however, the converter is operating as an impedance matcher and 

is connected to the inverter. Therefore, the actual load is not 10Ω but the design still holds with 

the unknown load on the converter. The switching frequency of the converter is chosen as 50 

kHz. The specifications of the design are summarized below: 

 

Table 5-1: Full-scale converter specifications 

Parameter Value 

Vs 96V 

Vo 170V 

RL 10Ω 

Io 17A 

ΔiL 0.5A 

ΔVo 1V 

fs 50 kHz 
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The duty cycle of the converter is, 

𝐷 =
𝑉𝑜

𝑉𝑜+𝑉𝑠
       (122) 

=
170

96 + 170
 

𝐷 = 0.64 

 

This duty cycle is required to determine the value of the converter’s inductor and capacitor as 

follows: 

𝐿 ≥
𝑉𝑠𝐷𝑇𝑠

∆𝑖𝐿
           (123) 

=
(96)(0.64) (

1
50000

)

0.5
 

𝐿 ≥ 2.46𝑚𝐻 

𝑐 ≥
𝐼𝑜𝐷𝑇𝑠

∆𝑣𝑜
           (124) 

=
(17)(0.64) (

1
50000

)

1
 

𝑐 ≥ 218𝜇𝐹 

 

With these designed values, the inductor is chosen as 5mH and the capacitor is chosen as 

400µF. Now with the new inductor and capacitor values, operation in continuous conduction 

mode (CCM) must be verified. For CCM of operation, IOB < IO. In this design, IO is 17A.  

 

𝐼𝑂𝐵 =
(1−𝐷)2𝑉𝑜𝑇𝑠

2𝐿
           (125) 

=
(1 − 0.65)2(170)(

1
50000

)

2(5𝑥10−3)
 

𝐼𝑂𝐵 = 0.042𝐴 

 

Here, IO > IOB and hence, continuous conduction mode of operation is verified with the new 

inductor value. 
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5.3 Scaled-down Converter Design 

 

This section provides a detailed discussion on the design of the buck boost converter used 

for the scaled down converter used for real time implementation. In order to lower the costs of 

the physical system, a scaled down model is designed to test the proposed MPPT algorithm. The 

inverter peak output phase voltage is chosen to be 30V. This inverter output voltage requires a dc 

inverter input voltage of 45V (the dc link voltage). Therefore, the converter must be designed to 

be able to have 45V as its output voltage. The input voltage of the converter (or solar panel 

maximum power point voltage) is chosen as 40V. The output voltage ripple is chosen as 0.5V (or 

1.1%) and the inductor current ripple is chosen as 0.25A. The converter is designed as if it has a 

10Ω load resistor. In practice, however, the converter is operating as an impedance matcher and 

is connected to the inverter. Therefore, the actual load is not 10Ω but the design still holds with 

the unknown load on the converter. The switching frequency of the converter is chosen as 

50kHz. The solar emulator used for the real time implementation can generate a MPP voltage 

between 1 and 7 times the base voltage of 7.8V for a single cell and the MPP current between 1 

and 45 times the base current of 95mA for the single cell. To increase the voltage, cells are 

placed in series and to increase the current, the cells are placed in parallel. Therefore, the 

emulator can output a maximum of 233.42W. The source voltage at the MPP is chosen to be 39V 

which corresponds to five cells placed in series and the source current at the MPP is chosen to be 

2.09A which corresponds to 22 cells in parallel. The specifications of the design are summarized 

below: 

Table 5-2: Real-time implementation converter specifications 

Parameter Value 

Vs 39V 

Vo 45V 

RL 10Ω 

Io 4.5A 

ΔiL 0.25A 

ΔVo 0.5V 

fs 50 kHz 
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 The duty cycle of the converter is, 

𝐷 =
𝑉𝑜

𝑉𝑜+𝑉𝑠
       (126) 

=
45

45 + 39
 

𝐷 = 0.54 

 

This duty cycle is required to determine the value of the converter’s inductor and capacitor as 

follows: 

𝐿 ≥
𝑉𝑠𝐷𝑇𝑠

∆𝑖𝐿
           (127) 

=
(39)(0.54) (

1
50000

)

0.25
 

𝐿 ≥ 1.7 𝑚𝐻 

𝑐 ≥
𝐼𝑜𝐷𝑇𝑠

∆𝑣𝑜
           (128) 

=
(4.5)(0.54) (

1
50000

)

0.5
 

𝑐 ≥ 97.2 𝜇𝐹 

 

For real time implementation, the output capacitor has a rating of 100V therefore the duty 

cycle must be limited so the output voltage of the converter does not exceed this rating. Further, 

the minimum value of the duty cycle is also specified to prevent damage to the converter. The 

range of duty cycle is from 0.15 to 0.7. With a duty cycle of 0.15 and 0.7, the output voltage is 

5.5V and 72.8V respectively. If the duty is allowed to be 0.8, the output voltage exceeds the 

capacitor rating. If the duty is allowed to be 0.75, the output voltage is 93.6V which is close to 

the maximum rating of the capacitor so for safety reasons, a maximum duty cycle of 0.7 is 

chosen. 

With a duty of 0.15, the designed inductor and capacitor values will be less than the above 

values so the converter will still operate as designed for a duty of 0.15. For a duty cycle of 0.7, 

the inductor value must be greater than 2.2 mH and the capacitor must be greater than 126 µF. 

Therefore, the inductor and capacitor values must be chosen according to the above restrictions 

in order for the converter to operate as designed with a duty cycle of 0.7. 
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With these designed values, the inductor is chosen as 2.5mH and the capacitor is chosen as 

470µF. Now with the new inductor and capacitor values, operation in continuous conduction 

mode (CCM) must be verified. For CCM of operation, IOB < IO. In this design, IO is 4.5A.  

 

𝐼𝑂𝐵 =
(1−𝐷)2𝑉𝑜𝑇𝑠

2𝐿
           (129) 

=
(1 − 0.54)2(45)(

1
50000

)

2(2.5𝑥10−3)
 

𝐼𝑂𝐵 = 0.038𝐴 

 

Here, IO > IOB and hence, continuous conduction mode of operation is verified with the designed 

inductor value. 

 

5.4 LC Filter Design 

 

This section discusses the design of the low pass LC filter used to smooth out the inverter 

output voltage and current. The filter further removes higher order harmonics and mostly retains 

only the fundamental component. Specifically, the third harmonic is the most important 

harmonic to filter out, therefore the filter cut off frequency is chosen as 60Hz. 

To design the filter, the cut off frequency and a standard inductor value with the required 

current rating available for purchase are chosen. From these values, the required capacitor value 

is then calculated. For this design, the inductor value is chosen to be the same as the converter’s 

inductor with a value of 2.5mH. The capacitor is calculated as, 

 

𝑐 =
1

𝐿
(

1

2𝜋𝑓𝑐
)
2

        (130) 

=
1

2.5𝑥10−3
(

1

2𝜋(60)
)
2

 

𝑐 = 2.814𝑚𝐹 

 

This designed capacitance value is not available for purchase, therefore, a closely valued 

capacitor that is available for purchase is chosen as 2.7mF. Now, the cut off frequency is 
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changed since a different capacitor value is used. Therefore, the new cut off frequency must be 

calculated to verify the filter will still meet the design requirements. 

 

𝑓𝑐 =
1

2𝜋√𝐿𝐶
      (131) 

=
1

2𝜋√(2.5𝑥10−3)(2.7𝑥10−3)
 

𝑓𝑐 = 61.26𝐻𝑧 

 

Therefore, with the new capacitor and the chosen inductor, the cut off frequency is only 

increased by 1.26Hz and hence will still remove any frequencies above the fundamental three 

phase frequency of 60Hz. Further, the frequency response of the filter can be obtained in 

MATLAB which shows the filter’s pass band and rejection (or attenuation) region. Here, the 

transfer function of the filter is: 

𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
=

1

𝐿𝐶𝑠2+1
          (132) 

𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛(𝑠)
=

1

6.75𝑥10−6𝑠2 + 1
 

 

From this transfer function, the bode function in MATLAB is used to generate the frequency 

response as shown in Fig. 5-3. 
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Fig. 5-3: LC filter frequency response. 

 

It is clearly illustrated that the filter has its peak at 385 rad/s or 61.26 Hz hence proving the 

design of the filter. With this filter design, all higher order harmonics are attenuated and filtered 

out of the three phase inverter output signal with only the fundamental component remaining and 

having its full magnitude. It should be noted that a higher cut-off frequency could be designed 

which would ease the requirements on the inductor and capacitor values.  

Further, for the purposes of real-time experimentation, the LC filter is not used to filter the 

output of the inverter. Instead, a series inductor will be used for each phase to filter out higher 

order harmonics from the inverter output. This decreases the cost of the filter as AC safety 

capacitors are expensive when creating a high capacitance value. The inductor filter is sufficient 

for filtering as it provides enough attenuation for higher frequency harmonic components. Since 

mf is large, the harmonics are located far away from the fundamental frequency and filtering 
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them is not a significant issue. A larger inductor value should create a smoother output signal 

resulting in less harmonic distortion with a larger resistance and voltage drop across it, when 

compared to an inductor with a smaller inductance.  
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Chapter 6 

Simulation of the Proposed ANFIS Based MPPT 

Control of PV Solar System 

 

Provided in this chapter are the results from simulating both of the designed systems (full 

scale system and scaled down system) in the MATLAB/Simulink environment. The Simscape 

toolbox, specifically SimElectronics, in Simulink is used to simulate the designed power 

electronic system.  

 

6.1 Full-scale System Simulation 

 

Before the proposed system is trained, training data is gathered by operating the system with 

the P&O MPPT algorithm. Since the P&O algorithm only affects the operating point of the solar 

panel, and does not significantly affect the dc link or inverter output, only the solar panel output 

will be provided for operation with P&O MPPT. Note that the results provided in this section are 

obtained by simulating the full-scale system. The scaled down system has a similar response and 

waveform shapes as the full size system discussed in the next section. Real time training and real 

time results of the scaled down system are provided in the next chapter. For this simulation, the 

temperature is assumed to be constant at 25°C while the irradiance is stepped among various 

values. Further, the LG Electronics LG300N1C-G3 panel is used in Simulink. The specifications 

of the PV panel are shown in Fig. 6-1. Note that three panels are placed in series to achieve a 

MPP voltage of 96V. The PV curves of this panel are shown in Fig. 6-2. Fig. 6-3 shows the 

power output of the solar panel for the P&O MPPT. As shown in Fig. 6-3, the perturb and 

observe MPPT algorithm suffers from oscillations around the maximum power point. At an 

irradiance of 1000W/m2, the maximum possible power output of the solar panel is around 908W. 

With the P&O MPPT algorithm operating the buck boost converter, the average solar panel 

output power is around 870W. Thus, there is a power loss of around 40W. This power loss shows 

a disadvantage of the P&O algorithm as discussed previously. The oscillations at the MPP cause 
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a decrease in available power and a lower system efficiency results. For simulation purposes, the 

inverter is connected to a 10 ohm three phase wye connected resistive load as well as the grid. 

 

 

Fig. 6-1: Solar panel specs. 

 

 

Fig. 6-2: PV curves for LG panel. 
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Fig. 6-3: Solar panel output power using P&O MPPT. 

 

From gathering system data while running the P&O algorithm, the proposed ANFIS 

controller can be trained and a better response obtained. Fig. 6-4 shows the testing data (desired 

output) and the output of the ANFIS after the training is completed. Note that the system data is 

highly nonlinear but the ANFIS is able to find the pattern in the system data and is effectively 

trained using the proposed RLSE-PSO training algorithm.  
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Fig. 6-4: Testing data and ANFIS output. 

 

The ANFIS calculates a duty cycle that is applied to the switch of the converter in order to 

operate the solar panel at its maximum power point. This operation allows maximum possible 

power to be transferred to the DC link at all times. For training, the root mean square error 

(RMSE) tolerance is set at 20% and the ANFIS is trained for 85 epochs using approximately 

3000 data points per epoch. Training was completed for more than 85 epochs but no change in 

the error function was observed. Since the error converges in 85 epochs, no more epochs are 

required for training purposes. Therefore, training is completed again and stopped once 85 

epochs or the desired training error is reached. Fig. 6-5 shows a plot of the training error versus 

epoch number. Although the training error is around 0.203, the output of the ANFIS matches 

closely to the training data. 
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Fig. 6-5: Training error. 

 

The resulting membership functions after system training for PV voltage and PV current are 

shown in Fig. 6-6. As shown in Fig. 6-6, the membership functions cover the entire range of 

operation and hence the training is verified. Fig. 6-7 shows the PV output voltage and current for 

the proposed system using the ANFIS as the MPPT controller with varying irradiances. An 

irradiance change is simulated every 50 ms with both increases and decreases in irradiance. Fig. 

6-8 shows the output power of the solar panel for the proposed system. Table 6-1 compares the 

actual power output of the panel and theoretical power output (obtained from the PV curves) at 

various irradiances for the proposed system. It is shown that the ANFIS is very effective at 

forcing the solar panel to operate at its MPP with a fast response and almost no oscillations at the 

MPP regardless of irradiance conditions. As the proposed system has almost no oscillations at 

the MPP, almost no power is lost and the system efficiency is increased as compared to the 

conventional P&O based system. It is shown that when the output current of the panel changes 

due to varying irradiance conditions, the output voltage of the panel adjusts to achieve maximum 

power output. The proposed ANFIS based MPPT algorithm outperforms conventional P&O 

based MPPT by achieving a faster response and fewer oscillations at each MPP. These results 

validate the proposed algorithm and show that the proposed algorithm has less power loss due to 

oscillations at the MPP. Hence, the proposed system is able to transfer more power to the dc link 
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resulting in a more efficient system as compared to the system using conventional P&O MPPT. 

Note that the initial membership functions do not matter as the proposed algorithm determines 

the best fitting membership functions regardless of starting position. The initial membership 

functions are randomly created at the beginning of the training. 

 

Fig. 6-6: Input membership functions after training. 

 

Fig. 6-7: Solar panel output voltage and current for the proposed system. 
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The irradiance is changed every 50ms with the irradiance vector of [500, 700, 1000, 850, 

300, 620, 540, 925, 375, 450] W/m2. 

 

Fig. 6-8: Solar panel output power for the proposed system. 

 

Even if the dc link voltage varies in the simulation, the inverter is able to achieve a constant 

output once steady state is reached. Inverter voltage control is implemented in order to achieve 

effective grid connection; therefore, the current will change with changing dc link voltages. The 

following figures are obtained for the proposed system running the proposed ANFIS MPPT 

controller. Fig. 6-9 shows the PWM control signals that are applied to inverter switches to 

control the output voltage and achieve a three phase output with abc sequence and a frequency of 

60Hz. Fig. 6-10 and Fig. 6-11 show the three phase voltage and current respectively at the output 

of the inverter for the proposed system. Fig. 6-12 shows the load three phase load current at the 

output of the inverter. After some time, the inverter output current reaches steady state. It is 

shown that the load current, inverter output current and output voltage are almost perfectly 

sinusoidal with abc sequence and a frequency of 60Hz. The total harmonic distortion for the 

voltage and currents is less than 1%. Fig. 6-13 and Fig. 6-14 show the THD plot for the voltage 

and current of phase ‘a’ respectively. Similar results for the THD are obtained for ‘b’ and ‘c’ 

phases. The low THD proves that the designed filter is effective at removing unwanted 

harmonics and retains only the fundamental component of the waveforms. Thus, effective grid 

connection is possible. 
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Fig. 6-9: Inverter PWM switching signals. 

 

Fig. 6-10: Three phase output voltage at inverter end. 
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Fig. 6-11: Inverter output current. 

 

Fig. 6-12: Load current. 
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Fig. 6-13: Phase ‘a’ output voltage total harmonic distortion. 

 

 

Fig. 6-14: Phase ‘a’ output current total harmonic distortion. 
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Simulink’s built in FFT Analysis tool in the powergui block is used to perform the FFT on 

both the inverter output voltage and the inverter output current. The results of the FFT are shown 

below in a list form. It is proven that the inverter and filter are able to effectively generate a three 

phase output with mainly the first (fundamental) harmonic in the signal. All other harmonics are 

less than 1 percent of the signal for both voltage and current. It is shown that for both the output 

voltage and current, there is no dc offset and the third harmonic component is not present in the 

signals as its magnitude relative to the fundmental is 0.02%. The second harmonic has the largest 

magnitude in the signals but is only 0.63% of the fudamental magnitude. Note that the FFT 

results for the voltage and current are the same since the current flowing through the load is 

defined by the voltage across it. 

 

Table 6-1: FFT results for phase ‘a’ phase voltage 

 

 

Table 6-2: FFT results for phase ‘a’ current 

 

The efficiency of the converter for varying irradiances (and hence varying duty cycles) with 

is found in Simulink. The buck boost converter is simulated with the proposed ANFIS-based 



80 
 

MPPT controller and connected to a resistive load. Note that the inverter is not connected for this 

efficiency simulation as only the efficiency of the buck boost converter is considered. A plot of 

the efficiency under varying irradiance condition is shown in Fig. 6-15. Note that the spikes in 

efficiency every 0.05 seconds are due to the transients generated when irradiance levels change. 

The converter efficiency is found to be 0.97 or 97%. 

 

Fig. 6-15: Converter efficiency. 

 

To further verify the effectiveness of the proposed RLSE-PSO training algorithm, the 

system reponse when trained with the proposed algorithm is compared to the system response 

when trained with the conventional hybrid training algorithm as introduced by Jang [1]. The 

same ANFIS structure is trained in MATLAB using the neuroFuzzyDesigner. The error 

tolerance and total epochs are set to the same value as when the ANFIS was trained with the 

proposed algorithm. The phase ‘a’ voltage THD for the proposed system is around 0.005 as 

shown in Fig. 6-13 above. The phase ‘a’ current THD for the proposed system is around 0.002 as 

shown in Fig. 6-14 above. The system trained with the conventional hybrid algorithm [1] has a 

higher THD for both of the inverter’s output voltage and current. The THD for both voltage and 

current is around 0.008. As such, the proposed system generates a three phase output that is 

closer to a pure sinusoidal signal than the conventional system trained with GD. Fig. 6-16 below 
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shows the output power of the solar panel for the system trained with the conventional hybrid 

algorithm. 

 

Fig. 6-16: Solar panel output power for the system trained with gradient descent algorithm. 

 

Fig. 6-8 and Fig. 6-16 show that both the proposed system and the system trained with 

gradient descent have similar responses with little to no oscillations at the maximum power 

point. Both systems are able to reach the maximum power point quickly and both do not deviate 

from that operating point unless the conditions are changes. Further, Table 6-3 proves that the 

proposed ANFIS controller with buck boost converter is able to effectively force the solar panel 

to operate at the theoretical maximum power point hence transferring maximum power to the dc 

link at all times regardless of weather conditions. It is further shown that for all irradiances, the 

proposed system is able to extract more power from the solar panel than the conventional system 

with its ANFIS trained using the gradient descent algorithm. Also, the responses of both the 

proposed system and the conventional GD-based one are the same. When a change in irradiance 

is implemented (either an increase or decrease), both of the ANFIS are able to force the PV panel 

to reach the MPP in the same amount of time with the same response. Therefore, no benefit 

relating to tracking speed is seen from either training algorithm since the training algorithms are 

Power (W) 

Time (s) 
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applied to the same ANFIS. With the designed structure of the ANFIS, the controller can achieve 

PV operation at the MPP 0.5ms after an irradiance change is implemented. If the structure of the 

ANFIS is changed, the tracking speed may change. The only benefit of the gradient descent-

based training is that the training is faster than the proposed algorithm. As a result, there is a 

trade-off between training speed and power extraction. If the slightly slower training time can be 

accepted, then the proposed system should be used as it has a better system response. The 

training is completed on an offline system however, so the extra training time should not be an 

issue for practical purposes. Therefore, it is proven that the proposed training algorithm is more 

effective than the conventional algorithm and hence a more efficient system with a higher power 

extraction results. Hence, the proposed system is more cost effective than both the system trained 

with GD and the system implementing the P&O MPPT controller. This cost effectiveness and 

increase in efficiency proves the proposed system’s viability for practical industrial uses as 

compared to other MPPT methods. It is important to note that the proposed RLSE-PSO training 

algorithm can be used for any type of system in which data representing the system can be 

obtained. 
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Table 6-3: Comparison of PV output power for the proposed and conventional system 

Irradiance 

(W/m2) 

Theoretical 

Power (W) 

Proposed System 

Actual Power (W) 

Conventional System Actual 

Power (W) 

300 275 275 274.5 

450 414 414 413.8 

500 460 460 459.8 

700 642 641.5 641.4 

850 776 775 775 

1000 908 907 906.8 

 

 

6.2 Real-time System Simulation 

 

This subsection provides the MATLAB/Simulink results for the simulation of the scaled 

down system used for real time implementation. Note that for this simulation, the three phase 

resistive load is not included and the filter is an inductor filter not a LC filter. The reasoning for 

removing the resistive load is that when performing the real time experiments, the attempted 

direct grid connection with full power transfer from the inverter to the grid can be achieved since 

no additional load will be present. Therefore, it is desirable to simulate the same system that will 

be used in practical implementation. The solar panel maximum power point voltage is 39V for 

all irradiances and has a power rating of 80W at an irradiance level of 1000W/m2. The amplitude 

of the three phase voltages at output of the inverter is set to 32V while the grid has amplitude of 

30V. 

As the results of the real time system simulation are very similar to the full scale system, a 

brief discussion of the simulation results will be provided as an in depth discussion can be found 

in section 6.1. The resulting membership functions after training the ANFIS with the P&O based 

system data are shown in Fig. 6-17. These membership functions along with the trained 

consequent parameters effectively force the solar panel to operate at its MPP for varying 

irradiance levels as shown by the solar panel output power in Fig. 6-18. Fig. 6-19 provides the 

three phase inverter output voltages (phase voltages). Fig. 6-20 displays the output current of the 
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inverter that is fed into the grid. From these results, effective grid connection is possible while 

operating the PV panel at its MPP. It is also determined that both of the voltage and current at the 

inverter end have a low total harmonic distortion hence verifying the inverter control scheme and 

filter operation. The Fast Fourier Transform (FFT) applied to the inverter output current is used 

to determine the total harmonic distortion of the signal. For the purposes of this discussion, only 

phase ‘a’ is considered, however, similar results are obtained for phases ‘b’ and ‘c’. From the 

FFT completed with the powergui module tools in Simulink, the THD for phase ‘a’ of the 

inverter’s output current is 2.86%. The results of the FFT are shown in Fig. 6-21.  

 

Fig. 6-17: Scaled down system membership functions. 

 

Voltage (V) or Current (A) 
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Fig. 6-18: Scaled down system PV output power. 

 

Fig. 6-19: Scaled down system phase voltages at the inverter end. 
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Fig. 6-20: Scaled down system inverter output current. 

 

Fig. 6-21: Scaled down system FFT analysis for phase ‘a’ output current. 

Considering only the solar array and buck boost converter with a resistive load, the 

following results are obtained. Fig. 6-22 shows the training error using P&O training data and 

Fig. 6-23 shows the PV output power with a 100Ω load connected to the output of the buck boost 

converter. It is clearly illustrated that the proposed training algorithm and proposed ANFIS-

based MPPT controller is able to effectively force the solar panel to operate at its maximum 
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power point for a wide range of irradiance conditions. These results verify the proposed RLSE-

PSO training algorithm as well as the designed ANFIS-based MPPT controller. These results are 

provided since the same system configuration is used for real-time implementation. The 

Simulink block diagram for this simulation can be found in Appendix B. 

 

Fig. 6-22: Training error for the system with 100Ω DC load. 

 

Fig. 6-23: PV output power for the system with 100Ω DC load.  
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Chapter 7 

Real Time Implementation of the Proposed ANFIS 

Based MPPT Control of PV Solar System 

 

The chapter provides the results obtained from physically implementing the designed system 

to prove the validity of the proposed maximum power point tracking algorithm. For the purposes 

of real time implementation, in order to reduce the cost of the prototype, the converter was 

redesigned to accommodate a lower input voltage, output voltage and output current. It is 

important to note that the ANFIS for real time implementation is trained using real time system 

data with the P&O maximum power point tracking algorithm. 

For the real time implementation the dSPACE DS1104 board is used for system integration 

with Matlab/Simulink. Since it is not feasible to implement a real solar panel in the lab, the 

LabVolt Four-Quadrant Dynamometer (LabVolt Series 8930-20) is used. A solar emulator (Lab-

Volt Material no. 8968-60 DIDACTIC TRAINING SOFTWARE Solar Panel Emulator) is 

implemented with the dynamometer so the characteristics of a solar panel can be obtained and 

used for system testing. Voltage sensors consisting of resistor configurations are used to scale 

down the solar panel emulator output voltage to a suitable range for the dSPACE board. 

Operational amplifiers connected as voltage followers are used to remove the loading effect on 

the measured voltage due to connection with the dSPACE board. Further, a Hall Effect current 

sensor is used to measure the output current of the solar panel emulator for MPPT algorithm 

operation. To reduce the number of power supplies needed, the 5V source voltage required to 

power the current sensor is generated with a 5V voltage regulator. 

The PWM pulses are generated in Simulink and outputted to the converter through the 

dSPACE board. In order for the PWM pulses to switch the MOSFET on, a driver circuit is 

required. This driver circuit is created using the FOD3180 optoisolator/driver chip. Opto-

isolation is required to protect the low power control circuitry in the dSPACE board from the 

higher power converter circuit.  

For grid connection, the output of the inverter is filtered with an inductor filter to smooth out 

the signal and reduce higher order harmonics. The filtered output is then connected to the grid 
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through a three phase autotransformer. Note that for grid connection, the output voltage of the 

inverter must be slightly higher than the grid voltage to force current to feed into the grid from 

the inverter. Also, the frequency of the generated voltages from the inverter must be the same as 

the frequency of the grid. Therefore, a phase locked loop is used to measure the angle of the grid 

to synchronize the dq axis rotating reference frame and consequently, the generated AC signals. 

By synchronizing the dq reference frame with the grid angle, the frequency of the three phase 

output of the inverter will be equal to the grid frequency with the same angle. While attempting 

to achieve grid connection, a myriad of problems arose. Some of these problems had solutions 

while others did not. The three phase grid voltages are assumed to be balanced and constant for 

the inverter control algorithm design. However, in the case of Lakehead University’s facilities, 

the grid voltage is unbalanced and each phase voltage would vary slightly. As such some DC 

offset current is present in the AC current fed into the grid. Therefore, more complicated control 

algorithms or filtering must be used to remove the DC offset before feeding the grid. The main 

problem with the attempted grid connection is that an expensive three phase isolation 

transformer is required to isolate the grid from the energy conversion system. The university 

does not have such equipment and was not able to be purchased due to lack of funding. As a 

result, grid connection was abandoned and stand-alone DC mode of operation was attempted. 

 The duty cycle of the buck boost converter is limited to prevent the converter output voltage 

exceeding the maximum voltage rating of the output capacitor. The voltage rating of the 

converter’s output capacitor is 100V. With an input of 39V (at the maximum power point), the 

duty cycle should not exceed 0.72. To allow for a safety factor, the maximum allowed duty cycle 

is set at 0.7. Further, the designed ANFIS is trained offline and the calculations for the duty cycle 

are completed quickly in real-time. Therefore, the duty cycle calculation performed by the 

ANFIS does not slow down the system and is of low computational burden for the processor.  

Fig. 7-1 shows the GUI for the solar emulator. The irradiance level, and number of PV 

modules in series and parallel can be changed. Changing the irradiance level will change the 

maximum power point. Changing the number of PV modules in series will change the voltage 

rating of the PV panel and changing the number of PV modules in parallel will change the 

current rating of the PV panel. Thus, the desired maximum power output at an irradiance of 

1000W/m2
 can be easily chosen. For the purposes of this thesis, five PV modules are used in 

series and 22 modules are used in parallel. This configuration gives a MPP voltage of 39V and 



90 
 

MPP current of 2.05A at 1000W/m2. Thus, the MPP PV power output at 1000W/m2 is 80W. 

Note that if the irradiance, for example, is changed to 300W/m2 then the maximum power point 

will be located at 39V and 24W (0.3*80W). The LabVolt power supply acting as the solar 

emulator is connected to a laptop through USB communication so that the irradiance level can be 

easily varied. Further, the PV output voltage, current and power can be viewed in the GUI in 

order to verify operation at the maximum power point for any irradiance level. In real time, the 

irradiance is varied in the range of 300W/m2 to 1000W/m2
. Table 7-1 outlines various 

specifications for the real time system. Fig. 7-2 shows the physical system setup in the lab. Note 

that the image shows additional equipment that was not used in the experiments for this thesis. 

Also of note, the solar emulator is not shown in Fig. 7-2 due to its distance from the rest of the 

circuits. Long banana cables are used to connect the buck boost converter to the solar emulator. 

 

 

Fig. 7-1: Solar Emulator GUI. 
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  Table 7-1: System specifications 

Variable Value 

Solar Emulator 

Number of modules in series 5 

Number of modules in parallel 22 

Impp (@1000W/m2) 2.05A 

Vmpp (@1000W/m2) 39V 

Pmpp (@1000W/m2) 80W 

Buck Boost Converter 

Cin 1mF 

Cout 470µF 

MOSFET IRF520N 

Diode MUR1520 

L 2.5mH 

Rload 100Ω 

Current sensor ACS712 
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Fig. 7-2: System setup in the lab. 

 

To switch the MOSFET, an external driver circuit with opto-isolator is required. The opto-

isolator is used to isolate the low voltage control circuit (dSPACE board) from the high power 

buck boost converter circuit to prevent damage to the DS1104 board. Fig. 7-3 shows the external 

driver circuit created using the FOD3180. 

 

Buck Boost Converter 

Sensor circuits 

Load 

dSPACE DS1104 board 

PC 
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Fig. 7-3: MOSFET driver circuit. 

 

The designed ANFIS is trained using the proposed RLSE-PSO algorithm with real-time 

system data. The resulting membership functions after training are shown in Fig. 7-4. 

 

Fig. 7-4: Optimized input membership functions for the real-time system’s ANFIS. 

 

The perturb and observe algorithm is first used for MPP extraction to compare the results 

with the proposed ANFIS-based MPPT controller. The P&O system response at an irradiance of 

1000W/m2 is shown in Fig. 7-5. As such, the maximum power point is 39V, 80W. It is shown 

Voltage (V) or Current (A) 

PWM from DS1104 
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that the P&O algorithm is not effective at tracking the maximum power point. Further, large 

oscillations are present in the PV output power and current. These oscillations result in major 

power loss and the inability to effectively track the maximum power point of the solar panel. 

Note that the system starts running at 5 seconds. Until 5 seconds, the solar panel is connected to 

an open circuit since the buck boost converter is not switching with PWM pulses. As such, the 

open circuit voltage of 48V and no output power are measured. 

 

 

Fig. 7-5: System performance of the P&O-based MPPT controller at 1000W/m2 (a) duty 

cycle, (b) solar panel output current, (c) solar panel output power, (d) solar panel output voltage. 

 

Fig. 7-6 shows the system running with the proposed ANFIS-based MPPT controller at an 

irradiance level of 1000W/m2. It is shown that the proposed controller effectively forces the solar 

panel to operate at its maximum power point with no oscillations. Therefore, no power is lost due 

to oscillations as in the P&O-based system’s case. It is proven that the proposed training 

algorithm and designed ANFIS provides a significantly better response than P&O MPPT 

algorithm. The duty cycle, PV output voltage, PV output power and PV output current are 

constant around 69%, 39V, 2.05A and 80W respectively. 

 

(a) (b) 

(c) (d) 
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Fig. 7-6: System performance of the ANFIS-based MPPT controller at 1000W/m2 (a) duty 

cycle, (b) solar panel output current, (c) solar panel output power, (d) solar panel output voltage. 

 

It is of interest to prove the system can handle different irradiance levels while still 

maintaining maximum power extraction for a given irradiance condition. Therefore, step changes 

in irradiance are performed to obtain the system response when the irradiance changes abruptly. 

Fig. 7-7 shows the ANFIS-based MPPT controller system response with a step-up change from 

500W/m2 to 1000W/m2. Fig. 7-8 shows the ANFIS-based MPPT controller system response with 

a step-down change from 1000W/m2 to 500W/m2. Fig. 7-9 shows the ANFIS-based MPPT 

controller system response with a step change from 300W/m2 to 700W/m2. From Fig. 7-7, Fig. 7-

8 and Fig. 7-9, it is illustrated that the proposed controller effectively forces the solar panel to 

operate at its MPP regardless of the irradiance level. Further, the system achieves a fast response 

with no oscillations at the maximum power point regardless of the type of change in irradiance. 

In Fig. 7-7, the irradiance step change is implemented at 4 seconds. Note that down sampling is 

used so the time axis (x-axis) for all figures is not accurately representative of one real second. 

The results provide the illusion that the system response is slow; however, this type of data 

capture was required since the system response is too fast to view any changes on ControlDesk 

on the PC. Down sampling must be used to view various measurements and graphs on the PC. 

 

 

(a) (b) 

(c) (d) 
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Fig. 7-7: System performance of the ANFIS-based MPPT controller with irradiance step 

change from 500W/m2 to 1000W/m2 at 3 seconds (a) duty cycle, (b) solar panel output current, 

(c) solar panel output power, (d) solar panel output voltage. 

 

 

Fig. 7-8: System performance of the ANFIS-based MPPT controller with irradiance step 

change from 1000W/m2 to 500W/m2 at 4 seconds (a) duty cycle, (b) solar panel output current, 

(c) solar panel output power, (d) solar panel output voltage. 

 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Fig. 7-9: System performance of the ANFIS-based MPPT controller with irradiance step 

change from 300W/m2 to 700W/m2 at 4 seconds (a) duty cycle, (b) solar panel output current, (c) 

solar panel output power, (d) solar panel output voltage. 

 

Note that all results up to this point were obtained with a 100Ω load on the buck boost 

converter. Further experiments are performed to verify the proposed controller is able to 

maintain solar panel MPP operation with a step change in the load. Here, the system is running 

with a 100Ω load at 1000W/m2 when the load resistance is abruptly changed to 80Ω. It is shown 

in Fig. 7-10 that the step change in load resistance does not affect the MPP operation and the 

proposed controller effectively maintains maximum power extraction from the solar panel. 

 

Fig. 7-10: System performance of the ANFIS-based MPPT controller with load step change 

from 100Ω to 80Ω at 6 seconds (a) duty cycle, (b) solar panel output current, (c) solar panel 

output power, (d) solar panel output voltage. 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 



98 
 

Table 7-2 shows a comparison of the theoretical and actual solar power output for the 

ANFIS-based real-time system trained with the proposed RLSE-PSO algorithm. It is shown that 

the proposed system is able to very closely extract the maximum possible power without large 

oscillations from the solar panel regardless of the irradiance level. Therefore, the proposed 

ANFIS and training algorithm results in higher efficiencies than existing perturb and observe 

MPPT methods used in industry. The proposed algorithm results in cost savings for the customer 

as more oscillation-free power is extracted from the PV array. It is further noted that the 

converter is more efficient at higher irradiance levels since the current is larger. The buck boost 

converter was designed for an output current higher than the available current when the 

irradiance level is low. Since the converter was designed for higher currents, it is intuitive that 

the converter will have a harder time operating the solar panel at its MPP for lower irradiance 

levels. This fact is verified by viewing the results of the PV power output in table 7-2. 

 

Table 7-2: Comparison of theoretical and actual PV output power for the proposed system 

Irradiance (W/m2) Theoretical Power (W) Actual Power (W) 

300 24 21 

400 32 29 

500 40 38 

600 48 46 

700 56 54 

800 64 62 

900 72 71.5 

1000 80 79 
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Chapter 8 

Summary 

 

An improved ANFIS-based MPPT controller for maximum power extraction from a solar 

photovoltaic array has been propose. Particularly, the following achievements are provided in 

this thesis. 

• A specific ANFIS-based neuro-fuzzy control scheme was developed to extract 

maximum power from solar panel to the dc link. The proposed controller was applied to 

a buck-boost converter as part of the efficient solar energy conversion system. 

• A novel RLSE-PSO training algorithm was developed to train the ANFIS system 

parameters to achieve optimal system performance. 

 

The proposed controller is able to effectively extract maximum power from the PV array for 

a wide range of irradiance levels and changes in load conditions. The MPPT controller uses the 

measured PV output voltage and current to calculate a duty cycle for the buck-boost converter 

corresponding to the maximum power point for a given irradiance and temperature. The 

temperature of the array is held constant while the irradiance is in the range of 300 W/m2 to 1000 

W/m2. MATLAB/Simulink was used to simulate the system and train the MPPT controller with 

the proposed training algorithm. The training algorithm used data obtained from operating the 

system using the perturb and observe MPPT algorithm. Grid connection was also simulated in 

which the output of the buck-boost converter was fed into a two level voltage source inverter to 

create a three phase output for connection with the grid. Excellent results were obtained from the 

simulation as the proposed controller was able to effectively extract maximum power from the 

PV array with almost no oscillations around the MPP regardless of irradiance level. Additionally, 

the inverter control and filter was able to generate a balanced three phase output synchronized 

with the grid angle and achieved a total harmonic distortion of less than one percent for both of 

the three phase voltage and current.  

To further prove the proposed MPPT controller and proposed RLSE-PSO training algorithm, 

the system was implemented in real-time using the dSPACE DS1104 DSP board. Grid 
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connection was attempted; however, lack of proper equipment and funding disallowed for 

success as a three phase isolation transformer was required. As such, the grid connection was not 

possible in real-time. For real-time implementation, the buck-boost converter was built and 

connected to a resistive load. The ANFIS-based MPPT controller was trained using the proposed 

RLSE-PSO algorithm. Training data was gathered by implementing the P&O MPPT algorithm 

and saving the measured PV output voltage, current and calculated duty cycle. The effectiveness 

of the proposed system was verified in real-time as the ANFIS MPPT controller was able to 

extract maximum power from the PV array for all irradiance levels in the desired range of 300 

W/m2 to 1000 W/m2 with no oscillations at the MPP. The controller was also able to maintain 

PV operation at the MPP for a step change in the load resistance. Compared to the P&O MPPT 

controller, the proposed controller demonstrated superior performance as it was able to extract 

maximum power from the PV array with little to no power loss due to oscillations. The P&O 

MPPT algorithm was not able to extract maximum power and created a highly oscillatory 

response. This thesis provides results that confirm all of the objectives have been completed and 

system performance extensively substantiated though simulation and real-time experimentation.  

 

8.1 Future Work and Improvements 

 

Through extensive simulations and real time experiments as well as additional theoretical 

analysis, various areas of improvement have been noted. Possible areas for further investigation 

are outlined in this section. 

 

The following improvements or changes could be made in future work: 

 

1. Design a snubber circuit for the MOSFET in the buck boost converter to further 

reduce switching losses. 

2. Replace the diode in the converter with another MOSFET. In this scenario, the 

switching losses that are introduced due to the diode will be significantly less as 

the ‘on’ resistance of a MOSFET is less than that of a diode. In this situation, the 

two MOSFETs in the converter need to be synchronized so that when one is on, 

the other is off to guarantee proper operation of the converter. 
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3. Experiment with the ANFIS structure by changing the number of rules, the 

number of input membership functions or the type of membership functions. 

Varying the ANFIS structure and parameters will change the performance of the 

MPPT controller. It is possible that better or worse results will be obtained with a 

differently designed ANFIS based MPPT controller. 

4. Replace the PI controllers used for the inverter control in simulation with fuzzy 

logic controllers or neuro-fuzzy controllers. The more advanced controllers may 

achieve a better response as they avoid the typical drawbacks of PI controllers. 

5. Since the three phase grid voltage is generally unbalanced, include DC current 

offset calculations in the simulation control algorithm for the inverter to remove 

DC offset current due to the unbalanced grid. 

6. Include DC link voltage control to maintain a relatively constant DC link voltage 

while still achieving maximum power point tracking of the solar array. 

7. Remove the buck boost converter and perform the maximum power point tracking 

directly with an inverter. Very little research has been completed in this area and 

would be useful topic to consider for another Master’s thesis. 

8. Perform further analysis and real time experimentation by applying the proposed 

MPPT controller to a wind energy conversion system. The proposed algorithm has 

been applied to a wind energy conversion system in simulation but experimental 

work was not completed. 

9. Complete grid connection or single phase stand-alone operation in real-time with 

proper equipment. 
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Appendix A 

Source Code 

 

 

The MATLAB code for the perturb and observe algorithm as well as the code for the 

proposed ANFIS training method is provided. The code for the ANFIS is also included. 

 

The code for the P&O algorithm is shown below: 

 

1. function D = PandO(Vpv, Ipv) 

2.   

3. persistent Dprev Pprev Vprev %save values of each function call 

4.   

5. %first run 

6. if isempty(Vprev) 

7.     Vprev=0; 

8.     Pprev=0; 

9.     Dprev=0.2; %start at duty of 0.5 

10. end 

11.   

12. %change in duty cycle and duty limits 

13. deltaD=0.0001; 

14. minD=0.1; 

15. maxD=0.9; 

16.   

17. %power and delta calculations 

18. Ppv=Vpv*Ipv; 

19. deltaV=Vpv-Vprev; 

20. deltaP=Ppv-Pprev; 

21.   

22. %P&O algorithm 

23. if deltaP~=0 

24.     if deltaP>0 
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25.         if deltaV<0 

26.             D=Dprev+deltaD; 

27.         else 

28.             D=Dprev-deltaD; 

29.         end 

30.     else 

31.         if deltaV<0 

32.             D=Dprev-deltaD; 

33.         else 

34.             D=Dprev+deltaD; 

35.         end 

36.     end 

37. else 

38.     D=Dprev; 

39. end 

40.   

41. %limit duty cycle 

42. if D<minD 

43.     D=Dprev; 

44. end 

45. if D>maxD 

46.     D=Dprev; 

47. end 

48.   

49. %save values 

50. Vprev=Vpv; 

51. Pprev=Ppv; 

52. Dprev=D; 

53. end 

 

 

The code for the proposed RLSE-PSO training method is shown below: 

 

1. tic %time the trainimg 

2.   

3. train_num=2358; % training data pairs 
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4. Emax=0.15; %allowed root mean square epoch error 

5. epochs=120; %max number of training epochs 

6. epoch_num=1; %start at first epoch 

7. E=0; %initialize error 

8. RMSE=0;%initialize root mean square error 

9. numMF=4;%num of membership functions 

10. numPop=16;%number of members in population 

11. w=1; 

12. lambda_w=0.98;%damping factor for w 

13. c1=2.3;%personal learning rate 2 

14. c2=2.9;%global learning rate 2.9 

15. globalbestError=inf;%initial error for the best member 

16. e=zeros(1,train_num);%initialize error vector 

17.   

18. %max and min values for center of Vpv MFs  

19. maxposV=250; 

20. minposV=0; 

21. %max and min values for center of I MFs    

22. maxposI=13; 

23. minposI=0; 

24. %max and min values for std dev 

25. maxdev=90; 

26. mindev=0; 

27.   

28. for j=1:numMF:numPop*numMF 

29.     %initial population position (4MFs, center, sigma) 

30.     %mfpos=[c,sigma] 

31.     mfpos(j,1)=minposV+(maxposV-minposV)*rand; %initialize V center 

32.     mfpos(j+(numMF-3),1)=minposV+(maxposV-minposV)*rand; 

33.      

34.     mfpos(j+2,1)=minposI+(maxposI-minposI)*rand; %initialize I center 

35.     mfpos(j+(numMF-1),1)=minposI+(maxposI-minposI)*rand; 

36.      

37. end 

38. mfpos(:,2)=unifrnd(mindev,maxdev,numMF*numPop,1); %initialize std dev 

39.   

40.   
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41. globalbestV=unifrnd(minposV,maxposV,numMF-numMF/2,1);%initialize to 

random values 

42. globalbestI=unifrnd(minposI,maxposI,numMF-numMF/2,1);%initialize to 

random values 

43. globalbestdev=unifrnd(mindev,maxdev,numMF,1); 

44. globalbest(1:2,1)=globalbestV; 

45. globalbest(3:4,1)=globalbestI; 

46. globalbest(:,2)=globalbestdev; 

47. vel=zeros(numMF*numPop,2); %initialize velocity  

48. mf_bestpos=zeros(numMF*numPop,2); 

49.   

50. %initialize linear consequent parameters to some arbitrary value 

51. theta=zeros(12,1); %theta=[p1,q1,r1,p2,q2,r2,p3,q3,r3,p4,q4,r4]' 

52. P=1000*eye(12); %initial P matrix for recursive LSE 

53.   

54. while epoch_num<=epochs 

55.     E=0; %reset error after each epoch 

56.     %use globalbest for LSE MF parameters 

57.     for i=1:train_num 

58.          

59.         %extract training data 

60.         Vpv=train_data(i,1); 

61.         Ipv=train_data(i,2); 

62.         des_duty=train_data(i,3); 

63.          

64.         %Layer 1 outputs (MF outputs with singleton input) 

65.         O11=gauss_MF(Vpv,globalbest(1,1),globalbest(1,2)); 

66.         O12=gauss_MF(Vpv,globalbest(2,1),globalbest(2,2)); 

67.         O21=gauss_MF(Ipv,globalbest(3,1),globalbest(3,2)); 

68.         O22=gauss_MF(Ipv,globalbest(4,1),globalbest(4,2)); 

69.          

70.         %Layer 2 outputs (product t-norm to obtain firing strengths) 

71.         W1=O11*O21; 

72.         W2=O11*O22; 

73.         W3=O12*O21; 

74.         W4=O12*O22; 

75.          
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76.         %Layer 3 outputs (normalize firing strengths) 

77.         W1_bar=W1/(W1+W2+W3+W4); 

78.         W2_bar=W2/(W1+W2+W3+W4); 

79.         W3_bar=W3/(W1+W2+W3+W4); 

80.         W4_bar=W4/(W1+W2+W3+W4); 

81.          

82.         %recursive least squares estimator to estimate linear 

parameters 

83.         

ap=[W1_bar*Vpv;W1_bar*Ipv;W1_bar;W2_bar*Vpv;W2_bar*Ipv;W2_bar;W3_bar*Vpv;W3

_bar*Ipv;W3_bar;W4_bar*Vpv;W4_bar*Ipv;W4_bar]; 

84.         P=P-(P*(ap*ap')*P)/(1+ap'*P*ap); 

85.         theta=theta+P*ap*(des_duty-ap'*theta); 

86.          

87.         %Layer 4 outputs (output of each Rule) 

88.         O1=W1_bar*(theta(1)*Vpv+theta(2)*Ipv+theta(3)); 

89.         O2=W2_bar*(theta(4)*Vpv+theta(5)*Ipv+theta(6)); 

90.         O3=W3_bar*(theta(7)*Vpv+theta(8)*Ipv+theta(9)); 

91.         O4=W4_bar*(theta(10)*Vpv+theta(11)*Ipv+theta(12)); 

92.          

93.         %Layer 5 output (output of ANFIS) 

94.         xout=O1+O2+O3+O4; 

95.          

96.         %new error calculation 

97.         E=xout-des_duty; 

98.         e(i)=E; 

99.          

100.         %PSO for nonlinear MF parameters 

101.         for j=1:numMF:numPop*numMF %extract each member from 

population 

102.             %error for member's position 

103.             posError=obj_func(Vpv,Ipv,des_duty,mfpos(j:(j+(numMF-

1)),:),theta); 

104.              

105.             %if first epoch and first data point initialize 

bestpos error 

106.             %else calculate error 
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107.             if i==1 && epoch_num==1 

108.                 bestposError=inf; 

109.             else 

110.                 

bestposError=obj_func(Vpv,Ipv,des_duty,mf_bestpos,theta); 

111.             end 

112.              

113.             %global best position error (i.e. best member's 

error) 

114.             

globalbestError=obj_func(Vpv,Ipv,des_duty,globalbest,theta); 

115.              

116.             %check for best position for each member and best 

position 

117.             %among all members 

118.             if posError<bestposError 

119.                 mf_bestpos(j:(j+(numMF-1)),:)=mfpos(j:(j+(numMF-

1)),:); 

120.             end 

121.             if bestposError<globalbestError 

122.                 globalbest=mf_bestpos(j:(j+(numMF-1)),:); 

123.             end 

124.              

125.             %update velocity and position. dampen w 

126.             vel(j:(j+(numMF-1)),:)=w.*vel(j:(j+(numMF-

1)),:)+c1.*rand(4,2).*(mf_bestpos(j:(j+(numMF-1)),:)-mfpos(j:(j+(numMF-

1)),:))+c2.*rand(4,2).*(globalbest-mfpos(j:(j+(numMF-1)),:)); 

127.             mfpos(j:(j+(numMF-1)),:)=mfpos(j:(j+(numMF-

1)),:)+vel(j:(j+(numMF-1)),:); 

128.             w=w*lambda_w; 

129.              

130.             %limit the position of the members (c,sigma) to a 

range 

131.             %suitable for the problem 

132.             mfpos(j:(j+(numMF-3)),1) = max(mfpos(j:(j+(numMF-

3)),1),minposV); %lower V limit 
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133.             mfpos(j:(j+(numMF-3)),1) = min(mfpos(j:(j+(numMF-

3)),1),maxposV); %upper V limit 

134.              

135.             mfpos(j+2:(j+(numMF-1)),1) = max(mfpos(j+2:(j+(numMF-

1)),1),minposI); %lower I limit 

136.             mfpos(j+2:(j+(numMF-1)),1) = min(mfpos(j+2:(j+(numMF-

1)),1),maxposI); %upper I limit 

137.              

138.             mfpos(j:(j+(numMF-1)),2) = max(mfpos(j:(j+(numMF-

1)),2),mindev); %lower std dev limit 

139.             mfpos(j:(j+(numMF-1)),2) = min(mfpos(j:(j+(numMF-

1)),2),maxdev); %upper std dev limit 

140.              

141.         end 

142.          

143.     end 

144.      

145.     RMSE(epoch_num)=sqrt(mean(e(:).^2)); %save rmse 

146.     epoch_num=epoch_num+1; %increment epoch 

147.      

148.     %stop training if error becomes less than threshold 

149.     if RMSE<Emax 

150.        break 

151.     end 

152. end 

153.   

154. figure 

155. plot(RMSE,'r') %plot error 

156. xlabel('Epoch Number'); 

157. ylabel('Error'); 

158. title('Error vs Epochs'); 

159.   

160. toc 
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The code for the designed ANFIS is shown below: 

 

1. function D = ANFIS(Vpv, Ipv) 

2.      

3.     %nonlinear and linear parameters from training output 

4. globalbest=[11.9042987194588,38.0017037607356;80,50;11,0.89948692298364

6;11,20.3333988146082]; 

5.  

6. theta=[0.303482362634626;3.51784508603727;2.01702791374873;2.2183738183

1105;1.13923299637881;-227.911375544320;0.0803414517982133;-

0.406745853735156;-3.97704139448619;-0.138821510109730;-

0.0559088032518080;14.9424816182171]; 

7.  

8.     %duty cycle limits 

9.          Dmax=0.9; 

10.     Dmin=0.1; 

11.      

12.     %Layer 1 outputs (MF outputs with singleton input) 

13.     O11=gauss_MF(Vpv,globalbest(1,1),globalbest(1,2)); 

14.     O12=gauss_MF(Vpv,globalbest(2,1),globalbest(2,2)); 

15.     O21=gauss_MF(Ipv,globalbest(3,1),globalbest(3,2)); 

16.     O22=gauss_MF(Ipv,globalbest(4,1),globalbest(4,2)); 

17.          

18.     %Layer 2 outputs (product t-norm to obtain firing strengths) 

19.     W1=O11*O21; 

20.     W2=O11*O22; 

21.     W3=O12*O21; 

22.     W4=O12*O22; 

23.      

24.     %Layer 3 outputs (normalize firing strengths) 

25.     W1_bar=W1/(W1+W2+W3+W4); 

26.     W2_bar=W2/(W1+W2+W3+W4); 

27.     W3_bar=W3/(W1+W2+W3+W4); 

28.     W4_bar=W4/(W1+W2+W3+W4); 

29.                  

30.     %Layer 4 outputs (output of each Rule) 
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31.     O1=W1_bar*(theta(1)*Vpv+theta(2)*Ipv+theta(3)); 

32.     O2=W2_bar*(theta(4)*Vpv+theta(5)*Ipv+theta(6)); 

33.     O3=W3_bar*(theta(7)*Vpv+theta(8)*Ipv+theta(9)); 

34.     O4=W4_bar*(theta(10)*Vpv+theta(11)*Ipv+theta(12)); 

35.          

36.     %Layer 5 output (output of ANFIS) 

37.     D=O1+O2+O3+O4; 

38.      

39.     %apply duty cycle limits 

40.     D=max(D,Dmin); 

41.     D=min(D,Dmax); 

42.   

43. end 
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Appendix B 

Block Diagrams 

 

Block diagrams from the simulation and real time implementation are presented. 

 

Fig. B-1: Full-scale system simulation block diagram with ANFIS-based MPPT controller. 
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Fig. B-2: Grid connected real time system simulation block diagram with ANFIS-based MPPT 

controller. 

 

Fig. B-3: Simulink block diagram for the system with 100Ω DC load. 
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Fig. B-4: Real time implementation block diagram. 

 

 

Fig. B-5: Real-time grid connected inverter control block diagram. 

 

Note that the control scheme in Fig. B-5 effectively controls the inverter. Grid connected 

results, however, cannot be provided due to the lack of a three phase isolation transformer 

needed to achieve grid connection. 
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Appendix C 

LabVolt Series 8960-20 Solar Emulator Module 

Configuration 

 

In order to use the solar emulator or the wind turbine emulator as a built in function to the 

LabVolt dynamometer, there are certain steps that must be taken for proper operation. The list 

below outlines the steps to follow: 

 

1. Install LVDAC-EMS from LabVolt’s website and ensure that the associated drivers 

install correctly with no malfunctions  

2. Turn the dynamometer on and put it in power supply mode for the solar emulator or 

dynamometer mode for the wind turbine emulator 

3. Connect the dynamometer to the computer with the black USB cable provided. Note: Do 

NOT use a USB extension cable as it will cause improper operation and a myriad of 

issues. 

4. Open LVDAC-EMS application on the computer 

5. Choose the local ac voltage and frequency then click OK 

6. Click Dynamometer on the menu bar at the top of the window and choose Four-quadrant 

dynamometer/ Power Supply 

7. A new window will open with all the features installed on the module 

8. To use the wind turbine or solar emulator, click the function drop down menu and 

choose the appropriate function 

9. The window will update with the various features and information regarding the 

emulator 

10. Change the associated parameters for your application and click Start to run the emulator 

and obtain an output from the module 
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Appendix D 

DC Link Current Surge Results 

 

It is of interest to consider the effects of a current surge in the dc link. Generally, the surge 

current is considered to be three times that of current under normal operating conditions. Under 

normal operating conditions for the full-scale system, the dc link current is around a maximum of 

10A. As such, 30A of surge current is introduced in Simulink simulations to verify the operation 

of the proposed ANFIS-based MPPT controller. A step input of 30A is applied at time 0.166s for 

the duration of 0.166s. As shown in the figures below, the dc link has a step in current of 30A at 

0.166s. Also shown is the solar panel output power. It is proven that even with the large dc link 

current surge, the proposed MPPT controller is able to extract maximum power from the PV 

array in the same manner as compared to normal operating conditions. Both of the three phase 

output currents and voltages at the inverter end have a total harmonic distortion less than 5% as 

per IEEE standards. The simulation results of a dc link current surge show that the proposed 

RLSE-PSO training algorithm and designed ANFIS-based MPPT controller can handle a wide 

range of abnormal operating conditions anywhere in the system. 

 

 

Fig. D-1: DC link current with dc link current surge of 30A. 
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Fig. D-2: PV output power with dc link current surge of 30A. 

 

Fig. D-3: Phase voltages at inverter end with dc link current surge of 30A. 
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Fig. D-4: Currents at inverter end with dc link current surge of 30A. 
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