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Abstract 
Electrokinetics in geotechnical engineering is used to increase the shear strength of soft soils 

and the load carrying capacity of piles embedded in these soils. This is achieved by decreasing 

the water content of the soil by electrokinetics, and often by inducing cementation. Practical 

issues such as determining the treatment effectiveness along with determining the 

appropriate treatment duration have limited its use in the field. 

In this study, a steel pile foundation model was inserted in clayey soil that was treated with 

electrokinetics with bender elements embedded in the soil to monitor the shear wave velocity 

in the soil during the treatment. Changes in the shear-wave velocity were used as an indicator 

of changes in the structure and shear strength of the soil throughout treatment.  

After the shear wave velocity ceased to increase, the gain in the strength of the soil by the 

treatment was considered to plateau and the treatment was terminated. Two weeks after 

treatment, the pile models were loaded. Shear vane tests were carried out to accurately 

define the zones of soil stiffened and the extent of the changes. To better comprehend the 

mechanisms which contributed to soil stiffening, by x-ray diffraction, x-ray energy dispersive 

spectrometry, Atterberg limits and pH tests were performed.  

It was found in this study that by using bender elements to monitor the changes in the shear-

wave velocity, the treatment time and total power consumed were reduced by more than 40 

percent and 34 percent, respectively while achieving a similar reduction in water content and 

increase in shear strength to a test with seven days of treatment. The load carrying capacity 

after the treatment increased by 300 percent compared to the control. 
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Thesis Outline 
The first chapter gives a background of electrokinetics, a review of shear wave velocity and 

examines gaps in the current research that are to be filled by this thesis. 

The second chapter describes and discusses the materials used in the experimental program, 

their properties and characteristics and where they were sourced and examines the methods 

used for the given apparatuses. It goes over every part of the system, including the MATLAB 

codes written for controlling the system. 

Chapter three presents the total results of the study and explains their significance, including 

the load capacity of the piles, the power consumption of the treatments, shear vane tests, 

shear wave velocity graphs, scanning electron microscope results and x-ray diffraction results. 

Chapter four concludes the study and gives light to future avenues of research. 

Chapter five contains supplementary material as well as the bibliography. 
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Chapter 1  
The implementation of both electrokinetics for the purposes of increasing the load carrying 

capacity of a soil and bender elements for the purposes of determining the shear modulus of 

soil pose their own limitations and possible complications. This chapter identifies the 

complexities of each system and uses this to better understand where and how these two 

systems may interact. 

1.1. Background 
Electrokinetic treatment is a soil improvement technique that aims to induce dewatering and 

cementation, to increase the shear strength and load capacity of soft soil. Electrokinetics has 

been used as a ground improvement technique in clayey soils since the 1960s [1, 2]. However, 

engineers and scientists may find that determining the degree of improvement to be closer 

to art than science as methods to determining treatment effectiveness are limited to 

destructive load tests. Not only are results indeterminate, results from one treatment are 

rarely ubiquitous across multiple treatments due to the heterogenous nature of soil. Further, 

results have suggested that a longer duration of treatment does not always translate to more 

improvement, and the results are not scaled with time (double the time does not equal twice 

the results) [3]. 

 Conventional methods of load capacity estimates are limited to soil analysis by boring and 

calculations that may involve erroneous assumptions. When calculations may represent a 

true quantification of pile load capacity, destructive methods are still needed to determine 

with absolute certainty that the load capacity is correct and with very large piles the 

equipment required for testing becomes ever larger which drives costs of construction higher. 



2 
 

1.2. Electrokinetics 
1.2.1. Mechanisms and Models of Electrokinetic Pore Fluid Flow 
Electrokinetics in geotechnical engineering refers to the process of applying a direct current 

(DC) electric field to moist soil with the desired outcome being an increase shear strength and 

load carrying capacity of soft soils or the transport of compounds within the soil [4, 5, 6, 7, 8]. 

In compacted soil, the electric field incites two transport mechanisms, namely electroosmosis 

and electromigration along with electrolysis reactions of water at the electrodes [9]. 

Electroosmosis is the movement of porewater via the soil pores by the electric field. In 

negatively charged soils (i.e. clayey soil), water is transported from the positive electrode 

(anode) to the negative electrode (cathode). The flow rate of pore water can be quantified by 

the Helmholtz Smoluchowski Model. 

𝑘𝑒 = −
𝜖𝑤𝜁

𝜇
𝜏 𝑛  (1.1) 

Where 𝑘𝑒 (𝑚2 𝑠 ∙ 𝑉)⁄  is the coefficient of electroosmotic permeability, 𝜖𝑤 (𝐹/𝑚)  is the 

permittivity of pore water, 𝜁 (𝑉) is the zeta potential, 𝜇 (𝑁 ∙
𝑠

𝑚2) is the dynamic viscosity of 

water and 𝑛 is the porosity of the soil. Toruosity factor 𝜏 is included to make the model valid 

for the non-linear flow paths in soil [10].  

Electromigration, the movement of ions in the pore water toward the oppositely charged 

electrode, is best represented by the Nernst-Townsend-Einstein relation, 

𝑈𝑗
∗ =

𝐷𝑗𝑧𝑗𝐹

𝑅𝑇
𝜏 𝑛 (1.2) 

Where 𝑈𝑗
∗ (𝑚2 𝑠 ∙ 𝑉)⁄  is the effective ion mobility of species 𝑗 , 𝐷𝑗  (𝑚2 𝑠)⁄  and 𝑧𝑗  are the 

diffusion coefficient in dilute solution, and valence of species 𝑗 , 𝐹  and 𝑅  are Faraday’s 
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constant (96 487 C/mol) and the universal gas constant (8314 J/(mol·K)), T is the absolute 

temperature in (K), 𝜏 is the tortuosity factor and 𝑛 is the porosity of the soil [10]. 

Electrolysis reactions at the electrodes cause the formation of an acidic front at the anode 

and a basic front at the cathode. The electrolysis reactions at the electrodes are as follows: 

 𝐶𝑎𝑡ℎ𝑜𝑑𝑒 (𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛): 4𝐻2𝑂 (𝑎𝑞) + 4𝑒− → 2𝐻2(𝑔) + 4𝑂𝐻−(𝑎𝑞) (1.3) 

𝐴𝑛𝑜𝑑𝑒 (𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛):  2𝐻2𝑂 (𝑎𝑞) − 4𝑒− → 𝑂2(𝑔) + 4𝐻+(𝑎𝑞) (1.4) 

Each front moves towards the oppositely charged electrode by electromigration while 

electroosmosis furthers the transport of the acid front towards the cathode [10]. Because the 

presence of an alkaline environment is associated with the precipitation of cementing agents, 

cementation is often limited to the cathode [11]. 

Due to the electrolysis reactions at the anode, as the treatment is administered, a metallic 

anode, in particular iron, is slowly oxidized and corroded making the use of electrokinetics 

problematic for long durations of treatment. For some forms of tests, sacrificing the anode to 

promote cementation and dewatering is acceptable, as is the case for the anode used in 

dewatering fluid fine tailings shown in Figure 1.1. In other forms of treatment, especially in 

cases where foundation elements are used as the anode, limiting the amount of current is 

essential to reduce the magnitude of corrosion [12, 13, 10, 11]. 
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FIGURE 1.1: ANODE OF SYSTEM AFTER TESTING SHOWS HIGH LEVEL OF CORROSION [14] 

1.2.2. Physical and Chemical Factors affecting EK Process 
The use of electrokinetics for the strengthening of weak soils and sediments has been 

routinely reported in the literature for more than 50 years [1, 2]. The processes involved 

however are somewhat complicated as they include the movement of both positively and 

negatively charged ions in opposite directions in a heterogenous soil matrix composed of 

various constituents including microorganisms, organic and inorganic compounds. 

Furthermore, the induction of redox reactions tend to induce various reactions and the 

creation of new compounds. The applicability of such a technique is limited to both its 

economic feasibility, its physical limitations to create a desired result, and the ability of those 

conducting the treatment to anticipate and resolve possible negative effects such movement 

of metals and chemical compounds.  

The physical limitations are mostly due to the changes that occur during treatment such as 

the development of pH fronts and gradients due to electrolysis at the electrodes, ion 

concentration gradients due to the movement of cations and anions in opposite directions 

induced by the electrical field and the creation of new chemical species, and the cascade of 
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effects these changes have on hydraulic conductivity, water content, electrical conductivity, 

all of which may have lasting negative consequences to nearby systems (groundwater sources 

etc). [15, 16, 17]. 

1.2.2.1. Effects of pH on EK Process 

The pH of a soil and its ability to remain stable often governs the motion of ionic species, and 

in turn the water within the soil matrix [18, 19]. The flow of porewater under electroosmotic 

flow is governed by the presence of a difference of charge (electrical potential in volts) 

between the fixed and free parts of the electrical double layer, known as the zeta-potential. 

For materials with negative zeta-potential (i.e. clayey soils), water moves towards the 

cathode. The zeta-potential of a soil matrix is often highly dependent on the pH of the mixture 

[18].  

In low pH environments (acidic),the zeta potential can be positive and subsequently the flow 

of pore fluid is from cathode to anode. This occurs when the low pH causes the soil to pass its 

point of zero charge (PZC), reversing the flow. Some soils are more sensitive than others are 

to changes in zeta-potential due to pH changes, such as Wyoming Bentonite (Figure 1.2). A 

negative electrophoretic mobility (the relationship between fluid velocity and electric field 

potential) represents pore-fluid flow towards the cathode. The addition of enhancement and 

chelating agents often has drastic effects on the pH vs flow characteristics of a given soil under 

an electrical current as seen in Figure 1.2. and Figure 1.3.
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FIGURE 1.2: ELECTROPHORETIC MOBILITY VS PH 

OF THREE CLAYS [18] 

 

 

FIGURE 1.3: ELECTROPHORETIC MOBILITY VS PH 

OF MILWHITE KAOLINITE IN VARIOUS PORE-
WATER SOLUTIONS [18] 

1.2.2.2. Point of Zero Charge and Flow Reversal 

An experimental study performed by Yeung [20] with Milwhite kaolinite was divided 

into eight stages to explore the effects of adding bases to both anode and cathode reservoirs. 

Initially the soil was at its PZC at which point a base solution was added at the anode to 

promote flow from anode the cathode. Adding deionized water to both reservoirs reversed 

the flow completely towards the anode. When electroosmotic flow was towards the anode, 

adding solutions at the anode was ineffective in correcting the flow direction, further 

emphasizing the relevance of pH on soil zeta-potential and in turn the electroosmotic flow 

(Figure 1.4 and Table 1.1). 
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FIGURE 1.4: ELECTROOSMOTIC FLOW RATE ACROSS TREATMENT TIME WITH VARIATIONS OF ANOLYTE AND 

CATHOLYTE [20] 

 

TABLE 1.1: VARIATION IN ELECTROLYTES AND THEIR EFFECT ON ELECTRO-OSMOTIC FLOW [20] 

 

As mentioned in a previous section, the direction of electroosmotic flow is often dependant 

on pH. However, this is only the case for variable-charge soils, and stems from where these 

soils develop their charged properties. All soils have intrinsic and extrinsic charge properties. 

These include their: (a) permanent structural charge due to isomorphic substitution, (b) net 

proton charge caused by differences in hydrogen and hydroxide concentrations complexed 
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to soil particle surface functional groups (SFG), (c) inner-sphere complex charge due to the 

balance of anion and cation concentrations other than H+ and OH- in SFG, and (d) outer-sphere 

complex charge due to ions bound to outer-sphere surface complexes. Lightly weathered soils 

often have mineral compositions of stable, less reactive groups, while more weathered soils 

often contain reactive hydroxide groups. The less weathered soils tend to exhibit stable 

surface charges under a variety of pH because the permanent structural charge is the 

dominant surface charge source [18]. The Wyoming Bentonite in Figure 1.2 is an example of 

a permanent-charge soil, while the Milwhite Kaolinite would be termed a variable-charge soil 

in that specific electrolyte solution. 

The effects of pH are important for soil strength improvement due to its influence on the 

direction of porewater flow and heavy metal dissolution and precipitation. When 

cementation of soil solids via the addition of iron from the electrodes is desired, the 

precipitation and sorption of heavy metals is beneficial [21, 22].  

1.2.2.3. Effects of Soil and Porewater Conductivity on Electrokinetics 

Because the transport mechanisms that arise from electrokinetics rely on the flow of current, 

the capacity of the soil-porewater matrix to conduct electricity is very important. The loss of 

matrix-electrode contact can result in the halt of the electrokinetic process, and a higher 

water content is generally advantageous due to its tendency to promote higher conductivity 

(seen in soil conductivity tests) and fill gaps between the soil and electrodes due to the nature 

of liquids. 

It has also been shown that the introduction of electrolytic solutions heavily promotes the 

flow of water through the system. This can be seen in many experiments, such as those 

performed by Cameselle [23] in which various acids were added as anolytes, showing various 
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effects to current intensity (Figure 1.5), power consumption(Figure 1.6), and electro-osmotic 

flow (Figure 1.7). In Cameselle [23] after 27 days of treatment, the pH at the anode and 

cathode were adjusted from low to high and high to low, respectively, for 13 days (i.e. day 40 

of treatment). As the acids and bases migrate through the soil, they gradually increase the 

conductivity of the soil because in liquids, it is the presence of ions that increases the 

conductivity [18].  

 

FIGURE 1.5: CURRENT INTENSITY DURING EK OF VARIOUS ACIDS AS ANOLYTE WITH ACTIVE PH ADJUSTMENT 

DURING PERIOD II [23] 

 

FIGURE 1.6: POWER CONSUMPTION DURING EK 

OF VARIOUS ACIDS AS ANOLYTE WITH ACTIVE PH 

ADJUSTMENT DURING PERIOD II [23] 

 

FIGURE 1.7: ELECTRO-OSMOTIC FLOW DURING EK 

OF VARIOUS ACIDS AS ANOLYTE WITH ACTIVE PH 

ADJUSTMENT DURING PERIOD II [23]
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This suggests that as the ionic electrolyte permeates through the sample, the electro-osmotic 

flow increases for a relatively brief period until the system is again depleted of ions by this 

elevated level of electro-osmotic flow, which causes the flow to reduce and resistance to 

increase. 

The efficiency of electro-osmotic flow is highly dependent on the zeta-potential of the soil-

porewater solution, as quantified by the Helmholtz Smoluchowski Model in Eq. (1.1). A great 

deal of the soil charge that creates the diffuse double layers is often derived from soil 

hydrogen and hydroxide ions (pH), and many other ions. In other words, the efficiency of the 

electro-osmotic flow is highly dependent on the tendency for the soils physio-chemical 

properties to change across various pH and ion concentrations, and the tendency for a given 

soil to buffer the pH under treatment. 

Laboratory experiments performed by Mohamedelhassan [12] examined the effectiveness of 

improving the strength of a saturated clay in a variety of pore fluids using EK. The conductivity 

and zeta potential of the four fluids are shown in Table 1.2 and Table 1.3. Only diluted zeta 

potentials of the seawater are available for technnical reasons. 

TABLE 1.2: ELECTRICAL CONDUCTIVITY OF PORE 

FLUIDS [12] 

 

 

TABLE 1.3: ZETA POTENTIAL OF PORE FLUIDS [12] 

 

 

Electrical Conductivity, mS/cm 0.008

pH 6.7

Electrical Conductivity, mS/cm 0.1

pH 7.2

Electrical Conductivity, mS/cm 0.11

pH 7.7

Electrical Conductivity, mS/cm 54.8

Distilled Water:

Lake Water:

Tap Water

A-Seawater

Suspension Fluid

Distilled Water

Lake Water

Tap Water

10% A-Seawater

27% A-Seawater

40% A-Seawater

Zeta Potential (mV)

25 ± 2.1

28 ± 2.3

32 ± 2

15 ± 1.3

11 ± 1

9 ± 0.8
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When comparing the power consumption with the electro-osmotic flow of all four fluids it 

can be seen that fluids with low conductivity and high zeta potentials perform the best (Figure 

1.8) and the fluid with the highest conductivity and the lowest zeta potential performs the 

worst (Figure 1.9) during the EK treatment phase of the experiement.

 

FIGURE 1.8: CUMULATIVE VOLUME DISCHARGED 

DURING EK TREATMENT WITH DISTILLED WATER. 
[12] 

 

FIGURE 1.9: CUMULATIVE VOLUME DISCHARGED 

DURING EK TREATMENT WITH SEAWATER [12] 

 

Also note that in the experiment using seawater the flow out of the sample before 

electrokinetic treatment is substantially higher, seen in Figure 1.9. This is due to the low zeta 

potential of the seawater which causes the diffuse double layers to shrink. This effect is 

reflected in the water content of the samples with distilled water before electrokinetic 

treatment which  is less hydraulicly conductive and retains a great deal of water due to dilated 

diffuse double layers shown by Table 1.3 and Figure 1.8. 

Altogether, the physical and chemical properties of the soil matrix play an integral role in the 

effectiveness of EK as a soil improvement technique and as of yet there is little consistency in 

results, nor in treatment and testing procedures. 
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1.2.3. Increasing the Load Capacity of Foundations 
Because of the chemical and physical effects direct electrical current has on soil-water 

systems, it creates stiffer and stronger soil structures. This occurs by two mechanisms: 

increases in effective stress due to dewatering, which leads to consolidation and a lower 

water content, and cementation [24, 25, 26, 27, 28]. Cementation is the creation of new 

bonds, which is usually spurred on by the presence of alkaline pore fluids in the presence of 

iron, calcium binding agents or other cementing ions [22, 24, 25, 26, 27]. 

Micic et al. [22] conducted tests on skirted foundation models and found that increases in 

load capacity of up to three times were observed. When shear vane tests were performed in 

the treated soil, comparisons in the treated and untreated soil showed vast differences in soil 

shear strength at the same water content. This led the authors to conclude that electro-

cementation had occurred that created bonds that increased cohesion amongst the soil 

particles and adhesion between the soil and foundation elements. 

Shang et al. [11] also observed similar results when performing experiments with calcareous 

soil treated with two separate stabilizing agents, calcium chloride and aluminium sulphate. 

The study determined the optimum solution to increase unconfined shear strength of the soil 

and was able to determine the mobility of the two under electrokinetic influence. It found 

that the calcium chloride permeated further and created the greatest increase in cementation 

compared to the control test, with soil effective cohesion increasing from 0 to 11 kPa at the 

cathode. Management of soil pH through current intermittence and polarity reversal helped 

mitigate corrosion of electrodes and enhance the development of cohesive bonds at the 

cathode. 
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Additional research performed by Asavadirbdeja and Glawe [7] examined the mechanisms 

that cause cementation in electrokinetics and implemented depolarization at the electrode 

by supplying a solution of calcium ions with a pH of 10 to the anode to offset the production 

of hydrogen. The results showed that an equivalent increase in soil strength was achieved. 

However, in the depolarized tests the improvement was seen in 70% of the soil profile (vs 

20% in control) and the presence of pozzolanic reactions were greatly increased. 

1.3. Bender elements 
The use of bender elements to determine the shear wave velocity is a practical and 

inexpensive means of determining the stiffness of soils in low strain conditions [29, 30, 31, 

32, 33]. Bender elements, also known as piezoelectric actuators, are made from polarized 

materials that exhibit mechanical deformation under applied electrical charge and vice-versa. 

Piezoelectric benders operate like a cantilever beam and, in general, vibrate along their weak 

axis. The piezoelectric elements used in this research are made of ceramic and are electrically 

polarized at high temperature and voltage [34]. This ceramic is affixed to a metal shim and 

the application of an alternating current causes it to vibrate at the current’s frequency. Thus, 

it is possible to send and receive mechanical vibrations with ease with the only limitation 

being the sampling and bit rate of the data acquisition system. 

Ogino et. al [35] conducted research to examine discrepancies amongst various techniques of 

determining shear wave velocity finding that soft soils rendered the least dispersive results. 

When the time-domain peak to peak technique was compared to cross-correlation technique, 

the shear wave velocity matched only when the highest correlation matched with the first of 

the signal, otherwise shear wave velocity was underestimated.  
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Kawaguchi et al [36] performed a suite of bender element tests on a variety of soils ranging 

in particle size and stiffness. They were able to create a series of conditions to aid other 

researchers in selecting suitable input frequencies based on soil stiffness to produce waves 

that would have matching output and input frequencies. This was done to create 

reproduceable results with less variability in shear-wave velocity. 

Although many researchers have experimented with bender elements for determining shear 

wave velocity, no standard has been adopted to guide researchers with respect to test 

dimensions, equipment standards, or interpretation of test data [36, 37]. Although in the 

published research researches agree on many factors, contradictions exist.  

1.3.1. Bender Element Wiring 
The use of parallel wiring for bending actuators and series wiring for receivers is considered 

best practice [38]. Parallel wiring refers to when both ceramics are connected to one lead 

with the centre shim connected to the other lead. Series wiring refers to the case when one 

lead is connected to one face and the other is connected to the other face with the centre 

shim disconnected. 

As the received signal produces equal and opposite voltage on each face of the element when 

connected in series, the signal is effectively doubled at the receiving element [39]. This is 

helpful when data acquisition equipment has a lower bit rate, as received signals have a very 

low amplitude, normally producing voltages in the mV range [36, 38]. Parallel wiring is ideal 

for sending signals for the opposite reason, only half the voltage is required to produce equal 

force and deflection of the element [38, 39]. The use of series wiring poses its own set of 

challenges when placed in soils with relatively high electrical conductivity. Electrical coupling, 

known as the cross-talk phenomena, occurs in series wired benders due to the presence of 
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electrical fields produced by the sending unit, corrupting the receiver’s ability to pick up 

vibrations without interference [40]. This is essentially radio frequency noise and is corrected 

by shielding and grounding the element, however even these fixes can prove somewhat 

ineffective and difficult to implement [40, 41].  

1.3.2. Bender Dimensions 
Although there are no guidelines as to the size and dimensions of bender elements, long and 

narrow actuators for receiving and short and wide actuators for sending is mathematically 

the most ideal scenario [40]. This is because the voltage generated is proportional to the 

length of the element and inversely proportional to its width whereas the force generated 

increases with the element width and decreases with its length [39]. Equation 1.5 is the 

mathematical relationship between voltage and force for series-wired bender elements and 

equation 1.6 is for parallel-wired benders [39]. 

𝑉 =
3𝐹𝐿2𝑔31

2𝑊𝑇
 (1.5) 

𝑉 =
3𝐹𝐿2𝑔31

4𝑊𝑇
(1.6) 

Where V (V) is the voltage produced by the excitation, F (N) is the force applied to the bender, 

L (m) is the active length of the bender, g31 is a coefficient relating applied stress to produced 

electric field (V/mN) which is dependent on temperature, and W (m) and T (m) are the width 

and thickness of the bender, respectively. 

In practice, it is most simple to keep the bender elements of equal dimensions as this ensures 

they will have similar bandwidths and frequency response characteristics, which is important 

for frequency domain analysis. It is imperative that benders be properly aligned to achieve 

100% shear wave transmission efficiency [38]. 
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1.3.3. Ideal Frequency 
Research has shown that to transmit crisp shear waves through soil, the ratio between the 

distance between benders and the wavelength of the wave (L/λ) must be at least 2, however 

many inconsistencies between researches has been observed [42]. Research performed by 

Biot [43, 44], examined the theoretical relationships between frequency, pore size and wave 

velocity, finding that various factors influence how wave velocity is affected by frequency, 

which explains the inconsistencies amongst research performed by geotechnical engineers 

using bender elements. A ‘characteristic frequency’ is coined as a frequency that all fluid-

saturated porous media exhibits and is used to normalise results. 

The appropriate selection of bender size is therefore dependent on distance between 

elements and the expected shear wave velocity of the soil. Bender size will dictate the 

benders useable bandwidth, therefore designing the bender to have a natural frequency 

above the expected frequency needed is best practice because benders must oscillate in the 

first mode of vibration to transmit maximum force. If the benders resonant frequency is 

below the desirable operating frequency, amplitude of traveling shear waves is greatly 

reduced and problems may occur due to lack of signal amplitude at the receiver. 

A shorter elements natural vibrational frequency will depend more on the properties of the 

bender mounting plate apparatus than the surrounding soil stiffness while a longer element 

will result in more variation of bender response due to soil stiffness properties [38]. This is 

critical in the tests where the soil stiffness is expected to increase during the treatment, 

changing the response characteristics of the system and necessitating a short cantilever 

length. In short, the bandwidth of the bender element must match the ‘bandwidth’ of the 

soil. 
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1.3.4. Wave-Form 
Among all the research performed, there is very good agreement that the use of sinusoidal 

waves yields best results in travel time determination compared to other forms such as square 

or triangular wave forms. This is mainly due to the tendency for shear waves to revert to the 

smoother sinusoid when passed through soil [35, 36, 40]. 

1.4. Signal Analysis Techniques 
1.4.1. Time Domain 
The simplest technique of calculating shear wave velocity is the Time Domain (TD) peak-to-

peak (PP) and start to start (SS) methods. Single-cycle sine waves of varying frequency are 

individually input to the sending element and response is collected by the receiver. Travel 

time is best approximated when the transmitted and received waves have the same 

frequency, yielding SS and PP travel times with the least variability [36]. The time difference 

(Δt) between the sending and receiving of the shear wave is divided between the tip-to-tip 

distance (D) of the elements to determine shear wave velocity (Vs) as shown in equation 1.7 

[35]. 

𝑉𝑠 =
𝐷

Δ𝑡
 (1.7) 

The SS arrival time is defined as the time coinciding with the point of first positive deflection 

of the received signal, while the PP time coincides the first peak of the received signal, as seen 

in Figure 1.10. 
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FIGURE 1.10: DIAGRAM OF SHEAR WAVE RESPONSE OF BENDERS [36] 

Although this technique is very simple it is also fraught with flaws. It is highly dependent on 

human discretion for the selection of arrival time, and if the correct signal frequency is not 

chosen, near-field effects due to compression wave arrival make the choice of arrival time 

even more difficult [31, 45].  

Many researchers have stated that the tip-to-tip distance to wavelength ratio (𝐿/𝜆) must be 

above or below a certain value to mitigate the near-field effects. Results across many different 

sample types and confining pressure show that this ratio can range from less than 1 to 8 [42]. 

This has lead researchers to conclude that the presence of near field effects at a certain 

frequency are more-so dependent on specific soil type, stiffness of soil, and confining 

pressures than any set guideline of 𝐿/𝜆 ratio. Therefore, the optimal frequency to mitigate 

near-field effects must be experimentally determined for a given soil under those specific 

conditions. This makes the use of the time-domain technique more arduous and ambiguous 

as the user must choose a range of frequencies to perform the bender element tests with and 

then must perform a manual analysis of the collected data. If the range of frequencies chosen 



19 
 

by the user is not broad enough and poor results are obtained, then the user must determine 

if a higher or lower frequency is needed and perform the full suite of tests again, all while 

hoping that the ideal set of frequencies does not fall outside of the useable bandwidth of the 

bender. 

The cross-correlation (CC) function is used to compare the sent wave to the received wave. 

The advantage of the cross-correlation technique is that it is less dependent on the users 

sense of judgement of true arrival time and uses a mathematical formula instead [46]. 

Additionally, in the presence of near-field effects it is still able to determine arrival time with 

great accuracy, unlike the SS and PP methods. The CC function is given by 

𝐶𝐶𝑥𝑦(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡) 𝑦(𝑡 + 𝜏) 𝑑𝑡

𝑇

0
(1.8) 

where the transmitted and received signals are represented by 𝑥(𝑡) and 𝑦(𝑡) respectively as 

a function of time, T is the total recording time and τ is the incremental delay. The arrival time 

of the shear wave corresponds to the maximum point of the 𝐶𝐶𝑥𝑦(𝜏) function. The cross-

correlation function can be more easily analysed in the frequency domain by the following 

equation [36] 

𝐶𝐶𝑥𝑦(𝑓) = 𝑋(𝑓) 𝑌(𝑓)∗ (1.9) 

where 𝐶𝐶𝑥𝑦(𝑓), 𝑋(𝑓), and 𝑌(𝑓) are the Fourier transforms of their respective conjugate, and 

the asterisk represents the complex conjugate. Once this operation is completed, the inverse 

Fourier Transform of 𝐶𝐶𝑥𝑦(𝑓) is calculated and the travel time is defined as the time of the 

peak in the correlation function. Like the TD method, multiple input functions of 𝑥(𝑡) are 

input in the form of specific frequency single-cycle sine waves and the data is processed for 

each individual frequency.  
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1.4.2. Frequency Domain Technique 
Frequency domain techniques vary considerably from time domain techniques. They do not 

use a single-cycle sine wave but instead implement frequency sweeps to measure the 

response of the soil to a broad spectrum of frequencies. Travel time is derived from the phase 

difference of the cross-spectrum between received and transmitted waves [35, 30]. Both 

group and phase velocities can be calculated, corresponding to the tangent and secant of the 

spectrum, respectively, at frequency 𝑓. 

Δ𝑡𝑔𝑟 = −
1

2𝜋

𝛿𝜙

𝛿𝑓
(1.10) 

Δ𝑡𝑝ℎ = −
1

2𝜋

𝜙

𝑓
(1.11) 

Φ is the unwrapped phase of the spectrum, Δtgr is the tangent and Δtph is the secant of the 

unwrapped spectrum frequency f 

There are several sine sweep signals used that can be used. A few commonly used are: linear, 

logarithmic and Time Sweep Pulse (TSP). Much like the TD methods, frequency of the shear 

wave has great effect on shear wave velocity. Ogino et al. [35] found that when performing 

the frequency sweeps, an upper frequency limit (UFL) became apparent. Any frequency 

applied above this value the velocity of the wave became dispersive and erratic. This 

behaviour is similar to that presented by Biot. 

The advantage of the frequency domain method is that no single frequency must be selected, 

and instead a broad sweep can be performed and shear wave velocity can be viewed against 

frequency, as shown in Figure 1.11 [35]. 
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FIGURE 1.11: SHEAR WAVE VELOCITY OF EBETSU ORGANIC CLAY VS FREQUENCY OF TRANSMITTED WAVE [35] 

They also found that choice of frequency sweep type has not shown to significantly affect the 

dependence of phase and group velocities on frequency. In fact, dispersion and scattering of 

travel time with frequency below the UFL was shown to be more dependent on soil stiffness 

and composition, when performing shear wave analysis on a variety of stiff sands and soft 

clays. 

1.5. Shear Wave Velocity 
Shear wave velocity, Vs (m/s) and density, ρt (g/cm3) are related to low-strain shear modulus, 

Gmax (GPa) by the following equation 

𝐺𝑚𝑎𝑥 = 𝜌𝑡 ∙ 𝑉𝑠
2 (1.12) 

Shear modulus is related to Young’s compression modulus 𝐸 by 

𝐺 =
𝐸

2(1 + 𝑣)
(1.13) 

Where 𝑣 is poisons ratio 
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1.5.1. Empirical Correlations of Shear Wave Velocity 
Many studies have been examining the relationships between shear-wave velocity and other 

geotechnical parameters such as liquefaction resistance [47], damping ratios [48, 49], Studies 

that examined the relationship between shear wave velocity and shear strength did so by 

empirical means. A study by Oh et al. [50] correlated the undrained shear strength and void 

ratio to shear wave velocity with empirically derived parameters from marine clays. They 

found shear wave velocity to be highly dependent on the stress history and stress state of the 

soil, and that the inferred strength and measured strength were in good agreement. 

Another study by Karray et al. [51] compared two granular, uncemented soils and found that 

a relationship between cone resistance and shear wave velocity existed for each soil 

depending on mean grain size. 

Hussien and Karray [52] examined the practical applications of utilizing shear wave velocity 

to supplement or even replace traditional geotechnical parameters. They found that the 

particle characteristics were of great importance and that shear wave velocity varied in a 

relatively narrow range depending on if the soil was in a dense or loose state, and that the 

variation grew with increasing grain size. They cite that the prime effect of grain size and 

gradation was on the changing of possible void ratios which had the greatest impact on shear 

wave velocity. Correlations between shear wave velocity and standard penetration test N60 

values dependant on void ratio, average particle size (D50) and soil density index (ID) were 

proposed for uncemented Holocene-age soils. 

A paper written by Gadeikis et al. [53] found correlations between cone resistance and shear 

wave velocity for glacial clayey soils and other formerly glaciated areas. They compared their 

findings to that of other researchers and found that the results were highly dependent on 
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grain size, and lithology, with drastic differences in shear wave velocity between clayey and 

sandy soils for the same cone resistance. 

A database of shear wave and cone-penetration data for Norwegian marine clays was 

assembled by Long and Donohue [54] to determine if relationships between the two could be 

used to better classify various soils. They found that Gmax could be estimated using 

correlations with water content, void ratio and plasticity index, however the influence of over 

consolidation is not considered through these methods. They proposed a new soil 

classification chart using normalized cone resistance and normalized shear wave velocity, 

making it possible to give more reliable estimates of stress history and OCR of soft clays in-

situ by comparison with other data. 

A research journal by Cai et al. [29] compared shear wave velocities of three sands in a variety 

of void ratio and confining pressure states using bender elements, resonant columns and 

torsional shear tests. They found that excitation frequency had a large impact on the 

determination of travel time and that higher frequencies yielded less near-field effects up to 

a certain threshold, and that with these sands a frequency in the range of 10-20kHz yielded 

good results. Variability in shear-wave velocity to confining pressure relationships were found 

when the fine contents of the respective sand was increased beyond a certain threshold. This 

agrees with other research that found that grain size distribution and void sizes played a 

critical role in shear wave velocity’s relationship to other geotechnical parameters [52, 55] . 

A simplified version of Biots theory for wave-propagation in porous media is used to draw 

conclusions regarding the determination of mass density in soils based on their hydraulic 

conductivity. The simplified version of Biots theory from Santamarina et al. [56] was with 

characteristic frequency calculated as a function of porosity ad hydraulic conductivity. The 
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characteristic frequency represents the border between low and high frequency soil 

response, as shown in Figure 1.12. 

 

FIGURE 1.12: SHEAR WAVE VELOCITY VS FREQUENCY DISPERSION CURVE FROM [29] 

Database analysis performed by Vardanega and Bolton [32] examined shear strain to shear 

modulus relationships of a variety of clays and silts. They examined design curves published 

by Vucetic and Dobry [57] and found that the data needed to be adjusted based on strain rate 

of the respective data, be it a static or dynamic case, and that reduced stiffness at 

intermediate strain levels can be estimated with knowledge of the plasticity index of the soil. 

They also found that neither undrained shear strength nor confining stress were able to 

successfully normalize shear modulus to shear strain. They concluded that it is possible to 

predict shear modulus behaviour when plasticity index is known when referencing the 

maximum shear modulus and strain state. However cone penetration resistance is not 

possible to predict as the shear velocity in soil is a dynamic problem that depends on the 

viscosity of fluids and their ability to disperse under a given strain rate. 
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1.6. Research Gaps 
The obvious and simplest means of increasing the load capacity of deep foundation elements 

in current engineering practice involves increasing the element size and driving depth. 

Incorporating electrokinetic treatment into metal pile foundations can be quite simple and 

has shown positive results in increasing the load capacity. Despite the effectiveness of 

electrokinetics in increasing the load capacity of a pile in soft soil substrate, using 

electrokinetics poses two uncertainties. Namely, how much extra load will the treated pile be 

capable of carrying, and how long must we treat the pile to attain the maximum result (i.e 

when the treatment should be completed?) 

It could be possible to use shear waves to detect structural changes that electrokinetic 

treatment causes. Bender elements are used already in industry to generate and receive 

shear waves. The shear wave velocity of the soil is directly proportional to the shear modulus 

of the soil and is determined using a well-known formula. 

Combining these two technologies could allow electrokinetically treated soil to be tested for 

treatment completion and effectiveness for the first time by tracking changes in shear wave 

velocity. 

1.7. Objectives 
The main aim of this thesis is to contribute in removing the uncertainties in improving the 

load capacity of pile foundations by electrokinetics. The specific objectives of the research are 

to: 

• Create a non-destructive testing method to determine the soil stiffness during 

electrokinetic treatment. This objective was achieved by using bender elements, built 

and assembled in-house, which was used to monitor the shear wave velocity of the 
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soil during the treatment, which is directly proportional to the stiffness and shear 

strength. 

• Develop an automated system for controlling the treatment and collecting data. This 

was accomplished using MATLAB software, a DT9857 Data Acquisition unit, and an 

amplifier. 

• Process the signals afterward for shear wave velocity detection and continuous 

monitoring. This was done by writing MATLAB code that autonomously detects shear 

wave velocity and records it every hour for days at a time. 
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Chapter 2 – Materials, Experimental Apparatus and 
Methodology 
The materials, equipment and methods used in the research performed are outlined in the 

following chapter. Because both bender element and electrokinetic treatment systems are 

being integrated they have a possibility of interacting. Due to this, these systems vary in some 

respects than if they were used separately. The design of some components vary from those 

of other researchers as a result. 

2.1. Soil Properties 
The soil used in the experimental program was sourced from a highway patrol yard on 

Highway 61, south of Thunder Bay, ON, with the permission of the Ministry of Transportation 

of Ontario (MTO). It was considered waste fill and was cited as being unsuitable for 

construction purposes. The soil was brown, and contained remnants of asphalt paving, 

indicating it was likely below a road surface before it was discarded.  ASTM D422 [58]was 

followed for the determination of particle size distribution of the soil shown in Table 2.1 and 

Figure 2.1. 

TABLE 2.1: PARTICLE SIZE BREAKDOWN OF SANDY LEAN CLAY 

Particle Size Fraction Present 

Gravel (>4.75mm) 8 % 

Sand (0.075 to 4.75mm) 38 % 

Silt (0.002mm to 0.075mm) 39 % 

Clay (<0.002mm) 15 % 
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FIGURE 2.1: SANDY LEAN CLAY - GRAIN SIZE DISTRIBUTION 

Atterberg Limits tests were conducted according to ASTM D4318 [59]. The liquid and plastic 

limits were found to be 27 and 10, respectively, giving a plasticity index of 17. The specific 

gravity of the soil was shown to be 2.65 by using ASTM D 854 [60]. According to the Unified 

Soil Classification System, the group symbol of the soil is CL and the group name is sandy lean 

clay [61]. The electrical resistivity of the soil was evaluated using ASTM G57 [62] and found to 

have a mean of 2100 ohm-centimetres. The value of the electrical resistivity is proportional 

to electric current according to Ohm’s law (the current through a conductor is directly 

proportional to the voltage across the conductor and inversely proportional to the electrical 

resistance) and the power consumption as Power (Watts) is equal to voltage multiplied by 

amperage. 

In the experiments of this study, voltage was kept constant. Therefore any change in current 

throughout the experiment can be generalized as reflecting a range in soil resistivity. 
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2.2. Bender Elements 
At the onset of the research, it was decided that the research be as economical as possible. 

Not only this, it was imperative that the presence of the non-destructive system not interfere 

with the process of treatment and that it be as least invasive as possible. This removed 

resonant column tests from the list of options and left bender elements as an ideal match as 

the elements are quite small. For the bender element system, much of the equipment needed 

for the experiment was very expensive if bought outright, namely the bender elements and 

DAQ associated with it, ranging from around $2000 USD per bender element. By taking an 

unconventional approach, much was learned with regards to processing the signals acquired 

by bender elements, and how to solve the problems that arose. Not only was the research 

remarkably less expensive, the knowledge, skills and experience obtained were so much 

greater. 

The piezoelectric bender elements were purchased from Piezo Systems, Woburn 

Massachusetts. The high strength units were purchased as the more robust nature was more 

appealing considering they would be buried. Both x and y poled bender elements were 

purchased, the model numbers were T220-A4SS-303X and T220-A4SS-303Y, respectively. The 

bender elements measured ½ inch wide by 1 ¼ inch long and were cut in half to measure 5/8 

inch long. Primary differences in the bender elements are wiring configuration, seen in Figure 

2.2 and Figure 2.3. 
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FIGURE 2.2: SCHEMATIC OF SERIES WIRED BENDER ELEMENTS 

 

FIGURE 2.3: SCHEMATIC OF PARALLEL WIRED BENDER ELEMENTS 

2.2.1. Housing 
The housing for the bender elements was fashioned from a 2- ½ inch diameter stock of HDPE 

plastic purchased from Surecraft Plastics in Thunder Bay, ON. 
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As the system being developed is a two-part system (sender and receiver) that is 

transmitting shear waves, the two benders must be relatively well aligned and be oriented 

correctly to be in-phase. To accommodate this the cylinder of HDPE was cut into 1 ½ inch 

segments and slots were milled into the faces to house the bender element, seen in Figure 

2.5 and Figure 2.6. Two ¼ inch holes were drilled through the face to allow two ¼ inch steel 

posts to be inserted, shown in the schematic of Figure 2.7. The bender elements and the 

alignment rods can be seen in place beside the pile in Figure 2.17. 

 

FIGURE 2.4: SCHEMATIC OF BENDER ELEMENT HOUSING 
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FIGURE 2.5: SECTION A-A OF BENDER ELEMENT HOUSING 

 

FIGURE 2.6: SECTION B-B OF BENDER ELEMENT HOUSING 
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FIGURE 2.7: SCHEMATIC OF BENDER ELEMENTS WITH ALIGNMENT RODS 

The coax-cable used in the experiment was RG-59. It had an impedance of 75 ohm and was 

chosen because it was readily available. Most coaxial cable manufactured as of recently is 

made with aluminium foil shielding, which is undesirable for soldering purposes. This made 

the purchase of older, less expensive cable ideal. Eight-foot lengths of cable were used for 

each bender element.  

Generic lead-free solder was used, and a high quality, aggressive, organic acid flux was needed 

to properly prepare the surface for soldering. This was accomplished by using #67 flux, made 

by SuperiorFlux, which is highly diluted Dimethylamine Hydrochloride. The elements were 
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later covered in conformal coating and epoxy to render them waterproof and fix them firmly 

in their housing.  

2.2.2. Construction Procedure 
The bender element housing was designed to hold the benders firmly, provide a robust frame 

to protect the electrical connections from water and soil intrusion, and allow the paired 

elements to be easily aligned and accurately spaced apart. The stock of HDPE was cut into 1 

½ inch thick disks and placed on a lathe to flatten the faces and drill the centre hole for the 

coaxial cable to pass through. 

The disk was then transferred to the mill where the holes for the two index posts were drilled, 

and the slot to house the benders was also milled. After this the housing was brought back to 

the lathe and a circular slot, like a moat, was cut on both faces to better enable the epoxy, 

used later, to keep water from entering the housing. This can be seen in Figure 2.8. 

 

FIGURE 2.8: BENDER HOUSING WITH MOAT CUT 

The bender elements were cut in half from their original 1 ½ inch length (Figure 2.9). The 

shortened segments were placed in a third hand and the 32-gauge wires were soldered on to 
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their respective faces. For parallel type benders, a portion of the piezo-ceramic coating was 

etched off, seen in Figure 2.10, with a hand-held rotary grinder and the positive lead was 

soldered to the inner steel shim, and two negative leads were soldered to the two piezo 

electric surfaces, as shown in Figure 2.11. An electrical multi-meter was used to ensure that 

the surfaces were electrically bonded to the coax-cable, and that the center shim did not have 

continuity to the piezo-ceramic coating. 

 

FIGURE 2.9: BENDER ELEMENTS, FULL SIZE AND 

TWO HALVES 

 

FIGURE 2.10: BENDER ELEMENT WITH STEEL SHIM 

EXPOSED 

 

FIGURE 2.11: A STRONG SOLDER BOND IS MADE WITH THE LEADS AND THE ELEMENT 

Waterproof and chemical resistant polyurethane conformal coating was sprayed onto the 

surface and baked at 190 0F for 6 hours. After curing was complete, silver conductive paint 

was applied to the surface. The multi-meter was used to ensure that the conductive paint did 
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not cause shorting of the leads. Figure 2.12 shows the elements after conformal coating was 

applied. 

 

FIGURE 2.12: THE BENDER IS COATED WITH CONFORMAL COATING AND CURED 

The coaxial cable was stripped accordingly, and the copper core and shielding were tinned, 

shown in Figure 2.13. With the bender element appropriately protected and shielded, the 

coaxial cable was pushed through the housing and the respective leads were soldered 

together, seen in Figure 2.14. The bender element is pushed into the slot in the housing 

(Figure 2.15), but before epoxy can be applied the housing is flame treated with a brazing 

torch to oxidize the surface of the HDPE to promote bonding. Epoxy is applied to bond the 

bender and cable to the housing, shown in Figure 2.16, and BNC connectors are used to 

terminate the other end of the coaxial cable. 
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FIGURE 2.13: INNER CORE AND SHIELDING 

TINNED 

 

FIGURE 2.14: BENDER ELEMENT SHOWN BEFORE 

BEING HOUSED (MOAT NOT CUT YET) 

 

FIGURE 2.15: BENDER ELEMENT NESTED IN 

HOUSING (MOAT NOT CUT YET) 

 

FIGURE 2.16: COMPLETELY ASSEMBLED BENDER 

ELEMENT WITH EPOXY COATING 

2.2.3. Installation in Soil 
After the benders were fully assembled and found to function properly, they were first 

checked for direction of polarization. This was done by connecting both sender and receiver 

to an oscilloscope and pushing the bender elements back and forth while watching the 

oscilloscope. They should be oriented so that when both are pushed in the same direction, 

they produce either a positive or negative voltage, and not opposites. This orientation is 
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marked on the housing and the steel rods are threaded through the holes in the housing, with 

the tips of the benders spaced at 24 cm. The seven-inch sand layer was placed first. Water is 

added with each lift of clay to produce a water content of approximately 25%. This was done 

using the following technique: knowing the average weight of air-dried soil in each 5-gallon 

pale and knowing the flow rate of water out of the water hose used, a specific amount of time 

of water flow is provided to produce a water content in the range of 24% to 26%. A water 

content over the liquid limit would have been undesirable as the control test would likely 

produce a pile with little to no load capacity. After enough soil lifts were added to produce a 

six-inch lift, the pile was placed into the barrel with the bender element assembly, shown in 

Figure 2.17. 

 

FIGURE 2.17: ORIENTATION OF BENDERS NEXT TO PILE WITH ALIGNMENT RODS INSERTED 

Lifts of clay were added continually and pushed down using gentle pressure from the end of 

a 4x4 lumber post to remove air-pockets. When the pile and top bender element were buried 
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sufficiently, the two metal rods were gently removed. The steel electrodes were hammered 

into place afterward and remained void of soil as the ends were pressed shut. The co-axial 

cable for the bender elements was threaded through a hole in the side of the barrel and 

connected to the DAQ. The negative lead for the power supply was connected to the negative 

electrodes of the system via bolts through holes in the electrodes and the positive lead was 

connected to the pile via a bolt through a hole which was drilled in the pile. Full schematics 

of the system can be seen in Figure 2.18, Figure 2.19 and Figure 2.20. Tap water was added 

into the negative electrodes to promote electrical contact.  

 

FIGURE 2.18: FOUNDATION ELEMENT, ELECTRODES AND BENDER ELEMENTS 
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FIGURE 2.19: SECTION VIEW OF BARREL WITH DAQ AND DC POWER SUPPLY 

 

FIGURE 2.20: POWER SUPPLY AND DAQ CONNECTED TO FOUNDATION SYSTEM 

2.3. Preliminary Test System 
To first asses the sensitivity of the sensors they were wired to a preliminary system consisting 

of an oscilloscope and a waveform generator. The sensors were placed in a 5-gallon bucket, 
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spaced 24 centimetres apart using two ¼ inch rods, and buried in sand. An HP 33120A 

Arbitratry Waveform Generator was used as a signal generator for preliminary testing of the 

bender element system. The HP33120A can produce sine waves from 0.0001Hz to 15MHz 

with 12-bit resolution at 40 MHz. Internal and external triggers can be used to initialize a 

logarithmic or linear sweep through a select range of frequencies over a select time or output 

a single sine pulse. For preliminary testing and troubleshooting an HP 5464D Mixed Signal 

Oscilloscope was used to capture the output and received waveforms. The oscilloscope has 

8-bit vertical resolution and 200M samples/ second. An analog trigger was used to detect the 

output from the Waveform Generator to capture the signal from both the signal generator 

and receiver element using the two analog inputs on the front of the unit. Cursors can be 

manipulated to determine the time difference between the two signals to determine shear 

wave velocity. 

2.4. Electrokinetic Treatment System 
2.4.1. Barrel, Pile and Electrodes 
The barrels were donated by Mastrangelo Fuels in Thunder Bay, ON. The lids were cut off with 

an air-chisel and wiped clean of excess oil. The drums were 33.5 inches tall and 22.5 inches in 

diameter, giving them a total volume of 55 US Gallons. 

The steel piles were purchased from Coastal Steel Construction. The beam came in an 8-foot 

section and was cut into four 18-inch segments with a bandsaw. 

The electrodes were sourced from extra pipe stock in the structures laboratory at Lakehead 

University. The pipe stock was 1 ¼ inch in diameter and cut into 21-inch-long segments. It was 

drilled with half inch holes, spaced every 1 ½ inch, alternated perpendicularly along the axis 

to allow excess water to drain into the electrode. The ends were pinched closed with a 
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hydraulic press for ease of installation and to prevent soil from filling the cavity within when 

they were driven into the soil. 

2.4.2. Power Supply 
The DC power supply used in this experimental study was an Agilent 6573A, with a rated 

maximum output of 2000 Watts, capable of delivering up to 60 Amps and 35 Volts. The supply 

supports both constant voltage and constant current modes, programmable through the 

front control knobs and keypad or through analog control ports at the rear using low voltage 

DC from an independent controller. It also has over-voltage and over-current protection, 

making it very easy to halt short circuits and prevent fires while the system is operating with 

limited supervision which is a serious risk with the systems high current potential. 

To add the ability to vary the voltage or halt the voltage output completely from anywhere 

via internet connection, the voltage programming terminals at the rear of the unit were 

utilised. The voltage is controlled by varying the signal voltage from 0 to -4.24 volts to produce 

0 to 35 volts. 

2.4.3. DAQ and Power Control System 
An Arduino was used to control the voltage output of the system using an MCP4131 Digital 

Potentiometer. This created the ability to create discrete steps in output voltage to produce 

approximately 2.91 volts out of the Arduino which when plugged into the analog 

programming ports in the Agilent 6573A produced 24 volts. Because the power supply 

requires a negative voltage, the positive and negative leads are simply exchanged. 

Two sets of program code were written to control the Arduino. One sets the voltage to 2.91 

Volts, the other sets the voltage to zero. When the system is to be left on, the first code is 

uploaded to the Arduino, and when the system is to be turned off, the second code is 

uploaded. The two codes can be found on page 109.  
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Remote Desktop Control was achieved using TeamViewer software, which enabled both 

Arduino and DAQ devices to be controlled from a mobile device from anywhere with internet 

connection. This allowed the continuous monitoring of the shear wave velocity and the ability 

to cease treatment at any time and from nearly anywhere. 

2.4.4. Wiring and Power Monitoring 
To connect the power supply to the electrodes and pile, two 8-guage wires were connected 

in parallel, affixed to the electrodes and fed through PVC conduit. The choice was made such 

that if a short circuit took place, the wires would be capable of handling the current produced 

without the risk of fire, and the PVC conduit provided a protective sheath from puncture or 

cutting and to eliminate a tripping hazard. This can be seen in the background of Figure 2.31. 

Two HP 34405A voltmeters were used to monitor both voltage and amperage throughout 

treatment. The voltmeter terminals were connected directly to the terminals of the DC power 

supply, and the ammeter was connected in series with the electrodes. They were connected 

to the computer via USB and programmed to take readings every 5 minutes using MATLAB. 

The data was stored in a CSV file with time and date stamps for each measurement. 

2.5. Data Acquisition System 
For full scale testing, the DT9857 made by Data Translation was programmed to act as both 

signal generator and receiver. Although the DT9857 can deliver 20 volts peak to peak, the 

input sensitivity of the amplifier required this to be limited to under 1.5 Volts peak-to-peak. 

The DT9857 Data Translation unit can acquire signals with 24-bit resolution and 105kHz 

sampling on up to 16 channels without multiplexing. The output signal was spliced back to 

the input before entering the amplifier to calculate the signal travel time. 
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A QSC model ISA 750 audio amplifier was implemented to deliver a higher voltage signal to 

the bender elements. The amplifier has a 35 dB gain (56.2 times the voltage), and the output 

voltage from the DT9857 was set to 1.5 volts to produce about 85 volts. The amplifier has 

both a 20kHz low-pass and 20Hz high pass filter that limited the range of frequencies that 

could pass through the amplifier. 

MATLAB was used to create the series of commands to both control the data acquisition 

system and process and store the collected data. Because shear wave velocity is dependent 

on a relationship between the distance between sender and receiver and signal wavelength, 

a series of frequencies are selected. Not only this, the benders themselves have a specific 

bandwidth for which they are effective. The distance between the elements was considered 

to be constant. Although it is possible that some settlement may occur, having such a large 

distance between the elements reduces the possibility for changes to affect the outcome of 

shear wave velocity. 

Other researchers have used both sine pulse and sine sweep for purposes of shear wave 

velocity analysis, therefore the two signal types were used [29, 30, 35, 36]. To mitigate issues 

related to data size, the stored signals are trimmed in length until only the bulk of the received 

signal is stored, with no excess data being kept. The original, unfiltered signals are stored as 

tab delimited .txt files to allow for changes to filtering to be made later without compromising 

signal fidelity. In this study, only the sine pulses were analysed to determine shear wave 

velocity, however the swept signal data was kept for future studies. 

Due to the presence of a DC electric field and the presence of the conductive steel drum and 

steel pile near the sensors, an elevated level of noise was present. The Agilent 6473A DC 

power supply has a small amount of AC ripple noise that presented itself as a 60Hz, 80Hz and 



45 
 

120Hz noise to the bender elements. This noise necessitated the need for detrending and 

filtering. To allow for better peak detection the signal was also smoothed.  

A sample of signal coming from the receiving element is shown in Figure 2.21. Detrending was 

accomplished by fitting an 8th order polyline to the DC baseline found in the original signal 

(Figure 2.22), and then subtracting this baseline from the original signal, shown in Figure 2.23. 

The Post-Baselined signal is shown in Figure 2.24. Next the signal was smoothed using a 3rd 

order, 61 frame Savitsky-Golay Filter, rendering the signal in Figure 2.25. 

After detrending and smoothing the signal was filtered using a 2nd order Butterworth band 

stop filter designed using MATLABs Filter Design and Analysis toolbox with half-stops at 105Hz 

and 135Hz as most of the noise was at 120Hz, with the final post-processed result being 

shown in Figure 2.26.  

 

FIGURE 2.21: RAW SHEAR WAVE RECEIVED BY 

DAQ 

 

FIGURE 2.22: BASELINE OF SIGNAL 
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FIGURE 2.23: BASELINE OVERLYING ORIGINAL 

SIGNAL 

 

FIGURE 2.24: SIGNAL POST-BASELINE REMOVAL 

 

FIGURE 2.25: SIGNAL POST-SMOOTHING AND 

BASELINING 

 

FIGURE 2.26: SIGNAL POST-FILTER, SMOOTHING 

AND BASELINING 

Once the signal had been processed sufficiently, MATLAB peak detection was used to find the 

three tallest peaks and log their time. The three peaks (labelled in further figures as Tallest 

Signal Peak, 2nd Signal Peak and 3rd Signal Peak) are shown in Figure 2.27. 
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FIGURE 2.27: POST-PROCESSED SIGNAL WITH THREE PEAKS SELECTED FOR WAVE VELOCITY DETERMINATION 

The peak to peak time difference, dt in Figure 2.28, is calculated by subtracting the time to 

peak of the sent wave from that of the peaks in the received wave. Shear wave velocity is 

calculated by taking the distance between elements (0.24m) and dividing it by the difference 

in time between peaks, dt. In the example shown, MATLAB is observing that the second tallest 

peak is giving the fastest velocity. Multiple peaks are used to better identify the shear wave 

velocity even when faced with changes in shear wave response. In this example the shear 

wave velocity would be 129.2 m/s 
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FIGURE 2.28: PEAK TO PEAK SHEAR WAVE VELOCITY DETERMINATION 

Shear wave velocity is also calculated using the cross-correlation function. The signals 

(functions) are multiplied together stepwise. The two functions are first normalized to each 

other as their amplitudes are drastically different. One signal is delayed relative to the other. 

The delay which produces the highest correlation appears as a peak in the cross-correlation 

function, shown in Figure 2.29. If the sent signal is delayed by a value equal to that of the time 

of the peak in the cross-correlation function, the two signals will overlay each other near-

seamlessly, shown in Figure 2.30. To determine the shear wave velocity using the cross-

correlation function, the distance between bender elements is divided by the time of the 

tallest peak in the cross-correlation function. Comparing the value of 130.5 m/s for CCF to 

that of the peak-to-peak technique of 129.2 m/s, the values are within a 1% difference of each 

other, which is in high agreeance. It was found that the cross-correlation technique 

performed best when the sent signal and received signal had the same principle frequency so 

that the CCF was able to determine a high level of correlation to one specific oscillation in the 



49 
 

received wave. Shown below is an example of how shear wave velocity was determined using 

the CCF results. 

0.24𝑚

0.001838095238095 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
= 130.5 𝑚/𝑠 

  

FIGURE 2.29: CROSS-CORRELATION AND PEAK FOR WAVE VELOCITY DETERMINATION 

 

FIGURE 2.30: OUTPUT SIGNAL OVERLAID ATOP RECEIVED WAVE AT CCF DELAY 
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2.6. Pile Load Test 
2.6.1. Loading System 
An ENERPAC RR5013 hydraulic cylinder with a 13-inch stroke was secured to the loading rig 

above the barrel with a ratchet strap. The cylinder was powered by a hand-operated, double-

action hydraulic pump made by SPX-PowerTeam. An ARTECH Industries 20210-2k (Figure 

2.33) load cell was used to monitor total load placed on the pile during loading. It was placed 

atop a steel plate which rested on the pile, and under the hydraulic cylinder. Two TRS-100 

position transducers (Figure 2.34) were used to monitor pile settlement during loading and 

were held to the hydraulic cylinder during loading using magnetic gage holders. The tips of 

the transducers were placed on two opposite corners of the pile. Using StrainSmart software, 

a model 5100A scanner made by Vishay Instruments was used to power and collect data from 

the load cells and displacement gauges. Data was exported into Excel files. 

  

FIGURE 2.31: BARREL 3 WITH LOADING RIG ABOVE PILE WITH WIRING AND CONDUIT STILL IN PLACE 
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FIGURE 2.32: PILE READY FOR LOADING WITH DISPLACEMENT AND STRAIN GAGES IN PLACE 

 

FIGURE 2.33: ARTECH 20210-2K LOAD CELL 

 

FIGURE 2.34:TRS-100 POSITION TRANSDUCER 
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2.6.2. Loading Procedure 
The pile was loaded 14 days after treatment ceased and were loaded in 50lb increments which 

was held for a minimum of 4 minutes until settlement had ceased for a maximum of 15 

minutes, in accordance with ASTM D1143-07 [63]. Due to the nature of the hand pumped 

loading system, as the pile failed, and strain rates increased dramatically, keeping the load 

steady became increasingly difficult. When this occurred, loading was halted, and the pile was 

considered to have failed completely. 

 

FIGURE 2.35: BARRELS WITH LOADING FRAME ABOVE AND CONTROL CENTRE IN FRONT 

2.7. Shear Vane Tests 
The purpose of these tests was to monitor the extent of soil stiffening, give opportunity to 

observe the relationship between shear strength and water content after treatment, and 

observe the extent of soil drying caused by electrokinetics. 
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ASTM D4648 was followed for vane shear tests and were conducted after treatment 

completion [64]. The vane shear tests were conducted at three depths, 8 sections, and both 

near the pile and near the electrode for a total of 48 shear vane tests per barrel, shown in 

Figure 2.36. A Pilcon Shear Vane Tester with both 19mm and 33mm vanes shown in Figure 

2.37 was used to determine the undrained shear strength of the soil. An auger was used 

afterward to pull samples for water content determination and for use in x-ray diffraction, 

scanning electron microscope and pH testing. 

 

FIGURE 2.36: SCHEMATIC OF SAMPLE AND SHEAR VANE LOCATIONS 
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FIGURE 2.37: EDECO PILCON SHEAR VANE HAND TESTER 

2.8. X-Ray Diffraction Spectrometry 

 

FIGURE 2.38: SAMPLE IN XRD SPECTROSCOPE 

X-Ray diffraction (XRD) was used initially to help determine what, if any, new compounds 

were formed due to the electrokinetic treatment. As the electrode and pile were made from 

steel, new compounds consisting of iron were expected to have formed after the treatment. 

The process begins with drying samples and lightly grinding them. The samples are then 
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loaded into plates to be loaded into the XRD spectroscope. The entire process of scanning the 

samples takes about 15 minutes per sample. Figure 2.38 shows the XRD spectroscope and 

plate that was loaded with sample and inserted into the spectroscope. Once the samples are 

scanned, the information is recorded in x-ray counts against 2-theta. All minerals and 

compounds have a specific crystal structure that will refract the x-rays at a specific angle of 

attack. The spectrographs of known compounds are recorded in a database and the 

spectrograph from a scanned sample is compared against the known spectrographs in the 

database to determine what minerals and compounds are present. 

2.9. Scanning Electron Microscope and X-Ray Energy Dispersive 
Spectrometry 
A Hitachi SU-70 scanning electron microscope was used to perform elemental analysis of clay 

particles to hopefully discover if any new compounds had been formed. Samples were dried 

and sieved through a No.200 sieve. A small pedestal is covered in fresh carbon paste and the 

samples are dusted on top. The samples are then coated in carbon using an Edwards Auto 

306 Vacuum Coater to render them conductive. With the samples ready, they are placed 

inside the scanning electron microscope and analysed using x-ray energy dispersive 

spectrometry to determine what changes had occurred to the muscovite clay. 
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Chapter 3 – Results and Discussion 
The results shown below were collected over the course of a year. The most difficult part of 

this research would be the bender elements as this portion was by far the most under-

researched and standards and protocols do not exist as they do for all the other tests. 

Implementing the bender elements into the treatment process also proved incredibly 

troublesome. The initial design of the bender housing lacked the moat portion that created a 

longer path for water intrusion and did not include the step of oxidizing the HDPE to facilitate 

bonding of the epoxy. Because of this, some of the first bender elements developed a short 

circuit soon after treatment commenced. Even when a short did not develop due to water 

intrusion, there was a 50% chance (half the sensors failed) that the sensors would become 

defective at the onset or termination of treatment due to the creation and destruction of the 

electric field. An example of this is seen in Figure 3.15 at about 160 hours when the signal 

becomes unrecognizable by the software. Knowing that piezo-ceramic coatings are made 

using high strength DC electric fields under high temperature, it is possible that when the DC 

electric field in the soil is created it has the potential to permanently alter the polarization of 

the plates. In some instances, the sensitivity of the sensors was affected for several hours and 

only later recovered, as can be seen in the first few hours of treatment in Figure 3.15. 

 

3.1. Electric Field and Power Consumption 
Figure 3.1, Figure 3.2, Figure 3.3 show a static simulation of voltage potential, electric field 

strength and current density, of a barrel undergoing treatment using QuickField, an electric 

field simulation software which operates using finite element analysis [65]. A preliminary 

modelling with Quickfield was carried out to determine the appropriate applied voltage, 

electrode distribution and bender element location. The model showed the voltage potential 
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to be symmetrical around the pile. Examination of current density and electric field strength 

reveals that there was a large disparity between the current flowing from the web versus that 

flowing from the faces and edges of the flanges. This is mainly due to the distance between 

the electrode faces as electricity always favours the path of least resistance. This indicated 

that the web would be the section of the pile receiving the slowest treatment, therefore the 

bender elements were placed in this area. 

 

FIGURE 3.1: VOLTAGE POTENTIAL OF BARREL UNDERGOING TREATMENT 
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FIGURE 3.2: ELECTRIC FIELD STRENGTH OF BARREL UNDERGOING TREATMENT 

 

FIGURE 3.3: CURRENT DENSITY OF BARREL UNDERGOING TREATMENT 
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Figure 3.4 and Figure 3.5 show the current draw and power consumption against time. By 

multiplying the amperage by time and voltage, the total energy used in watt-hours (Wh) is 

found. The csv file output by MATLAB takes measurements every 5 minutes, therefore the 

voltage is multiplied by the current, then multiplied by 5/60 hours, and then each of these 5-

minute segments is added together to determine the total energy used during treatment. For 

example: 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑉 ∗ 𝐴 ∗ 𝑡 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 24 𝑉 

𝐴𝑚𝑝𝑒𝑟𝑎𝑔𝑒 = 2.4 𝐴𝑚𝑝𝑠 

𝐸𝑛𝑒𝑟𝑔𝑦 = 24𝑉 ∗ 2.4 𝐴 ∗
5

60
 𝐻𝑜𝑢𝑟𝑠 

𝐸 = 4.8 𝑊ℎ was consumed in a 5 minute period 

The power consumption curves are an important piece of data as they display the actual 

amount of electricity that was required to treat the soil. The direct relationship dictating the 

current that can pass through the soil is given by Ohms law. As the soil is dried through 

electrokinetics, either by the heat generated from the process or by the actual electrokinetic 

flow from anode to cathode, the electrical conductivity and areas of soil-pile contact are 

quickly reduced. Observing Figure 3.4 and Figure 3.5, it can be seen that Piles 1 and 4  had 

very similar power consumption curves, while piles 2 and 3 exhibited a steep drop off in 

current draw relatively quickly. Major differences between the power curves is mainly 

attributed to the availability of free pore fluid. 

  



60 
 

TABLE 3.1: SUMMARY OF TREATMENT TIME, POWER CONSUMED AND FAILURE LOAD 

Treatment Time 
(Hours) 

Power Consumed 
(kWh) 

Failure Load 
(lb) 

170 5.69 550 

55 1.17 350 

115 0.8 250 

100 3.76 600 

0 0 200 

 

 

FIGURE 3.4: AMPERAGE OVER TIME UNDER CONSTANT VOLTAGE FOR ALL PILES 

 

 

FIGURE 3.5:  CUMULATIVE POWER CONSUMPTION FOR ALL TREATMENTS 
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3.2. Shear Wave Velocity 
The plots of shear wave velocity in Figure 3.6 to Figure 3.19 have been annotated to indicate 

the point of treatment commencement and termination and the shear wave velocities at the 

time of power termination, as well as the final values recorded due to shear wave velocity 

rebound. As treatment commences shear wave velocity increases rapidly under the influence 

of electrokinetics. In addition, the overall response of the shear wave travelling through the 

soil changes which is shown by the change in peak amplitude throughout treatment, seen in 

Figure 3.7 and Figure 3.15. When examining the shear wave velocity curves, note that order 

of amplitude (tallest peak, 2nd tallest, 3rd) changes over time. In previous research, the shear 

wave arrival was determined by visual or case by case analysis. Because there were twenty 

shear waves sent through the soil every hour for upwards of two-hundred hours, it would 

have been unfeasible to analyse over four-thousand individual shear wave plots per barrel by 

hand, not to mention fraught with bias. To lessen the time of analysis and increase accuracy, 

MATLAB code was tailored to analyse the time of the three tallest peaks. Three peaks were 

chosen because most shear waves in these tests have 3 major peaks. Under the condition that 

the first arriving peak was not the tallest, the MATLAB code would still record it amongst the 

plot and prevent discontinuities that would be present otherwise. In addition to this, the peak 

in the cross-correlation between the sent and received signal was included. 

Although the plots of shear wave velocity against treatment time remain quite stable, when 

comparing these plots across various frequencies it becomes clear that there is no definitive 

answer as to what the shear wave velocity is. 

It can also be seen in these plots that higher frequencies yield crisper results as the soil stiffens 

over the course of treatment, however early on the shear waves are impeded greatly at those 

higher frequencies, seen in Figure 3.19. 
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3.2.1. Barrel 1 – Shear Wave Velocity vs Time 
The six plots below (Figure 3.6 to Figure 3.11) show the changes in shear wave velocity that 

occurred due to treatment. The first figure shows the data obtained when a 400 Hz pulse was 

supplied to the bender elements, which was the lowest frequency that rendered useable 

results. The last figure in the series shows the shear wave velocity against time for a frequency 

of 2500 Hz. More plots were saved for higher frequencies (up to 5000 Hz), yet the highest 

frequency to render useable results was 2500 Hz for this round of treatment. A glitch in 

programming (csv file was open, therefore program could not save data to file) caused a lapse 

in monitoring to occur about 20 hours into the treatment, this is denoted as “Power Failure” 

in the figures below. Shear wave velocity peaked at about 55 hours, which was the treatment 

time that was used in the second barrel, and reached plateau at 100 hours, becoming stable 

at 115 hours which was selected as the treatment time for the third barrel. After treatment 

was terminated, the shear wave velocity dropped slowly over the course of 50 hours by about 

5%-10% depending on the frequency used. It is possible that the presence of the electric field 

was actively reducing the pore water pressure near the anode by the induction of fluid flow 

away from the anode and that this gradual decrease in shear wave velocity was due to the 

pore fluid pressure returning to equilibrium. The trend of different shear wave velocity’s with 

different frequency waves agrees well with research published concerned with shear wave 

velocity determination and wave propagation in porous mediums [30, 55, 45, 36, 35] . 
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FIGURE 3.6: BARREL 1 SHEAR WAVE VELOCITY, 400HZ OUTPUT, TREATED 170 HOURS 

 

FIGURE 3.7: BARREL 1 SHEAR WAVE VELOCITY, 600HZ OUTPUT, TREATED 170 HOURS 
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FIGURE 3.8: BARREL 1 SHEAR WAVE VELOCITY, 900HZ OUTPUT, TREATED 170 HOURS 

 

FIGURE 3.9: BARREL 1 SHEAR WAVE VELOCITY, 1500HZ OUTPUT, TREATED 170 HOURS 
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FIGURE 3.10: BARREL 1 SHEAR WAVE VELOCITY, 2000HZ OUTPUT, TREATED 170 HOURS 

 

FIGURE 3.11: BARREL 1 SHEAR WAVE VELOCITY, 2500HZ OUTPUT, TREATED 170 HOURS 

3.2.2. Barrel 2 – Shear Wave Velocity vs Time 
Figure 3.12 shows the evolution of shear wave velocity over time for barrel 2 undergoing no 

treatment. As the soil settles from being remoulded, shear wave velocity slowly increases. No 

shear wave velocity vs time plot is available for barrel 2 during treatment as the bender 

elements failed at the onset of treatment. Because of the way MATLAB chooses peaks for the 
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cross correlation (reads absolute maximum, not maximum positive value), it appears as 

though shear wave velocity starts very high. This is not the case and is MATLAB taking the 

lowest correlation which is essentially the peak if the received signal were inverted. 

 

FIGURE 3.12: BARREL 2 SHEAR WAVE VELOCITY, 600HZ OUTPUT, NO TREATMENT 

3.2.3. Barrel 3 – Shear Wave Velocity vs Time 
Figure 3.13 shows shear wave velocity over time for barrel 3. Like Figure 3.12, miniscule 

increases in shear wave velocity occur slowly over time. Also like barrel 2, the bender 

elements were rendered inoperable at the onset of the DC electric field. 
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FIGURE 3.13: BARREL 3 SHEAR WAVE VELOCITY, 600HZ OUTPUT, NO TREATMENT 

3.2.4. Barrel 4 – Shear Wave Velocity vs Time 
Figure 3.14 to Figure 3.19 show shear wave velocity plotted against time. The shapes of the 

plots vary with frequency, with 600 and 900 Hz plots yielding crisp results which were, in real 

time, used to determine the completion time of the treatment when the plots began to 

plateau. Unlike the plots associated with barrel 1 the shear wave velocity fell greatly, upwards 

of 15% in 15 hours. Although the bender elements failed at the termination of treatment (as 

can be seen by the disarray of the plot after 160 hours), it can only be assumed that the 

dropping of shear wave velocity would have reached plateau at some point after the 

treatment much like it did in barrel 1. The higher frequencies did not render crisp curves until 

approximately half way through the treatment, meaning that the upper frequency limit of the 

soil and its frequency response changed due to the electrokinetic treatment. 



68 
 

 

FIGURE 3.14: BARREL 4 SHEAR WAVE VELOCITY, 400HZ OUTPUT, 100 HOURS TREATMENT 

 

FIGURE 3.15: BARREL 4 SHEAR WAVE VELOCITY, 600HZ OUTPUT, 100 HOURS TREATMENT 
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FIGURE 3.16: BARREL 4 SHEAR WAVE VELOCITY, 900HZ OUTPUT, 100 HOURS TREATMENT 

 

FIGURE 3.17: BARREL 4 SHEAR WAVE VELOCITY, 1500HZ OUTPUT, 100 HOURS TREATMENT 
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FIGURE 3.18: BARREL 4 SHEAR WAVE VELOCITY, 2000HZ OUTPUT, 100 HOURS TREATMENT 

 

 

FIGURE 3.19: BARREL 4 SHEAR WAVE VELOCITY, 2500HZ OUTPUT, 100 HOURS TREATMENT 

  



71 
 

3.3. Shear Strength 
Shear vane tests were performed on all four barrels 2 weeks after load tests were performed. 

This was done in a circular pattern both close to the pile and close to the electrodes at points 

three and one in Figure 2.36 for all octants. The total results of water content vs shear 

strength (Su) are summarized in Table 3.2 and Figure 3.23 through Table 3.6 and Figure 3.26. 

Shear vane results show that shear strength is significantly higher around the pile, and highest 

at depth. High shear strength around the pile is expected as not only is water content reduced 

significantly near the pile, but iron oxide is created and physically cements the soil to itself 

and to the pile, shown by the presence of bright orange streaks adjacent to the pile when soil 

is peeled away after the loading process, shown in Figure 3.21. If the soil is forcibly removed, 

large pits will be left, shown in Figure 3.20. It should be noted that when designing these 

electrokinetic systems, the longer the treatment is performed, the more section loss can be 

expected which must be accounted for in pile design. On average, there was about 1mm of 

total cross section lost, with pits being an average of 0.5mm deep, and at most 1.5mm deep.

 

FIGURE 3.20: LARGE PIT IN PILE 

 

FIGURE 3.21: SAMPLE TAKEN ADJACENT TO 

TREATED PILE 
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Higher shear strength around the base of the pile is possibly caused by the loading process as 

the clay tended to form a plug. When comparing the shear vane results, take note that no 

significant disparity in strength is observed between treated barrels even though treatment 

times and load carrying capacities are significantly different. There is also no pattern as to 

where the improvement occurs in the results of shear vane testing, solely that it is highest at 

the base and lowest at the surface which could be due to higher confining pressures. This 

shows that although shear vane tests are less destructive, they are still inadequate to 

determine treatment end time, nor in estimating load carrying capacity in a predictable 

fashion. 
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3.3.1.1. Barrel 3 – Control 

Shown below in Figure 3.22 and Table 3.2 are the shear vane results of the untreated barrel. 

Shear strength is linear with water content in the range of liquid limit which is about 25% 

(Table 3.7) and is consistent both near and far from the pile. This also shows that the loading 

of the pile has little consequence on shear strength in the lower regions. 

 

FIGURE 3.22: ALL SHEAR VANE RESULTS FOR BARREL 3 – CONTROL 

  

0

10

20

30

40

50

60

70

80

15 17 19 21 23 25 27 29 31

U
n

d
ra

in
ed

 S
h

ea
r 

St
re

n
gt

h
 (

kP
a)

Water Content %

Su Vs Water Content

All Shear Vanes Near Electrode- Control All Shear Vanes Near Pile- Control



74 
 

TABLE 3.2: SHEAR VANE AND WATER CONTENT FOR BARREL 3- CONTROL 

   
Close to 

Electrode       
Close to 

Pile     

  
Depth in 
Inches Su (kPa) 

Water 
Content 
%   

Depth 
in 
Inches Su (kPa) 

Water 
Content 
% 

A1 3 12 24.427 A3 3 13 26.882 

  8 14 28.671   8 10 29.02 

  13 15 28.767   13 NA NA 

B1 3 22 21.765 B2 3 15 26.582 

  8 16.5 14.394   8 19 27.273 

  13 17.5 28.302   13 14.5 28.649 

C1 3 18 24.719 C3 3 19 22.222 

  8 24 24.742   8 19 26.904 

  13 22 30.108   13 24 25.854 

D1 3 24 25.112 D2 3 18 24.862 

  8 18 24.299   8 23 24.643 

  13 20 27.679   13 24 25.828 

E1 3 16 24.324 E3 3 11 28.571 

  8 28 26.316   8 21 28.346 

  13 22 25.962   13 18 24.759 

F1 3 16 22.772 F2 3 14 24.828 

  8 16 26.608   8 24 25.628 

  13 20 27.129   13 27 28.783 

G1 3 18 26.728 G3 3 10 28.049 

  8 14.5 24.691   8 21 26.772 

  13 21 34.263   13 19 24.734 

H1 3 20 24.561 H2 3 17 28.704 

  8 16.5 25.778   8 24 25 

  13 21 28.519   13 24 28.636 
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3.3.1.2. Barrel 1 Shear Vane – Treated 170 Hours 

Comparing the results of barrel 1 to the control (Figure 3.23 and Table 3.3) it can be seen that 

shear strength in the barrel 1 is higher while water content lower, with the most change 

occurring close to the pile (anode). These results are typical for all barrels which were treated. 

The high level of variability in shear strength is attributed to the heterogenous nature of the 

chemical reactions. Slight differences in distance between the pile and electrodes and the 

asymmetrical geometry of the pile create areas with lower electrical resistance. These areas 

of low electrical resistance create zones with higher current density and therefore higher 

shear strength over the course of treatment. Shear strength along the base of the treated 

piles showed the greatest variability in water content and shear strength. Relationships 

between water content and shear strength are poorly defined compared to the control as a 

result.  

 

FIGURE 3.23: ALL SHEAR VANE RESULTS FOR BARREL 1 
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TABLE 3.3: SHEAR VANE AND WATER CONTENT FOR BARREL 1 

  
Close to 

Electrode       
Close to 

Pile     

  
Depth in 
Inches Su (kPa) 

Water 
Content %   

Depth 
in 
Inches Su (kPa) 

Water 
Content 
% 

A1 3 8.5 27.4 A3 3 20 24.5 

  8 12.5 23.6   8 28 22.4 

  13 16 21.5   13 34 16.9 

B1 3 15.5 27.4 B2 3 NA NA 

  8 20.5 23.1   8 28.5 22.2 

  13 16 24.3   13 29 22.8 

C1 3 11.5 26.7 C3 3 NA NA 

  8 20 20.8   8 44 24.3 

  13 28 28.3   13 44 25.4 

D1 3 15.5 23.6 D2 3 29 23 

  8 20 23.2   8 32 22.9 

  13 32 24.9   13 47 18.4 

E1 3 16 25.2 E3 3 31 21.8 

  8 22 23.9   8 27 22.5 

  13 32 22.7   13 51 23.2 

F1 3 13 22.1 F2 3 30 20.2 

  8 12 22.4   8 38 20.7 

  13 12 25.4   13 55 22.1 

G1 3 8.5 18.2 G3 3 30 26.7 

  8 17 22.6   8 50 24.4 

  13 32 30.5   13 44 23.6 

H1 3 10 25.9 H2 3 30 24.3 

  8 14.5 24.6   8 38 26.9 

  13 22 21.8   13 49 20.9 
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3.3.1.3. Barrel 2 Shear Vane – Treated for 55 Hours 

From the results in Table 3.4 and Figure 3.24, observe that even though water content 

changes drastically in some areas of barrel 2, the shear strength does not increase 

appreciably. Not only this but there are still many samples which were near the pile with shear 

strength and water contents that match that of the tests which were near the electrodes. This 

demonstrates that the treatment time was insufficient to adequately purge the soil of water 

and induce cementation across the entire soil profile. 

 

FIGURE 3.24: ALL SHEAR VANE RESULTS FOR BARREL 2 
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TABLE 3.4: SHEAR VANE AND WATER CONTENT FOR BARREL 2 

  
Close to 

Electrode       
Close to 

Pile     

  
Depth in 
Inches Su (kPa) 

Water 
Content 
%   

Depth 
in 
Inches Su (kPa) 

Water 
Content 
% 

A1 3 22 20.2 A3 3 41 17.7 

  8 14.5 23.3   8 39 18.8 

  13 21.5 25.6   13 66 18.1 

B1 3 16 21.1 B2 3 22 22.0 

  8 16 22.6   8 17 25.9 

  13 19 21.1   13 27 22.4 

C1 3 18 20.9 C3 3 22 15.5 

  8 19 24.6   8 26 22.5 

  13 23 24.3   13 29 21.5 

D1 3 15 24.6 D2 3 21 24.1 

  8 28 25.0   8 22 23.2 

  13 29 23.3   13 36 22.9 

E1 3 26 23.5 E3 3 22 19.0 

  8 30 21.5   8 50 16.2 

  13 26 26.7   13 69 20.1 

F1 3 15 20.9 F2 3 22 17.8 

  8 28 26.3   8 29 20.7 

  13 38 23.5   13 30 20.3 

G1 3 16 21.8 G3 3 28 16.9 

  8 38 23.0   8 38 21.0 

  13 34 23.5   13 60 18.6 

H1 3 37 22.4 H2 3 30 22.3 

  8 26 20.9   8 22 21.5 

  13 52 21.9   13 40 22.3 

  



79 
 

3.3.1.4. Barrel 3 – Treated 115 Hours 

Shear vane results for barrel 3 post-treatment are shown in Table 3.5 Figure 3.25. Drastic 

changes in both shear strength and water content are observed with several incidences of 

high shear strength in the range of 40 to 70 kPa (like barrel 1) versus the results from barrel 

2. This is however contrasted against the samples which had relatively low shear strength 

even at low water contents which is not the case in barrel 2 which had a more even 

distribution of shear strength at various water contents. These instances of low shear strength  

at low water content are likely due to the lack of pile-soil contact which was discussed earlier 

(caused by poor installation of pile in soil). It is likely that load capacity of this pile after 

treatment would have matched that of barrel 4, especially as they have very similar load-

displacement curves in the low displacement region. 

 

FIGURE 3.25: ALL SHEAR VANES FOR BARREL 3 – TREATED 
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TABLE 3.5: SHEAR VANE AND WATER CONTENT FOR BARREL 3-TREATED 

  
Close to 

Electrode       
Close to 

Pile     

  
Depth in 
Inches Su (kPa) 

Water 
Content 
%   

Depth 
in 
Inches Su (kPa) 

Water 
Content 
% 

A1 3 19 20.3 A3 3 66 19.4 

  8 20 23.8   8 30 27.4 

  13 18 26.9   13 40 21.6 

B1 3 30 19.2 B2 3 49 19.5 

  8 15 21.2   8 50 19.9 

  13 12 25.7   13 24 22.9 

C1 3 20 21.4 C3 3 14 23.2 

  8 26 23.9   8 24 20.3 

  13 25 21.2   13 39 20.3 

D1 3 20 22.8 D2 3 34 16.7 

  8 20 24.2   8 50 16.7 

  13 14 24.1   13 16 17.2 

E1 3 38 24 E3 3 40 17.8 

  8 18 21.1   8 51 17.1 

  13 10 24.8   13 24 16.7 

F1 3 30 20.8 F2 3 66 20.8 

  8 9 21.4   8 26 20.1 

  13 18 23.6   13 20 20.6 

G1 3 17 23.1 G3 3 28 19.7 

  8 11 27.2   8 20 22.1 

  13 12 23.4   13 14 21 

H1 3 21 23.9 H2 3 10 22 

  8 22 23.4   8 24 22.8 

  13 14 24.4   13 18 21.6 
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3.3.1.5. Barrel 4 – Treated 100 Hours 

The shear strength distribution of barrel 4, shown by Figure 3.26 and Table 3.6, demonstrates 

a low amount of soil drying compared to the other treated barrels. Even with this low amount 

of drying, a great deal of shear strength is present. If we consider that the treatment process 

in barrel 1 to be nearly identical to that of barrel 4, it can be concluded that the increase in 

load carrying capacity between the pile in barrel 1 and that in barrel 4 had occurred between 

hours 100 and 170. The shear strength of barrel 1 and 4 are very similar, with the main 

difference being water content. The conclusion here is that cementation is the main driver of 

increasing the load carrying of a pile in the early stages of treatment during these tests. 

 

FIGURE 3.26: ALL SHEAR VANE RESULTS FOR BARREL 4 
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TABLE 3.6: SHEAR VANE AND WATER CONTENT FOR BARREL 4 

  
Close to 

Electrode       
Close to 

Pile     

  
Depth in 
Inches Su (kPa) 

Water 
Content 
%   

Depth in 
Inches 

Su 
(kPa) 

Water 
Content 
% 

A1 3 12.5 46.4 A3 3 38 24.7 

  8 21 31.6   8 40 23.3 

  13 22 25.8   13 54 25.8 

B1 3 21 28 B2 3 29 25.0 

  8 18 25   8 37 27.1 

  13 26 26   13 56 27.0 

C1 3 18 24 C3 3 24 21 

  8 24 27.9   8 30 20 

  13 20 26.9   13 40 23.4 

D1 3 18 23.1 D2 3 28 27 

  8 18 27.8   8 42 27.3 

  13 18 23.9   13 44 22.4 

E1 3 20 29.3 E3 3 33 22.3 

  8 26 25.1   8 34 22.6 

  13 38 23.6   13 46 25.7 

F1 3 20 24.6 F2 3 30 23.7 

  8 25 24.9   8 54 27 

  13 23 27.4   13 52 23.5 

G1 3 17 22.8 G3 3 28 25.3 

  8 26 24.7   8 53 24.7 

  13 26 25.9   13 68 21.6 

H1 3 17 25.2 H2 3 20 22.5 

  8 24 29.9   8 28 22.6 

  13 28 25.4   13 38 24.2 
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3.4. Axial Load Capacity 
A summary of treatment time, power consumed and load carrying capacity can be seen in 

Table 3.1. It can be seen in Figure 3.27 that the load capacities of the piles which were treated 

are much greater than that of the non-treated pile (control). As seen in Figure 3.27, the load 

capacity of the pile in barrel 1 after treatment was 550 lbs compared to 200 lbs in the control, 

representing an increase of 175% The differences between the load to displacement curve of 

the pile in barrel 1 and barrel 4 is likely due to changes made to the soil from the introduction 

of higher levels of iron from the electrokinetic treatment or due to changes that occurred 

below the receiving bender element at the base of the pile, where shear wave velocity was 

not measured. The treatment of Barrel 3 was nearly a complete failure because the soil was 

not in direct contact with the pile and a large void was present all around the pile, except at 

the base. This resulted in a lack of electrical conductivity which resulted in the treatment 

being unsuccessful in increasing the carrying capacity of the pile to the extent of barrels 1 or 

4, however still creating changes in shear strength where current had passed through the soil 

(at the base). The load resistance of the pile was shown to have been only at the base as very 

little contact was made along the sides of the pile. If the load curve of barrel 3 is compared to 

that of barrel 4, the loading curves are very similar. This shows that the failure behaviour in 

high-displacement (above 1mm) of barrel 3, which closely resembles that of the control 

(barrel 3 untreated) is mainly due to the absence of skin resistance, which means that a major 

source of load capacity increase when displacement is high is attributed to the increase in 

skin resistance. It is highly probably that the differences between load-carrying capacities 

between barrels 1 and 4 is not due to any significant difference in shear strength along the 

length of the pile, but instead changes that occurred at the piles base, which likely experiences 

shear strength improvement at a lower rate as current takes the path of least resistance which 
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is the sides of the pile as they offer the highest level of surface area. The load capacity of the 

piles was determined by drawing a line through the data both before and after the apex of 

the curve. The angle the lines created was halved and a line was drawn. The maximum load 

was regarded as the value where this line met the loading curve. 

 

 

FIGURE 3.27: PILE LOAD CAPACITY OF ALL PILES 
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3.5. X-Ray Diffraction Spectroscopy 

 

FIGURE 3.28: X-RAY DIFFRACTION RESULTS 

Main constituents were Quartz [SiO2], Albite [NaAlSi3O8] and possibly Anorthite [CaAl2Si2O8] 

(very similar crystal structures) and Muscovite [(KF)2(Al2O3)3(SiO2)6(H2O)] or 

[KAl2(AlSi3O10)(FOH)2] . The use of XRD spectrometry was useful in determining the 

constitution of the soil from a mineralogical standpoint. When both treated and untreated 

samples were compared it was clear that XRD would not be able to show any differences in 

the samples post-treatment. Since the successful use of XRD depends on the new compounds 

being in a specific crystal structure, and due to the high presence of other compounds within 

the sample, namely Quartz, it was very difficult to discern any major differences amongst 

samples. As muscovite was found in the samples it was targeted for further analysis using x-

ray energy dispersive spectrometry using a scanning electron microscope. 

3.6. Scanning Electron Microscope and X-Ray Energy Dispersive 
Spectrometry 
Initial spectrometry tests of the clay samples showed that there was an elevated level of iron 

in the muscovite portion of soil close to the pile of treated barrels. Results show that in barrels 

that received enough treatment had a higher level of incidence of displaying higher levels of 
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iron, with both content of iron and number of affected particles falling with reduced 

treatment effectiveness, as displayed by the load carrying capacity. Although the results show 

only a few particles, there were some particles in barrels 1 and 4 which showed levels of iron 

above thirty percent. The evidence shown is not statistically relevant however in the past it 

has not been shown where or how iron is directly affecting the soil. The evidence provided 

below shows heavily weathered clays to be more susceptible to physical changes due to the 

presence of iron. Not only this, but the previous belief that cementation was occurring may 

be incorrect and rather the substitution of iron into the edges of clay particles could be 

causing them to cling together more tightly, which had been reported by previous research 

[27]. 
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3.6.1. Control 
Iron content in the control was on average below 5%. Iron content appeared stable regardless 

of location (edge or face of clay). This data is in good agreement with the theoretical molar 

mass fraction of iron in muscovite, which is 4.75% or 8.71% depending on the form of 

muscovite.  

 

FIGURE 3.29: SEM IMAGE OF MUSCOVITE 

SHEETS (CONTROL, A2, 20K MAGNIFICATION) 

 

FIGURE 3.30: SEM IMAGE OF MUSCOVITE 

SHEETS (CONTROL, A3, 20K MAGNIFICATION)  

 

FIGURE 3.31: IRON CONTENT IN BARREL 3 (CONTROL) 
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3.6.2. Barrel 1 
The iron content shown in Figure 3.34 shows elevated levels of iron at clay edges (spectrum 

3 and 4 of sample A3), with iron levels at the faces remaining stable. It is likely that this 

elevated level of iron at the faces is responsible for the increase in strength and changes to 

Atterberg limits.  

 

FIGURE 3.32: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 1, A2, 20K MAGNIFICATION) 

 

 

FIGURE 3.33: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 1, A3, 20K MAGNIFICATION) 

 

FIGURE 3.34: IRON CONTENT IN BARREL 1 
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3.6.3. Barrel 2 
The following figures show the discrete iron content both adjacent and 3 inches from the pile 

in barrel 2. High iron content was observed close to the pile caused by corrosion of the pile, 

but discrete iron content alone was not an indicator of pile load capacity. Note that the 

spectrum 1, 2 and 4 were taken from the edge of the particle (bright white) shown in Figure 

3.36. 

 

FIGURE 3.35: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 2, A2, 20K MAGNIFICATION) 

 

FIGURE 3.36: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 2, A3, 20K MAGNIFICATION) 

 

FIGURE 3.37: IRON CONTENT IN BARREL 5 
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3.6.4. Barrel 3 
After 115 hours of treatment, elevated levels of iron were present adjacent to the pile, shown 

in Figure 3.40. Spectrums 1, 3 and 4 are located at the particles edge and exhibit higher levels 

of iron than other points. 

 

FIGURE 3.38: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 3, A2, 20K MAGNIFICATION) 

 

FIGURE 3.39: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 3, A3, 20K MAGNIFICATION) 

 

FIGURE 3.40: IRON CONTENT IN BARREL 3 
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3.6.5. Barrel 4 
Figure 3.43 displays heightened levels of iron, with spectrums 2,3 and 4 taken from edge 

points. The conclusion obtained from these results is two-fold: of the soil treated, the highest 

levels of iron are located at clay particle edges, and also predicting iron content in the soil is 

difficult and depends mainly on the paths electrical current takes during treatment. 

 

FIGURE 3.41: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 4, A2, 20K MAGNIFICATION) 

 

FIGURE 3.42: SEM IMAGE OF MUSCOVITE 

SHEETS (BARREL 4, A3, 20K MAGNIFICATION) 

 

FIGURE 3.43: IRON CONTENT IN BARREL 4 
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3.7. pH Tests 
The pH tests were performed to determine if any significant differences in pH were present 

in the piles which were treated longer or displayed higher load carrying capacity. Because 

metals tend to precipitate or dissolve depending on pH, understanding the pH trends could 

explain the reasons for higher iron content amongst various samples. Results showed that the 

pH amongst the test had very little effect on iron content or load carrying capacity as all soil 

tested had very similar trends in pH. This is consistent with the conclusion shown in chapter 

3 regarding cementations role in shear strength increases vs that of soil drying, with the 

implication of similar pH being that cementation reactions begin quickly in the soil. 

 

FIGURE 3.44: ALL BARRELS – DISTILLED WATER PH TEST 

 

FIGURE 3.45: ALL BARRELS – CALCIUM CHLORIDE PH TEST 
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Mixed in Distilled 
Water 

pH: 
7.0     

Mixed in Calcium 
Chloride 

pH: 
8.35     

Barrel 1: 170 Hours  1 2 3   1 2 3 

Quadrant A 8.95 8.34 7.85 Quadrant A 8.45 8.18 7.19 

Quadrant C 8.5 9.31 8.82 Quadrant C 7.87 8.97 8.33 

Quadrant E 8.07 8.22 9.08 Quadrant E 8.13 8.01 8.57 

Quadrant G 5.71 9.47 9.18 Quadrant G 6.18 9.08 9.01 

Barrel 2: 55 Hours  1 2 3   1 2 3 

Quadrant A 8.49 8.63 8.92 Quadrant A 8.03 8.04 7.9 

Quadrant C 8.2 9.15 8.45 Quadrant C 7.96 8.27 8.04 

Quadrant E 8.58 8.65 8.3 Quadrant E 8.12 8.21 8.02 

Quadrant G 8.84 9.31 8.15 Quadrant G 8.17 8.79 7.58 

Control 1 2 3   1 2 3 

Quadrant A 8.12 7.92 7.96 Quadrant A 7.26 7.38 7.51 

Quadrant C 7.65 7.88 8 Quadrant C 7.51 7.64 7.69 

Quadrant E 7.76 8.05 8.08 Quadrant E 7.56 7.68 7.65 

Quadrant G 7.95 7.8 7.98 Quadrant G 7.7 7.69 7.76 

 Barrel 3: 115 Hours 1 2 3   1 2 3 

Quadrant A 8.59 8.44 8.19 Quadrant A 7.67 7.72 7.68 

Quadrant C 8.51 8.97 8.25 Quadrant C 7.82 8.21 7.85 

Quadrant E 8.5 8.56 6.61 Quadrant E 7.93 8.01 6.31 

Quadrant G 8.26 9.03 8.06 Quadrant G 7.63 8.17 7.12 

 Barrel 4: 110 Hours 1 2 3   1 2 3 

Quadrant A 8.67 9.18 7.38 Quadrant A 7.41 8.24 6.93 

Quadrant C 9.25 8.78 7.8 Quadrant C 8.35 7.88 7.26 

Quadrant E 8.6 9.62 8.36 Quadrant E 7.76 8.43 7.68 

Quadrant G 8.74 9.48 7.83 Quadrant G 7.93 8.56 7.29 
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3.8. Atterberg Limits 
The Atterberg limits of samples treated for extended periods of time exhibited higher liquid 

limits and these results coincided well with the increase in load carrying capacity, shown in 

Figure 3.46 and Figure 3.47. This increase in Atterberg limits is likely due to the increase in 

iron content on weathered sites of the clay particles, as was seen in x-ray energy dispersive 

spectroscopy tests from barrels 1 and 4. 

 

FIGURE 3.46: PLASTIC AND LIQUID LIMITS POST-TREATMENT 

 

FIGURE 3.47: PLASTICITY INDEX POST-TREATMENT 
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TABLE 3.7: SUMMARY OF LIQUID AND PLASTIC LIMITS 

  B1A2 B1A3 B2A2 B2A3 B3A2 B3A3 B4A2 B4A3 CA2 CA3 Preliminary 

Liquid 
Limit 26.7 36 26.8 29.8 27.7 31.5 28.2 28.7 26 25 27 

Plastic 
Limit 19 20 15.2 15.7 16.7 16.2 16.1 17.1 16.5 14 10 

Plasticity 
Index 7.7 16 11.6 14.1 11 15.3 12.1 11.6 9.5 11 17 

 

3.9. Sources of Error/ Variability 
The delay between the signal leaving the DAQ and the one leaving the amplifier is 

approximately 3µs. This is so minute that the difference between the actual shear wave 

velocity and that rendered by the DAQ for a shear wave velocity of 200 m/s would be 0.5 m/s, 

therefore it was ignored. 

Although the piles were held as level as possible during the process of installing them, some 

eccentricity in the piles was present. This could cause some difference in the load observed 

by the strain gage at the pile head and the actual load applied along the long-axis of the pile. 

Because the piles were loaded using a hand powered hydraulic press, the loading rate for 

each pile varied considerably. This could cause some loads and strains to be higher or lower 

than would be experienced otherwise. Another source of error is attributed to the method in 

which the piles were buried. Differences in the amount of force used to pack the material 

down could have caused some piles to hold more load. In the instance of Barrel 3, when the 

pile and soil were removed following the loading of the control test the person who had 

buried the previous piles had an injury and could no longer perform the task of burying the 

pile. The individuals who buried the pile did not ensure that the area around the pile was free 

of voids and this caused several issues, one of which was a drastic difference in load capacity. 
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Treatment for barrels one and four was commenced within a day of being filled with soil and 

water, whereas barrels two and three had sat for multiple weeks. This created a condition 

where there was ample free pore-water in the soil. This is likely the cause for the drastic 

difference in power consumed. Barrel 3 experienced a drastic difference in power consumed 

as there were large sections along the web of the pile which were not in contact with the soil, 

leaving the pile end as the only area of contact. 

During the shear vane tests performed on the untreated barrel, the presence of sand and 

larger gravel sized particles created less disparity amongst the shear strength. In the treated 

specimens with a higher shear strength this created areas where failure was not smooth and 

therefore more abrupt, possibly giving values that were much higher than they were. 

Differences among XRD results from sample to sample would be attributed to the 

heterogenous nature of soil and were not found to be significant at all. 

Because soils are naturally heterogenous, there will invariably be particles with drastically 

higher iron content than others, whether this is induced by electrokinetics or not is up for 

debate. Although it is not shown in the scanning electron microscope data, during the tests it 

was observed that the iron content in the control was invariably low and stable and that of 

the treated samples was either on par or much higher, exhibiting erratic results. The samples 

shown are single particles and therefore do not speak of the entire area but are merely used 

to observe where the zones with high iron content tend to occur on a particle by particle 

basis. 

The pH tests were performed on select soil samples and any variability is directly attributed 

to the heterogenous nature of the chemical reactions. 
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Sources of error for the Atterberg liquid limits test performed include the amount of soil in 

the cup, the blow rate, cleanliness of cup, soil rest time in cup. 
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Chapter 4 – Summary and Conclusion 
In this study, a steel pile foundation model was created and treated with electrokinetics. 

During the treatment, bender elements were placed alongside the steel pile and shear waves 

were transmitted through the soil periodically to measure the shear wave velocity. After the 

shear wave velocity ceased to increase, the treatment was deemed to be finished and the 

piles were loaded two-weeks later. The first pile treated was a trial and later treatment was 

performed based on the information gained.  

In all piles treated, the load capacity was increased, however when bender elements were 

used to determine the time of completion, the efficiency of the process was optimized. 

• Treatment time was reduced from 170 hours to 100 hours.. 

• Power Consumed was also reduced from 5690 Wh to 3760 Wh. 

• Load capacity was increased from 550lbs to 600 lbs, vs the control at 200 lbs. 

In addition to these findings, the nature of soil cementation and changes to Atterberg limits 

in soils treated with electrokinetics without additives was discussed, finding that the iron 

oxide from the electrolysis reactions was binding directly to clay edges, possibly via 

isomorphic substitution. 

In conclusion, using bender elements removes the uncertainties involved in using 

electrokinetics for increasing the load carrying capacity and has opened new avenues of 

research relating to the mechanisms in which load carrying capacity is increased through 

electrokinetics. 

4.1. Future Avenues of Research and Improvements 
Bridging the gap between research and application is of utmost concern for electrokinetics 

and is the main drive of the research. Using shear-waves it was possible to determine when 
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the shear wave velocity of a soil had reached its peak which dictated when treatment should 

be finished. Future research should focus on the following: 

• Create more reliable bender elements that do not fail under the influence of an 

electric field. 

• Create a system that does not require bender elements and piles to be buried to 

function. 

• Understanding why shear-wave velocity drops after treatment is terminated and what 

factors contribute to this. 

• Run tests in which water is slowly purged from a sample while measuring shear wave 

velocity to better understand how moisture content affects shear-wave velocity. 
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4.2. Appendix 
4.2.1. Arduino Code 
POWER SUPPLY ON 

#include <SPI.h> 

byte address = 0x00; 

int CS= 10; 

void setup() 

{ 

pinMode (CS, OUTPUT); 

SPI.begin(); 

} 

void loop() 

{ 

for (int i = 119; i <= 120; i++) 

{ 

digitalPotWrite(i); 

delay(100); 

} 

delay(100000); 

for (int i = 120; i >= 119; i--) 

{ 

digitalPotWrite(i); 

delay(10); 

} 

} 

int digitalPotWrite(int value) 

{ 

digitalWrite(CS, LOW); 

SPI.transfer(address); 

SPI.transfer(value); 

digitalWrite(CS, HIGH); 

POWER SUPPLY OFF 

#include <SPI.h> 

byte address = 0x00; 

int CS= 10; 

void setup() 

{ 

pinMode (CS, OUTPUT); 

SPI.begin(); 

} 

void loop() 

{ 

for (int i = 0; i <= 1; i++) 

{ 

digitalPotWrite(i); 

delay(100000); 

} 

delay(10); 

for (int i = 1; i >= 0; i--) 

{ 

digitalPotWrite(i); 

delay(10); 

} 

} 

int digitalPotWrite(int value) 

{ 

digitalWrite(CS, LOW); 

SPI.transfer(address); 

SPI.transfer(value); 

digitalWrite(CS, HIGH); 
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4.2.2. MATLAB Code 
4.2.2.1. DT9867 DAQ 
clc; 

clear all; 

close all;  

 

%% 1. THIS MATLAB FUNCTION OUTPUTs AND COLLECTS DATA FROM BENDER 

ELEMENTS AND LOGS DATA TO A .txt FILE. IT ALSO PLOTS FIGURES OF 

THE DATA, SAVES THOSE FIGURES AND SAVES CC AND P-P ANALYSIS DATA 

TO .CSV 

 

%1 SETUP 

d = daq.getDevices; %CHECK DEVICES 

     

(Type daq.getDevices for device specific information)  

 

fOut=210000; %Digital to Analog Output Rate, Hz 

fIn=105000; %Analog to Digital Input Rate, Hz  

Ts=1/fIn; %Time Step, Seconds 

B=0; %Arbitrary B Variable 

            TrialFolder='Trial2'; %Folder to Save Data In 

 

%SET OUTPUT BROADCAST FREQUENCYS IN 20x1 ARRAY (‘1’ is a place 

holder for sweep) 

fSig=[50; 100; 150; 250; 300; 350; 400; 500; 600;... 

700; 800; 900; 1000; 1250; 1500; 2000; 2500;... 

3000; 4000; 5000 ;1]; 

 

Vout= 1.6; %OUTPUT VOLTAGE (Check Amplifier Input Sensitivity) 

SENSORS =4; % SET NUMBER OF ACTIVE INPUTS 

Row='T'; %SELECT WHICH ROW IS IN USE (Top OR Bottom) 

if Row=='T' 

R=7; 

elseif Row=='B' 

R=0; 

end 

         

T = 2; % SET DATA AQUISTION WINDOW TIME 

TOTALCUT=5000; % TOTALCUT specifies number of samples kept 

% THIS WILL AFFECT THE DATA SIZE AND FFT RESOLUTION 

%(RESOLUTION=fIn/TOTALCUT) 

 

%%CREATE SWEEP OUTPUT DATA BEFORE STARTING LOOP 

t=0:(1/fOut):1; %Divide 0-1 second into fOut steps 

OutDataSweep=chirp(t,50,1,5000,'linear',-90)*Vout;  

%START SWEEP AT 50Hz, STOP SWEEP AT 5kHz 

                     

%%2 RUN DATA ACQUISITION IN A LOOP 
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%USE FOR LOOP TO HAVE PROGRAM RUN CONSECUTIVELY THROUGH 

FREQUENCIES ONE THROUGH TWENTY, THEN LASTLY SWEEP 

%CREATE SIGNAL, OUTPUT SIGNAL, AQUIRE DATA, PROCESS DATA, SAVE 

PROCESSED DATA AND SAVE PLOT 

for f=1:21 

             

pause(2); % PAUSE TWO SECONDS FOR DATA ACQUISITION TO FINISH 

 

if  (1<=f) && (f<=20) %RUN BLOCK FOR PULSED SIGNALS ONLY 

CUTS=round(fIn/4/fSig(f,1)); %SPECIFY WHERE CUT STARTS 

CUTF=round(TOTALCUT-fIn/fSig(f,1)); %WHERE START ENDS 

CUTT=CUTS+CUTF; 

 

%CREATE SINE PULSE (SINGLE WAVE) FOR OUTPUT 

SinePulse = linspace(0,2*pi,(fOut/fSig(f,1)))';  

SinePulse = sin(SinePulse)*Vout; 

OutDataPulse = (cat(1,SinePulse, ... 

zeros(fOut - length(SinePulse),1))); 

end 

 

%% START NEW OUTPUT SESSION 

AO = daq.createSession('dt'); 

 

% SELECT OUTPUTS AND CONFIGURE RATE 

Out1= addAnalogOutputChannel... 

(AO,'DT9857-16(00)',0,'Voltage'); 

% SET OUTPUT DATA RATE 

AO.Rate = fOut; 

                       

%% START NEW INPUT SESSION 

AI = daq.createSession('dt'); 

 

% SELECT INPUT CHANNELS (use i+R for top row on DT9857) 

%INPUT COUPLING AND SET INPUT RANGES 

IN=cell(1,SENSORS); 

 

for i=1:SENSORS 

IN{i} = addAnalogInputChannel... 

(AI,'DT9857-16(00)',(i+R), 'Voltage'); 

            end 

for i=2:SENSORS   

IN{i}.Coupling = 'AC'; 

IN{i}.Range= [-1 1]; 

end 

 

% SET INPUT AQUISTITION RATE 

AI.Rate= fIn;       

  

%% CHECK SESSION PROPERTIES 

AO  

AI  
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% CONFIGURE OUTPUT DATA AND LISTENER 

             

if (1<=f) && (f<=20) 

Output=OutDataPulse; 

else 

Output=OutDataSweep'; 

end 

 

queueOutputData(AO,Output); % QUEUE OUTPUT DATA TO SESSION 

 

% CREATE LISTENER FOR OUTPUT TERMINAL TO OUTPUT DATA 

DataRequired = addlistener... 

   (AO, 'DataRequired',@(src,event)... 

   src.queueOutputData(Output)); 

% SET DATA OUTPUT AS CONTINUOUS OR NOT 

AO.IsContinuous = false; 

                         

% CREATE LOG.BIN, AND LISTENER TO LOG DATA  

fid1 = fopen('log.bin','w+'); 

% CREATE INPUT LISTENER     

DataAvailable = addlistener... 

(AI,'DataAvailable',@(src, event)... 

logData(src, event, fid1)); 

AI.IsContinuous = true; % SET AQUISITION AS CONTINUOUS OR NOT     

 

                         

% Start INPUT then OUTPUT 

AI.startBackground; 

AO.startBackground; 

% Allow Aquisition to run for 'T' time. 

if f==21 

pause(1) 

else 

pause(T); 

end 

 

AO.stop; %% STOP INPUT 

AI.stop; %% STOP OUTPUT 

 

fclose(fid1); % CLOSE INPUT FILE 

                         

%% OPEN DATA, TRANSFER TO ARRAY 'Data' 

fid2 = fopen('log.bin','r+'); 

[Data,~] = fread(fid2,[(SENSORS+1),inf],'double'); 

fclose(fid2); 

 

% Row structure of Array 'Data': 

%1: Time 

%2: Amplitude Input 1 

%3: Amplitude Input 2 
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%N: Amplitude Input 'N-1' 

%... 

                             

%% SAVE CUT DATA AS ShortData, PROCESS SIGNAL (FILTERS, 

DETRENDING) AND SAVE AS .txt 

% Create Array ShortData first to quicken execution 

ShortData= zeros(SENSORS+1,(CUTF+CUTS)); 

 

% Determine Max of Output and Log that sample # 

[PKOut,PKTimeOut]=max(Data(2,:)); 

if (1<=f) && (f<=20) %RUN BLOCK FOR PULSED SIGNALS ONLY 

 

for i=1:SENSORS+1 %SAVE SEGMENT OF CUTF+CUTS OF ARRAY Data AS 

ShortData 

ShortData(i,1:(CUTF+CUTS+1))= Data(i,PKTimeOut-

CUTS:PKTimeOut+CUTF); 

end 

Folder=sprintf('%iHz',fSig(f,1)); 

else 

ShortData=Data; 

Folder=sprintf('Sweep'); 

end 

 

%ASSIGN APPROPRIATE FILE NAME AND FOLDER AND SAVE ORIGINAL DATA 

File= sprintf('%iHz-test_%s',fSig(f,1),datestr(now,'mm-dd-

yyyy-HH-MM')); 

FileName= strcat(File, '.txt'); 

FullName=fullfile([pwd '\' TrialFolder '\' Folder '\' 

FileName]); 

 

dlmwrite(FullName,ShortData,'delimiter','\t','precision','%.9f

') 

 

%FILTER DATA 

d1 = designfilt('bandstopiir','FilterOrder',2, ... 

'HalfPowerFrequency1',105,'HalfPowerFrequency2',135, ... 

'DesignMethod','butter','SampleRate',fIn); 

t=(0:size(ShortData,2)-1)/fIn; 

 

for i=3:5 %APPLY FILTER TO SHORTDATA 

ShortData(i,:)=filtfilt(d1,ShortData(i,:)); 

end  

 

%DETREND ShortData BY FITING TO LOW ORDER POLYLINE 

N=8; 

Order=3; 

FrameLength=61; 

 

if 1<=f && f<=20 

for i=3:5 

p=[]; 
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f_y=[]; 

[p(i,:),S,mu(:,i)]=polyfit((1:size(ShortData,2)),ShortData

(i,:),N); 

f_y(i,:)= 

polyval(p(i,:),(1:size(ShortData,2)),[],mu(:,i));        

ShortData(i,:)=ShortData(i,:) - f_y(i,:); 

ShortData(i,:)=sgolayfilt(ShortData(i,:),Order,FrameLength

); 

end    

end 

 

%Axis Text Height 

ATH=8; 

 

%% PREPARE AND PRINT PLOTS TO FIGURES   

 

%Setup Title Headers 

xLlim=0; 

if f==21 

Title=sprintf('Bender Element Test Sine Sweep 50Hz to 5kHz'); 

xHlim=5000; 

else 

Hz=fSig(f,1); 

Title=sprintf('Bender Element Test Sine Pulse 

%iHz',fSig(f,1)); 

xHlim=(fSig(f,1))+1000; 

end 

                             

if f==21 

ShortData=[]; 

for i=3:5 

p=[]; 

f_y=[]; 

                                     

                                    

[p(i,:),S,mu(:,i)]=polyfit((1:size(Data,2)),Data(i,:),N)

; 

f_y(i,:)= polyval(p(i,:),(1:size(Data,2)),[],mu(:,i)); 

ShortData(i,:)=Data(i,:) - f_y(i,:); 

CUTT=(size(Data,2)); 

end 

ShortData(1,:)=Data(1,:); 

ShortData(2,:)=Data(2,:); 

end 

                             

% Create Figure and Plot 12 Subplots in Figure 

 

%% Plot Row 1 

figure(1); 

h=suptitle(Title); 
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set(h,'Interpreter','latex','FontSize',14,'FontName','Times 

New Roman'); 

                            

subplot(4,3,1) 

plot(ShortData(1,:), ShortData(2,:)); 

 

title('Output Signal','Interpreter','latex','FontSize', 10, 

'FontName', 'Times New Roman'); 

 

ylabel('Signal Amplitude, Volts', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times 

New Roman') 

 

set(gca,'fontsize',ATH) 

                             

subplot(4,3,2) 

[freq, fabs] = fftplot(Ts, ShortData((2),1:(CUTT))); 

plot(freq, fabs); 

 

title('Output FFT','Interpreter','latex','FontSize', 10, 

'FontName', 'Times New Roman'); 

 

ylabel('Frequency Amplitude, Volts', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times 

New Roman') 

 

xlim([xLlim xHlim]); 

set(gca,'fontsize',ATH) 

  

subplot(4,3,3) 

[acor,lag] = xcorr(ShortData(2,:),ShortData(2,:),'coeff'); 

plot(lag,acor); 

lag=lag/fIn; 

title('Output XCorrelation to 

Self','Interpreter','latex','FontSize', 10, 'FontName', 

'Times New Roman'); 

 

ylabel('Normalized XCorrelation', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times 

New Roman') 

 

 [~,I] = max(abs(acor)); 

DeltaCCT= lag(I); 

set(gca,'fontsize',ATH)                         

 

%% PLOT ROW 2 

subplot(4,3,4) 

plot(ShortData(1,:), ShortData(3,:)); 

if 1<=f && f<=20 
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findpeaks(ShortData(3,:),ShortData(1,:),'MinPeakHeight',0.

00001,'MinPeakDistance',0.001,'NPeaks',2,'SortStr','descen

d'); 

end 

set(gca,'fontsize',ATH) 

title('Barrel 1 Signal','Interpreter','latex','FontSize', 

10, 'FontName', 'Times New Roman'); 

  

subplot(4,3,5) 

[freq, fabs] = fftplot(Ts, ShortData(3,1:(CUTT))); 

plot(freq, fabs); 

 

title('Barrel 1 FFT','Interpreter','latex','FontSize', 10, 

'FontName', 'Times New Roman'); 

xlim([xLlim 1500]); 

 

set(gca,'fontsize',ATH) 

  

subplot(4,3,6) 

[acor,lag] = xcorr(ShortData(3,:),ShortData(2,:),'coeff'); 

lag=lag/fIn; 

plot(lag,acor); 

                            

findpeaks(acor,lag,'MinPeakHeight',0.1,'MinPeakDistance',0

.001,'NPeaks',1,'SortStr','descend'); 

 

title('Barrel 1 XCorrelation to 

Output','Interpreter','latex','FontSize', 10, 'FontName', 

'Times New Roman'); 

 [CC1,I] = max(abs(acor)); 

DeltaCCT1= 0.24/lag(I); 

set(gca,'fontsize',ATH) 

                             

%% PLOT LINE 3 

subplot(4,3,7) 

plot(ShortData(1,:), ShortData(4,:)); 

if 1<=f && f<=20 

                            

findpeaks(ShortData(4,:),ShortData(1,:),'MinPeakHeight',0.

00001,'MinPeakDistance',0.001,'NPeaks',2,'SortStr','descen

d'); 

end 

set(gca,'fontsize',ATH) 

title('Barrel 2 Signal','Interpreter','latex','FontSize', 

10, 'FontName', 'Times New Roman'); 

  

subplot(4,3,8) 

[freq, fabs] = fftplot(Ts, ShortData(4,1:(CUTT)));  

plot(freq, fabs); 
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title('Barrel 2 FFT','Interpreter','latex','FontSize', 10, 

'FontName', 'Times New Roman'); 

xlim([xLlim 1500]); 

set(gca,'fontsize',ATH) 

  

subplot(4,3,9) 

[acor,lag] = xcorr(ShortData(4,:),ShortData(2,:),'coeff'); 

lag=lag/fIn; 

                            

findpeaks(acor,lag,'MinPeakHeight',0.1,'MinPeakDistance',0

.001,'NPeaks',1,'SortStr','descend'); 

 

title('Barrel 2 XCorrelation to 

Output','Interpreter','latex','FontSize', 10, 'FontName', 

'Times New Roman'); 

 

[CC2,I] = max(abs(acor)); 

DeltaCCT2=0.24/ lag(I); 

set(gca,'fontsize',ATH) 

                             

%% PLOT LINE 4 

subplot(4,3,10) 

plot(ShortData(1,:), ShortData(5,:)); 

if 1<=f && f<=20 

                            

findpeaks(ShortData(5,:),ShortData(1,:),'MinPeakHeight',0.

00001,'MinPeakDistance',0.001,'NPeaks',2,'SortStr','descen

d'); 

end 

title('Barrel 3 Signal','Interpreter','latex','FontSize', 

10, 'FontName', 'Times New Roman'); 

xlabel('Time, Seconds', 'Interpreter','latex','FontSize', 

10, 'FontName', 'Times New Roman'); 

set(gca,'fontsize',ATH) 

  

subplot(4,3,11) 

[freq, fabs] = fftplot(Ts, ShortData(5,1:(CUTT))); 

plot(freq, fabs); 

title('Barrel 3 FFT','Interpreter','latex','FontSize', 10, 

'FontName', 'Times New Roman'); 

xlabel('Frequency, Hz', 'Interpreter','latex','FontSize', 

10, 'FontName', 'Times New Roman');     

xlim([xLlim 1500]); 

 

set(gca,'fontsize',ATH) 

  

  

subplot(4,3,12) 

[acor,lag] = xcorr(ShortData(5,:),ShortData(2,:),'coeff'); 

lag=lag/fIn; 
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findpeaks(acor,lag,'MinPeakHeight',0.1,'MinPeakDistance',0

.001,'NPeaks',1,'SortStr','descend'); 

 

title('Barrel 3 XCorrelation to 

Output','Interpreter','latex', 'FontSize', 10, 'FontName', 

'Times New Roman'); 

 

xlabel('Time Lag, Seconds', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times 

New Roman') 

 

[CC3,I] = max(abs(acor)); 

DeltaCCT3= 0.24/lag(I); 

set(gca,'fontsize',ATH) 

                             

%% SAVE FIGURE 1 

FileName= strcat(File, '.fig'); 

FullName=fullfile([pwd '\' TrialFolder '\' Folder '\' 

FileName]); 

savefig(gcf,FullName,'compact'); 

%jpeg printing function... 

FileName=strcat(File,'.jpeg'); 

FullName=fullfile([pwd '\' Trial '\' Folder '\' FileName]); 

print (gcf,'-djpeg',FullName); 

 

%% CALCULATE TIME TO PEAK AND SAVE BOTH P-P AND CC DATA TO EXCEL 

CSV FILE 

                            

if (1<=f) && (f<=20) 

                            

[V1,T1]=findpeaks(ShortData(2,:),ShortData(1,:),'MinPeakDistan

ce',0.001,'NPeaks',2,'SortStr','descend'); 

                            

[V2,T2]=findpeaks(ShortData(3,:),ShortData(1,:),'MinPeakDistan

ce',0.001,'NPeaks',2,'SortStr','descend'); 

                            

[V3,T3]=findpeaks(ShortData(4,:),ShortData(1,:),'MinPeakDistan

ce',0.001,'NPeaks',2,'SortStr','descend'); 

                            

[V4,T4]=findpeaks(ShortData(5,:),ShortData(1,:),'MinPeakDistan

ce',0.001,'NPeaks',2,'SortStr','descend'); 

 

%0.24 m distance between elements                              

DeltaT1=0.24/(T2(1,1)-(T1(1,1))); 

DeltaT2=0.24/(T3(1,1)-(T1(1,1))); 

DeltaT3=0.24/(T4(1,1)-(T1(1,1))); 

end 

D=now; 

T=rem(now,1); 
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CCVelocity= [D T CC1 DeltaCCT1 DeltaT1 CC2 DeltaCCT2 DeltaT2 CC3 

DeltaCCT3 DeltaT3]; 

   

File= sprintf('%iHz',fSig(f,1)); 

FileName= strcat(File, '-Velocity.csv'); 

CCName=fullfile([pwd '\' TrialFolder '\' Folder '\' FileName]); 

dlmwrite(CCName,CCVelocity,'-append','precision',16); 

 

%% PLOT Velocity Values 

Array=csvread(FileName); 

 

%FILTER OUT VALUES BELOW ZERO AND OVER 200 (NOISE)                             

VB1=Array(:,4:7); 

VB1(VB1<0)=0; 

VB1(VB1>200)=0; 

VB1max=max(VB1')'; 

if f==1 

VB1Ult=VB1max 

end 

if VB1max>=VB1Ult 

VB1Ult=VB1max 

end 

                                

LoBFit1=polyfit((1:size(VB1max,1))',VB1max,4); 

LoBFit1=polyval(LoBFit1,1:size(VB1max,1)); 

                                 

figure (2) 

subplot(3,1,1) 

 

plot(VB1(:,1),'r+'); 

hold on 

plot(VB1(:,2),'b+'); 

plot(VB1(:,3),'g+'); 

plot(VB1(:,4),'c+'); 

plot (LoBFit1,'k-'); 

 

ylabel(' Barrel 1 Shear Wave Velocity', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times New 

Roman'); 

 

legend(' xCorrelation Peak',' Tallest Signal Peak',' 2nd Tallest 

Signal Peak',' 3rd Tallest Signal Peak') 

 

hold off 

                                 

VB2=Array(:,9:12); 

VB2(VB2<0)=0; 

VB2(VB2>200)=0; 

VB2max=max(VB2')'; 

if f==1 

VB2Ult=VB2max 
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end 

if VB2max>=VB2Ult 

VB2Ult=VB2max 

end 

                                

LoBFit2=polyfit((1:size(VB2max,1))',VB2max,4); 

LoBFit2=polyval(LoBFit2,1:size(VB2max,1)); 

                                 

subplot(3,1,2) 

 

plot(VB2(:,1),'r+'); 

hold on 

plot(VB2(:,2),'b+'); 

plot(VB2(:,3),'g+'); 

plot(VB2(:,4),'c+'); 

plot (LoBFit2,'k-'); 

 

ylabel(' Barrel 2 Shear Wave Velocity', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times New 

Roman'); 

 

legend(' xCorrelation Peak',' Tallest Signal Peak',' 2nd Tallest 

Signal Peak',' 3rd Tallest Signal Peak') 

 

hold off 

 

VB3=Array(:,14:17); 

VB3(VB3<0)=0; 

VB3(VB3>200)=0;                            

VB3max=max(VB3')'; 

if f==1 

VB3Ult=VB3max 

end 

if VB3max>=VB3Ult 

VB3Ult=VB3max 

end 

LoBFit3=polyfit((1:size(VB3max,1))',VB3max,4); 

LoBFit3=polyval(LoBFit3,1:size(VB3max,1)); 

 

subplot(3,1,3) 

plot(VB3(:,1),'r+'); 

hold on 

plot(VB3(:,2),'b+'); 

plot(VB3(:,3),'g+'); 

plot(VB3(:,4),'c+'); 

plot (LoBFit3,'k-'); 

 

ylabel(' Barrel 3 Shear Wave Velocity', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times New 

Roman'); 
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xlabel(' Time (Hours)', 'Interpreter','latex','FontSize', 10, 

'FontName', 'Times New Roman'); 

 

legend(' xCorrelation Peak',' Tallest Signal Peak',' 2nd Tallest 

Signal Peak',' 3rd Tallest Signal Peak') 

 

hold off 

 

%% SAVE FIGURE 2 

FileName= strcat(File, '_Velocity_VS_Time.fig'); 

 

FullName=fullfile([pwd '\' TrialFolder '\' Folder '\' 

FileName]); 

savefig(gcf,FullName,'compact'); 

%jpeg printing function... 

FileName=strcat(File,'.jpeg'); 

FullName=fullfile([pwd '\' TrialFolder '\' Folder '\' 

FileName]); 

print (gcf,'-djpeg',FullName); 

 

end 

%% SAVE MAX SPEED VALUE 

MAXVELALL = [D T VB1Ult VB2Ult VB3Ult] 

dlmwrite('MaxVelocityAll',MAXVELALL,'-append','precision',16); 

UltVel=csvread('MaxVelocityAll.csv') 

 

figure (3); 

plot(UltVel(:,3),'r+'); 

hold on 

plot(UltVel(:,4),'b+'); 

plot(UltVel(:,5),'g+'); 

 

legend(' Barrel 1 Ultimate Velocity',' Barrel 2 Ultimate 

Velocity',' Barrel 3 Ultimate Velocity') 

 

xlabel(' Shear Wave Velocity', 

'Interpreter','latex','FontSize', 10, 'FontName', 'Times New 

Roman'); 

hold off 

 

%% SAVE FIGURE 

File='Ultimate_Velocity' 

FileName= strcat(File, '.fig'); 

FullName=fullfile([pwd '\' TrialFolder '\' FileName]); 

savefig(gcf,FullName,'compact'); 

%jpeg printing function... 

FileName=strcat(File,'.jpeg'); 

FullName=fullfile([pwd '\' TrialFolder '\' FileName]); 

print (gcf,'-djpeg',FullName); 

%% CLEANUP 

delete (AO); 



122 
 

delete (AI); 

delete (DataRequired); 

delete (DataAvailable); 

 

4.2.2.2. Timer 
VATimer = timer; 

% 'Quick'Variable Specifying Timer Period in seconds 

%5 min interval 

Time=300; 

  

% Set Arbitrary Name for Timer 

set(VATimer,'Name','VATimer') 

% Set How Timer Resets and When TimerFcn Triggers 

% Options are singleShot, fixedSpacing, fixedDelay, fixedRate 

set(VATimer,'ExecutionMode','fixedRate'); 

% Set delay between calling TimerFcn 

set(VATimer,'Period',Time); 

% Set Number of Times to Run before stop 

%Run for 7 Days, 5 minute interval 

set(VATimer,'TasksToExecute',2016); 

  

set(VATimer,'BusyMode','queue'); 

  

set(VATimer,'TimerFcn','VoltAmp') 

start(VATimer); 

% delete (VATimer); 

 

4.2.2.3. Timer Function 
function VoltAmp(~) 

[V]=Sequencer; 

[A]=Sequencer2; 

D=datenum(now); 

T=rem(now,1); 

  

VA=[D T V A]; 

  

dlmwrite('VoltAndAmpValues.csv',VA,'-append','precision',16) 

end 

 

4.2.2.4. Voltmeter Call Function 
function [Voltage] = MeterCheck(VRange, VResolution,) 

Meter_Top = visa('agilent', 

'USB0::0x0957::0x0618::TW47340039::0::INSTR'); 

Meter_Top.InputBufferSize = 8388608; 

Meter_Top.ByteOrder = 'littleEndian'; 

fopen(Meter_Top); 

  

VRange=100; 

VResolution=0.001; 
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Voltage = str2double(query(Meter_Top, 

sprintf(':MEASure:VOLTage:DC? %g,%g', VRange, VResolution))); 

Voltage = str2double(query(Meter_Top, ':FETCh?')); 

Voltage 

  

fclose(Meter_Top); 

delete(Meter_Top); 

clear Meter_Top; 

  

end 

 

4.2.2.5. Ammeter Call Function 
function [Amperage]=MeterCheck2(ARange, AResolution) 

Meter_Bottom = visa('agilent', 

'USB0::0x0957::0x0618::TW47340036::0::INSTR'); 

Meter_Bottom.InputBufferSize = 8388608; 

Meter_Bottom.ByteOrder = 'littleEndian'; 

fopen(Meter_Bottom); 

  

ARange=10; 

AResolution=0.001; 

Amperage = str2double(query(Meter_Bottom, 

sprintf(':MEASure:CURRent:DC? %g, %g' ARange,AResolution))); 

Amperage = str2double(query(Meter_Bottom, ':FETCh?')); 

Amperage 

fclose(Meter_Bottom); 

delete(Meter_Bottom); 

clear Meter_Bottom; 

end 
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