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ABSTRACT 

Citation: Noworyta, S.J. 2018. Using Controlled Water Treatment on Understory Plant 

Species to Determine the Effects of Climate Change on the Boreal Forest. 

 

Keywords: climate change, boreal forest, understory, overstory, diversity, drought, water 

Climate change poses a big threat to boreal forest managers. We have set out to 
test how different precipitation levels will affect a number of boreal understory species 
across the three forest types commonly found in the boreal forest and see if the literature 
supports our findings. Total species abundance was higher in the Broadleaved stands 
compared to mixedwood and conifers stands. The Broadleaf composition had 
significantly more total richness than the mixedwood and conifer. Vascular and 
nonvascular abundance also followed the similar results as those for total abundance and 
was higher in broadleaved stands compared to mixedwood and conifer stands. The 
Broadleaf composition had similar results with vascular plant richness as with the total 
richness. The non-vascular compositions however, were not significantly different.   
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INTRODUCTION AND OBJECTIVE  

INTRODUCTION 

The boreal forest is the largest biome in the world. It stores about half of the 

global forest carbon, which makes it an important part of the global carbon cycle and 

climate regulation (Gauthier et al. 2015). Knowing the effect of water or a lack of water 

has on the boreal forest is important to understand, especially if we expect different 

precipitation levels in the future (Gauthier et al. 2015; Price et al. 2013). We can predict 

information about the boreal forest in the future by knowing the result of high or low 

precipitation today.  

As a graduating student with a degree in forestry it is in my cohorts’ and my own 

best interest to learn about the potential changes in the environment that we will be 

working and living in. The most accurate climate data that accounts for current climate 

trends come from the last 100 years. Using this data and general circulation models 

(GCMs), scholars can predict how the climate will be in the future. They believe that 

temperature will increase during the winter over the next 100 years, as well as in the 

summer in the interior regions by about 5 to 10 centigrade (Gauthier et al. 2015; Price et 

al. 2013).  There is a strong agreement among the GCMs studied that annual 

precipitation will increase across the entire boreal. It is important to note that while there 

will be an increase in precipitation, there will also be an increase in temperature, which 

leaves soil moisture to remain the same (Gauthier et al. 2015; Price et al. 2013). On that 

same point there may not be more snowfall due to the same reasons. The boreal plant 
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species that are projected to be the most effected are those found in wetland and 

permafrost areas, as these areas are the most sensitive to temperature fluctuation and 

dryness.  

Since climate affects boreal ecosystem functions presently, a changing climate 

will have a serious impact on it and thus is a matter of concern for forest managers 

(Price et al. 2013). Climate change will seriously affect vegetative succession, 

especially for species that are found in already not ideal climate conditions (Price et al. 

2013). This is brought about by the changing occurrence of large-scale disturbances like 

fires, and small-scale disturbances like storms, which will be higher frequency and 

severity in the future (Price et al. 2013). Boreal plant species are adapted to the climate 

for their particular locations in the forest. With a change in this climate, there is a chance 

that these plants can become maladapted. Some effects of maladaptation on trees include 

late bud flush and early dormancy. This discrepancy in timing causes an increase in 

susceptibility to insect related stress. Firstly the insects that hatch when the bud flush is 

supposed to occur would die out and then come back, as an insects’ speed of adaptation 

is much higher than a tree’s, as well the increased temperature will allow warmer 

temperature insects’ range to enter the boreal forest (Allen et al. 2010; Price et al. 2013). 

This will cause a large increase in tree mortality, and therefore succession rate.   

An increase in temperature will lead to an increased frequency of drought 

conditions in the boreal forest except in areas where soil moisture is not a limiting 

factor. Drought effects are important to understand because growth and CO2 uptake are 

constrained the most by drought (Vicente-Serrano et al. 2013). The boreal forest is 

shown to be severely sensitive to drought, as the dominant plant species that make up 

the boreal forest cannot tolerate even small water deficits. Even a short period of a water 
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deficit on the boreal forest will significantly affect tree growth, plant growth, and 

vegetation activity (Vicente-Serrano et al. 2013). The other effects of droughts include 

tree mortality, side effects of low moisture like insect infestation and fire frequency, and 

can hamper the ability for trees to naturally regenerate via seeding (Price et al. 2013).  

Tree mortality has increased by as much as 6% per year since the 1960s, especially in 

young forest. This can be attributed to the fact that the average drought events happening 

today are as severe as the highest recorded severity droughts in the 1960s. In fact, young 

forests are much more susceptible to tree mortality as a side effect of drought conditions 

from increasing temperatures compared to older forests (Luo et al. 2013). As the 

temperature has increased, so have droughts and pests with it. Since young trees are not 

as large as older trees, they are more susceptible to warming based mortality. An 

increase in mortality will cause trees that are less competitive and less adapted to the 

warmer weather to be outcompeted more frequently (Luo et al. 2013). As Populus 

balsamifera as a pioneer species has had the highest increase in mortality, it can be 

ascertained that the loss of water availability due to regional warming is the reason why 

trees adapted to moist environments are dying. Picea mariana and Picea glauca 

experiences a higher increase in mortality rate when compared to Populus 

tremuloides and Pinus banksiana, across both young and old forests. We can expect that 

the future forest will be dominated by early-successional species if these increases in 

mortality due to increased warming were to continue (Luo et al. 2013). 

Globally, the boreal forest can be considered a humid forest type, and therefore 

has on average, a higher water surplus than water deficit. In other words, the boreal 

forest is extremely maladapted to arid conditions, and is severely damaged by drought 

conditions. The most common condition of drought in the boreal forest is damage to 
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plant tissue and loss in foliar biomass (Vicente-Serrano et al. 2013). Since the boreal 

forest is humid, the plants can bounce back easily after a very damaging but short 

drought period. It is projected that by 2060 many parts of Canada including the boreal 

forest will experience droughts that last multiple years due to an increase in sea surface 

temperature, which will change wind circulation patterns and divert precipitation 

towards the poles. Since these will be significantly long-term droughts, the boreal forest 

will not be able to return to its state before the drought occurred. Even now at the 

southern margins of the boreal forest, tree dieback is occurring and shrub lands and 

grasslands due to the increase in frequency and severity of drought conditions are 

replacing the boreal forest (Allen et al. 2010; Gauthier et al. 2015; Price et al. 2013). 

Understory species make up the majority contributor of biodiversity in the boreal forest 

and contribute important to important ecosystem functions (Chen 2018). 

In a study of 1032 understory plant species in 1409 vegetation plots that have 

been surveyed and then resurveyed, that 33% of the plant species have changed to 

species that are better adapted to warmer climates. The coldest temperature adapted 

plants being outcompeted by the slightly warm temperature plants caused the change in 

species of 33% of the study to occur (De Frenne et al. 2013). In some plots, there was 

actually a net increase in species, due to a higher rate of immigration of warmer adapted 

species that extirpation of colder adapted species. It was found that canopy cover is the 

best way to mitigate understory species replacement. Dense crown canopies lower the 

temperature below them, increase air humidity and shade. This means that the species 

that were replaces by more competitive warm climate species were light-dependent 

species. The humid, cool, dark environments these dense canopies create also provide 

the perfect nursery for herbaceous plants and tree seedlings. Due to how fragmented the 
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modern forest is, using dense forests as buffers may be the way of the future to protect 

temperate forest diversity (De Frenne et al. 2013). On drought prone locations, 

herbaceous understory vegetation can reduce biomass regeneration in overstory trees by 

up to 51%. This causes an overstory species shift to more drought tolerant species, 

which will then alter the understory species (Thrippleton 2017). A large influence on 

understory species richness and cover is overstory type (Vockenhuber 2011). Soil 

resource and light availability for understory plants depends on the overstory type 

(Chavez 2012). Locations with a broadleaf dominated overstory have high understory 

species richness and cover because of high light availability and the leaf litter is high in 

nutrients (Chen 2017). This is contrasted by conifer dominated overstory areas, which 

offer low light and poor nutrient leaf litter and therefore a lower species richness, with 

mixedwood compositions having a species richness between broadleaf and conifer 

(Chavez 2012). Due to the differences in light, moisture, and nutrient availability, the 

broadleaf overstory has a majority vascular understory, the conifer overstory has a 

majority non-vascular understory, and the mixedwood understory has a split between the 

two (Chen 2018). This however is not always the case, as stand age also plays an 

important role in understory composition (Kumar 2018). 

OBJECTIVE 

The objective of this thesis is to determine if an increase or decrease in water will 

result in a significant difference in the understory species abundance and richness of the 

boreal forest. This will help determine if we as managers need to be worried about the 

projected change in climate changing the boreal forest. As an aside, it will also test the 

efficacy of the water treatment system. 
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HYPOTHESIS 

We expect a higher cover of vascular plants in the broadleaved stand because 

broadleaf stands have higher light availability and nutrients, which create conditions 

favourable for various herbs and shrub species (Chen 2017). However, we expect the 

opposite for non-vascular plants and hypothesize that non-vascular plants are higher in 

the conifer stands because of their preference for the low light, lower temperature and 

higher humidity that conifer stands offer (Chavez 2012). We also expect that there will 

not be a significant difference with water treatment, due to boreal understory species 

being unable to tolerate drought conditions (Luo et al. 2013), and vegetative activity 

being inhibited by lower water availability (Vicente-Serrano et al. 2013) over a longer 

period of time than one growing season, in order to take effect. 
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MATERIALS AND METHODS 

STUDY AREA 

  The sampling areas, of which I have data for nine of each of the three 

treatments, repeated three times, is found in the boreal forests north of Lake Superior 

and west of Lake Nipigon in the Black Spruce Forest, located approximately 100 km 

north of Thunder Bay, Ontario, Canada (49°23'N to 49°36'N, 89°31'W to 89°44'W).  

The area falls within the Moist Mid-Boreal (MBX) ecoclimatic region (Ecoregions 

Working Group 1989) and is characterized by warm summers and cold, snow-rich 

winters. Mean annual temperature is 2.5°C and mean annual precipitation is 712 mm at 

the closest meteorological station located in Thunder Bay, Ontario (Environment Canada 

2016). The overstory is typically dominated by Pinus banksiana Lamb., Populus 

tremuloides Michx., Betula papyrifera Marsh., Picea mariana [Mill.] B.S.P., Picea 

glauca [Moench] Voss and Abies balsamea [L]. Mill.This location was chosen because 

there is conifer dominated, hardwood dominated, and mixed wood forests, which had 

been clear-cut and then caught on fire, causing them to be in the same age class. These 

forest types, as well as their geographic location make them ideal candidates for a 

statistical analysis of the boreal forest. 

DATA COLLECTION 

  The water treatment device was built in the summer of 2017 and it stops rain 

from entering the water reduction area and deposits it in the water addition area, which 

is about 15 metres away. The device itself is made out of iron stakes and wire to hold 
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itself together, plastic sheets to prevent water from hitting the ground and move water to 

the transportation system. The transportation system is a parallel of gutters that move 

and then deposit the water in the addition area. At each site there is also a control group 

that is outside of the water device’s area of influence. Some photographs of the device 

are shown here in Figures 1 to 3. I personally attended the research twice during October 

2017, where I helped Han Chen’s master students (in particular Xinli) collect their data 

and put away parts for the winter.  

 

 

Figure 1. Water reduction treatment area. 
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Figure 2. Water addition treatment area. 



10 
 

 

Figure 3. Water control treatment area. 

STATISTICAL DESIGN 

In The data that I received is a list in the form of an excel spreadsheet of 43 boreal 

understory plant species, their average heights, the sites and treatments they are present 

in, the overstory forest type and the percentage of coverage they have at each site and 

treatment. Species abundance was evaluated as the sum of individual species percent 

cover on each plot and species richness was treated as the total number of species 

recorded on each plot. Total vegetation cover was treated as the sum of species-specific 

cover values on each plot. To test for Treatment and overstory composition effects on 

species abundance and species richness we used two-way analysis of variance. We used 
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Shapiro–Wilk’s test to check the assumptions of normality. For species richness, we 

specified distribution as Poisson. We also used permutation multivariate analysis of 

variance (perMANOVA) to examine the effect of treatment and overstory compositions, 

on understory species composition. PerMANOVA is a nonparametric, multivariate 

analysis that uses permutation techniques to test for compositional differences between 

more than one factor (Anderson 2005). To examine trends in the composition data, we 

used nonmetric multidimensional scaling (NMDS), which is a robust ordination 

technique for community data that are non-normal or evaluated on ordinal scales 

(McCune and Grace 2002). 
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RESULTS 

We found that total understory species abundance varied significantly only with 

overstory composition types, whereas treatment did not have any effect on total 

understory abundance (Table 1). Total species abundance was higher in the Broadleaved 

stands compared to mixedwood and conifers stands (Figure.4). Vascular and 

nonvascular cover also followed the similar results as those for total cover (Table 1) and 

was also higher in broadleaved stands compared to mixedwood and conifer stands 

(Figures 5 and 6). 

We also found that there is a significant difference in total and vascular species 

richness depending on overstory composition, with no significant difference when 

looking at non-vascular plants, the different treatments or the interaction of treatment 

and overstory type (Table 2). The Broadleaf composition had significantly more total 

richness than the mixedwood and conifer composition (Figure 7). The Broadleaf 

composition had similar results with vascular plant richness as with the total richness 

(Figure 8). The non-vascular compositions however, were not significantly different. 

Additionally we found that on the perMANOVA results (Table 3) there was no 

effect of treatment on understory species composition but overstory composition had a 

significant effect on understory species composition. When we visualize this table, we 

found that broadleaved stands had a different species composition than conifers stands 

whereas mixed wood stands have understory species common to broadleaved and 

conifers stands (Table 9).  
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Table 1. Effects of treatment and fixed effect of overstory composition and their 
interactions on understorey total, vascular, and non-vascular abundance. Bold fonts 
indicates statistical significance (α = 0.05). 

Attribute Source df MS F P 
Total abundance Treatment 2 423 0.88 0.431 

 
Composition 2 4925 10.26 0.001 

 
T  × C 4 327 

 
0.614 

Vascular abundance Treatment 2 257.9 1.91 0.176 

 
Composition 2 1837.4 13.63 0.001 

 
T  × C 4 95.3 0.71 0.598 

Non-vascular 
abundance Treatment 2 27.8 0.15 0.857 

 
Composition 2 801.8 4.47 0.027 

  T  × C 4 85.3 0.48 0.753 
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Figure 4.Total abundance box and whisker plot comparing the three overstory 
compositions. 
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Figure 5. Vascular plant abundance box and whisker plot comparing the three overstory 
compositions. 
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Figure 6. Non-vascular plant abundance box and whisker plot comparing the three 
overstory compositions. 
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Table 2. Results of generalized linear model showing the effects of treatment and 
overstory composition types and their interactions on understory total, vascular and non-
vascular species richness. Bold fonts indicates statistical significance (α = 0.05). 

Attribute Source df LR 
Chisq P 

Total richness Treatment 2 4.62 0.99 

 
Composition 2 18.26 0.001 

 
T  × C 4 2.47 0.649 

Vascular richness Treatment 2 1.3 0.521 

 
Composition 2 16.07 0.001 

 
T  × C 4 2.39 0.664 

Nonvascular 
richness Treatment 2 5.08 0.079 

 
Composition 2 4.35 0.114 

  T  × C 4 1.59 0.81 
 



18 
 

 

Figure 7. Total richness box and whisker plot comparing the three overstory 
compositions. 
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Figure 8. Vascular richness box and whisker plot comparing the three overstory 
compositions. 
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Table 3. Results of permutation multivariate analysis of variance (perMANOVA) testing 
the effects of treatment (T) and overstory compositions (C) on understory species 
composition. Bold fonts indicates statistical significance (α = 0.05). 

Source df MS F P Partial 
R2 

T 2 0.09 0.52 0.96 0.04 
C 2 0.5 2.89 0.001 0.22 
T  × C 4 0.06 0.37 1 0.06 
Residuals 18 0.17     0.68 

 

 

Figure 9. Nonmetric multidimensional scaling data depicting treatment, overstory type, 
and the interaction between them, with each data point representing a unique understory 
plant species. This is a visual depiction of (Table 3). 



21 
 

DISCUSSION 

  

We found that total understory species abundance and richness varied 

significantly only with overstory composition types, like in (De Frenne et al. 2013; 

Vockenhuber 2011). We expected this because the forest that was sampled is relatively 

young, so the understory species that would be established there will be colonizer 

species, primarily, who are better adapted to the high light, high temperature, nutrient 

rich broadleaf forests (Kumar 2018). Total species abundance and richness was higher in 

the Broadleaved stands compared to mixedwood and conifers stands. This is consistent 

with previous studies (Chen 2017; Chavez 2012; Chen 2018). The broadleaf overstory is 

more hospitable for more species than conifer or mixedwood forests, which is why it 

appears to have a higher richness and abundance than those compositions.  

Vascular and nonvascular abundance and vascular richness also followed the 

similar results as those for total abundance and richness and was higher in broadleaved 

stands compared to mixedwood and conifer stands. However, non-vascular richness was 

not significant. This is due to stand age again, as the species that are strongly adapted to 

live in conifer stands will not be present yet. Since the plants that are missing are mostly 

non-vascular, late successional species, their lack of presence has resulted in the richness 

to be the same as the broadleaf and mixedwood stands, which do not ordinarily host 

these species. We expected conifer stands to have higher non-vascular species richness 

than broadleaf and mixedwood stands since they are better adapted to conifer stands 

(Chen 2018). Since the results dispute this we believe the reasoning is because either 

most non-vascular species have not established due to stand age (Kumar 2018) or that 



22 
 

the naturally low understory richness of conifer stands has lead all composition types to 

have a similar amount of non-vascular species present (Chavez 2012).  

We hoped that at least the water reduction treatment might be significantly 

different like with (Luo et al. 2013; Vicente-Serrano et al. 2013), however this was not 

the case. We believe that this is due to the amount of time the project has been in 

operation. Where most studies on water treatment simulate conditions on a minimum 50-

year scale (Allen et al. 2010; Gauthier et al. 2015; Price et al. 2013), this experiment 

has only taken place over the course of one growing season. This is not enough time for 

the water treatments to have a significant impact on the understory plant species, thus 

there naturally is no significant difference. The perMANOVA results easily show that 

there was no effect of treatment on understory species composition, as the treatments 

have no correlations in the figure (Figure 9) but overstory composition did have a 

significant effect on understory species composition. We found that broadleaved stands 

had a different species composition than conifers stands whereas mixed wood stands 

have understory species common to broadleaved and conifers stands, as expected (Chen 

2018). If the water treatment tests were to occur for the next 50 years, we can hope to 

expect results similar to (Allen et al. 2010; Luo et al. 2013; Price et al. 2013; 

Thrippleton 2017; Vicente-Serrano et al. 2013). 

We hypothesized that there would be a higher cover of vascular plants in the 

broadleaved stand because broadleaf stands have higher light availability and nutrients, 

which create conditions favourable for various herbs and shrub species (Chen 2017), 

which was confirmed. We also expected the opposite for non-vascular plants and that 

non-vascular plants have higher abundance and richness in the conifer stands because of 

their preference for the low light, lower temperature and higher humidity that conifer 
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stands offer (Chavez 2012) this turned out to be false. This is due to the even stand age 

and the understory species composition being made up primarily of colonizer species. 

We also expect that there will not be a significant difference with water treatment, due to 

boreal understory species being unable to tolerate drought conditions (Luo et al. 2013), 

and vegetative activity being inhibited by lower water availability (Vicente-Serrano et 

al. 2013) over a longer period of time than one growing season, in order to take effect. 

This was also the case, as the water treatment was not significant. With these results, we 

believe that we can accept our hypothesis, as the broadleaf overstory had the highest 

total and vascular abundance and richness among the compositions, the water treatments 

were not significantly different, and the non-vascular understory results are explained by 

stand age and the natural low richness and abundance of conifer stands. 
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CONCLUSION  

 It is unfortunate that we could not find a significant difference due to water 

treatment, but that was to be expected. The test had only just begun in the 2017 growing 

season, and the plants did not have enough time in order to be affected by the different 

water treatments. We did however confirm that the broadleaf overstory had the most 

amounts of abundance and richness, across the board, which agrees with (Chen 2017; 

Chavez 2012; Chen 2018). However, we also learned that non-vascular abundance was 

also the highest in the broadleaf overstory, and non-vascular richness was not affected 

by overstory composition. We postulate that this is due mainly to stand age, which 

would agree with (Kumar 2018) or that the naturally low understory richness of conifer 

stands has led to all composition types to have a similar amount of non-vascular species 

present (Chavez 2012). The stands that were sampled are the same age, where the 

compositions can be generalized to early, middle, and late stage succession, as 

broadleaf, mixedwood, and conifer respectively. Since they are all at the early age of 

succession, the understory species that would be present in the conifer understory have 

not been established yet, as they have not had the time they require to establish. 

Compound that with the fact that broadleaf stands have more light and more nutrient 

rich leaf litter (Chen 2017) it is clear why the broadleaf overstory have significantly 

more species abundance and richness than the conifer overstory. 
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