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Abstract

In this thesis, I present a path to the correspondence rules for the generators of the su(3) symmetry and
compare my results with the SU(2) correspondence rules. Using these rules, I obtain analytical expressions
for the Moyal bracket between the Wigner symbol of a Hamiltonian Ĥ, where this Hamiltonian is written
linearly or quadratically in terms of the generators, and the Wigner symbol of a general operator B̂.
I show that for the semiclassical limit, where the SU(3) representation label λ tends to infinity, this
Moyal bracket reduces to a Poisson bracket, which is the leading term of the expansion (in terms of the
semiclassical parameter ε), plus correction terms. Finally, I present the analytical form of the second order
correction term of the expansion of the Moyal bracket.
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The Road goes ever on and on
Down from the door where it
began.
Now far ahead the Road has
gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands
meet.
And whither then? I cannot say.

Bilbo Baggins,
The Lord of The Rings
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Chapter 1

Introduction

A productive approach to analyze quantum systems is the mapping between quantum states in Hilbert
space and c-valued functions defined in the classical phase space. In this approach, one reformulates
the standard quantum mechanics with the tools of classical mechanics and obtains insights about the
correspondence between quantum and classical mechanics [11]. An operator Â is associated with functions
in phase space (called the Wigner symbol WÂ(q, p) of this operator) , and averages are computed by
integrating the corresponding Wigner symbols of the density operator and the operator Â over phase
space.

The concept of the Wigner symbol appeared for the first time in a paper by Wigner in 1932 [31]
concerning quantum corrections to classical statistical mechanics. The mapping between an operator Â and
a c-valued function W (q, p) in phase space was introduced by Weyl in 1927 [30] and proved independently
by Moyal in 1949 [17]. Because quantum operators do not necessarily commute, whereas the product
of ordinary functions fg = gf , one must restore the quantum feature by introducing a special type of
multiplication called the ?-product. This operation is defined as

WÂB̂(Ω) := WÂ ? WB̂ (1.0.1)

and it was introduced by Groenewold in 1946 [8] to make it possible to compute the semiclassical dynamics
of a system under the action of a Hamiltonian Ĥ.

Some properties of the Wigner symbol of the density matrix are not intuitive. For instance, the
symbol of the density matrix can take negative values, something not possible for a classical probability
distribution. Experimental confirmation of this feature was given by M. G. Raymer et al [25] and D.J.
Wineland et al in 1996 [15]. In the latter experimental work, the authors reconstructed the density
matrices and Wigner functions for quantum states of harmonic oscillator like motion for 9Be+, and showed
characteristics of Wigner functions that are purely quantum. For instance, the distribution function
had regions of negative probability, which highlights the nonclassical behavior of the quantum harmonic
oscillator states. Therefore, the distribution function that will be presented here will be somewhat different
than those encountered in classical statistical mechanics and will be called a quasi-distribution due to the
nature of the nonclassical (negative) regions assumed in phase space.

Although the literature describes a vast range of applications of Wigner functions for harmonic oscillator
systems and angular momentum (also known as systems of SU(2) symmetry) written in books such as
[11, 24, 32] and scientific articles or review papers such as [5, 9, 14, 15, 25], this is not the case for Wigner
functions of SU(3) symmetry. A possible reason for this is that the construction of SU(3) Wigner symbols
are much more mathematically and computationally challenging than the SU(2) case.
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This construction, just like in the SU(2) counterpart, depends on many results such as: finding the
quantization kernel ŵ that makes the connection between quantum mechanical operators and classical
c-valued functions, obtaining tensor operators T̂ (λ,µ)

νI of a given irrep (λ, µ) of SU(3) and Clebsch-Gordan
and Racah coefficients for SU(3).

The objective of this thesis is to provide a path to correspondence rules for SU(3) systems. In order
to accomplish this I had to obtain analytical expressions for SU(3) Clebsch-Gordan coefficients. These
coefficients are essential to replace the action of a generator on the quantization kernel ŵ by a differential
action on this kernel. I also obtained this differential action. With this it is then possible to obtain a
differential realization for the action of generators on the symbols of general operators - i.e. the so-called
correspondence rules. These in turn are used to understand the asymptotic (semiclassical) limit where in
particular the so-called Moyal bracket, defined in terms of the special ? product mentioned above [33]

{WÂ,WB̂}M := WÂ ? WB̂ −WB̂ ? WÂ (1.0.2)

reduces to the classical Poisson bracket

{G ,Z}P =
N∑
i=1

∂G
∂qi

∂Z
∂pi
− ∂G
∂pi

∂Z
∂qi

. (1.0.3)

where (qi, pi) is a pair of coordinates in the N -dimensional space and G and Z are functions of these
variables. Examples of ?-product for position-momentum, and spin systems, will be given later.

For this introduction, I will discuss the basic ideas of the Wigner function formalism and give some
examples to illustrate the power of this semiclassical approach. These basic ideas will be crucial for the
understanding of the generalizations in later chapters for the case of SU(3) systems.

1.1 Formulations of QuantumMechanics and Classical Mechan-
ics

In classical mechanics, the motion of a particle in one dimension is described by a pair of coordinates
(q, p) of the phase space, where q represents the position of the particle and p its momentum. The
Hamiltonian H = H(q, p) will dictate the allowed trajectories of the particle that evolves according to
Hamilton’s equations

q̇ = {q,H}P ṗ = {p,H}P (1.1.1)

where {α, β}P is the Poisson bracket as defined in equation (1.0.3) for the functions α = α(q, p) and
β = β(q, p). If we are working with an ensemble of n particles, where n is large, it is more convenient to
represent this system with a classical distribution ρ = ρ(q1, q2, . . . , qn, p1, p2, . . . , pn) that evolves according
to

dρ

dt
= {ρ,H}P +

∂ρ

∂t
. (1.1.2)

However, if the density distribution ρ is constant in time, equation (1.1.2) becomes [6]

∂ρ

∂t
= −{ρ,H}P . (1.1.3)
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In the quantum mechanical formalism, it is not possible to identify a particle with an exact position
and momentum at the same time. The position and momentum of a particle are represented by operators
that do not commute, that is if we represent the position operator as q̂ and momentum operator as p̂, we
will find that q̂p̂ 6= p̂q̂. Moreover, the commutator of these two operators is

[q̂, p̂] = q̂p̂− p̂q̂ = i~1 . (1.1.4)

We can represent the state of a system by a wave function |ψ〉 that lives in a complex Hilbert space H,
and its evolution under a Hamiltonian operator Ĥ, acting on this wave function, is given by the Schrödinger
equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 . (1.1.5)

As mentioned before, a productive approach to make the connections between classical and quantum
mechanics is the formalism of quantum mechanics in phase space. In this approach, an operator f̂ acting
on the Hilbert space H is mapped into a c-valued function Wf (q, p) (the Wigner symbol of f̂) in phase
space. Inversely, by using the Weyl quantization we can transform any real functionWf (q, p) in phase space
into a corresponding operator f̂ of the Hilbert space H. Since the Wigner function is a quasi-distribution,
we can use an equation similar to that of equation (1.1.3) to determine the time evolution of the Wigner
function distribution. This evolution is described by the so-called quantum Liouville equation [9]

i~
∂Wρ̂(q, p, t)

∂t
= −{Wρ̂(q, p, t),WĤ}M = −{Wρ,WĤ}P −

~2

24

∂3V

∂q3

∂3Wρ̂(q, p, t)

∂p3
+ . . . , (1.1.6)

where {Wf̂ ,Wĝ}M is the Moyal bracket as defined in equation (1.0.2) for the distributions Wf̂ and Wĝ.
The way we evaluate averages in Schrödinger quantum mechanics is different than the way averages are

calculated in classical mechanics. Given the operator Q̂ and the density operator ρ̂ = |ψ〉 〈ψ| in a Hilbert
space H, the average of this operator is written as

〈Q̂〉 = Tr
(
Q̂ρ̂
)

= 〈ψ| Q̂ |ψ〉 , (1.1.7)

where the state |ψ〉 is linearly expanded into any desired basis {|φi〉 ; i = 1, 2, 3, . . . }.
In contrast, the averages in classical mechanics are calculated by integration of the probability distribu-

tions that represent the operators Q̂ and ρ̂ over entire phase space. If the Wigner symbol of the operator
and Wigner function of the density operator are written as WQ̂(q, p) and Wρ̂(q, p), the average of this
operator in the classical phase space is given by

〈Q̂〉 =
1

2π~

∫ ∞
∞

∫ ∞
∞

dqdpWQ(q, p)Wρ(q, p) . (1.1.8)

The advantage of using equation (1.1.8), instead of equation (1.1.7), is that the number of variables in
phase space does not increase when the dimensions of the quantum system increase. For instance, in spin
particle systems, the dimensions of the matrices that represent the operators increase with respect to the
spin number as (2S + 1)× (2S + 1). Therefore, using equation (1.1.7) becomes computationally expensive
for systems of high dimensions, while equation (1.1.8) can yield an excellent approximation in the limit of
large S, always using two angles on the sphere. Moreover, in SU(3) systems, the dimension of the matrices
increase like the square of the number of particles, highlighting the increased savings that come from using
the phase space formalism in systems with these symmetries.
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1.2 Constructing the Wigner Function of a Particle

1.2.1 A first derivation
Following Schleich in [24], the appropriate operator to describe the state of a particle in one dimension

is the density operator ρ̂1. Considering a quantum jump, which is defined as a transition between two
states, from position x′ to x′′, with y = x′′ − x′ being the distance between the two points, the strength of
this transition is given by 〈x′′| ρ̂ |x′〉. In addition, let us define the center of the jump by x ≡ (x′ + x′′)/2,
which will produce the following two equations:

x′ = x− 1
2
y, x′′ = x+ 1

2
y . (1.2.1)

The strength of this quantum jump is

ρ
(
x+ 1

2
y, x− 1

2
y
)
≡
〈
x+ 1

2
y
∣∣ ρ̂ ∣∣x− 1

2
y
〉

, (1.2.2)

and by performing a Fourier transform with respect to the quantum jump y on equation (1.2.2), it is
possible to find a distribution that is dependent on the position and momentum at the same time

W (x, p) ≡ 1

2π~

∫ ∞
−∞

dy exp

(
− i
~
py

)〈
x+ 1

2
y
∣∣ ρ̂ ∣∣x− 1

2
y
〉

. (1.2.3)

This quasi-distribution is normalized, that is∫ ∞
−∞

dx

∫ ∞
−∞

dpW (x, p) = 1 . (1.2.4)

The Wigner function is a Fourier transform that depends on the center of the jump x ≡ (x′+x′′)/2 and
the Fourier transform of the jump distance, which was the variable p. Therefore, this quasi-distribution
depends only on two classical quantities x and p. Moreover, for a pure state, ρ̂ = |ψ〉 〈ψ|, equation (1.2.3)
reduces to

W (x, p) =
1

2π~

∫ ∞
−∞

dy exp
(
− i

~
py
)
ψ∗(x− 1

2
y)ψ(x+ 1

2
y) , (1.2.5)

where ψ(x) ≡ 〈x|ψ〉 represents the position of the state |ψ〉.

1.2.2 Introducing the quantization kernel ŵ

An alternate derivation, more in the spirit of the approach of this thesis, is obtained by considering the
phase space symbol of a density matrix as the trace of the quantization kernel ŵ and the operator ρ̂

Wρ̂(q, p) = 2 Tr(ŵ(q, p)ρ̂) . (1.2.6)

The quantization kernel of equation (1.2.6) is defined as [21, 26]

ŵ(q, p) = D̂(q, p)P̂ D̂†(q, p) , (1.2.7)

1For more information about the density operator ρ̂, refer to appendix A
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where

D̂(q, p) = exp
{ i
~

(pq̂ − qp̂)
}

(1.2.8)

is a displacement operator and P̂ is the parity operator

P̂ =

∫
dq |−q〉 〈q| =

∫
dp |−p〉 〈p| . (1.2.9)

We can invert the expression of equation (1.2.6) to obtain the operator ρ̂, that is going from a one-
dimensional system in phase space to Hilbert space H

ρ̂ =
1

π~

∫
dqdpŵ(q, p)Wρ̂(q, p) . (1.2.10)

To recover the Wigner function of equation (1.2.5), we start with the definition of equation (1.2.6)

Wρ(q, p) = 2 Tr(ŵ(q, p)ρ̂) (1.2.11)

where ρ̂ = |ψ〉 〈ψ|. By using equations (1.2.8) and (1.2.9), one can recover the explicit form of the
quantization kernel ŵ(q, p) to be

ŵ(q, p) =
1

2π~

∫ ∞
−∞

dy exp
(
− 2iqy

~

)
|p+ y〉 〈p− y| . (1.2.12)

Substituting equation (1.2.12) in equation (1.2.6) we obtain

W̃ρ̂(q, p) =
1

π~

∫ ∞
−∞

dy exp
(
− 2iqy

~

)
ψ∗(p+ y)ψ(p− y) , (1.2.13)

which is a Fourier transform of equation (1.2.5). Therefore, taking a Fourier transform of equation (1.2.13)
gives us

Wρ̂(q, p) =
1

2π~

∫ ∞
−∞

dy exp
(
− ipy

~

)
ψ∗
(
q − 1

2
y
)
ψ
(
q +

1

2
y
)

, (1.2.14)

which is the definition of Wigner function of equation (1.2.5).

1.2.3 Quasi-distribution functions
The Wigner function is one of a family of possible quasi-distribution functions, which differ by a choice

of ordering of operators. In other words, the formalism does not solve the ordering problem, but we can
consider an ordering rule to overcome this issue. A reasonable choice for this thesis is the Weyl ordering,
which produces the Wigner function of equation (1.2.5). For instance, in this ordering the polynomial form
qnpm takes the form [9]

qnpm → 1

2n

n∑
r=0

(
n

r

)
q̂n−rp̂mq̂r (1.2.15)
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and as an example, the polynomial q2p2 takes the form

q2p2 =
1

4

(
q̂2p̂2 + 2q̂p̂2q̂ + p̂2q̂2

)
. (1.2.16)

Therefore, the Wigner function is commonly associated with the so-called symmetric ordering. Other
well-known examples of phase space quasi-distributions are the Husimi Q-function associated with normal
ordering, and the Glauber-Sudarshan P function, associated with antinormal ordering.

In order to compute average values of an operator f̂ using the Q-function for ρ̂, one needs the P -
function for f̂ ; contrariwise, using the P -function for ρ̂ requires the use of the Q-function for f̂ . On the
other hand, one only has to know the Wigner symbol for ρ̂ and f̂ to compute an average. In addition to
this economy, the first order correction to expansion of the Moyal bracket actually vanishes for the Wigner
function, but not for the other orderings. For instance, if we look at equation (1.1.6), the Poisson bracket
is the dominant term of this expansion. However, the first order approximation appear with a third order
derivative with to respect to the momentum.

1.2.4 The Overlap of quantum states in phase space
Let us present some properties of the Wigner symbols.
An important property when dealing with two pure states, say ρ̂1 and ρ̂2, is the calculation of the

overlap of these two states |〈ψ1|ψ2〉|2 as

Tr(ρ̂1ρ̂2) = |〈ψ1|ψ2〉|2 = 2π~
∫ ∞
−∞

dx

∫ ∞
−∞

dpWρ̂1(x, p)Wρ̂2(x, p) (1.2.17)

where equation (1.2.17) is known as the trace product rule [24].
Therefore, the overlap of the two states |ψ1〉 and |ψ2〉 is proportional to the integration of the two

Wigner functions, W|ψ1〉 and W|ψ2〉, over the phase space. In addition, the functions W|ψ1〉 and W|ψ2〉 are
real functions [9].

1.2.5 Some conditions on the Wigner Function
Due to the nature of the definition of equation (1.2.5) and the uncertainty principle, one cannot squeeze

a state to a region smaller than 2π~ [9, 24]. Consider now two identical density operators ρ̂1 = ρ̂2 = ρ̂,
such that

Tr
(
ρ̂2
)
≤ 1

where the inequality happens when the density operator ρ̂ does not represent a pure state. Using equation
(1.2.17), it is possible to show that

|W (x, p)| ≤ 1

π~
. (1.2.18)

This shows that the Wigner function has an upper bound of 1
π~ for one dimensional and normalized systems.

This is clearly shown in Schleich [24].
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1.2.6 Negativity of the Wigner Function
If we go back to equation (1.2.17) and consider the case

〈ψ1|ψ2〉 = 0 (1.2.19)

we get

Tr(ρ̂1ρ̂2) = 0⇒
∫ ∞
−∞

dx

∫ ∞
−∞

dpWρ̂1(x, p)Wρ̂2(x, p) = 0 , (1.2.20)

which means that at least one of the quasi-distributions Wρ̂1(x, p) or Wρ̂2(x, p) must have negative values
for some regions of phase space [24, 32]. This negativity is a pure quantum phenomenon that characterizes
the Wigner function as a quasi-distribution. Figure (1.1) is a comparison between an experimental recon-
struction of the Wigner function for a harmonically bound 9Be+ ion and the theoretical result of the same
system for the case which is described by the following distribution

W|m=1〉(x, p) = − 1

π~
exp

{
−
[( p

~κ

)2

+ (κx)2
]}
L1{2

[( p
~κ

)2

+ (κx)2
]
} . (1.2.21)

where κ ≡ (mΩ
~ )

1
2 with m being the mass of the system and Ω the frequency.

Figure 1.1: On the left: Reconstruction of the Wigner function of the harmonic coherent state W|1〉(x, p)
for 9Be+ ions by D.J. Wineland et al in [15]. On the right: The constructed Wigner function for the same
state using equation (1.2.21).

However, it is not every Wigner function that will exhibit negativity. An experimental result on
squeezed coherent states given by M. G. Raymer et al [25] is shown in figure (1.2) where the Wigner
function is positive in every location of phase space. And although these quasi-distributions may assume
negative probabilities as depicted in figure (1.1), we can still obtain the correct marginal distribution if we
integrate the Wigner function over the entire range of the complementary variable and multiply this result
by 2π~.
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Figure 1.2: Experimental reconstruction of the Wigner functions of the squeezed (left) and vacuum states
(right) [25].

1.3 Correspondence Rules for q̂ and p̂.
A general result from quantum mechanics is that the position q̂ and momentum p̂ operators do not

commute. In fact, the commutator of these two quantities is found to be

[q̂, p̂] = i~1 .

However, the quantities q and p are ordinary variables in classical mechanics and do commute. When one
performs a mapping of operators from a Hilbert space H into c-valued functions of the phase space of
classical mechanics it is necessary to preserve the non-commutativity of the operators of the Hilbert space
H. The introduction of an operator that maintains the ordering of the quantum mechanical operators in
phase space is fundamental to the quasi-distribution formalism. This operator is the ?-product and it is
defined as

Wf̂ (q, p) ? Wĝ(q, p) := Wf̂ ĝ(q, p) , (1.3.1)

and it has the properties of associativity and non-commutativity:

Wf̂ ? (Wĝ ? Wĥ) = (Wf̂ ? Wĝ) ? Wĥ (1.3.2)

Wf̂ ? Wĝ 6= Wĝ ? Wf̂ (1.3.3)

For the case of a particle in the (q, p) phase space, we can write the star product of equation (1.3.1) in
a closed form [33]

Wf̂ ĝ(q, p) = Wf̂ (q, p) exp

(
−i~

2
Γ

)
Wĝ(q, p) (1.3.4)

with

Γ :=

←−
∂

∂p

−→
∂

∂q
−
←−
∂

∂q

−→
∂

∂p
, (1.3.5)
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where
←−
∂
∂si

represents an operation on the function to the left of Γ. However, an advantageous representation
of the ?-product was introduced by Bopp in [3]. Given two operators f̂ and ĝ in a Hilbert space H, the
?-product of equation (1.3.1) is written as

Wf̂ (q, p) ? Wĝ(q, p) = f(Q,P )Wĝ(q, p) (1.3.6)

where

Q := q +
i~
2

∂

∂p
, P := p− i~

2

∂

∂q
. (1.3.7)

and f(Q,P ) is a differential operator that depends on the quantum mechanical operator f̂ only and acts
on the Wigner symbol Wĝ(q, p). Moreover, equation (1.3.6) is an example of the correspondence rules in
the (q, p) phase space.

Once we have defined the ?-product, we can introduce the Moyal bracket

{Wf̂ ,Wĝ}M := Wf̂ ? Wĝ −Wĝ ? Wf̂ (1.3.8)

which is defined as the symbol of the commutator

W[f̂ ,ĝ] := Wf̂ ? Wĝ −Wĝ ? Wf̂ . (1.3.9)

The evolution in quantum mechanics is given by the von Neumann equation

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
, (1.3.10)

where Ĥ is the Hamiltonian of the system and ρ̂ is the density matrix. Multiplying equation (1.3.10) by
ŵ(q, p) and tracing it, one finds that the exact evolution of a quantum particle in phase space is

i~
∂

∂t
Wρ̂ = {WĤ ,Wρ̂}M . (1.3.11)

The correspondence rules defined in equation (1.3.6) have been extended to the context of angular
momentum (SU(2) systems) [10, 33] and I show in this thesis that these rules can be written in the
context of SU(3) systems.

1.4 What this Thesis is about
This thesis is about correspondence rules SU(3) Wigner functions. It represents a partial extension of

known results for SU(2) Wigner functions.
The quantization kernel for SU(2) and SU(3) makes heavy use of tensor operators and coupling coef-

ficients (SU(2) and SU(3), respectively). The expression for this kernel is found in the literature [12, 14].
To obtain the correspondence rules one must multiply and decompose tensor operators. This is a more

technical aspect which involves recoupling coefficients. One must also obtain differential identities for
group functions. These technical steps are well-known for SU(2); the bulk of the work of my thesis is to
obtain various SU(3) coefficients in analytical form, and find the appropriate differential identities.

There is considerable literature on coupling and recoupling coefficients for SU(3). Unfortunately, none
of these results were readily usable because:
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• as there is no uniform convention for the sign of SU(3) states and matrix elements between those
states, the known analytical expressions for the required SU(3) coupling and recoupling coefficients
were tabulated using a phase convention not immediately compatible with the current calculations,

• the form of the appropriate SU(3) group functions are not widely known,

• the form of the differential operators depend on the factorization of SU(3) transformation.

In view of the above, this thesis is organized as follows. I will first review some features of angular
momentum systems: the Wigner function, its evolution, the ?-product and correspondence rules.

Next, I will discuss the evaluation of SU(3) coupling coefficients, with emphasis on the construction of
tensor operators and other coefficients needed in my thesis.

Finally, I will discuss the path to correspondence rules in SU(3), and possible future applications.
There is a considerable amount of useful background material that usually comes with this topic. This

includes density matrix theory, tensor operators, etc. This important material has been placed in several
appendices, along with complementary material, so as to allow easier reading of the thesis.
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Chapter 2

Review of SU(2) Clebsch-Gordan
Coefficients and Spherical Tensor Operators

In quantum mechanics one must often combine systems, especially when dealing with multiparticle
systems. The simplest and best known example is the combination of angular momenta. Suppose we have
two particles with angular momentum observables L̂1

i and L̂2
i . These are the operators corresponding to

projections of each angular momentum vector. Since the first and second particles are independent, the
states of the systems are simple products |L1m1〉|L2m2〉, where the individual states are eigenstates of L̂kz
and (L̂kz)

2 + (L̂kx)
2 + (L̂ky)

2 := (Lk)2. Moreover, L̂1
i acts only on the first state and L̂2

i on the second state

L̂1
i |L1m1〉|L2m2〉 = [Li|L1m1〉] |L2m2〉 , (2.0.1)

L̂2
i |L1m1〉|L2m2〉 = |L1m1〉 [Li|L2m2〉] . (2.0.2)

These definitions imply that [L1
i , L

2
k] = 0, i.e. all the operators acting on the first particle commute with

the operators acting on the second.
The states |L1m1〉|L2m2〉 are not eigenstates of the square of the total angular momentum Ĵ2 :=

(L1
x + L2

x)
2 + (L1

y + L2
y)

2 + (L1
z + L2

z)
2 operator.

To obtain the eigenstates of Ĵ2 we need to make a change of basis, and the coefficients for this change
of basis are called Clebsch-Gordan coefficients.

Because the procedure to obtain the Clebsch-Gordan coefficients is purely algebraic, the same procedure
can be used to couple, for instance, the spin and orbital angular momenta. The spin is an intrinsic
characteristic of some particles such as the electron, proton and neutron. Unlike the angular momentum
operators L̂x or L̂y or L̂z that can be written in terms of derivatives of spatial coordinates (r, θ, φ), the spin
operators act in a purely abstract space, emphasizing that they must commute with the spatial degrees of
freedom.

This section serves as good practice for the more complicated case of combining representations of
SU(3), and the construction of tensor operators for this algebra.

2.1 Recursion Relation for the Clebsch-Gordan coefficients
We start with the addition of the orbital angular momentum and the spin

Ĵ = Ŝ + L̂ . (2.1.1)
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where Ĵ has components

Ĵx = Ŝx + L̂x, Ĵy = Ŝy + L̂y, Ĵz = Ŝz + L̂z . (2.1.2)

The components of the operator Ĵ satisfy the commutation relations for angular momentum[
Ĵx, Ĵy

]
= i~Ĵz

[
Ĵy, Ĵz

]
= i~Ĵx

[
Ĵz, Ĵx

]
= i~Ĵy . (2.1.3)

Because the components of the operator Ĵ and the operator Ĵ2 commute we can choose a complete set
of eigenstates that are simultaneous eigenstates of Ĵ2 and one component of Ĵ . Traditionally, we choose
this component to be Ĵz. The operators Ĵ2 and Ĵz satisfy

Ĵ2 |J,mJ〉 = ~2J(J + 1) |J,mJ〉 Ĵz |J,mJ〉 = ~mJ |J,mJ〉 . (2.1.4)

where |J,mJ〉 are the simultaneous eigenstates, and J and mJ satisfy |S − L| ≤ J ≤ |S + L| and mJ =
−J,−J + 1, . . . , J − 1, J , respectively. In this manner, given the angular momentum J , there are 2J + 1
possible values for mJ , where the lowest is −J and the highest is +J . These eigenstates are linearly
expanded in function of the orbital angular momentum |L,mL〉 and spin |S,mS〉 eigenstates

|J,mJ〉 =
∑
mS ,mL

〈
S
mS

; L
mL

∣∣∣ J
mJ

〉
|S,mS〉 |L,mL〉 . (2.1.5)

The expansion coefficients
〈

S
mS

; L
mL

∣∣∣ J
mJ

〉
, also denoted by CJmJ

Sms;LmL
, are called Clebsch-Gordan coefficients.

Let us choose the state that has mJ = J , that is the highest eigenstate

|J, J〉 =
∑
mS ,mL

〈
S
mS

; L
mL

∣∣∣ JJ〉 |S,mS〉 |L,mL〉 . (2.1.6)

Now, the raising operator is defined as

Ĵ+ = Ĵx + iĴy (2.1.7)

and it can be decomposed into

Ĵ+ = Ŝ+ + L̂+ . (2.1.8)

This operator raises the quantum number mJ by one unit, that is for a given eigenstate |J,mJ〉 we find

Ĵ+ |J,mJ〉 = ~
√

(J +mJ + 1)(J −mJ) |J,mJ + 1〉 . (2.1.9)

Since the quantum number J is related to the eigenvalue J(J+1) of the operator Ĵ2, and since Ĵ+ commutes
with Ĵ2, the action of Ĵ+ on an eigenstate of Ĵ2 transforms it to another eigenstate of Ĵ2 as it was shown
in equation (2.1.9). In addition, the state |J, J〉 is killed by the operator Ĵ+

Ĵ+ |J, J〉 =
∑
mS ,mL

〈
S
mS

; L
mL

∣∣∣ JJ〉(Ŝ+ + L̂+

)
|S,mS〉 |L,mL〉 = 0 . (2.1.10)
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The application of the operators L̂+ and Ŝ+ on the states |L,mL〉 and |S,mS〉 follow the same form
of equation (2.1.9), but the spin operator only acts on the spin state |S,mS〉 and the orbital angular
momentum operator on the orbital state |L,mL〉. Using this assumption, equation (2.1.10) becomes∑

mS ,mL

〈
S
mS

; L
mL

∣∣∣ JJ〉√(S +mS + 1)(S −mS) |S,mS + 1〉 |L,mL〉

+
∑
mS ,mL

〈
S
mS

; L
mL

∣∣∣ JJ〉√(L+mL + 1)(L−mL) |S,mS〉 |L,mL + 1〉 = 0 . (2.1.11)

Hitting equation (2.1.11) with 〈L,M | 〈S,M ′| from the left and doing some mathematical manipulations,
it yields

〈
S
M ′

; L
M−1

∣∣∣ JJ〉 = −

√
(S +M ′)(S −M ′ + 1)

(L+M)(L−M + 1)

〈
S

M ′−1
; L
M

∣∣∣ JJ〉 . (2.1.12)

Now, let us set M ′ = m′ and M = m+ 1 and rewrite equation (2.1.12) as

〈
S
m′

; L
m

∣∣∣ JJ〉 = −

√
(S +m′)(S −m′ + 1)

(L+m+ 1)(L−m)

〈
S

m′−1
; L
m+1

∣∣∣ JJ〉 . (2.1.13)

These are recursion relations for the Clebsch-Gordan coefficients and it allows us to calculate consecutive
ratios for Clebsch-Gordan coefficients. Moreover, there is a normalization condition for the coefficients of
equation (2.1.13) ∑

mS ,mL

|
〈

S
mS

; L
mL

∣∣∣ J
mJ

〉
|2 = 1 , (2.1.14)

and this extra condition allows us to determine their final numerical values.

2.1.1 The Lowering Operator Ĵ−
Since we were able to calculate the Clebsch-Gordan coefficients for the highest state |J, J〉, we can

apply the lowering operator Ĵ−, which can be decomposed in the same manner as in equation (2.1.8), on
the highest state and find states with lower magnetic quantum number mJ . For instance, let us act Ĵ− on
the state |J, J〉:

Ĵ− |J, J〉 =
∑
mS ,mL

〈
S
mS

; L
mL

∣∣∣ JJ〉(L̂− + Ŝ−) |S,mS〉 |L,mL〉 . (2.1.15)

The action of the lowering operator on any state |K,mK〉 can be written in terms of factorials

K̂− |K,mK〉 = ~

√
(K +mK)!(K −mK + 1)!

(K −mK)!(K +mK − 1)!
|K,mK − 1〉 , (2.1.16)
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therefore, after some mathematical manipulations, equation (2.1.15) becomes

Ĵ− |J, J〉 =
∑
mS ,mL

〈
S
mS

; L
mL

∣∣∣ JJ〉{
√

(L+mL)!(L−mL + 1)!

(L−mL)!(L+mL − 1)!
|L,mL − 1〉 |S,mS〉

+

√
(S +mS)!(S −mS + 1)!

(S −mS)!(S +mS − 1)!
|L,mL〉 |S,mS − 1〉

}
, (2.1.17)

where we set ~ = 1. We can lower the highest state |J, J〉 with the operator
(
Ĵ−

)2

to obtain the states

|J, J − n〉 = (Ĵ−)n |J, J〉. After a few actions, one should be able to recognize that a general state is given
by

|J,mJ〉 =
∑
mL,mS

J−mJ∑
k=0

〈
S
mS

; L
mL

∣∣∣ JJ〉(J −mJ

k

)√(L+mL)!(L−mL + J −mJ − k)!

(L−mL)!(L+mL − J +mJ + k)!

×

√
(S +mS)!(S −mS + k)!

(S −mS)!(S +mS − k)!
|L,mL − J +mJ + k〉 |S,mS − k〉 , (2.1.18)

where mJ = J − n. Therefore, one can find the Clebsch-Gordan coefficients using the recursion relation
of equation (2.1.13) and construct the highest state |J, J〉, and then act on this state with the lowering
operator of equation (2.1.16) to find general states of the form of equation (2.1.18).

Example

Let us obtain the state |1, 1〉 by using equation (2.1.18). In order to find this state, we first choose
S = 1, L = 1 and notice that J = 1. This brings equation (2.1.18) to the form

|1, 1〉 =
〈

1
1
; 1

0

∣∣∣ 1
1

〉
|1, 0〉 |1, 1〉+

〈
1
0
; 1

1

∣∣∣ 1
1

〉
|1, 1〉 |1, 0〉 . (2.1.19)

The Clebsch-Gordan coefficients are found via the recursion relation of equation (2.1.13) and assuming
that the state |1, 1〉 should be normalized. Therefore,

〈
1
0
; 1

1

∣∣∣ 1
1

〉
=

1√
2

〈
1
1
; 1

0

∣∣∣ 1
1

〉
= − 1√

2
, (2.1.20)

and the state of equation (2.1.19) is

|1, 1〉 =
1√
2

(
|1, 1〉 |1, 0〉 − |1, 0〉 |1, 1〉

)
. (2.1.21)

We are able to find more states by using equation (2.1.18) or even the lowering operator. The other two
states are written as

|1, 0〉 =
1√
2

(
|1, 1〉 |1,−1〉 − |1,−1〉 |1, 1〉

)
|1,−1〉 =

1√
2

(
|1, 0〉 |1,−1〉 − |1,−1〉 |1, 0〉

)
. (2.1.22)

The states of equations (2.1.21) and (2.1.22) are orthonormal.
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2.2 Matrix Representation of Rotations

A rotation R̂(Ω) is obtained as

R̂(Ω) = e−iĴ ·Ω̂

= 1− i(ĴxΩ̂x + ĴyΩ̂y + ĴzΩ̂z) +
1

2!
(−i)2(ĴxΩ̂x + ĴyΩ̂y + ĴzΩ̂z)

2 + . . . (2.2.1)

A rotation does not change the length of a vector; this is reflected in the commutation relation[
R̂(Ω), Ĵ2

]
= 0. (2.2.2)

this leads to

Ĵ2R̂(Ω) |J,mJ〉 = R̂(Ω)Ĵ2 |J,mJ〉 = J(J + 1)R̂(Ω) |J,mJ〉 . (2.2.3)

Thus, the rotation R̂(Ω) does not change the quantum number J .
The rotation of equation (2.2.1) geometrically rotates the component Ĵz, so this operator will be

transformed into a linear combination of Ĵx, Ĵy and Ĵz. Finally, the eigenstates |J,mJ〉 of the original
operator Ĵz will no longer be eigenstates of the transformed operator R̂(Ω)ĴzR̂

†(Ω). The transformed
eigenstates R̂(Ω) |J,mJ〉 can be expanded as

R̂(Ω) |J,mJ〉 =
∑
J ′,m′J

|J ′,m′J〉 〈J ′,m′J | R̂(Ω) |J,mJ〉 =
J∑

m′J=−J

DJ
m′J ,mJ

(Ω) |J,m′J〉 (2.2.4)

where DJ
m′J ,mJ

(Ω) is a SU(2) Wigner D-function.
While it is possible to write the rotation R̂(Ω) in the form of equation (2.2.1), a more convenient form

of writing rotations was devised by Euler (see page 361 of [1]):

R̂(Ω) = e−iĴ ·Ω̂ = e−iαĴze−iβĴye−iγĴz (2.2.5)

where the triple (α, β, γ) are known as Euler angles. The Euler angles are complicated functions of the
(Ωx,Ωy,Ωz) and vice versa. The advantage of using this factorization is tied to the choice of basis states
|J,mJ〉: since Jz|J,mJ〉 = mJ |J,mJ〉, it follows that

〈J,m′J |R̂(Ω)|J,mJ〉 = 〈J,m′J |e−iαĴze−iβĴye−iγĴz |J,mJ〉 , (2.2.6)

= e−iαm
′
J 〈J,m′J |e−iβĴy |J,mJ〉e−iγmJ (2.2.7)

so that only the exponential of the simpler Jy matrix needs to be evaluated. In fact,

DJ
m′J ,mJ

(Ω) = 〈J,m′J |R̂(Ω)|J,mJ〉

:= e−iαm
′
JdJm′J ,mJ (β)e−iγmJ . (2.2.8)

There are several techniques to evaluate the rotation functions d(J)

m′J ,mJ
(β) and the simplest ones are also

tabulated [27].
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2.3 Spherical Tensor Operators

A unitary transformation of an operator Â is written as

Â′ = R̂(Ω)ÂR̂−1(Ω) , (2.3.1)

where by unitary we mean that R̂†(Ω) = R̂−1(Ω) and the expectation value of the operator Â in a basis
{|Φ〉} is conserved after a rotation R̂(Ω) in the transformed basis {|Φ′〉}. Mathematically, we can write

〈Φ| Â |Φ〉 = 〈Φ| R̂−1(Ω)R̂(Ω)ÂR̂−1(Ω)R̂(Ω) |Φ〉 , (2.3.2)

then

〈Φ| Â |Φ〉 = 〈Φ′| Â′ |Φ′〉 . (2.3.3)

The type of unitary transformation present in this chapter and chapter 3 is the SU(2) rotation, but for
chapter 5, I will present the SU(3) rotation, since that chapter is devoted to quasi distributions in SU(3).
There are types of operators called scalars which do not change under rotation R̂(Ω). Scalar operators
commute with the angular momentum operator Ĵ and are unchanged by equation (2.3.1). Different types
of operators, which have simple transformation properties under rotation, are called tensor operators. If
a set of operators T̂ kq , where q = −k,−k + 1, . . . , k − 1, k, transform among themselves under unitary
rotations according to the transformation law

R̂(Ω)T̂ (k)
q R̂−1(Ω) =

k∑
q′=−k

T̂
(k)
q′ D

(k)
q′,q(Ω) , (2.3.4)

they are said to be irreducible tensor operators as defined on page 368 of [1] . The coefficients D(k)
q′,q(Ω)

of this linear expansion are the matrix elements of the irreducible representation of the rotation group of
dimension 2k + 1.

Now, suppose we have an infinitesimal rotation

R̂(Ω) = e−iĴ ·Ω̂ ≈ 1− iĴ · Ω̂ . (2.3.5)

Using this approximation on the left hand side of equation (2.3.4) and keeping only the linear terms in Ω,
we get

R(Ω)T̂ (k)
q R−1(Ω) =

(
1− iĴ · Ω̂

)
T̂ (k)
q

(
1 + iĴ · Ω̂

)
= T̂ (k)

q − iΩ ·
[
Ĵ , T̂ (k)

q

]
. (2.3.6)

Now, we can evaluate the right hand side of equation (2.3.4) with the help of the approximation of equation
(2.3.5)

R(Ω)T̂ (k)
q R−1(Ω) =

k∑
q′=−k

T̂
(k)
q′ 〈k, q

′|
(
1− iĴ · Ω̂

)
|k, q〉

= T̂ (k)
q − iΩ̂ ·

k∑
q′=−k

T̂
(k)
q′ 〈k, q

′| Ĵ |k, q〉 , (2.3.7)
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and compare it with equation (2.3.6) to obtain

[
Ĵ , T̂ (k)

q

]
=

k∑
q′=−k

T̂
(k)
q′ 〈k, q

′| Ĵ |k, q〉 . (2.3.8)

Equation (2.3.8) is valid for all three components of the total angular momentum. For instance, for the z
component we find [

Ĵz, T̂
(k)
q

]
=

k∑
q′=−k

T̂
(k)
q′ 〈k, q

′| Ĵz |k, q〉 = qT̂ (k)
q , (2.3.9)

where ~ was omitted from equation (2.3.9). Instead of using the Ĵx and Ĵy components of the total angular
momentum in equation (2.3.8), let us use the raising Ĵ+ and lowering Ĵ− operators[

Ĵ±, T̂
(k)
q

]
=

√(
k ∓ q

)(
k ± q + 1

)
T̂

(k)
q±1 (2.3.10)

The commutation relations of equations (2.3.9) and (2.3.10) encapsulate the properties of irreducible tensor
operators under infinitesimal rotations.

Example: An application of the commutation relations of angular momentum and tensor
operators

The components of a vector ~V obey the following commutation relations with the components of the
total angular momentum operator Ĵ [

Ĵi, V̂j

]
= iεijkV̂k . (2.3.11)

Let us define the q = 0 component of the rank 1 tensor operator to be

T̂
(1)
q=0 = V̂z . (2.3.12)

We can now use the commutation relations of equation (2.3.10) to obtain

T̂
(1)
q=1 = − 1√

2
V̂+

T̂
(1)
q=−1 =

1√
2
V̂− (2.3.13)

Let us make a connection between the components of some tensor operators T̂ (1)
q , where q = −1, 0, 1,

and the spherical harmonics YL,M(θ, φ). Let us assume

V̂+ = r̂1 , V̂0 = r̂0 , V̂− = r̂−1 (2.3.14)

and then

r̂1 = x+ iy, r̂0 = z, r̂−1 = x− iy . (2.3.15)
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Now, let us transform these coordinates into spherical coordinates and substitute them into equations
(2.3.12) and (2.3.13)

T̂
(1)
q=1 = −r sin θ√

2
eiφ, T̂

(1)
q=0 = r cos θ, T̂

(1)
q=−1 =

r sin θ√
2

e−iφ . (2.3.16)

Recalling that the spherical harmonics for L = 1 are given by

Y1,1(θ, φ) = −1

2

√
3

2π
eiφ sin(θ), Y1,0(θ, φ) =

1

2

√
3

π
cos(θ), Y1,−1(θ, φ) =

1

2

√
3

2π
e−iφ sin(θ) , (2.3.17)

then

T̂
(1)
q=1 =

√
4π

3
rY1,1(θ, φ), T̂

(1)
q=0 =

√
4π

3
rY1,0(θ, φ), T̂

(1)
q=−1 =

√
4π

3
rY1,−1(θ, φ) (2.3.18)

or more generally,

rq =

√
4π

3
rY1,q(θ, φ) (2.3.19)

2.4 The Wigner-Eckart theorem
The Wigner-Eckart theorem is an important result which states that a matrix element can be factorized

as1

〈α′, j′,m′| T̂ kq |α, j,m〉 =
〈α′, j′ ‖T̂ k‖α, j〉√

2j′ + 1

〈
j
m

; k
q

∣∣∣ j′m′〉 , (2.4.1)

where 〈α′, j′ ‖T̂ k‖α, j〉 is a reduced matrix element of the tensor operator T̂ kq . One may notice that this
reduced matrix element does depend only on the angular momentum of the two states, but also on the
rank k of the tensor operator and other parameters that are represented by α′ and α.

Example: The three dimensional Harmonic Oscillator

Let us assume that the wave functions that describe the three dimensional Harmonic Oscillator are
already known. Now, define the state

|n, `,m〉 = Rn,`Y`,m(θ, φ) , (2.4.2)

where Y`,m(θ, φ) are the spherical harmonics and Rn,` are the radial solutions (properly normalized) for the
3-d harmonic oscillator. Let us look at matrix elements of the the type

〈n′`′m′|T̂ kq |n`m〉 . (2.4.3)

For the purpose of this discussion, we will use the quantum numbers in the table below for the wave
functions in equation (2.4.2). These quantum numbers were chosen to represent the independence of the

1Details on the derivation of this theorem can be found in [1].
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reduced matrix elements on the quantum numbers m and m′.

Table 2.1: Quantum numbers for the 3-D Harmonic Oscillator

Quantum numbers
n ` m n′ `′ m′

4 4 4 4 4 2
4 4 3 4 4 1
4 4 1 4 4 -1
4 4 0 4 4 -2

The tensor operator that will be used in this example is

T̂ 2
2 = Q̂2

2 = (x+ iy)2 = 4

√
2π

15
r2Y2,2(θ, φ) . (2.4.4)

Let us start with the substitution of the information of the first row of table (2.1) into equation (2.4.1)

〈4, 4, 4| Q̂2
2 |4, 4, 2〉 =

〈4, 4 ‖Q̂2‖4, 4〉
3

〈
4
2
; 2

2

∣∣∣ 4
4

〉
. (2.4.5)

The matrix element 〈4, 4, 4| Q̂2
2 |4, 4, 2〉 is given by

〈4, 4, 4| Q̂2
2 |4, 4, 2〉 =4

√
2π

15

∫ ∞
0

r4R2
4,4(r)dr

×
∫ 2π

0

∫ π

0

(
Y4,4(θ, φ)

)∗
Y2,2(θ, φ)Y4,2(θ, φ)dθdφ (2.4.6)

〈4, 4, 4| Q̂2
2 |4, 4, 2〉 = − 54

11
√

7
. (2.4.7)

By solving for the reduced matrix element, one can find that

〈4, 4 ‖Q̂2‖4, 4〉 = −27

√
30

77
. (2.4.8)

As mentioned before, the reduced matrix element does not depend on the quantum numbers m and m′.
Therefore, the reduced matrix element will be the same for every row (pair of states) in table (2.1).

Example

Let us show that the operator represented by

Â`k,q =
∑
mm′

〈
`
m

; `
−m′

∣∣∣ kq〉(−1)`−m
′ |`m〉 〈`m′| (2.4.9)
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is a tensor operator. This is done by setting ` = 1 and k = 0, 1 and 2.
For ` = 1 and k = 0, the equation above gives the following operator

Â1
0,0 =

1√
3

(
|1,−1〉 〈1,−1|+ |1, 0〉 〈1, 0|+ |1, 1〉 〈1, 1|

)
(2.4.10)

Let us check the commutation relations that characterize the tensor operators, which are written in
equations (2.3.9) and (2.3.10): [

Ĵz, Â
1
0,0

]
= ĴzÂ

1
0,0 − Â1

0,0Ĵz = 0 (2.4.11)

and [
Ĵ±, Â

1
0,0

]
= 0 (2.4.12)

Therefore, this tensor operator has rank zero and is a scalar. Using the Wigner-Ekcart theorem, we can
evaluate the reduced matrix element to be

〈1 ‖Â0‖1〉 =

√
3 〈1, 1| Â1

0,0 |1, 1〉〈
0
0
; 1

1

∣∣1
1

〉 = 1 . (2.4.13)

Table (2.2) summarizes the tensor operators and reduced matrix elements for ` = 1 and k = 0, 1 and
2. As one can notice, the reduced matrix element does only depend on the values of k and `.

Table 2.2: Spherical Tensor Operator and Reduced Matrix Elements.

(`,k,q) Â`k,q 〈` ‖Âk‖`〉
(0,0,0) |0, 0〉 〈0, 0| 1
(1,0,0) 1√

3

(
|1, 1〉 〈1, 1|+ |1, 0〉 〈1, 0|+ |1,−1〉 〈1,−1|

)
1

(1,1,0) 1√
2

(
|1, 1〉 〈1, 1| − |1,−1〉 〈1,−1|

)
−
√

3

(1,1,1) − 1√
2

(
|1, 1〉 〈1, 0| − |1, 0〉 〈1,−1|

)
−
√

3

(1,1,-1) 1√
2

(
|1, 0〉 〈1, 1|+ |1,−1〉 〈1, 0|

)
−
√

3

(1,2,0) 1√
6
|1, 1〉 〈1, 1|

√
5

(1,2,1) 1√
2

(
|1, 0〉 〈1,−1| − |1, 1〉 〈1, 0|

) √
5

(1,2,2) |1, 1〉 〈1,−1|
√

5

(1,2,-1) 1√
2

(
|1, 0〉 〈1, 1| − |1,−1〉 〈1, 0|

) √
5

(1,2,-2) |1,−1〉 〈1, 1|
√

5
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Chapter 3

Quasi-distributions in SU(2)

3.1 Evolution of Quantum Systems in the Wigner Function For-
malism

The motivation is in obtaining the evolution of a particle under the action of a Hamiltonian Ĥ. For
this evolution, there are two popular representations in quantum mechanics: The Heisenberg picture and
Schrödinger picture. In the first scheme, the operators associated with meaningful physical quantities
evolve over time, say Â = Â(t), while the density matrix ρ̂ remains unchanged in time. In contrast, the
Schrödinger picture is based on the evolution of the density matrix over time, ρ̂ = ρ̂(t), while the operators
remain constant in time [23].

3.2 Wigner Function of Finite Dimensional Systems
Let us consider a Hilbert spaceH of dimension (2S+1), that carries a unitary irreducible representation

of the group SU(2) and is spanned by the orthonormal basis {|S,m〉 ,m = −S, ...S}. The operators
{Ŝi, i = x, y, z} are generators of the algebra su(2). The quantum states of this system are chosen to be
the simultaneous eigenstates of the operators Ŝz and Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z as it was presented in chapter 2

Ŝz |S,m〉 = m |S,m〉 , Ŝ2 |S,m〉 = S(S + 1) |S,m〉 . (3.2.1)

We now introduce the SU(2) quantization kernel [14]

ŵ(Ω) =

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

T̂ SL,MY
∗
L,M(Ω) Ω := (θ, φ) , (3.2.2)

where Y ∗L,M(Ω) are the spherical harmonics and T̂ SL,M are irreducible tensor operators defined by

T̂ SL,M =

√
2L+ 1

2S + 1

S∑
m,m′=−S

〈
S

m
;
L

M

∣∣∣∣ Sm′
〉
|S,m′〉 〈S,m| (3.2.3)

where L = 0, 1, ..., 2S,M = −L, ..., L and the coefficients
〈
S
m

; L
M

∣∣ S
m′

〉
were already introduced in chapter

2. These tensor operators form an orthogonal basis of matrices of size (2S + 1) × (2S + 1) that act on
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the states of the Hilbert space defined previously in this section. Following equation (2.3.4), the tensor
operators of equation (3.2.3) are transformed under similarity operation by the operator

R̂z(φ)R̂y(θ)R̂z(−φ) = D̂(θ, φ) = exp
[
− 1

2
θ(Ŝ+e

−iφ − Ŝ−eiφ)
]

(3.2.4)

as

D̂(θ, φ)T̂ SL,MD̂
†(θ, φ) =

L∑
M ′=−L

DL
M ′,M(θ, φ)T̂ SL,M ′ (3.2.5)

where D̂(θ, φ) is the displacement operator and DL
M ′,M is a Wigner D-function, which are defined as

DL
M ′,M = 〈L,M ′| D̂(θ, φ) |L,M〉 , (3.2.6)

Therefore, one can write the Wigner symbol for an operator f̂ acting in this space as

Wf̂ (Ω) = Tr
(

ŵ(Ω)f̂
)

(3.2.7)

and the Wigner function for a density operator ρ̂ = |ψ〉 〈ψ| as

Wρ̂(Ω) = Tr(ŵ(Ω)ρ̂) (3.2.8)

where ŵ is given in equation(3.2.2).
As an example, consider the SU(2) coherent state |θ0, φ0〉 defined by the action of the displacement

operator on the highest weight state

|θ0, φ0〉 = D̂(θ0, φ0) |S, S〉 (3.2.9)

and it can be brought to the form

|θ0, φ0〉 =
S∑

m=−S

Λm(θ0, φ0) |S,m〉 (3.2.10)

with

Λm(θ0, φ0) =

√
(2S)!

(S −m)!(S +m)!

(
sin

θ0

2

)S−m(
cos

θ0

2

)S+m

ei(S−m)φ0 (3.2.11)

Thus, the density operator for a coherent state can be constructed as ρ̂ = |θ0, φ0〉 〈θ0, φ0| or explicitly

ρ̂ =
S∑

m′,m=−S

Λm(θ0, φ0)Λ∗m′(θ0, φ0) |S,m〉 〈S,m′| (3.2.12)
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As an example, we can construct the Wigner function for a coherent state using equations (3.2.2),
(3.2.8) and (3.2.12). For simplicity, let us choose S = 1 and (θ0, φ0) = (π

2
, 0). The matrix representation

of the density operator becomes

ρ̂ =
1

4

 1
√

2 1√
2 2

√
2

1
√

2 1

 (3.2.13)

and the Wigner function Wρ̂(Ω) is written as

Wρ̂(Ω) =
1

48

(
6
√

10 sin2 θ cos 2φ+ 24
√

2 sin θ cosφ− 3
√

10 cos 2θ −
√

10 + 16
)

(3.2.14)

and graphically depicted in figure (3.1).

Figure 3.1: Wigner function of the quasi-distribution of equation (3.2.14).

3.2.1 Example: The Lipkin-Meshkov-Glick Model
This model was first proposed by Lipkin et al [16] in the context of nuclear physics. However, applica-

tions of this model have been introduced in the context of entanglement and phase transitions [19, 28].
The Hamiltonian for the LMG model is given by

Ĥ = −gŜx −
1

2S
Ŝ2
z , (3.2.15)

here, g is a parameter. Let us choose g = 1 for simplicity and use the coherent states defined in equation
(3.2.10).

The evolution of a coherent state |θ0, φ0〉 under the Hamiltonian of equation (3.2.15) is given by

|ψ(t)〉 = e−iĤt |θ0, φ0〉 (3.2.16)

and the expectation value of the operator Ŝx is written as

〈ψ(t)| Ŝx |ψ(t)〉 = 〈θ0, φ0| eiĤtŜxe−iĤt |θ0, φ0〉 . (3.2.17)

By locating the coherent state at the equator of the sphere
∣∣θ0 = 1

2
π, φ0 = 0

〉
and choosing the spin

variable to be S = 5, I was able to evaluate the exact evolution of equation (3.2.17) and produce figure
(3.2).
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Figure 3.2: Expectation value of Sx calculated via quantum mechanics for S = 5 and a coherent state
located at the equator

∣∣θ0 = 1
2
π, φ0 = 0

〉
.

Now, using the Wigner function formalism, it is possible to describe the same system using the tools
of statistical mechanics in phase space. First, let us construct the density operator

ρ̂ = |ψ(t)〉 〈ψ(t)| = e−iĤt |θ0, φ0〉 〈θ0, φ0| eiĤt . (3.2.18)

Now, it is possible to calculate the Wigner function of this density operator as

Wρ̂(θ, φ) = Tr(ŵ(θ, φ)ρ̂) =
∑
q

〈S, q| ŵ(θ, φ)e−iĤt |θ0, φ0〉 〈θ0, φ0| eiĤt |S, q〉 . (3.2.19)

Using equations (3.2.2) and (3.2.10), it is possible to rewrite equation (3.2.19) as

Wρ̂(θ, φ; t) =

√
4π

2S + 1

2S∑
L=0

√
2L+ 1

2S + 1

L∑
M=−L

Y ∗LM(Ω)f(L,M, t) (3.2.20)

where

f(L,M, t) =
∑

q,q′,µ,µ′

Λµ(θ0, φ0)Λ∗q′(θ0, φ0) 〈S, µ′| e−iĤt |S, µ〉 〈S, q′| eiĤt |S, q〉
〈
S

µ′
;
L

M

∣∣∣∣Sq
〉

. (3.2.21)

The symbol for the operator Ŝx is [14]

WŜx
(θ, φ) =

√
S(S + 1) sin θ cosφ (3.2.22)

and the expectation value of this operator, which is time dependent since the Wigner function of equation
(3.2.20) is time dependent, in phase space is calculated via integration

〈Ŝx〉 =
2S + 1

4π

∫ π

0

∫ 2π

0

dφdθWŜx
(θ, φ)Wρ̂(θ, φ; t) . (3.2.23)

By substituting equations (3.2.20) and (3.2.22) into equation (3.2.23) and after some mathematical effort,
it is possible to find a final expression for the expectation value of the operator Ŝx

〈Ŝx〉 =

√
S(S + 1)

4

2S∑
L=0

(2L+ 1)
[ f(L, 1, t)√

L(L+ 1)

∫ 1

−1

dx
√

1− x2P 1
L(x)

+
√
L(L+ 1)f(L,−1, t)

∫ 1

−1

dx
√

1− x2P−1
L (x)

]
, (3.2.24)
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where the functions P 1
L(x) are the famous associate Legendre Polynomials.

The expectation value of the operator Ŝx over time is shown in figure (3.3) for a spin number S = 5.
As one can see, this plot is exactly the same as the graphic of figure (3.2).

Figure 3.3: Expectation value of the operator Ŝx via Wigner function formalism
.

One can compare equations (3.2.17) and (3.2.24). Whereas the former requires the evaluation of a
(2S + 1) × (2S + 1) matrix, the latter is a sum from 0 to L = 2S of integrals which does not depend on
the size (2S + 1) of the system. This illustrates how phase space methods become powerful tools in the
limit of large S, i.e. in the semi-classical limit.

3.2.2 The ?-Product and Correspondence Rules in SU(2)

The correspondence rules were introduced in chapter 1 in the context of infinite-dimensional Hilbert
space of harmonic oscillator systems. Although the concept of these rules remains the same as stated
in chapter 1, the finite and (q, p) systems are different and therefore, the correspondence rules for finite
dimensional systems will differ from the (q, p) counterpart.

For spin systems, Klimov and Espinoza [10] found the ?-product

WÂB̂(θ, φ) := WÂ(θ, φ) ? WB̂(θ, φ)

=
√

2S + 1
∑
j

ajF̃
−1(L2)(Ŝ+(j)F̃ (L2)WÂ(θ, φ))(Ŝ−(j)F̃ (L2)WB̂(θ, φ)) (3.2.25)

where F̃ (L2) is a function of the Casimir L2 operator on the sphere. It acts on the Spherical Harmonics
functions YLM(θ, φ) as it follows

F̃ (L2)YLM(θ, φ) = F (L)YLM(θ, φ), (3.2.26)

with F (L) =
√

(2S + L+ 1)!(2S − L)!. The expansion coefficients are easily calculated as

aj =
(−1)j

j!(2S + j + 1)!
. (3.2.27)

In addition, Klimov and Espinoza introduced the symbolic powers Ŝ±(j) as

Ŝ±(j) =

j−1∏
k=0

(
k cot θ − ∂

∂θ
∓ i

sin θ

∂

∂φ

)
. (3.2.28)
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In chapter 5, I derive the ?-product for finite systems in SU(3) and remarkably this product has a form
very similar to the one introduced in equation (3.2.25).

3.2.3 Example
Let us give an application of the correspondence rules. For simplicity, let us choose the raising Ŝ+ and

lowering Ŝ− operators to be Â and B̂, respectively. The Wigner symbols of these operators are [10]

WŜ+
(θ, φ) =

√
S(S + 1)eiφ sin θ

WŜ−
(θ, φ) =

√
S(S + 1)e−iφ sin θ (3.2.29)

These symbols can be expressed in terms of the Spherical Harmonics YLM(θ, φ):

WŜ+
(θ, φ) = −

√
8π

3
S(S + 1)Y1,1(θ, φ)

WŜ−
(θ, φ) =

√
8π

3
S(S + 1)Y1,−1(θ, φ) (3.2.30)

and due to the property of the operator F̃ (L2) given in equation (3.2.26), we can find

F̃ (L2)Y1,M(θ, φ) = F (1)Y1,M(θ, φ) . (3.2.31)

It is possible now to write equation (3.2.25) in terms of the Wigner symbols of the raising and lowering
operators

WŜ+
(θ, φ) ? WŜ−

(θ, φ) =
√

2S + 1F 2(1)F̃−1(L2)
[WŜ+

(θ, φ)WŜ−
(θ, φ)

(2S + 1)!
−

Ŝ+(1)WŜ+
(θ, φ)Ŝ−(1)WŜ−

(θ, φ)

(2S + 2)!

]
(3.2.32)

which is an example of correspondence rules, since one can substitute the right hand side of this equation
by an operator that acts on the symbol WŜ−

(θ, φ).
After some mathematical effort on equation (3.2.32), one can find

WŜ+
(θ, φ) ? WŜ−

(θ, φ) =

√
S(S + 1)

2

[4
√
S(S + 1)

3
+ 2 cos θ −

√
(2S + 3)(2S − 1)(cos2 θ − 1

3
)
]

(3.2.33)

Let us now choose S = 3 to obtain

WŜ+
(θ, φ) ? WŜ−

(θ, φ) = 8 + 2
√

3 cos θ − 3
√

15(cos2 θ − 1

3
) (3.2.34)

The next step is to compare equation (3.2.34) to the direct calculation of WŜ+Ŝ−
(θ, φ), which is written as

WŜ+Ŝ−
(θ, φ) = Tr

(
ŵ(θ, φ)Ŝ+Ŝ−

)
(3.2.35)

and easily evaluated resulting in

WŜ+Ŝ−
(θ, φ) = 8 + 2

√
3 cos θ − 3

√
15(cos2 θ − 1

3
) . (3.2.36)
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This expression is exactly the same result of equation (3.2.34).
Klimov and Espinoza point out that there is another viable approach to find the expression of equation

(3.2.34) because we chose the raising and lowering operators to evaluate equation (3.2.25). Since the
product Ŝ+Ŝ− is expanded as

Ŝ+Ŝ− = (Ŝx + iŜy)(Ŝx − iŜy)
= Ŝ2

x + Ŝ2
y + Ŝz (3.2.37)

and the Casimir L2 operator written as

L2 = Ŝ2
x + Ŝ2

y + Ŝ2
z , (3.2.38)

one can express the product Ŝ+Ŝ− as

Ŝ+Ŝ− = L2 − Ŝ2
z + Ŝz (3.2.39)

and find the Wigner symbol of the product

WŜ+Ŝ−
(θ, φ) = WL̂2(θ, φ)−WŜ2

z
(θ, φ) +WŜz

(θ, φ) . (3.2.40)

The expressions for the symbols on the right hand side of equation (3.2.40) are

WL2(θ, φ) = S(S + 1)

WŜ2
z
(θ, φ) =

1

2

√
S(S + 1)(2S + 3)(2S − 1)(cos2 θ − 1

3
) +

S(S + 1)

3

WŜz
(θ, φ) =

√
S(S + 1) cos θ (3.2.41)

and by choosing S = 3 we recover the expressions of equation (3.2.34).
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Chapter 4

Some results on SU(3) Clebsch-Gordan
Coefficients and Tensor Operators

In chapter 2, I showed the importance of the Clebsch-Gordan coefficients and tensor operators in the
construction of the quantization kernel for SU(2). The same concepts are again important in SU(3). This
chapter is dedicated to the construction of the SU(3) Clebsch-Gordan coefficients and some examples with
particular emphasis on constructing tensors and other coefficients directly relevant to this thesis.

This section is based on a forthcoming paper which I contributed. The basic algorithm was developed
by Dr. de Guise a few years ago and my task was to verify the details and implement it with application
to correspondence rules with emphasis on symbolic rather than numerical results.

4.1 Basis states in SU(3)
SU(3) states are constructed following Rowe et al in [20] where these states are obtained by coupling

three SU(2) states. The generators of SU(3) are defined as

Ĉij = â†i1âj1 + â†i2âj2 (4.1.1)

where i, j = 1, 2, 3 and the operators satisfy the commutation relations
[
Ĉij, Ĉk`

]
= δjkĈi` − δi`Ĉkj.

We can find two diagonal operators Ĥ1 and Ĥ2 that act diagonally like Ĵz in the theory of angular
momentum (see equation (2.1.4))

Ĥ1 = Ĉ11 − Ĉ22 Ĥ2 = Ĉ22 − Ĉ33 . (4.1.2)

The remaining operators are classified as raising and lowering operators

Table 4.1: Generators of the su(3) algebra.

Raising Lowering Diagonal
Ĉ13 Ĉ21 Ĥ1

Ĉ12 Ĉ31 Ĥ2

Ĉ23 Ĉ32
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These generators are displayed in the root diagram as shown in figure (4.1).

Figure 4.1: The su(3) root diagram that shows the two fundamental weights α1 and α2 and the eight
generators of this algebra.

This diagram encapsulates important properties of the commutation relations: to each Ĉij is associated
a vector as shown. If the sum of two of these is another vector of the root diagram, then [Ĉij, Ĉk�] �= 0; if the
sum is not another vector, then [Ĉij, Ĉk�] = 0. Thus, for instance, one immediately sees that [Ĉ13, Ĉ23] = 0

since the vectors α1 + α2 and α2 associated with Ĉ13 and Ĉ23 respectively do not add to another vector in
the diagram. On the other hand, [Ĉ12, Ĉ23] will be proportional to Ĉ13 since the vector sum of α1 + α2 is
precisely the vector associated with Ĉ13.

For fixed i, one writes the states of the su(2) algebra in terms of two harmonic oscillator creation
operators {â†i1, â

†
i2} acting on the vacuum state |0〉

|simi〉 =
(â†i1)

si+mi(â†i2)
si−mi√

(si +mi)!(si −mi)!
|0〉 . (4.1.3)

One can also define an su(2) algebra that is spanned by

B̂rs =
∑
i

â†irâis (4.1.4)

These B̂rs operators commute with the Ĉij operators of equation (4.1.1), and the su(3) basis states are
constructed from su(2) states of the B̂rs operators.

The su(3) state |(λ, µ)ν1ν2ν3; I23〉, which is labeled by the three occupation numbers ν1, ν2 and ν3 and
constrained to the condition ν1 + ν2 + ν3 = λ+ 2µ, is found as the coupling of su(2) states [18]

|(λ, µ)ν; I〉 : = |(λ, µ)ν1, ν2, ν3; I〉

=
∑

m1,m2
m3,N

〈
1
2
ν3

m3
;

1
2
ν2

m2

∣∣∣ I23
N

〉〈
I23
N
;
1
2
ν1
m1

∣∣∣ 1
2
λ

1
2
λ

〉 ∣∣1
2
ν1m1

〉 ∣∣1
2
ν2m2

〉 ∣∣1
2
ν3m3

〉
(4.1.5)

where the expansion coefficients are SU(2) Clebsch-Gordan coefficients and for convenience I write the
components of this state in a short notation ν = (ν1ν2ν3). Moreover, the states of equation (4.1.5) are
eigenstates of the diagonal operators of equation (4.1.2); the eigenvalues are known as the weight of the
state, and this weight is just (ν1 − ν2, ν2 − ν3). In addition, some weights may occur more than once (i.e.
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degenerate eigenvalues). To distinguish states having the same weight, one may further specify an SU(2)
angular momentum as the states of equation (4.1.5) are also states of good “angular momentum”, with the
su(2)⊕ u(1) subalgebra spanned by the operators {Ĉ23, Ĉ32, Ĥ1, Ĥ2}.

All the states of an su(2)⊕ u(1) multiplet possess the same occupation number ν1, but the states may
be degenerate in eigenvalues. This is shown in figure (4.2) where one can see that the states |(4, 2)431; 1〉
and |(4, 2)431; 2〉 have the same weight but their angular momenta are different. Degenerate states in the
weight diagram are represented as black circles with as many rings as many degenerate states.

Figure 4.2: The weight diagram for the irrep (4, 2).

The highest weight state is defined as the state killed by all the raising operators. One can verify that
this state has the general form

|(λ, µ)hws〉 =
∣∣(λ, µ)λ+ µ, µ, 0; 1

2
µ
〉

, (4.1.6)

and it is easily established that the sum of occupation numbers is λ+ 2µ. Since the operators Ĉij do not
change the total number of harmonic oscillator excitations in the system, all states in the irrep (λ, µ) will
have λ+ 2µ excitations.

4.2 Tensor Operators
To proceed with the evaluation of CG coefficients, it is useful to introduce the su(2) tensor operators

T̂L
M =

〈
1
2
(L+M)

1
2
(L+M)

;
1
2
(L−M)

− 1
2
(L−M)

∣∣∣ L
M

〉 (2L)!

(L+M)!(L−M)!
(Ĉ31)

L−M(Ĉ21)
L+M

=

√
(2L)!

(L+M)!(L−M)!
(Ĉ31)

L−M(C21)
L+M , (4.2.1)

The su(2) subalgebra is again spanned by {Ĉ23, Ĉ32, ĥ2}. A few tensors are given below:
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Table 4.2: Construction of SU(2) tensor operators in terms of SU(3) raising and lowering operators

L M T̂LM L M T̂LM

1 1 Ĉ2
21

3
2

3
2

Ĉ3
21

1 0
√

2Ĉ31Ĉ21
3
2

1
2

√
3Ĉ31Ĉ

2
21

1 −1 Ĉ2
31

3
2
−1

2

√
3Ĉ2

31Ĉ21

3
2
−3

2
Ĉ3

31

Table 4.3: Commutation relations between T̂ 1
1 and the operators of the su(2) subalgebra

T̂ 1
1

Ĥ2 2T̂ 1
1

Ĉ23 0

Ĉ32

√
2T̂ 1

0

From table (4.3), we can notice that the generator Ĥ2 corresponds to 2Ĵz. Meanwhile, Ĉ23 and Ĉ32 cor-
respond to the raising and lowering operators, respectively.This result can be compared with the definitions
of equations (2.3.9) and (2.3.10) of chapter 2 of this thesis.

We see that these SU(2) tensors of table (4.2) are polynomials in the SU(3) lowering operators. If one
operator acts on one state of the form given in equation (4.1.5), one will obtain a linear combinations of
states. For instance

Ĉ13 |(λ, µ)ν1, ν2, ν3; I〉 =
∑
I′

|(λ, µ)ν1 + 1, ν2, ν3 − 1; I ′〉

× 〈(λ, µ)ν1 + 1, ν2, ν3 − 1; I ′| Ĉ13 |(λ, µ)ν1, ν2, ν3; I〉 (4.2.2)

Now, let L = 1
2
p and let us consider the specific linear combination of operators and states∑

MI

〈
I
MI

; L
M

∣∣∣ J
MJ

〉
T̂LM |(Λ, µ)η1η2η3; I〉

= |(Λ, µ)η1 − 2L, η2 + L+MJ −MI , η3 + L−MJ +MI ; J〉

× 〈(Λ, µ)η1 − 2L; J ‖T̂L‖(Λ, µ)η1; I〉√
2J + 1

, (4.2.3)

where J and MJ are fixed and J is one of the coupling J + I, J + I − 1, . . . , |I − J | and MI = 1
2
(η2 − η3).

In addition, the factor 〈(Λ, µ)η1−2L; J ‖T̂L‖(Λ, µ)η1; I〉 is a reduced matrix element and the analytical
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form of this element is [18]

〈(λ, µ)λ+ µ− p− 2k; J ′ ‖T̂ k‖(λ, µ)λ+ µ− p; J〉

= (2J + 1)
√

2k + p+ 1(−1)
1
2

(µ+p)+k+J ′
{

k 1
2
p k + 1

2
p

1
2
µ J ′ J

}
×
〈(λ, µ)λ+ µ− p− 2k; J ′ ‖T̂ k+ 1

2
p‖(λ, µ)λ+ µ; 1

2
µ〉

〈(λ, µ)λ+ µ− p; J ‖T̂ 1
2
p‖(λ, µ)λ+ µ; 1

2
µ〉

(4.2.4)

where

〈(λ, µ)λ+ µ− p; J ‖T̂
1
2
p‖(λ, µ)λ+ µ; 1

2
µ〉

= (−1)(p−2J+µ)/2

√
(2J + 1)(λ+ µ+ 1)!λ!p!

(λ− J + 1
2
(µ− p))!(λ+ J + 1

2
(µ− p) + 1)!

. (4.2.5)

Also, the factor
{

k 1
2
p k + 1

2
p

1
2
µ J ′ J

}
in equation (4.2.4) is a 6-j symbol. The action of the operator of

equation (4.2.3) on a specific state shifts this state down on the weight diagram by p layers to a specific
state instead of a linear combination of states.

4.2.1 Example
Let us choose the irrep (λ, µ) = (2, 1). The weight diagram of this irrep is shown in figure (4.3).

Suppose we start with the states |(2, 1)2ν2ν3; I〉 illustrated in red on the diagram, and wish to reach the
target state |(2, 1)022; 1〉. This requires going down two layers on the diagram so p = 2 and L = p/2 = 1.
We can expand the left hand side of equation (4.2.3) and find〈

1
1
; 1
−1

∣∣∣ 1
0

〉
T̂ 1
−1 |(2, 1)220; 1〉+

〈
1
0
; 1

0

∣∣∣ 1
0

〉
T̂ 1

0 |(2, 1)211; 1〉+
〈

1
−1

; 1
1

∣∣∣ 1
0

〉
T̂ 1

1 |(2, 1)202; 1〉

= −2
√

2 |(2, 1)022; 1〉 . (4.2.6)

The reduced matrix element for this example is

〈(2, 1)0; 1 ‖T̂ 1‖(2, 1)2; 1〉 = −2
√

6 (4.2.7)

and since we already chose the target state, which is |(2, 1)022; 1〉, we can recover the result of equation
(4.2.6). Figure (4.3) provides a geometric example of the calculations above.
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Figure 4.3: Reaching the specific state |(2, 1)022; 1〉 of the irrep (2, 1) on the weight diagram by the action
of the operator of equation (4.2.3).

4.3 The Construction of SU(3) Clebsch-Gordan Coefficients

4.3.1 Highest Weight State SU(3) CGs
If (p2, q2) is a copy of an irrep (p̄2, q̄2) occurring in the tensor product (p1, q1)⊗ (λ, µ), we can write the

highest weight state as a linear combination of coupled su(3) states of the irreps (p1, q1) and (λ, µ)

|(p2, q2)hws〉 =
∑
νJ

(n)In

〈
(p1,q1)
ν;J

; (λ,µ)
n;In

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
|(p1, q1)ν; J〉 |(λ, µ)n; In〉 . (4.3.1)

This highest weight state has the same form as the SU(2) counterpart presented in equation (2.1.6). There
are some constraints for the indices ν and n for the SU(3) CGs of equation (4.3.1). For instance, the total
number of excitations in the composite system is p1 + 2q1 + λ+ 2µ and must equal p2 + 2q2 + 3k, where k
is an integer and satisfies

k =
1

3
(p1 + λ− p2 + 2(q1 + µ− q2)) (4.3.2)

and

ν1 + n1 = p2 + q2 + k, ν2 + n2 = q2 + k, ν3 + n3 = k . (4.3.3)

The reason for these constraints is that the highest weight of the irrep (p2, q2) can be multiplied by a 3× 3
determinant ∣∣∣∣∣∣

a†11 a†12 a†13

a†21 a†22 a†23

a†31 a†32 a†33

∣∣∣∣∣∣
k

, (4.3.4)
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which transforms by the SU(3) irrep (0, 0) but adds 3k excitations to the system without changing the
irrep label (p2, q2). Therefore, the constraint

p1 + 2q1 + λ+ 2µ = p2 + q2 + 3k , (4.3.5)

guarantees that the number of excitations of the separate systems, irreps (p1, q1) and (λ, µ), is the same
as that in the resulting irrep (p2, q2). For this thesis, I made the choice of using the label k implicitly in
the expressions of the CGs, although this label is important in understanding the Weyl symmetries of the
CGs [18].

Now, let us find the highest weight CGs for a given decomposition (p1, q1)⊗ (λ, µ)→ (p2, q2). Following
the construction of SU(2) CGs in chapter 2, we can act on equation (4.3.1) with any raising operator of
the su(3) algebra. Let us choose Ĉ12 for this calculation. Then,

0 = Ĉ12 |(p2, q2)hws〉

=
∑
νJ

(n)In

〈
(p1,q1)
ν;J

; (λ,µ)
n;In

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
[Ĉ12 |(p1, q1)ν; J〉] |(λ, µ)nIn〉

+
∑
νJ

(n)In

〈
(p1,q1)
ν;J

; (λ,µ)
n;In

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
|(p1, q1)ν; J〉 [Ĉ12 |(λ, µ)nIn〉] . (4.3.6)

We can multiply both sides of equation (4.3.6) by 〈(p1, q1)ν ′J ′| 〈(λ, µ)n′| and get the basic recursion relation

0 =
∑
(ν)J

〈
(p1,q1)
ν;J

; (λ,µ)
n′;I′n

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
〈(p1, q1)ν; J | Ĉ12 |(p1, q1)ν ′; J ′〉

+
∑
(n)In

〈
(p1,q1)
ν′;J ′

; λ,µ
n;In

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
〈(λ, µ)n; In| Ĉ21 |(λ, µ)n′; I ′n〉 . (4.3.7)

We can rewrite this recursion relation as

0 =
∑

(ν1)mνJ

〈
(p1,q1)
ν1;J

; (λ,µ)
n′1;I′n
‖ (p2,q2)

p2+q2; 1
2
q2

〉〈
J
mν

; I′n
m′n

∣∣∣ 1
2
q2

1
2
q2

〉〈
J ′

m′ν
;

1
2
1
2

∣∣∣ J
mν

〉
× 〈(p1, q1)ν1; J ‖T̂ 1

2‖(p1, q1)ν ′1; J ′〉√
2J + 1

+
∑

(n1)Inmn

〈
(p1,q1)
ν′1;J ′

; (λ,µ)
n1;In
‖ (p2,q2)

p2+q2; 1
2
q2

〉〈
J ′

m′ν
; In
mn

∣∣∣ 1
2
q2

1
2
q2

〉〈
In
mn

;
1
2
1
2

∣∣∣ I′

m′n

〉
× 〈(λ, µ)n1; In ‖T̂

1
2‖(λ, µ)n′1; I ′n〉√

2In + 1
(4.3.8)

where mν = 1
2
(ν2 − ν3), mn = 1

2
(n2 − n3), etc.

Multiplying equation (4.3.8) by
〈
J ′

m′ν
;

1
2
m

∣∣∣ J̃
m̃ν

〉
followed by summation over m′ν and m, and using the
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orthogonality property of SU(2) CGs under summation, produces

0 =
∑
ν1

〈(p1, q1)ν1; J̃ ‖T̂ 1
2‖(p1, q1)ν ′1; J ′〉√

2J̃ + 1

〈
(p1,q1)

ν1;J̃
; (λ,µ)
n′1;I′n
‖ (p2,q2)

p2+q2; 1
2
q2

〉〈
J̃
m̃ν

; I
′
n
k

∣∣∣ 1
2
q2

1
2
q2

〉
+
∑

(n1)In

〈(λ, µ)n1; In ‖T̂
1
2‖(λ, µ)n′1; I ′n〉√

2In + 1

〈
(p1,q1)

ν′1;J̃ ′
; (λ,µ)
n1;In
‖ (p2,q2)

p2+q2; 1
2
q2

〉
×
∑

km′νmn

〈
I′n
m′n

;
1
2
k

∣∣∣ Inmn〉〈 J ′

m′ν
; In
mn

∣∣∣ 1
2
q2

1
2
q2

〉〈
J ′

m′ν
;

1
2
k

∣∣∣ J̃
m̃ν

〉
. (4.3.9)

It is possible to rearrange the arguments of the SU(2) CGs so the result of the sum of triple product is a
SU(2) CG multiplied by a 6-j symbol leading to a direct recursion relation for the reduced CGs〈

(p1,q1)

ν′1−1;J̃
; (λ,µ)
n′1;I′n
‖ (p2,q2)

p2+q2; 1
2
q2

〉
= (2Ĩn + 1)

∑
J

〈(p1, q1)ν ′1 − 1; J ‖T̂ 1
2‖(p1, q1)ν ′1; J ′〉

〈(λ, µ)n′1 − 1; Ĩn ‖T̂
1
2‖(λ, µ)n′1; I ′n〉

× (−1)J
′−Ĩn+ 1

2
q2+2I′n

〈
(p1,q1)
ν′1−1;J

; (λ,µ)
n′1;I′n
‖ (p2,q2)

p2+q2; 1
2
q2

〉{ 1
2

J ′ J̃
1
2
q2 I ′n In

}
. (4.3.10)

In this recursion relation, the steps in the angular momenta are at most J ′ = J ± 1
2
and I ′n = Ĩn ± 1

2
.

Moreover, the recursion relation of equation (4.3.7) does not depend on the order of the irreps (p1, q1)

and (λ, µ). The CGs
〈

(p1,q1)
ν;J

; (λ,µ)
n′;I′n

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
and

〈
(λ,µ)
n′;I′n

; (p1,q1)
ν;J

∣∣∣ (p2,q2)

p2+q2,q2,0; 1
2
q2

〉
have the same numerical

value, since they follow the same recursion relation of equation (4.3.10). However, they differ by at most a
phase, which depends on the seed coefficient of the recursion relation. The phase convention that de Guise
and I used in [18] and that will also be used in this thesis is to take〈

(p1,q1)
hws ;

(λ,µ)

n′;Ĩ′n

∣∣∣ (p2,q2)
hws

〉
≥ 0 , (4.3.11)

where Ĩ ′n is the largest value of I ′n compatible with n′. For more information concerning this phase choice,
refer to [18].

4.3.2 General expression for SU(3) CGs using 9j-symbols
The job at hand is to construct the Clebch-Gordan coefficients for the decomposition (p1, q1)⊗(λ, µ)→

(p2, q2) for a fixed irrep (p2, q2), i.e. if the irrep (p2, q2) occurs more than once in the decomposition of
(p1, q1)⊗ (λ, µ) then we have selected a particular copy. My assumption here is that I already have all the
highest weight CGs obtained via recursion relation (see equation (4.3.10)) for a given decomposition, then
I can construct the any highest weight state of equation (4.3.1).
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In order to construct the recursion relation for the general CGs, we start by a target state∣∣(p2, q2)p2 + q2 − p, 1
2
(p2 + q2 + p) + I, 1

2
(p2 + q2 + p)− I; I

〉
×
〈(p2, q2)p2 + q2 − p; I ‖T̂

1
2
p‖(p2, q2)p2 + q2; 1

2
q2〉√

2I + 1

=
∑
s(mp)

〈
1
2
q2

1
2
q2−s

;
1
2
p

mp

∣∣∣ II〉 ∑
ν1J(n1)In

〈
(p1,q1)
ν1;J

; (λ,µ)
n1;In
‖ (p2,q2)

p2+q2; 1
2
q2

〉
×
∑
mνmn

〈
J
mν

; In
mn

∣∣∣ 1
2
q2

1
2
q2−s

〉∑
ja

p!

(2ja)!(p− 2ja)!

∑
mamb

〈
ja
ma

;
1
2
p−ja
mb

∣∣∣ 1
2
p

mp

〉
×
[
T̂ jama |(p1, q1)ν; J〉

][
T̂

1
2
p−ja

mb |(λ, µ)n; In〉
]
. (4.3.12)

From this expression, it is possible to write〈
(p1,q1)
ν′1;J ′

; (λ,µ)
n′1;I′n
‖ (p2,q2)
p2+q2−p;I

〉〈
J ′

m′ν
; I′n
m′n

∣∣∣ II〉
×
〈(p2, q2)p2 + q2 − p; I ‖T̂

1
2
p‖(p2, q2)p2 + q2; 1

2
q2〉√

2I + 1

=
∑
s(mp)

〈
1
2
q2

1
2
q2−s

;
1
2
p

mp

∣∣∣ II〉 ∑
ν1J(n1)In

〈
(p1,q1)
ν1;J

; (λ,µ)
n1;In
‖ (p2,q2)

p2+q2; 1
2
q2

〉
×
∑
mνmn

〈
J
mν

; In
mn

∣∣∣ 1
2
q2

1
2
q2−s

〉∑
ja

p!

(2ja)!(p− 2ja)!

∑
mamb

〈
ja
ma

;
1
2
p−ja
mb

∣∣∣ 1
2
p

mp

〉
× 〈(p1, q1)ν ′; J ′ ‖T̂ jama‖(p1, q1)ν; J〉〈(λ, µ)n′; I ′n ‖T̂

1
2
p−ja

mb ‖(λ, µ)n; In〉 (4.3.13)

By inserting the expressions for the reduced matrix elements in equation (4.3.13) will produce an
expression containing a quadruple product of SU(2) CGs, which can be written as an expression containing
an SU(2) 9j-symbol. After some mathematical effort, one can find an expression for the reduced Clebsch-
Gordan coefficients〈

(p1,q1)
ν′1;J ′

; (λ,µ)
n′1;I′n
‖ (p2,q2)
p2+q2−p;I

〉
=

(−1)p−I−J
′−I′n
√

(2I + 1)(q2 + 1)(p+ 1)

〈(p2, q2)p2 + q2 − p; I ‖T̂
1
2
p‖(p2, q2)p2 + q2; 1

2
q2〉

∑
ν1(n1)JIn

〈
(p1,q1)
ν1;J

; (λ,µ)
n1;In
‖ (p2,q2)

p2+q2; 1
2
q2

〉

×
(

p

ν1 − ν ′1

)
(−1)

1
2
q2+J+In


In J 1

2
q2

1
2
(p− ν1 + ν ′1) 1

2
(ν1 − ν ′1) 1

2
p

I ′n J ′ I


× 〈(p1, q1)ν ′1; J ′ ‖T̂

1
2

(ν1−ν′1)‖(p1, q1)ν1; J〉〈(λ, µ)n′1; I ′n ‖T̂
1
2

(p−ν1+ν′1)‖(λ, µ)n1; In〉 . (4.3.14)

This expression can be compared with its SU(2) counterpart described in equation (2.1.18), since
both expressions depend on the highest weight Clebsch-Gordan coefficients. I am capable of making this
connection between these expressions because I used the same approach to obtain both expressions, which
was finding the highest weight CGs and then applying lowering operators to find a targeted state.
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Therefore, we now can construct all Clebsch-Gordan coefficients for a given decomposition (p1, q1) ⊗
(λ, µ)→ (p2, q2). The most important steps for the derivation of equation (4.3.14) were the identification
of the targeted state in equation (4.3.12), the expansion of equation (4.2.3) in terms of Ĉj1 = Ĉ

(1)
j1 + Ĉ

(2)
j1 ,

where Ĉ(i)
j1 acts on states in the irrep (p1, q1) for i = 1 and in the irrep (λ, µ) for i = 2. The action of these

lowering operators on the highest weight state made it feasible to find the expression of equation (4.3.14).
The greatest advantage of having equation (4.3.14) is that one can now find analytical expressions for

the Clebsch-Gordan coefficients. The next section is devoted to finding some interesting coefficients that
will be used in applications in the next chapter.

4.4 Some coupling coefficients needed in this thesis
This basic algorithm can be implemented to the evaluation of CG coefficients for the coupling (1, 1)⊗

(σ, σ) → (τ, τ). For this thesis I am specifically interested in analytical expressions for the cases (τ, τ) =
(σ+ 1, σ+ 1), (σ− 1, σ− 1), and for the two copies of (σ, σ) that occur in (1, 1)⊗ (σ, σ) because these CGs
are present in the derivation of the correspondence rules of the next chapter. Since (σ ± 1, σ ± 1) occurs
once in (1, 1)⊗ (σ, σ), the highest weight of the irrep is uniquely determined by the recursion relation and
the CG can be obtained by direct application of the formalism given above. For (τ, τ) = (σ, σ), the two
copies must be handled separately and the distinction between copies will be managed by introducing the
index ρ, which can assume values 1 and 2 for the first and second copies, respectively.

4.4.1 Analytical expressions for coefficients in (τ, τ) = (σ ± 1, σ ± 1).
These two decompositions have different k value. For instance, the decomposition (1, 1) ⊗ (σ, σ) →

(σ − 1, σ − 1) has k = 2 whereas the decomposition (1, 1) ⊗ (σ, σ) → (σ + 1, σ + 1) has k = 0. Direct
implementation of equation (4.3.10) yields:〈

(1,1)

2; 1
2

;
(σ,σ)

2(σ−1);
1
2
σ − 1

‖ (σ−1,σ−1)

2(σ−1); 1
2

(σ−1)

〉
= − 1

σ+1

√
(σ−1)
(2σ+1)〈

(1,1)

2; 1
2

;
(σ,σ)

2(σ−1);
1
2
σ
‖ (σ−1,σ−1)

2(σ−1); 1
2

(σ−1)

〉
= 1

σ+1

√
σ+2
2σ+1〈

(1,1)
1;1

;
(σ,σ)

2σ−1;
1
2
(σ − 1)

‖ (σ−1,σ−1)
1
2
(σ − 1)

〉
= σ

σ+1

√
(σ−1)

2(σ+1)(2σ+1)〈
(1,1)
1;1

;
(σ,σ)

2σ−1;
1
2
(σ + 1)

‖ (σ−1,σ−1)

2(σ−1);
1
2
(σ − 1)

〉
= − 1

σ+1

√
σ(σ+2)
(σ+1)〈

(1,1)
1;0

;
(σ,σ)

2σ−1;
1
2
(σ − 1)

‖ (σ−1,σ−1)

2(σ−1);
1
2
(σ − 1)

〉
= σ

σ+1

√
3

2(2σ+1)

(4.4.1)

It so happens that the decomposition (1, 1)⊗ (σ, σ)→ (σ + 1, σ + 1) has only one highest weight CG.
Since k = 0, the highest states of the irreps (1, 1) and (σ, σ) have (ν1; J) = (2; 1

2
) and (n1; In) = (2σ; 1

2
σ),

respectively, which adds up to (p2 + q2 + k, J + In) = (2(σ + 1); 1
2
(σ + 1)). Therefore, we can choose the

reduced Clebsch-Gordan coefficient for this decomposition to be〈
(1,1)

2; 1
2

; (σ,σ)

(2σ; 1
2
σ)
‖ (σ+1,σ+1)

2(σ+1); 1
2

(σ+1)

〉
= 1 (4.4.2)
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Using these highest weight CGs and equation (4.3.14), I was able to calculate the following CGs which
are useful in the derivation of the SU(3) correspondence rules that will be presented in the next chapter.

〈
(1,1)

2; 1
2

; (σ,σ)
σ;0
‖ (σ+1,σ+1)

σ+2; 1
2

〉
= (σ+2)

2(σ+1)

√
(σ+3)
(2σ+3)〈

(1,1)
1;1

; (σ,σ)
σ;0
‖ (σ+1,σ+1)

σ+1;1

〉
= (σ+2)(σ+3)

2(σ+1)

√
1

3(σ+1)(2σ+3)〈
(1,1)
1;0

; (σ,σ)
σ;0
‖ (σ+1,σ+1)

σ+1;0

〉
= (σ+2)

2

√
3

(2σ+3)(σ+1)〈
(1,1)

0; 1
2

; (σ,σ)
σ;0
‖ (σ+1,σ+1)

σ; 1
2

〉
= (σ+2)

2(σ+1)

√
σ+3

(2σ+3)

(4.4.3)

〈
(1,1)

2; 1
2

; (σ,σ)
σ;0
‖ (σ−1,σ−1)

σ; 1
2

〉
= − σ

2(σ+1)

√
(σ−1)
(2σ+1)〈

(1,1)
1;1

; (σ,σ)
σ;0
‖ (σ−1,σ−1)

σ−1;1

〉
= σ(σ−1)

2(σ+1)
√

3(σ+1)(2σ+1)〈
(1,1)

0; 1
2

; (σ,σ)
σ;0
‖ (σ−1,σ−1)

σ−2; 1
2

〉
= − σ

2(σ+1)

√
(σ−1)
(2σ+1)〈

(1,1)
1;0

; (σ,σ)
σ;0
‖ (σ−1,σ−1)

σ−1;0

〉
= σ

2

√
3

(2σ+1)(σ+1)

(4.4.4)

The advantage of equation (4.3.14) is that it is possible to find analytical expression for some CGs. For
instance, I was able to find the “general” analytical forms below:

〈
(1,1)
1;0

; (σ,σ)
2σ−1−p;I ‖

(σ−1,σ−1)
2(σ−1)−p;I

〉
= (−1)p−2I+σ+1

8(σ+1)

√
3(3+2I+p+σ)(1−2I+p+σ)

(σ+1)(2σ+1)

×
√

(1 + 2I − p+ 3σ)(−1− 2I − p+ 3σ)

〈
(1,1)
1;0

; (σ,σ)
2(σ+1)−p−1;I

‖ (σ+1,σ+1)
2(σ+1)−p;I

〉
= (−1)p−2I+σ+1

2(σ+1)

√
3(3+2I+p+σ)(1−2I+p+σ)

(σ+1)(2σ+3)

×
√

(3− 2I − p+ 3σ)(5 + 2I − p+ 3σ)

(4.4.5)

4.4.2 Analytical expressions for coefficients in (τ, τ) = (σ, σ)ρ.
Table (4.4) gives the highest weight CGs of the decomposition (1, 1)⊗ (σ, σ)→ (σ, σ), where k = 1.
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Table 4.4: The copy labeled ρ = 1 is chosen using the usual convention that the SU(3) CGs agree with the
Wigner-Eckart theorem when the generators are considered as SU(3) tensors transforming by the (1, 1)
representation. The copy labeled ρ = 2 is chosen to be orthogonal to the ρ = 1 copy.∣∣∣∣ (σ,σ)

2σ;
1
2
σ

〉
1

∣∣∣ (σ,σ)

2σ; 1
2
σ

〉
2〈

(1,1)
1;1

;
(σ,σ)

2σ;
1
2
σ

∣∣∣ 1
2

−
√

3
2

√
2σ+1
2σ+3〈

(1,1)
1;0

;
(σ,σ)

2σ;
1
2
σ

∣∣∣ 1
2

√
3σ
σ+2

1
2

√
σ(2σ+1)

(σ+2)(2σ+3)〈
(1,1)

2;
1
2

;
(σ,σ)

2σ−1;
1
2
(σ + 1)

∣∣∣ √
σ+2

2(σ+1)(σ+2)

√
3(2σ+1)

2(σ+1)(2σ+3)〈
(1,1)

2;
1
2

;
(σ,σ)

2σ−1;
1
2
(σ − 1)

∣∣∣ −
√

(2σ+1)
2(σ+1)(σ+2)

√
3

2(σ+1)(σ+2)(2σ+3)

With the aid of the highest weight CGs of table (4.4) and equation (4.3.14), I was able to calculate the
following CGs

〈
(1,1)

2; 1
2

; (σ,σ)
σ;0
‖ (σ,σ)

σ+1; 1
2

〉
ρ=1

= −1
2

〈
(1,1)

2; 1
2

; (σ,σ)
σ;0
‖ (σ,σ)

σ+1; 1
2

〉
ρ=2

=
√

3
4(2σ+1)(2σ+3)〈

(1,1)
1;0

; (σ,σ)
σ;0
‖ (σ,σ)

σ;0

〉
ρ=1

= 0
〈

(1,1)
1;0

; (σ,σ)
σ;0
‖ (σ,σ)

σ;0

〉
ρ=2

=
√

σ(σ+2)
(2σ+1)(2σ+3)〈

(1,1)
1;1

; (σ,σ)
σ;0
‖ (σ,σ)

σ;1

〉
ρ=1

= 0
〈

(1,1)
1;1

; (σ,σ)
σ;0
‖ (σ,σ)

σ;1

〉
ρ=2

= −
√

σ(σ+2)
(2σ+1)(2σ+3)〈

(1,1)

0; 1
2

; (σ,σ)
σ;0
‖ (σ,σ)
σ−1;1/2

〉
ρ=1

= 1
2

〈
(1,1)

0; 1
2

; (σ,σ)
σ;0
‖ (σ,σ)
σ−1;1/2

〉
ρ=2

=
√

3
2

1√
(2σ+1)(2σ+3)

(4.4.6)

Some extra analytical expressions for the decomposition (1, 1)⊗ (σ, σ)→ (σ, σ)

〈
(1,1)
1;0

; (σ,σ)
2σ−p;I ‖

(σ,σ)
2σ−p;I

〉
ρ=1

=
√

3(−1)p+σ−2I

2(σ+1)
√
σ(σ+2)

(
σ(σ + 1)− 1

4
(p− σ + 2I)

×(σ − p+ 2I + 2)− 1
4
(p+ σ − 2I)(p+ σ + 2I + 2)

)
〈

(1,1)
1;0

; (σ,σ)
2σ−p;I ‖

(σ,σ)
2σ−p;I

〉
ρ=2

= (−1)p+σ−2I
√

2σ+1

2(σ+1)
√
σ(σ+2)(2σ+3)

(
σ(σ + 1)− 3

4
(p− σ + 2I)

×(σ − p+ 2I + 2) + 3
4

(p+σ−2I)(p+σ+2I+2)
(2σ+1)

)
(4.4.7)
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Chapter 5

Quasi-distributions in SU(3)

5.1 The kernel for Wigner Functions

5.1.1 Definition of SU(3) tensor operators
In [12], Klimov and de Guise provided an algorithm for a general operational form for the quantization

kernel ŵ(Ω) in a system with SU(n) symmetry. In addition, the same authors together with José L. Romero
wrote the review paper [14] where they discuss the generalization of quantum mechanics in phase space
to SU(2) and SU(3) symmetry. I will base my definition of the quantization kernel in SU(3) according to
their work.

The notation in this chapter will follow the definitions of the previous chapter. For instance, a general
state of the irrep (λ, 0) can be shortly written as

|λ; ν〉 := |(λ, 0)ν1ν2ν3; I23〉 , (5.1.1)

where we can write the triple ν = (ν1, ν2, ν3) and any weight (ν1−ν2, ν2−ν3) in this irrep only occurs once
and the components of this state satisfy ν1 + ν2 + ν3 = λ.

The tensor operators acting on a Hilbert space carrying the irrep λ will transform according to the
irrep λ⊗ λ∗, where λ∗ = (0, λ) is the conjugate of the irrep (λ, 0). This is an operator of the form

T̂ λσ;γIγ =
∑
αβ

∣∣(λ, 0)α1α2α3; 1
2
(λ− α1)

〉 〈
(λ, 0)β1β2β3; 1

2
(λ− β1)

∣∣ C̃σγIγ
λαIα;λ∗β∗Iβ

(−1)λ−β2 (5.1.2)

where the indices in equation (5.1.2) mean that λ∗ is the conjugate of the irrep λ as stated previously
and β∗ = (λ − β1, λ − β2, λ − β3) is the weight conjugate to β, and σ is an irrep of the decomposition of
(λ, 0)⊗ (0, λ)

(λ, 0)⊗ (0, λ) =
λ∑
σ=0

(σ, σ). (5.1.3)

The expansion coefficients C̃σγIγ
λαIα;λ∗β∗Iβ∗

are proportional to SU(3) Clebsch-Gordan coefficients and they
follow the orthogonality condition∑

αIαβIβ

(C̃
σ′ν′I′ν
λαIα;λ∗β∗Iβ∗

)∗C̃σνIν
λαIα;λ∗βIβ

= δσσ′δνν′δIνIν′ . (5.1.4)
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The irreducible tensor operators of equation (5.1.2) satisfy the commutation relation[
Ĥi, T̂

λ
σ;αIα

]
= αiT̂

λ
σ;αIα (5.1.5)

and also have an orthogonality condition represented by the trace of these tensors

Tr
(

(T̂ λσ;αIα)†T̂ λσ′;α′Iα′

)
= δσσ′δαα′δIαIα′ (5.1.6)

5.1.2 Definition of the quantization kernel ŵλ(Ω)

In the previous chapter, I introduced the general SU(3) states as a coupling of three SU(2) states
and found the Clebsch-Gordan coefficients. Moreover, these coefficients were used in the construction of
the tensor operators of equation (5.1.2) which are the fundamental ingredients for the realization of the
quantization kernel ŵλ(Ω). Although these irreducible tensor operators are expressed as given in equation
(5.1.2) for a given irrep (σ, σ), one can recall chapter 2 of this thesis that irreducible tensor operators are
transformed by a group operation of a parametrized rotation operator R̂(Ω), and this transformation mixes
elements of the basis of irreducible tensor operators of the given irrep (σ, σ).

The parametrization used in this thesis was first introduced by de Guise and Klimov in [12]. Therefore,
following their ideas, the transformations R̂(Ω) are written as

R̂(α1, β1, α2, β2, α3, β3, γ1, γ2) = R̂23(α1, β1,−α1)R̂12(α2, β2,−α2)

× R̂23(α3, β3,−α3)e−iγ1(Ĉ11−Ĉ22)e−iγ2(Ĉ22−Ĉ33) (5.1.7)

where the angles of the full transformation are written as Ω̃ := (α1, β1, α2, β2, α3, β3, γ1, γ2) and

R̂23(α1, β1,−α1)R̂12(α2, β2,−α2)R̂23(α3, β3,−α3)

is the SU(3) version of the displacement operator of equation (3.2.4). Moreover, a transformation of the
tensor operators of equation (5.1.2) is written as

R̂(Ω̃)T̂ λτ ;µIR̂
†(Ω̃) =

∑
νJ

D
(τ,τ)
νJ ;µI(Ω̃)T̂ λτ ;νJ (5.1.8)

where the functions D(τ,τ)
νJ ;µI(Ω̃) are the SU(3) Wigner D-functions.

Now, we can define the quantization kernel ŵλ(Ω̃) in SU(3) as

ŵλ(Ω̃) = R̂(Ω̃)ŵλ(0)R̂(Ω̃)† (5.1.9)

where R̂(0) is the identity transformation and ŵλ(0) is the quantization kernel at Ω̃ = 0. This kernel is
constructed by a linear combination of diagonal tensor operators

ŵλ(0) =
λ∑
σ=0

F λ
σ T̂

λ
σ;(σσσ)0, F λ

σ =

√
2(σ + 1)3

(λ+ 1)(λ+ 2)
. (5.1.10)

It is important to point out that the transformation

R̂23(α3, β3,−α3)e−iγ1(
ˆ̂
C11−Ĉ22)e−iγ2(Ĉ22−Ĉ33) (5.1.11)
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acting on equation (5.1.10) leaves this equation invariant. This leads to a reduction of the number of angles
in equation (5.1.7)

Ω̃ = (α1, β1, α2, β2, α3, β3, γ1, γ2) → Ω = (α1, β1, α2, β2) (5.1.12)

Therefore, substituting equations (5.1.8) and (5.1.10) into equation (5.1.9), it is possible to find

ŵλ(Ω) =
λ∑
σ=0

F λ
σ

∑
νJ

D
(σ,σ)
νJ ;(σσσ)0(Ω)T̂ λσ;νJ (5.1.13)

where the second summation is over all the states of the irrep (σ, σ).

5.2 Examples of some Wigner Symbols
In this section, I will derive some Wigner symbols that may be used in the applications of the ?-product

and correspondence rules of this chapter. A SU(3) Wigner symbol follows the same definition of equation
(3.2.7) of the third chapter of this thesis. That is

WÂ(Ω) = Tr
(

ŵλ(Ω)Â
)

(5.2.1)

where the quantization kernel ŵλ(Ω) is given in equation (5.1.13). For simplicity, let us choose Â to be
one of the generators of the su(3) algebra, say Ĉ12, and calculate the Wigner symbol of this operator.

First, the operator Ĉ12 can be written as a SU(3) tensor operator

Ĉ12 = − N

2
√

6
T̂ λ

1;(201) 1
2

. (5.2.2)

Substituting equations (5.2.2) and (5.1.13) into equation (5.2.1) we get

WĈ12
(Ω) = − N

2
√

6

λ∑
σ=0

F λ
σ

∑
νJ

D
(σ,σ)
νJ ;(σσσ)0(Ω) Tr

(
T̂ λσ;νJ T̂

λ
1;(201) 1

2

)
(5.2.3)

where N =
√
λ(λ+ 1)(λ+ 2)(λ+ 3). We can rewrite the tensor operators T̂ λσ;νJ of the above expression

as

T̂ λσ;νJ = (−1)σ+ν2(T̂ λσ;ν∗J)† (5.2.4)

with ν∗ = (2σ− ν1, 2σ− ν2, 2σ− ν3). Substituting equation (5.2.4) into the expression of equation (5.2.2),
we get

WĈ12
(Ω) =

N

2
√

6
F λ

1 D
(1,1)

(021) 1
2

;(111)0
(Ω) (5.2.5)

and finally

WĈ12
(Ω) =

1

2

√
λ(λ+ 3)eiα2 cos

(
β1

2

)
sin β2 . (5.2.6)
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Using the same approach, I calculated the Wigner symbol of the remaining seven generators of the
su(3) algebra. They are summarized in the table below.

Table 5.1: Summary of the SU(3) Wigner symbol of the generators

Generator Tensor Operator Wigner Symbol

Ĉ12 − N
2
√

6
T̂ λ

1;(201) 1
2

1
2

√
λ(λ+ 3)eiα2 cos

(
1
2
β1

)
sin β2

Ĉ13
N

2
√

6
T̂ λ

1;(210) 1
2

1
2

√
λ(λ+ 3)ei(α1+α2) sin

(
1
2
β1

)
sin β2

Ĉ23
N

2
√

6
T̂ λ1;(120)1

1
2

√
λ(λ+ 3)eiα1 sin β1 sin2(1

2
β2)

Ĉ21 − N
2
√

6

(
T̂ λ

1;(201) 1
2

)†
1
2

√
λ(λ+ 3)e−iα2 cos

(
1
2
β1

)
sin β2

Ĉ31
N

2
√

6

(
T̂ λ

1;(210) 1
2

)†
1
2

√
λ(λ+ 3)e−i(α1+α2) sin

(
1
2
β1

)
sin β2

Ĉ32
N

2
√

6

(
T̂ λ1;(120)1

)†
1
2

√
λ(λ+ 3)e−iα1 sin β1 sin2(1

2
β2)

Ĥ1
N
2
T̂ λ1;(111)0

1
2

√
λ(λ+ 3)(1 + 3 cos β2)

Ĥ2 − N
4
√

3
T̂ λ1;(111)1

√
λ(λ+ 3) cos β1 sin2(1

2
β2)

5.3 The Action of a Generator on the Wigner Kernel

The main idea of this section is to derive the action of a generator T̂ λσ;µJ on the quantization kernel
ŵλ(Ω). This type of calculation is important for the future derivation of the correspondence rules, since I
will write the action of a generator on the kernel as a differential operator that depends on the generator
only.

Let us start by writing the Wigner Symbol of an operator B̂:

WB̂(Ω) = Tr
(
B̂ŵλ(Ω)

)
. (5.3.1)

We can take, without loss of generality, the operator B̂ as

B̂ = T̂ λσ;µ̄J̄ (5.3.2)

and substitute it, together with equation (5.1.13), into equation (5.3.1) to get

WB̂(Ω) =
∑
τ

F λ
τ

∑
µJ

D
(τ,τ)
µJ ;(τττ)0(Ω)Tr

(
T̂ λσ;µ̄J̄ T̂

λ
τ ;µJ

)
=
∑
τ

F λ
τ

∑
µJ

D
(τ,τ)
µJ ;(τττ)0(Ω)Tr

(
T̂ λσ;µ̄J̄(−1)τ+µ2

(
T̂ λτ ;µ∗J

)†)

= F λ
σD

(σ,σ)

µ̄∗J̄ ;(σσσ)0
(Ω)(−1)σ−µ̄2 =

√
2(σ + 1)3

(λ+ 1)(λ+ 2)

(
D

(σ,σ)

µ̄J̄ ;(σσσ)0
(Ω)
)∗

(5.3.3)
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where I wrote T̂ λτ ;µJ = (−1)τ+µ2(T̂ λσ;µ∗J)† and made use of the orthogonality property of the tensor operators
as given in equation (5.1.6).

The ?-product was defined as

WÂ(Ω) ? WB̂(Ω) = WÂB̂(Ω) , (5.3.4)

but it is also possible to write

WB̂(Ω) ? WÂ(Ω) = WB̂Â(Ω) (5.3.5)

and from the definition of a Wigner symbol, these two equations are given by

WÂ(Ω) ? WB̂(Ω) = Tr
(

ŵλ(Ω)ÂB̂
)

(5.3.6)

and

WB̂(Ω) ? WÂ(Ω) = Tr
(
Âŵλ(Ω)B̂

)
. (5.3.7)

I would like to consider now the case where the operator Â is T̂ λ1;µJ , that is Â is one of the generators of the
su(3) algebra, and evaluate the action of this operator on the quantization kernel ŵλ(Ω) in both cases of
the ?-products of equations (5.3.6) and (5.3.7). Mathematically, I want to calculate the actions T̂ λ1;µJ ŵλ(Ω)

and ŵλ(Ω)T̂ λ1;µJ and show how, in the limit of large λ, I can substitute these actions by differential operators
ÂL
νI(Ω) and ÂR

νI(Ω), respectively, depending on the generators only.
We can write equations (5.3.6) and (5.3.7) as

WT̂λ1;νI
(Ω) ? WB̂(Ω) = Tr

(
ŵλ(Ω)T̂ λ1;νIB̂

)
(5.3.8)

and

WB̂(Ω) ? WT̂λ1;νI
(Ω) = Tr

(
ŵλ(Ω)B̂T̂ λ1;νI

)
= Tr

(
T̂ λ1;νIŵλ(Ω)B̂

)
(5.3.9)

I present the specific mathematical developments of the correspondence rules in the next sections.

5.3.1 The Action of a Generator from the Left on the Wigner Kernel
We want an operational form for

T̂ λ1;αJ ŵλ(Ω) = T̂ λ1;αJR̂(Ω)ŵλ(0)R̂†(Ω)

= R̂(Ω)
[
R̂†(Ω)T̂ λ1;αJR̂(Ω)

]
ŵλ(0)R̂†(Ω)

=
∑
νI

D
(1,1)
νI;αJ(Ω−1)

[
R̂(Ω) T̂ λ1;νIŵλ(0) R̂†(Ω)

]
(5.3.10)

by first writing R̂(Ω)
(
T̂ λ1;νIŵλ(0)

)
R̂†(Ω) as an operator equation.
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From the definition of equation (5.1.13) we have

T̂ λ1;νIŵλ(0) = T̂ λ1;νI

∑
σ

F σ
λ T̂

λ
σ;(σσσ)0

=

√
16

(λ+ 1)(λ+ 2)

∑
τ

F τ
λ

×

(∑
σ,ρ

F σ
λ

F τ
λ

〈
(1,1)
ν1I

; (σ,σ)
σ;0
‖ (τ,τ)
ν̄1;I

〉
ρ
Uρ [(1, 1)(λ, 0)(τ, τ)(0, λ); (λ, 0)(σ, σ)]ρ

)
T̂ λτ ;ν̄I

=
∑
τ

F τ
λ aLν̄1I

(λ; τ)T̂ λτ ;ν̄I (5.3.11)

where (for fixed λ):

aLτ ;νI(λ; ν̄, I) =

√
16

(λ+ 1)(λ+ 2)

(
τ+1∑

σ=τ−1

F σ
λ

F τ
λ

∑
ρ

〈
(1,1)
ν1I

; (σ,σ)
σ;0
‖ (τ,τ)
ν̄1;I

〉
ρ
Uρ [(1, 1)(λ, 0)(τ, τ)(0, λ); (λ, 0)(σ, σ)]ρ

)
.

(5.3.12)

The coefficients Uρ [(1, 1)(λ, 0)(τ, τ)(0, λ); (λ, 0)(σ, σ)]ρ are the Racah coefficient and the four necessary
coefficients that enter equation (5.3.12) are given in the following table:

Table 5.2: Summary of the SU(3) Wigner symbol of the generators

τ ρ Uρ [(1, 1)(λ, 0)(τ, τ)(0, λ); (λ, 0)(σ, σ)]ρ

σ + 1 (σ+1)
2

√
3(λ−σ)(λ+σ+3)

λ(λ+3)(σ+2)(2σ+3)

σ 1
√

3
2

√
σ(σ+2)
λ(λ+3)

σ 2 (2λ+3)
2

√
σ(σ+2)

λ(λ+3)(2σ+1)(2σ+3)

σ − 1 − (σ+1)
2

√
3(λ−σ+1)(λ+σ+2)
λ(λ+3)σ(2σ+1)

The labels ν in T λ1;νI and ν̄ in T λτ ;ν̄I , and in aLν̄1I
(λ; τ), are related by

(ν1ν2ν3) (ν̄1ν̄2ν̄3)
(210) (τ + 1, τ, τ − 1)
(021) (τ − 1, τ + 1, τ)
(201) (τ + 1, τ − 1, τ)
(012) (τ − 1, τ, τ + 1)
(111) (τ, τ, τ)
(120) (τ, τ, τ)
(102) (τ, τ, τ)

(5.3.13)
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and the SU(3) CGs that appear in equation (5.3.12) were presented in section (4.4). Thus, the coefficients
aLτ ;νI(λ; ν̄, I) are given explicitly as

aLτ ;2,1/2(λ; τ + 1) =

√
3τ(τ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)

×

(
τ
√

(λ− τ + 1)(λ+ τ + 2)

(τ + 1)(2τ + 1)
− (τ + 2)

√
λ− τ

√
λ+ τ + 3

(τ + 1)(2τ + 3)
+

2(λ− 2τ(τ + 2))

4τ(τ + 2) + 3

)

aLτ ;1,1(λ; τ) =
τ(τ + 2)

(τ + 1)(2τ + 1)(2τ + 3)
√
λ(λ+ 1)(λ+ 2)(λ+ 3)

×
(
−2(2λ+ 3)(τ + 1) + (2τ + 1)

√
(λ− τ)(λ+ τ + 3) + (2τ + 3)

√
(λ− τ + 1)(λ+ τ + 2)

)
aLτ ;1,0(λ; τ) =

1√
λ(λ+ 1)(λ+ 2)(λ+ 3)

×

(
3τ 2
√

(λ− τ + 1)(λ+ τ + 2)

(τ + 1)(2τ + 1)
+

2(2λ+ 3)(τ + 2)τ

4τ(τ + 2) + 3
+

3(τ + 2)2
√
λ− τ

√
λ+ τ + 3

(τ + 1)(2τ + 3)

)

aLτ ;0,1/2(λ; τ − 1) =

√
3τ(τ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)

×

(
τ
√

(λ− τ + 1)(λ+ τ + 2)

(τ + 1)(2τ + 1)
− (τ + 2)

√
λ− τ

√
λ+ τ + 3

(τ + 1)(2τ + 3)
+

2(λ+ 2τ(τ + 2) + 3)

4τ(τ + 2) + 3

)
(5.3.14)

where, for simplicity, it is only necessary to give ν1, since aLν1ν2ν3I(λ; ν̄I) = aLν1ν3ν2I
(λ; ν̄I).

Substituting these coefficients together with equation (5.3.11) into equation (5.3.10), I was able to find

T̂ λ1;αJ ŵλ(Ω) =
∑
νI

D
(1,1)
νI;αJ(Ω−1)

[
R̂(Ω)

∑
τ

F τ
λ aLτ ;νI(λ; ν̄, I)T̂ λτ ;ν̄IR̂

†(Ω)

]
=
∑
νI

D
(1,1)
νI;αJ(Ω−1)

∑
τν′I′

F τ
λ aLτ ;νI(λ; ν̄, I)D

(τ,τ)
ν′I′,ν̄I(Ω)T̂ λτ ;ν′I′ , (5.3.15)

which is the final form for the action of a generator from the left on the quantization kernel.

5.3.2 The Action of a Generator from the Right on the Wigner Kernel
Consider the action of a generator T̂ λ1;αJ from the right on the quantization kernel

ŵλ(Ω)T̂ λ1;αJ = R̂(Ω)ŵλ(0)R̂†(Ω)T̂ λ1;αJ

=
∑
νI

D
(1,1)
νI,αJ(Ω−1)

(
R̂(Ω)ŵλ(0)T̂ λ1;νIR̂

†(Ω)
)
. (5.3.16)

Let us focus on the tensor product ŵλ(0)T̂ λ1;νI and write

ŵλ(0)T̂ λ1;νI =
∑
τ

F τ
λ aRτ ;νI(λ; ν̄, I)T̂ λτ ;ν̄I , (5.3.17)
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with the coefficients aRτ ;ν1I
(λ; ν̄1, I) given by

aRτ ;0,1/2(λ; τ − 1,
1

2
) = aLτ ;0,1/2(λ; τ − 1,

1

2
)−

2
√

3τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

aRτ ;1,1(λ; τ, 1) = aLτ ;1,1(λ; τ, 1)

aRτ ;1,0(λ; τ, 0) = aLτ ;1,0(λ; τ, 0)

aRτ ;2,1/2(λ; τ + 1,
1

2
) = aLτ ;2,1/2(λ; τ + 1,

1

2
) +

2
√

3τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

. (5.3.18)

and substituting these coefficients together with equation (5.3.17) into equation (5.3.16), I could find the
action of a generator on the quantization kernel from the right

ŵλ(Ω)T̂ λ1;αJ =
∑
νI

D
(1,1)
νI;αJ(Ω−1)

[
R̂(Ω)

∑
τ

F τ
λ aRτ ;ν1I

(λ; ν̄1, I)T̂ λτ ;ν̄IR̂
†(Ω)

]
=
∑
νI

D
(1,1)
νI;αJ(Ω−1)

∑
τν′I′

F τ
λ aRτ ;ν1I

(λ; ν̄1, I)D
(τ,τ)
ν′I′,ν̄I(Ω)T̂ λτ ;ν′I′ . (5.3.19)

5.3.3 Commutator Action
I am now interested in calculating the difference between equations (5.3.15) and (5.3.19), that is cal-

culating the commutator[
T̂ λ1;αJ , ŵλ(Ω)

]
=
∑
νI

D
(1,1)
νI;αJ(Ω−1)R̂(Ω)

[∑
τ

F τ
λ (aLτ ;ν1I

(λ; ν̄1, I)− aRτ ;ν1I
(λ; ν̄1, I))T λτ ;ν̄I

]
R̂†(Ω) . (5.3.20)

and considering the relations of equation (5.3.18), the difference between aLν1I
(λ; τ) and aRν1I

(λ; τ) is

aLτ ;ν1I
(λ; ν̄1, I)− aRτ ;ν1I

(λ; ν̄1, I) =


(−1)ν1/22

√
3τ(τ + 2)√

λ(λ+ 1)(λ+ 2)(λ+ 3)
if ν1 = 0, 2 ,

0 if ν1 = 1 .

(5.3.21)

Thus, the commutator will contain only terms with ν1 = 2 or ν1 = 0, with I = 1/2 in both cases. Using
this we can rewrite the commutator as

[T λ1;αJ , ŵλ(Ω)] =
∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

∑
τ

F τ
λ

(−1)ν1/22
√

3τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

R̂(Ω)T̂ λ
τ ;ν̄ 1

2
R̂†(Ω)

=
∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

∑
τ

F τ
λ

(−1)ν1/22
√

3τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
µj

D
(τ,τ)

µj;ν̄ 1
2

(Ω)T̂ λτ ;µj . (5.3.22)

5.4 Differential Realizations on Group Functions

We want to replace the functions D(τ,τ)

µj;ν̄ 1
2

(Ω) of equation (5.3.22) with differential operators Ŝν̄; 1
2
acting

on functions of the type D(τ,τ)
µj;(τττ)0(Ω), i.e. we need to find differential operators Ŝν acting on these functions
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so that

Ŝν;ID
(τ,τ)
µJ ;(τττ)0(Ω) ∝ D

(τ,τ)
µJ ;ν̄I(Ω) . (5.4.1)

First, we can recast this as follows. Let θk ∈ {α1, β1, α2, β2} and let us start with

∂

∂θk
D

(τ,τ)
µJ ;(τ,ττ)0(Ω) =

∂

∂θk
〈(τ, τ)µJ |R̂(Ω)|(τ, τ)τττ ; 0〉

= 〈(τ, τ)µJ | ∂
∂θk

R̂(Ω)|(τ, τ)τττ ; 0〉

= 〈(τ, τ)µJ |R̂(Ω)

(∑
νI

cνI(θk)Ĉ νI

)
|(τ, τ)τττ ; 0〉 , (5.4.2)

where the table bellow gives the Ĉ νI in function of the Ĉij

Table 5.3: The relation between Ĉ νI and generators

Ĉ 210;1/2 Ĉ13 Ĉ 201;1/2 −Ĉ12

Ĉ 120;1 Ĉ23 Ĉ 111;1 − 1√
2

(
Ĉ22 − Ĉ33

)
Ĉ 102;1 −Ĉ32 Ĉ 111;0

1√
6

(
2Ĉ11 − Ĉ22 − C33

)
Ĉ 021;1/2 Ĉ21 Ĉ 012;1/2 Ĉ31

Defined in this way, the operators Ĉ νI differ from the generators Ĉij by at most a sign and from the
tensor operators T̂ λ1;νI by a normalization that is a function of the su(3) quadratic Casimir invariant and
the dimension of the irrep on which the tensors act.

From above we now have the general relation

∂

∂θk
R̂(Ω) =

∑
νI

cνI(θk)R̂(Ω)Ĉ νI (5.4.3)

It is important to notice that this relation does not depend on the su(3) irrep so the coefficients cνI(θk)
can be found using any irrep. The most expeditious choice is the 3× 3 irrep (1, 0). For this representation
the operators Ĉ νI are orthonormal under trace:

Tr
(
(Ĉ ν′I′)†Ĉ νI

)
= δν′νδI′I (5.4.4)

so we can easily write

cν′I′(θk) = Tr
(

(Ĉ ν′I′)†R̂†(Ω)
∂

∂θk
R̂(Ω)

)
. (5.4.5)

The coefficients cνI(θk) are given in Table 5.4.
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Table 5.4: The cνI(θk) coefficients of equation (5.4.3).

νI cνI(α1) cνI(β1)

210; 1
2

ie−i(α1+α2) sin
(
β1

2

) (
cos2

(
β2

4

)
+ cos (β1) sin2

(
β2

4

))
sin
(
β2

2

)
−1

2
e−i(α1+α2) cos

(
β1

2

)
sin
(
β2

2

)
201; 1

2
ie−iα2 sin

(
β1

2

)
sin (β1) sin2

(
β2

4

)
sin
(
β2

2

)
−1

2
e−iα2 sin

(
β1

2

)
sin
(
β2

2

)
120; 1 −ie−iα1 sin (β1) sin2

(
β2

4

) (
cos2

(
β2

4

)
+ cos (β1) sin2

(
β2

4

))
e−iα1 sin2

(
β2

4

)
111; 1 −2i

√
2 sin2

(
β1

2

)
sin2

(
β2

4

) (
cos (β1) sin2

(
β2

4

)
+ 1
)

0

102; 1 ieiα1 sin (β1) sin2
(
β2

4

) (
cos2

(
β2

4

)
+ cos (β1) sin2

(
β2

4

))
eiα1 sin2

(
β2

4

)
111; 0 i

√
3
2

sin2
(
β1

2

)
sin2

(
β2

2

)
0

021; 1
2

−ieiα2 sin
(
β1

2

)
sin (β1) sin2

(
β2

4

)
sin
(
β2

2

)
−1

2
eiα2 sin

(
β1

2

)
sin
(
β2

2

)
012; 1

2
iei(α1+α2) sin

(
β1

2

) (
cos2

(
β2

4

)
+ cos (β1) sin2

(
β2

4

))
sin
(
β2

2

)
1
2
ei(α1+α2) cos

(
β1

2

)
sin
(
β2

2

)
νI cνI(α2) cνI(β2)

210; 1
2

1
2
ie−i(α1+α2) sin

(
β1

2

)
sin (β2) −1

2
e−i(α1+α2) sin

(
β1

2

)
2011

2
−1

2
ie−iα2 cos

(
β1

2

)
sin (β2) 1

2
e−iα2 cos

(
β1

2

)
120; 1 −1

2
ie−iα1 sin (β1) sin2

(
β2

2

)
0

111; 1
i cos(β1) sin2(β2

2 )√
2

0

102; 1 1
2
ieiα1 sin (β1) sin2

(
β2

2

)
0

111; 0 i
√

3
2

sin2
(
β2

2

)
0

021; 1
2

1
2
ieiα2 cos

(
β1

2

)
sin (β2) 1

2
eiα2 cos

(
β1

2

)
012; 1

2
1
2
iei(α1+α2) sin

(
β1

2

)
sin (β2) 1

2
ei(α1+α2) sin

(
β1

2

)
To continue, it is convenient to divide the generators in two sets. The first contains elements in the

u(2) subalgebra: {Ĉ 120;1, Ĉ 111;1, Ĉ 102;1, Ĉ 111;0} and will be labeled by roman letters a, b, c . . .. The second
contains the remaining operators {Ĉ 210;1/2, Ĉ 201;1/2Ĉ 021;1/2, Ĉ 012;1/2} and will be labeled using Greek letters
α, β . . ..

Consider now∑
k

dβ(θk)
∂

∂θk
R̂(Ω) =

∑
kα

dβ(θk)cα(θk)R̂(Ω)Ĉα +
∑
ak

dβ(θk)ca(θk)R̂(Ω)Ĉa (5.4.6)

and choose dβ(θk) so that ∑
k

dβ(θk)cα(θk) = δβα (5.4.7)
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∑
k

dβ(θk)
∂

∂θk
R̂(Ω) = R̂(Ω)Ĉβ +

∑
a

(∑
k

dβ(θk)ca(θk)

)
R̂(Ω)Ĉa . (5.4.8)

Using equations (5.4.7) and (5.4.8), I was able to find the expressions for the dβ(θk) coefficients. These
coefficients are given in Table 5.5.

Table 5.5: The dνI(θk) coefficients.

νI = 210; 1
2

νI = 201; 1
2

dνI(α1) −1
2
iei(α1+α2) csc

(
β1

2

)
csc
(
β2

2

)
− i

2
eiα2 csc

(
β2

2

)
sec
(
β1

2

)
dνI(β1) −ei(α1+α2) cos

(
β1

2

)
csc
(
β2

2

)
−eiα2 sin

(
β1

2

)
csc
(
β2

2

)
dνI(α2) −2iei(α1+α2) sin

(
β1

2

)
sin2

(
β2

4

)
csc (β2)

− i
2

sin
(
β1

2

)
eiα2

(
cot (β1) csc

(
β2

2

)
−2
(
cos (β1) + cos

(
β2

2

)
+ 1
)

csc (β1) csc (β2)
)

dνI(β2) −ei(α1+α2) sin
(
β1

2

)
eiα2 cos

(
β1

2

)
νI = 012; 1

2
νI = 021; 1

2

dνI(α1) −1
2
ie−i(α1+α2) csc

(
β1

2

)
csc
(
β2

2

)
i
2
e−iα2 csc

(
β2

2

)
sec
(
β1

2

)
dνI(β1) e−i(α1+α2) cos

(
β1

2

)
csc
(
β2

2

)
−e−iα2 sin

(
β1

2

)
csc
(
β2

2

)
csc
(
β2

2

)
dνI(α2) −2ie−i(α1+α2) sin

(
β1

2

)
sin2

(
β2

4

)
csc (β2)

1
2
ie−iα2 sin

(
β1

2

) (
cot (β1) csc

(
β2

2

)
−2
(
cos (β1) + cos

(
β2

2

)
+ 1
)

csc (β1) csc (β2)
)

dνI(β2) e−i(α1+α2) sin
(
β1

2

)
e−iα2 cos

(
β1

2

)
With this, I can write

Ŝν 1
2
D

(τ,τ)
µJ,(τττ)0(Ω) =

∑
k

dν 1
2
(θk)

∂

∂θk
D

(τ,τ)
µJ,(τττ)0(Ω) (5.4.9)

where Ŝν 1
2
is a differential operator that shifts the function D(τ,τ)

µJ,(τττ)0(Ω) into D(τ,τ)

µJ ;ν̄ 1
2

(Ω) up to a propor-
tionality term. As one can notice, this operator is written in function of the dν 1

2
(θk) coefficients given on

Table 5.5 and first order differentials.
If we substitute equation (5.4.6) into equation (5.4.9) we find

Ŝν 1
2
D

(τ,τ)
µJ,(τττ)0(Ω) = 〈(τ, τ)µJ |R̂(Ω)

(
Ĉ ν 1

2
+
∑
ak

dν 1
2
(θk)ca(θk)Ĉa

)
|(τ, τ)τττ ; 0〉

= 〈(τ, τ)µJ |R̂(Ω)Ĉ ν 1
2
|(τ, τ)τττ ; 0〉

= 〈(τ, τ)µJ |R̂(Ω)|(τ, τ)ν̄; 1
2
〉〈(τ, τ)ν̄; 1

2
|Ĉ ν 1

2
|(τ, τ)τττ ; 0〉

= D
(τ,τ)

µJ ;ν̄ 1
2

(Ω)〈(τ, τ)ν̄; 1
2
|Ĉ ν 1

2
|(τ, τ)τττ ; 0〉 (5.4.10)
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since Ĉa|(τ, τ)τττ ; 0〉 = 0.
Finally, we can evaluate 〈(τ, τ)ν̄; 1

2
|Ĉ ν 1

2
|(τ, τ)τττ ; 0〉. It turns out that this expression is quite simply

expressed in terms of ν:

〈(τ, τ)ν̄; 1
2
|Ĉ ν 1

2
|(τ, τ)τττ ; 0〉 = (−1)ν̄1/2

√
τ(τ+2)

2
, (5.4.11)

where the relations between ν and ν̄ are given in equation (5.3.13). Combining this with equation (5.4.10),
we now have

Ŝν 1
2
D

(τ,τ)
µJ ;(τττ)0(Ω) = (−1)ν̄1/2

√
τ(τ + 2)

2
D

(τ,τ)

µJ ;ν̄ 1
2

(Ω) (5.4.12)

= 〈(τ, τ)µJ |R(Ω)Ĉ ν; 1
2
|(τ, τ)τττ ; 0〉 , (5.4.13)

where the Ŝν 1
2
operators are of first order only.

Using this latter result in equation (5.3.22) produces

[T̂ λ1;αJ , ŵλ(Ω)] =
∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

∑
τ

F τ
λ

(−1)ν1/22
√

3τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

×
∑
µj

(−1)ν̄1/2

√
2

τ(τ + 2)
Ŝν 1

2
D

(τ,τ)
µJ,(τττ)0(Ω)T̂

(τ,τ)
µj

=

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)Ŝν 1

2

∑
τ

F τ
λ

∑
µj

D
(τ,τ)
µJ,(τττ)0(Ω)T̂

(τ,τ)
µj

=

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)Ŝν 1

2
ŵλ(Ω)

=

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

(∑
k

dν 1
2
(θk)

∂

∂θk

)
ŵλ(Ω) . (5.4.14)

for the commutator, where equations (5.1.13) and (5.4.9) have been used.

5.4.1 The Moyal Bracket
We are now able to evaluate the Moyal bracket between the Wigner symbol of a generator WT̂λ1;αJ

(Ω)

and Wigner symbol of an arbitrary operator WB̂

{WT̂λ1;αJ
(Ω),WB̂(Ω)}M = WT̂λ1;αJ B̂

(Ω)−WB̂T̂λ1;αJ
(Ω), (5.4.15)

since

WT̂λ1;αJ B̂
(Ω)−WB̂T̂λ1;αJ

(Ω) = Tr
(

ŵλ(Ω)T̂ λ1;αJB̂
)
− Tr

(
ŵλ(Ω)B̂T̂ λ1;αJ

)
= Tr

(
ŵλ(Ω)T̂ λ1;αJB̂

)
− Tr

(
T̂ λ1;αJ ŵλ(Ω)B̂

)
(5.4.16)
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which by linearity of the trace it becomes

{WT̂λ1;αJ
(Ω),WB̂(Ω)}M = Tr

((
ŵλ(Ω)T̂ λ1;αJ − T̂ λ1;αJ ŵλ(Ω)

)
B̂
)

= Tr
([

ŵλ(Ω), T̂ λ1;αJ

]
B̂
)
. (5.4.17)

Now we can substitute the result of equation (5.4.14) into equation (5.4.17) to find

{WT̂λ1;αJ
(Ω),WB̂(Ω)}M =

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

(∑
k

dν 1
2
(θk)

∂

∂θk

)
Tr(−B̂ŵλ(Ω))

= −

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

(∑
k

dν 1
2
(θk)

∂

∂θk

)
WB̂(Ω) (5.4.18)

which holds for arbitrary operators B̂.
I would like to point out that the expression of equation (5.4.18) only depends on first order derivatives

and it is an example of correspondence rules, since one could rewrite equation (5.4.18) as

{WT̂λ1;αJ
(Ω),WB̂(Ω)}M = T̂αJ(Ω)WB̂(Ω) (5.4.19)

where the differential operator T̂αJ(Ω) is

T̂αJ(Ω) = −

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)

(∑
k

dν 1
2
(θk)

∂

∂θk

)
. (5.4.20)

5.4.2 Comparison of the Moyal Bracket with the Poisson Bracket
The Poisson bracket is given by [13]

{WT̂λ1;αJ
,WB̂}P

=
4

sin β1 sin2 1
2
β2

(
∂WT̂λ1;αJ

∂α1

∂WB̂

∂β1

−
∂WT̂λ1;αJ

∂β1

∂WB̂

∂α1

)

−
2 tan 1

2
β1

sin2 1
2
β2

(
∂WT̂λ1;αJ

∂α2

∂WB̂

∂β1

−
∂WT̂λ1;αJ

∂β1

∂WB̂

∂α2

)

+
4

sin β2

(
∂WT̂λ1;αJ

∂α2

∂WB̂

∂β2

−
∂WT̂λ1;αJ

∂β2

∂WB̂

∂α2

)
. (5.4.21)

One verifies that, for any operator B̂,

{WTλ1;αJ
(Ω),WB(Ω)}M = − i

ε
{WTλ1;αJ

(Ω),WB(Ω)}P (5.4.22)
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where

ε = 2
√
λ(λ+ 3) (5.4.23)

is the semi-classical parameter.
We can bring the Moyal bracket in the form of equation (5.4.18) closer to the form of the Poisson

bracket of equation (5.4.21). Let B̂ = T̂ λ
σ;µ̄J̄

. If we recall equation (5.3.3) and note that

D
(1,1)

ν 1
2

;αJ
(Ω−1) =

(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗

= (−1)ν1/2

√
2

3

(
Ŝν 1

2
D

(1,1)
αJ ;(111)0(Ω)

)∗
= (−1)ν1/2

√
2

3
Ŝ∗
ν 1

2
(−1)1+α2D

(1,1)
α∗J ;(111)0(Ω)

= (−1)ν1/2

√
2

3
Ŝ∗
ν 1

2
(−1)1+α2D

(1,1)
α∗J ;(111)0(Ω)

= (−1)ν1/2(−1)1+α2

√
2

3

(∑
r

(dν 1
2
(θr))

∗ ∂

∂θr

)
D

(1,1)
α∗J ;(111)0(Ω)

= (−1)ν1/2

√
2

3

(∑
r

(dν 1
2
(θr))

∗ ∂

∂θr

)√
(λ+ 1)(λ+ 2)

4
WT̂λ1;αJ

(Ω) . (5.4.24)

Inserting this into equation (5.4.18) produces

{WT̂λ1;αJ
(Ω),WB̂(Ω)}M = − 1√

λ(λ+ 3)

∑
r,k

(∑
ν

(−1)ν1/2(dν 1
2
(θr))

∗dν 1
2
(θk)

)
∂WT̂λ1;αJ

(Ω)

∂θr

∂WB̂(Ω)

∂θk
(5.4.25)

For each pair (r, k) we can evaluate
∑

ν(−1)ν1/2(dν 1
2
(θr))

∗dν 1
2
(θk) to obtain

r k
∑

ν(−1)ν1/2(dν 1
2
(θr))

∗dν 1
2
(θk)

1 2
2i

sin β1 sin2 1
2
β2

2 1 − 2i

sin β1 sin2 1
2
β2

2 3
i tan β1

2

sin2 1
2
β2

3 2 −
i tan β1

2

sin2 1
2
β2

3 4
2i

sin β2

4 3 − 2i

sin β2

(5.4.26)

with all other entries 0. These coefficients differ from those in the expression of the Poisson bracket of
equation (5.4.21) by an overall factor of −2i.
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Table (5.9) contains some Moyal brackets calculated via equation (5.4.25).

Table 5.6: Moyal bracket between the Wigner symbol of some generators and the operator B̂, where λ = 15.

αJ B̂ {WT̂ 15
1;αJ

,WB̂}M

(201)1
2

T̂ 15
1;(111)0

1
136
√

5
exp(iα2) cos

(
β1

2

)
sin β2

(012)1
2

(T̂ 15

1;(201)
1
2

)2

√
133
51

1
4080

exp(−iα2) sin (β2) cos
(
β1

2

)
× (cos (β1)− (cos (β1) + 3) cos (β2)− 1)

(111)0 T̂ 15

1;(210)
1
2

1
136
√

5
exp(i (α1 + α2)) sin

(
β1

2

)
sin (β2)

(111)1 T̂ 15
2;(024)1 − 1

816

√
133
5

exp(2i (α1 + α2)) sin2
(
β1

2

)
sin2 (β2)

5.5 Correspondence Rules for the Generators and Their Prod-
ucts

In order to proceed with the ?-product we need to go back to equations (5.3.15) and (5.3.19) and
observe that the sums will contain terms with ν1 = 1 and I = 0, 1 for which we do not yet have a
differential action. These terms were not present in the commutation relations between a generator T̂ λ1;αJ

and the quantization kernel ŵλ(Ω) of equation (5.3.22) because the difference between aLτ ;ν1I
(λ; ν̄1, I) and

aRτ ;ν1I
(λ; ν̄1, I) in equation (5.3.21) is zero for ν = 1 and I = 0, 1. It is possible to find a second order

differential operator Ŝ(2)
(1ν2ν3)I which acts on the D(σ,σ)

µj;(σσσ)0(Ω) functions to produce D(σ,σ)
µj;(1ν2ν3)1(Ω).

5.5.1 Expression for the ?-product in Terms of D-functions
If we start with equation (5.3.6) and write Â = T̂ λ1;αJ , we can then use equation (5.3.19) to obtain

WT̂λ1;αJ
(Ω) ? WB̂(Ω) =

∑
νI

D
(1,1)
νI;αJ(Ω−1)

∑
τν′I′

F τ
λ aRτ ;ν1I

(λ; ν̄1, I)D
(τ,τ)
ν′I′;ν̄I(Ω)Tr

(
T̂ λτ ;ν′I′B̂

)
. (5.5.1)

Specializing to B̂ = T̂ λ
σ;µ̄J̄

and using

Tr
(
T̂ λτ ;ν′I′T̂

λ
σ;µ̄J̄

)
= (−1)τ+ν′2Tr

(
(T̂ λτ ;ν′∗I′)

†T̂ λσ;µ̄J̄

)
= δστδµ̄ν′∗δJ̄I′ (5.5.2)

so that

WT̂λ1;αJ
(Ω) ? WT̂λ

σ;µ̄J̄
(Ω) =

∑
ν1=0,2

∑
ν2ν3

D
(1,1)

ν 1
2

;αJ
(Ω−1)F σ

λ (−1)σ−µ̄2aR
τ ;ν1

1
2
(λ; ν̄1,

1

2
)D

(σ,σ)

µ̄∗J ;ν̄ 1
2

(Ω)

+
∑
ν2ν3

D
(1,1)
(1ν2ν3)1;αJ(Ω−1)F σ

λ (−1)σ−µ̄2aRτ ;11(λ; τ, 1)D
(σ,σ)
µ̄∗J ;(1ν2ν3)1(Ω)

+D
(1,1)
(111)0;αJ(Ω−1)F σ

λ (−1)σ−µ̄2aRτ ;10(λ; τ, 0)D
(σ,σ)
µ̄∗J ;(111)0(Ω) . (5.5.3)
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We can use equation (5.4.12) to rewrite D(σ,σ)

µ̄∗J ;ν̄ 1
2

(Ω) as a differential operator Ŝν̄; 1
2
acting on a function

D
(σ,σ)
µ̄∗J ;(σσσ)0(Ω). The last term in the sum of equation (5.5.3) is already a function of the right form. There

remains to express the middle part in the form

D
(σ,σ)
µ̄∗J ;(1ν2ν3)1(Ω) ∼ Ŝ

(2)
(1ν2ν3)1D

(σ,σ)
µ̄∗J ;(111)0(Ω) (5.5.4)

It turns out there is no first order operator that will satisfy equation (5.5.4), but we can find a second
order operator that will produce what we want. This is a major difference between the su(3) algebra and
the other two cases of su(2) and hw algebra.

5.5.2 Products of differential operators
In order to obtain a differential action like the one in equation (5.5.4), we consider

ŜαŜβD
(σ,σ)
µJ ;(σσσ)0(Ω) = 〈(σ, σ)µJ |R̂(Ω)

(
Ĉα +

∑
ak

dα(θk)ca(θk)Ĉa

)
Ĉβ|(σ, σ)σσσ; 0〉 , (5.5.5)

= 〈(σ, σ)µJ |R̂(Ω)ĈαĈβ|(σ, σ)σσσ; 0〉

+ 〈(σ, σ)µJ |R̂(Ω)
∑
ak

dβ(θk)ca(θk)ĈaĈβ|(σ, σ)σσσ; 0〉 . (5.5.6)

Now, since Ĉβ is an element of the u(1)⊕ su(2) subalgebra, we have

ĈaĈβ|(σ, σ)σσσ; 0〉 = [Ĉa, Ĉβ]|(σ, σ)σσσ; 0〉+ ĈβĈa|(σ, σ)σσσ; 0〉
= [Ĉa, Ĉβ]|(σ, σ)σσσ; 0〉

=
∑
γ

gγaβĈ γ|(σ, σ)σσσ; 0〉 (5.5.7)

As we have for Ĉ γ

ŜγD
(σ,σ)
µJ ;(σσσ)0(Ω) = 〈(σ, σ)µJ |R̂(Ω)Ĉ γ|(σ, σ)σσσ; 0〉 , (5.5.8)

we find that

ŜαŜβD
(σ,σ)
µJ ;(σσσ)0(Ω) = 〈(σ, σ)µJ |R̂(Ω)

(
Ĉα +

∑
ak

dα(θk)ca(θk)Ĉa

)
Ĉβ|(σ, σ)σσσ; 0〉

= 〈(σ, σ)µJ |R̂(Ω)ĈαĈβ|(σ, σ)σσσ; 0〉

+
∑
akγ

dα(θk)ca(θk)g
γ
aβŜγD

(σ,σ)
µJ ;(σσσ)0(Ω) (5.5.9)

or (
ŜαŜβ −

∑
aγ

fαag
γ
aβŜγ

)
D

(σ,σ)
µJ ;(σσσ)0(Ω) = 〈(σ, σ)µJ |R̂(Ω)ĈαĈβ|(σ, σ)σσσ; 0〉 , (5.5.10)
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where, for economy, we denote

fαa : =
∑
k

dα(θk)ca(θk) . (5.5.11)

These coefficients are given in Table 5.7.

Table 5.7: The sums fβa =
∑

k dβ(θk)ca(θk).

β a = 120; 1 111; 1

012; 1
2

−2e−i(2α1+α2) sin
(
β1

2

)
× sin (β1) sin4

(
β2

4

)
csc (β2)

e−i(α1+α2) sin
(
β1

2

)
tan
(
β2

4

)
× 1√

2

(
sin2

(
β2

4

)
cos (β1) sec

(
β2

2

)
− 1
)

021; 1
2

−1
4
e−i(α1+α2) sin

(
β1

2

)
tan
(
β2

4

)
×
(
sec
(
β2

2

) (
2 sin2

(
β2

4

)
cos (β1) + 1

)
+ 3
) 1√

2
e−iα2 cos

(
β1

2

)
tan
(
β2

4

)
×
(
sin2

(
β2

4

)
cos (β1) sec

(
β2

2

)
+ 1
)

201; 1
2

e−iα1 sinα2(cotα2 + i)

× sin2 β1 csc
(
β1

2

)
sin4

(
β2

4

)
csc β2

− 1√
2
eiα2 cos

(
β1

2

)
tan
(
β2

4

)
×
(
sin2

(
β2

4

)
cos β1 sec

(
β2

2

)
+ 1
)

210; 1
2

eiα2 cos
(
β1

2

)
tan
(
β2

4

)
×1

4

(
sec
(
β2

2

) (
2 sin2

(
β2

4

)
cos β1 − 1

)
− 3
) ei(α1+α2) sin

(
β1

2

)
tan
(
β2

4

)
× 1√

2

(
sin2

(
β2

4

)
cos β1 sec

(
β2

2

)
− 1
)

β a = 102; 1 111; 0

012; 1
2

e−iα2 cos
(
β1

2

)
tan
(
β2

4

)
×1

4

(
sec
(
β2

2

) (
1− 2 sin2

(
β2

4

)
cos β1

)
+ 3
) 1

2

√
3
2
e−i(α1+α2) sin

(
β1

2

)
tan
(
β2

2

)
021; 1

2

−e−i(α1+α2) sin
(
β1

2

)
tan
(
β2

4

)
×1

4

(
sec
(
β2

2

) (
2 sin2

(
β2

4

)
cos β1 + 1

)
+ 3
) 1

2

√
3
2
e−iα2 cos

(
β1

2

)
tan
(
β2

2

)
201; 1

2

e−iα1 sinα2 csc
(
β1

2

)
csc β2

× sin2 (β1) sin4
(
β2

4

)
(cot (α2) + i)

−1
2

√
3
2
eiα2 cos

(
β1

2

)
tan
(
β2

2

)
210; 1

2

1
4
eiα2 cos

(
β1

2

)
tan
(
β2

4

)
×
(
sec
(
β2

2

) (
2 sin2

(
β2

4

)
cos β1 − 1

)
− 3
) 1

2

√
3
2
ei(α1+α2) sin

(
β1

2

)
tan
(
β2

2

)

5.5.3 The Second Order Operator Ŝ
(2)
(1ν2ν3)I

In order to obtain the second order operator, which shifts the I label by one, I had to work with
products of the operators Ŝν 1

2
.
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If we consider

Ŝ(021) 1
2
Ŝ(210) 1

2
D

(σ,σ)
µ,J ;(σ,σ,σ)0(Ω) = 〈(σ, σ)µ; J | R̂(Ω)Ĉ (021) 1

2
Ĉ (210) 1

2
|(σ, σ)σσσ; 0〉

+
∑
a

f(021) 1
2

;a 〈(σ, σ)µ; J | R̂(Ω)
[

Ĉa, Ĉ (210) 1
2

]
|(σ, σ)σσσ; 0〉 , (5.5.12)

where the fαa coefficients that appear in the expression above are given in equation (5.5.11). Using∑
a

f(021) 1
2

;a 〈(σ, σ)µ; J | R̂(Ω)
[

Ĉa, Ĉ (210) 1
2

]
|(σ, σ)σσσ; 0〉

=
(
− f(021) 1

2
;(102) 1

2
〈(σ, σ)µ; J | R̂(Ω)Ĉ (201) 1

2
|(σ, σ)σσσ; 0〉

+
(
−
√

2
2
f(021) 1

2
;(111)1 +

√
3
2
f(021) 1

2
;(111)0

)
〈(σ, σ)µ; J | R̂(Ω)Ĉ (210) 1

2
|(σ, σ)σσσ; 0〉

)
=
(
−f(021) 1

2
;(102) 1

2
Ŝ(201) 1

2
+
(
−
√

2
2
f(021) 1

2
;(111)1 +

√
3
2
f(021) 1

2
;(111)0

)
Ŝ(210) 1

2

)
D

(σ,σ)
µJ ;(σσσ)0(Ω) (5.5.13)

and

〈(σ, σ)µ; J | R̂(Ω)Ĉ (021) 1
2

Ĉ (210) 1
2
|(σ, σ)σσσ; 0〉 = −σ(σ + 2)√

6
D

(σ,σ)
µJ ;(σ,σ+1,σ−1)1(Ω) (5.5.14)

we obtain the expression

− σ(σ + 2)√
6

D
(σ,σ)
µJ ;(σ,σ+1,σ−1)1(Ω)

= Ŝ(021) 1
2
Ŝ(210) 1

2
D

(σ,σ)
µ,J ;(σσσ)0

+
(
f(021) 1

2
;(102) 1

2
Ŝ(201) 1

2
+
√

2
2
f(021) 1

2
;(111)1Ŝ(210) 1

2
−
√

3
2
f(021) 1

2
;(111)0Ŝ(210) 1

2

)
D

(σ,σ)
µ,J ;(σσσ)0(Ω)

:= Ŝ
(2)
(120);1D

(σ,σ)
µ,J ;(σσσ)0 .(Ω) (5.5.15)

Similarly, starting with

〈(σ, σ)µ; J | R̂(Ω)Ĉ (012) 1
2

Ĉ (201) 1
2
|(σ, σ)σσσ; 0〉 = −σ(σ + 2)√

6
D

(σ,σ)
µ,J ;(σ,σ−1,σ+1)1(Ω) , (5.5.16)

we easily reach

− σ(σ + 2)√
6

D
(σ,σ)
µJ ;(σ,σ−1,σ+1)1(Ω)

= Ŝ(012) 1
2
Ŝ(201) 1

2
D

(σ,σ)
µ,J ;(σσσ)0

−
(
f(012) 1

2
;(120)1Ŝ(210) 1

2
+
(√

2
2
f(012) 1

2
;(111)1 +

√
3
2
f(012) 1

2
;(111)0

)
Ŝ(201) 1

2

)
D

(σ,σ)
µ,J ;(σσσ)0(Ω)

:= Ŝ
(2)
(102);1D

(σ,σ)
µ,J ;(σσσ)0(Ω) . (5.5.17)

Finally, we consider the action

〈(σ, σ)µ; J | R̂(Ω)
(

Ĉ 021; 1
2

Ĉ 201; 1
2

+ Ĉ 012; 1
2

Ĉ 210; 1
2

)
|(σ, σ)σσσ; 0〉 = −σ(σ + 2)√

3
D

(σ,σ)
µJ ;(σσσ)1(Ω)

= − 1√
3
Ŝ

(2)
(111);1D

(σ,σ)
µ,J ;(σσσ)0(Ω) . (5.5.18)
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We can then verify that

Ŝ021; 1
2
Ŝ201; 1

2
D

(σ,σ)
µJ ;(σσσ)(Ω)

= 〈(σ, σ)µ; J | R̂(Ω)Ĉ 021; 1
2

Ĉ 201; 1
2
|(σ, σ)σσσ; 0〉+ f(021) 1

2
;(120)1 〈(σ, σ)µJ | R̂(Ω)Ĉ 210; 1

2
|(σ, σ)σσσ; 0〉

+
(√

3
2
f(021) 1

2
;(111)1 +

√
2

2
f(021) 1

2
;(111)0

)
〈(σ, σ)µJ | R̂(Ω)Ĉ 201; 1

2
|(σ, σ)σσσ; 0〉

= 〈(σ, σ)µ; J | R̂(Ω)Ĉ 021; 1
2

Ĉ 201; 1
2
|(σ, σ)σσσ; 0〉

+
(
f(021) 1

2
;(120)1Ŝ210; 1

2
+
(√

3
2
f(021) 1

2
;(111)1 +

√
2

2
f(021) 1

2
;(111)0

)
Ŝ201; 1

2

)
D

(σ,σ)
µJ ;(σσσ)0(Ω) , (5.5.19)

where equation (5.4.13) has been used.
Duplicating the same steps, this time for Ŝ012; 1

2
Ŝ210; 1

2
D

(σ,σ)
µJ ;(σσσ)0(Ω), yields

Ŝ012; 1
2
Ŝ210; 1

2
D

(σ,σ)
µJ ;(σσσ)0(Ω)

= 〈(σ, σ)µ; J | R̂(Ω)Ĉ 012; 1
2

Ĉ 210; 1
2
|(σ, σ)σσσ; 0〉 − f(012) 1

2
;(102)1 〈(σ, σ)µJ | R̂(Ω)Ĉ 201; 1

2
|(σ, σ)σσσ; 0〉

+
(√

3
2
f(012) 1

2
;(111)1 −

√
2

2
f(012) 1

2
;(111)0

)
〈(σ, σ)µJ | R̂(Ω)Ĉ 210; 1

2
|(σ, σ)σσσ; 0〉

= 〈(σ, σ)µ; J | R̂(Ω)Ĉ 021; 1
2

Ĉ 201; 1
2
|(σ, σ)σσσ; 0〉

+
(
f(012) 1

2
;(102)1Ŝ201; 1

2
+
(√

3
2
f(012) 1

2
;(111)1 −

√
2

2
f(012) 1

2
;(111)0

)
Ŝ210; 1

2

)
D

(σ,σ)
µJ ;(σσσ)0(Ω) . (5.5.20)

Hence:

− 1√
3
Ŝ

(2)
(111);1D

(σ,σ)
µ,J ;(σσσ)0(Ω)

=
(
Ŝ021; 1

2
Ŝ201; 1

2
− f(021) 1

2
;(120)1Ŝ210; 1

2
−
(√

3
2
f(021) 1

2
;(111)1 +

√
2

2
f(021) 1

2
;(111)0

)
Ŝ201; 1

2

)
D

(σ,σ)
µJ ;(σσσ)0(Ω)

+
(
Ŝ012; 1

2
Ŝ210; 1

2
− f(012) 1

2
;(102)1Ŝ201; 1

2
−
(√

3
2
f(012) 1

2
;(111)1 −

√
2

2
f(012) 1

2
;(111)0

)
Ŝ210; 1

2

)
D

(σ,σ)
µJ ;(σσσ)0(Ω) . (5.5.21)

We can summarize equations (5.5.15), (5.5.17) and (5.5.21) as

Ŝ
(2)
1ν2ν3;1D

(σ,σ)
µJ ;(σσσ)0(Ω) = −σ(σ + 2)

√
(1 + δν21δν31)

6
D

(σ,σ)
µJ ;(1ν2ν3)1(Ω) , (5.5.22)

The operators that were constructed via equation (5.5.22) together with the ones that shift the label I
by 1

2
form a set of differential operators that act on the functions D(σ,σ)

µJ ;(σσσ)0, changing the index (σσσ)0.
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5.5.4 The ?-product in terms of differential operators

We can now write the ?-product of equation (5.5.3) in terms of the differential operators Ŝν 1
2
and Ŝ

(2)
ν1

acting on functions D(σ,σ)
µ∗J ;(σσσ)0(Ω). Using equations (5.4.12) and (5.5.22), we obtain

WT̂λ1;αJ
(Ω) ? WT̂λ

σ;µ̄J̄
(Ω)

=
∑
ν1=0,2

∑
ν2ν3

D
(1,1)

ν 1
2

;αJ
(Ω−1)aR

σ;ν 1
2
(λ; ν̄,

1

2
)(−1)ν1/2

√
2

σ(σ + 2)
Ŝν 1

2

(
F σ
λ (−1)σ−µ̄2D

(σ,σ)
µ̄∗J ;(σσσ)0(Ω)

)
−
∑
ν2ν3

D
(1,1)
(1ν2ν3)1;αJ(Ω−1)aRσ;11(λ;σ, 1)

(√
6

1 + δν21δν31

1

σ(σ + 2)

)
Ŝ

(2)
(1ν2ν3);1

(
F σ
λ (−1)σ−µ̄2D

(σ,σ)
µ̄∗J ;(σσσ)0

)
+D

(1,1)
(111)0;αJ(Ω−1)aRσ;10(λ;σ, 0)

(
F σ
λ (−1)σ−µ̄2D

(σ,σ)
µ̄∗J ;(111)0(Ω)

)
. (5.5.23)

Finally, using equation (5.3.3), we can write(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗

= (−1)
ν1
2

√
2

3

(
Ŝν; 1

2
D

(1,1)
αJ ;(111)0(Ω)

)∗
= (−1)

ν1
2

√
(λ+ 1)(λ+ 2)

24

(
Ŝν; 1

2

)∗
WT̂λ1;αJ

(Ω)(
D

(1,1)
αJ ;ν1(Ω)

)∗
= −

√
2

3(1 + δν21δν31)

(
Ŝ

(2)
ν;1D

(1,1)
αJ ;(111)0(Ω)

)∗
= −

√
(λ+ 1)(λ+ 2)

24(1 + δν21δν31)

(
Ŝ

(2)
ν;1

)∗
WT̂λ1;αJ

(Ω) .

(5.5.24)

With this we can bring equation (5.5.23) into a more symmetrical form:√
24

(λ+ 1)(λ+ 2)
WT̂λ1;αJ

(Ω) ? WT̂λ
σ;µ̄J̄

(Ω)

=
∑
ν1=0,2

∑
ν2ν3

((
Ŝν; 1

2

)∗
WT̂λ1;αJ

(Ω)
)

aR
σ;ν1

1
2
(λ; ν̄1,

1

2
)

√
2

σ(σ + 2)

(
Ŝν; 1

2
WT̂λσ;µJ

(Ω)
)

+
∑
ν2ν3

((
Ŝ

(2)
ν;1

)∗
WT̂λ1;αJ

(Ω)
)

aRσ;11(λ;σ, 1)

√
6

σ(σ + 2)(1 + δν21δν31)

(
Ŝ

(2)
ν;1WT̂λσ;µJ

(Ω)
)

+

√
3

2
WT̂λ1;αJ

(Ω)aRσ;10(λ;σ, 0)WT̂λσ;µJ
(Ω) (5.5.25)

We can compare this form to that of the su(2) ?-product presented in equation (3.2.25) from chapter 2
of this thesis and found by Klimov and Espinoza in [10]. The factor (λ+ 1)(λ+ 2) is basically the size of
the irrep (λ, 0) of the Hilbert space of quantum states. The operators Ŝν1/2 and Ŝ

(2)
ν1 play the role of Ŝ±(j)

of Klimov and Espinoza.
The full correspondence rules are obtained by one final last step: to express the coefficients aRσ;ν1I

(λ; ν̄1, I)

of equation (5.3.18) as functions of the su(3) Casimir invariant Ĉ(2). Here, it is enough to know that this
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operator commutes with any SU(3) transformation and any su(3) generator. Acting on any state |(τ, τ)νI〉,
we have

Ĉ(2) |(τ, τ)νI〉 = 2τ(τ + 2) |(τ, τ)νI〉 . (5.5.26)

This operator is given by

Ĉ(2) =
∑
i6=j

ĈijĈji + Ĥ2
1 + Ĥ2

0 , (5.5.27)

with
Ĥ1 = − 1√

2
(Ĉ22 − Ĉ33) , Ĥ0 =

1√
6

(2Ĉ11 − Ĉ22 − Ĉ33) . (5.5.28)

A function of λ and τ , such as
√
λ− τ + 1, can then be formally expanded as

√
λ− τ + 1 =

√
λ+ 1

√
1− τ

λ+ 1
=
√
λ+ 1

(
τ 2

8(λ+ 1)2
+

τ

2(λ+ 1)
+ . . .

)
. (5.5.29)

Using again the formal identify valid for any state in (τ, τ):

τ = −1 +

√
2 + Ĉ(2)

√
2

(5.5.30)

one can recompose the series of equation (5.5.29) and express
√
λ− τ + 1 as a formal function of Ĉ(2).

Expressing the coefficients aR
τ ;2 1

2

(λ; τ +1, 1
2
) this way, and using the differential operators ŜνI and Ŝ

(2)
νI , gives

the complete expression for the correspondence rules.

5.5.5 Asymptotic form of the ?-product
Because the exact functions aR

τ ;2 1
2

(λ; τ+1, 1
2
) are quite complicated functions of Ĉ(2), and because Wigner

functions provide a bridge to the semi-classical limit reached when λ→∞, the correspondence rules and
the ?-product are used in practical situation in this classical limit. Therefore, one should consider that in
the limit of large λ we have

aLτ ;1,1(∞; τ, 1) = aRτ ;1,1(∞; τ, 1) ∼ − τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

(2λ− 3)

4λ2
, (5.5.31)

aLτ ;1,0(∞; τ, 0) = aRτ ;1,0(∞; τ, 0) ∼ 1√
λ(λ+ 1)(λ+ 2)(λ+ 3)

(
4λ+ 6− 3(2λ− 3)(τ(τ + 2) + 3)

4λ2

)
,

(5.5.32)

aL
τ ;0, 1

2
(∞; τ − 1,

1

2
) = aR

τ ;2, 1
2
(∞; τ + 1,

1

2
) ∼

√
3τ(τ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)

(
1 +

3

4λ
− 9

8λ2

)
, (5.5.33)

aL
τ ;2, 1

2
(∞; τ + 1,

1

2
) = aR

τ ;0, 1
2
(∞; τ − 1,

1

2
) ∼

√
3τ(τ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)

(
−1 +

3

4λ
− 9

8λ2

)
. (5.5.34)
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In this section we discuss the simplifications that occur in the semi-classical limit of λ→∞. We first
start with the terms

aR
τ ;ν1,

1
2
(∞; ν̄1,

1

2
)

√
2

τ(τ + 2)
=

√
6

λ(λ+ 1)(λ+ 2)(λ+ 3)

(
−(−1)ν1/2 +

3

4λ
− 9

8λ2

)
, (5.5.35)

aRτ ;ν1,1
(∞; τ, 1)

√
6

τ(τ + 2)(1 + δν21δν31)
= −

√
6

τ(τ + 2)(1 + δν21δν31)

τ(τ + 2)√
λ(λ+ 1)(λ+ 2)(λ+ 3)

(2λ− 3)

4λ2
,

(5.5.36)

= −

√
6

λ(λ+ 1)(λ+ 2)(λ+ 3)

1

1 + δν21δν31

(
1

2λ
− 3

4λ2

)
, (5.5.37)

aRτ ;1,0(∞; τ, 0) =
1√

λ(λ+ 1)(λ+ 2)(λ+ 3)

(
4λ+ 6− 3(2λ− 3)(τ(τ + 2) + 3)

4λ2

)
.

(5.5.38)

We note for later discussion that these coefficients scale differently with λ:√
λ(λ+ 1)(λ+ 2)(λ+ 3) aRτ ;1,0(∞; τ, 0) ∼ λ , (5.5.39)√
λ(λ+ 1)(λ+ 2)(λ+ 3) aR

τ ;ν1,
1
2
(∞; ν̄1,

1

2
) ∼ 1 , (5.5.40)√

λ(λ+ 1)(λ+ 2)(λ+ 3) aRτ ;ν1,1
(∞; τ, 1) ∼ λ−1 . (5.5.41)

In the asymptotic limit we therefore have

ŵλ(Ω)T̂ λ1;αJ := ÂR
αJ ŵλ(Ω)

=
1√

λ(λ+ 1)(λ+ 2)(λ+ 3)

[ ∑
ν1=0,2

(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗(
−(−1)ν1/2 +

3

4λ
− 9

8λ2

)√
6 (−1)ν1/2 Ŝν; 1

2

−
∑
ν2ν3

(
D

(1,1)
αJ ;(1ν2ν3)1(Ω)

)∗√ 6

(1 + δν21δν31)

(
1

2λ
− 3

4λ2

)
Ŝ

(2)
ν;1

+
(
D

(1,1)
αJ ;(111)0(Ω)

)∗(
4λ+ 6− 3(2λ− 3)(C2 + 3)

4λ2

)]
ŵλ(Ω) , (5.5.42)

where Ĉ(2) is the quadratic Casimir operator:

Ĉ(2)D
(τ,τ)
νJ ;(τττ)0(Ω) = τ(τ + 2)D

(τ,τ)
νJ ;(τττ)0(Ω) . (5.5.43)
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In the same limit, the ?-product of equation (5.5.25) simplifies to

2
√
λ(λ+ 3)WT̂λ1;αJ

(Ω) ? WT̂λ
σ;µ̄J̄

(Ω)

=
∑
ν1=0,2

∑
ν2ν3

((
Ŝν; 1

2

)∗
WT̂λ1;αJ

(Ω)
)(
−(−1)ν1/2 +

3

4λ
− 9

8λ2

)(
Ŝν; 1

2
WT̂λσ;µJ

(Ω)
)

−
∑
ν2ν3

((
Ŝ

(2)
ν;1

)∗
WT̂λ1;αJ

(Ω)
)( 1

1 + δν21δν31

(
1

2λ
− 3

4λ2

))(
Ŝ

(2)
ν;1WB̂(Ω)

)
+
(
1lWT̂λ1;αJ

(Ω)
) 1

2

(
2(2λ+ 3)− 3(2λ− 3)(Ĉ(2) + 3)

4λ2

)(
1lWT̂λσ;µJ

(Ω)
)

. (5.5.44)

As there is no σ-dependence in any of these expressions, we have quite generally

2
√
λ(λ+ 3)WT̂λ1;αJ

(Ω) ? WB̂(Ω)

∼
∑
ν1=0,2

∑
ν2ν3

((
Ŝν; 1

2

)∗
WT̂λ1;αJ

(Ω)
)(
−(−1)ν1/2 +

3

4λ
− 9

8λ2

)(
Ŝν; 1

2
WB̂(Ω)

)
−
∑
ν2ν3

((
Ŝ

(2)
ν;1

)∗
WT̂λ1;αJ

(Ω)
)( 1

1 + δν21δν31

(
1

2λ
− 3

4λ2

))(
Ŝ

(2)
ν;1WT̂λσ;µJ

(Ω)
)

+
(
1lWT̂λ1;αJ

(Ω)
) 1

2

(
2(2λ+ 3)− 3(2λ− 3)(Ĉ(2) + 3)

4λ2

)
(1lWB̂(Ω)) (5.5.45)

which is valid in the λ → ∞ for any operator B̂. An equivalent but slightly more physically meaningful
expression is obtained when expressing equation (5.5.45) in terms of the semi-classical parameter ε of
equation (5.4.23) rather than λ:

εWT̂λ1;αJ
(Ω) ? WB̂(Ω)

∼
∑
ν1=0,2

∑
ν2ν3

((
Ŝν; 1

2

)∗
WT̂λ1;αJ

(Ω)
)(
−(−1)ν1/2 +

3

2ε

)(
Ŝν; 1

2
WB̂(Ω)

)
−
∑
ν2ν3

((
Ŝ

(2)
ν;1

)∗
WT̂λ1;αJ

(Ω)
) 1

ε

1

1 + δν21δν31

(
Ŝ

(2)
ν;1WB̂(Ω)

)
+
(
1lWT̂λ1;αJ

(Ω)
)(

ε− 3Ĉ(2)

2ε

)
(1lWB̂(Ω)) . (5.5.46)
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The calculation of T̂ λ1;αJ ŵλ(Ω) is simple since only the first term of the I = 1/2 changes sign so that

T̂ λ1;αJ ŵλ(Ω) := ÂL
αJ ŵλ(Ω)

=
1√

λ(λ+ 1)(λ+ 2)(λ+ 3)

[ ∑
ν1=0,2

(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗(

(−1)ν1/2 +
3

4λ
− 9

8λ2

)√
6 (−1)ν1/2 Ŝν; 1

2

−
∑
ν2ν3

(
D

(1,1)
αJ ;(1ν2ν3)1(Ω)

)∗√ 6

(1 + δν21δν31)

(
1

2λ
− 3

4λ2

)
Ŝ

(2)
ν;1

+
(
D

(1,1)
αJ ;(111)0(Ω)

)∗(
4λ+ 6− 3(2λ− 3)(C2 + 3)

4λ2

)]
ŵλ(Ω) , (5.5.47)

so that

εWB̂(Ω) ? WT̂λ1;αJ
(Ω) ∼

∑
ν1=0,2

∑
ν2ν3

((
Ŝν; 1

2

)∗
WT̂λ1;αJ

(Ω)
)(

(−1)ν1/2 +
3

2ε

)(
Ŝν; 1

2
WB̂(Ω)

)
−
∑
ν2ν3

((
Ŝ

(2)
ν;1

)∗
WT̂λ1;αJ

(Ω)
) 1

ε

1

1 + δν21δν31

(
Ŝ

(2)
ν;1WB̂(Ω)

)
+
(
1lWT̂λ1;αJ

(Ω)
)(

ε− 3Ĉ(2)

2ε

)
(1lWB̂(Ω)) . (5.5.48)

Finally, we get

{WT̂λ1;αJ
(Ω),WB̂(Ω)}M ∼ −

2

ε

∑
ν1=0,2

∑
ν2ν3

(−1)
ν1
2

((
Ŝν 1

2

)∗
WT̂λ1;αJ

)(
Ŝν 1

2
WB̂(Ω)

)
(5.5.49)

which has been brought to the form of a Poisson bracket between the Wigner symbol of one of the generators
T̂ λ1;αJ and an arbitrary operator B̂.

5.6 Application to (T̂ λ1;αJ)
2-type operators

Hamiltonians which contain powers of generators have been considered by many authors in multiple
contexts, such as the su(2)-LMG model described earlier in this thesis. Also, Dinani et al. in [13] have
considered Hamiltonians containing terms Ĥ2

0 and Ĥ2
1 in their study of su(3) squeezing. We explore the

?-product and evolution equations for such Hamiltonians.
Consider first

{W(T̂λ1;αJ )2 ,WB̂}M = Tr
(

ŵλ(Ω)(T̂ λ1;αJ)2B̂
)
− Tr

(
ŵλ(Ω)B̂(T̂ λ1;αJ)2

)
= Tr

([
ŵλ(Ω), (T̂ λ1;αJ)2

]
B̂
)

(5.6.1)

and if we recall that [
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
(5.6.2)
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we can write equation (5.6.1) as

{W(T̂λ1;αJ )2 ,WB̂}M = Tr
([

ŵλ(Ω), T̂ λ1;αJ

]
T̂ λ1;αJB̂

)
+ Tr

(
T̂ λ1;αJ

[
ŵλ(Ω), T̂ λ1;αJ

]
B̂
)
. (5.6.3)

We can now use equation (5.4.14) to obtain

{W(T̂λ1;αJ )2 ,WB̂}M = −

√
24

λ(λ+ 1)(λ+ 2)(λ+ 3)

×
∑
ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)Ŝν; 1

2

(
WT̂λ1;αJ

(Ω) ? WB̂(Ω) +WB̂(Ω) ? WT̂λ1;αJ
(Ω)
)

. (5.6.4)

Since

D
(1,1)

ν 1
2

;αJ
(Ω−1) = (−1)ν1/2

√
(λ+ 1)(λ+ 2)

24

[
Ŝ∗
ν; 1

2
WT̂λ1;αJ

(Ω)
]

(5.6.5)

we can use this together with equations (5.5.45) and (5.5.48) to rewrite equation (5.6.4) in the limit of
large λ, as

{W(T̂λ1;αJ )2 ,WB̂}M = − 2

ε2

∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
]

×
[
Ŝν; 1

2
ε
(
WT̂λ1;αJ

(Ω) ? WB̂(Ω) +WB̂(Ω) ? WT̂λ1;αJ
(Ω)
)]

, (5.6.6)

= − 4

ε2

∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
]

× Ŝν; 1
2

 ∑
ν′1=0,2

∑
ν′2ν
′
3

((
Ŝν′; 1

2

)∗
WT̂λ1;αJ

(Ω)
) 3

2ε

(
Ŝν′; 1

2
WB̂(Ω)

)
−
∑
ν′2ν
′
3

((
Ŝ

(2)
ν′;1

)∗
WT̂λ1;αJ

(Ω)
) 1

ε

1

1 + δν′21δν′31

(
Ŝ

(2)
ν′;1WB̂(Ω)

)

+
(
1lWT̂λ1;αJ

(Ω)
)(

ε− 3Ĉ(2)

2ε

)
(1lWB̂(Ω))

]
, (5.6.7)

where the expansion has been done in terms of the more physically meaningful semi-classical parameter ε.
This can be brought into a more insightful form by writing

{W(T̂λ1;αJ )2 ,WB̂}M = − 4

ε2

∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
]

× Ŝν; 1
2

 ∑
ν′1=0,2

∑
ν′2ν
′
3

((
Ŝν′; 1

2

)∗
WT̂λ1;αJ

(Ω)
) 3

2ε

(
Ŝν′; 1

2
WB̂(Ω)

)

−
∑
ν′2ν
′
3

((
Ŝ

(2)
ν′;1

)∗
WT̂λ1;αJ

(Ω)
) 1

ε

1

1 + δν′21δν′31

(
Ŝ

(2)
ν′;1WT̂λσ;αJ

(Ω)
)

− 4

ε2

∑
ν

(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗√ 24

(λ+ 1)(λ+ 2)
Ŝν; 1

2

[(
WT̂λ1;αJ

(Ω)
)(

ε− 3Ĉ(2)

2ε

)
(WB̂(Ω))

]
. (5.6.8)
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Now, W
T̂

(1,1)
αJ

(Ω) ∝
(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗

so the last term contains an expression of the form

∑
ν

(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗

Ŝν; 1
2

(
D

(1,1)
αJ ;(111)0(Ω)

)∗
. (5.6.9)

It is not hard to see, using orthogonality of D(1,1)
αJ ;(111)0(Ω) functions or by direct calculation that∑

ν

D
(1,1)

ν 1
2

;αJ
(Ω−1)Ŝν; 1

2

(
D

(1,1)
αJ ;(111)0(Ω)

)∗
= 0 . (5.6.10)

In other words, the last term is nothing but

− 4

ε2

∑
ν

(
D

(1,1)

αJ ;ν 1
2

(Ω)
)∗√ 24

(λ+ 1)(λ+ 2)
Ŝν; 1

2

[(
WT̂λ1;αJ

(Ω)
)(

ε− 3Ĉ(2)

2ε

)
(WB̂(Ω))

]
= −4

ε
WT̂λ1;αJ

(Ω)
∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
] [

Ŝν; 1
2
WB̂(Ω)

]
+

6

ε3
WT̂λ1;αJ

(Ω)
∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
] [
C(2)Ŝν; 1

2
WB̂(Ω)

]
, (5.6.11)

= 2WT̂λ1;αJ
(Ω){WT̂λ1;αJ

(Ω),WB̂(Ω)}M

+
6

ε3
WT̂λ1;αJ

(Ω)
∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
] [
C(2)Ŝν; 1

2
WB̂(Ω)

]
, (5.6.12)

= −2i

ε
WT̂λ1;αJ

(Ω){WT̂λ1;αJ
(Ω),WB̂(Ω)}P

+
6

ε3
WT̂λ1;αJ

(Ω)
∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
] [
C(2)Ŝν; 1

2
WB̂(Ω)

]
, (5.6.13)

= − i
ε
{(WT̂λ1;αJ

(Ω))2,WB̂(Ω)}P

+
6

ε3
WT̂λ1;αJ

(Ω)
∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
] [
C(2)Ŝν; 1

2
WB̂(Ω)

]
, (5.6.14)

where the derivative property

{f, g2}P = −{f, g}Pg + g{f, g}P = 2g{f, g}P (5.6.15)

of the Poisson bracket has been used.
The Moyal bracket can thus be written in the form

{W(T̂λ1;αJ )2 ,WB̂}M = − i
ε
{(WT̂λ1;αJ

(Ω))2,WB̂(Ω)}P + correction terms (5.6.16)

72



where the correction terms

− 4

ε2

∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
]
Ŝν; 1

2

×

 ∑
ν′1=0,2

∑
ν′2ν
′
3

((
Ŝν′; 1

2

)∗
WT̂λ1;αJ

(Ω)
) 3

2ε

(
Ŝν′; 1

2
WB̂(Ω)

)

−
∑
ν′2ν
′
3

((
Ŝ

(2)
ν′;1

)∗
WT̂λ1;αJ

(Ω)
) 1

ε

1

1 + δν′21δν′31

(
Ŝ

(2)
ν′;1WB̂(Ω)

)
+

6

ε3
WT̂λ1;αJ

(Ω)
∑
ν

[
(−1)ν1/2Ŝ∗

ν; 1
2
WT̂λ1;αJ

(Ω)
] [
C(2)Ŝν; 1

2
WB̂(Ω)

]
(5.6.17)

are two powers of the semi-classical parameter ε smaller than the leading term, which is nothing but the
classical Poisson bracket. Note that, in general,

(WT̂λ1;αJ
(Ω))2 = WT̂λ1;αJ

(Ω))WT̂λ1;αJ
(Ω) 6= WT̂λ1;αJ

(Ω) ? WT̂λ1;αJ
(Ω) = W(T̂λ1;αJ )2(Ω) . (5.6.18)

Hence, to leading order, the quantum evolution equation obtained from the Moyal bracket agrees with the
equations of motion obtained from the classical Poisson bracket.

Examples of nonlinear Hamiltonians

We are now interested in explicit expressions for the leading term and the correction terms of the Moyal
bracket of equation (5.6.16) for systems that possess Hamiltonians of the type

Ĥ =
(
T̂ λ

1;α 1
2

)2

(5.6.19)

As mentioned previously, the leading term of this Moyal bracket is the Poisson bracket

− i
ε
{(WT̂λ1;αJ

)2(Ω),WB̂(Ω)}P

and the correction terms are given in equation (5.6.17). A summary of the leading term of the Moyal
brackets for various Wigner symbols of the operator B̂ and their correction terms can be found in Tables
5.8 and 5.9, respectively.
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Table 5.8: The leading term and correction term of some Moyal brackets

T̂ λ
1;α 1

2

B̂ − i

2
√
λ(λ+3)

{W(
T̂λ

1;α 1
2

)2 ,WB̂}P

T̂ λ
1;(210) 1

2

T̂ λ1;(111)1

24
√

3e2i(α1+α2) sin2(β1
2 ) sin2(β2)

((λ+1)(λ+2))3/2
√
λ(λ+3)

T̂ λ
1;(210) 1

2

T̂ λ2;(042)1

36
√

5e2iα1 sin2(β1) sin2(β2
2 ) sin2(β2)

((λ+1)(λ+2))3/2
√
λ(λ+3)

T̂ λ
1;(210) 1

2

T̂ λ2;(222)0 −24
√

6e2i(α1+α2) sin2(β1
2 ) sin2(β2)(5 cos(β2)+1)

((λ+1)(λ+2))3/2
√
λ(λ+3)

T̂ λ
1;(012) 1

2

T̂ λ1;(120)1 −12
√

6e−i(α1+2α2) sin(β1) sin2(β2)

((λ+1)(λ+2))3/2
√
λ(λ+3)

T̂ λ
1;(012) 1

2

T̂ λ1;(240)2 −36
√

5e−2iα2 sin2(β1) sin2(β2
2 ) sin2(β2)

((λ+1)(λ+2))3/2
√
λ(λ+3)

T̂ λ
1;(012) 1

2

T̂ λ1;(222)0

24
√

6e−2i(α1+α2) sin2(β1
2 ) sin2(β2)(5 cos(β2)+1)

((λ+1)(λ+2))3/2
√
λ(λ+3)

Table 5.9: The correction terms of some Moyal brackets

T̂ λ
1;α 1

2

B̂ Correction Terms

T̂ λ
1;(210) 1

2

T̂ λ1;(111)1 −3072
√

3
ε6

e2i(α1+α2) sin2
(
β1

2

)
sin2 (β2)

T̂ λ
1;(210) 1

2

T̂ λ2;(042)1
1152

√
5

ε6
e2iα1 sin2 (β1) sin4

(
β2

2

)
(20 cos (β2) + 13)

T̂ λ
1;(210) 1

2

T̂ λ2;(222)0
384
√

6
ε6

e2i(α1+α2) sin2
(
β1

2

)
sin2 (β2) (100 cos (β2) + 13)

T̂ λ
1;(012) 1

2

T̂ λ1;(120)1
1536

√
6

ε6
e−i(α1+2α2) sin (β1) sin2 (β2)

T̂ λ
1;(012) 1

2

T̂ λ2;(240)2
1152

√
5

ε6
e−2iα2 sin2 (β2) cos2

(
β1

2

)
(10 cos (β1) (cos (β2)− 1)− 10 cos (β2) + 3)

T̂ λ
1;(012) 1

2

T̂ λ2;(222)0 −384
√

6
ε6

e−2i(α1+α2) sin2
(
β1

2

)
sin2 (β2) (100 cos (β2) + 13)
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Chapter 6

Conclusion and Final Remarks

In this work I have obtained some correspondence rules for SU(3) systems. These correspondence rules
allow one to write the ?-product in differential form, and I was able to do this explicitly and simplify the
expression to a more convenient form in the limit case of λ → ∞. In principle, one can do the same for
any value of λ, but this involves expressing aRτ ;ν,I(λ; ν̄, I) coefficients in terms of complicated functions of
the Casimir operator Ĉ(2). Even when given in terms of the (complicated) aRτ ;ν,I(λ; ν̄, I) coefficients and
differential operators, the differential form is quite convenient and can be advantageously compared with
the integral form found, for instance, in recent work by Rundle [22].

The physics of the λ→∞ limit of SU(3) systems is similar to the limit of large S in angular momentum
systems. Large S values are obtained by combining many spin-1/2 particles, and large λ values are obtained
for instance, in BEC of many interacting neutral atoms trapped in a symmetric triple well in a three-mode
approximation, as studied in [29].

For these systems, the methods presented in this thesis capture the dominant part of the quantum
dynamics described by the semiclassical correspondence

i~
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
→ i

∂

∂t
Wρ(Ω) = {WH(Ω),Wρ(Ω)}M

and also give the leading order correction to the classical approximation. It is remarkable that, despite
the considerable machinery deployed to obtain various coefficients, the dominant term in the evolution
equation of a quantum state described by the density matrix ρ is easily identifiable as the classical Poisson
bracket of the corresponding phase space symbols. This highlights in the SU(3) context the deep idea
first put forward by Niels Bohr that quantum systems ought to behave, in some limit, as classical systems.
The expansion of the exact quantum evolution equation makes it possible to identify the leading order
correction to this classical dynamics. Thus, in principle, one could go beyond the semiclassical analysis of
squeezing done by Dinani in [13], which was limited to the Poisson bracket term in the so-called truncated
Wigner approximation

One strength of this approach is that, in an SU(3) system, the size of matrices for a system containing λ
particles evolving in a Hilbert space that carries the irrep (λ, 0) of SU(3) is 1

2
(λ+1)(λ+2)× 1

2
(λ+1)(λ+2).

Thus, even for a moderate number of atoms - say 15 or 30 - the matrices are of dimension 136× 136 and
496× 496 respectively, but the number of phase space parameters - i.e. the angles Ω = (α1, β1, α2, β2) that
enter as arguments of the phase space symbols - remains unchanged. The correction term for a Hamiltonian
containing the square of a generator, i.e. a Hamiltonian such as Ĥ2

1 as studied by Dinani previously, is of
size ε−2 ∼ 1/1020 and ∼ 1/3840 for λ = 15 and 30 respectively, illustrating how the semiclassical limit
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is quickly reached and why one should believe that including the first correction ought to be sufficient
to obtain the fundamental information of the dynamics of these kinds of systems. Experimentally, the
number of particles in BEC systems is typically of the size N ∼ 103 − 105 as Corre et al points out in [4].

We note that, for SU(n) systems, the size of the matrices now grows like (number of particles)n−1 but
the number of parameters grows like 2(n− 1). Thus, the SU(4) version of the BEC problem would require
matrices of size 816× 816 and 5456× 5456 for 15 and 30 atoms respectively, but only 6 angles.

The drawbacks of this approach are also apparent in the work presented here: the ingredients required
to obtain the correspondence rules - the Clebsch-Gordan coefficients, recoupling coefficients and group
functions - require a considerable amount of technical calculations. Yet, the results of this thesis show how
some important recognizable features become tractable in the large λ limit and could be reproduced in
higher symmetries than SU(3).

First, the algorithm used to find the SU(3) Clebsch-Gordan coefficients in chapter 4 was similar to
the one used to encounter these coefficients in the SU(2) case in chapter 2. That is I constructed the
SU(3) highest weight states and acted on them with a raising operator of the su(3) algebra, leading to
a recursion relation which allowed me to calculate the SU(3) highest weight CGs. By the action of the
lowering operator I was able to find the remaining CGs. Although it may look straightforward to find the
SU(3) CGs, finding the CGs that I was interested in was not so trivial. I focused on the Clebsch-Gordan
coefficients of the coupling (1, 1)⊗ (σ, σ) and it turned out that this coupling had decomposition

(1, 1)⊗ (σ, σ) = (σ − 1, σ − 1)⊕ (σ + 1, σ + 1)⊕ 2(σ, σ). (6.0.1)

The SU(3) highest weight CGs for the resulting irrep (σ, σ) introduced a labeling issue into my derivations.
This is because the irrep (σ, σ) occurs twice in the decomposition of the direct product of the irreps (1, 1)
and (σ, σ) as showed in equation (6.0.1). In order to solve this problem, I had to use the label ρ for the
CGs of the irrep (σ, σ). The copy labeled ρ = 1 was chosen using the usual convention that the SU(3) CGs
agree with the Wigner-Eckart theorem when the generators are considered as SU(3) tensors transforming
by the (1, 1) representation. The copy labeled ρ = 2 was chosen to be orthogonal to the ρ = 1 copy. This
major difference is also a characteristic of higher symmetries and, therefore, the methods used throughout
this thesis can also be used for these higher symmetries.

As presented in chapter 5, these SU(3) Clebsch-Gordan coefficients are fundamental pieces in the
construction of the SU(3) tensor operators T̂ λσ;γIγ

. Moreover, the quantization kernel ŵλ(Ω), which plays
an essential role in the quantum mechanics phase space formalism by mapping operators of a Hilbert space
into c-valued functions of phase space, was constructed as a linear expansion of tensor operators of the
type T̂ λσ;νJ as well as the functions D(σ,σ)

νJ ;(σσσ)0(Ω) as it was given in equation (5.1.13). In order to find the
correspondence rules in SU(3), I followed the scheme given by Klimov and Espinoza in [10], which finds
the correspondence rules for the generators of the su(2) algebra, and extended it to the su(3) algebra.
The basic idea of this scheme, which can be expanded to any SU(n) symmetry, consisted of replacing a
?-product by a differential operator Ŝ(j)

γIγ

WT̂λ1;γIγ
(Ω) ? WB̂(Ω) := Ŝ

(j)
γIγ
WB̂(Ω) (6.0.2)

where j = 1, 2 and the operator Ŝ(j)
γIγ

only depends on the generators . In the case of SU(2), the differential
operators equivalent to Ŝ

(j)
γIγ

are of first order only, however, my research showed that, for the SU(3) case,
some of the differential operators of equation (6.0.2) have second order dependence. The first and second
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order differential operators were represented by Ŝγ 1
2
and Ŝ

(2)
γ1 , respectively. This was a very surprising and

new result in comparison to the SU(2) results found by Klimov and Espinoza on the correspondence rules
of the generators.

As mentioned above, the exact evolution of a quantum particle in phase space depends on the eval-
uation of a Moyal bracket between the symbols of the Hamiltonian WĤ and density operator Wρ̂, and
the semiclassical limit of this bracket is the well known Poisson bracket as it was stressed in chapter 1.
First, I was able to evaluate the Moyal brackets between operators that are linear in the generators and
an arbitrary operator WB̂. Although, the ?-product of equation (6.0.2) has a second order differential
dependence that occurs because of the non-vanishing coefficients a1,1(λ; τ) and a1,0(λ; τ), the evaluation
of the Moyal bracket eliminates this second order differential dependence and gives us an expression that
can be expanded in terms of the semiclassical parameter, leading to the recognition of the Poisson bracket
with extra correction terms.

One of the most interesting features of my derivations was the structure of the asymptotic form of the
?-product found in chapter 5. In the case of the SU(2) semiclassical approximation, the structure of the
?-product has only first order differential operators [10]. However, when we go to a higher symmetry, for
example SU(3), second order differential operators do not vanish and this semiclassical expansion yields
equation (3.2.32). In fact, my approach to obtain these correspondence rules is quite systematic and could
be used to find the rules of any SU(n) system. I strongly believe that this differential structure, with
second order derivatives, will be also found in problems with higher symmetry due to the multiplicity that
do not occur in SU(2).

My results can also be compared to the findings of Dinani on the Truncated Wigner Approximation of
SU(3) squeezing [26]. This type of approximation is obtained when one truncates equation (1.1.6) leaving
behind only the Poisson bracket. If we consider the TWA, one finds that the evolution under Hamiltonians
that are linear in the generators is exact. Therefore, in order to compare my results with those presented
by Dinani, I had to develop a general and explicit expression for the semiclassical limit of Moyal brackets
of the type

{W(
T̂λ1;γIγ

)2(Ω),WB̂(Ω)}M .

This expression can be found in section (5.6). Therefore, one can choose the operator B̂ to be the density
operator ρ̂ and calculate the semiclassical evolution of quantum particles in phase space. This is a very
advantageous approach because I was able to recover the dependence of the Moyal bracket on the Poisson
bracket plus the first correction term of this expansion. In addition, I presented some analytical forms of
the leading term and the correction terms for specific cases of the Moyal bracket as shown in tables (5.8)
and (5.9), respectively. These tables demonstrate that the leading term (Poisson bracket) happens with
order ε−4 while the first correction term happens with order ε−6. The reason for this ε−6 dependence of
the correction term comes from the fact that every Wigner symbol of equation (5.6.17) has a factor ε−1.

In the future, I would like to investigate the evolution of quantum systems using the tools developed in
this thesis, i.e., I would like to include the correction term of equation (5.6.17) into the Truncated Wigner
Approximation and compare the results of Dinani on SU(3) squeezing. One would expect a more accurate
evolution when the correction term is added to TWA.
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Appendix A

Density Matrix Theory

A.1 Pure Spin States
Following Blum [2], if it is possible to find an orientation of the Stern-Gerlach apparatus for which a

given beam is completely transmitted, then we will say that the beam is in a pure spin state. For instance,
consider a beam of spin-1/2 particles which passes through a Stern-Gerlach magnet which has its field
gradient aligned along the z direction with respect to a fixed coordinate system (x, y, z). The beam will
be transmitted through the magnet and the emerging particles will be in a state which corresponds to the
eigenvalue m = +1

2
(or m = −1

2
) of the z component of the spin operator Ŝ. figure A.1 represents an

electron beam that is completely transmitted to +z.

Figure A.1: Stern-Gerlach apparatus. Retrieved from http://i.stack.imgur.com/SKqat.png

The representation of the two possible eigenstates of the operator Ŝz are written mathematically by
the standard notation of the bra-ket, which describes quantum mechanical systems. In this notation, the
possible outcomes for the spin of an electron are written as

∣∣+1
2

〉
=

(
1
0

)
Spin “Up” ,

∣∣−1
2

〉
=

(
0
1

)
Spin "Down" . (A.1.1)

These are the ket states of the operator Ŝz. One may notice that the states of equation (A.1.1) are
normalized. The adjoint, or complex transpose, of these states are called the bra states and they are given
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by 〈
+

1

2

∣∣∣∣ =
(
1 0

)
Spin “Up”〈

−1

2

∣∣∣∣ =
(
0 1

)
Spin “Down” (A.1.2)

A general state will be written as it follows

|χ〉 =

(
a1

a2

)
= a1 |+1/2〉+ a2 |−1/2〉 (A.1.3)

The normalization of this is state is given by

〈χ|χ〉 = |a1|2 + |a2|2 = 1 (A.1.4)

A Stern-Gerlach apparatus works as a filter, because irrespective of the state of the beam sent through
it, the emerging beam is in a definite spin state which is defined by the orientation of the magnet. Passing
a beam through the filter can therefore be regarded as a method of preparing a beam of particles in a pure
state.

A.2 The Polarization Vector
The components of the polarization vector are given by

|Pi| = 〈σ̂i〉 , (A.2.1)

where i = x, y, z. Also, σi are the Pauli matrices

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
. (A.2.2)

The states
∣∣+1

2

〉
and

∣∣−1
2

〉
are characterized by polarization vectors of unit magnitude pointing in the

+z and −z directions, respectively. Also, these states are said to be states of opposite polarization [2].
A general pure state like the one of equation (A.1.3) is parametrized as

|χ〉 =

(
cos
(
θ
2

)
eiδ sin

(
θ
2

)) , (A.2.3)

where θ and δ are the polar angle and azimuth angles. Using equations (A.2.1) and (A.2.3), we can find

|Px| = sin θ cos δ |Py| = sin θ sin δ |Pz| = cos θ . (A.2.4)
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Figure A.2: Polarization vector in the three dimensional space. This image was extracted from [2]

The magnitude of the polarization vector is

|P | =
√
|Px|2 + |Py|2 + |Pz|2 = 1 (A.2.5)

It is possible to choose a different frame of reference, say x′, y′, z′, such that two components of the
polarization vector, say P ′x and P ′y, yield zero and the remaining one, say P ′z, yields 1. It means that all
particles have spin up with respect to the z′ component. If a beam is sent through a Stern-Gerlach filter
oriented parallel to ~P , the whole beam will pass through the filter.

A.3 Mixed Spin States
The quantum state made out of a mixture of two or more different beam states will be called a mixed

spin state. Suppose that the first beam is prepared with N1 particles in the state
∣∣+1

2

〉
, and the second

with N2 in the state
∣∣−1

2

〉
. It is important to say that the second beam is prepared independently of the

first beam because in this way there is no definite phase relation between the two beams, which makes it
impossible to construct states of the form of equation (A.1.3). The total number of particles in this system
is N = N1 +N2. If this mixture of beam states is led to a Stern-Gerlach apparatus oriented in the z-axes,
it will be noticed that N1 particles will be found being spin up. Similarly, there will be N2 spin down
particles [2].

The probability of finding a particle in the state
∣∣+1

2

〉
will be W1 = N1

N
, likewise W2 = N2

N
is the

probability for finding a particle in the state
∣∣−1

2

〉
. Recalling equation (A.1.3), it is possible to identify

W1 and W2 as being equal to |a1|2 and |a2|2, respectively. For a mixture of N1 particles in the state
∣∣+1

2

〉
and N2 particles in the state

∣∣−1
2

〉
prepared independently, the components of the polarization vector are

written as

|Pi| = W1

〈
+

1

2

∣∣∣∣ σ̂i ∣∣∣∣+1

2

〉
+W2

〈
−1

2

∣∣∣∣ σ̂i ∣∣∣∣−1

2

〉
, (A.3.1)

or separately

|Px| = 0, |Py| = 0, |Pz| =
N1 −N2

N
= W1 −W2 . (A.3.2)
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Therefore, the magnitude of the polarization vector can be smaller than 1. However, this is not the most
generalized form of a mixed state. Suppose a beam is prepared independently with Na particles in the
state |χa〉 and Nb in the state |χb〉. So, the components of the polarization vector are given by

|Pi| = Wa 〈χa| σ̂i |χa〉+Wb 〈χb| σ̂i |χb〉 = WaP
(a)
i +WbP

(b)
i , (A.3.3)

and the polarization vector is simply

~P = Wa
~P (a) +Wb

~P (b) (A.3.4)

where ~P (a) and ~P (b) are the polarization vectors associated with the constituent beams. However, as
mentioned before, the polarization vector of the constituent beams have magnitude 1. Then,

~P 2 =
(
Wa

~P (a) +Wb
~P (b)
)2

= W 2
a +W 2

b + 2WaWb
~P (a) · ~P (b) (A.3.5)

but

W 2
a +W 2

b + 2WaWb
~P (a) · ~P (b) ≤ W 2

a +W 2
b + 2WaWb = (Wa +Wb)

2 = 1 . (A.3.6)

Therefore,

0 ≤ |~P | ≤ 1 (A.3.7)

the maximum polarization (|~P | = 1) is obtained if (and only if) the two beams under consideration are in
the same pure state, whereas mixtures necessarily have a polarization magnitude that is less than 1.

A.4 More on Mixed States
In classical mechanics, the information of a system is given by the positions of the particles and their

momenta. This information describes the system completely. However, in quantum mechanics, position
and momentum are characterized as operators and a simultaneous measurement of these operators will
bring uncertainty because position and momentum operators do not commute. In general, a simultaneous
measurement of two operators is only possible if these operators commute. Increasing the number of
commuting operators will give more information about the quantum system. The eigenvalues q1, q2, q3 . . .
give a more precise classification of the system [2]. If we introduce a new operator and this operator does
not commute with the other commuting ones, the new operator will introduce uncertainty into the system.

To deduce the eigenvalues of an operator, an experiment has to be performed multiple times. If
the operators Q̂1, Q̂2, Q̂3, . . . commute, a complete experiment will give the respective set of eigenvalues
q1, q2, q3, . . . and they will be used to label a single common ket state |q1, q2, q3, . . .〉.

Let us assume two sets of operators {Q̂i; i = 1, 2, . . . } and {Q̂′i; i = 1, 2, . . . } with eigenstates |ψ〉 =
|q1, q2, . . .〉 and |φ〉 = |q′1, q′2, . . .〉, respectively, where at least one of the operators Q̂′i does not commute
with the first set. It is possible to describe |ψ〉 as a linear combination of the orthonormal basis that
represent the operators Q̂′1, Q̂′2, . . . as it follows

|ψ〉 =
∑
n

an |φn〉 an = 〈φn|ψ〉 , (A.4.1)
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where the index n represents different eigenstates and an are the coefficients of the expansion. In fact,
|an|2 is the probability of finding the particle in the state |φn〉. Assuming for simplicity that the basis is
orthonormal, we can write

〈φn|φm〉 = δnm . (A.4.2)

But we also can write the expansion of unity∑
n

|φn〉 〈φn| = 1→ 〈φm|φm〉 = 〈φm|1|φm〉 =
∑
n

|〈φn|φm〉|2 = 1 . (A.4.3)

In general, an experiment cannot control all possible variables precisely. For instance, one cannot
control the polarization of the photons that are emitted by an incandescent bulb. As a result, there is no
orientation of a polarizer that will allow 100% of the photons to pass or 100% of the photons to be blocked;
the photons are not in an eigenstate of the polarization operator for if they were, one could pass them with
100% probability by aligning the polarizer correctly, and block them with 100% probability by aligning
the polarizer perpendicular to this polarization. The state of a photon cannot be expanded in terms of
a polarization basis like | l〉 or | ↔〉. Instead, one reproduces the experimental result by thinking of the
collection of photons as a statistical mixture of vertically or horizontally polarized states. The essential
difference between a statistical mixture and a linear combination of the type given in equation (A.4.1)
is that terms in equation (A.4.1) can interfere whereas different parts of a statistical mixture cannot.
The terms in a statistical mixture come multiplied with a non-negative statistical weight which gives the
probability of getting this specific component of the mixture during the preparation.

Usually, the ensembles treated in classical or quantum mechanics have a large number of particles. In
this sense, the best approach to quantify operators would be calculating their averages. As an illustration,
let us suppose that we have an ensemble of particles in the pure state |ψ〉, but this state is not an eigenstate
of the operator Q̂. Then, measurements made on the ensemble of particles, which are in the state |ψ〉, will
produce all the eigenvalues of the operator Q̂. The average of these eigenvalues is the expectation value of
the operator, i.e.

〈Q̂〉 = 〈ψ| Q̂ |ψ〉 . (A.4.4)

For a mixture of states {|ψ1〉 , |ψ2〉 , . . . }, the expectation value of an operator Q̂ is given by

〈Q̂〉 =
∑
n

Wn 〈ψn| Q̂ |ψn〉 , (A.4.5)

where Wn are the weights of every pure state |ψn〉.
Finally, the statistical theory is necessary to describe two aspects of equation (A.4.5). First, the

perturbations caused during measurements, since a state that is in a superposition of eigenstates of the
operator Q̂ will collapse to a single eigenstate [7, 23]. Second, there is a lack of information caused by the
several pure states which the system may be in [2]. The introduction of the density matrix accounts for
this lack of information, since it will contain all the information of the quantum system.

A.5 The Density Matrix
Why should we introduce a density matrix and density operator? Firstly, statistical methods must be

applied because of the uncontrollable perturbation of states by any measuring apparatus. Secondly, when
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dealing with mixtures, it is only known that the particles can be in any one of several spin states. Then, a
statistical description must be applied because of the lack of information available on the system. It was
primarily for the purpose of describing this latter case that the density matrix formalism was developed.

Given Na particles prepared in the state |χa〉 and Nb in the state |χb〉, independently, we define the
density operator

ρ̂ = Wa |χa〉 〈χa|+Wb |χb〉 〈χb| . (A.5.1)

This operator describes the preparations which have been performed, and it contains all the information
obtained on the beam. For a pure state, the density operator is simply written as

ρ̂ = |χ〉 〈χ| , (A.5.2)

and we can expand this general state1 into the basis states {
∣∣+1

2

〉
,
∣∣−1

2

〉
}:

|χa〉 = a
(a)
1

∣∣∣∣+1

2

〉
+ a

(a)
2

∣∣∣∣−1

2

〉
→ |χa〉 〈χa| =

(
a

(a)
1 a

(a)
1

∗
a

(a)
1 a

(a)
2

∗

a
(a)
2 a

(a)
1

∗
a

(a)
2 a

(a)
2

∗

)

|χb〉 = a
(b)
1

∣∣∣∣+1

2

〉
+ a

(b)
2

∣∣∣∣−1

2

〉
→ |χb〉 〈χb| =

(
a

(b)
1 a

(b)
1

∗
a

(b)
1 a

(b)
2

∗

a
(b)
2 a

(b)
1

∗
a

(b)
2 a

(b)
2

∗

)
. (A.5.3)

Substituting equation (A.5.3) into equation (A.5.1), we find

ρ̂ =

 Wa|a(a)
1 |2 +Wb|a(b)

1 |2 Waa
(a)
1

(
a

(a)
2

)∗
+Wba

(b)
1

(
a

(b)
2

)∗
Waa

(a)
2

(
a

(a)
1

)∗
+Wba

(b)
2

(
a

(b)
1

)∗
Wa|a(a)

2 |2 +Wb|a(b)
2 |2

 . (A.5.4)

This is the density matrix in the {|±1/2〉} representation. Now, if we define |+1/2〉 = |χ1〉 and |−1/2〉 =
|χ2〉, a matrix element of ρ̂ is then written as

〈χi| ρ̂ |χj〉 = Waa
(a)
i

(
a

(a)
j

)∗
+Wba

(b)
i

(
a

(b)
j

)∗
, (A.5.5)

with i, j = 1, 2. It is clear that a different basis will lead to a different density matrix than the one given
in equation (A.5.5). The trace of equation (A.5.4) is

Tr(ρ̂) = Wa|a(a)
1 |2 +Wb|a(b)

1 |2 +Wa|a(a)
2 |2 +Wb|a(b)

2 |2

= Wa +Wb = 1 . (A.5.6)

Therefore, the trace of a density matrix is equal to 1 and it is independent of the basis representation.
As an example, suppose a system with N1 particles in the state

∣∣+1
2

〉
and N2 particles in the state∣∣−1

2

〉
. So, ∣∣∣∣+1

2

〉
=

(
1
0

)
→ a

(a)
1 = 1, a

(a)
2 = 0∣∣∣∣−1

2

〉
=

(
0
1

)
→ a

(b)
1 = 0, a

(b)
2 = 1 , (A.5.7)

which results in the following density matrix

ρ̂ =

(
Wa 0
0 Wb

)
=

(
N1

N
0

0 N2

N

)
. (A.5.8)

1It should always be assumed that the vector states are orthonormal like in equation (A.1.4).
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A.6 Significance of the Density Matrix
Considering equation (A.5.5) for i = j = 1, 2 (or more directly, the diagonal elements of ρ̂), one

can notice the direct physical meaning of this expression. Since, Wa and |a(a)
i |2 are the probabilities of

finding a particle of the mixture in the vector states |χa〉 and |χi〉, respectively, the product Wa|a(a)
i |2 is

the probability of finding a particle, which was originally prepared in the state |χa〉, in the vector state
|χi〉. Therefore, the diagonal element (i = 1, 2) of the density matrix in equation (A.5.4) gives the total
probability of finding a particle in the corresponding basis state |χi〉.

A form of generalizing this result is taking the inner product of equation (A.5.1) with the states |χ〉
and 〈χ|

〈χ| ρ |χ〉 = Wa 〈χ|χa〉 〈χa|χ〉+Wb 〈χ|χb〉 〈χb|χ〉
= Wa|a(a)|2 +Wb|a(b)|2 . (A.6.1)

This expression means that the probability of finding a particle in the state |χ〉 within the mixture is
expressed as equation (A.6.1), and the mixture is represented by ρ̂.

A.6.1 Basic Properties of the Density Operator
In general, we can write the density operator as

ρ̂ =
∑
n

Wn |ψn〉 〈ψn| (A.6.2)

the states |ψn〉 are not necessarily orthonormal to each other and the sum is over all the states of the
mixture.

A matrix form of the density operator ρ̂ is found when the states |ψn〉 are expanded into an orthonormal
basis {|φm〉}

|ψn〉 =
∑
m

a(n)
m |φm〉 , (A.6.3)

which brings equation (A.6.2) to the form

ρ̂ =
∑
n,m,m′

Wna
(n)
m

(
a

(n)
m′

)∗
|φm〉 〈φm′| . (A.6.4)

Therefore, the matrix elements of the density matrix are given by

〈φi| ρ̂ |φj〉 =
∑
n

Wna
(n)
i

(
a

(n)
j

)∗
. (A.6.5)

The density operator is Hermitian and this means that

ρ̂ = ρ̂† (A.6.6)

The diagonal matrix elements of the density matrix have a very important meaning in quantum mechanics.
Since, the probability of finding a particle in the state |ψn〉 is Wn and the probability that this state will
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be found in the state |φm〉 is |a(b)
m |2, then the probability of finding the system in the state |φm〉 is given

by the diagonal element

ρ̂mm =
∑
n

Wn|a(n)
m |2 . (A.6.7)

Clearly, the diagonal matrix elements of ρ̂ must be positive because they represent probabilities. Finally,
the probability W (ψ) of finding the system in the state |ψ〉 after a measurement is

W (ψ) = 〈ψ| ρ |ψ〉 =
∑
n

Wn|〈ψn|ψ〉|2 . (A.6.8)

Finally, we calculate the average value of an operator Q̂ using the density operator

〈Q̂〉 = Tr
(
ρ̂Q̂
)

=
∑
n,m,m′

Wna
(n)
m

(
a

(n)
m′

)∗
〈φm′| Q̂ |φm〉 . (A.6.9)

If the states that compose the density matrix are not normalized, the averages are calculated as

〈Q̂〉 =
Tr
(
ρ̂Q̂
)

Tr(ρ̂)
(A.6.10)

As we stated in the beginning of this chapter, the best approach to quantify quantities in quantum
mechanics is by calculating expectation values of operators. Therefore, equations (A.6.9) and (A.6.10)
will be very important in the development of this thesis, especially when we present the quasi-distribution
approach.

Example 1: An Ensemble of Atoms of Spin S

Consider an ensemble of atoms with spin S and magnetic number m characterized by state vectors
|S,m〉. Consider the case where all atoms have the same values of S, but where the ensemble is a mixture
with respect to m such that the weights are given by

Wm =
1

2S + 1
, (A.6.11)

meaning that all the each value of m is equally probable. The density operator is expressed as

ρ̂ =
∑
m

Wm |S,m〉 〈S,m| =
1

2S + 1

∑
m

|S,m〉 〈S,m| = 1
2S + 1

, (A.6.12)

where 1 is the unit matrix of dimension (2S+1) in the {|S,m〉} basis. This density matrix is in its diagonal
form with constant values given by equation (A.6.11).
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Example 2: Density Operator as a Linear Combination of Irreducible Tensor Operators

There is another way to define the density operator of equation (A.6.2), that is expressing it as a linear
combination of irreducible tensor operators T̂ SL,M . These tensors are defined as

T̂ SL,M =

√
2L+ 1

2S + 1

S∑
m,m′=−S

〈
S

m
;
L

M

∣∣∣∣ Sm′
〉
|S,m′〉 〈S,m| , (A.6.13)

and they have an orthogonality condition

Tr

((
T̂ SL′,M ′

)†
T̂ SL,M

)
= δL′LδM ′M . (A.6.14)

In this manner, we can express the density operator as

ρ̂ =
2S∑
L=0

L∑
M=−L

ρ̃SL,M T̂
S
L,M , (A.6.15)

where the coefficients ρ̃SL,M are found by the orthogonality condition of equation (A.6.14)

ρ̃SL,M = Tr

(
ρ̂
(
T̂ SL,M

)†)
. (A.6.16)

Therefore, given the density operator of the mixture, we can express this operator as a linear combination
of tensor operators. For instance, let us take the previous example and expand

ρ̂ =
1

2S + 1
(A.6.17)

into a linear combination of irreducible tensor operators in the case of S = 1

ρ̂ =
2S∑
L=0

L∑
M=−L

ρ̃SL,M T̂
S
L,M = ρ̃1

0,0T̂
1
0,0 =

1

3

1 0 0
0 1 0
0 0 1

 , (A.6.18)

where ρ̃1
0,0 = 1√

3
and

T̂ 1
0,0 =

1√
3

1 0 0
0 1 0
0 0 1

 . (A.6.19)
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Appendix B

Derivation of the Wigner Function of a
Particle Using the Displacement Operator

Our goal is to derive the Wigner function of equation (1.2.6). This derivation is based on the work of
Royer in [21], where he used the displacement operator D̂(q, p) given by equation (1.2.8) and the parity
operator to demonstrate that the Wigner function is the expectation value of the quantization kernel of
equation (1.2.7).

Let us start with the definitions of the displacement operator

D̂(q, p) = exp

(
i

~
(pq̂ − qp̂)

)
, (B.1.1)

parity operator

P̂ =

∫
dq |−q〉 〈q| =

∫
dp |−p〉 〈p| (B.1.2)

and quantization kernel

ŵ(q, p) = D̂(q, p)P̂ D̂†(q, p) , (B.1.3)

where the integration range is [−∞,∞] for both integrals for the parity operator.
For equation (B.1.1), we can use

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] (B.1.4)

to find

D̂(q, p) = exp

(
i

~
pq̂

)
exp

(
− i
~
qp̂

)
exp

(
i

2~
pq1

)
. (B.1.5)

The application of the displacement operator on the parity operator is written as

D̂(q, p)P̂ = exp

(
i

~
pq̂

)
exp

(
− i
~
qp̂

)
exp

(
i

2~
pq1

)∫
dp |−p̄〉 〈p̄|

=
exp
(
− i

2~pq
)

√
2π~

∫
dp̄ exp

(
− i
~
qp̄

)
|p+ p̄〉 〈−p̄| . (B.1.6)
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The last piece of this calculation is the evaluation of 〈−p̄| D̂†(q, p) which is found to be

〈−p̄| D̂†(q, p) =
exp
(
i

2~pq
)

exp
(
− i

~qp̄
)

√
2π~

〈p− p̄| . (B.1.7)

Combining equations (B.1.6) and (B.1.7) we find the quantization kernel to be

ŵ(q, p) =
1

2π~

∫
dp̄ exp

(
2iqp̄

~

)
|p+ p̄〉 〈p− p̄| . (B.1.8)

Now, we have all the pieces necessary to determine the Wigner function of a density operator ρ̂ = |ψ〉 〈ψ|,
and this quasi-distribution is written as

W̃ρ̂(q, p) =
1

π~

∫
dy exp

(
−2iqy

~

)
ψ∗(p+ y)ψ(p− y) (B.1.9)

or by performing a Fourier transform

Wρ̂(q, p) =
1

2π~

∫
dy exp

(
−ipy
~

)
ψ∗(q − 1

2
y)ψ(q +

1

2
y) (B.1.10)
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Appendix C

The product T̂λ1;νJT
λ
σ;µI of SU(3) tensors

This is the explicit calculation of the c(τ,τ),νI
ν̄I;(σσσ)0 coefficients which are important in the construction of

the a coefficients of equation (5.3.12). The latter coefficients are important in the derivation of the Ŝν 1
2

and Ŝ
(2)
ν1 operators. Although, the derivation of the c coefficients for the aRτ ;νI(λ; τ1τ2τ3, I) coefficients is not

presented here, they were obtained in the same fashion as the c(τ,τ),νI
ν̄I;(σσσ)0 and they can be easily derived by

the interested reader.

C.1.1 Case ν, I = (111)1:

T̂ λ1;(111)1ŵλ(Ω)(0) =
σ=λ∑
σ=0

T̂ λ1;(111)1T̂
λ
σ;(σσσ);0 (C.1.1)

T̂ λ1;(111);1T̂
λ
σ;(σσσ);0 =

∑
τ,τ1,τ2,τ3

c
(τ,τ),(τ1,τ2,τ3);1
(111);1;(σσσ);0 T̂

λ
τ ;(τ1,τ2,τ3);1 (C.1.2)

c
(τ,τ),(τ1,τ2,τ3);1
(111);1;(σσσ);0 =

√
16

(λ+ 1)(λ+ 2)

∑
ρ

〈
(1,1)
1;1

; (σ,σ)
σ;0
‖ (τ,τ)
τ1;1

〉
ρ

(C.1.3)

× USU(3)((1, 1), (λ, 0), (τ, τ), (0, λ); (λ, 0), (σ, σ))ρ

a) τ = σ + 1 we have

c
(σ+1,σ+1),(σ+1,σ+1,σ+1);1
(111);1;(σσσ);0 =

√
16

(λ+ 1)(λ+ 2)

〈
(1,1)
1;1

; (σ,σ)
σ;0
‖ (σ+1,σ+1)

σ+1;1

〉
(C.1.4)

× USU(3)((1, 1), (λ, 0), (σ + 1, σ + 1), (0, λ); (λ, 0), (σ, σ))

=

√
16

(λ+ 1)(λ+ 2)

(σ + 2)(σ + 3)

2(σ + 1)

√
1

3(σ + 1)(2σ + 3)
(C.1.5)

× (σ + 1)

2

√
3(λ− σ)(λ+ σ + 3)

λ(λ+ 3)(σ + 2)(2σ + 3)
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This can be simplified

c
(σ+1,σ+1),(σ+1,σ+1,σ+1);1
(111);1;(σσσ);0 =

(σ + 3)

2σ + 3

√
(σ + 2)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)(σ + 1)
(C.1.6)

b) τ = σ

c
(σ,σ),(σσσ);1
(111);1;(σσσ);0 = − 2σ(σ + 2)(2λ+ 3)

(2σ + 1)(2σ + 3)
√
λ(λ+ 1)(λ+ 2)(λ+ 3)

(C.1.7)

c) τ = σ − 1

c
(σ−1,σ−1),(σ−1,σ−1,σ−1);1
(111);1;(σσσ);0 =

(σ − 1)

(2σ + 1)

√
σ(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)(σ + 1)
(C.1.8)

Combining the results of a,b and c, we obtain:

T̂ λ1;(111);1T̂
λ
σ;(σσσ);0 =

(σ + 3)

2σ + 3

√
(σ + 2)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)(σ + 1)
T λ(σ+1);(σ+1,σ+1,σ+1);1 (C.1.9)

− 2σ(σ + 2)(2λ+ 3)

(2σ + 1)(2σ + 3)
√
λ(λ+ 1)(λ+ 2)(λ+ 3)

T λσ;(σσσ);1

+
(σ − 1)

(2σ + 1)

√
σ(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)(σ + 1)
T λ(σ−1);(σ−1,σ−1,σ−1);1

Thus

T̂ λ1;(111)1ŵλ(Ω)(0) =
∑
τ

√
2(τ + 1)τ(τ + 2)√

λ(λ+ 3)(λ+ 1)(λ+ 2)

×

(√
(λ− τ + 1)(λ+ τ + 2)

(2τ + 1)
− 2(τ + 1)(2λ+ 3)

(2τ + 1)(2τ + 3)

+
√

(λ− τ)(λ+ τ + 3)
1

(2τ + 3)

)
T̂ λτ ;(τττ)1 (C.1.10)

C.1.2 Case ν, I = (2, 0, 1); 1
2:

T̂ λ
1;(2,0,1); 1

2
T̂ λσ;(σσσ);0 = c

(σ+1,σ+1),(σ+2,σ,σ+1); 1
2

(2,0,1); 1
2

;(σσσ);0
T̂ λ

(σ+1);(σ+2,σ,σ+1); 1
2

(C.1.11)

+ c
(σ,σ),(σ+1,σ−1,σ); 1

2

(2,0,1); 1
2

;(σσσ);0
T̂ λ
σ;(σ+1,σ−1,σ); 1

2

+ c
(σ−1,σ−1),(σ,σ−2,σ−1); 1

2

(2,0,1); 1
2

;(σσσ);0
T̂ λ

(σ−1);(σ,σ−2,σ−1); 1
2
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C.1.2 a): τ = σ + 1

c
(σ+1,σ+1),(σ+2,σ,σ+1); 1

2

(2,0,1); 1
2

;(σσσ);0
=

1

(2σ + 3)

√
3(σ + 2)(σ + 3)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.12)

C.1.2 b): τ = σ

c
(σ,σ),(σ+1,σ−1,σ); 1

2

(2,0,1); 1
2

;(σσσ);0
= 2

(λ− 2σ(σ + 2))

(2σ + 1)(2σ + 3)

√
3σ(σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.13)

C.1.2 c): τ = σ − 1

c
(σ−1,σ−1),(σ,σ−2,σ−1); 1

2

(2,0,1); 1
2

;(σσσ);0
= − 1

(2σ + 1)

√
3σ(σ − 1)(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.14)

Combining these coefficients with the respective tensors:

T̂ λ
1;(201); 1

2
T̂ λσ;(σσσ);0 =

1

(2σ + 3)

√
3(σ + 2)(σ + 3)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ

(σ+1);(σ+2,σ,σ+1); 1
2

(C.1.15)

+ 2
(λ− 2σ(σ + 2))

(2σ + 1)(2σ + 3)

√
3σ(σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ
σ;(σ+1,σ−1,σ); 1

2

− 1

(2σ + 1)

√
3σ(σ − 1)(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ

(σ−1);(σ,σ−2,σ−1); 1
2

Thus

T̂ λ
1;(201) 1

2
ŵλ(Ω)(0) =

∑
τ

√
6τ(τ + 1)(τ + 2)

(λ+ 1)(λ+ 2)
√
λ(λ+ 3)

( τ

(2τ + 1)

√
(λ− τ + 1)(λ+ τ + 2)

+
2(τ + 1)(λ− 2τ(τ + 2))

(2τ + 1)(2τ + 3)

−
√

(λ− τ)(λ+ τ + 3)
(τ + 2)

(2τ + 3)

)
T̂ λ
τ ;(τ+1,τ−1,τ) 1

2
(C.1.16)

C.1.3 Case ν, I = (0, 1, 2); 1
2:

T̂ λ
1;(0,1,2); 1

2
T̂ λσ;(σσσ);0 = c

(σ+1,σ+1),(σ,σ+1,σ+2); 1
2

(0,1,2); 1
2

;(σσσ);0
T̂ λ

(σ+1);(σ,σ+1,σ+2); 1
2

(C.1.17)

+ c
(σ,σ),(σ−1,σ,σ+1); 1

2

(0,1,2); 1
2

;(σσσ);0
T̂ λ
σ;(σ−1,σ,σ+1); 1

2

+ c
(σ−1,σ−1),(σ−2,σ−1,σ); 1

2

(0,1,2); 1
2

;(σσσ);0
T̂ λ

(σ−1);(σ−2,σ−1,σ); 1
2
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C.1.3.0 a): τ = σ + 1

c
(σ+1,σ+1),(σ,σ+1,σ+2); 1

2

(0,1,2); 1
2

;(σσσ);0
=

1

(2σ + 3)

√
3(σ + 2)(σ + 3)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.18)

C.1.3 b): τ = σ

c
(σ,σ),(σ−1,σ,σ+1); 1

2

(0,1,2); 1
2

;(σσσ);0
= 2

(3 + λ+ 2σ(σ + 2))

(2σ + 1)(2σ + 3)

√
3σ(σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.19)

C.1.3 c): τ = σ − 1

c
(σ−1,σ−1),(σ−2,σ−1,σ); 1

2

(0,1,2); 1
2

;(σσσ);0
= − 1

(2σ + 1)

√
3σ(σ − 1)(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.20)

Combining these coefficients with the respective tensors:

T̂ λ
1;(0,1,2); 1

2
T̂ λσ;(σσσ);0 =

1

(2σ + 3)

√
3(σ + 2)(σ + 3)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ

(σ+1);(σ,σ+1,σ+2); 1
2

+ 2
(3 + λ+ 2σ(σ + 2))

(2σ + 1)(2σ + 3)

√
3σ(σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ
σ;(σ−1,σ,σ+1); 1

2

− 1

(2σ + 1)

√
3σ(σ − 1)(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ

(σ−1);(σ−2,σ−1,σ); 1
2
. (C.1.21)

Thus

T̂ λ
1;(012) 1

2
ŵλ(Ω)(0) =

∑
τ

√
6τ(τ + 1)(τ + 2)

(λ+ 1)(λ+ 2)
√
λ(λ+ 3)

( τ

(2τ + 1)

√
(λ− τ + 1)(λ+ τ + 2)

+
2(τ + 1)(3 + λ+ 2τ(τ + 2))

(2τ + 1)(2τ + 3)

− (τ + 2)

(2τ + 3)

√
(λ− τ)(λ+ τ + 3)

)
T̂ λ
τ ;(τ−1,τ,τ+1) 1

2
(C.1.22)

C.1.4 Case ν, I = (0, 2, 1); 1
2:

T̂ λ
1;(0,2,1); 1

2
T̂ λσ;(σσσ);0 = c

(σ+1,σ+1),(σ,σ+2,σ+1); 1
2

(0,2,1); 1
2

;(σσσ);0
T̂ λ

(σ+1);(σ,σ+2,σ+1); 1
2

(C.1.23)

+ c
(σ,σ),(σ−1,σ+1,σ); 1

2

(0,2,1); 1
2

;(σσσ);0
T̂ λ
σ;(σ−1,σ+1,σ); 1

2

+ c
(σ−1,σ−1),(σ−2,σ,σ−1); 1

2

(0,2,1); 1
2

;(σσσ);0
T̂ λ

(σ−1);(σ−2,σ,σ−1); 1
2
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These coefficients are given by
C.1.4 a): τ = σ + 1

c
(σ+1,σ+1),(σ,σ+2,σ+1); 1

2

(0,2,1); 1
2

;(σσσ);0
=

1

(2σ + 3)

√
3(σ + 2)(σ + 3)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.24)

C.1.4 b): τ = σ

c
(σ,σ),(σ−1,σ+1,σ); 1

2

(0,2,1); 1
2

;(σσσ);0
= 2

(3 + λ+ 2σ(σ + 2))

(2σ + 1)(2σ + 3)

√
3σ(σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.25)

C.1.4 c): τ = σ − 1

c
(σ−1,σ−1),(σ−2,σ,σ−1); 1

2

(0,2,1); 1
2

;(σσσ);0
= − 1

(2σ + 1)

√
3σ(σ − 1)(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
(C.1.26)

Clearly, these coefficients are the same as the ones given in the case ν, I = (0, 1, 2); 1
2
. Combining them

with the respective tensors:

T̂ λ
1;(0,2,1); 1

2
T̂ λσ;(σσσ);0 =

1

(2σ + 3)

√
3(σ + 2)(σ + 3)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ

(σ+1);(σ,σ+2,σ+1); 1
2

(C.1.27)

+ 2
(3 + λ+ 2σ(σ + 2))

(2σ + 1)(2σ + 3)

√
3σ(σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ
σ;(σ−1,σ+1,σ); 1

2

− 1

(2σ + 1)

√
3σ(σ − 1)(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λ

(σ−1);(σ−2,σ,σ−1); 1
2

Finally,

T̂ λ
1;(021) 1

2
ŵλ(Ω)(0) =

∑
τ

√
6τ(τ + 1)(τ + 2)

(λ+ 1)(λ+ 2)
√
λ(λ+ 3)

( τ

(2τ + 1)

√
(λ− τ + 1)(λ+ τ + 2)

+
2(τ + 1)(3 + λ+ 2τ(τ + 2))

(2τ + 1)(2τ + 3)

− (τ + 2)

(2τ + 3)

√
(λ− τ)(λ+ τ + 3)

)
T̂ λ
τ ;(τ−1,τ+1,τ) 1

2
(C.1.28)
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C.1.5 Case νI = (111)0:

T̂ λ1;(111)0ŵλ(Ω)(0) =
∑
σ

F λ
σ T̂

λ
1;(111)0T̂

λ
σ;(σσσ);0 , (C.1.29)

T̂ λ1;(111)0T̂
λ
σ;(σσσ)0 =

σ+1∑
τ=σ−1

c
(ττ)(τττ)0
(111)0;(σσσ)0T̂

λ
τ ;(τττ)0 , (C.1.30)

c
(ττ)(τττ)0
(111)0;(σσσ)0 =

√
16

(λ+ 1)(λ+ 2)

∑
ρ

〈
(1,1)
1;0

; (σσ)
σ;0
‖ (ττ)

τ ;0

〉
ρ
U [(11)(λ0)(ττ)(0λ); (λ, 0)(σσ)]ρ (C.1.31)

C.1.5 a): τ = σ + 1
We have 〈

(1,1)
1;0

; (σ,σ)
σ;0
‖ (σ+1,σ+1)

σ+1;0

〉
=
σ + 2

3

√
3

(2σ + 3)σ + 1)
, (C.1.32)

U [(11)(λ0)(σ + 1, σ + 1)(0λ); (λ0)(σσ)] =
σ + 1

2

√
3(λ− σ)(λ+ σ + 3)

λ(λ+ 3)(σ + 2)(σ + 3)
, (C.1.33)

c
(σ+1σ+1)(σ+1,σ+1,σ+1)0
(111)0;(σσσ)0 =

3

σ + 3

√
(σ + 1)(σ + 2)(λ− σ)(λ+ σ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
. (C.1.34)

C.1.5 b): τ = σ

c
(σσ)(σσσ)0
(111)0;(σσσ)0 =

4√
(λ+ 1)(λ+ 2)

√
σ(σ + 2)

(2σ + 1)(2σ + 3)
× 2λ+ 3

2

√
σ(σ + 2)

λ(λ+ 3)(2σ + 1)(2σ + 3)
, (C.1.35)

=
2(2λ+ 3)σ(σ + 2)

(2σ + 1)(2σ + 3)
√
λ(λ+ 1)(λ+ 2)(λ+ 3)

(C.1.36)

C.1.5 c): τ = σ = 1

c
(σ−1,σ−1)(σ−1,σ−1,σ−1)0
(111)0;(σσσ)0 =

4√
(λ+ 1)(λ+ 2)

σ

2

√
3

2σ + 1)(σ + 1)

σ + 1

2

√
3(λ− σ + 1)(λ+ σ + 2)

λ(λ+ 3)σ(2σ + 1)
(C.1.37)

Thus,
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T̂ λ1;(111)0 ŵλ(Ω)(0) =
∑
τ

√
2τ 3

(λ+ 1)(λ+ 2)

3

2τ + 1

√
τ(τ + 1)(λ− τ + 1)(λ+ τ + 2)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λτ ;(τττ);0

+
∑
τ

√
2(τ + 1)3

(λ+ 1)(λ+ 2)

2(2λ+ 3)τ(τ + 2)

(2τ + 1)(2τ + 3)
√
λ(λ+ 1)(λ+ 2)(λ+ 3)

T̂ λτ ;(τττ)0

+
∑
τ

√
2(τ + 2)3

(λ+ 1)(λ+ 2)

3

2τ + 3

√
(τ + 1)(τ + 2)(λ− τ)(λ+ τ + 3)

λ(λ+ 1)(λ+ 2)(λ+ 3)
T̂ λτ ;(τττ)0 , (C.1.38)

=
1

(λ+ 1)(λ+ 2)

√
2

λ(λ+ 3)

×
∑
τ

[
3τ 2

(2τ + 1)

√
(τ + 1)(λ− τ + 1)(λ+ τ + 2) +

2(τ + 1)3/2(2λ+ 3)τ(τ + 2)

(2τ + 1)(2τ + 3)

+
3(τ + 2)2

(2τ + 3)

√
(τ + 1)(λ− τ)(λ+ τ + 3)

]
T̂ λτ ;(τττ)0 (C.1.39)
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