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ABSTRACT 

 

Graham, A.J. Deploying an unmanned aerial vehicle (UAV) equipped with a 
multispectral sensor for detecting between differing levels of barley (H vulgare 
L.) fungal diseases in Northern Ontario. 137 pp.  

Keywords: barley, disease detection, farm, multispectral, precision agriculture, 
remote sensing, UAV. 

To date, no studies exist exploring the multispectral detection of fungal diseases 
in barley (H Vulgare L.) with UAV imagery. The purpose of this work was to 
determine if the spectral response (VI) of barley fungicide treatment levels 
(Control, Stratego, Stratego + Prosaro) could be distinguished between two 
farmers’ fields and four growth stages (Feekes 8 to Feekes 11.4), when 
evaluating UAV multispectral imagery (Blue- 475 nm +/- 20 nm, Green- 560 nm 
+/- 20 nm, Red- 668 nm +/- 10 nm, Red Edge- 717 nm +/- 10 nm, Near Infrared-
840 nm +/- 40 nm) of 6.7 cm/pixel spatial resolution. Radiometrically and 
geometrically corrected orthomosaics were generated and intrusive features 
such as weeds and crop damage were classified and extracted before the 
analyses of canopy level barley. Each photo was registered with RTK accuracy 
to ensure the analysis of identical pixelated areas between dates. A randomized 
complete block design was performed for 5 separate VIs: NDVI, RE-NDVI, 
RDVI, RE-RDVI, and TGI. 3-way interactions (Field x Growth Stage x 
Treatment) were found to be non-significant for NDVI (p=0.415), RE-NDVI 
(p=0.383) and TGI (p=0.780), with RDVI (p=0.003) and RE-RDVI (p=0.005) 
being significant. Despite some differences, a consistent trend in the spectral 
separability of fungal intensity by treatment type was observed regardless of 
field, from Feekes 10.51 onwards. With ground truthing, the mapping of 
fungicide intensity is possible with potential towards savings and environmental 
benefits from reduced fungicide use. 
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LITERATURE REVIEW 

 

BRIEF HISTORY: REMOTE SENSING APPLICATIONS IN AGRICULTURE 
 

Long before coining the term ‘remote sensing’ in 1958, by Evelyn Pruitt of 

the U.S. Office of Naval Research, aerial photography had been used by 

scientists to spatially survey for soil and crop variability in the United States, and 

other parts of the world (Goodman 1959). The eventual progression of infrared 

photography during World War II encouraged the development of multiple new 

techniques for assessing the general health status of crops.  Robert Colwell was 

a pioneer in the field of remote sensing who gained attention to his innovative 

methods in multispectral crop analysis at the University of California in the 

1950s. He was among the first to demonstrate the ability of VNIR (Visible to 

Near-Infrared) multispectral data to detect between diseased and healthy plants 

(Colwell, 1956). Subsequent investigations during this period included the 

examination of different sensor types for developing livestock inventories 

(Huddleston et al., 1968), VNIR reflectance in relation to plant physiological 

stress at the leaf and canopy level (Knipling, 1970; Myers & Allen, 1968), the 

effects of organic matter on the multispectral properties of soils (Baumgardner 

et al. 1970), and the relationship of remote sensing aerial photography to crop 

yields (Von Steen, 1969), among others. To summarize, the early age of remote 

sensing research in agriculture explored mainly proximal (leaf-level 
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spectroscopy) and aerial (canopy level) based soil and crop detection with 

analog sensors. The year 1972 saw the launch of the first Landsat space-based 

sensor, which instantly made possible the notion of regional and global-scale 

crop assessments. Such research was implemented through the Large Area 

Crop Inventory Experiment (LACIE), which was the first U.S. government 

program aimed towards gathering and assessing satellite data for estimating 

wheat production, over large geographic areas (Nellis et al., 2009). It is from 

1972 onward that a huge growth in remote sensing research is seen, exploring 

both space-based and aerial sensor technology for the purpose of 

understanding observed light response for quantifying field and crop 

parameters. Ultimately, regarding the practical application of such research, the 

overarching goal of scientists is to improve the management of crops relating to 

the scale of the remotely sensed imagery. Up until the 1980s, performing spatial 

input management regimes was a difficult task, namely at the field/canopy 

scale. Along with the advent of GPS (Global Positioning System) technology in 

the 1980s, the early concept of precision agriculture was formed, and such GPS 

technology was soon adopted into commercial practice in the early 1990s 

(Mulla, 2013).  

Precision agriculture (PA), or site specific crop management (SSCM) is a 

farming concept based on a combination of observing, monitoring and 

responding to variability in crop growth. It is a practice of input stewardship: 

adapting input materials (e.g. fertilizers, herbicides, irrigation, etc.) to the needs 

of the crop plants or identified management zone. Additionally, as stated by 
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Sparovek & Schnug (2001) “The basic concepts of PA can also be applied to 

agronomic inputs other than materials such as labour and time which influence 

efficiency” (p.48). Since being realized in the mid-1980s, PA has been 

continuously developing alongside advances in technology. Traditionally, inputs 

such as herbicides have been uniformly dispersed throughout an entire field. 

Adapting to the needs of the plant by selective input application can offer the 

prospect of an improved crop yield, farm profitability and environmental quality 

(Hedley, 2014; Mulla, 2013). Some additional benefits associated with precision 

agriculture can be seen through selective hybrid utilization, intensive soil 

sampling and management, selective fertilizers/fungicides/herbicides and 

variable rate application, reduced chemical bills and fuel costs, and reduced soil 

compaction (Bongiovanni & Lowenberg-Deboer, 2004; Mulla, 2013).  In general, 

the practice of precision agriculture includes spatio-temporal data collection and 

analysis, the integration of computing systems and processing, remote sensing 

technology, GPS systems for field positioning, and yield monitoring systems 

(Mulla, 2013). As precision agriculture technology improves, it is expected that 

more advanced systems such as GPS RTK (Real Time Kinetic) auto-steer 

guidance, variable rate irrigation and fertilizer spray controllers will become 

interconnected with real-time remote sensing data (Urbahs & Jonaite, 2013).        

From the 1990s onward, remote sensing research has demonstrated 

many applications towards small-scale precision agricultural practices; however, 

a well-known limitation is the cost, and spatio-temporal resolution associated 

with manned and space-based imaging platforms. Recently, unmanned aerial 
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vehicles (UAVs) have shown promise to be an effective remote sensing tool for 

agriculture (Link et al. 2013; Zhang et al. 2012), with great potential towards 

increasing farm profitability through spatial mapping. Till the crop season of 

2015, much research regarding UAVs in agriculture had been done with do-it-

yourself (DIY) hobbyist platforms and consumer-grade sensors. There is 

currently, as of the year 2016, a transition being seen towards commercial UAV 

platforms and specialized sensors for the purpose of crop health detection. 

More on specific scientific research exploring the application of unmanned aerial 

vehicles will be discussed later in this literature review.  

REMOTE SENSING OF VEGETATION WITH INDICES 
 

Naturally, there exists electromagnetic waves of all frequencies and 

wavelengths, the full extent of which is known as the electromagnetic spectrum. 

The electromagnetic spectrum is divided into distinguishable bandwidth regions, 

such as for x-rays (0.01 to 10 nm) and radio waves (>1mm). The visible region 

(VIS: 390-700nm) of the electromagnetic spectrum describes light to which the 

human eye is sensitive. A similar range (400 to 700nm) overlapping the visible 

region is known as the photo-synthetically active region (PAR), which in general 

describes the amount of light available for photosynthesis (Jones & Vaughan, 

2010). Chlorophylls A and B are essential pigments for the conversion of light 

energy to stored chemical energy. The amount of photosynthetic pigment in a 

leaf is well known to be directly related to the amount of absorbed solar 

radiation (Gitelson et al. 2003; Ingenhousz, 1779); thus, the presence or 

absence of such pigments represents the photosynthetic potential of a plant 
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(Filella et al. 1995; Jones & Vaughan, 2010). Numerous studies depict an 

indirect relationship with chlorophyll and leaf/plant nutrient status, as leaf 

nitrogen is incorporated in chlorophyll (Bojović & Marković, 2009; Daughtry et al. 

2000).  Furthermore, studies such as by Schlemmer et al. (2013) also have 

shown that a strong relationship exists between chlorophyll and nitrogen (plant 

nutrition) at both the leaf and canopy level.  Vegetation Indices (VI) are widely 

adopted and explored in remote sensing research, in particular for their ability to 

measure vegetation cover. The nature of plant material to absorb, reflect and 

transmit radiation at known wavelengths allows for reflectance data to be 

incorporated into ratio-based indices. Thus, VIs are usually dimensionless 

measures of particular surface properties based on the ratio of reflected light 

between two or more wavelengths (Jones & Vaughan, 2010).  Most VIs exploit 

the phenomenon of vegetation reflectance and absorption. Blue (430nm) and 

red (660nm) wavelengths are absorbed strongly by the presence of chlorophyll 

A in plant pigment, as well as blue (450nm) and red (650nm) for chlorophyll B 

(Mulla, 2013). The transition from the red region (620-700nm) to the near-

infrared region (700-1300nm) sees a drastic increase in reflectance, which has 

formed the premise for many VIs over the years (Hunt et al., 2013). First 

described by Collins (1978), it is known that plants with high chlorophyll absorb 

light strongly in the red region, and reflect strongly in the near-infrared, which 

characterizes the slope known as the red-edge (RE: 650-720nm). The red-edge 

can shift depending on vegetation vigour, phenology, or species and can also 

be characterized by its maximum slope known as the red-edge position (REP) 
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(Baranoski & Rokne, 2005; Horler et al., 1983). It is also known that the red-

edge can be observed at both leaf and canopy scale (Baranoski & Rokne, 2005; 

Baret et al., 1987), which has translated to many vegetation indices being 

relevant for both aerial and space-based remote sensing platforms. VIs in 

general are most often used to observe vegetation at either global, regional or 

canopy-level scales, associated with either space-based or aerial platforms.   

One of the earliest and most popular VIs is known as the Normalized 

Difference Vegetation Index (NDVI). This equation was originally created by 

Rouse et al. (1974) for assessing the amount of vegetation on the earth, using 

Landsat data at 80m resolution. An early study by Tucker (1979) examined 

multiple different combinations of the Landsat Multispectral Scanner System 

(MSS) bands, and discovered NDVI was among a few combinations that could 

accurately estimate photosynthetically active biomass. The continuing popularity 

of NDVI, among many other VIs, is attributed to their positive relationships with 

canopy density or vigour, and their ability to adjust for soil and atmospheric 

interference. Leaf-area index (LAI), which is the ratio of one-sided green leaf 

area to ground area, is known to have a non-linear relationship with NDVI and 

exhibits variation amongst cover types. However, for both cereal and broad-leaf 

crops, NDVI is sensitive to LAI when LAI is less than 2 (Gitelson et al., 2003). 

Canopy nitrogen (N) status has also shown to be detectable utilizing VIs. The 

Chlorophyll Index developed by Gitelson & Merzlyak (1996) is reportedly more 

sensitive to canopy N status than NDVI. Soil effects can also be corrected for 

with certain VIs when there is low canopy density. The Soil-Adjusted Vegetation 
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Index (SAVI) developed by Huete (1988) corrects for varying soil reflectance, 

and has seen subsequent modifications in the form of the Transformed SAVI 

(TSAVI) (Baret et al.1989), and the Modified SAVI (MSAVI) (Qi et al., 1994). 

There are also indices which work specifically well for dense or sparse 

vegetation cover, such as the Renormalized Difference Vegetation Index 

(RDVI). The RDVI was first proposed by Roujean & Breon (1995) as a means to 

combine the advantages of NDVI (estimating healthy vegetation based on 

chlorophyll absorption) with the advantages of the Difference Vegetation Index 

(DVI) (an index which distinguishes well between soil and vegetation at low 

LAI). This index is reported to work well under dense or sparse canopy 

coverage and is insensitive to the effects of sun and soil viewing geometry.  

Other indices have been proposed which exploit only the RGB bands of a 

sensor. The Triangular Greenness Index was first proposed by (Hunt et al., 

2010) specifically for the detection of leaf chlorophyll content at the canopy 

scale. Subsequently, this index has been tested successfully on many 

occasions. Notably, a study by Hunt et al. (2014) evaluated simulated UAV 

imagery tested at differing spatial resolutions. A high correlation between TGI (r 

= -0.72) and sampled green pixels (0.5 mm/pixel) was seen; however, when 

computing plot spectral averages which included shadow and soil pixels, the 

relationship between chlorophyll meter readings was much lower.     
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FUNGAL DISEASE DETECTION WITH SPECTROSCOPIC AND REMOTELY 
SENSED DATA 
 

Of particular interest in precision agriculture is spatio-temporal stress 

detection and classification using remotely sensed data. Stress can take many 

forms in field crops: nutrient deficiency, moisture deficiency or over-saturation of 

soil, environmental stressors (temperature, insect or pest damage, storm event 

damage), fungal disease, etc. (Mulla, 2013). For years scientists have examined 

proximal and spectroscopic data at the leaf-scale, attempting to understand the 

natural spectral response of stress types with respect to vegetation type. Fungal 

disease in particular has been extensively examined in spectroscopic studies 

and its negative impact on the health and yield of major cash crops in Canada is 

undeniable. In general, fungal pathogens which form as necrotic or chlorotic 

lesions on plant tissues tend to cause a reduction in plant chlorophyll, impacting 

reflectance in the visible (VIS: 400-650nm) and red-edge region (RE: 650-

720nm) of the electromagnetic spectrum (Blazquez & Edwards, 1986). As 

disease progresses, an increase in dryness is observed in infected brown 

patches on leaf tissue (Ashourloo et al., 2014), generally increasing reflectance 

in the red region, and decreasing reflectance in the NIR region.  

It is also known that severe disease infections can impact the overall rate 

of photosynthesis, restricting yield production in certain crops and affecting 

harvest time due to early senescence (Mulla, 2014; Robert et al., 2004; 

Roermund & Spitters, 1990; Spitters et al., 1990). The spectral response of 

diseased vs. healthy plant leaves are well documented in spectroscopic 
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research. Blazquez & Edwards (1986) examined the spectral reflectance of 

diseased and healthy watermelon leaves using a spectrophotometer. Significant 

differences were found in reflectance values, particularly in the VIS and NIR 

region when comparing disease severity levels. Zhang et al. (2012) examined 

the ability of hyperspectral imagery to detect yellow rust disease from nutrient 

stress in a crop. They were able to accurately detect the response of yellow rust 

at 4 out of 5 observed growth stages. Ashourloo et al. (2014) collected 

spectroscopic data from wheat leaf rust for the purpose of optimizing spectral 

vegetation indices. They found that the various symptoms of leaf rust (Puccinia 

recondite) each have a distinct spectral signature. Early symptoms in the form of 

yellow chlorotic lesions were noted to have low spectral seperability, while later 

symptoms in the form of necrotic patches and dried tissue were found 

classifiable with a high correlation to disease severity (R2=0.94).  

It has also been documented that there is little global effect on the 

photosynthetic capability of a given leaf, when fungal-infected lesions are 

present. This has been demonstrated in many studies examining wheat 

(Triticum aestivum cv. Soissons) leaf reflectance. Photosynthetic activity on a 

specific leaf was found to be negatively impacted only in areas where fungal 

lesions are present (Ashourloo et al., 2014; Kuckenberg, 2009; Robert et al., 

2005). This however does not mean that the overall, or global health of a plant 

is insensitive to fungal disease. Rather, the rate of leaf senescence and 

subsequent discoloration can increase, affecting harvest timing and yield, 
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particularly for wheat (Robert et al., 2004; Roermund & Spitters, 1990; Spitters 

et al., 1990).  

Canopy-scale data have traditionally been remotely detected with 

sensors mounted on space-based or manned aerial platforms. Such data are 

increasingly more complicated for analysis due to many uncontrollable factors 

covered later in this review. With multispectral sensors, there are more 

limitations in the detection of early fungal disease due to less data 

dimensionality, when compared with spectrometers or hyperspectral sensors. 

However, since hyperspectral sensors are not currently economically feasible to 

most users due to high cost, the multispectral approach appears to be gaining 

more attention.  

There is current interest to explore fungal disease detection using high-

resolution multispectral sensors. Qin & Zhang (2005) used multispectral imagery 

to detect rice sheath blight. They examined potential correlations between 

measured field and aerial image data, and concluded the potential for specific 

VIs to detect rice sheath blight. There were however limitations in detecting 

between light-infected and healthy plants due to spectral similarities. They found 

higher levels of ground truth accuracy when disease reached medium to severe 

levels. Franke & Menz (2007) examined the potential of multispectral imagery 

for spatio-temporal detection of powdery mildew (Blumeria graminis) and leaf 

rust (Puccinia recondite) pathogens in wheat. They determined that 

classification accuracies were low early in the season, and high late in the 

season. Accuracy only seemed to improve towards the end of the season, 
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showing that early disease detection was difficult with their equipment and 

methodologies. Zhang et al. (2014) explored multispectral imagery for the 

purpose of detecting powdery mildew in winter wheat using multi-temporal 

satellite imagery. All explored vegetation indices (VIs) were capable of 

generating disease maps; however, there was a variable degree of error when 

correlating with ground survey data. The drawback from many such studies 

utilizing space-based or aerial data is the lack of spatial resolution. Large pixels 

can contain mixes of various surface features, such as bare soil, shadows, and 

crop residue, which add reflectance error to the target. Conversely, too high of a 

spatial resolution can also become tedious for spectral analysis. Smaller pixels 

will cover less surface features but inherently have greater pixel-to-pixel 

variability (Hunt et al., 2014). It is the general consensus of the above authors 

that higher spatial resolution datasets have potential in detecting fungal disease 

with a higher degree of spatio-temporal accuracy (Franke & Menz, 2007; Qin & 

Zhang, 2005; Zhang et al., 2014). In this light, there is novelty in understanding 

to what extent UAV-based multispectral datasets can detect disease presence 

within crops.   

UAV REMOTE SENSING IN PRECISION AGRICULTURE  
 

BRIEF HISTORY  
 

Although aerial photography has long been a part of remote sensing-

based agricultural research, there is still great novelty with respect to UAV 

image acquisition. Very few papers exist in the 90s which explicitly evaluate 

UAVs for precision agriculture, as both sensor and UAV technology were still 
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premature. Schnug et al. (1998) published a paper which highlighted necessary 

developments for soil sampling and nutrient mapping moving into the future. A 

constraint in remote sensing methodologies at the time was the lack of sensor 

resolution, and the dependency on satellite imagery which had poor revisit times 

and periodic cloud interference. UAVs were recommended as a possible 

alternative to improve the spatial mapping of farm crops, allowing for less 

intensive soil sampling regimes, and better ability to delineate management 

zones in crops.  In the early 2000s, remote-control (RC), hobby-grade UAVs 

equipped with digital cameras were evaluated for application in precision 

agriculture (Simpson et al., 2003). At the time, much promise was shown in the 

ability to acquire timely imagery at high spatial resolutions; however, electronic 

sensor technology in general was still new and limited due to high unit weight 

and costs, low digital pixel quality and intensive radiometric and geometric 

correction requirements. Nonetheless, studies persisted in this period. Hunt et 

al. (2005) evaluated digital photography from RC model aircraft purposed for the 

detection of crop nitrogen and biomass. The authors noted difficulties in 

radiometric corrections due to the digital camera’s exposure settings skewing 

the digital number (DN) pixel values. They had satisfactory results; however, 

they noted that the technology still had limitations, and that imagery from the 

current digital sensors were more suitable for visual interpretation.  

In recent years, more varieties of precision agriculture research utilizing 

UAVs and related imagery now exist, due to the rise in commercial and 

industrial popularity of drones and related sensors. The advancements of UAV 
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technology have now reached a level where more emphasis can now be 

focused towards sensor quality, processing methods and image analysis.   

Before going more in depth with UAV-specific crop research, it is important to 

explore existing methodologies regarding pre and post processing of UAV 

imagery.   

RADIOMETRIC CORRECTIONS  
 

As discussed in the work by Jones & Vaughan (2010), the dynamics of 

canopy-level remote sensing of vegetation can be very complicated. Often, 

necessary radiometric corrections are required to account for various 

illumination effects at the canopy-level: bare soil noise, sun angle and viewing 

geometry, atmospheric effects, bidirectional scattering of light from angular 

leaves, among others. These corrections are well documented in scientific 

literature with emphasis on space-based sensors; however, very little literature 

exists which explicitly explores radiometric corrections of UAV data. Corrections 

involving UAV data can also be complicated, particularly due to the large 

number of images required, variations in image quality because of changing 

illumination conditions, and limits over the control of acquisition parameters 

(Laliberte et al., 2011). Some discussion on the general concepts of radiometric 

correction will be discussed in this section, with emphasis on relevant 

techniques that have been applied towards UAV data sets.  
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 SENSOR NOISE  
 

A source of error independent of collected sensor radiance is that of 

background noise. Raw pixel data picked up in the sensor as intensity values 

will carry some component of noise interference. In general there are two types 

of noise: random and systematic (Al-amri et al., 2010). Systematic noise 

describes statistical fluctuations of error due to precision limitations of the 

sensor type (such as ISO parameters). Conversely, the random portion 

describes the unpredictable and unrepeatable element of noise which appears 

as errors in imagery. Thus, there is a need for a correction methodology to be 

applied to most raw UAV data; the sensor type will dictate to what degree noise 

has impacted pixel values. It is important to note that the unpredictable nature of 

random noise limits the effectiveness of many removal techniques (Al-amri et 

al., 2010; Kelcey & Lucieer, 2012).  Dark Offset Subtraction is a technique 

where raw image data are created absent of radiance, so that only noise is 

present (Kelcey & Lucieer, 2012; Mansouri et al. 2005; Mullikin et al., 1994).  An 

individual dark offset image represents a sample of per-pixel noise, where 

multiple images of this kind can be put into a database to obtain more accurate 

per-pixel noise characteristics. Through repetition, mean per-pixel values 

pertaining to noise presence can be determined and used to eliminate most 

noise present. Following subtraction, the per-pixel standard deviation of dark 

offset imagery gives an estimation of the average noise remaining, thus allowing 

one to quantify any potential remaining error for their image analyses (Mullikin et 

al., 1994). Kelcey & Lucieer (2012) used a mini multispectral camera 
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(manufactured by Tetracam Inc.) for their research and performed, among other 

calibrations, noise correction using the Dark Offset Subtraction method. To 

ensure that no radiance would be present in the imagery, captures were taken 

in a dark room, and they enveloped the sensor in a Gore-Tex hood. All six 

channels had 125 captures taken which were later averaged. When the per-

pixel means and standard deviations were calculated the Dark Offset 

Subtraction was performed and utilized for the correction of UAV imagery.  

Another effective technique, known as the Minimum Noise Fraction 

(MNF) Transform (sometimes referred to as the Maximum Noise Fraction 

Transform), performs two principal component analyses (PCA) and re-orders 

the bands of an image with respect to subsequently decreasing signal quality 

(Qi et al., 1994). As pointed out by Green et al. (1988), a general PCA will re-

order bands based on subsequently decreasing variance; this is not always 

reliable for exclusively reducing noise in a multispectral dataset. Thus, the MNF 

transform presents a more reliable method for consistently improving signal 

quality by subsetting out noise from the image space.  

Bare soils reflect a certain amount of radiation which is dependent on soil 

moisture and organic matter content (Thomasson et al., 2001; Viscarra Rossel 

et al., 2006). It is often unavoidable that bare soil appears in images containing 

crop canopies, causing spectral contamination of the true signature values of a 

target. There are however known techniques regarding the isolation or 

improvement vegetation spectral signals, such as spectral unmixing algorithms 

(Asner & Heidebrecht, 2002), derivative spectra (Demetriades-Shah et al., 
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1990), VIs that adjust for the effects of soil (Qi et al., 1994), and signal/noise 

ratio transformations such as the MNF Transform (Pereira & Carreiras, 2005). A 

few studies involving UAV data have used techniques to subset soil noise from 

imagery. Gevaert et al. (2014) used spectral unmixing successfully to improve 

correlation values between the Weighted Difference Vegetation Index (WDVI) 

and measured potato field crop parameters. Object-based image segmentation 

has also been used to classify between bare soil, sparse vegetation on bright 

soils, and sparse vegetation on dark soils using assigned thresholds from the 

blue band of a multispectral UAV data set (Laliberte et al., 2011). In situations 

where there is complete canopy closure, the effects of soil noise are negligible 

on incoming sensor irradiance (Heege, 2013). However, as highlighted by 

Heege (2013), soil noise may sometimes be a factor as the sensor may have an 

oblique viewing angle towards the canopy. Additionally, in small canopy 

openings, soil unimpeded by shade can reflect strongly in the green channel 

which can mimic vegetation spectral values (Huete et al., 1985).  

LENS AND GEOMETRIC DISTORTION  
 

Lens distortion is typically characterised by two effects: radial distortion 

and tangential distortion (Wang, Qiu, & Shao, 2009). Radial distortion can be 

explained as the slight radial shift in magnification towards or away from the 

centre of the lens, which results in an inward or outward shift of image points 

from their natural perspective. Decentering is a type of tangential distortion 

where the actual at-nadir point is shifted in the image data. In academic 

literature, the Brown-Conrady Model is widely used, and provides a medium to 
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correct for both radial and tangential distortion. This is an even-order polynomial 

model that can calculate the amount of distortion at a given image point. In 

order to do this manually, you first need to calculate the radial and tangential 

distortion coefficients, highlighted by Kelcey & Lucieer (2012) and Wang et al. 

(2009). One should first image a planar surface with known geometric 

properties, and differentiate between any image frame discrepancies. These 

differences allow for a coefficient to be derived which is used for correction of 

distortion.  

Bouguet’s calibration toolbox (Bouguet, 2001) is a method utilizing 

Matlab software to perform a geometric correction of imagery, by acquiring the 

intrinsic sensor parameters when they are not known (focal distance, principal 

point coordinates, lens radial distortion).  There is a tutorial outlined on the web: 

http://www.vision.caltech.edu/bouguetj/calib_doc/. Berni et al. (2009) used this 

method for the calibration of thermal and multispectral UAV imagery in their 

study. They placed a black and white checkered panel in a fixed location and 

acquired images from different distances and orientations. Extracting the grid-

corner coordinates from the imagery allowed for the intrinsic parameters to be 

calculated for the multispectral sensor. For the thermal sensor, a panel was 

created using resistive wires in specific patterns to allow the heat signatures to 

correlate with panel-specific areas.  

VIGNETTING CORRECTION OF UAV IMAGERY  
 

Vignetting has been described as a reduction of an image’s brightness or 

saturation towards the periphery of an image, typically caused by the geometry 

http://www.vision.caltech.edu/bouguetj/calib_doc/
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of a sensor’s optics (Goldman, 2010; Kelcey & Lucieer, 2012). A radial 

shadowing effect is a typical documented phenomenon that occurs with the use 

of wide-angle lenses, where differences in magnification exist in the optical 

glass. In other words, occlusion of light is increased through wide-angle lenses 

leading to a reduction of light around the peripheral of photos. Kelcey & Lucieer 

(2012) describe how there are two broad approaches for the correction of 

vignetting: modelling the optical pathway or image-based techniques. Modelling 

techniques are typically applied when sensor-specific parameters are known, 

which allow for corrections in illumination reductions from vignetting. Image-

based approaches utilize the per-pixel correction factor look-up table (LUT).  

Image-based approaches using LUT have been documented as being simpler 

to calculate, and more accurate (Kelcey & Lucieer, 2012; Yu, 2004). The LUT is 

generated into something known as a ‘flat field’ from a Lambertian surface 

assumed to be spectrally homogeneous and uniform. A correction factor is 

generated by comparing sensor imagery to the Lambertian surface, where 

differences in image pixel intensity between the two highlight vignetting effects.   

Kelcey & Lucieer (2012) used a white artist canvas to act as a Lambertian 

surface. They evenly illuminated the canvas in the dark room where they took 

125 flat field photos, later to be averaged for each channel. The averaging 

compensates for the random noise component of the flat field imagery, helping 

for a more accurate generation of the LUT. This method of flat field correction 

can also be verified as effective in a few other studies (Hakala, Suomalainen, & 

Peltoniemi, 2010; Herrero-Huerta, Hernandez-Lopez, Rodriguez-Gonzalvez et 
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al., 2014; Kelcey & Lucieer, 2012), as they were also able to eliminate 

peripheral illumination deficiencies with high effectiveness.  

CALIBRATING TO SURFACE REFLECTANCE  
 

Many methods exist regarding the calibration of raw sensor data to 

surface reflectance values. The Empirical Line Method (ELM) uses in-situ 

targets of ground-measured reflectance for calibration to surface reflectance. It 

does this by extracting the DN (Digital pixel number values: expressed as 

intensity) values of the targets in the imagery and correlating them to the 

spectrometer-measured data of the targets. From this, a linear equation is 

calculated for each waveband, which can predict and convert DN pixel values to 

expressed reflectance absent of illumination and atmospheric effects (Vaudour 

et al., 2008).  While this method has been widely used for the purposes of aerial 

and satellite imagery calibration (Moran et al., 2001; Vaudour et al., 2008), Berni 

et al. (2009), have used it for the calibration of higher resolution UAV-imagery.  

They placed 2 x 2 m leveled dark and white targets in the field, where 

measurements were taken with a field spectrometer in the spectral range of 

350-1050nm (this covered the range of the multispectral sensor). They first 

calibrated the spectrometer with the Spectralon white panel: this panel make is 

commonly used in many studies for field spectrometer calibration. After this, the 

field was aerially imaged, and a linear equation was derived using the target 

pixel DN vs. target spectrometer values. Calibration coefficients can be derived 

from this and in turn be used to correct for the rest of the image, which was 

demonstrated in this study. The downside to this technique, much like the 
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method of Hakala et al. (2010), is that reflectance panels need to be present in 

each image. For large areas this presents a problem, as either an unfeasible 

amount of targets need to be placed or flights need to be conducted at higher 

altitudes. However, as shown by Smith & Milton, (1999), if other flat surfaces are 

present, they may be used as calibration targets where correction coefficients 

can be derived. A combination of concrete, asphalt and grass targets were 

collected for their in-situ spectral signatures and the ELM was used successfully 

(Smith & Milton, 1999). In summary, flat surfaces/targets are required so that 

bidirectional reflectance remains consistent throughout and between flights.  

EFFECTS OF SOIL MANAGEMENT TYPE ON CROP HEALTH 
 

The effects of fractional vegetation cover on vegetative indices can 

change depending on tilling practice (Huete, 1988; Huete et al., 1985). When full 

canopy coverage is achieved, variations in crop health may be observed due to 

inherent conditions within the field affecting crop health, such as differences in 

soil moisture (Huete et al., 1985). Since almost all remote sensing research 

exploring the detection of tillage practice focuses on soil and crop residue-based 

imagery, this section will explore the effects of tillage practice on crop health in 

general.  

In general, soil tillage is considered an important factor in field crop 

management which affects soil properties and crop yield (Alam et al., 2014). 

Tillage is often performed for the purposes of controlling weeds and obtaining 

good tilth for seeding crops. Conversely, no-tillage practices also have benefits 

in the form of reduced time, labor, and increased fuel savings (Derpsch et al., 
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2010). All crops under the no-tillage system can in fact be produced adequately 

and there has yet to be found a crop that would not grow under this regime 

(Derpsch et al., 2010).  A modification of the no-tillage methodology is that of 

conservation tillage (no-tillage combined with crop residue from previous 

rotation). Much literature has shown that conservation tillage is one method 

which can significantly increase water content and water use efficiency in soil 

(Arshad et al., 1995; Lafond et al., 1992; Willis & Bond, 1971). Zero tillage with 

crop residue can increase water penetration due to reduced runoff and 

evaporation, thus conserving soil moisture for longer periods (Acharya et al., 

1998; Baumhardt & Jones, 2002).   A study by Ma et al. (2008) compared three 

different tillage systems (zero tillage, minimum tillage, conventional tillage), 

residue cover (with and without cover) and crop rotation (continuous cropping 

and rotation). For all three tillage treatments, soil water content was significantly 

higher with residue cover. Additionally, it was found that either no-tillage or 

minimum tillage combined with crop residue cover were the most viable options 

for farming practice. In Northwestern Ontario, the Thunder Bay Agricultural 

Research Station (TBARS) performed tillage experiments on a barley-soybean 

rotation from 2004 to 2007 (Sahota, 2008). These experiments evaluated 11 

different tillage systems, stemming from the conventional, zero, and alternative 

tillage regimes.  Two experimental plots were used which had previously been 

rotated with oats and clover, respectively; however, there were no significant 

effects on barley tillage regimes influenced from previous crops. The general 

findings reported were that conventional tillage regimes produced higher barley 
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and soybean grain yield than zero tillage. Alternative tillage (fall or spring 

disking, and spring cultivation) methods were however recommended over 

conventional tillage due to reduced labour and fuel consumption (Sahota, 2008).  

UAV AGRICULTURAL RESEARCH 
 

Lelong et al. (2008) were among the first to evaluate UAV multispectral 

imagery (blue: 420-510 nm, green: 490-580 nm, red: 570-650 nm, and near 

infrared: 720-850 nm) for the analysis of wheat crops. Sample plots were 

ground-truthed and measured for nitrogen and LAI, and spectral averages of 

plots were calculated. Lelong et al. (2008) were able to produce nitrogen uptake 

maps (highlighting nitrogen deficit and underdeveloped crops) for the whole field 

of wheat surveyed, with high precision. Higher accuracies were observed from 

mid-season to flowering stage, showing the difficulties in detecting nitrogen 

uptake heterogeneity in earlier growth stages. Berni et al. (2009) explored both 

thermal (40 cm resolution) and narrowband multispectral imagery (400-800 nm 

range, 20 cm resolution) acquired by a UAV over multiple different crop types. 

Results showed that biophysical parameters (biomass, chlorophyll, LAI) were 

able to be quantified with reasonable accuracy using multiple narrowband 

vegetation indices: NDVI, Transformed Chlorophyll Absorption In Reflection 

Index/Optimized Soil-Adjusted Vegetation Index (TCARI/OSAVI), and 

Photochemical Reflectance Index (PRI). Thermal data were also able to 

spatially identify areas of water stress with reasonable accuracy.  Water stress 

was a topic of focus for Bellvert et al. (2014), who evaluated thermal UAV 

imagery of a “Pinot-noir” vineyard. Thermal UAV imagery were compared to 
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leaf-level thermal measurements. It was found that UAV-based thermal sensors 

with a resolution of 0.3 m were highly effective in estimating the spatial 

variability of water stress across the field. This was however a species-specific 

study, and nothing was explored towards the separation of water-stress with 

other stress-inducers.  

In the area of fungal disease detection, very few studies exist exploring 

the utility of UAV imagery. A study by Calderón et al. (2014) examined high 

spatial resolution (20 cm/pixel) thermal and multispectral imagery to detect 

Downy Mildew (DM) infection. This research was conducted on two artificially 

infected opium poppy fields, where airborne thermal and multispectral imagery 

were acquired over three dates in 2009. The authors were able to relate canopy 

temperature and the green/red ratio to physiological stress. Additionally, they 

were able to use visible, red-edge and near-infrared spectral ranges for the 

classification of asymptomatic leaves. Red Edge-based NDVI was particularly 

useful in identifying between asymptomatic and symptomatic plants. Thermal 

was effective at monitoring for areas with water stress, which is a result of DM’s 

impact of heightened transpiration rates in canopy leaves. For UAV 

hyperspectral imagery, a study by López-López et al. (2016) evaluated the early 

detection and quantification of almond red leaf blotch (Prunus amigdalus). They 

were particularly interested in the early detection of this foliar fungal pathogen, 

and therefore evaluated canopy-level imagery and related vegetation indices. 

They demonstrated a successful methodology for the early detection of almond 

red leaf blotch using UAV hyperspectral data. The utilization of hyperspectral 
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UAV data currently require complex methodologies (Gevaert et al., 2014); 

however, generally hyperspectral data are preferred due to the higher spectral 

resolution which allows for detailed spectral profile analyses and customized 

vegetation indices (Ashourloo et al., 2014; Mahlein et al., 2013).  
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INTRODUCTION 

  Fungicide effectiveness can be better understood if there is accurate 

knowledge regarding the spatio-temporal occurrence of in-situ stress. 

Traditionally, visual assessments have been conducted for the purpose of 

verifying the type of crop stress in a field. The weakness with this method is the 

infeasibility to spatially assess an entire field by foot. Larger fields inherently 

have more chance for assessment error—either by failing to recognize all 

varieties of in-situ stressors (e.g. fungal diseases), or for not locating secluded 

problem areas subject to stress/lack of productivity.  

Remote sensing has long been identified as an effective way to spatially 

evaluate any heterogeneity in crop health, whether brought on from crop 

nutrient deficiency (Hedley, 2014), site-specific conditions related to soil 

(Anderson & Croft, 2009; Aubert et al., 2013; Buttafuoco et al., 2010; Klemas et 

al., 2014), crop disease and pest presence (Bauriegel, 2011; Yue et al., 2012), 

and recently weed presence (Armstrong, 2007; Eddy et al., 2014; Lopez 

Granados 2011; Rasmussen et al., 2013). Additionally, detected crop vigor 

constraints can potentially lead to decisions regarding fertilizer or herbicide 

application (Velandia et al. 2008), and fungicide application (Larsolle & 

Muhammed, 2007; Mahlein et al., 2012; Shaw & Kelley, 2005), which can be 
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generalized as management zone delineation (Chenghai Yang et al., 2013; 

Dewitte et al., 2012).  

Fungal diseases are a well-known yield restrictor for cereal crops in 

Northwestern Ontario. Foliar fungal disease presence will often restrain the 

overall rate of plant development, impacting harvest time, total yield, and even 

grain quality (Mulla, 2014; Robert et al., 2004; Roermund & Spitters, 1990; 

Spitters et al., 1990). It is known that fungal diseases in general tend to occur in 

patches hard to spatially delineate without the aid of remote sensing techniques 

(Oerke, 1999; Oerke et al., 2005). Fungal infections are often unpredictable, 

and influenced by the arrival of airborne spores which reside in soil, from crop 

residue of previous rotations, and from weather conditions. Early treatment is 

required to prevent their spread which can be amplified by specific weather 

conditions such as from temperature (Murray et al., 1994; Park et al., 1992) and 

precipitation (Broscious, 1985; Hansen et al., 1994). As an example, leaf rust 

infections are correlated with temperature, which can be higher in areas of 

sparse vegetation cover (Dammer & Ehlert, 2006; Murray et al., 1994; Park et 

al., 1992). Also, raindrops are known to be capable of transmitting soil-born 

spores to cereal plant leaves, with some authors reporting a higher occurrence 

in areas of low LAI due to increased rain splash (Broscious, 1985; Dammer & 

Ehlert, 2006). The multiple factors which dictate the early development and 

spread of fungal diseases make them hard to spatially predict, and incidentally 

have influenced the wide use of broad spectrum preventative fungicides applied 

uniformly across fields. Unfortunately, fungicides in Northwestern Ontario are 
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costly and could have negative environmental effects (West et al., 2003). As 

such, the notion of site-specific treatment has garnered much interest amongst 

local farmers. Typically, fungicides are sprayed at specific timings related to a 

crop’s phenological development. Disease control in cereals often focus on 

fungicide application to the upper three leaves, as these are the main 

contributors to yield production (West et al., 2003). Switching to fungicides that 

are spatially applied to infected crop areas require accurate detection of in-situ 

disease in its early stages of development. 

In remote sensing literature, much is already known regarding the 

spectral response of foliar fungal disease. In general, pathogens reduce 

chlorophyll content in what are described as necrotic or chlorotic lesions, 

affecting spectral reflectance in the Visible (VIS: 400-650 nm), Red-Edge (RE: 

650-720 nm) and Near Infrared (NIR:720-900 nm) regions of the 

electromagnetic spectrum (Blazquez & Edwards, 1986). This reduction in 

chlorophyll is caused by early senescence of infected lesions which often 

appear as browned or darkened spots for rust (leaf rust, crown rust or stripe 

rust), and blotch (spot blotch, net blotch, septoria) disease varieties (Franke & 

Menz, 2007). A canopy’s spectral properties are known to also change with 

increased fungal disease presence. Much like spectral observations at the leaf 

level, canopy reflectance will change in certain portions of the VNIR (visible to 

near-infrared) spectrum when under stress (Gitelson et al., 2005). The difficulty 

in detecting chlorophyll at the canopy level, while indirectly detecting for stress 

presence, is that canopy reflectance is strongly affected by other factors, such 
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as canopy architecture, soil background, and LAI (Gitelson et al., 2005). Several 

past studies have managed to establish relationships with the biophysical 

properties of crops, when evaluating canopy-level remote sensing imagery. In-

situ parameters such as chlorophyll (Gitelson et al., 2005), grain yield (Cao et 

al., 2015), nitrogen uptake (Fitzgerald, 2010; Schlemmer et al., 2013), and even 

biomass (Moges et al., 2004) have been verified as quantifiable with reasonable 

accuracy at the canopy level. Since a reduction in chlorophyll is linked to 

phenomenon such as nitrogen uptake, changing leaf area index (LAI) and 

biomass (Bojović & Marković, 2009; Daughtry et al., 2000; Gitelson et al., 2005), 

indirect linkages may be drawn between such observed phenomenon as fungal 

disease presence at the canopy scale. The unavoidable issue with this is the 

necessity of ground-truthing to verify the source of in-situ stress. However, for 

intensive field crop management regimes where soil moisture is controlled with 

drainage tiles, and fertilizer is spatially applied, this method for spatial fungal 

detection may be applicable.  

A critical review of the literature revealed that most past remote sensing 

methodologies utilize workflows adapted for space-based sensors and course 

resolution datasets. An exciting and seldom explored topic in current scientific 

research will explore the utilization of high spatial resolution unmanned aerial 

vehicle (UAV) data sets to assess fungal disease at the canopy level. Since not 

much is known on the subject, it is desired to evaluate how such data sets may 

improve upon previously reported spatio-temporal accuracies for fungal disease 

detection. The limitations in space-based platforms and manned aircraft are well 
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known. Particularly, they are hindered by course spatial resolution, high costs of 

image acquisition and poor revisit times. UAVs propose an alternative platform 

with high potential towards precision agriculture applications. Primarily, such 

aerial platforms offer temporal flexibility towards preferred operational flight 

times, are unhindered by cloud interference, can be flown at low altitudes 

allowing for high spatial resolution data sets, and accommodate the use of 

GCPs which allow final orthomosaic products to be registered with high 

geometric accuracy. Such high geometric accuracy allows for accurate spatial 

mapping products which may be adapted for ground-based precision spraying 

equipment. UAV technology has progressed considerably over the past few 

years, and now such platforms are highly reliable, user-friendly and affordable. 

Sensor technology has also progressed with regards to UAVs, and now we are 

seeing advanced sensors designed specifically for precision agriculture. The 

majority of lightweight, affordable sensors in 2016 have VNIR (Visible to Near-

Infrared) multispectral parameters. The application of such sensors in 

operational farm fields for precision agriculture has seldom been explored. 

Thus, multispectral UAV data are currently a topic of scientific interest in both 

academia, and industry. Hyperspectral sensors are generally considered to be 

more accurate and effective than multispectral counterparts due to the 

increased spectral resolution and contiguous bands (Ashourloo et al., 2014; 

Mahlein et al., 2013). However, the technology is still expensive and the data 

from such sensors are currently infeasible for conventional image processing 

solutions. Since there is currently very few publications on UAV multispectral 
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imagery, specifically for the detection of fungal disease, there is novelty and 

great interest in this specific topic.  

MULTISPECTRAL FUNGAL DETECTION OF CEREALS 
 

In general, multiple remote sensing publications have noted the 

difficulties in detecting between symptomatic and asymptomatic fungal-infected 

leaves during early growth stages (Ashourloo et al., 2014; Devadas et al., 2015; 

Devadas et al., 2008; Franke & Menz, 2007; Qin & Zhang, 2005). In particular 

for cereal crops, very few studies exist which explore the use of high resolution 

multispectral data sets for the detection of fungal diseases. To date, sub-

millimeter UAV multispectral data have been examined for the successful 

detection of canopy chlorophyll levels in cereal rye (Hunt, 2014). Since a 

reduction in chlorophyll has been documented from pathogens such as leaf rust 

(Robert et al., 2005), the study by Hunt (2014) shows promise towards indirect 

fungal disease detection measures. Lelong et al. (2008) explored UAV 

multispectral imagery (Blue:420-510 nm, Green:490-580 nm, Red:570-650 nm, 

NIR:720-850 nm, 10 cm/pixel) for the quantitative monitoring of wheat 

biophysical parameters in plots. While the authors did not specifically explore 

the detection of fungal disease, they were able to establish a relationship 

between nitrogen uptake and the green normalized difference vegetation index 

(gNDVI). Since nitrogen uptake is known to have an indirect relationship with 

chlorophyll content at the canopy scale (Schlemmer et al., 2013), this study 

shows some potential in detecting chlorophyll response to fungal presence with 

UAV multispectral imagery. Quickbird-2 multispectral imagery (Blue:450-520 
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nm, Green:520-600 nm, Red:630-690 nm, NIR:760-900 nm, 2.4 m/pixel) have 

been used for the detection of early leaf rust and powdery mildew (Blumeria 

graminis) development in wheat, related to different fungicide application 

intensities (Franke & Menz, 2007). In this particular study the authors noted 

difficulties in the early detection and spectral separation of symptomatic and 

asymptomatic plots. However they were increasingly successful in detecting 

between fungicide application intensities as the season progressed.  

EXPERIMENT  
 

An in-depth review of the literature has indicated that more needs to be 

understood regarding how effectively fungal disease can be spatio-temporally 

delineated with UAV multispectral imagery. Notably, no known studies have 

evaluated the spectral response of barley with UAV multispectral imagery. As 

indicated in the literature review and briefly in the introduction, a handful of 

studies have evaluated wheat field crops with UAV multispectral imagery. 

Positive results have been seen with regards to the separation of fungal disease 

intensity in wheat with multispectral satellite imagery (2.4 m/pixel with broad 

bands in the VNIR) as early as Feekes 10.4 (Franke & Menz, 2007). However, a 

recent study in Northeastern Ontario has shown that a difference in spectral 

reflectance exists between barley and wheat, allowing them to be effectively 

separated throughout multiple stages of their phenology (Wilson et al., 2014).  

Local farmers in the Thunder Bay region have expressed interest in the 

spatial detection of fungal diseases in barley, which is one of the important 

forage, feed and malt crops. Amongst major field crops in Thunder Bay, Barley 
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contributes the highest towards the provincial total, at 3.53% (Statistics Canada, 

2011). Two farms provided operational barley field crops for this experiment, 

detailed in the methodology section (Pg. 33). Each field was managed 

differently (till vs. no-till), and was treated with 3 different levels of fungicide 

intensity. The spectral response of barley was then monitored over four growth 

stages with UAV multispectral imagery.  

HYPOTHESIS AND RESEARCH QUESTIONS  
 

Further detailed in the methodology, multiple UAV flights were performed 

over each field covering four general growth stages for barley: GS1 (Feekes 8-

9), GS2 (Feekes 10.51), GS3 (Feekes 11.2), GS4 (Feekes 11.4). The Feekes 

Growth Scale for cereals, first introduced by Large (1954), was used to describe 

the phenological development of barley. Three treatments were applied: No-

Fungicide/Control (C), Stratego (S), Stratego + Prosaro (SP).  

In this experiment, the dependent variable (DV) tested is spectral 

response, represented as five vegetation indices (VI): Normalized Difference 

Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index 

(RE-NDVI), Renormalized Difference Vegetation Index (RDVI), Red-Edge 

Renormalized Difference Vegetation Index (RE-RDVI), and Triangular 

Greenness Index (TGI).  The effectiveness of these indices will not be tested 

against each other, rather, the ability to distinguish fungal disease severity with 

be considered regardless of VI type. The independent variables (IV) are 

represented as Field, Growth Stage, and Treatment. The models for this 
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experiment may be viewed in the Methodology section (Pg. 63-64). The null 

hypothesis (H0) and alternate hypothesis (Ha) are as follows:      

H0=The Spectral response (VI) of barley fungicide treatments (Control, Stratego, 

Stratego + Prosaro) cannot be distinguished between fields and growth stages 

(GS2, GS3, GS4), when evaluating UAV multispectral imagery (Blue- 475 nm 

+/- 20 nm, Green- 560 nm +/- 20 nm, Red- 668 nm +/- 10 nm, Red Edge- 717 

nm +/- 10 nm, Near Infrared- 840 nm +/-40 nm; 64-bit depth tiff format) of 6.7 

cm/pixel spatial resolution.  

Ha= The Spectral response (VI) of barley fungicide treatment levels (Control, 

Stratego, Stratego + Prosaro) can be distinguished between fields and growth 

stages (GS2, GS3, GS4), when evaluating UAV multispectral imagery (Blue- 

475 nm +/- 20 nm, Green- 560 nm +/- 20 nm, Red- 668 nm +/- 10 nm, Red 

Edge- 717 nm +/- 10 nm, Near Infrared- 840 nm +/-40 nm; 64-bit depth tiff 

format) of 6.7 cm/pixel spatial resolution. 

To accompany and expand discussion from the main hypothesis, multiple 

research questions were formed:  

How early can fungal infection severity be distinguished during the growth 

season for barley?  

If alternative stress sources appear during the season in ground-truthing plots, 

can the multispectral sensor distinguish between types of stress in those 

respective plots?  
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Did soil management regimes affect the 3 way interaction of Growth Stage and 

Treatment between different Fields?  

MATERIALS AND METHODS 

 

SITES AND CONDITIONS  

A single experiment was conducted in Thunder Bay, ON, Canada, from 

July 7th to August 31st 2015. Two locations, Trumar Farm (UTM Zone 16U, 

318033E, 5352745N), and Hanna Farm (UTM Zone 16U, 318002E, 5355909N) 

provided operational barley fields for this experiment. Trumar Farm (20.64 

Hectares) is a dairy farming operation, with manure application to fields during 

the fall. Hanna Farm (10.12 Hectares) is a cash cropping operation, without any 

manure availability or application. Trumar Farm’s field is intensively managed, 

which is tilled (Alternative Tillage: fall disking, spring cultivation), measured and 

annually treated for variable soil nutrient deficiency levels by a local crop 

consultant. Soil optimum levels are maintained based on Cation Exchange 

Capacity (CEC) and are monitored for available Phosphorus (P), Potassium (K), 

Calcium (C), Magnesium (Mg), among a suite of other nutrients. Additionally, 

drainage tiles are present throughout the whole field, giving relatively 

homogeneous levels of moisture. Hanna Farm’s field is less-intensively 

managed. No tilling takes place, and there are no variable rate control measures 

taken for soil nutrients on this site. There are also drainage tiles present in Hanna 

Farm, which allow for a consistent moisture level throughout the field. Both fields 
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have similar soil types, being a silty clay loam composition. In Hanna Farm, at the 

northern-most extent of Figure 1 (left image) the field was blocked off to avoid 

drastic changes in elevation and moisture. Thus, the extent of observations taken 

from this field maintain a fairly consistent elevation. Based on local research from 

the Thunder Bay Agricultural Research Station (TBARS), each field was seeded 

mid-May 2015 with the Spring Barley (H vulgare L.) cultivar ‘Synasolis’ due to its 

positive growth response in the Thunder Bay district.  Seed row-spacings were 

7.5 inches at Trumar Farm, and 7 inches at Hanna Farm. Full canopy closure 

was expected for both crops. Also, both fields have experienced regular rotation 

of crops season-to-season. Trumar Farm was previously rotated with Soy 

(Glycine max L.), and Hanna Farm was rotated with wheat (Triticum L.). The 

weather for 2015 was average for the region of southern Thunder Bay, detailed 

below in Table 1. August 2015 had the highest amount of precipitation during the 

growth season of barley both at Hanna and Trumar Farms.  
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Table 1. Weather data recorded at the Thunder Bay Agricultural Research 
Station (TBARS) for 2015.  

Weather 2015 

Month Precipitation 
(mm) 

Max Temp 
(°C) 

Min Temp 
(°C) 

Growing 
Degree 
Days 

(GDD) 

Corn Heat 
Units 
(CHU) 

May 104.4 25.0 -7.0 78 188 

June 104.4 27.6 -2.0 219 384 

July 90.8 29.0 3.0 327 552 

August 121.8 29.0 2.0 309 510 

Total/Mean 421.4 27.7 -1.0 933 1634 

*Fields are approximately 2.5 km apart from one another. Trumar Farm is 4.9 km 
from TBARS; Hanna Farm is 5.6 km from TBARS.  
TBARS Annual Report (2015).  
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Figure 1. Hanna Farm treatment rows delineated in black (left), Trumar Farm 
treatment rows delineated in black (right). Visual assessment plots are outlined 
by the thick asterisks, GCPs are indicated by the thin asterisks (not all GCPs 
are visible). C=Control; S=Stratego; SP= Stratego + Prosaro. Not to scale.   

TREATMENT EFFECTS AND PLOTS  

The purpose of this experiment was to determine if multispectral 

observations of barley from two different crop management regimes, at 

changing growth stages, could be used to differentiate between fungicide 
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treatment types and visual disease assessments. To introduce heterogeneity 

into the two fields, 1 treatment with 3 levels was applied:  

1) No Fungicide (control), 2) Stratego, 3) Stratego + Prosaro. In brief, both 

Stratego (Propiconazole and Trifloxystrobin) and Prosaro (Prothioconazole and 

Tebuconazole) are broad spectrum fungicides aimed at controlling foliar and 

head fungal diseases of wheat and barley. In applying different treatments, 

different health levels were expected between rows, along with differing levels 

of fungal disease and crop stress susceptibility. Each treatment type was 

applied 3 times, in each field (9 rows per field). The width of rows was dictated 

by the sprayer boom width. At Trumar Farm, rows were 90 feet; Hanna Farm 

rows were 75 feet. All rows were sprayed in the evening when there was 

minimal wind in attempt to mitigate potential cross-contamination between 

treatment strips. Herbicide was initially blanket sprayed across both fields when 

there was evident weed emergence, on June 26, 2015 (Feekes 4), after tiller 

formation. Subsequently, at Feekes 8-9, Stratego was randomly sprayed on six 

of nine rows for each field (see Table 1 for specific dates). Stratego is 

recommended to be applied at the four-leaf stage in barley (Feekes 4); 

however, due to rainfall events the application was delayed until Feekes 8-9 for 

this study. Shortly after, Prosaro was randomly sprayed along three of six rows 

previously treated with Stratego, at Feekes 10.51 for each field (Table 2).   
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Table 2. Data acquisition dates and relative barley growth stages for respective 
fields, during spring-summer 2015.   

  
Flight  
  

  
Date  

  
Farm Field  

  
Growth Stage  

N/A  July 7, 2015  Hanna & Trumar  Feekes 6-7  

F1* July 15, 2015 Trumar GS1: Feekes 8-9 

F1* July 22, 2015  Hanna  GS1: Feekes 8-9  

F2 ** July 28, 2015  Trumar  GS2: Feekes 10.51  

F2 ** Aug 5, 2015  Hanna  GS2: Feekes 10.51  

F3  Aug 14, 2015  Trumar  GS3: Feekes 11.2  

F3  Aug 21, 2015  Hanna  GS3: Feekes 11.2  

F4 Aug 27, 2015 Trumar  GS4: Feekes 11.4 

F4 Aug 31, 2015 Hanna GS4: Feekes 11.4 

* Stratego application date. Note that herbicide (control) was already 
sprayed previously. 
** Prosaro application date.    
 

To visually verify evidence of ground-level barley disease, 3x3 m plots (2 

per treatment row, 18 per field) were randomly assigned, and marked with flags 

at each corner. These flags were placed close to the middle of each row to 

avoid any potential spray drift effects during treatments. Each flag’s respective 

coordinates were recorded using an RTK GPS (Real Time Kinematic Global 

Positioning System) unit, with a horizontal accuracy of +/- 2 cm. Disease was 

rated using a Standardized Area Diagram (SAD), as it has been reported in 

previous research to reduce rater bias for disease scoring (Bock, 2010; Nutter, 

1990). Since there was more than one rater for this experiment, SADs were 

chosen to reduce bias. Diseases were rated in a percentage score based on 

surface area of infected flag leaf tissue (Figure 2), and recorded in the field with 

an electronic tablet. When there wasn’t a flag leaf present the uppermost leaf 
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was rated (GS1: Feekes 8-9). Twenty scores per corner were recorded from 

eighty randomly chosen plants within each enclosed square plot (80 total/plot). 

All spectral observations from UAV imagery were later clipped and extracted 

using the RTK GPS coordinates for the respective treatment plots, and later 

compared to the disease assessment scores.   

 

Figure 2. Standardized area diagram for barley and wheat leaves, modified from 
Bock (2010).  
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EQUIPMENT AND FLIGHTS   

Four flights per field were conducted between July 15th (Feekes 8-9) and 

August 31st, 2015 (Feekes 11.4). These were divided into four general growth 

stages: GS1: Feekes 8-9, GS2: Feekes 10.51, GS3: Feekes 11.2, GS4: Feekes 

11.4 (Table 2). It was infeasible to consistently monitor all growth stages and 

perform flights at exactly the same phenology due to the remote location of the 

farms, different seeding times and management regimes. Since Trumar Farm 

seeded their field one week ahead of Hanna Farm, most flights were conducted 

on alternating dates for respective fields. This allowed for observations of 

similar Feekes growth stages between fields. The Observer-6 Hexacopter (OB-

6) was deployed (Figure 3), fitted with the Micasense 5-channel multispectral 

sensor (Blue- 475 nm +/- 20 nm, Green- 560 nm +/- 20 nm, Red- 668 nm +/- 10 

nm, Red Edge-717 nm +/- 10 nm, Near Infrared- 840 nm +/-40 nm; 64-bit depth 

tiff format). The OB-6 is capable of performing preprogrammed flight paths, and 

based on sensor field of view, flew with 85 % overlap along the entirety of each 

field. Flight altitude was maintained at 100 metres, which allowed for a spatial 

resolution of 6.7 cm/pixel. The sensor was affixed to a gimbal and pointed at 

nadir for each flight.   



42 
 

 

Figure 3. Observer-6 (OB-6) hexacopter (0.5 m frame) equipped with the 5-
channel multispectral sensor (Micasense). Hanna Farms, SW Corner, July 
22nd, 2015.  

RADIOMETRIC CORRECTIONS 

 SURFACE REFLECTANCE   
 

Corrections for both vignetting and surface reflectance were done using 

proprietary algorithms and software provided by Micasense Inc. The extent to 

which these corrections can be detailed is limited due to intellectual property 

rights. To radiometrically correct pixel data to surface reflectance, a black and 

white reflectance calibration tile (Lambertian surface) was imaged with the 

Micasense before and after each flight. The Empirical Line Method is well suited 

for radiometric calibration of remotely sensed imagery (Berni et al., 2009; 

Vaudour et al., 2008). This method was used in proprietary software where in-
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situ tile reflectance values were compared to lab-measured spectrometer 

values. With these data, a linear equation was derived to predict pixel intensity 

values as surface reflectance across the orthomosaics.  

       The limitation to the Micasense methodology for radiometric correction is 

that it necessitates consistent illumination before and after imaging Lambertian 

surface reflectance tiles. This caused some issues in the data, which forced 

further radiometric corrections to be applied (see Histogram Matching section). 

Final orthomosaics were generated in the Atlas cloud server by stitching all 

single-frame geotagged images (5-band composites) together and averaging 

any overlapping pixel values. Vignetting and radiometric surface reflectance 

calibration algorithms were performed just before stitching to achieve a 

balanced scene. Further methods for noise correction, geometric correction, 

and histogram matching are detailed in the proceeding subsections.  The 

effects of atmosphere were not corrector for. A study by Herrero-Huerta et al. 

(2014) showed that atmospheric effects on aerial multispectral imagery 

captured at two different altitudes (145 m and 245 m) were insignificant. Thus, 

for this study, no corrections were made for atmospheric effects.  

THE MINIMUM NOISE FRACTION (MNF) TRANSFORM   
 

It is well known that multispectral imagery carry similarities among pixel 

data between adjacent narrow bands (Avena et al., 1999). Statistical data 

compression tools such as principal component analysis (PCA) are effective for 

decorrelating such information and redistributing image data content. 

Additionally, PCAs are good for reducing the amount of redundant information, 
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which could otherwise impact image classification accuracy. Typically a PCA will 

be conducted to linearly produce a new set of bands where information content 

is secluded, and no correlation exists among components/bands. In a 

multispectral or hyperspectral dataset, the number of principal components are 

equal to the total number of bands. These are arranged in such a way that the 

first component accounts for the maximum proportion of the variance in the 

original dataset, and subsequent orthogonal components account for the 

maximum remaining variance reducing until the final component is computed 

(Demšar et al., 2013). The higher/final principal components in multispectral 

imagery are typically representative of soil background or sensor noise 

(Piwowar & Millward, 2002); however, this is not always reliable, and it would be 

more-so desired to produce components that subsequently and reliably reduce 

in image signal quality (Green et al., 1988).  

The Minimum Noise Fraction (MNF) transform is a technique first 

introduced by Green et al. (1988), which maximizes the signal-to-noise ratio with 

increasing components. It consists of two consecutive principal component 

transforms: the first to identify noise content and the second is to remove it, 

while reducing the dimensionality of the original dataset. The resulting MNF 

transform image will typically have the same number of bands as the input 

image, unless there was a sub set performed. The first few components often 

have higher eigenvalues associated with high signal quality and low noise, and 

the last components approach an eigenvalue of 1, representing high noise/low 

signal quality. The original development of the MNF transform technique by 
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Green et al. (1988) was purposed for improving the PCA noise reduction 

capability in multispectral data sets. However, most literature featuring the MNF 

transform uses hyperspectral data sets due to the high proportion of noise 

presence amongst bands. Yang & Everitt (2010) evaluated hyperspectral and 

multispectral imagery for the classification of broom snakeweed (Gutierrezia 

sarothrae). They performed the MNF using ENVI software (ITT Visual 

Information Solutions, Boulder, CO) to reduce the high spectral dimensionality 

and inherent noise in the hyperspectral dataset. They were able to eliminate 

redundant bands dominated by noise in order to improve the classification 

accuracy (Yang & Everitt, 2010). Mitchell et al. (2012) used the MNF transform 

for similar purposes, improving the classification accuracy of UAV hyperspectral 

imagery for dryland vegetation monitoring.   

For this study, both MNF transform and Inverse MNF transform were 

performed for all final orthomosaics (Figure 6). After a MNF transformation is 

performed, it is often desirable to reconstruct the data back to its original space 

without the isolated noise channels. This process is called an Inverse MNF 

transform. Before performing the Inverse MNF transform, either smoothing (low-

pass filter technique) or band elimination (subsetting) must be conducted on the 

noise-dominated components from the MNF transform output (Figure 4). For 

this study, most noise was able to be secluded to the 5th component for all 

flights (Figure 5). A subset was created with the first four components from each 

scene, and further transformed back into its original five-band space as an 

Inverse MNF transformed image. 
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Figure 4. Maximum Noise Fraction (MNF) Transform for July 22nd, 2015. Band 
1 (left) is shown with the lowest signal-to-noise ratio, and Band 5 is shown 
(right) with the highest signal-to-noise ratio.  

 

 

Figure 5. Eigenvalues (Y-axis) and Eigenvalue Numbers/Bands (X-axis), for July 
22nd, 2015 scene. The eigenvalue approaches 1 at the 5th band, showing a 
high degree of noise presence.  
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each field, and measured in the centre with the same RTK GPS unit. The same 

geodetic survey benchmarks were used to record points for both the GCPs and 

plot flags.  

HISTOGRAM MATCHING  
 

This step in radiometric scene balancing employs the relative radiometric 

normalization approach. The method is preferred because input parameters 

requiring sun angle positioning, cloud cover or acquisition time are not required 

(Hong & Zhang, 2008). A popular technique within the relative radiometric 

normalization methodology is that of histogram matching. Histogram matching is 

a radiometric enhancement technique which uses a reference image 

(radiometric master) to modify the histogram of a slave image. This process 

makes the slave image’s histogram distribution similar to that of the reference 

image. Thus, the normalized slave image will appear to have been captured 

under similar atmospheric and illumination conditions to the master (Hall et al., 

1991). Chavez & Mackinnon evaluated the ability to automatically detect 

temporal vegetation changes in remotely sensed satellite imagery. Importantly, 

they noted that when comparing between-date histogram match results between 

static targets (i.e. pavement) and changing vegetation (crop rotations and 

phenology change), there were little differences. Although vegetation 

reflectance can change between dates, the overall dynamic range and 

distribution of reflectance remained stable. DN values changed very little 

between scenes and AOIs, allowing for comparisons of temporal vegetation 

change expressed by NDVI (Chavez & Mackinnon, 1994).  
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While all final orthomosaics were initially corrected to surface reflectance, 

there were a few scenes that experienced minor illumination imbalances, mainly 

due to unexpected cloud cover during flights. In order to ensure all images 

retained similar spectral characteristics, further radiometric correction was 

necessary. First, inter-scene histogram matching was performed to ensure 

consistent illumination over each scene. Scenes from July 15th & 28th, August 5th 

& 21st were acquired over the unfavourable conditions of partial cloud cover. 

The Micasense Atlas software had issues in processing that necessitated 

further inter-scene corrections. Within an individual scene, targets were selected 

for histogram matching. Target selections were based on sun illuminated areas 

from fungicide treatment AOI (masters) and cloud-covered areas of the same 

treatment type (slaves) (Figure 7). After inter-scene histogram matching was 

performed, only between-scene histogram matching was performed for the July 

15th orthophoto (Trumar Farm). Before matching the scene, band alignment had 

to be performed. Since the Trumar Farm GS1 scene was the only scene 

manually processed, extra steps were required to create a georegistered 

orthomosaic with composite bands. The 5-band orthomosaic was generated 

using Agisoft Photoscan. The bands were slightly misaligned; thus, manual 

alignment was conducted in Adobe Photoshop. This utilized the differential filter 

and warp transform functions to perfectly align the bands before stacking.  

Finally, the Trumar Farm GS1 image was matched to the Trumar Farm GS2 

scene (Master) to equalize the lighting conditions for this date.   
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Figure 7. Histogram match of Trumar Farm scene from July 28th, 2015. The 
targeted side (master) and cloud-covered side (slave). A histogram match was 
then performed (right side) matching the slave to the master.   
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WEED PIXEL CLASSIFICATION AND EXTRACTION  
 

Presented here is a new methodology regarding the classification, 

isolation and extraction of weed pixels from a barley crop scene. Recall that 

herbicide (Control Treatment) was blanket sprayed over each field in order to 

prevent the dominance of multiple weed species throughout the season. For 

Trumar Farm, minimal to no weed presence was documented in VA plots 

throughout the entire season. This was attributed to both the effectiveness of 

the herbicide, to the slim row spacings, complete canopy closure, and also to 

the implementation of alternate tillage methods. Despite the same control 

treatment being applied at Hanna, weeds still emerged in patches throughout 

the field. Multiple weed species were documented, with the most dominant 

being clover infestations in the north portion of the field (Figure 8 & 11). The 

clover infestation was first spotted on July 7th, 2015 (Feekes 6). Subsequently, 

as the season progressed, the onset of senescence in barley was observed on 

August 5th, 2015, in the north portion of the field. The barley in this section had 

been almost completely killed by August 22nd, 2015. Fortunately, only one VA 

plot appeared in the clover-infested area of Hanna Farm. Most other VA plots 

were unaffected by weeds, and documented as having minimal to no weed 

presence.  Other sections of the field, primarily tram lines, were affected with 

clover outbreak, which made necessary the spectral extraction of infestation 

areas.  

Some authors have used object-based segmentation procedures to 

extract weeds based on the orientation of crop rows (Peña et al., 2013). 
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However, since weeds occurred in patches, and in cases entire sections of 

Hanna Farm, this method was inapplicable. In general, weeds and crops display 

similar spectral reflectance characteristics in the early growth stages (Lopez 

Granados & López Granados, 2011; Peña et al., 2013; Torres Sanchez et al., 

2013). This has posed a huge problem for multiple researchers attempting to 

isolate weeds for site specific weed management practices. An alternative 

method proposed here works well for weeds with distinguished contrast in color 

when compared to field crops. A PCA band subtraction method was developed 

in order to distinguish vegetation types at the canopy level. In brief, the 

components from PCA analysis were able to effectively separate vegetation 

types more robustly than conventional supervised classification methods. The 

components of the PCA were analyzed and subtracted (PCA1-PCA2) to obtain 

an output where darker areas were associated with clover outbreak. From this, 

Erdas Imagine Knowledge Engineer was used to perform a decision tree 

classification for pixels of low intensity. The resulting thematic layers (Figure 8) 

worked well for isolating clover from barley.  

A simple accuracy assessment was performed for each image date by 

clipping AOI containing only barley and clover pixels. One hundred equalized 

random points were generated (50 per class) for two classes: barley and clover. 

The orthomosaic images were used as reference data to determine 

classification accuracy of the thematic data. From GS1 to GS4, the overall 

classification accuracy was > 84 % for all data. Before conducting spectral 

analysis of both treatment strips and plots, the classified clover data were used 
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to clip out pixels from the original raster data to avoid spectral contamination. 

Figure 10 shows the final orthomosaics containing clipped out features of 

classified clover, and Figure 8 shows a close-up of the classification.  

Figure 8. Clover infestation visible as bright green (upper) and classification as a 
yellow thematic layer (lower).  

 

CROP BLOWDOWN PIXEL EXTRACTION  
 
A severe wind event occurred on July 24th and 25th, 2015 which caused crop 

damage to Trumar Farm with winds up to 30 km/h. The damage was first 

initiated as small isolated patches of blown-down barley, and eventually spread 
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as the season progressed. When visual assessment (VA) plots were affected by 

blowdown, new plots were set up by measuring precise distances from the old 

plots which had assigned RTK points. The main issue with the blown-down 

sections of barley is that a profile view of the plants existed from the canopy. 

This affected pixel intensity values and created contrast from standing barley in 

the field. Since the purpose of this study was to evaluate canopy level foliage of 

standing barley, the extraction of blown-down barley pixels was necessary.  

In order to classify areas of blowdown, an object-based image 

segmentation was employed. Object-based classification schemes have been 

used successfully by a variety of researchers and continue to increase in 

popularity for datasets acquired from UAVs. Peña-Barragán et al. (2011) 

successfully verified the Object-Based Image Analysis (OBIA) approach for 

identifying between crop types, phenology, and vigor using decision tree rule 

sets and multiple vegetation indices. Hall & Wilson (2013) had also had success 

with the OBIA approach to predictively map wine grape yield, quality and 

ripeness with high spatial resolution multispectral imagery. The approach taken 

for this study proposes a simple hue-saturation-intensity (HSI) transformation, 

using the intensity band, which is applied after multiresolution segmentation. To 

achieve multiresolution segmentation, a homogeneity criterion must be set 

which will group pixels and relative neighbours into objects based on: shape 

compactness and smoothness, standard deviation from reflectance/colour 

values, and a scale factor. The refined orthomosaics from all fields and dates 

were loaded into Trimble Ecognition software (Trimble GeoSpatial, Munich, 
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Germany) individually for multiresolution segmentation. Values used were 500, 

0.1, and 0.5 for scale, shape and compactness, respectively. Additionally, band 

weights were applied at 1, 1, 10, 1, and 100 for the blue, green, red, NIR, and 

RE bands, respectively. More emphasis was put in the red-edge and red bands 

based on average spectral profile analysis for all photos, which showed the 

difference between RE and red bands to be the most pronounced (Figure 24). 

To perform classification, a threshold-based rule set was created which assigns 

classes to objects if they fall within a specific defined intensity range. Ranges 

were as follows for Trumar Farm: GS2(Intensity >= 0.05, <= 0.45), 

GS3(Intensity >=0.35, <=0.60), GS4(Intensity >=0.08, <=0.36). Results of the 

classification can be seen in Figure 9, and Figure 10. The final thematic 

classification files were converted to polygon shapefiles, which were used for 

masking pixels out of the final orthomosaics for Trumar Farm. Masked out areas 

appeared as ‘no-data’ values in the pixel numeric data, which were excluded 

from the spectral plot and strip averages.  
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Figure 9. Section of Trumar Farm on GS3 showing blown-down barley in 
brightened areas. A: Unclassified. B: Classified.   
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Figure 10. All orthomosaics highlighting classified sections of crop with clover 
infestation for Hanna Farm, and barley blow down damage for Trumar Farm. 
Not to scale.  

VEGETATION INDICES AND CLIPPED AOI 

CLIPPED AOI 
 

Two types of AOI were clipped in all imagery (Figure 11). 18 VA Plots (3 

x 3 m) were clipped out of each image for the purpose of performing regression 

analysis (detailed in next section). Eighteen strip plots were also clipped, 
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representing the north and south portion of a treatment strip within a respective 

field.  

 
Figure 11. A) Strip plot shapefiles outlining the clipped AOI for Hanna Farm; B) 
4 of 18 Visual Assessment (VA) plot shapefiles outlining the clipped AOI for 
Hanna Farm. Plot 7N is the uppermost yellow polygon, which was the only VA 
plot to fall within the clover infestation.  

To measure spectral response of the clipped plots, digital pixel intensity values 

were summed and averaged using the following formula:   

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒

# 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠/𝑃𝑙𝑜𝑡
                (1)  

All AOI plots were clipped as 5-band rasters maintaining the same bit depth (64-

bit) and format (.tiff) as the original data. The clipped raster data were then 

converted into a tabular format which made for easy analyses of multiple 

vegetation indices.  
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VEGETATION INDICES 
 

Multiple vegetation indices were modified from their original formulation 

to accommodate both the specific bandwidths of the Micasense multispectral 

sensor, and specifically the red-edge band. Five indices were chosen based on 

previous publications which indicated potential suitability for this study, and may 

be viewed in Table 3.   

The normalized difference vegetation index (NDVI) (Rouse et al. 1974) is 

well known to be capable of detecting photosynthetically active biomass 

(Tucker, 1979), and has recently been used in multiple studies involving UAVs. 

Berni et al. (2009) evaluated a suite of narrowband (10 nm) vegetation 

indices—including NDVI—for quantifying field crop biophysical parameters 

(biomass, chlorophyll, water stress, LAI) with UAV multispectral imagery. In 

particular, the relationship between chlorophyll flux and NDVI was strong, 

indicating the capability to detect stress with high spatial resolution imagery at 

the canopy scale. The downside with the NDVI is that it is susceptible to over-

saturation from dense vegetative canopies. The RE-NDVI (Table 3) was 

modified from Rouse et al. (1974) to replace the NIR band with the RE Band 

(RE-NDVI).      

The renormalized difference vegetation index (RDVI) was also evaluated, 

as it is reported to work well in eliminating over-saturation from dense canopy 

vegetation cover, and is insensitive to the effects of sun and soil viewing 

geometry (Roujean & Breon, 1995).  It was important to include this index to 

compensate for possible over-saturation of imagery subject to NDVI analyses. 
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This index was also modified from Roujean & Breon (1995) to replace the NIR 

band with the RE band (RE-RDVI).  

The Triangular Greenness Index (TGI) was first proposed by Hunt et al. 

(2010) specifically for the detection of chlorophyll in agricultural crops at the 

canopy scale. The TGI assumes the area of a triangle with three points: (R, 

R), (G, G), (B, B), where  and  are the centre wavelength and 

reflectance, respectively. In the initial study in 2010, TGI was correlated with 

chlorophyll content at both the leaf and canopy scale. Subsequent studies 

exploring this index have evaluated UAV imagery, furthering the promise for this 

index to effectively quantify areas of chlorophyll deficiency at the canopy scale 

(Hunt et al., 2013; Hunt et al. 2014).  It was important to include this index to 

evaluate how effectively the RGB bands could detect fungal disease severity.  
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Table 3. Vegetation indices used for regression between visual assessments and spectral averages, and for randomized 
complete block design of spectral strip averages.  

  
Name 

  

  
Formula 

  
Publication 

Normalized Difference Vegetation Index 
(NDVI)  

𝑁𝐼𝑅840 − 𝑅668

𝑁𝐼𝑅840 + 𝑅668
 

Rouse et al., 1974 

 
Red-Edge Normalized Difference Vegetation 
Index (RE-NDVI) 

 
𝑅𝐸717 − 𝑅668

𝑅𝐸717 + 𝑅668
 

 
Modified from Rouse et al., 1974 

 
Renormalized Difference Vegetation Index 
(RDVI) 

 
𝑁𝐼𝑅840 − 𝑅668

√𝑁𝐼𝑅840 + 𝑅668

 

 
Roujean & Breon, 1995 

 
Red-Edge Renormalized Difference 
Vegetation Index (RE-RDVI) 

 
𝑅𝐸717 − 𝑅668

√𝑅𝐸717 + 𝑅668

 

 
Modified from Roujean & Breon, 1995 

 
Triangular Greenness Index (TGI)  

 
−0.5[(R − B)(R − G) − (R − G)(R − B)] 

 
Hunt et al., 2010 

Note: All indices are unique in that they feature specific bandwidths to the Micasense Multispectral Sensor.  
 = centre wavelength of a particular band 
 = reflectance of a band (digital pixel value) 
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GRAIN HARVEST EXPERIMENT 
 

An additional small experiment within this study explored the relationship 

between yield and fungicide treatment intensity. It is already known that a 

relationship exists between grain yield and fungal severity (Gooding et al., 2000; 

Pepler et al., 2005). Thus, no research question was formed to address this 

issue. However, for the specific fields in this study, it was desired to ensure that 

some effect on yield occurred from treatments. This helps verify the effect of 

fungicide on general crop vigour. To perform this experiment, hand harvesting 

was required on multiple ground plots within each field. Eighteen plots total 

were harvested (9 plots per field), with 3 replications per treatment, on August 

31st, 2015. A 1 x 1 m portion was measured out from the same plots originally 

used for visual assessments. Fresh produce was first weighed in the field 

immediately after hand harvest. Afterwards, samples were taken to the Thunder 

Bay Agricultural Research Station for further analysis. Data collection 

procedures followed the same standards as TBARS, where samples were 

dried, threshed, and loose grains were cleaned before weighing (Figure 12).  
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Figure 12. A: Hanging barley grain at TBARS. B: Threshing machine at TBARS. 
C: Barley grain after threshing. D: Process of cleaning the barley grains before 
dry weighing.  
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Figure 13. A: Control treatment row in Trumar Farm. B: Stratego + Prosaro 
treatment row in Trumar Farm. C: Comparison of grain from Control treatment 
(left head) and Stratego + Prosaro treatment (right head). August 14th, 2015 
(GS3).  
 

STATISTICAL ANALYSES  

There are three types of results in this work: the first results reflect the 

relationship between visual disease assessment ratings and vegetation indices 

observed from plots; the second results reflect the ability of vegetation indices 

to predict treatment type by growth stage, and the third look at the impact of 

fungicide treatment type on grain yield.   

REGRESSION 
 

A simple linear regression was performed for each growth stage and 

field, to measure the relationship between assessed disease and spectral 
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response of plots, regardless of treatment type. Multiple vegetation indices were 

measured against visual assessment disease ratings recorded over multiple 

growth stages: NDVI, RE-NDVI, RDVI, RE-RDVI. TGI was not evaluated for this 

analysis, as the assumptions for a regression model could not be met for such 

data.  

TWO-WAY ANOVA 
 

The dry grain yields (grams/plot) were considered a response variable in 

a 2-way fixed factor ANOVA to determine if there was a significant effect of 

treatment (3 levels) and field (two levels) on grain yield. Spectral response 

could not be measured due to the wind blow down which impacted harvest plots 

in Trumar on GS4.  

𝑌 = 𝜇+T𝑖 +Fj + TFij (𝑖j)                  (2)  

                         Where Y = Dry Grain Yield (g)    

                 T = treatment effect (fixed) 

                           F = field effect (fixed) 

 

RANDOMIZED COMPLETE BLOCK DESIGN (RCBD) 
 

This experiment was laid out as a 3-way fixed factor randomized 

complete block design (RCBD), performed in R-Studio (RStudio Team 2015). 

The linear model is illustrated in equation 3:   

 𝑌 = 𝜇+𝐵𝑖 +(𝑖) +𝑇𝑗 +𝐵𝑇𝑖𝑗 +𝐺𝑘 +𝐵𝐺𝑖𝑘 +𝑇𝐺𝑗𝑘 +𝐵𝑇𝐺𝑖𝑗𝑘 + (𝑖𝑗𝑘)𝑙                  (3)  

                         Where Y = Spectral Average of treatment strips    

                                     B = block effect (field, fixed effect)    
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                 T = treatment effect (fixed) 

                                    G = growth stage (fixed)  

𝛿 = random effect of randomization of   
fungicide treatments ith block  

  
The spectral average for all five VIs were calculated by clipping 18 AOI 

per field and growth stage (GS1-GS4), represented as 6 replications of 

fungicide treatment intensity (Figure 11). The strips were later averaged by 

dividing the sum of all pixel values by the number of pixels per strip (Equation 

1). The strips were divided into two regions per treatment swath to double the 

observations in each field (Figure 11). This totaled 144 observations made over 

all growth stages for each field (18 Observations/Flight × 8 Flights = 144 

Observations). The treatment levels were: Control (C), Stratego (S), Stratego + 

Prosaro (SP). There is no measurement on the significance of block main effect, 

due to the effect of restriction on randomization in the RCBD model. 
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RESULTS 

CORRECTED IMAGERY  

The following images were produced from the Micasense Atlas server, 

asides from Trumar Farm GS1 which was processed in Agisoft Photoscan. 

Some illumination inconsistencies may appear. These images were not used in 

the analysis and are for display purposes only. These images all underwent 

further radiometric corrections: MNF Transform, and Histogram Matching. Also, 

recall that areas of crop blowdown and clover infestation were extracted before 

spectral analysis. The other indices may be viewed in Appendix I.  
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Figure 14. RE-NDVI imagery before inter-scene histogram matching and 
clipping. Not to scale.  

VISUAL ASSESSMENT ACCURACY VERIFICATION   
 

Regressions were performed separate for each respective field and 

vegetation index. It was determined that during the first growth stage (GS1) for 

both Trumar and Hanna Farms (Feekes 8 to 9), it was difficult to establish a 

solid relationship between observed disease and spectral response. Percentage 

of infected leaf areas were too low to detect by the sensor. Thus, GS1 data 

were omitted from regressions; the data for GS1 will however be elaborated 

upon in the discussion section. During GS4, disease assessment ratings were 

not recorded in the field due to leaf senescence. At this stage, it was not 
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possible to distinguish fungal disease from senesced leaf area when conducting 

visual assessments; thus, GS4 data were also omitted from the regression 

analyses. GS2 and GS3 VA data were pooled together (36 observations) and 

modelled against the multiple VIs (Figure 15). Results showed for NDVI an 

adjusted R2 of 0.681 and 0.683, for Trumar and Hanna Farms, respectively. RE-

NDVI had an adjusted R2 of 0.737 and 0.703, for Trumar and Hanna Farms, 

respectively. RDVI had an adjusted R2 of 0.789 and 0.698, for Trumar and 

Hanna Farms, respectively. Lastly, RE.RDVI had an adjusted R2 of 0.734 and 

0.633, for Trumar and Hanna Farms, respectively.  

 
 
 
 
 
 
 
 



70 
 

 
Figure 15. Linear regressions for fields at Trumar and Hanna Farms, each with 
combined data from Growth Stages 2 and 3 (36 observations per regression).   
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RCBD STATISTICAL RESULTS   
  
F-Tests for the RCBD statistical results may be viewed in Appendix II, Table A.  

MAIN EFFECTS, INTERACTIONS AND POST-HOC FINDINGS 

While the majority of measured effects on spectral response from VIs 

were found to be significant in the RCBD test, the more important information is 

yielded from the post-hoc tests. A Tukey HSD post-hoc was performed for 

select main effects and interactions. Some of these will be elaborated upon in 

this section.   

MAIN EFFECTS ON VEGETATION INDICES 
 

The main effect of treatment had a significant impact on spectral 

response for all measured indices. Additionally, The Tukey HSD post hoc test 

showed the spectral response of VIs from the Treatment effect (pooling both 

fields) being significantly different between all treatment levels for measured 

VIs. The plot in Figure 16 shows the main effect of treatment on VIs, pooling 

both fields together. These data demonstrate how the spectral VI means 

iteratively increase with increasing fungicide application intensity. This indicates 

a general positive effect of fungicide on crop health when combining both fields. 

While it was certain that these data sets could robustly delineate disease 

severity, more will be explored regarding the differentiation of effects with 
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respect to field and growth stage, and their interactions

 

Figure 16. Main effect of treatments on spectral response from all measured 
vegetation indices. Error bars represent one standard deviation.  

There was also a significant main effect of growth stage on spectral 

response, for all measured VIs. These results were expected due to the 
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changing health conditions of the crops throughout the season. The Tukey HSD 

showed the least difference exists between GS1 and GS2 (p=0.326) for RE-

NDVI, while the rest of the growth stages showed a significant difference 

between the means (Figure 17). In general the largest observed range of VI 

values occurred during GS3. This agrees with the visual assessment data, 

which also saw the largest contrast in health between treatment plots during 

GS3, Trumar Farm (MGS3=40.931, SDGS3=24.885) and Hanna Farm 

(MGS3=58.227, SDGS3=31.991). Little observed difference in rated disease 

occurred during GS1 for Trumar Farm (MGS1=1.643, SDGS1=0.625) and Hanna 

Farm (MGS1=1.753, SDGS1=1.400), which agrees with the range of spectral VI 

data for GS1.  
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Figure 17. Main effect of growth stage on spectral response from all measured 
vegetation indices. Error bars represent one standard deviation.  
 

INTERACTION EFFECTS ON VEGETATION INDICES  
 

Figure 18 can be referenced while reading this section, showing plots of 

the interaction effect between treatments and fields. Most VIs yielded a 
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significant interaction between type of field and treatment. RE-RDVI and TGI 

had a non-significant interaction of p=0.289 and p=0.109, respectively. The 

Tukey HSD showed some indices had a significant difference between fields for 

control treatments (NDVI, RE-NDVI) while some showed a non-significant 

difference between field means combining all growth stages (RDVI, RE-RDVI, 

TGI). For the S treatment, with the exception of the TGI (p<0.001), all indices 

showed non-significant differences between field means, indicating a similar 

effect of Stratego on spectral response. The SP treatment had similar results to 

the S treatments, with only observed TGI being significantly different between 

fields (p<0.001).  

Moving on, the interaction effects of field and treatment will be further 

analyzed from the Tukey HSD post hoc tests. The inter-field effect of treatment 

will be looked at here, irrespective of growth stage. Regarding all VIs, for 

Trumar Farm, there were significant observed differences between all 

combinations of treatments with the single exception of TGI (S-SP, p=0.346). 

Thus, the level of treatment for Trumar Farm generally had a unique effect on 

observed spectral response. For Hanna Farm, comparing the levels of 

treatments had a different result than that of Trumar Farm. VIs tended to 

perform very differently over Hanna field. First, there was a non-significant 

difference in means between C and S treatments for NDVI (p=0.225), RE-NDVI 

(p=0.581) and TGI (p=0.684). Measuring the difference between S and SP 

treatments, only RE-RDVI (p=0.137) and TGI (p=0.590) were non-significant. 

Lastly, the difference between C and SP treatments saw all VI means being 
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significantly different. The significant difference between C and SP treatments 

was expected for both fields, as the observed health between the lowest and 

highest treatment levels were highly evident in visual disease assessments as 

the season progressed.     

 
Figure 18. Plots for the interaction effect of Field and Treatments on spectral 
vegetation indices. Error bars show one standard deviation.  
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In general, it is important to note here the effect of consistently declining 

spectral response as the season progressed. This is clearly highlighted when 

looking at the plots for the interaction of Field and Growth Stage (Figure19).  

 
Figure 19. Plots for the interaction effect of Growth Stage and Field on spectral 
vegetation indices. 
 

There was consistently a significant interaction effect between type of 

field and observed growth stage, on spectral response for all VIs, F (3, 120), p < 
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0.001. At times, the means between GS1 and GS2 were not significantly 

different, such as with NDVI for Hanna Farm (p=0.811) and RE-NDVI for 

Trumar Farm (p=0.639). Also, when comparing fields, the mean spectral 

response between growth stages are often statistically similar. This can be 

visualized when looking at both NDVI and RE-NDVI, in Figure 19. When the 

contrast of means between fields are significantly different for a respective 

growth stage, there is still a similar trend in the data. This trend is represented 

as declining spectral averages of the measured vegetation indices as the 

growth stages increase.  

The interaction of treatment and growth stage was significant for all 

indices with the exception of TGI, which was marginally significant, F (6, 

120)=2.103, p=0.058. Figure 20 shows the interaction plots for treatment and 

growth stage. It was important to show these interaction plots, as it was 

anticipated that the S and SP treatments would have statistically similar effects 

on mean VI values up until GS2. This similarity is verified when looking at the 

post-hoc tests, which showed non-significant differences for all VIs when 

comparing S and SP treatments for GS1 and GS2. Recall that the S treatment 

had been applied to 6 of 9 rows per field up until GS2; although Prosaro was 

applied on the date of GS2 flights, the fungicide effect had yet to take effect due 

to lag time. Thus, for GS2, S treatments are equivalent to SP. These plots verify 

the ability of the Micasense to detect crop areas by treatment type. In particular, 

the VIs were often able to determine significant dissimilarity between S and SP 
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treatments from GS3 onward, which was accurate to the fungicide application 

timing.   

 
Figure 20. Interaction plots for the interaction effect of Growth Stage and 
Treatments on spectral vegetation indices. 
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Figure 21. Non-significant 3-way interaction effects between Treatment x 
Growth Stage x Field. Error bars show one standard deviation.  
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Figure 22. Significant 3-way interaction effects between Treatment x Growth 
Stage x Field. Error bars show one standard deviation. 

Non-significant 3-way interactions were found in NDVI (p=0.415), RE-

NDVI (p=0.383) and TGI (p=0.780). Figure 21 can be referenced showing how 

the interaction of growth stage and treatment performed on different levels of 

field. The non-significant interactions indicate that both fields responded 

similarly to treatments across all growth stages. RDVI (p=0.003) and RE-RDVI 

(p=0.005) had significant 3-way interactions indicating dissimilar spectral 

behaviour from treatment levels across all growth stages (Figure 22).  
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GRAIN YIELD RESULTS 
 

The final results of the Two-Way ANOVA show a non-significant effect of 

the interaction of Treatment x Field on grain yield, F (2, 12)=1.575, p=0.247. 

Main effects were however significant for Treatment (p=0.018) and Field 

(p=0.045). For the interaction effect, the Tukey HSD post hoc test revealed that 

most comparisons of means were non-significant (p>0.05). Only the comparison 

of Trumar Farm C:Trumar Farm SP was considered significantly different. 

(p=0.046). A difference does clearly exist between treatments within respective 

fields. Inspecting Figure 23, yield has a pattern of consistently increasing with 

fungicide intensity. More replications would be desirable to obtain better results 

from this experiment.     
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Figure 23. Mean grain yield values for each respective treatment type. Error 
bars show one standard deviation. 

 

DISCUSSION 

VISUAL ASSESSMENT ACCURACIES  

 EARLY DISEASE DETECTION 
 

During all growth stages, the fungal pathogens observed were a 

combination of leaf rust (Puccinia triticina), net blotch (Pyrenophora teres) and 

spot blotch (Cochliobolus sativuas). Note that GS1 had only control treatments 

applied at the time of conducting the UAV flights. It was thus expected that 

visually assessed disease conditions on canopy-level foliage would remain 

homogeneous throughout both fields. It was hopeful that early fungal patches 
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would occur in the field; however, this was not verified in the visual assessment 

plots.  

The homogeneity of crop health was further confirmed when reviewing 

both VA data and imagery from GS1. Particularly, the VA data showed little 

variation in rated disease, as well as consistently low disease presence for both 

Trumar Farm (MGS1=1.643, SDGS1=0.625) and Hanna Farm (MGS1=1.753, 

SDGS1=1.400). The removal of GS1 data from the regression pool consistently 

improved results for all vegetation indices. While these results were expected 

for GS1, it was hopeful that the sensor resolution would improve upon 

previously reported accuracies for early fungal detection. Franke and Menz 

(2007) noted the difficulty of early fungal disease detection in wheat, with 

coarser resolution data (2.4m/pixel QuickBird multispectral data) when 

observing the early leaf rust and powdery mildew development under different 

fungicide application intensities. It was highlighted by the authors that higher 

resolution data sets may improve fungal disease detection accuracy. Other 

researchers have reported that a lag time exists for fungal disease to impact 

spectral reflectance in the red and near-infrared regions. For example, Devadas 

et al. (2008) evaluated ten vegetation indices for identifying rust infection at 

different severity stages, and noted the difficulties in early detection could be 

attributed to the time lag in rust infection to break down the internal leaf 

structure. Building on this, the spatial resolution of the Micasense flown at 100 

m (6.7 cm/pixel) was possibly not adequate for early disease detection of 

canopy leaves. Unfortunately, the Micasense parameters for exposure are 
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locked by the manufacturer which made flights at lower altitudes impossible for 

this experiment. Lower altitude flights would have been desired to increase the 

percentage of diseased flag leaf tissue contained within a pixel. During GS1, an 

average of less than 2 % of infected leaf area were recorded on leaves over 

each plot. The features contained in a pixel at this stage were likely to contain 

more non-infected green leaf tissue than that of chlorotic or necrotic lesions. In 

wheat (Triticum spp.), it has been shown that photosynthetic activity is 

negatively impacted only in infected lesions of leaf tissue, while healthy tissue 

on the same leaf will remain unchanged (Kuckenberg, 2009; Robert et al. 2005). 

Again, since most pixels contained a higher ratio of non-infected leaf tissue 

during GS1, the VI and VA data remained quite homogeneous until subsequent 

growth stages. As the season progressed, observed fungal severity increased, 

and an increased rate of senescence was observed on rows with control 

treatments. Increased contrast between disease ratings for respective 

treatments was observed from GS2 onward, which improved the regression 

results.   

SOURCES OF ERROR 
 

There are a few uncontrollable factors which could have impacted results 

regarding the regression analyses in this study. First, the possibility for disease 

rater bias exists when recording visual disease assessments in the field. 

Second, the amount of rated plants per plot could have impacted the accuracy 

of results. Third, the Micasense multispectral sensor and both its spectral and 

spatial resolution may have affected the observed accuracies. Fourth and lastly, 



86 
 

the robustness of radiometric corrections could have affected observed spectral 

plot averages.  

It was discussed briefly in the methodology section how rater bias could 

potentially affect the ratings of disease. Two raters were working to assess 

disease from GS1-GS3. The same raters recorded and rated disease from the 

same plots from each field coinciding with each UAV flight. The SADs were 

designed to account for multiple types of rust and blotch disease common to 

barley in the region. Such reference diagrams proved to be useful in yielding 

consistent numerical results between both raters during this study. Other 

researchers have also found SADs to be useful; Nutter (1990) found that 

disease raters were more reliable when using a SAD than when without one; 

Godoy et al. (2006) developed a diagrammatic scale to assess soybean rust 

(Phakospora pachyrhizi), and Domiciano et al. (2014) for estimating spot blotch 

in wheat leaves, and both found that the use of SADs tended to reduce error 

and increase accuracy amongst raters. Other factors as well, not mentioned in 

previous studies, could have possibly affected the quality of VA data. These 

factors include high fatigue from extensive labour, and heat exhaustion on 

sunny days. It was documented by both raters how the excessive heat, or 

fatigue, would promote an urgency in recording a disease rating.  

A second issue which could have impacted the regression results is 

related to the amount of plants rated per plot. Eighty plants (20 per corner) were 

rated per each 3 x 3 m plot, and compared against the clipped raster image 

covering the same area. The spectral plot average contains more plants than 
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were rated for disease, which could have potentially impacted the ability to 

establish solid relationships in the regression analyses.  Rating more plants, or 

rating additional plants in the centre of each plot may have improved accuracy.  

Third, the spatial resolution, and possibly the spectral resolution of the 

Micasense were not fine enough to distinguish low-to-medium disease levels 

with a high accuracy. The optimal spatial resolution with regards to predicting 

crop biophysical parameters has seldom been researched to date. One recent 

study by Hunt (2014) tested simulated UAV imagery by attaching a modified 

BGNIR and RGB camera to a pole pointed at nadir over cereal rye (Secale 

cereale L.) plots. The imagery were taken and analyzed at two resolutions: 0.5 

mm and 1 mm. It was found that the 0.5 mm pixel data were better for 

establishing relationships with both above-ground biomass and chlorophyll 

content, when analyzing the plot VI spectral averages (gNDVI and Triangular 

Greenness Index (TGI)). For this study, perhaps a greater spatial resolution 

(<6.7 cm/pixel) could have yielded greater relationships in the regressions.  

Another topic seldom explored in academic research is that of spectral 

resolution trade-off analysis. Evidently, hyperspectral sensors are well 

documented to perform better than most variations of multispectral counterparts 

for general crop analysis (Calderón, 2014; Calderón et al., 2013; Franke et al., 

2005). This is due to the narrow and contiguous bands (~1 nm), which can 

discretely detect information in specific electromagnetic regions. However, much 

less focus is given towards bandwidth trade-off: how wide can a spectral band 

be until too much contamination impacts the data accuracy? Recall the 
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Micasense bandwidths (Blue- 475 nm +/- 20 nm, Green- 560 nm +/- 20 nm, 

Red- 668 nm +/- 10 nm, Red Edge- 717 nm +/- 10 nm, Near Infrared- 840 nm 

+/-40 nm), and note that it is possible electromagnetic contamination exists even 

within the 10 nm bands. Studies contrasting between narrow and broad 

bandwidths for the detection of vegetation generally show better performance 

with narrow bands. Thenkabail et al. (2002) evaluated between narrowband and 

broadband vegetation indices for determining LAI, wet biomass, dry biomass, 

plant height, and nitrogen. Six crops were evaluated, including wheat and 

barley. They concluded that in many cases the most important information was 

secluded to a few narrow bands (1.43 nm) within the VNIR range. This agrees 

with Zhao et al. (2007) who could better predict LAI and canopy chlorophyll 

density (CCD) with narrowband indices compared to broadband counterparts. 

However, most past studies in this specific area explore low spatial resolution 

datasets. More needs to be known regarding how spatial resolution affects 

bandwidths for crop parameter estimation.  

Lastly, even with proper radiometric corrections to imagery, some 

variation can exist with pixels between scenes. Such change is likely to be from 

uncontrollable factors such as changing canopy architecture and bi-directional 

leaf scattering of light (Bravo et al., 2003). This can be simply understood when 

considering that a composition of canopy leaves may be distributed differently 

within a plot, when viewed between multiple dates.  
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ACCURACY RESULTS 
 

Note that similar disease varieties were identified between fields: spot 

blotch, yellow leaf rust, and net blotch. GS2 and GS3 were pooled together and 

analyzed for each field, as highlighted earlier. For GS2, flag leaf area infection 

rates were slightly higher, up to 13.47 % for Hanna Farm and 34.37 % for 

Trumar Farm. GS3 had the highest disease severities, up to 92.7 % for Hanna 

Farm and 95 % for Trumar Farm. As the crop season progressed from GS1 to 

GS4, disease further developed and intensified, introducing higher levels of 

variation between disease ratings. This is attributed to the fact that some ratings 

occurred in severely infected plots (Control treatment) and some in low-infected 

plots (Stratego and Prosaro). The red-edge indices in general out-performed the 

near-infrared counterparts, showing a slightly stronger relationship with VA 

ratings (NDVI adjusted R2 of 0.681 and 0.683, for Trumar and Hanna Farms, 

respectively; RE-NDVI adjusted R2 of 0.737 and 0.703, for Trumar and Hanna 

Farms, respectively). Consistently, when inspecting spectral sample plots 

across all orthomosaic imagery, light in the RE region reflected much more 

strongly than within the NIR region (Figure 24). Greater spectral seperability 

existed between the RE and Red bands which likely influenced stronger 

relationships in the regressions.  
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Figure 24. Spectral profile from equalized random point sampling regime. 100 
points were collected and averaged within each respective treatment AOI. 
Feekes 11.2 (GS3), Trumar Farm. 
 

The RDVI performed better for Trumar Farm (RDVI had an adjusted R2 of 

0.789 and 0.698, for Trumar and Hanna Farms, respectively; RE.RDVI had an 

adjusted R2 of 0.734 and 0.633 for Trumar and Hanna Farms, respectively). 

Recall that the RDVI is an index specifically designed to work well for both 

dense and sparse vegetative canopies. Row spacings were slightly larger and 

vegetative cover was slightly less dense in Hanna Farm, which could have 

imposed differences between fields.  Additionally, it should be mentioned that 

there are two different crop management regimes: till/dairy farm (Trumar Farm) 

and no-till/non-dairy farm (Hanna Farm). The main difference between the 

regimes was the amount of rogue weed species which appeared in Hanna Farm 

throughout the season, and retained moisture levels. While efforts were made to 

classify much of the weeds, the possibility remains that plot averages were 

impacted by weed presence during GS2 and GS3. Additional information 
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regarding the differences in farm management regimes are discussed further in 

the RCBD results section. In general, the results of the regression analysis have 

been satisfactory. There is an apparent relationship between the evaluated 

vegetation indices and visually rated disease within field plots.  

RCBD RESULTS 
 

The RCBD results demonstrate the capability of UAV multispectral 

imagery to distinguish fungal disease severity by three treatment intensities. 

This was achieved in each field regardless of management/field type, from GS2 

to GS4. This allows the Null Hypothesis (H0) to be rejected in favour of 

accepting the Alternative Hypothesis (Ha), indicating that treatment levels (C, S, 

SP) have a significant general effect on the spectral response of barley with 

UAV multispectral imagery in each field, and over growth stages (GS2 to GS4). 

This section will address the research questions proposed in the Introduction, 

as well as explore additional Tukey HSD post-hoc results.  

THE IMPACT OF DIFFERENT CROP MANAGEMENT REGIMES ON 
REMOTELY SENSED DATA 

 
The nature of experimenting on operational crop fields poses difficulty in 

maintaining a controlled experiment. While it was expected that spectral 

differences would be observed between fields due to different management 

regimes, quantitatively testing parameters such as soil moisture were beyond 

the scope and purpose of this study. This section will address the research 

question: Did soil management regimes affect the 3 way interaction of Growth 

Stage and Treatment between different Fields? Furthermore, possible reasoning 



92 
 

for why there were observed differences will be discussed by drawing 

inferences from relevant research.  

Indeed, a difference occurred between fields when observing the 3-way 

interaction effects in the RCBD design. Even non-significant 3-way interactions, 

although statistically similar, exhibited differences when examining the post-hoc 

tests. Non-significant 3-way interactions were found in NDVI (p=0.415), RE-

NDVI (p=0.383) and TGI (p=0.780) (Figure 21). The non-significant interactions 

indicate that both fields responded similarly to treatments across all growth 

stages. Significant 3-way interactions were found in RDVI (p=0.003) and RE-

RDVI (p=0.005), indicating dissimilar spectral response of fields across growth 

stages and treatments. An anomaly can be observed when comparing the 

spectral response of GS3 between fields for respective treatments (Figure 21 & 

22). The Tukey HSD revealed that the spectral mean of Control treatments were 

not significantly different between fields for four out of five indices; only TGI 

showed significant difference between the field means for Control (p=0.047). 

This was interesting as most VIs agree that fields responded similarly to the 

control treatment. For the Stratego, and Stratego + Prosaro treatments, four out 

of five indices had significantly different means between fields, with only RE-

NDVI being similar for S (p=0.559) and SP (p=0.713).  Evidently, most indices 

performed differently between fields during GS3, with the exception of similarity 

to the Control treatment, and RE-NDVI which exhibited different behaviour than 

other VIs. According to literature, the possibility of observed spectral differences 
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between fields could be attributed to soil moisture retention due to tillage 

practices, which are discussed here.  

As indicated in the Methodology section, the two barley fields evaluated 

in this study were representative of different management practices. Trumar 

Farm is more intensively managed, including the input of variable rate fertilizers 

based on soil sampling data, and manure application. This also includes 

alternative soil tillage practice, which involves fall disking and spring cultivation. 

In comparison, Hanna Farm is a less intensively managed field. The soil is not 

managed for variations in nutrient deficiency, and conservation tillage (a form of 

zero tillage which also leaves left over crop residue from previous rotations) was 

performed.  While it was assumed that moisture would be similar between both 

fields due to the presence of drainage tiles, differences in retained soil moisture 

may have existed. In the short-term, it is well-known that tilling practices affect 

evaporation (Schwartz et al., 2010), infiltration (Vervoort et al., 2001), run-off 

(Takken et al., 2001) and even crop yield (Alam et al., 2014). Conservation 

tillage often results in increased soil moisture due to reduced evaporation and 

runoff (Acharya et al., 1998; Baumhardt & Jones, 2002). Crop residue covering 

the soil, combined with little soil aeration restricts the rate of evaporation. The 

relative proximity of both fields is approximately 2.5 km, meaning that they were 

subject to similar climatic conditions and weather events throughout the season. 

It is possible that higher retained soil moisture in Hanna Farm impacted 

observed differences in crop health, when inspecting the significant 3-way 

interactions of all vegetation indices. Local research in the Thunder Bay region 
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indicates there is an effect of tillage practice on the productivity and health of 

barley plants. The Thunder Bay Agricultural Research Station (TBARS) 

performed experiments on a barley-soybean rotation from 2004 to 2007, 

evaluating 11 different tillage systems. In general, both alternative and 

conventional tillage systems out-performed zero-tillage, resulting in higher yields 

and crop vigour (Sahota, 2008).  

It is known that soil moisture levels can impact vegetation indices such as 

NDVI (Huete et al., 1985), prompting the creation of alternative indices to adjust 

for the effects of soil background in crop canopies (Baret et al., 1989; Huete, 

1988; Qi et al., 1994). Indices such as NDVI have been shown to be sensitive to 

changes in fractional vegetation cover when LAI is less than 100 % (Carlson & 

Ripley, 1997). The reason for this is due to soil background (Martin et al., 2012), 

which reflects differently than plant material and contaminates pixel values of 

vegetative targets. Once there is full canopy coverage, any additional increase 

in LAI has very minimal effect on NDVI readings, due to minimal to no soil 

presence (Huete et al. 1985). Fortunately, for both Hanna and Trumar Farms, 

minimal to no soil presence occurred in the imagery sets due to nearly 

consistent full canopy coverage. Bare patches of non-fertile soil were scarcely 

evident in both fields; however, corrections were made to eliminate soil noise as 

much as possible in the pre-processing methodology. The performance of the 

RDVI and RE-RDVI demonstrate a statistically significant difference between 

fields, which could be attributed to the indices’ flexibility to work well between 

varying canopy densities and soil presence. In areas of 100 % canopy closure, it 
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is possible that differences in soil moisture existed which directly impacted 

observed canopy health. Unfortunately, little is known about the spectral 

response of crops with full canopy closure, when comparing different soil 

moisture conditions. What is known is that local data shows an impact of tillage 

practice on the progression of barley. Remote sensing observations made in 

this study may have been impacted due to the difference of tilling practices 

between fields. Regardless of this possible concept, and most importantly, 

fungal disease severity was able to be spectrally distinguished consistently in 

both fields.  

DISTINGUISHING FUNGAL DISEASE SEVERITY 
 

Certainly, as a result of monitoring barley after initial disease breakout 

from GS1 (Feekes 8-9) to GS4 (Feekes 11.2), disease intensity and resiliency 

has been observed by comparison of the spectral response of VIs to fungicide 

treatment types. This is verified from the general main effect of treatment on 

VIs, and evident when viewing the 3-way interaction plots in Figure 21 & 22. Of 

course, it is of interest to farmers to apply fungicide spatially before the 

occurrence, development and spread of fungal disease in crops. In wheat, early 

detection of fungal disease has been shown to be difficult. For example. a 

similar study by Franke & Menz (2007) explored the impact of different fungicide 

intensities on disease severity in wheat, using moderate resolution (2.4 m/pixel) 

multispectral QuickBird satellite imagery. Multi-temporal data were collected 

over the season (Feekes 6, Feekes 10, Feekes 10.7) and visual assessments 

were conducted to rate disease severity on flag leaves. The authors expressed 
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difficulty in detecting of powdery mildew at Feekes 6, noting a high 

misclassification accuracy at this early growth stage. As the season progressed 

they were able to distinguish between four defined regions of fungal disease 

(powdery mildew and leaf rust) severity using a decision-tree classification 

methodology. While their methodology was robust, they were bound by the 

defined thresholds of their classes in the decision-tree algorithm. Taking on crop 

health variability into defined classes introduced a higher chance for error. 

Additionally, they only explored one index (NDVI) when developing their 

supervised classification maps. The authors were still nonetheless capable of 

localizing fungal disease presence earlier than this study; however, note that 

fungal infections were verified to be low for Trumar Farm (infection rates up to 

12.35 %) and Hanna Farm (infection rates up to 7.53 %) during GS1 (Feekes 8-

9). The findings in this work show that fungal disease severity could be 

distinguished as early as GS2 (Feekes 10.51, booting complete and onset of 

flowering), when only the Prosaro treatment was applied. Recall that Prosaro 

was applied on the same date as the GS2 flights; thus, there is no measurable 

effect of SP due to the lag time required for fungicide (for GS2: S=SP). In some 

cases, there was no significant statistical difference between C-S, and C-SP 

treatments during GS2. The 3-way interaction post-hoc test for NDVI showed 

non-significant differences between C-S (p=0.555 ) and C-SP (p=0.549) for 

Trumar Farm (GS2), and C-S (p=0.992), C-SP (p=0.998) for Hanna Farm 

(GS2). Regardless, there are still notable patterns, being consistently lower 

mean C treatment values for all measured VIs during GS2. This is a consistent 
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trend apparent in all vegetation indices for both fields, and such differences are 

more prominent in the TGI, RDVI and RE-RDVI, which all had statistically 

significant differences between C-S and C-SP (p<0.05) for GS2.  

The most important trend to bring to light is the reliable separation of 

mean VI treatment values from GS3 to GS4. Consistently, control treatments 

had the lowest means, with the mean VIs increasingly positively with fungicide 

intensity. This trend was similar for each field and vegetation index from GS3 to 

GS4, and demonstrates how fungicide treatment intensity/fungal severity can be 

reliably distinguished. Furthermore, Trumar Farm exhibited a more pronounced 

separation of treatment intensity mean VI values when compared to Hanna 

Farm. Figures 21 & 22 to prove that this is particularly the case for GS3, where 

large differences in mean VI values exist between treatment types for Trumar 

Farm. This agrees with the visual inspection of the imagery (Figure 14 and 

Appendix I) where treatments strips are easily distinguishable by GS3; in Hanna 

Farm, treatment strips are often hard to distinguish and identify by visual 

inspection of the imagery (Figure 14 and Appendix I). The TGI displayed 

comparable performance to other indices for the detection and separation of 

fungal disease severity. This index only uses RGB bands and does not rely 

upon the near-infrared or red-edge regions of the electromagnetic spectrum. 

The performance of this index further verifies findings by Hunt (2013), where 

they concluded that there is a close relationship with TGI to canopy chlorophyll 

content. The utilization of RGB sensors over multispectral counterparts is 
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drastically cheaper, and in this study, the TGI was just as reliable in the RCBD 

design as other indices.  

FUNGICIDE TIMING AND IMPACT ON YIELD AND SENESCENCE  
 

Often a fungicide’s effectiveness relies upon precise application timing 

related to growth stage, infection severity, and even meteorological parameters 

such as rainfall and temperature (Moschini & Pérez, 1999).This is the case with 

both Stratego, which is applied shortly after herbicide application when infection 

severity is low (Feekes 4), and Prosaro, which is applied at the onset of 

flowering (Feekes 10.51). Stratego is the more versatile of the two fungicides 

used in this study, as it allows for up to two applications during a season, 

occurring between the four-leaf stage to the early heading stage of barley, and 

other cereals. On the other hand, Prosaro requires critical application timing 

towards the end of the barley heading stage. While both fungicides are broad 

spectrum, Prosaro specifically works well for the suppression of fusarium head 

blight (FHB) in cereals; this disease seldom occurs in barley crops within the 

Thunder Bay region.  

As already observed, the effects of SP treatments in this study improved 

upon the health of S treatments consistently. However, obviously there are high 

costs associated with the utilization of two fungicides. Considering this, the 

benefits of spot treating with Prosaro may only be realized when met with heavy 

FHB infestation. The performance of Stratego in this study improved the health 

of crops drastically over the control treatments, with Prosaro often offering only 

little improvements over Stratego. Additionally, only control treatment rows 
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experienced early senescence before August 31st, 2015 in Trumar Farm. The 

Trumar Farm operator noted that both Prosaro and Stratego rows could have 

had prolonged harvest times as the crops had yet to complete senescence (M. 

Bolt, personal communication, February 1, 2016). Imagery for Trumar Farm on 

GS4 could also clearly detect which rows were still green, hinting at an ability to 

monitor for optimal harvest times with UAV multispectral imagery. An additional 

blanket application of glyphosate was applied in Trumar Farm on August 29th to 

increase the senescence rate for rapid harvest. In the cases where non-

senesced areas can be easily detected, the spatial application of herbicides can 

be applied to speed up harvest time. Or, harvest time can be prolonged in 

specific areas to increase grain development.   

Grain yield was also analyzed in this experiment. It is already known that 

fungicides can have a positive effect on the amount of grain yield in cereals, 

prolonging the greenness of flag leaves throughout the season (Gooding et al., 

2000; Pepler et al., 2005). Since this was a small experiment with few 

replications, yield appeared to have a weak relationship with the intensity of 

fungicide application. In many cases the differences between mean yields of 

treatment types are non-significant; however, a consistent pattern is seen where 

grain yield increases with fungicide intensity (Figure 23). Visual inspection of 

grain heads before hand-harvesting also showed huge differences in size and 

girth (Figure 13). More replications and observations would be desirable to 

verify a significant effect of fungicides/fungal presence on yield.  
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Findings in this study aided local farmers in the optimal selection of 

fungicides for their barley crops for subsequent seasons. Drastic improvements 

in overall crop health was observed in rows with Stratego and Prosaro, 

indicating a utility to assess fungicide effectiveness with the data.  

SEPARATING FUNGAL DISEASE FROM OTHER STRESSES  
 

This section will address the research question: If alternative stress 

sources appear during the season in ground-truthing plots, can the multispectral 

sensor distinguish between types of stresses in those respective plots? Other 

than fungal disease presence in both Hanna and Trumar Farms, very few other 

stress types were verified from the visual assessment plots. For the purposes of 

this thesis this is unfortunate, as the ability to spectrally separate fungal 

infections from different stress types could not be properly evaluated. Hanna 

Farm had a few distinct patches of barley yellow dwarf virus (BYDV) that broke 

out from GS2. BYDV typically shows up as yellowed tissue in the upper canopy 

leaves of barley or wheat, and characteristically forms as patches in crops. The 

presence of such patches in Hanna Farm were scarce and there was no distinct 

spectral signature within the imagery which allowed for delineation of verified 

areas. Other authors have verified the ability to detect BYDV in crop canopies 

(Gaborjanyi et al., 2003; Riedell et al., 2003); however it is likely that viral 

severity and the impact on leaf colour were too low for detection in Hanna Farm. 

Another source of stress was weed presence. The results of conventional tillage 

on Trumar Farm have reportedly produced consistently less weeds in the past 

(M. Bolt, personal communication, February 1, 2016). The low presence of 
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weeds in Trumar Farm was also verified when conducting visual assessments 

during the season. This was not the case for Hanna Farm. A mix of perennial 

and annual weeds emerged early in the season, and unlike Trumar, were 

irresponsive to herbicide application after June 26th, 2015 (Feekes 4). Most 

weed suppression in Hanna Farm occurred once there was full canopy closure 

of barley. However, clover patches remained and continued to overtake barley 

in the north portion of the field. Additional outbreak patches occurred along tram 

lines, and secluded sections of Hanna. The robustness of the presented 

methodology for clover pixel classification was satisfactory for this study. 

However, other weeds which often appeared in small isolated patches were 

difficult to classify and could not be separated from asymptomatic or 

symptomatic barley. Also, note that weed infected areas of barley will often 

display higher reflectance intensity values, which can impact a pixel’s value 

when the ratio of observed weeds is higher than that of the target (Peña et al., 

2013; Rasmussen et al., 2013).  

For this study, since little other stress types were apparent in the fields, it 

cannot be determined if the Micasense can distinguish fungal disease from 

other stressors. However, it is unlikely that this is possible without the aid of 

hyperspectral data. In barley fields where fungal disease is known to be a 

primary stressor, developing fungal infection maps with UAV multispectral data 

may still be practical. However, ground-truthing will remain a requirement to 

verify the accuracy of such maps; this will slow the response process of 

immediate spraying post-UAV flights.    
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ROBUSTNESS OF RCBD MODEL USED IN THIS RESEARCH 
 

 As a final note regarding the RCBD design in this research, fields 

(Trumar, Hanna) were chosen as blocks due to the inherent differences 

between farm management practices. Blocking was indeed the appropriate 

approach for this experiment. In contemplation about the fixed variables chosen 

for this model (Field, Growth Stage, Treatment), it may have been desirable to 

refrain from modifying a temporal continuous variable (Growth Stage) into a 

categorical variable. Since temporal variables are often continuous in such 

experiments, an additional option could be to analyze the growth stages 

independently (each in a separate One-way ANOVA) maintaining the field 

blocks and having one independent variable (3 levels of fungicide treatment). 

This would have eliminated any observed differences in temporal variation 

between treatment lag time and vegetation health. However, the field-to-field 

response to fungal infections and treatments were obvious in all image sets, and 

similar results would likely have been observed. Ii is important to mention 

though, that in considering any future approaches for either replicating or 

building upon this work, this is a possible approach which should be considered.  
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CONCLUSION 

 

This was the first study to evaluate UAV multispectral imagery for the 

spatio-temporal detection of fungal disease in barley. The effects of fungal 

disease and fungicide treatment intensity were monitored over four general 

growth stages, spanning from Feekes 8-9 (onset of flag-leaf development) until 

Feekes 11.4 (hardened kernels and senesced straw). Regardless of field or 

management type, the ability to spectrally separate crops by fungicide 

intensity/fungal severity was confirmed. As fungicide intensity increased, less 

fungal disease was evident in the fields, which was consistently detected in the 

imagery from GS2 (Feekes 10.51) to GS4 (Feekes 11.4). A limitation in this 

work was the inability to assess minimal fungal disease presence at GS1 

(Feekes 8-9).  Infected leaf areas were too low for the detection of 

heterogeneity in barley during GS1. More success may be seen when more 

severe fungal outbreaks occur earlier, when other crop types are monitored, or 

when other sensor types are utilized.  

To integrate real-time remote sensing data to on-ground solutions 

requires more background research towards the reliable detection and spectral 

separation of crop stress types. In this study, ground truth data was necessary 

in order to prove the presence of fungal disease in remotely sensed imagery. 

Without ground truth data, depending purely on the spectral response of barley 

for fungal disease detection is unreliable. This highlights the current drawback of 
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most commercial or industrial multispectral sensors designed for agriculture. 

However, when soil and other stressors are well managed for, the spatial 

mapping of fungal disease can be achieved with UAV multispectral data. It is 

also important to note that the performance of RGB bands in the TGI index was 

comparable to other indices which utilize the NIR and RE bands, showing how 

the Micasense multispectral sensor may not be necessary to achieve similar 

results to this study.   

In summary, the findings here give light to potential applications in 

monitoring for the implementation and success of new seed varieties, new 

chemical sprays in a given field or region, spatial herbicide or fungicide 

application, and even to the optimization of crop harvest times. The traditional 

method of physical disease assessment may yet be replaced by UAV 

technology, but current limitations in multispectral sensor precision push the 

focus towards hyperspectral technologies. To build upon this study, more work 

needs to be done in delaying fungicide application until foliar disease is further 

developed and detectable, to evaluate if spatial applications can be feasible 

after Feekes 8-9 in barley.  
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APPENDIX I: ADDITIONAL INDEX FIGURES 
 

 

A. NDVI imagery before inter-scene histogram matching and clipping. Not to 
scale. 
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B. RDVI imagery before inter-scene histogram matching and clipping. Not to 
scale. 
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C. RE-RDVI imagery before inter-scene histogram matching and clipping. Not 
to scale. 
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D. TGI imagery before inter-scene histogram matching and clipping. Not to 
scale. 
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APPENDIX II: F-TESTS FOR RCBD 

The following F-Tests were derived from the Expected Mean Squares (EMS) 

table: MST/MSE=F(2, 120), MSBT/MSE=F(2, 120), MSG/MSE=F(3, 120), 

MSBG/MSE=F(3, 120), MSTG/MSE=F(6, 120), MSBTG/MSE=F(6, 120). Due to the 

high number of numerical results, Table A was created for ease of viewing.  
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Table A. F-Tests and results from Randomized Complete Block Design for all 
Vegetation Indices.  

EFFECTS F-TEST 
Normalized Difference Vegetation Index (NDVI) 

MST/MSE  F (2, 120)=62.298, p<0.001 
MSG/MSE F (3, 120)=2051.694, p<0.001 
MSBT/MSE F (2, 120)=8.000, p<0.001 
MSBG/MSE F (3, 120)=36.676, p <0.001 
MSTG/MSE F (6, 120)=9.467, p< 0.001 
MSBTG/MSE F (6, 120)=1.020, p=0.415 

Red-Edge Normalized Difference Vegetation Index (RE-NDVI) 
MST/MSE  F (2, 120)=53.355, p<0.001 
MSG/MSE F (3, 120)=1903.653, p<0.001 
MSBT/MSE F (2, 120)=6.250, p=0.002 
MSBG/MSE F (3, 120)=74.310, p<0.001  
MSTG/MSE F (6, 120)=10.710, p<0.001  
MSBTG/MSE F (6, 120)=1.071, p=0.383 

Renormalized Difference Vegetation Index (RDVI) 
MST/MSE  F (2, 120)=97.189, p<0.001 
MSG/MSE F (3, 120)=1678.518, p<0.001  
MSBT/MSE F (2, 120)=6.028, p=0.003  
MSBG/MSE F (3, 120)=52.940, p<0.001  
MSTG/MSE F (6, 120)=10.813, p<0.001  
MSBTG/MSE F (6, 120)=3.403, p=0.003 

Red-Edge Renormalized Difference Vegetation Index (RE-RDVI) 
MST/MSE  F (2, 120)=63.243, p<0.001 
MSG/MSE F (3, 120)=2403.927, p<0.001  
MSBT/MSE F (2, 120)=1.254, p=0.289 
MSBG/MSE F (3, 120)=72.870, p<0.001  
MSTG/MSE F (6, 120)=11.312, p<0.001  
MSBTG/MSE F (6, 120)=3.267, p=0.005 

Triangular Greenness Index (TGI) 
MST/MSE  F (2, 120)=20.244, p<0.001 
MSG/MSE F (3, 120)=491.117, p<0.001  
MSBT/MSE F (2, 120)=2.258 , p=0.109  
MSBG/MSE F (3, 120)=17.312, p<0.001  
MSTG/MSE F (6, 120)=2.103, p=0.058  
MSBTG/MSE F (6, 120)=0.537, p=0.780 

 


