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Abstract 

High-risk types of human papillomavirus (HPV) are responsible for nearly all instances of 

cervical cancer, and a significant proportion of head and neck cancers. Studying HPV in 

the laboratory requires the cultivation of host keratinocytes to facilitate the viral lifecycle. 

In addition, HPV will not completely undergo its lifecycle in monolayer cell culture, but 

requires the differentiation process of keratinocytes. This can be accomplished by 

employing organotypic raft cultures, which simulates full-thickness skin in vitro. Though 

this method can reproduce the viral lifecycle, there are still numerous hurdles when 

modelling disease. In the first phase of this study, we utilize published methods to culture 

cervical keratinocytes from 25 different cervical lesion biopsies, establishing cultures from 

8 (~32%). Biopsy specimens were digested with collagenase I and grown in keratinocyte 

growth medium (KGM) containing 5% fetal bovine serum for 4 days, after which, cultures 

were switched to serum-free KGM to avoid fibroblast overgrowth. The median in vitro 

lifespan of cultures was 4 weeks, which typically yielded less than a confluent T-75 of 

cells. In the second phase of this study, the media was switched from KGM to EpiLife, 

which has more organic components, and contains insulin-like growth factor I in place of 

insulin, which has more mitogenic potential and increases keratinocyte lifespan in vitro. 

Biopsies were processed under the same conditions, and after removing the media 

containing 5% serum, the Rho-associated kinase (ROCK) inhibitor Y-27632 was added to 

EpiLife media to further increase culture lifespan. Cultures were established from 6 of 14 

(~42%) newly acquired biopsies, 4 of which survived for several passages (range 2-7) 

across T-75 flasks (flasks seeded at 10% confluence and passaged when >80% confluent). 

The improved culture conditions effectively halved the doubling time, but maintained 
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approximately the same culture lifespan (median 4.5 weeks). Organotypic raft cultures 

were prepared using 5 different patient samples; most had differentiated at the time of 3D 

culturing, while others yielded only a few cell layers upon cross sectioning and H&E 

staining. Future work will improve upon our culture media formulations to facilitate 

stratification of raft cultures, and potentially improve culture lifespan further. 
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Lay Summary 

Human papillomavirus (HPV) is a virus that infects cells of the skin and mucosa. HPV is 

the infectious agent responsible for warts, and notably, HPV is also responsible for nearly 

all instances of cervical cancer. Studying HPV in the laboratory requires the culture of its 

host cells – called keratinocytes. Human keratinocytes grown in the laboratory are typically 

acquired from neonatal foreskins. This tissue is readily accessible and would otherwise be 

discarded, making it both practical and ethical means of acquiring keratinocytes. Though 

the virus can replicate within these cells under the appropriate conditions, cervical 

keratinocytes would be a more accurate model for studying HPV-mediated cervical cancer. 

In this study, we expanded upon published methods to culture keratinocytes from cervical 

biopsy specimens. In the first phase of this study we established 8 cultures from 25 biopsy 

specimens, with the median culture actively growing for 4 weeks. Most of these cultures 

did not proliferate enough for further experimentation. Therefore, the second phase of this 

study sought to increase culture lifespan. We replaced our media with EpiLife, a 

formulation which is rated for more than twice as many population doublings. We also 

added the protein kinase inhibitor Y-27632 which prevents keratinocyte differentiation, 

thereby increasing their lifespan. We established cultures from 6 of 14 newly enrolled 

patients. Median survival was modestly increased to 4.5 weeks, but the doubling time was 

nearly halved. Most of these cultures proliferated enough to be utilized in further 

experimentation. We attempted to reconstruct these cells into 3-dimensional cultures in 

vitro, to simulate patient lesions – albeit with limited success. Future work will improve 

upon our 3D culture methods with aims at modelling patient lesions and testing new 

therapeutics. 
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1. Introduction 

 

1.1 Human papillomavirus literature review 

1.1.1 General overview of human papillomavirus and disease 

Human papillomavirus (HPV) is a double-stranded DNA virus that infects 

keratinocytes of the skin and mucosa (zur Hausen, 2002). To date, over 200 distinct types 

of HPV have been recognized (de Villiers, 2013; Papillomavirus Episteme 

<https://pave.niaid.nih.gov/#home>), which are broadly categorized as high- or low-risk 

types based on their ability to cause cancer. The most clinically significant high-risk type 

is HPV16, which accounts for approximately half of all HPV-related cervical and a 

significant portion of head and neck cancer cancers (Crow, 2012). Possessing a small 

circular genome of ~7900 base pairs, HPV16 has eight genes, some of which contain splice 

variants (Zheng and Baker, 2006). The most notable of these viral genes are the two 

oncogenes: E6 and E7. In HPV16, the E6 oncoprotein facilitates the degradation of the host 

tumour-suppressor p53, while also increasing telomerase expression; thereby inhibiting 

apoptosis and facilitating cellular immortalization. The E7 oncoprotein mediates 

degradation of pRB, promoting entry into the cell-cycle (Klingelhutz and Roman, 2012). 

Together, E6 and E7 promote cellular transformation and subsequent tumourigenesis. 

 

1.1.2 HPV viral life cycle, histological changes, and cancer 

 The HPV virions infect basal keratinocytes through epidermal micro-abrasions (zur 

Hausen, 2002), where basal keratinocytes are the actively dividing cells in the epithelium. 

As early genes, E6 and E7 inhibit apoptosis and maintain cellular division, as stated 

https://pave.niaid.nih.gov/#home
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previously (Figure 1A). Early during infection, E1 and E2 maintain low-level viral genome 

replication, while E2 also modulates host and viral transcription (Frattini and Laimins, 

1994; Wilson et al., 2002). Later into the viral life cycle, E4 (Peh et al., 2004) and E5 

(Genther et al., 2003) further promote viral genome amplification, and viral particles are 

assembled with the major- and minor-capsid proteins L1 and L2, respectively. Assembled 

HPV virions are then shed from the cornified layer. 

 HPV inhibits the differentiation of keratinocytes, which has numerous histological 

corollaries of both clinical and experimental significance. Physiological differentiation 

triggers keratin switching in the epithelial layer, Keratin 5 (K5) expression is high in the 

basal layer (Moll et al., 1982); Keratin 10 (K10) and involucrin expression begins in the 

spinous layer and continues through to the cornified layer (Strudwick et al., 2015; Figure 

1B). Therefore, HPV infection will increase the spatial expression of K5 past the basal 

layer, and impede the expression of K10 and involucrin at the spinous layer. This abrogated 

differentiation is accompanied by the retention of cell nuclei beyond the basal layer. These 

biomarkers can be stained for via immunohistochemistry (IHC) in both patient biopsy 

specimens, and organotypic raft cultures growth in vitro (described below). Of clinical 

relevance however, there are other biomarkers of interest.  
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Figure 1. Spatial expression of HPV viral genes during infection of skin. HPV virions 
infect basal keratinocytes through micro-abrasions (A). The viral oncogenes E6 and E7 
inhibit apoptosis and promote entry into the cell cycle, while E1 and E2 maintain low-level 
viral genome replication. The viral genes E4 and E5 promote viral genome amplification 
and assemble with the capsid proteins L1 and L2. Viral particles are released as cells slough 
off (modified from Kajitani et al., 2012). Spatial expression of biomarkers markers during 
epithelial differentiation (B; Strudwick et al., 2015).  
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 Clinical biomarkers – those used to assess cervical lesion progression – are 

typically related to cell cycle regulation. The most commonly assessed is the cyclin-

dependant kinase inhibitor p16INK4a. Increased p16INK4a expression is a consequence of E7-

mediated disruption of pRB (Wentzensen et al., 2007). Other tests exist to detect for 

aberrant S-phase induction, namely topoisomerase IIA (TOP2A) and minichromosome 

maintenance protein 2 (MCM2; Halloush et al., 2008). Increases in p16INK4a, TOP2A, or 

MCM2 indicates a lesion progressing to high-grade. These tests are generally combined 

with hemotoxylin and eosin (H&E) staining of patient biopsy sections to help evaluate the 

neoplastic lesion. Figure 2 illustrates the infection process, low- to high- grade lesion 

progression, and finally invasive cancer. Of course, other prognostic markers relating to 

the virus itself are occasionally tested. HPV typing can determine if a patient is infected 

with a high-risk HPV type, as well elevated expression levels of the E6 and E7 oncogenes 

(Cattani et al., 2009). Also, as integration of the viral episome into the host genome is 

present in the majority of cervical carcinomas, testing for integration status may also 

suggest a progressing cervical lesion (Peitsaro et al., 2002). 
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Figure 2. Cervical lesion progression towards cancer. HPV infects basal keratinocytes 
through a micro-abrasion. Infection prevents keratinocyte differentiation, causing cells to 
retain their nuclei for longer, producing viral particles. In most instances of HPV-mediated 
carcinogenesis, the viral genome integrates into the host genome. Overexpression of E6 
and E7 promotes the progression of high-grade lesions towards invasive carcinoma 
(Woodman et al., 2007). 
 

1.1.3 Organotypic raft culture 

 Organotypic raft cultures are three-dimensional cultures which simulate full-

thickness skin, created from monolayer cultures grown entirely in vitro (Bell et al., 1981). 

Organotypic raft cultures can be constructed using primary cell lines, immortalized cell 

lines, or both. They consist of a simulated dermis containing fibroblast cells, and a 

keratinocyte monolayer seeded on top; grown at an air-liquid interface to facilitate 

epithelialization. Different methods utilize primary (Jackson et al., 2014) or immortalized 

fibroblasts (Pickard et al., 2015), in combination with primary or immortalized 

keratinocytes (Strudwick et al., 2015), whereby mucosal keratinocytes can also be utilized 
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to model mucosal epithelium (Dongari-Bagtzoglou and Kashleva, 2006). Importantly, raft 

cultures can model normal and dysplastic epithelium (Blanton et al., 1991), and have also 

been employed to study numerous viruses besides HPVs, including poxviruses (Duraffour 

et al, 2007), Epstein-Barr virus (Dawson et al., 1998), and herpes simplex virus (Hukkanen 

et al., 1999). For HPV, the raft model is not only permissive to the differentiation-

dependant viral life-cycle (Meyers et al., 1992; Flores et al., 1999), it has even been shown 

to reproduce epithelial invasion of the dermis when using E6/E7 transduced cell lines 

(Pickard et al., 2015). In this respect, it may be possible to use raft cultures to model lesion 

progression and early invasion, using patient-derived cell lines. Raft cultures have 

additional uses when studying viral exanthems, as they maintain many pathogen-host 

interactions while bypassing the need for animal models. Indeed, organotypic raft cultures 

have been used to test antiviral drugs against herpes viruses (Andrei, 2005) and poxviruses 

(Duaffour et al., 2007), as well as topical treatments for head and neck squamous cell 

carcinoma (Eicher et al., 1996). It would seem feasible then, to test new antiviral agents 

against HPV in organotypic raft cultures. 

 

1.1.4 Establishment of cervical keratinocyte cell cultures 

 Primary neonatal foreskin keratinocytes are the most commonly utilized human 

keratinocyte in the laboratory. Foreskins are easy to acquire – both practically and ethically 

speaking – and a foreskin can yield many more cells over a biopsy. Ideally when studying 

cervical cancer, a researcher would obviously utilize cervical cells. There are two means 

to acquire primary cervical cells: 1) isolate and culture normal cervical keratinocytes from 

a healthy cervix, and introduce HPV experimentally; and 2) propagate cells derived from 
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naturally-infected cervical lesion biopsies. Unfortunately, there are numerous practical and 

ethical hurdles when establishing cultures of normal primary cervical keratinocytes. First 

and foremost, it is unethical to acquire apparently healthy cervical tissue by biopsying a 

patient, as this introduces unnecessary risks, especially as many patients are of reproductive 

age. Therefore, the ideal means of acquiring healthy cervical tissue is from a total 

hysterectomy, which completely removes the uterus, cervix, and ovaries. Acquiring 

cervical tissue from a total hysterectomy has many practical challenges however, and 

requires the direct collaboration of the obstetrician/gynecologist performing the procedure 

and the acting pathologist, which ensures the patient’s standard-of-care without formalin-

fixing the still-living tissue. 

The most practical and ethical means of acquiring cervical cells is to take biopsy 

specimens from patient lesions, while the physician is already taking a sample for standard-

of-care. Given that cervical cancer results from persistent HPV infections, this approach 

would seem ideal for modelling and studying progression of cervical lesions. There are 

however, numerous methodological hurdles to establishing an in vitro culture of 

keratinocytes from biopsy specimens. These issues can include – but are not limited to –  

microbial contamination, fibroblast contamination (Stanley, 2002), low cellular viability 

and/or yield, and limited culture lifespan (Schweinfurth and Meyers, 2006). Previous 

studies have demonstrated low colony forming efficiency (Bononi et al., 2012), limited 

potential to passage cultures (Liu et al, 2013), and low adherence of viable cells (Liu et al, 

2016). Even with established methods, cultures from HPV lesions may be established from 

less than one-third of biopsy specimens and possess a limited lifespan in vitro 

(Schweinfurth and Meyers, 2006). Currently, there is no literature on generating 
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organotypic rafts from patient-derived, naturally-infected cervical keratinocytes. 

 

1.1.5 Surveillance and intervention of cervical lesions 

 The vast majority of cervical HPV infections clear up naturally within three years 

(Ho et al., 1998). A patient’s standard-of-care is to have their cervical lesion monitored 

through Papanicolaou tests and colposcopy exams, rather than to surgically intervene at the 

first sight of a lesion. In Canada, for patients possessing a cervical intraepithelial neoplasia 

(CIN) grade II or III lesion, this entails a 6-month follow-up examination and subsequent 

biopsy (Bentley J et al., 2012). For lesions that do not regress, the physician may decide to 

perform a loop electrosurgical excision procedure (LEEP) to remove the dysplastic tissue. 

Unfortunately, lesions can recur in as many as 30% of cases (Gonzalez et al., 2001). The 

prevalence of these actively surveyed lesions remains an untapped temporal window for 

treatment. It would seem prudent to develop a non-invasive antiviral therapy that could 

reduce lesion grade, reduce colposcopy visits, and/or reduce the number of surgical 

interventions. One possible treatment would be the use of RNA interference (RNAi), which 

targets mRNA transcripts for degradation, abrogating a gene’s ultimate translation 

(described below). RNAi is an active area of research for many therapeutics, but is 

particularly alluring for HPV infection because the viral genes are foreign, and in theory, 

employing RNAi would have minimal effect on healthy cells, or on host gene regulation 

(Jiang and Milner, 2002). In theory, utilizing RNAi to reduce E6 expression could restore 

cellular p53, potentially inducing apoptosis in HPV-infected cells while leaving healthy 

cells unharmed (Togtema et al., in press).  
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1.1.6 RNA interference and off-target effects 

 RNA interference is an ancient and conserved viral defence mechanism present in 

plants and animals (Fire et al., 1998; Waterhouse et al., 1998). The process of RNAi 

involves the Dicer-mediated cleavage of double-stranded RNA molecules into short 

oligonucleotides approximately 21-23 nt in length (Figure 3). These short oligonucleotides 

–  or small-interfering RNA (siRNA) – are then incorporated into the RNA-induced 

silencing complex (RISC). The activated RISC complex then unwinds the double-stranded 

siRNA, retaining the anti-sense strand (or guide-strand) which is used for targeting mRNA 

transcripts that possess guide-strand complementarity (Nykanen et al., 2001). If the target 

transcript has limited complementarity to the guide-strand, translation of that transcript 

may be inhibited. If the target transcript has near perfect complementarity, the transcript 

will be cleaved by RISC, and subsequently degraded (Hammond et al., 2000). Importantly, 

these siRNA molecules can be processed from double-stranded RNA produced from host 

transcripts, foreign viral genes/genomes, or synthetic oligonucleotides. Therefore, it is 

possible to rationally design and exogenously introduce siRNA to target any gene for 

silencing. 
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off-target transcripts can be avoided when designing siRNA oligonucleotides, and 

algorithms exist to predict which host transcripts possess complementarity to siRNA 

oligonucleotides. However, these algorithms are typically designed to predict host 

transcripts that possess near-perfect guide-strand complementarity, and off-targets 

predicted in silico match poorly with those found in vitro (Hanning et al., 2013). Indeed, 

studies have used bioinformatic approaches to show that very few – if any – off-target gene 

transcripts possess significant sequence complementarity to the guide strand (Jackson et 

al., 2003). In fact, only a subset of down-regulated transcripts possess any appreciable 

complementarity to the guide-strand, and these transcripts contain sequence 

complementarity to bases 2 through 8 of the guide strand, termed the ‘seed region’. More 

specifically, these repressed genes were found to contain seed region complementarity 

within their 3’ untranslated region (UTR). Importantly, although 3’-UTR seed matches are 

a robust predictor for off-target effects, they only account for a fraction of transcriptional 

changes observed in response to a given siRNA oligonucleotide (Birmingham et al., 2006). 

This lack of overall predictability merits transcriptomic analysis when elucidating the off-

target effects of any novel siRNA oligonucleotide. 

 Transcriptomic analysis is both expensive and cumbersome, and employing such 

techniques on every siRNA oligonucleotide would be overwhelming. Practically speaking 

however, it is not always necessary to assess all of the off-target effects, but merely to 

demonstrate that the desired cytological/physiological effects are due to the siRNA 

treatment. For many researchers, siRNA oligonucleotides of therapeutic interest are meant 

to induce apoptosis in a diseased or cancerous cell, while inflicting minimal harm on 

healthy cells. In this scenario, it is most prudent to demonstrate that apoptosis is due to the 



12 

 

knock-down of the desired gene. When assessing off-target effects in target cells, an 

oligonucleotide very similar in sequence to the query siRNA ought to be used. The C9/11 

control is a rationally designed siRNA control, whereby bases 9 through 11 on the query 

siRNA are altered (Buehler et al., 2012). These base alterations abolish target knock-down, 

while maintaining the vast majority of sequence-specific off-targets. It does this in part by 

retaining the seed-region sequence of the query siRNA. The C9/11 control is therefore 

superior to scrambled siRNA controls. 

 
1.1.7 Previous work in RNA interference 

 In previous work, our research group compared the knock-down efficiency of 

different oligonucleotides designed to target the E6 transcript, with the aims of finding a 

highly potent molecule for abrogating E6 translation, and ultimately restoring p53 (MSc 

Thesis, Jessica Grochowski, 2015; Togtema et al., in press). Oligonucleotides were 

designed to target the E6 splice-site on the E6/E7 transcript, which successfully inhibits E6 

translation but retains translation of E7 (Smotkin et al., 1989). In effect, this should restore 

p53 levels in the presence of the proliferation-promoting E7, which is believed to drive 

infected cells towards apoptosis (McLaughlin-Drubin, 2012). Our lab compared Dicer-

substrate RNA (DsiRNA) to siRNA oligonucleotide molecules that possess the same target 

sequence. In brief, a DsiRNA oligonucleotide feeds into the RNAi pathway further 

upstream than siRNA. As DsiRNA molecules can be significantly more potent than their 

siRNA counterparts (Kim et al, 2005), a DsiRNA molecule was developed based upon a 

corresponding siRNA, to draw direct comparisons. The target sequence within the E6 

splice site was designed using the Rosetta algorithm (Rosetta Inpharmatics Inc.), and we 

found that when tested in the HPV16 cervical cancer cell lines CaSki and SiHa, Rosetta 
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DsiRNA performed better than Rosetta siRNA. Figure 4 summarizes the results obtained 

from previous work using Rosetta DsiRNA. Maximum E6 knock-down occurred between 

10 nM and 250 nM, with no statistical difference between these concentrations. There was 

no statistical difference between incubation times, though 48 appeared maximal for both 

CaSki and SiHa. 
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Figure 4. Overview of previous results obtained from E6 knock-down with Rosetta 
DsiRNA. No significant difference between incubation time was found for either cell type 
(n=3, A). Knock-down of E6 was maximal between 10 nM and 250 nM of DsiRNA (n=3, 
B), though there was no significant difference found between these concentrations. Knock-
down of E6 restored p53 as determined by Western blot, though these results were highly 
variable and not statistically significant (n=5, C). Diagram of the RNAi target site within 
the E6 transcript (D). Figure created by Robert Jackson, PhD Candidate, modified from 
Togtema et al., (in press). 
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1.2 Research rationale 

 When studying HPV in the laboratory, primary neonatal foreskin keratinocytes are 

often employed. Though these keratinocytes are permissive to the viral life cycle (Flores 

et al., 1999), HPV16 is not associated with carcinoma of skin keratinocytes. Utilizing 

cervical keratinocytes from patient-derived cultures is not only a more accurate model to 

the disease in question, but it also permits the modelling of patient variability. Since 

culturing cells from patient biopsies and creating organotypic cultures is not a trivial task, 

the goal of this work is simply to develop methods to do so. Similarly, because we wish to 

develop RNAi therapeutics, patient-derived cells can not only be utilized to model patient-

specific responses, they would also be more accurate models than the highly transformed 

immortalized cancer cell lines. Based on our previous work on DsiRNA E6 knock-down 

in HPV16 cancer cell lines (Togtema et al., in press), we would like to continue our 

experimental algorithm by assessing the downstream effects of E6 knock-down, at the level 

of gene expression, viability, and apoptosis. 

 

1.3 Hypotheses 

Given the results of Schweinfurth et al. (2006) and Liu et al. (2016), and the 

potential issues listed by Stanley (2002), we expect: 

1. Roughly 10-30% of established cultures will succumb to microbial 

contamination. 

2. The longest cultures will grow for 6 to 8 weeks. 

3. After utilising 5-10 samples to establish our methodology, we may see a 30% 

success rate in establishing cultures. 
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In previous work, we assessed E6 knock-down in HPV16 positive cancer cell lines, 

and found that p53 restoration was limited in SiHa, and highly variable in CaSki (Figure 

4). Additionally, there was no statistical difference in E6 knock-down between 10 nM and 

250 nM DsiRNA treatments. Therefore, we utilized DsiRNA between 2.5 nM and 10 nM 

for further experiments. This concentration range was also believed to span the median 

inhibitory concentration, as well, these lower concentrations are considered more clinically 

relevant (Persengiev et al., 2004). Despite 10 nM providing near-maximal E6 knock-down, 

it may still be insufficient to restore cellular processes. We will also include a C9/11 

DsiRNA for a control, but overall we may expect: 

1. hTERT levels will decrease because E6 levels are notably reduced. 

2. E7 levels will remain relatively unchanged, as Rosetta DsiRNA targets the 

splice site. 

3. Downstream effects of p53 restoration will be unchanged from controls. 

4. Cellular viability and growth will be unchanged. 

 

1. Materials and Methods 

 

2.1 Materials and methods for downstream effects of E6 knock-down 

2.1.1 Cell culture and maintenance 

Cell cultures were maintained in a humidified incubator at 37°C with 5% CO2. The cervical 

cancer cell lines CaSki (ATCC, Cat. No. CRL-1550) and SiHa (ATCC, Cat. No. HTB-35) 

were cultured in Dulbecco's Modified Eagle's Medium (DMEM; Fisher Scientific, Cat. No. 

SH30243.01) containing 10% heat-inactivated fetal bovine serum (FBS; Fisher Scientific, 
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Cat. No. SH30396.03) and 1X antibiotic/antimycotic (Fisher Scientific, Cat. No. 

SV3007901). When passaging cultures, cells were washed with Dulbecco's Phosphate 

Buffered Saline (DPBS; Fisher Scientific, Cat. No. SH30028.02) before adding 2 ml of 

0.05% trypsin containing 0.02% ethylenediaminetetraacetic acid (Trypsin-EDTA; Fisher 

Scientific, Cat. No. SH3023602), and incubated at 37°C for 5-10 minutes until cells were 

sufficiently detached. At which point, 4 ml of culture media was added to inactivate the 

trypsin. Cultures were seeded at 10% confluency and maintained up to 80% confluence 

before subsequent passaging. 

 

2.1.2 Cryogenic storage and retrieval 

When preparing stocks for cryogenic storage, cells were trypsinized as described and 

quantified using a TC10™ Automated Cell Counter (Bio-Rad, Cat. No. 145-0009). Cells 

were then pelleted at 750 rpm for 5 minutes, and then resuspended in the appropriate 

volume of 90% DMEM-FBS and 10% dimethyl sulfoxide (DMSO; Sigma-Aldrich, Cat. 

No. 34869) to achieve 1 x 106 cells per ml, preparing 1 ml stocks. Stocks were then frozen 

using a controlled-rate cooling container (Thermo Fisher Scientific, Cat. No. 5100-0001) 

at -80°C. Frozen vials were subsequently stored in liquid nitrogen for long-term use. 

When retrieving cell stocks from cryogenic storage, vials were thawed to room 

temperature and added to 4 ml of DMEM-FBS. The cells were pelleted at 750 rpm and the 

media was aspirated. Cell pellets were re-suspended in 10 ml of media and plated onto T-

75 flasks for incubation. 
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2.1.3 Mycoplasma testing 

Cultures of CaSki and SiHa cells were regularly tested for Mycoplamsa contamination by 

fluorescent staining with 4'-6-diamidino-2-phenylindole (DAPI). Approximately 1 x 104 

cells were seeded onto sterile glass cover slips (Thermo Fisher Scientific, Cat. No. 12-

541A) and grown in 35mm cultures dishes for 2-3 days. At which point, the media was 

removed and cells were fixed using Carnoy's fixative (3:1 solution of methanol (Thermo 

Fisher Scientific, Cat. No. A4544) and glacial acetic acid (Sigma-Aldrich, Cat. No. 

695092-2.5L), respectively). Fixative was first added to cells for 5 minutes, the fixative 

was then removed, and fresh fixative was added for another 10 minutes. The cover slips 

were removed and allowed to air dry. Cover slips were then mounted on a microscope slide 

using Vectashield Mounting Medium containing DAPI (1.5 µg/mL, Vector Laboratories. 

Cat. No. H-1200). This method stains the DNA of Mycoplasma thereby permitting their 

visualization within the cytoplasm of infected cells via fluorescent microscopy. 

 

2.1.4 C9/11 design and validation 

 A control DsiRNA was designed in which bases 9 through 11 of the guide strand 

were altered to create three consecutive mismatches against the E6 transcript: termed the 

C9/11 control (Buehler et al., 2012). It has been shown that a single base mutation at 

nucleotides in the 9th, 10th, 11th, or 12th position can abolish target-mRNA knock-down by 

up to 90% (Birmingham et al., 2006). By combining three consecutive mismatches, it can 

be ensured that target sequence knock-down is abolished, and off-targets are retained. This 

C9/11 control siRNA can then be used as a direct comparison for the observed downstream 

effects, such as apoptosis. This instills confidence in scientific results that typical 
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scrambled control siRNA cannot (Buehler et al., 2012). Each mismatch-causing nucleotide 

was selected based off of its ideal knock-down abrogating potential as described in 

Birmingham et al. (2006).  

The Rosetta DsiRNA pre-processing guide-sequence 5'-

AUCUCUAUAUACUAUGCAUAAAUCCCG-3' was changed to sequence 5'-

AUCUCUAUAUACUAACAAUAAAUCCCG-3', underlining to indicate base changes. 

To validate that the C9/11 control has abrogated E6 knock-down, CaSki and SiHa cells 

were seeded into T-25 flasks and transfected with the C9/11 DsiRNA. Cell culture, 

transfection, harvesting, and RT-qPCR analyses were performed using parameters 

described below. 

 

2.1.5 Chemical transfections and cell harvesting 

 Cells were seeded into T-25 flasks at 3.5 x 105 cells per flask for CaSki, and 1.5 x 

105 cells per flask for SiHa. After 24 hours, the media was changed with 4 ml of fresh 

DMEM-FBS, and cultures were transfected with DsiRNA complexes to a final 

concentration of 2.5, 5 or 10 nM of Rosetta E6 DsiRNA or the corresponding C9/11 control 

DsiRNA. Transfection complexes consisted of 1 ml total of serum-free DMEM, the 

corresponding oligonucleotide, and HiPerFect (Qiagen, Cat. No. 301707) added according 

to the manufacturer's instructions. The solution was vortexed for 10 seconds and 

subsequently incubated at room temperature for 10 minutes, prior to drop-wise addition to 

cultures. The cells were harvested 48 hours after transfection, with one quarter from each 

flask used for RT-qPCR analyses of E6, E7, hTERT and p21WAF1/CIP1 mRNA expression, 

and the remaining three-quarters being stored for future Western blot analysis. Cell pellets 



20 

 

were washed with DPBS and stored at -80°C until RNA extraction was performed. 

 

2.1.6 RNA extraction and reverse transcription real-time PCR (RT-qPCR) analysis 

Relative quantification of E6, E7, hTERT, and p21WAF1/CIP1 gene expression was 

determined using reverse-transcription quantitative polymerase chain reaction (RT-qPCR). 

Total RNA was extracted from cell pellets using the RNeasy Plus Mini kit (Qiagen, Cat. 

No. 74136), according to the manufacturer’s instructions. RNA quantity and integrity were 

assessed using the Experion Automated Electrophoresis system and RNA StdSens Analysis 

kit (Bio-Rad, Cat. No. 7007013). Reverse transcription into cDNA was done using the 

High-Capacity cDNA Reverse Transcription kit (Fisher Scientific, Cat. No. 4368814). RT-

qPCR reactions consisted of 150 ng of cDNA, 45 µL of TaqMan® Universal PCR Master 

Mix (Thermo Fisher Scientific; Cat. #: 4364338), 4.5 µL of appropriate TaqMan® Gene 

Expression Assay and nuclease-free water for a final volume of 90 µL. Triplicate reaction 

volumes of 25 µL for each sample were loaded into transparent 96-well plates and analyzed 

using a 7500 ABI real-time thermocycler. Hypoxanthine phosphoribosyltransferase 1 

(HPRT1) was chosen as a stable reference gene based on previous experiments (DeCarlo 

et al., 2008). Relative expression was calculated using the 2-ΔΔCT Livak analysis method 

(Livak and Schmittgen, 2001; Bustin et al., 2009). Statistical comparisons were done via a 

one-way ANOVA. 

Table 1. List of qPCR probes used in gene expression analysis. 

Taqman Gene Assay Assay ID 
Full-length HPV16 E6 AI0IW1V (Custom) 

HPV16 E7 AIBJW6W (Custom) 
hTERT Hs00162669_m1 

p21WAF1/CIP1 Hs01040810_m1 
HPRT1 Hs99999909_m1 
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2.1.7 MTT cell viability assay 

 Cell viability was measured via the MTT assay (Mosmann, 1983). Cellular 

metabolic activity is indirectly measured through a colorimetric assay, where tetrazolium 

salts (yellow) are reduced to formazan (purple), in a manner quantitative to cell numbers 

and/or viability. CaSki and SiHa cells were trypsinized and seeded into 24-well plates at 2 

x 104 cells per well. After 24 hours, cells were transfected with 200 µl of complexes using 

HiPerFect chemical transfection reagent following the manufacturer’s instructions. 

Treatments consisted of DsiRNA and C9/11-DsiRNA at concentrations of 2.5, 5, and 10 

nM; with a media-only control. After 48 hours, 25 µL of 5 mg/mL 3-(4,5-Dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT; Sigma-Aldrich, Cat. No. M5655) 

was added to each well and incubated at 37°C for 4 hours. The cell culture media was then 

aspirated, and tetrazolium crystals were solubilized with 100 µL 0.1 N HCl (Sigma Aldrich, 

Cat. No. 320331) in isopropanol (Fisher Scientific, Cat. No. HC5001GAL). Absorbances 

were measured at 570 nm subtracting background at 650 nm using a BioTek® Powerwave 

XS Plate Reader. Each biological replicate (n=4) was performed in technical triplicate. For 

each biological replicate, absorbances amongst technical replicates were averaged, and 

normalized to the average absorbance of the media-only control. Standard deviation was 

calculated across the average relative absorbances. 

 

2.1.8 Cell-cycle and apoptosis assays 

 CaSki and SiHa cells were trypsinized and seeded into 6-well plates at 1 x 105 cells 

per well. After 24 hours, the media was changed, and cells were transfected as described 

previously, with Rosetta DsiRNA or C9/11 DsiRNA at 2.5 nM, 5 nM, and 10 nM. Cultures 
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were treated for 48 and 96 hours. Floating and adherent cells were harvested, pelleting at 

750 rpm for 5 minutes. Cell pellets were resuspended in 5 ml of DPBS and again 

centrifuged for the first wash. Upon resuspension for the second wash, harvested cells were 

divided equally between cell-cycle and apoptosis assays and again pelleted. Cell pellets for 

apoptosis assays were processed immediately for flow cytometry (described below). Cell 

pellets for cell-cycle analysis were fixed by adding 1 ml of 70% ethanol to pellets while 

vortexing (Fisher Scientific, Cat. No. HC11001GL). Fixed cells were stored at 4°C until 

analysis was performed. Data was obtained using a FACSCalibur flow cytometer, utilizing 

BD CellQuest software. 

 Apoptotic assays we performed using an Annexin V FITC Kit (Trevigen, Cat. No. 

4830-01-K), as per kit instructions. During apoptosis, phosphatidyl serine flips to the outer 

membrane of the cell (Fadok et al., 1992), and this phosphatidyl serine can be bound by 

Annexin V in a calcium-dependant manner (Tait and Gibson, 1992). In turn, fluorescently-

tagged Annexin V can be used to label apoptotic cells for flow cytometry analysis 

(Koopman et al., 1994). Briefly, cells were washed with 1X Binding Buffer and 

resuspended in 100 µl of Annexin V Incubation Reagent containing propidium iodide and 

Annexin V-FITC in 1X Binding Buffer. Following a 15-minute incubation, 400 µl of 1X 

Binding Buffer was added and cells were apoptotic events were counted by flow cytometry. 

 For cell-cycle analysis, the fixed cells were removed from 4°C storage and pelleted 

as previous. Ethanol was decanted, and the cells were then washed in 1X PBS and 

resuspended in propidium iodide staining solution (0.1% Triton X-100, 10 µg/mL RNase 

cocktail, 20 µg/mL propidium iodide in 1X PBS). After a 30-minute incubation, cells were 

analyzed by flow cytometry (Shapiro 1988). 
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 Samples were run on a BD FACSCalibur flow cytometer with BD CellQuestTM. 

Software. Events were analyzed using Flowing Software 2, and statistical analysis was 

performed in R version 3.2.3 (R Core Team, 2013) within R Studio (RStudio Team, 2015). 

Samples were prepared for flow cytometry by Peter Villa, with flow analyses and statistical 

analyses performed by PhD candidate Robert Jackson. Software work-flow of apoptosis 

analyses and cell-cycle analyses are illustrated in Figure A1 and Figure A2, respectively. 

 

2.1.9 Cell growth analysis 

 CaSki and SiHa cells were seeded into T-25 flasks at 2 x 105 cells per flask. After 

24 hours, cultures were transfected with DsiRNA complexes prepared using HiPerFect 

chemical transfection reagent according to the manufacturer’s instructions. Cultures were 

treated with Rosetta DsiRNA or the corresponding C9/11 control DsiRNA at a final 

concentration of 10nM. Untreated cultures and cultures treated with the transfection 

reagent only were used as controls. When control cultures reach confluency, all cultures 

for the respective cell type were trypsinized and cell numbers were recorded via a Bio-

Rad® TC10TM Automoated Cell Counter, replating 2 x 105 cells per flask. Cultures were 

transfected 24 hours after each replating, and were subsequently monitored for 17 days. 

Culture doublings were calculated using: 

(number of cells seeded) x 2n = (final cell count) 

Cumulative culture doublings were expressed from summation across passages. 

 

 

 



24 

 

2.2 Methods for culturing cervical keratinocytes 

2.2.1 Human research ethics and clinical services 

 This study was approved by the Research Ethics Boards (REB) at Lakehead 

University (#019 16-17) and the Thunder Bay Regional Health Sciences Centre (TBRHSC; 

#2016107), according to Tri-Council Policy Statement 2 (2014) on human research ethics. 

Application to the REB required drafts of the: 1) logistical and laboratory protocols; 2) 

consent form; 3) brief study budget; 4) REB application template, involving risks and 

logistics; and 5) conflicts of interest. Studies must first be registered with the Clinical 

Research Services Department (CRSD) at TBRHSC prior to their application to the REB 

(Figure 5), which meets monthly. This study was registered December 2015, and upon 

submission to the REB at TBRHSC, major revisions were requested in February of 2016. 

The application was re-submitted in March (2016), where minor revisions were requested, 

appended, and approved in April (2016). The application was then sent to Lakehead 

University in May (2016), where minor revisions were again requested and approved by 

June (2016), and subsequently amended at TBRHSC in July of 2016. The project then 

commenced in August of 2016 – over 8 months after registration. 

 For the second phase of this study – which included patient chart review and altered 

laboratory protocols – an amendment was requested in June of 2017, after the study was 

renewed and the summary of the initial results was provided to the REB. This amendment 

was granted through both institutions and the acquisition of samples began again in July of 

2017. 

 Other requests were made through CRSD for additional services. Prior to study 

commencement, CRSD ensured the appropriate training of the affiliated nurses so that they 
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may consent patients to participate in this study. For the second phase of this study, CRSD 

also facilitated a service contract between TBRHRI and TBRHSC-Pathology Services to 

paraffin-embed the 3D raft cultures and prepare slides for immunohistochemistry. 

Pathology Services provided 4 µm Haemotoxylin and Eosin (H&E) stained raft sections 

for this project, as well as additional unstained slides upon request.  

  
 

Figure 5. Schematic representation of the application process for receiving approval 
of a clinical research project. Projects are first registered with the Clinical Research 
Services Department (CRSD) at the Thunder Bay Regional Health Sciences Centre 
(TBRHSC) (1). Applications can then be sent to the Research Ethics Board (REB, 2); 
consisting of literature, scientific merit, laboratory protocols, staff training, and logistics of 
clinical implementation. Once approved, the application is sent to the REB at Lakehead 
University (3). Once approved by both the hospital and university, the study can 
commence. Further services are contracted through CRSD (4).  
 

2.2.2 HPV typing 

 Prior to their colposcopic examination, study participants had a swab of their cervix 

taken, which was to be sent to the Public Health Agency of Canada if they donated a biopsy 

specimen for this study. HPV typing was provided in kind by Dr. Alberto Severini at the 

National Microbiology Laboratory. In brief, a Luminex sequencing platform was used to 
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detect potential HPV type(s) present. HPV DNA was amplified using nested-PCR, and 

probes specific for 45 different mucosal HPV types were used to detect the HPV type(s) 

present (Zubach et al., 2007). This method is capable of detecting multiple HPV types 

present in a single sample. 

 

2.2.3 Culture maintenance 

 Cell cultures were maintained in a humidified incubator at 37°C with 5% CO2. The 

immortalized mouse embryonic fibroblast cell line J2 3T3 (Allen-Hoffmann et al., 2000) 

and primary human foreskin fibroblasts (ATCC, Cat. No. CRL-2097) were cultured in 

Dulbecco's Modified Eagle's Medium (DMEM; Fisher Scientific, Cat. No. SH30243.01) 

containing 10% heat-inactivated fetal bovine serum (FBS; Fisher Scientific, Cat. No. 

SH30396.03) and 1X antibiotic/antimycotic (Fisher Scientific, Cat. No. SV3007901). 

When passaging cultures, cell monolayers were washed with Dulbecco's Phosphate 

Buffered Saline (DPBS; Fisher Scientific, Cat. No. SH30028.02) before adding 2 ml of 

0.05% trypsin containing 0.02% ethylenediaminetetraacetic acid (Trypsin-EDTA; Fisher 

Scientific, Cat. No. SH3023602), and incubated at 37°C for 5-10 minutes until cells were 

sufficiently detached. At which point, 4 ml of culture media was added to inactivate the 

trypsin. Cultures were seeded at 10% confluency and maintained up to 80% confluence 

before subsequent passaging. 

 

2.2.4 Isolation and culture of keratinocytes from cervical biopsy specimens 

 Cultures were established via a modified Liu et al. (2016) method. Biopsy 

specimens were taken by the physician using a Tischler Morgan Biopsy forceps with a 3 
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mm x 7 mm bite (Figure 6). Biopsy specimens were placed in 5 ml of transport media, 

consisting of serum-free DMEM containing 20X antibiotic/antimycotic with 50 µg/ml 

gentamicin (Sigma Aldrich, Cat. No. G1914), and stored at 4°C for several hours until 

processing. Samples were then washed 5 times with 1 ml of DPBS containing 20X 

antibiotic/antimycotic and 50 µg/ml gentamicin. Washed specimens were placed in 1 ml 

of 0.2% Type I Collagenase (Fisher Scientific, Cat. No. 17100017) in 1X Hank's Balanced 

Salt Solution (HBSS; Sigma Aldrich, Cat. No. H4385) containing 3 mM calcium chloride 

and 1mM magnesium chloride, without carbonate. Samples were minced with curved iris 

scissors and incubated on a shaker at 37°C and 225 rpm for 1 hour. Digested specimens 

were washed twice with 10 ml of DPBS, pelleted at 750 rpm for 5 minutes, and re-

suspended in 2 ml of keratinocyte media containing 5% FBS and 1X antibiotic/antimycotic. 

Re-suspended tissue digests were plated onto a collagen- and FBS-coated T-12.5 flask. 

Tissue culture flasks were coated using the Coating Matrix Kit (Fisher Scientific, Cat. No. 

R011K) as per kit instructions, and then coated with 2 ml FBS for 2-3 hours. After 4 to 5 

days, the non-adherent tissue pieces were removed and the media was replaced with serum-

free media. 
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Figure 6. Tischler Morgan biopsy forceps. Typical forceps utilized by colposcoptists to 
acquire cervical biopsy specimens. Forcep bite of 3 mm wide and 7 mm long. Source: 
https://homeoftech.en.ecplaza.net/products/morgan-tischler-biopsyforceps_2787756 
  

In the first phase of this study ('Phase I'), where methods were developed to culture 

cervical keratinocytes in-house, cervical cells were cultured in Keratinocyte Serum-Free 

Growth Medium (KGM; Cell Applications, Cat. No. 131-500). By contrast, in the second 

phase of this study ('Phase II'), we aimed to increase the in vitro lifespan of keratinocytes 

by replacing the cell culture media with EpiLife basal media (Fisher Scientific, Cat. No. 

MEPI500CA) supplemented with Human Keratinocyte Growth Supplement (Fisher 

Scientific, Cat. No. S0015). Unlike most keratinocyte media, this formulation contains 

recombinant human insulin-like growth factor-I (IGF-I) in place of insulin, which helps to 

reduce differentiation and increase the lifespan of keratinocytes in vitro. IGF-I possesses 

more mitogenic potential than insulin, as it activates more cellular receptors than insulin; 
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where IGF-receptors also interact with intracellular adaptor proteins more effectively than 

insulin receptors (Sasaoka et al., 1996; Figure 7). In turn, IGF-I is 10-50 times more potent 

than insulin at activating MAPK in keratinocytes (Neely et al., 1991), which also has the 

effect of increasing their in vitro lifespan. The basal media also contains a reduced calcium 

concentration to prevent cellular differentiation. In addition, Y-27632 was added to the 

media as a chemical inhibitor of Rho-associated protein kinase (ROCK). This drug has 

been shown to drastically increase the lifepsan of keratinocytes in vitro (Strudwick et al., 

2015). Inhibition of ROCK reduces expression of down-stream targets for p53, which is 

thought to be a major mechanism by which Y-27632 promotes longevity. As well, ROCK-

inhibition has been shown to synergize with E6, and promote drug-dependant cellular 

immortalization of keratinocytes without the need for E7 (Dacik et al., 2016). 

 Once cultures were established, keratinocytes were maintained at 10% to 80% 

confluence between passages. Cultures were split using 2 ml of Trypsin-EDTA, whereby 

trypsin was inhibited with 3 ml of Trypsin Neutralizing Solution (Cell Applications, Cat. 

No. 080-100). The cells were centrifuged at 750 rpm for 5 minutes, where the neutralized 

trypsin solution was removed, and cells were re-suspended in fresh cell culture media (i.e. 

KGM or EpiLife with Y-27632, for Phase I and Phase II, respectively). Cells were counted 

using a BioRad TC-10TM Automated Cell Counter. New flasks were coated with collagen 

for each successive passage.  
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Figure 7. Signalling pathway of Insulin and Insulin-like Growth Factors. Insulin-like 
Growth Factors (IGFs) possess greater mitogenic potential than Insulin signalling, where 
IGF-receptors interact with Shc/Grb2/Sos more effectively than insulin-receptors (Sasaoka 
et al., 1996), and activate MAPK in keratinocytes with greater potency than insulin (Neely 
et al., 1991). Image Source: 
<https://www.spandidos-publications.com/10.3892/ijo.2012.1666> 
 
 

2.2.5 Mycoplasma testing 

 Primary cell cultures were tested for Mycoplasma indirectly by using the J2 3T3 

fibroblast cell line as an indicator cell line. In this method, the J2 cells are cultured in media 

from the cell line in question (i.e. the primary cervical cells), in order to infect the indicator 

cell line. It is commonly observed that Mycoplasma replicate at a much lower rate and at 

lower titres in primary cells, which may cause ambiguous or delayed results when trying 

to observe Mycoplasma directly within the cell's cytoplasm. Therefore, an indicator cell 

line that is highly permissive to Mycoplasma infection and replication is utilized, such as 
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the J2 cell line (McGarrity and Barile, 1983). These J2 cells were cultured in conditioned 

media from cervical cell cultures were tested for Mycoplamsa contamination by fluorescent 

staining with 4'-6-diamidino-2-phenylindole (DAPI). This method stains the DNA of 

Mycoplasma thereby permitting their visualization within the cytoplasm of infected cells 

via fluorescent microscopy. Approximately 1 x 104 J2 cells were seeded onto sterile glass 

cover slips (Thermo Fisher Scientific, Cat. No. 12-541A) and grown in 35mm cultures 

dishes in 3 ml of media consisting of 2 ml DMEM-FBS with antibiotic/antimycotic, and 1 

ml of conditioned media. After 3 days, the media was removed and cells were fixed using 

Carnoy's fixative [3:1 solution of methanol (Thermo Fisher Scientific, Cat. No. A4544) 

and glacial acetic acid (Sigma-Aldrich, Cat. No. 695092-2.5L), respectively]. Fixative was 

first added to cells for 5 minutes, whereby the fixative was then removed, and fresh fixative 

was added for another 10 minutes. The cover slips were then removed and allowed to dry. 

Cover slips were then mounted on a microscope slide using Vectashield Mounting Medium 

containing DAPI (1.5 µg/mL, Vector Laboratories. Cat. No. H-1200).  

 

2.2.6 Construction of organotypic raft cultures 

 Early passage primary human foreskin fibroblasts were cultured as described 

previously, and low passage (P<5) human fibroblasts were used in the preparation of 

dermal equivalents. Fibroblasts were trypsinized and counted, and 1 x 106 cells were 

pelleted and re-suspended in 2 ml FBS. Using a sterile 50 ml beaker with a magnetic stir 

bar, cooled in ice atop a magnetic stir plate, 7.5 ml of type I rat tail collagen (~4.00 mg/mL; 

Millipore, Cat. No. 08-115) and 1 ml of 10X HBSS was added and thoroughly mixed. The 

solution was neutralized using 5 µl increments of 5 N NaOH, requiring ~30 µl in total. 
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Once neutralized, the fibroblasts were immediately added and thoroughly mixed. Dermal 

equivalents were then prepared by pipetting 500 µl of the collagen-cell suspension into 

wells of a 48-well plate (yielding ~5 x 105 fibroblasts per dermal equivalent). The dermal 

equivalents were then incubated for ~30 minutes at 37°C, where they would solidify. 

Afterwards, 500 µl of DMEM-FBS was added to the top of each raft and incubated 

overnight. 

 Rafts were prepared in technical triplicate for each patient culture. For each raft, 

2.5 x 105 keratinocytes were needed to create the basal layer of the epidermis. 

Keratinocytes were trypsinized and re-suspended to yield 5 x 106 cells/ml, so that the 

desired cell number could be seeded on top of rafts in a 50 µl cell suspension. Keratinocytes 

were re-suspended in media consisting of equal parts EpiLife Media and NIKS Complete 

Media. NIKS Complete media was prepared containing 3 parts Ham's F-12 media 

(Invitrogen, Cat. No. 21700-075) to 1 part DMEM; supplemented with 2.5% FBS, 0.4 

µg/mL hydrocortisone (Sigma-Aldrich, Cat. No. H4001), 8.4 ng/mL cholera toxin (Sigma-

Aldrich, Cat. No. C8052), 5 µg/mL insulin (Sigma-Aldrich, Cat. No. I5500), 24 µg/mL 

adenine (Sigma-Aldrich, Cat. No. A2786), and 10 ng/mL epidermal growth factor (EGF; 

R&D Systems, Cat. No. 236-EG). Media was removed from the dermal equivalents and 

the 50 µl of keratinocyte cell suspension was added to the top of each raft. The rafts were 

placed in the incubator for 2 hours, allowing the keratinocytes to adhere. Afterwards, 500 

µl of the 50/50 EpiLife/NIKS Complete media was added to each raft, and incubated for 

two days. This protocol typically calls for the use of NIKS Complete medium, however, 

we decided to partially supplement with EpiLife medium. This is because EpiLife contains 

IGF-I which is the major mediator for dermal invasion from permissive keratinocytes 



33 

 

(Pickard et al., 2015). Therefore, we hypothesized that the presence of IGF-I during this 

growth phase may facilitate dermal invasion, if the keratinocytes were isolated from a high-

grade or cancer lesion. 

 After incubating the submerged keratinocytes on the dermal equivalents for two 

days, the media was removed and rafts were lifted to an air-liquid interface. A micro spoon 

was used to transfer the rafts from the 48-well plate onto Millicell 30 mm, 0.4 µm inserts 

(Millipore, Cat. No. PICMORG50) placed in 6-well plates, where 1.1 ml of FAD media 

was added around each insert, at one insert per well. FAD medium consists of NIKS 

Complete medium without EGF, and with the addition of Ca++ to 1.88 mM, which 

facilitates differentiation of keratinocytes. The FAD media was replaced every 2 days, 

where residual media that accumulated around the rafts on top of well-insert membrane 

was removed. After 14 days, rafts were fixed overnight in 10% buffered formalin (Fisher 

Scientific, Cat. No. SF100-4). The rafts were subsequently washed once and stored in 70% 

denatured ethanol (Fisher Scientific, Cat. No. HC11001GL). Formalin-fixed rafts were 

then sent to Pathology Services at TBRHSC for paraffin-embedding, and preparation of 4 

µm thick H&E slides. 

When troubleshooting patient-raft cultures that had minimal stratification, we 

decided to utilize EpiLife media as the basal component to the differentiation media. We 

hypothesized that cultures were acclimated to the rich formula and possessed reduced 

proliferation when switched to FAD media. Therefore, in a subsequent trial we 

supplemented EpiLife with 10 ng/ml EGF, 8.4 ng/ml cholera toxin, and 2.5% FBS to 

simulate NIKS medium when seeding keratinocytes onto dermal equivalents (termed 

EpiLife-NIKS). After lifting raft cultures, we used an FAD-style supplemented EpiLife 
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medium for differentiation, whereby Ca++ was added to a final concentration of 1.88 mM, 

with 2.5% FBS and 8.4 ng/ml cholera toxin (termed EpiLife-FAD). Note that we did not 

further supplement EpiLife with hydrocortisone or adenine, as these are already present in 

HKGS-supplemented EpiLife, nor did we add insulin as HKGS contains IGF-I in place of 

insulin. We compared the use of NIKS medium and EpiLife-NIKS, and changed the media 

to FAD and EpiLife-FAD, respectively, after lifting rafts. We also tested whether wetting 

the raft during media changes would affect the stratification, as this is recommended in 

some commercial protocols. Each condition was replicated in triplicate for comparison. 

 

2.2.7 Microscopy 

 Cells were visualized using an Axiovert 200 Inverted Microscope manufactured in 

Germany, with HBO 50 Watt AC-L2 mercury bulb connected to a MBQ 52 AC power 

supply. Images were taken using a QICAM 12-bit FAST 1394 camera. All phase-contrast 

images were taken at 200X magnification. For mycoplasma testing, a 350 nm blue emission 

filter was used. 

 Histology images were taken using a Zeiss Axioskop 50 manufactured in Germany, 

with QImaging Retiga 1300 camera. All histology images were taken at 100X 

magnification. 
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3. Results 

 

3.1 Results from E6 knock-down on downstream processes 

3.1.1 Expression levels of E7 and hTERT 

In previous work, cultures of CaSki and SiHa were transfected in T-25 flasks as 

described, and both Western blot and RT-qPCR analysis was performed (Figure 4). We 

sought to utilize these same cDNA samples to analyze downstream effects of E6 knock-

down. Analysis of E7 expression revealed a large variability in CaSki cells as compared to 

SiHa cells. There was no change in E7 expression for CaSki cells, as the average fold 

change was close to 1 for all Rosetta and Scrambled treatments (Figure 8). SiHa cells 

showed markedly decreased expression of E7 for most treatments regardless of DsiRNA 

type. Expression of hTERT was also more variable for CaSki than SiHa cells. The 

expression of hTERT was not significantly different between Rosetta and Scrambled 

controls for any treatment in CaSki or SiHa. 
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Figure 8. Relative expression of E7 and hTERT 48 hours after E6 knock-down. 
Expression levels were determined relative to HPRT-1. Treatments were normalized to the 
media-only control, where a fold-change of ‘1’ indicates no change. No significant 
difference was found between Rosetta and Scrambled DsiRNA treatment. Data represents 
the mean ± SD (n=4).  
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3.1.2 Validation of C9/11 control DsiRNA 

 For further downstream analysis, we intended to replace the Scrambled DsiRNA 

control with the C9/11 DsiRNA control. By doing so, off-target effects of the Rosetta 

DsiRNA oligonucleotide can be maintained, while E6 knock-down is abolished. Cultures 

were treated with the C9/11 DsiRNA as described, and RT-qPCR analysis indicated no 

significant difference in E6 fold-change relative to media-only condition (Figure 9). 

Levels of E6 expression were higher than the media-only condition for all C9/11 treatments 

in both CaSki and SiHa cells, although this was not significant. Therefore, we continued to 

utilize the C9/11 DsiRNA control when using Rosetta DsiRNA for E6 knock-down.  

 

 
Figure 9. Relative expression of E6 48 hours after treatment with C9/11 DsiRNA. 
Expression levels were determined relative to HPRT-1. Treatments were normalized to the 
media-only control. No significant difference was found between C9/11 and media-only 
controls. Data represents the mean ± SD (n=4). 
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3.1.3 Analysis of p21WAF1/CIP1 expression 

Previous Western blot data has demonstrated a recovery in p53 levels upon E6 

knock-down, though this data was not statistically significant. The expression levels of 

p21WAF1/CIP1 were quantified to support whether the restored p53 was transcriptionally 

active. Levels of p21WAF1/CIP1 were detected but not quantifiable in SiHa cells (data not 

shown). Data from the CaSki cells revealed no significant increase in p21WAF1/CIP1, nor any 

general trend (Figure 10).  

 

 
Figure 10. Expression of p21WAF1/CIP1 in CaSki cells following E6 knock-down. 
Expression levels were determined relative to HPRT-1. Treatments were normalized to the 
media-only control. Previous work had demonstrated variable and non-significant p53 
restoration upon E6 knock-down. The levels of p21WAF1/CIP1 were undetectable in SiHa 
cells. Data represents the mean ± SD (n=3). 
 

3.1.4 MTT viability assay following E6 knock-down 

 MTT assays were performed on transfected cultures of CaSki and SiHa cells to 

assess changes in viability. In this respect, decreases in cell growth and/or increases in cell 
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death can be inferred from overall changes in viability. There was no significant difference 

between Rosetta DsiRNA treatment versus the C9/11 control (Figure 11).  

 

 
Figure 11. MTT viability assay of CaSki and SiHa cells transfected with DsiRNA. 
Cultures were seeded into 24-well plates and transfected with either Rosetta DsiRNA or 
C9/11 DsiRNA. The colorimetric assay was performed 48 hours later and absorbance was 
measured at 570 nm subtracting the background at 650 nm. There was no significant 
difference between Rosetta and DsiRNA treatment. Data represents the mean ± SD (n=4). 
 

3.1.5 Cell-cycle and apoptosis assays 

 Although no significant changes in cell viability were detected by the MTT assay, 

we sought to perform more sensitive experiments to assess apoptotic events and possible 

changes in cell-cycle. Additionally, we assessed cultures at both 48 and 96 hours after 

transfection. Transfected cultures were split equally between apoptosis assays and cell-

cycle analysis. Full cell-cycle results are shown in Figures A3 and A4. There were no 

significant differences between Rosetta and C9/11 treatments. In a subsequent analysis, a 

G1:S ratio was calculated to suggest whether or not cells were slowly accumulating in an 
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arrested state. A significant difference (P<0.05) was found between Rosetta DsiRNA and 

C9/11 control for CaSki 48 hours after treatment (Figure 12).  

 

 
Figure 12. G1:S ratio of CaSki and SiHa cells 48 hours after treatment with DsiRNA. 
The ratio of cell populations in the G1 phase versus S phase show a statistical difference 
between Rosetta and Control DsiRNA (P<0.05) at 5 nM and 10 nM Rosetta DsiRNA for 
CaSki. No statistical difference was found for CaSki at 96 hours, or SiHa at 48 and 96 
hours (data not shown). Data represents the mean ± SD (n=3). 
 

 When assessing apoptotic events, there were no significant differences between 

Rosetta and C9/11 DsiRNA treatments for early, late, and total apoptotic events, at 48 or 

96 hours, for either cell type. Data are illustrated in Figures A5-A8. 

 

3.1.6 Cell growth analysis 

 To assess changes in cell growth over a longer period, we transfected cultures 

periodically over several passages to observe changes in proliferation. This longer time 

interval can illustrate more minute changes that the previous assays cannot. This 

experiment was done in a single replicate (Figure 13). The growth curve suggests that the 

cells respond negatively to DsiRNA treatment, regardless of whether it was Rosetta or the 
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C9/11 control. 

 
Figure 13. Growth curve of CaSki and SiHa cells transfected periodically with 
DsiRNA. Cultures were transfected 24 hours after passaging. Transfection days are 
illustrated by a vertical dotted line. Cultures were transfected with 10 nM of Rosetta 
DsiRNA or C9/11 control (n=1). 
 

3.2 Results from creating patient-derived cervical keratinocyte cell cultures 

3.2.1 Phase I - methods for isolating and propagating cervical keratinocytes 

 Thirty biopsy specimens were acquired over a 7-month interval, from August 2016 

to March 2017. The Stanley (2002) method was used on the first 5 biopsies to validate our 

ability to process biopsy specimens. These samples however, yielded only sparse fibroblast 
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colonies. The modified Liu et al. (2016) method was used on the other 25 biopsy 

specimens. Initially, when colonies were established 4 or 5 days after biopsy processing, 

the media was switched to KGM containing 0.5% FBS. This resulted in significant 

fibroblast growth by the second or third week (Figure 14). Upon passaging one of these 

cultures, the cells adhered and slowly lifted over the course of 5 days, where the presence 

of serum was suspected to be a factor. Therefore, there were a total of 6 biopsies between 

the Stanley method and presence of serum for which a culture lifespan could not be 

determined. Of the remaining 24 biopsies acquired, the media was switched to serum-free 

KGM, instead of KGM-0.5% FBS, once the cell colonies were established following 

biopsy processing. Some of these cultures differentiated before passaging (n=4), whereas 

others were successfully passaged and continued to grow before differentiating (n=3). 

When using serum-free KGM, there were no further instances of keratinocytes lifting from 

the culture flasks, nor was there sustained fibroblast growth. 

 

Figure 14. Fibroblast contamination from cultures containing 0.5% fetal bovine 
serum in Keratinocyte Growth Medium. Fibroblast colony present at Day 15 in patient 
culture #44 (A). Fibroblast growth present near a proliferating keratinocyte colony at Day 
21 in patient culture #13 (B). Fibroblasts were identified by morphology. Scale bars 
represent 200 microns. 
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 Biopsy specimens varied considerably in size. The smallest specimens (6/25) were 

approximately 1 mm in all dimensions, and were too small to be minced with the curved 

iris scissors. The largest specimens (8/25) were roughly a uniform 4 mm across. Most of 

the specimens (11/25) were between these sizes, and were typically 2-3 mm wide and ~1-

2 mm in height and depth. This likely reflects the bite of the Tischler Morgan 3 mm x 7 

mm biopsy forceps, where the size varied by the ability of the physician to precisely sample 

the lesion. In turn, the smallest biopsy specimens would be from the very edge of a lesion 

(as the first and better biopsy taken was used for standard-of-care). There were notable 

differences in the ability to establish proliferative cultures from the various biopsy sizes 

(Table 2). The ability to establish cultures from biopsy specimens correlated with size. 

 

Table 2. Successful establishment of keratinocyte cultures from cervical biopsies. 
Larger biopsy specimens had a higher probability of producing proliferative cultures. Note 
that of 30 specimens acquired, 5 were used with the Stanley (2002) method and are not 
included in this chart. Nearly half of all specimens that yielded colonies did not proliferate 
(6 out of 14 total). Small biopsies typically represent those that were 1 mm x 1 mm x 2 mm 
or smaller, whereas large biopsies were uniform 3-4 mm specimens, and medium biopsies 
lie in between these dimensions, typically at half the size of a large biopsy. 

Relative biopsy 
size 

Number of 
biopsies 

Number yielding 
colonies with no 

growth 

Number yielding 
colonies with 

sustained growth 

Probability 
of growth 

Small 6 2 0  0% 

Medium 11 4 2 18% 

Large 8 0 6 75% 
 

 Differentiation was evident upon microscopic examination, as cultures would 

exhibit noticeably reduced growth (i.e. modest changes in confluency over the course of 

one week). Cells would then cease to proliferate and markedly increase in cross-sectional 
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area for approximately one or two more weeks (Figure 15). Therefore, lifespan was 

estimated retrospectively from the dates by which cells dramatically increased in size and 

had previously shown decreased proliferation. The median time to differentiation was 4 

weeks. Culture lifespan from actively proliferating cultures is depicted in Figure 16. A 

slight heterogeneity existed between proliferating and differentiated cultures between 

patients, as exemplified in Figure 17. Mainly, cultures may differentiate at varying sizes, 

though they still exhibited uniformly flattened keratinocytes with centred nuclei.  

 

Figure 15. Visible and progressive differentiation of keratinocytes from patient isolate 
#22. Keratinocytes are visibly proliferating up to Day 21 (A). Keratinocytes have modestly 
but homogeneously increased in their apparent size by Day 26 (B). Keratinocytes are no 
longer proliferating, cell nuclei become centred, and cell membrane begins to spread along 
the flask evenly around the cell by Day 34 (C). Cells have uniformly increased in size by 
Day 40 (D). Scale bars represent 200 microns. 
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Figure 16. Differentiation plot of keratinocytes grown from cervical biopsy specimens 
in vitro. Cultures were established from 7 of 24 biopsy specimens. The median 
proliferating culture established would differentiate by the fourth week. Image was 
generated in R version 3.2.2. 

 

 

 

 

 



46 

 

 

 

 

Figure 17. Modest variations between patients in phenotype of proliferating and 
differentiated keratinocytes. Cultures from patients #13 and #67 appear very similar in 
morphology between their respective proliferating and differentiated cultures. Proliferating 
keratinocytes in culture #96 appear normal, however the differentiated keratinocytes 
appear heterogenous in their apparent size. Scale bar represents 200 microns. 
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 Although the doubling time could not be accurately measured for most cultures, the 

approximate rate-of-change in confluency between cultures seemed to be similar, with an 

approximate doubling time between 2 and 3 days. This metric however, does not reflect 

the total number of cells that initiated the culture, and therefore does not reflect the total 

yield of cells acquired in vitro. A summary of biopsy metrics and final flask size is 

summarized in Table 3. Under these conditions, culture lifespan was the largest contributor 

to cell yield. Images of representative biopsy sizes are shown in Figure 18. 

 

Table 3. Summary of biopsy specimen metrics on size, lifespan, and total relative cell 
yield. Cultures were progressively scaled from T-12.5 flasks, to T-25 flasks, and 
subsequently T-75 flasks where they were maintained. Median culture lifespan was 4 
weeks. 

Patient Number Biopsy Size Culture Lifespan 
(Weeks) 

Order of Flask Size 
at Differentiation 

13 Large 4 T-25 
17 Large 4 T-12.5 
22 Medium 4 T-25 
28 Medium 8 T-75* 
59 Large 3 T-12.5 
67 Large 5 T-25 
96 Large 7 T-75* 

*Cultures were passaged once from the first T-75 flask but differentiated shortly thereafter, 
not substantially altering the total cell yield from the first T-75. 
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Figure 18. Images of biopsy specimens illustrating variations in size. Sizes of 
specimens differed markedly between patients, from small specimens ~ 1 mm x 1 mm x 1 
mm (A), medium specimens ~ 2 mm x 2 mm x 3 mm (B), and large specimens ~ 3 mm x 
3mm x 3mm (C).  
 
3.2.2 Phase II – increasing in vitro lifespan of cultures and organotypic raft construction 

 The cell culture media was switched from KGM to EpiLife media containing 

Human Keratinocyte Growth Supplement, as this formulation is rated to produce over 

twice as many population doublings (Li S et al., Cascade Biologics Inc). This increase in 

lifespan is attributed to the decreased Ca++ concentration, the presence of IGF-I instead of 

insulin, and an increase in the number organic components and inorganic salts. In addition, 

once cultures had been established from processed biopsies in the presence of 5% FBS, the 

media was switched to serum-free fully-supplemented EpiLife containing the ROCK 

inhibitor Y-27632, which inhibits differentiation of epithelial cells, increasing lifespan and 

potentially promoting immortalization (see 'Materials and Methods'). 

 Additional patient information was collected for the second phase of this study. 

Patients had their cervix swabbed for HPV typing, and their age and lesion grade was 

recorded. From the first phase of the study, it was also observed that some biopsy 

specimens would digest well with collagenase – where minced tissue fragments would 

digest into a visibly turbid cell suspension, and residual extracellular matrix would expand 
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and clump – while others would not digest at all with collagenase. This observation 

appeared to be correlated with establishing colonies and therefore, in the second phase it 

was noted whether each biopsy digested well or poorly as an additional parameter. Overall 

observations and results for establishing cultures are illustrated in Table 4. Interestingly, 

under these modified culture conditions, all instances where colonies were established from 

specimens yielded sustained cell growth. Cultures were established from 6 of 14 biopsy 

specimens (~43% efficiency). The average specimen in Phase II was also notably smaller 

than those in Phase I of this study. As biopsy size was correlated with efficiency in Phase 

I, this observation may suggest that our overall efficiency in establishing a proliferating 

culture was markedly improved by these new culture conditions. 

 There were two patient cultures that survived long enough to test cryogenic storage 

and have their doubling times accurately calculated via cell counts when passaging 

cultures. Cultures 3UI and AV6 both survived storage in liquid nitrogen with high re-

adherence rates. Culture 3UI possessed a doubling time of ~30 hours, and culture AV6 

possessed a doubling time of ~24 hours. The median culture lifespan in the second phase 

of this study was 4.5 weeks. Therefore, our modifications to the cell culture media have 

effectively reduced doubling time without significantly altering temporal in vitro lifespan. 
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Table 4. Summary of biopsy parameters, patient information, and culture growth. 
Biopsy size and visible digestion were noted on the day of sample processing. Patient's 
age, HPV type(s), and lesion grade were recorded. Culture lifespan was measured as 
previous, to time of differentiation. Cultures were established in T-12.5 flasks and scaled 
up T-25 flasks, then to T-75 flasks before consecutive passaging in T-75 flasks, were each 
passage seeded at 10% confluence. Median in vitro lifespan was 4.5 weeks. 

Sample 
Identifier 

Biopsy 
Size 

Digestion Patient 
Age 

(Years) 

HPV 
Type(s) 

Lesion 
Grade 

Lifespan (weeks) / Flask 
Scaling & Passage 

M33 Medium Poor 56 39 * - 
UB1 Small Poor 27 45,59 I - 
8N8 Small Poor 24 16 III - 
QA7 Small Poor 35 45 Neg. - 
A1U Large Good 25 6 I 5 / T-75 (P2) 
LY2 Medium Poor 23 53,66 I - 
HL7 Medium Poor 29 45 III - 
IW9 Small Good 32 16 II-III 5 / T-75 (P2) 
78I Small Poor 22 52,82,89 Neg. 4 / T-25 

V7V Small Poor 69 16,90 Neg. - 
3UI Medium Good 36 31,45,89 II 6 / T-75 (P7) 
04P Medium Good 23 51,54,81 I 4 / T-25 
R41 Small Poor 54 58 Neg. - 
AV6 Medium Good 27 16 II 4 / T-75 (P6) 

*Patient presented with metaplasia 
 
 

 When assessing the parameters of successfully established cultures, several trends 

emerge. Firstly, most patients are in their mid-twenties to mid-thirties, which is a narrow 

range for identifying correlations with age. Secondly, there was no obvious correlation with 

lesion grade or the presence of high-risk HPV types in an established culture: only 1 of 3 
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CIN III lesions were successfully cultured, and only 3 of 8 specimens that contained high-

risk HPVs (i.e. 16, 18, 31, and/or 45) were successfully cultured; while 2 of 4 CIN I lesions, 

and 1 of 4 CIN negative lesions were successfully cultured. The two cultures that were 

passaged the longest were isolated from CIN II lesions, suggesting that lesion grade also 

does not predict in vitro proliferative capacity. These parameters however, may be masked 

by the importance of biopsy size, or other parameters. Only 2 of 7 small biopsies yielded 

cultures, while 3 of 6 medium and 1 of 1 large biopsies yielded cultures. The first phase of 

this study, which showed biopsy size was the biggest correlate; had fewer small biopsies. 

Lastly, tissue digestion and visible turbidity appeared to be strongest correlate in ‘Phase 

II’, where 5 of 5 well-digested biopsies yielded cultures, and only 1 of 9 poorly digested 

samples yielded a proliferating culture. 

 For all proliferating cultures, we intended to generate organotypic raft cultures in 

triplicate as soon as reasonably possible, given that we did not know when cultures would 

reach their lifespan, or whether they would survive cryogenic storage in liquid nitrogen. 

This meant generating rafts from near-confluent T-25 flasks, or sufficiently confluent T-

75 flasks. All of these cultures were tested for Mycoplasma indirectly using the J2 

fibroblast cell line as an indicator. All cultures tested negative for Mycoplasma under these 

parameters (Figure 19).  
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Figure 19. Fluorescent images of DAPI-stained J2 fibroblasts treated with 
conditioned media from patient-derived keratinocyte cultures. Fibroblasts were grown 
in the presence of conditioned media for 3 days. Images showing samples 3UI (A), 04P 
(B), 78I (C), A1U (D), IW9 (E), and Untreated J2 fibroblasts (F). Images taken at 200X 
magnification. 
 
 
 
 When seeding keratinocytes onto dermal equivalents, the relative size of the 

keratinocytes was noted from the TC-10TM Cell Counter. Typically, keratinocytes from 

patients or commercial sources were homogeneously between 16 and 18 µm in diameter 

while actively proliferating. When cells were beginning to differentiate, a discrete 

proportion of the population would exist between 22 to 24 µm. For example, when 30-50% 

of the cells were 22-24 µm, the culture would differentiate on the current passage when re-

seeded. This observation held true for all cultures in the second phase. The proportion of 

small-to-large cells was recorded upon passaging to note when cultures would differentiate. 

At the time of raft culture, it was noted for patient cultures A1U, IW9, and 78I, that one-

third of the population existed at 22-24 µm, and 04P was one-half 22-24 µm; illustrating 

that these cultures were near their in vitro lifespan at the time they were seeded onto dermal 

equivalents. Indeed, the remaining cell suspension (i.e. in excess from seeding for raft 
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cultures) were re-seeded back into monolayer culture, and differentiated without further 

passaging. Culture 3UI was the only sample that was homogeneously small (i.e. 16-18 µm) 

at the time of 3D culturing. 

 Raft cultures were created in technical triplicates when keratinocyte numbers 

permitted (i.e. A1U, 04P, 3UI, IW9) and duplicate when cell numbers were limiting (i.e. 

78I). We proceeded with raft culturing as described (see ‘2.2.6 Construction of organotypic 

raft cultures’), and cultures were maintained at the air-liquid interface for 14 days. Raft 

cultures were then formalin-fixed and sent to Pathology Services at TBRHSC for paraffin-

embedding, slide preparation, and H&E staining. The resulting representative H&E images 

are illustrated in Figure 20. From the representative images, it appeared that much of the 

epidermis was sloughed off during processing. Similarly, as all of the samples – other than 

3UI – grew rather poorly, it seems these 3D cultures were significantly affected by the fact 

that the keratinocytes had nearly reached their in vitro lifespan. Interestingly, although IW9 

did not yield much epidermis, regions that were akin to epithelial invasion of the dermis 

were visible in all technical replicates (Figure 21). These events were not evident in any 

of the other organotypic raft cultures. 
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Figure 20. H&E images of organotypic raft cultures grown using patient-derived 
cervical keratinocytes. Dermal equivalents were prepared with type-IV rat tail collagen 
and human neonatal foreskin fibroblasts. After 24 hours, keratinocytes were seeded on top 
and incubated for 2 days. The rafts cultures were then lifted and cultured at air-liquid 
interface for 14 days before formalin fixation. Formalin-fixed raft cultures were paraffin-
embedded and 4 µm sections were prepared for H&E staining. Stained sections did not 
visibly differ between technical replicates. Scale bars represent 200 microns. 
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Figure 21. Organotypic raft culture using IW9 keratinocytes showing possible 
invasion events. Keratinocyte culture IW9 is derived from a CIN II-III lesion that tested 
positive for HPV 16. Possible instances of keratinocyte invasion of the dermis are indicated 
by red arrows. This possible invasion was evident in all technical replicates (A, B, and C). 
Scale bars represent 100 microns. 
 

Given that 3UI appeared to be the most successful 3D culture, even though it still 

experienced significant dermal detachment and poor keratinocyte growth around most of 

the raft, we questioned whether altering the media formulation or rafting conditions could 

improve epithelial growth. As EpiLife is a richer medium than FAD, we reasoned that 

keratinocytes may have a reduced growth rate when switched to FAD medium. Therefore, 

EpiLife media was prepared with the differentiation components of FAD media, in the 

hope that this richer formulation would sustain keratinocyte growth. Additionally, some 

protocols call for 'raft-wetting' where the rafts are periodically wet with media to simulate 

the wetting of the mucosa. Twelve rafts were prepared using 3UI: six with FAD media and 

six with EpiLife-Differentiation media, 3 with wetting and 3 without wetting for each 

media. All four conditions yielded similar results (Figure 22), with limited epithelial 

growth. Notably, these rafts yielded less epithelial growth than previously created rafts. 

The cells used in this trial were of two passages higher and had been retrieved from 

cryogenic storage which may have affected the results. 
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Figure 22. H&E images of organotypic raft cultures of 3UI. Organotypic rafts were 
created in triplicate using FAD media with (A) and without wetting (B) rafts with media, 
as well as EpiLife formulated to simulate FAD with (C) and without (D) wetting. Scale bar 
represents 200 microns. 
 

4. Discussion 

4.1 Downstream effects of E6 knock-down 

In this study, we found minimal downstream effects resulting from E6 knock-down 

on the cell lines CaSki and SiHa, even though our level of knock-down similar to literature 

(Jiang and Milner, 2002; Leitz et al., 2014; Khairuddin et al., 2014). Given that p53 

restoration had been shown to be quite variable, it is unsurprising that p21WAF1/CIP1 levels 

are unrestored, or that there are no measurable changes in apoptosis.  

Importantly, targeting the E6 splice site with RNAi seemed to preserve E7 
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expression as hoped, substantiating the rational design of this oligonucleotide. 

Interestingly, even though E6 levels were measurably decreased, there was no reduction in 

hTERT levels. It may be that hTERT levels would decrease at a different time point, or 

that only low levels of E6 are required to saturate hTERT transcription. 

It is unclear why these cell lines seem to respond poorly to RNAi. It may be that 

these cell lines have adapted to their in vitro culture conditions since their founding (Friedl 

et al., 1970; Pattillo et al., 1977), perhaps undergoing epigenetic or karyotypic changes that 

have selected for quickly diving cells in vitro. For these reasons, there are significant merits 

to developing new patient-derived cell lines. 

 

4.2 Processing biopsy specimens 

 In this study, we utilized a slightly modified version of the Liu et al. (2016) method 

to process biopsy specimens. Briefly, after coating tissue culture flasks with type I 

collagen, we added pure FBS to the coating in the hopes that growth factors, cell adhesion 

molecules, or other signalling and mitogenic factors from the serum would adhere to the 

collagen-coating, and thus the tissue culture flask. These factors in turn, would help 

mediate the adaptation of cells to monolayer culture, after being liberated from biopsy 

specimens. In Liu et al. (2013) it was found that the presence of serum in the media greatly 

increased the adhesion of tissue-liberated keratinocytes to the culture flask, with or without 

the presence of a collagen coating. We also reasoned that since the explant methodology 

of Stanley (2002) minces tissue fragments and adheres them to culture flasks in pure FBS, 

that FBS itself may act as a flask coating and facilitate the adaptation of cells to monolayer 

culture. During the course of experimentation, it was noted that while most of the colonies 
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established from processed biopsies existed as monolayer cells, some colonies were 

initiated as tissue fragments fused to the culture flask (Figure A9). This indicates that 

although digestion with collagenase does liberate individual cells, it also facilitates the 

transfer of these 'micro' explant fragments into culture. Thus, minced biopsy specimens 

that are subsequently digested with collagenase should not be treated as single-cell 

suspensions, as this may contribute to cell losses. 

 One hurdle in the establishment of monolayer cultures from epithelial biopsy 

specimens is the significant potential for microbial contamination. The Liu et al. (2013) 

method did not indicate the number of hysterectomies acquired, nor whether any of the 

cultures were contaminated once cultures were established. The Liu et al. (2016) study 

however, acquired only six biopsy specimens total, and indicated no instances of 

contamination. For the vaginal and oral tract, the most significant sources of contamination 

are yeast, Gram negative bacteria, and potentially Mycoplasma (Stanley, 2002). Indeed, 

Schweinfurth et al. (2006) reported that bacterial overgrowth was a significant hurdle in 

their initial protocol to establish epithelial cell cultures from upper respiratory epithelium, 

though the details surrounding this contamination are not indicated. Interestingly, 

Rheinwald and Beckett (1981) acquired 22 biopsy specimens from the tongue and pharynx 

of different patients, where 7 became contaminated with yeast despite the fact that 

specimens were transported and rinsed with media containing amphotericin b 

(concentration not indicated) – the main antifungal agent used in tissue culture. Stanley 

(2002) recommends using amphotericin b at concentrations of 5-10 µg/ml for transport 

media and buffered saline washes, which was also reported as the method in Liu et al. 

(2013). We utilized amphotericin b at a concentration of 5 µg/ml in both the transport 
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media and DPBS washes of specimens, and experienced no instances of yeast 

contamination. Amphotericin b interacts with ergosterol in the membrane of fungi, forming 

a channel for monovalent ions. This altered membrane permeability leads to cell death, but 

in the presence of ideal carbon sources and sufficient nutrients, fungi – yeast in particular 

– can counteract the effects of lower amphotericin b concentrations (Bolard et al., 1993). 

We used 20X antibiotic/antimycotic specifically to reach the concentration of 5 µg/ml; and 

as this also yielded a penicillin concentration of 2,500 units/ml and a streptomycin 

concentration of 2.5 mg/ml, we had no instances of bacterial growth. Unfortunately, none 

of these publications reported the Mycoplasma status of established cultures. Mycoplasma 

is inherently resistant to penicillin antibiotics as they possess no peptidoglycan cell wall, 

but some species are susceptible to streptomycin as it binds to the 30S ribosomal subunit 

thereby inhibiting protein translation. We chose to add gentamicin to transport media and 

DPBS washes, which also interacts with the 30S ribosomal subunit, but has a more broad-

spectrum activity against Mycoplasma than streptomycin (Taylor-Robinson and Bebear 

1997), has a stronger bactericidal (as opposed to bacteriostatic) activity, and possesses a 

lower effective concentration than streptomycin in cell culture (Fischer, 1975). Though we 

did not test cultures for Mycoplasma in 'Phase I' of this study, we found no evidence of 

Mycoplasma contamination when testing the established keratinocyte cultures from 'Phase 

II'. Therefore, it would seem our antimicrobial cocktails and experimental protocols have 

avoided contamination issues that were present in many other studies. 

 

4.3 Efficiency in establishing cell cultures, and culture lifespan 

 In 'Phase I' of this study, we aimed to employ our slightly modified Liu et al. (2016) 



60 

 

method to evaluate the efficiency of establishing keratinocyte cultures from biopsy 

specimens, and to assess their in vitro lifespan. The aim of this study was to determine 

whether we could establish cultures frequently enough and with a sufficient lifespan for 

further downstream experimentation (e.g. Western blot analysis, RNA extraction and 

qPCR, organotypic raft cultures, etc.). Interestingly, our results were nearly identical to 

Schweinfurth et al. (2006) who reported an efficiency of ~32% (n=7 of 22 biopsies) 

compared to our ~32% (n=8 of 25), and reported an average lifespan of 30 days in culture, 

compared to our 4 weeks. Additionally, their longest culture lasted 60 days, whereas ours 

grew for 8 weeks. Despite this similarity, it is important to note that these metrics do not 

truly reflect the overall population doublings in either case, and this result is only 

comparable if the doubling time is similar between our cultures and those of Schweinfurth 

et al. (2006) – which they did not report. Schweinfurth et al. (2006) also acquired their 

specimens from the oropharynx and established their cultures in NIKS medium, rather than 

a serum-free keratinocyte growth media. Therefore, it is difficult to confidently make 

comparisons between these different experimental conditions. For our 'Phase I' study 

however, it is important to note that larger biopsy specimens had a greater probability of 

establishing a culture, which added a predictive factor to our methods. 

 When establishing normal cervical keratinocyte cultures from hysterectomies, Liu 

et al. (2013) reported a maximum in vitro lifespan of approximately 6 weeks: 2 weeks to 

establish cultures in T-25 flasks, and one week between passages. Importantly, subsequent 

passages were seeded at a 1:2 ratio from the previous passage, indicating a long doubling 

time. Similar results were achieved when culturing keratinocytes from CIN biopsy 

specimens, wherein cultures could again be passaged 1:2 up to four times (Liu et al., 2016). 
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Our 'Phase I' results seem comparable with this, but somewhat more variable: of 7 

proliferating cultures, 2 differentiated in the first T-12.5 flask, 3 differentiated in the first 

scale-up to a T-25, and 2 managed to be scaled up to a T-75 and passaged onto a second 

T-75. These results could be accounted for by biopsy size between research groups, slight 

methodological differences, or perhaps simply due to our larger sample size. 

 Though we felt our methodology was firmly established and our results reflected 

that of literature, we sought to improve culture conditions with the aim of increasing in 

vitro lifespan. We changed our culture media to EpiLife supplemented with HKGS, as this 

commercial media is rated for over twice as many population doublings versus 

conventional keratinocyte growth media (Li S et al., Cascade Biologics Inc). In addition, 

we added the ROCK inhibitor Y-27632, as this chemical inhibitor increases the in vitro 

lifespan of epithelial cells. In our method, the ROCK inhibitor was added after cultures 

were established in the presence of 5% FBS. This is because Y-27632 increases the growth 

rate of primary fibroblasts (Piltti et al., 2015), and could potentially increase fibroblast 

contamination when establishing keratinocyte colonies from the processed biopsy 

specimens. In the presence of J2 feeders, ROCK inhibition is also capable of immortalizing 

primary epithelial cells, and has been employed for generating primary breast and prostate 

cell lines (Gil et al., 2005), as well as keratinocytes (Chapman et al., 2011). For normal 

keratinocytes, ROCK inhibition alone increases total population doublings in vitro 

(Strudwicket al., 2015), and when combined with constitutive Myc or E6 expression, 

ROCK inhibition can immortalize keratinocytes. Although it is not fully understood, 

ROCK inhibition facilitates immortalization by reducing apoptosis and differentiation, in 

part by decreasing the expression of p53 target genes (Dakic et al., 2016). Therefore, we 
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hypothesized that ROCK inhibition should not only increase culture lifespan, but it may 

permit the immortalization of HPV-infected keratinocytes – as long as they continue to 

stably express E6. Despite this rationale, we did not obtain any immortalized cultures via 

this method. Additionally, keratinocyte subcultures recovered from cryopreserved stocks 

survived for just as many population doublings as their unpreserved counterparts (data not 

shown), suggesting that in vitro lifespan may be predetermined under these culture 

conditions. Interestingly, while the median lifespan, in weeks, remains largely unchanged, 

the switch to EpiLife containing Y-27632 drastically reduced the doubling time of 

keratinocytes, by roughly one half. Therefore, a subset of our established cultures 

proliferated for enough time – and with sufficient flask size-scaling – to yield ample cell 

numbers for downstream experimentation. Indeed, two cultures, AV6 and 3UI, reached 

passage numbers similar to that of commercially acquired keratinocytes. Interestingly, the 

patient information we acquired – age, lesion grade, and HPV type(s) – offered no real 

predictive value in establishing a proliferating culture. The biopsy size, and whether the 

biopsy was susceptible to collagenase digestion (i.e. yielding a turbid digest) were the most 

notable predictors of establishing cultures. 

 Although it was not tested in this study, future experiments should attempt to utilize 

J2 feeder layers in combination with Y-27632 to immortalize patient-derived keratinocyte 

cultures. The most prominent hurdle in utilizing feeders is the significant potential for 

fibroblast contamination. In this study, serum-free conditions drastically reduced the 

proliferation of residual fibroblasts; however, they were still visibly present in freshly 

established keratinocyte cultures. It was also evident that EpiLife increased fibroblast 

growth as compared to KGM, as it is a richer medium. We anticipate that residual 
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fibroblasts likely exist as a small percentage of the culture population for at least the first 

few passages. In two patient cultures, it was noted that the reintroduction of serum to less 

than 0.01% in an EpiLife background resulted in a rapid regrowth of fibroblasts (Figure 

A10). As standard feeder layers require serum, impure keratinocyte cultures remain the 

most prominent hurdle for immortalizing keratinocytes with feeders. It may be possible to 

serially dilute keratinocytes onto feeder layers to phase out their presence, or alternatively, 

cultures may need to be passaged several times before feeder layers can be introduced. 

Ideally, feeder layers and Y-27632 would be introduced as early as possible to ensure the 

long-term retention of patient cultures, and avoid the loss of otherwise successfully 

established cultures that possess too short a lifespan for experimental purposes. 

 

4.4 Organotypic raft culturing 

 In this study, we were unable to fully develop a raft protocol for these patient 

derived cell lines. In most instances, it appeared that the cultures had met their in vitro 

lifespan, as indicated by cell sizes and subsequent differentiation. Use of feeder-layers with 

Y-27632 may address this issue by conditionally immortalizing cells. Despite using the 

long-lived isolates for further method development, we were unable to achieve 

stratification. This result is in stark contrast to other cell lines and medias, where we have 

successfully grown raft cultures using primary human foreskin keratinocytes, NIKS 

immortalized keratinocytes (Jackson et al., 2014), and gingival keratinocytes – all of which 

where grown in different culture media prior to raft construction (data not shown). 

 It is interesting to note that there appeared to be invasion on patient culture IW9. 

This patient was shown to have an HPV16 positive, CINII-III lesion and is the highest 
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grade lesion we were able to establish a culture from in the second phase, and margins that 

resembled invasion were evident in all technical replicates. 

 

4.5 Future work 

 Future work should test different media formulations for raft cultures. Biomarkers 

relating to differentiation (eg. K5, K10, K14), as well as clinical markers relating to lesion 

grade (eg. p16INK4a, TOPO2a, MCM2) should be assessed, which may be corroborated both 

in the patient’s histology, and in the patient-derived raft in vitro. Eventually, patient-

derived raft cultures could be used to test novel therapeutics. Lechanteur et al. (2017) 

utilized lipid nanoparticles containing E7-targeting siRNA to treat raft cultures in vitro. 

Working with immortalized cell lines, Lechanteur et al., (2017) performed IHC on raft 

sections to stain for cell-cycle and apoptosis markers. In future work – with established 

methods for generating patient-derived raft cultures – it may be possible to test E6-targeting 

DsiRNA on patient-specific rafts, as a novel approach towards personalized medicine. 
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Appendix 

 

 
Figure A1. Screenshot of dot plot following Annexin V-FITC and propidium iodide 
staining for apoptosis analysis. Data was analyzed in Flowing Software 2.0 and statistical 
summaries were exported and analyzed in R (performed by Robert Jackson). 
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Figure A2. Screenshot of workflow and histogram used in cell-cycle analysis. Data was 
analyzed in Flowing Software 2.0 and statistical summaries were exported and analyzed in 
R (performed by Robert Jackson). 
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Figure A3. Cell-cycle analysis of CaSki and SiHa 48 hours after transfection. Cultures 
were transfected with Rosetta DsiRNA or C9/11 DsiRNA control and harvested 48 hours 
later. Cells were stained with propidium iodide for flow cytometric analysis of cell cycle. 
No significant differences in cell-cycle phases was found between Rosetta and C9/11 
controls. Data represent mean ± SD (n=3). 
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Figure A4. Cell-cycle analysis of CaSki and SiHa 96 hours after transfection. Cultures 
were transfected with Rosetta DsiRNA or C9/11 DsiRNA control and harvested 96 hours 
later. Cells were stained with propidium iodide for flow cytometric analysis of cell cycle. 
No significant differences in cell-cycle phases was found between Rosetta and C9/11 
controls. Data represent mean ± SD (n=3). 
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Figure A5. Flow cytometry analysis of apoptotic events in CaSki at 48 hours. Cultures 
were treated with Rosetta or C9/11 DsiRNA. Apoptosis was measured using Annexin V – 
FITC and propidium iodide. No statistical changes in apoptosis were found for early (A), 
late (B), or total (C). Data represent mean ± SD (n=3). 
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Figure A6. Flow cytometry analysis of apoptotic events in SiHa at 48 hours. Cultures 
were treated with Rosetta or C9/11 DsiRNA. Apoptosis was measured using Annexin V – 
FITC and propidium iodide. No statistical changes in apoptosis were found for early (A), 
late (B), or total (C). Data represent mean ± SD (n=3). 
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Figure A7. Flow cytometry analysis of apoptotic events in CaSki at 96 hours. Cultures 
were treated with Rosetta or C9/11 DsiRNA. Apoptosis was measured using Annexin V – 
FITC and propidium iodide. No statistical changes in apoptosis were found for early (A), 
late (B), or total (C). Data represent mean ± SD (n=3). 
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Figure A8. Flow cytometry analysis of apoptotic events in SiHa at 96 hours. Cultures 
were treated with Rosetta or C9/11 DsiRNA. Apoptosis was measured using Annexin V – 
FITC and propidium iodide. No statistical changes in apoptosis were found for early (A), 
late (B), or total (C). Data represent mean ± SD (n=3). 
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Figure A9. Keratinocyte colonies seeded by fragments of partially digested tissue. 
Partially digested tissue fragments seed colonies in some patients (A and B), behaving as 
pseudo-explant cultures. Scale bar represents 200 microns.  
 
 

 
Figure A10. Fibroblast regrowth after the re-introduction of serum in the presence of 
EpiLife. Cultures were reseeded into EpiLife with Y-27632, from a 10 µl of cells 
suspended in NIKS medium, leftover from seeding raft cultures. At a final concentration 
of <0.01% FBS, fibroblasts regrew within a week. Colony of fibroblasts amongst 
differentiated keratinocytes from A1U (A) and fibroblast confluence in IW9 (B). Scale bar 
represents 200 microns.  


