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ABSTRACT 

Among many endogenous substances that regulate hepatic energy production is the 

gasotransmitter hydrogen sulfide (H2S).  In the liver, H2S production is largely catalyzed by 

cystathionine γ-lyase (CSE) and, to a lesser degree, by cystathionine β-synthase.  We previously 

showed that H2S stimulates glucose production in an immortalized carcinoma liver cell line 

(HepG2 cells) as well as induce ATP generation in isolated vascular smooth muscle cells 

(VSMCs).  Furthermore, we found that H2S upregulates peroxisome proliferator-activated 

receptor-γ coactivator (PGC)-1α expression in rat VSMCs.  PGC-1α is a crucial regulator of 

hepatic gluconeogenesis and mitochondrial biogenesis.  Both of these PGC-1α-mediated energy 

processes are pivotal to maintain whole-body energy homeostasis, whereby their sustained 

disturbance may lead to the development of type 2 diabetes and metabolic syndrome.  Therefore, 

we investigated the regulation of gluconeogenesis and mitochondrial biogenesis by CSE-

generated H2S under physiological conditions in isolated mouse hepatocytes.   

We found that CSE-knockout (KO) mice had a reduced rate of gluconeogenesis, which 

was reversed by administration of NaHS (an H2S donor) (i.p.).  Interestingly, isolated CSE-KO 

hepatocytes exhibited a reduced glycemic response to chemical-induced activation of the 

cAMP/PKA and glucocorticoid pathways compared to wild-type (WT) hepatocytes.  Treatment 

with the inhibitors for PKA (KT5720) or glucocorticoid receptor (RU-486) significantly reduced 

H2S-stimulated glucose production from both WT and CSE-KO mouse hepatocytes.  NaHS 

treatment upregulated the protein levels of key gluconeogenic transcription factors, such as PGC-

1α and CCAAT-enhancer-binding proteins-β (C/EBP-β).  Moreover, exogenous H2S augmented 

the S-sulfhydration of the rate-limiting gluconeogenic enzymes and PGC-1α and increased their 

activities, which were lower in untreated CSE-KO hepatocytes.  Finally, knockdown of PGC-1α, 
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but not C/EBP-β, significantly decreased NaHS-induced glucose production from the primary 

hepatocytes.     

After determining that H2S stimulates hepatic glucose production through the PGC-1α 

signaling pathway, we focused on whether or not H2S induces hepatic mitochondrial biogenesis.  

We found that CSE-KO hepatocytes produced less mtDNA compared to WT hepatocytes.  

Mitochondrial content was decreased in CSE-KO hepatocytes compared to normal hepatocytes, 

which was restored with NaHS treatment.  CSE-KO hepatocytes exhibited lower levels of 

mitochondrial transcription factors and the mitochondrial transcription coactivator, peroxisome 

proliferator-activated receptor-γ coactivator-related protein (PPRC) compared to WT 

hepatocytes.  Interestingly, NaHS administration upregulated PPRC, yet downregulated PGC-1β 

protein level in mouse hepatocytes.  Moreover, exogenous H2S induced the S-sulfhydration of 

PPRC, which was lower in untreated CSE-KO hepatocytes, but not that of PGC-β.  Finally, 

knockdown of either PGC-1α or PPRC significantly decreased NaHS-stimulated mitochondrial 

biogenesis in hepatocytes, where knockdown of both genes were required to completely abolish 

NaHS-induced mitochondrial biogenesis.  

Overall this thesis demonstrates the stimulatory effect of endogenous H2S on liver 

glucose production and reveals four underlying mechanisms.  1) H2S upregulates the expression 

levels of PGC-1α and PEPCK via glucocorticoid receptor pathway.  2) H2S upregulates the 

expression level of PGC-1α through the activation of the cAMP/PKA pathway, as well as PGC-

1α activity via S-sulfhydration. 3) H2S upregulates the expression and the activities (by S-

sulfhydration) of G6Pase and FBPase. 4)  H2S augments the protein expression level and activity 

(via S-sulfhydration) of PPRC.  By stimulating the combined activities of PPRC and PGC-1α, 
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H2S induces mitochondrial biogenesis, thereby supplying energy to support its induction of 

hepatic glucose production.   

This study may offer clues to the regulation of hepatic energy homeostasis under 

physiological conditions and its dysregulation in insulin-resistance diseases.  
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1.0  Glucose homeostasis 

Our body strives to maintain our blood sugar level in the physiological range of 3.8-5.5 mM (1), 

which will rise and fall depending on diet and daily activities.  Glucose in the bloodstream either 

comes from dietary sources or from glycogen breakdown (glycogenolysis) and/or de novo 

synthesis of glucose (gluconeogenesis) where both glycogenolysis and gluconeogenesis occur in 

the liver.  Glucose is the most efficient and abundant energy substrate for mammalian cells, 

fueling numerous physiological functions, including cell proliferation and growth, protein and 

nucleic acid synthesis, fatty acid, and cholesterol synthesis, etc.  This monosaccharide is used to 

produce ATP, the energy currency of the cell, via oxidative phosphorylation (in the 

mitochondria) and, to a lesser degree, anaerobic glycolysis (in the cytosol).  Needless to say, 

glucose homeostasis is critical to maintaining the physiological function of our body, whereby its 

sustained disturbance may lead to the development of metabolic syndrome. 

 

1.1 The impact of nutritional status on hepatic glucose metabolism 

1.1.1. Immediately after consuming a meal (fed state) 

The liver plays a fundamental role in whole-body glucose homeostasis.  After a meal, the 

ingested nutrients absorbed from the gastrointestinal (GI) tract pass through the portal vein and 

enters the liver before entering the systemic circulation (2).  In fact, the liver is a crucial player in 

regulating oral glucose tolerance.  With the help of insulin, the liver removes the ingested 

glucose from the bloodstream to stabilize the rise in blood glucose level after a meal (2).  

Furthermore, when nutrients are not being absorbed from the GI tract, an increase of hepatic 

glucose production is required to meet the body’s need for glucose to avoid hypoglycemia (low 

blood sugar level).  Therefore, depending upon the concentration of the blood sugar level, the 
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liver alternates from a net consumer to a net producer of glucose to maintain whole-body glucose 

homeostasis. 

1.1.1.1  Insulin-facilitated glucose utilization 

Circulating glucose is recognized by and transported (via glucose transport machinery) into the 

liver, pancreas, skeletal muscle, and adipose tissues (Figure 1-1). These organs and tissues have 

their own characteristic patterns of metabolism and use glucose-derived metabolites or hormones 

as a means to communicate with each other.  This complex, interconnected network is critical to 

maintain tissue-specific metabolic needs and to balance our blood sugar level. 

 For instance, after ingestion of a meal, plasma glucose level will spike which stimulates 

pancreatic β-cells to secrete insulin into the bloodstream (3).  Insulin stimulates the uptake and 

utilization of glucose in the skeletal muscle, which burns glucose to meet its metabolic need, as 

well as in adipose tissue, which stores glucose to synthesize fat.  The liver also responds to 

insulin signaling by absorbing glucose from the circulation and converting it into energy storage 

molecules (glycogen and fat).  In fact, the liver is the major organ responsible for glucose 

production and its release into the circulation, via glycogenolysis and gluconeogenesis (discussed 

in section 1.1.2.1).  To prevent the additional release of hepatic glucose into the bloodstream, 

insulin inhibits glycogenolysis and gluconeogenesis.  Insulin secretion will continue until the GI 

tract completely absorbs the dietary nutrients and plasma glucose level is once again within the 

3.8-5.5 mM range. 
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Figure 1-1: The interconnected network of insulin-sensitive tissues working synergistically 
to maintain glucose homeostasis after a meal.  Adopted and modified from Kleinridders et al. 
(2009) (3). 
 

1.1.1.2  Mechanism of insulin secretion 
 

Insulin is a critical hormone used to lower blood glucose level.  Therefore, the pancreas must 

respond appropriately to glucose fluctuations in the bloodstream to maintain glucose 

homeostasis.  The first step in insulin secretion is the transportation of glucose into the pancreatic 

β-cell via glucose transporter (GLUT) 2 (4).  Once inside, the glucose molecule is 

phosphorylated, yielding glucose-6-phosphate, which effectively traps glucose inside the β-cell.  

As glucose metabolism proceeds and more glucose enters the pancreatic β-cell, more ATP is 

produced in the mitochondria.  As a result, this increases the ATP:ADP ratio that consequently 

closes the ATP-gated potassium channels in the β-cell membrane; thus preventing positively 
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charged potassium ions from leaving the cell. The rise in the positive charge inside the β-cell 

results in membrane depolarization, which then causes the voltage-gated calcium channels to 

open, allowing calcium ions to flow into the cell. Whereby, finally, the increase in intracellular 

calcium concentration triggers the release of insulin (via exocytosis) from the pancreatic β-cell 

(Figure 1-2). 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Glucose-stimulated insulin secretion from pancreatic β-cell.   1)  Glucose enters 
pancreatic β-cell via glucose transporter (GLUT) 2.  2)  Glucose metabolism increases the 
ATP:ADP ratio that (3) closes the ATP-gated potassium channels in the β-cell membrane, 
preventing positively charged potassium ions (K+) from leaving the cell. 4) The increased 
positive charge inside the β-cell results in depolarization along its membrane, thus (5) opening 
the voltage-gated calcium channels, allowing calcium ions (Ca2+) to enter the cell. 6) Increased 
intracellular Ca2+ concentration stimulates insulin exocytosis from the pancreatic β-cell.  Kir:  
inwardly rectifying K+ channel; SUR: sulfonylurea receptor.  Adopted and modified from Fu et 
al. (2013) (4). 

 
1.1.1.3  Actions of insulin on hepatocytes 

The liver is the first organ to encounter the inflow of blood from the pancreas, via the portal vein 

(2).  Consequently, the liver is exposed to considerably higher levels of pancreatic hormones (i.e. 
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insulin and glucagon) compared to other organs in the systemic circulation (2).  The positioning 

of the liver to encounter more endocrine hormones released from pancreatic islets is strategic 

since glucagon primarily acts on hepatocytes to increase glucose production (via glycogenolysis 

and gluconeogenesis), whereas insulin counteracts the actions of glucagon on hepatocytes via 

inhibiting these glucose production mechanisms (as discussed below).  Incredibly, ~60% of 

secreted insulin binds to hepatocyte insulin receptors, meaning that the liver is exposed to plasma 

insulin concentrations ~3-fold higher compared to other insulin-sensitive tissues in the body (2). 

 Upon binding to its receptor on hepatocytes, insulin activates the insulin receptor 

substrate (IRS)-phosphatidylinositol 3-OH kinase (PI3K) pathway.  The PI3K pathway mediates 

insulin suppression on both glycogenolysis and gluconeogenesis processes.  Accordingly, PI3K 

activates phosphoinositide-dependent kinase-1, which then phosphorylates the serine/threonine 

kinase AKT.  Now, the pivotal point of insulin-mediated suppression of hepatic glucose 

production comes when AKT directly phosphorylates the transcription factor forkhead box O1 

(FOXO1).  This phosphorylation event causes FOXO1 to exit the nucleus, which consequently 

terminates the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α-mediated 

induction of the major gluconeogenic enzymes, such as phosphoenolpyruvate carboxykinase 

(PEPCK), fructose-1,6-bisphosphate (FBPase), and glucose-6-phosphatase (G6Pase). 

Furthermore, Akt also phosphorylates PGC-1α itself which increases PGC-1α protein 

degradation (5).  Since the hepatic PGC-1α transduction pathway is abnormally stimulated in 

type 2 diabetes mellitus (T2DM) (discussed in Section 4.1.2), the AKT-FOXO1-PGC-1α 

mechanism is intensively studied and manipulated in insulin-resistant models, in the hopes of 

restoring and normalizing hepatic glucose production. 
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 With the inhibition of hepatic glucose production, insulin then stimulates hepatic glucose 

uptake from the circulation, a mechanism that contributes to whole-body glucose homeostasis.  

Hepatic glucose uptake from the bloodstream subsequently stimulates glycogen and fatty acid 

synthesis. In fact, the liver is responsible for removing the equivalent of ~60-65% of glucose 

from the circulation (6).  Therefore, it is pivotal that this function remains in intact, whereby 

impairments in glucose uptake into hepatocytes are associated with insulin-resistant diseases, 

such as metabolic syndrome and T2DM (discussed in section 1.2.1). 

1.1.2 Roughly four hours after a meal (postprandial state) 

When food is no longer being absorbed from the GI tract, plasma glucose level begins to decline 

which simultaneously stimulates the release of glucagon and inhibits the secretion of insulin into 

the circulation from pancreatic α- and β-cells, respectively.  Fasting also stimulates the release of 

glucocorticoid into the bloodstream from the adrenal cortex that initiates only the gluconeogenic 

process in hepatocytes.  Both the glucagon and glucocorticoid signaling pathways work 

synergistically to enhance glucose production and maintain glucose homeostasis.     

1.1.2.1   Hepatic glucose production  

1.1.2.1.1 Glycogenolysis 

Glycogenolysis is the first glucose-delivery mechanism to be activated in the liver after ~4-5 

hour fast (7).  During this time, blood sugar level begins to fall which stimulates glucagon 

secretion from pancreatic α-cells.  The increase in blood glucagon level is accompanied by a 

concomitant decrease in insulin secretion; a necessary measure since insulin opposes the actions 

of glucagon.  Once released into the bloodstream, glucagon acts on the liver to stimulate 

glycogenolysis. With glycogenolysis, the liver can provide immediate energy supply by rapidly 
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converting glycogen into glucose which is then released into the bloodstream.  In fact, the release 

rate of glucose is greater with glycogenolysis (5.0 µmol/kg/min) than with gluconeogenesis (3.0 

µmol/kg/min) (7).  The liver is the only organ in the body that undergoes glycogenolysis.  

However, the proportion of glucose release via glycogenolysis decreases with the duration of 

fasting, due to the depletion of hepatic glycogen stores (7).  For example, in humans, after 24 

hours from the last meal, glycogenolysis accounts for about 30% of all glucose released, and by 

48 hours, it accounts for <10% of all glucose released into the circulation (8).  Therefore, at this 

stage, the liver must switch to gluconeogenesis as the primary mechanism to release glucose into 

the bloodstream and to maintain glucose homeostasis. 

 

1.1.2.1.2 Gluconeogenesis 

Gluconeogenesis is the de novo synthesis of glucose from non-carbohydrate carbon compounds, 

such as lactate, pyruvate, alanine, and glycerol (Figure 1-3).  This metabolic pathway is 

stimulated during periods of prolong fasting, low-carbohydrate diets, or intense physical activity.  

The vast majority of glucose is produced from hepatic gluconeogenesis (roughly 80%), and to a 

lesser extent, renal gluconeogenesis (approximately 20%; and it occurs in kidney cortex) (9; 10).   

The rate of gluconeogenesis is determined by the unidirectional enzymes, pyruvate 

carboxylase (PC), PEPCK, FBPase, and G6Pase (11).   These rate-limiting gluconeogenic 

enzymes are controlled via 3 mechanisms: 1) by transcriptional regulation (i.e. PC, PEPCK, and 

G6Pase) via insulin, glucagon, and/or glucocorticoid signaling; 2) through allosteric inhibition 

(i.e. FBPase) via fructose-2,6-bisphosphate; and 3) through inhibition/stimulation if the 

enzymes’ substrate is absence/present (11).  For example, G6Pase and PC are activated if 

glucose-6-phosphate or pyruvate, respectively, is present and is catalytically deactivated in its 
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absence.  In fact, the activity rates of the gluconeogenic enzymes are regulated by the ATP:ADP 

ratio.  ATP is a critical energy source for the de novo production of glucose, directly fueling the 

catalytic activity of PC and PEPCK, thereby indirectly determining the rate of FBPase and 

G6Pase due to their respective substrate levels (Figure 1-3). 

One of the main transcriptional coactivators of hepatic gluconeogenesis is PGC-1α.  The 

mechanism by which PGC-1α stimulates hepatic gluconeogenesis is described in detail in section 

4.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3: Pathway of hepatic gluconeogenesis.  The rate of gluconeogenesis is regulated by 
the rate-limiting enzymes: PC, PEPCK, FBPase, and G6Pase.  During gluconeogenesis, 2 moles 
of pyruvate are used to produce 1 mole of glucose, and in the process, consumes 6 moles of 
ATP; making the gluconeogenic process very costly from an energetic point-of-view, since 
glycolysis yields only 2 moles of ATP.  FBPase: fructose-1,6-bisphosphate; G6Pase: glucose-6-
phosphatase; PEPCK: phosphoenolpyruvate carboxykinase; PC: pyruvate carboxylase. 
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1.2 Pathophysiology of glucose metabolism 

1.2.1 Insulin resistance and uncontrolled glucose production 

1.2.1.1 Metabolic syndrome 

The metabolic syndrome represents a cluster of abnormalities that together greatly increases 

one’s risk of developing cardiovascular diseases and T2DM. The most widely accepted 

definition of the metabolic syndrome is provided by the International Diabetes Federation (12).  

This federation suggests that if a person is to be diagnosed with metabolic syndrome, the 

individual must have central obesity (waist circumference is greater than 88 cm or 35 inches for 

women or 102 cm or 40 inches for men), and any two of the following abnormalities: increased 

triglycerides; reduced high-density lipoprotein (HDL) cholesterol; elevated blood pressure (BP), 

and/or elevated fasting plasma glucose level.   

Central obesity is a fundamental feature of the metabolic syndrome; due to the strength of the 

evidence linking waist circumference with cardiovascular disease and T2DM development. 

Since the metabolic syndrome is made up of a cluster of different types of pathologies, there is 

no single treatment available as of yet; however, therapies that address several of the risk factors 

concurrently are being researched and provides hope for the future. 

 

1.2.1.1.1 T2DM 

Canadians are aging, and the obesity rates are rising.  In 2015, one in four Canadians, roughly 

over 9 million people, lives with diabetes or prediabetes (a condition known as “borderline 

diabetes;” classified when an individual has abnormally high fasted blood sugar level, 5.6-6.9 

mM, but not as high as a diabetic, >7 mM) (13).   If nothing is done to curve this trend, by 2020, 

it will be one in three (13). Consequently, this poses a serious burden on Canada’s publicly 
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funded health care system and economy.  In 2015, diabetes would cost Canada almost $14 

billion, whereby in 2020, it would cost the Canadian health care system and the economy almost 

$16 billion (13).  Clearly, diabetes prevalence is growing at epidemic levels across Canada, and 

urgent action is needed to reduce the cost pressure on the Canadian health care system and 

economy. 

Diabetes mellitus, also known as “starvation in the midst of plenty,” is a chronic 

metabolic disorder characterized by hyperglycemia (chronic high blood sugar level).  

Hyperglycemia occurs either because pancreatic β-cells are unable to produce insulin (type 1 

diabetes mellitus; T1DM), or because peripheral tissues (i.e. white adipose tissue, skeletal 

muscle, and liver) no longer responds effectively to insulin signaling (T2DM). 

 Hyperglycemia is the root cause of clinical diabetic complications.  Prolonged exposure 

to hyperglycemia eventually leads to microvascular complications such as damage to the eyes 

(retinopathy), kidney (nephropathy), and nerves (neuropathy) (14).  Hyperglycemia may also 

lead to macrovascular complications (large vessel diseases) such as heart disease and stroke (14).  

Proper management of blood sugar level is critical.  One of the major metabolic defects that 

contribute to hyperglycemia is uncontrolled glucose production (gluconeogenesis) from the 

insulin-resistant liver. 

 

1.2.1.1.2 Obesity  

Obesity is the sixth most influential risk factor contributing to the overall burden of disease 

worldwide (15).  In fact, roughly 1.4 billion adults, 20 years and older, are overweight, and these 

numbers are only increasing (16).  Being overweight is a medical concern because it can 

seriously affect a person's health.  Obesity can increase the risk of developing cardiovascular 
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diseases (i.e. hypertension, atherosclerosis, ischemic heart disease) as well as cancer (i.e. liver, 

pancreas, gall bladder, and prostate cancer) (15).    

 

2.0   Hydrogen sulfide (H2S) 

Hydrogen sulfide (H2S) is the most recent addition to the gasotransmitter family, including nitric 

oxide (NO) and carbon monoxide (CO).  These gasotransmitters are small molecules of gas that 

has the remarkable ability to freely diffuse through a cell membrane to induce an array of 

intracellular signaling responses (17-19).  Their production and metabolism are enzymatically 

regulated, and chemical donors can duplicate the effects of the gasotransmitters.   

H2S is regarded to have physiological importance in the cardiovascular, neuronal, immune, 

renal, respiratory, gastrointestinal, reproductive, and endocrine systems.  H2S carries out its 

physiological function by targeting membrane ion channels, proteins, enzymes, and transcription 

factors (17; 18; 20).  The key mechanism by which H2S may carry out these effects is through 

the S-sulfhydration of proteins by converting cysteine-SH groups to –SSH (20). Indeed, H2S can 

S-sulfhydrate about 10-25% of liver proteins, including actin, tubulin, and glyceraldehyde-3-

phosphate dehydrogenase, under physiological conditions (20).  This suggests that post-

translational modification by H2S may be an important signaling mechanism in the 

cardiovascular system (18).  

The pursuit of determining the endogenous level of H2S is by far one of the most 

controversial issues in the H2S field.  In the blood or plasma, H2S level has been reported to be 

above 35 µM in several species, such as rat, mouse, or human (21-23).  In brain tissue, H2S was 

detected in the range of 50–160 μM.  These measurements of detecting H2S are based upon the 

methylene blue method; this is most common assay used that relies on trapping H2S with zinc 
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followed by acidification, which is then measured spectrophotometrically. However, this method 

of H2S detection involves harsh conditions that release bound sulfide from proteins and amino 

acids; hence, caution should be used when interpreting these results. Thankfully, advancements 

have been made where more sensitive methods (gas chromatography and polarographic H2S 

sensor) can accurately measure free H2S concentrations (as low as 14 nM), without releasing 

stored sulfide (24-26).  Despite this, there is still uncertainty about the exact level of endogenous 

H2S level in mammalian biological tissues. 

 

2.1 Biochemistry of H2S 

H2S is a colorless, flammable gas with the classic odor of rotten eggs.  Our nose is so sensitive to 

the smell of H2S that we can detect it as low as 0.02 ppm (27).  H2S has a small molecular weight 

of 34.08 and is highly lipophilic; because of this, H2S easily diffuses through the phospholipid 

bilayer of a cell membrane to carry out its signaling effects.  Once in solution, H2S can dissociate 

into H+ and hydrosulfide anion (HS-), which can further dissociate to H+ and sulfide anion (S2
-) 

as demonstrated by the following reaction: H2S ↔ H+ + HS- ↔ 2H + S2
-.  The pKa1 is sensitive 

to both temperature and ionic strength.  Essentially, there is no S2
- in biological tissues, only H2S 

and HS-, due to a pKa1 6.5 and a pKa2 >17.  Approximately 20% H2S/80% HS- exists in the 

extracellular fluid and plasma at 37˚C and pH 7.4.  Since all three chemical species of dissolved 

H2S are present in an aqueous solution, it is difficult to assess which is the biologically active 

one.  Therefore, it is a common practice to associate the sum of all free sulfide concentrations as 

H2S.  

Not only is H2S highly lipophilic, but it is also very volatile.  With a vapor pressure of 

18.75 x 105 Pa, H2S evaporates relatively easy from water into air.  Therefore, once in contact 
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with air, biological samples will begin to lose free H2S.  In fact, it was determined that the 

sulfide concentration in cell culture medium exhibits a signal exponential decay with a halftime 

of 6.2 minutes (28; 29). 

 

2.2 Formation of H2S 

Mammalian cells generate H2S either through enzymatic or non-enzymatic production.  The non-

enzymatic pathway accounts for a small portion of H2S production (~10%).  The majority of H2S 

is synthesized by four enzymes that endogenously produce H2S under tightly regulated 

conditions.  They are cystathionine γ-lyase (CSE; EC 4.4.1.1), cystathionine β-synthase (CBS; 

EC 4.2.1.22), cysteine aminotransferase (CAT: EC 2.6.1.3) and -mercaptopyruvate 

sulfurtransferase (MST; EC 2.8.1.2) (Figure 1-4).  All four enzymes are involved in the reverse 

transsulfuration pathway. 

 

2.2.1 Enzymatic synthesis of H2S 

2.2.1.1 The pyridoxal-5´-phosphate-dependent enzymes 

2.2.1.1.1 CSE 

CSE is a pyridoxal 5’-phosphate (PLP; the active form of vitamin B6)-dependent enzyme that 

catalyzes the conversion of cystathionine to cysteine in the reverse transsulfuration pathway 

(Figure 1-4).  The main substrate of CSE is L-cysteine, which is made available from alimentary 

sources or endogenous proteins (30). This non-essential amino acid can also be synthesized from 

L-methionine through the reverse transsulfuration pathway, which uses homocysteine (Hcy) as an 

intermediate (30).   



15 
 

Interestingly, CSE is expressed in a tissue-specific manner.  For example, CSE is the 

dominate H2S-producing enzyme in the liver and kidney (22; 31; 32), pancreas (33), as well as in 

vascular smooth muscle cells (VSMCs) (23; 34; 35).  CSE is also expressed in the respiratory 

system (36; 37).  Whereas CSE is mainly expressed in the cardiovascular system, small amounts 

of CSE mRNA have been found in the brain (38). The CSE inhibitors, D,L-propargylglycine 

(PPG) and β-cyano-L-alanine, had no effect on the production rate of H2S in the brain (39), but 

were able to suppress H2S generation in the liver and kidney (40).  Thus far, CSE is the dominant 

H2S-producing enzyme in the peripheral nervous system, but not the central nervous system 

(CNS) (38; 41). 

To date, CSE activity has only been detected in the cell cytosol.  Ogasawara et al. (1994) 

(42) reported that CSE activity was mainly detected in the cytosolic fractions of both liver and 

kidney.  Fu et al. (2012) (43) also showed that CSE is localized only in the cytosol in VSMCs 

under resting conditions; however, once the VSMCs were exposed to hypoxic conditions, CSE 

translocated from the cytosol to the mitochondria, thus increasing ATP production.  Thus, under 

specific stimulations, CSE can translocate from the cytosol to the mitochondria to help the body 

cope under stressful conditions. 

Human mutations in the CSE gene may increase the development of certain metabolic 

disorders such as hypercystathioninemia, bladder cancer, and atherosclerosis (44). 

 

2.2.1.1.2 CBS 

Like CSE, CBS is also PLP-dependent enzyme and is the predominant H2S-producing enzyme in 

the CNS, and it too is localized in the cytosol (45).  Recently, our laboratory has shown that CBS 

is also located in hepatocyte mitochondria under physiological conditions; whereby, 
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ischemia/hypoxia conditions increased the accumulation of CBS proteins in mitochondria (46).  

CBS generates H2S through the condensation of Hcy and serine in the following well-known 

reaction: L-serine + L-Hcy ↔ L-cystathionine + H2O (Figure 1-4).  Additionally, CBS catalyzes 

the condensation of cysteine with Hcy to produce cystathionine and H2S (47).  As such, CBS 

overwhelmingly catalyzes the formation of H2S from cysteine + Hcy (~96%), whereas cysteine 

alone accounts for only 1-3% (48).  

CBS is the major H2S-generating enzyme in the CNS where its protein is highly 

expressed in the hippocampus and cerebellum in the brain (39; 49).  Studies have also shown that 

CBS is expressed in astrocytes (50) and neurons (51).  In the cardiovascular and respiratory 

system, CBS expression is either rare or absent (18).   

 

2.2.1.1.3    CAT/MST 

Recently, a new H2S-generating enzymatic system has been identified as CAT/MST, which was 

shown to generate H2S in both the brain (52) and endothelium (53). This unique pathway 

requires 3-mercaptopyruvate, which is produced by CAT from cysteine and α-ketoglutarate, as a 

precursor for MST-generated H2S production (Figure 1-4).  Both CAT and MST have been 

detected in the cytosol and mitochondria (18).  However, only under high alkaline conditions 

(pH 9.7) and high cysteine concentration is the CAT/MST system observed, whereas under more 

physiologically relevant conditions (2 mM cysteine and pH 7.4), the CAT/MST system failed to 

produce H2S in rat liver and kidney (40).  Moreover, the existence of 3-mercaptopyruvate has yet 

to be determined in cells.  How the CAT/MST system contributes to the physiological regulation 

of H2S remains to be determined.   
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Figure 1-4:  Biosynthesis and catabolism of H2S.  Two mechanisms endogenously synthesize 
the gasotransmitter H2S: enzymatically via CSE, CBS, and CAT/MST; and non-enzymatically 
via reducing equivalents of glucose.  The intracellular level of H2S is maintained by H2S 
scavenging, cytosolic methylation, mitochondrial oxidation, and/or exhalation from lungs.  
Adopted and modified from Mani et al. (2014) (54). 

 

 

2.2.2 Non-enzymatic synthesis of H2S 

The non-enzymatic generation of H2S is a less significant source of H2S, but nonetheless, it is an 

area of fascination (55).  This pathway generates H2S via the reduction of elemental sulfur 

produced from the reducing equivalents of oxidized glucose that occurs during glycolysis (55).  

Moreover, to a lesser extent of H2S production, the phosphogluconate pathway was also 

observed to produce H2S through a non-enzymatic mechanism in erythrocytes (55).  How these 
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pathways are influenced under physiological and pathophysiological conditions remains to be 

seen.   

 

2.3 Catabolism of H2S 

To maintain proper physiological balance of H2S, the mammalian system has developed four 

major routes of H2S elimination.  These elimination mechanisms include oxidation, methylation, 

scavenging, and expiration and excretion as described below and depicted in Figure 1-4.   

 

2.3.1 Oxidation 

Oxidation is the most important mechanism by which the body rids itself of excess H2S (Curtis 

(24; 56; 57).  The oxidation of H2S mainly occurs in the liver; however, all cells in the body are 

capable of this process (24; 58).  Indeed, even plasma can oxidize H2S (56).  The mitochondria 

are very effective in oxidizing sulfides with the help of reduced glutathione (GSH) acting as an 

intermediate. The mitochondrion first oxidizes H2S to thiosulfate, which is later converted to 

sulfite and sulfate by sulfite oxidase (58). Finally, the metabolized sulfates are excreted in the 

urine as either free or conjugated sulfates. 

 

2.3.2 Methylation 

As oxidation occurs in mitochondria, methylation of H2S happens in the cytosol.  This catabolic 

pathway methylates H2S to methanethiol and dimethyl sulfide by S-methyltransferase in the 

cytosol (59).  In comparison to oxidation, H2S methylation is slow.  For example, in colonic 

mucosa, sulfide methylation is ~10,000 times slower than the oxidation rate of H2S (60). 
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2.3.3 Scavenging 

H2S can be scavenged by methemoglobin (17), as well as metallo- or disulfide-containing 

molecules including horseradish peroxidase-catalase and oxidized glutathione (GSSG) (61; 62). 

Hemoglobin acts as a “sink” for H2S in the blood stream, which may compete with the other 

gasotransmitters, NO and CO, for binding (17). The binding of one gasotransmitter to 

hemoglobin could affect the binding probability of other gasses, thus affecting their 

bioavailability (17).  These three gasses not only compete with each other for binding sites on 

hemoglobin but also with oxygen, thus contributing to their toxicity on high exposure. 

 

2.3.4 Expiration and Excretion 

Occasionally, the lungs provide an elimination route for H2S.  In healthy individuals, very little 

H2S is eliminated through the lungs, likely because alveolar air (end expiration) only contains 

25–50 ppb H2S (63; 64). Insko et al. (2009) (65) demonstrated that when rats received 

intravenous injections of sodium sulfide (Na2S), an H2S donor, a significant amount of exhaled 

H2S was detected.   

 

3.0  Physiological properties of H2S 

The effects of H2S are well documented to be biphasic, mainly due to the wide range of H2S 

concentrations used.  At low concentrations (nM to ~<100 µM), H2S was demonstrated to be 

cytoprotective via acting as an antioxidant and anti-inflammatory agent, whereas at high 

concentrations (~>100 µM to mM) H2S becomes an oxidant and a pro-inflammatory agent, as 

well as an inhibitor of insulin secretion from pancreatic β-cells. 
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3.1 Cytoprotective effects of H2S  

3.1.1 Vasorelaxant 

For more than a decade, there have been numerous findings linking H2S to BP regulation (17; 

23; 66; 67). The first experimental evidence that suggests H2S to be a vasorelaxant was 

demonstrated by Zhao et al. (2001) (23). These authors showed that i.p. injections of H2S 

produced a concentration-dependent decrease in the arterial BP in anesthetized Sprague-Dawley 

(SD) rats.  This vasorelaxant effect of H2S was likely due to the opening of K+-dependent-ATP 

(KATP) channels. The KATP channels are inward rectifying channels and composed of two types 

of subunits, such as the inwardly rectifying K+ channel subunits (Kir6.1 or Kir6.2) and the larger 

regulatory sulfonylurea receptors (SUR1, SUR2A, and SUR2B).  The opening of the KATP 

channels hyperpolarizes the cell membrane that closes the voltage-dependent Ca2+ channels and 

reduces intracellular Ca2+ levels. Ca2+ plays a fundamental role in the contractile responses of 

VSMCs, where a low Ca2+ level results in vasodilation.  Zhao et al. (2001) reported that H2S was 

mimicked by pinacidil (a KATP channel opener) and attenuated by glibenclamide (a KATP channel 

blocker) in SD rats (23), which was consistent with other findings (68; 69).  Other molecular 

mechanisms that H2S was shown to induce vasorelaxation included induction of intracellular 

acidosis (70), depletion of intracellular ATP levels (71; 72), inhibition of phosphodiesterase 

(PDE) (73) and modulation of intracellular Ca2+ levels (74; 75).   

More conclusive evidence was brought forth when Rui Wang and associates (2008) (41) 

generated mice with the knockout of the gene encoding CSE, which resulted in these mice 

becoming hypertensive (41).  At seven weeks of age, both male and female CSE knockout (KO) 

mice exhibited significantly higher BP readings than their age-matched WT counterparts, which 

increased further in an age-dependent fashion (41).  At twelve weeks of age, male CSE-KO mice 
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exhibited 135 mm Hg, which was about 18 mm Hg higher than the WT mice (41).  Furthermore, 

intravenous bolus injections of sodium hydrosulfide (NaHS; an H2S donor) decreased systolic 

BP in both CSE-KO and WT; however, the magnitude of decrease was greater in the CSE-KO 

mice, suggesting enhanced sensitivity of H2S stimulation (41).  The H2S/CSE system was likely 

responsible for the age-dependent increase in BP in the CSE-KO mice because H2S level in the 

brain and endothelial NO synthase (eNOS) protein was unchanged, administration of L-

methionine did not increase BP, and the kidney architecture was preserved (41).  These CSE-KO 

mice also developed impaired endothelium-dependent vasorelaxation upon methacholine (an 

endothelium-dependent vasorelaxant) administration in mesenteric arteries, which were pre-

constricted with phenylephrine (41).  These exciting observations points to the possibility that 

H2S may be the next endothelium-derived relaxing factor (EDRF) in the cardiovascular system 

(41; 76). 

 

3.1.2 Antioxidant 

Excessive reactive oxygen species (ROS) promotes oxidative stress in the cell.  H2S is a strong 

reducing agent, giving it the capacity to interact with ROS.  Numerous studies have shown that 

low concentrations of exogenously applied H2S (approximately 10-100 μM) can have antioxidant 

properties (34; 69; 77-80).  H2S was demonstrated to increase intracellular levels of the potent 

antioxidant GSH in VSMCs (34), primary cortical neurons (79) and in HT22 immortalized 

hippocampal cells (78).  H2S increases GSH level via enhancing the enzymatic activity of γ-

glutamylcysteine synthetase, leading to increased cellular γ-glutamylcysteine level; the latter 

being a precursor for L-cysteine production and thus GSH production (78; 79).  Studies also 
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showed that H2S can increase cysteine/glutamate antiporter (xc-system) activity, thereby 

increasing available cysteine for glutamate production.  

By either increasing GSH levels or directly scavenging ROS, NaHS (30 and 50 µM) was 

shown to ameliorate Hcy-induced peroxynitrite (ONOO-), hydrogen peroxide (H2O2) or 

superoxide anion (O2
-) generation in rat VSMCs (77).  The same authors showed that NaHS 

enhanced the inhibitory effects of various antioxidants, including GSH, L-NAME, and 

superoxide dismutase (SOD) on Hcy-induced ROS production.  In a subsequent study, NaHS (50 

µM) attenuated methionine-induced cell death, and decreased both Hcy level and ROS 

production in bEnd3 (a mouse brain endothelial cell line) (81).  This group also showed that 

NaHS enhanced the antioxidant effects of GSH, SOD, and catalase on methionine-induced ROS 

production in bEnd3 cells.   

 

3.1.3 Anti-inflammatory 

The response and effect of inflammation and its regulators are complex in nature.  Activated 

endothelial cells that line the arteries release pro-inflammatory cytokines into the bloodstream 

(54).  These pro-inflammatory cytokines promote the attachment, adherence, and spreading of 

mononuclear cells (i.e. macrophages, neutrophils) onto the luminal surface of the arterial walls, 

allowing their infiltration into the VSMC mass and to the source of infection/aggravation (54).   

H2S has been shown to reduce inflammation by acting through various pathways.  

Sulfide-releasing diclofenac derivative decreased tissue neutrophil infiltration and interleukin 

(IL)-1β levels, upregulated IL-10 level, and suppressed the activation of NF-κB in an endotoxin-

induced lung and liver inflammation model (82).  In fact, many studies suggest that the anti-

inflammatory effects of H2S are mediated via downregulating the expression of pro-
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inflammatory cytokines (i.e. tumor necrosis factor (TNF)-α, interferon-γ, IL-12, and IL-23) (83; 

84).  Additionally, H2S was shown to decrease leukocytes rolling velocity (85) as well as to 

induce the apoptosis of neutrophils and promote macrophage differentiation toward an anti-

inflammatory phenotype (86).  Subsequently, H2S was shown to exert protective effects in 

animal models of inflammation and inflammation-generated pain (30; 85).   

 

3.2 Deleterious effects of H2S 

3.2.1 Inhibition of cellular respiration 

H2S has a strong affinity for cytochrome c oxidase, a key factor in the electron transport chain 

(ETC) in the mitochondrion.  Due to its high chemical reactivity, H2S inhibits cellular respiration 

via binding to the copper center of cytochrome c oxidase (a fundamental component of 

mitochondrial respiratory chain complex IV); resulting in the attenuation of cellular oxygen 

consumption (87) (the subunits and complexes of the ETC are discussed below in section 3.4.2).  

Once the catalytic activity of cytochrome c oxidase is blocked, aerobic metabolism is arrested 

(88).  In the extreme case, if an individual inhales a fatally high dose of H2S (500-1000 ppm), 

cytochrome c oxidase will be inhibited in the brain, reducing oxygen uptake into cells and 

inhibiting the reuptake of L-glutamate (an excitatory neurotransmitter), ultimately leading to 

death (89). 

 

3.2.2 Pro-inflammatory 

Although H2S was shown to exert anti-inflammatory effects in models of inflammation and 

inflammation-related pain, other studies have contradicted these observations.  One study 

demonstrated that H2S injection upregulated leukocyte attachment and rolling blood vessels as 
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well as increased the intercellular adhesion molecule-1 expression level in sepsis mice, an effect 

that was attenuated by PPG supplementation (82).  Also, H2S administration increased the 

production of the pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, via activating ERK-NF-

κB signaling pathway in human monocytes (90).  Another group showed that NaHS (500-1000 

µM) increased the generation of pro-inflammatory cytokines (i.e. TNF-α, IL-1β, and 

prostaglandin E2); however, when macrophages were treated with lower concentrations of NaHS 

(100-500 µM) anti-inflammatory cytokines were upregulated.  The authors of this study suggest 

that the effects of H2S on inflammation are dependent on the H2S concentrations used and the 

rate of H2S generation within the macrophages (91). 

 

3.2.3 Inhibition of insulin secretion 

3.2.3.1 Activation of KATP channels in pancreatic β-cells 

A large body of evidence suggests that H2S is an endogenous modulator of insulin secretion from 

pancreatic β-cells (33; 92-96).  This phenomenon is mainly due to H2S-stimulated activation of 

KATP channels on the insulin-secreting cells, including INS-1E (100 µM NaHS) (92) and HIT-

T15 (100 µM H2S) (93).  H2S interrupts insulin secretion by activating KATP channels, which 

prevents depolarization of the plasma membrane and the entry of Ca2+ into pancreatic β-cell.  For 

instance, 10 µM glibenclamide (a KATP channel blocker)  prevented 100 µM NaHS-induced 

inhibition of insulin secretion from HIT-T15 cells (93).  Another study demonstrated that L-

cysteine and NaHS reduced the intracellular Ca2+ level and ATP generation, which consequently 

attenuated insulin release in both isolated mouse islets and MIN6 cells (a mouse pancreatic β-cell 

line) (97). 
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3.2.3.2 Induced apoptosis of pancreatic β-cells 

Another mechanism by which H2S blocks glucose-stimulated insulin secretion is by inducing 

apoptosis of β-cells.  For example, Yang et al. (2007) (96) showed that by activating the p38 

MAPK pathway and upregulating BiP and CHOP (both indicators of ER stress), overexpression 

of CSE induced apoptosis of INS-1E cells.  Furthermore, knocking down CHOP ameliorated 

H2S-induced apoptosis of INS-1E cells (96).  Cao and colleagues (2006) (98) reported that 

supplementation of 10 µM NaHS for 3 hours induced phosphatidylserine externalization (an 

indicator of the early stages of apoptosis) in isolated pancreatic acinar cells (exocrine cells that 

aids in digestion) (98).  This group also demonstrated that H2S-induced apoptosis of acinar cells 

occurred mainly via activation of both the mitochondrial and death receptor pathways. 

However, similar to the controversial effects of H2S on inflammation, one group showed that 

H2S treatment prevented apoptosis and, in fact, protect insulin-secreting cells from oxidative 

stress.   Kaneko et al. (2009) (95) reported that 3 mM L-cysteine and 100 µM NaHS prevented 

glucose-induced apoptosis of isolated mouse pancreatic β-cells and increased total glutathione 

level.  Pancreatic β-cells are highly susceptible to glucotoxicity due to their weak antioxidant 

defense mechanisms (99).  Therefore, an increase in total glutathione levels would assist in 

preserving β-cell function.  Treatment with 2 mM DL-propargylglycine (PAG; a CSE inhibitor) 

abrogated the cytoprotective effects of L-cysteine against glucose-induced apoptosis of β-cells 

(95).  These discrepancies of the effects of H2 S on apoptosis could be due to different treatments 

used; for instance, L-cysteine (95) is known to upregulate GSH, a well-known antioxidant, 

whereas the direct effects of H2S could be toxic (96; 98).   Also, due to the biphasic nature of 

H2S, the effects of low concentrations (50 µM) vs. high concentrations (100 µM) of H2S on 

pancreatic β-cells need to be elucidated.  Data obtained from experiments using 100 µM or 
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higher of NaHS/H2S must be viewed with caution and their pathophysiological implications 

questioned. 

 

3.3 H2S-releasing drugs 

In response to the biological importance of H2S, novel therapeutics aimed to deliver H2S or to 

suppress its endogenous production are currently being investigated on a world-wide scale.  For 

stance, ATB-346 (produced by Antibe Therapeutics) is an H2S-releasing nonsteroidal anti-

inflammatory drug (NSAID) derivative and is currently being studied in the treatment of 

osteoarthritis (86; 100).  Its Phase I clinical trials was recently completed in healthy volunteers 

(100).  NBS-1120 (patented by a group at the City University of New York, USA) is an NSAID 

linked to both NO- and H2S-releasing moieties and is currently in preclinical trials to test its 

effectiveness in various animal models of cancer (101; 102).  Moreover, preclinical studies have 

confirmed that SG-1002 (developed by SulfaGENIX in New Orleans, Louisiana, USA) 

decreased infarct size, improved cardiac function, increased angiogenesis, decreased 

inflammation, and downregulated oxidative stress after infarction in animal models of heart 

failure (ClinicalTrails.gov identifier: NCT02278276).  Lastly, the most widely studied H2S-

releasing drug is GYY4137 (produced by Moore et al. at the National University of Singapore).  

GYY4137 is a valuable tool to measure the effects of H2S because it allows the slow release of 

H2S. GYY4137 was demonstrated to exhibit antihypertensive action in spontaneously 

hypertensive rats (SHRs) (103) as well as reduce inflammation via reducing circulating levels of 

various pro-inflammatory cytokines and mediators (104).  Needless to say, H2S-based therapies 

have a promising future due to the success seen in preclinical and early clinical testing. 
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3.4 H2S and glucose regulation 

3.4.1 H2S-regulated induction of hepatic glucose output and utilization 

Among many endogenous substances that regulate glucose production is H2S (22; 105; 106).  

Only recently was the role of H2S in hepatic glucose production explored in detail by our 

laboratory.  Zhang et al. (2013) (105) demonstrated that both exogenous and endogenous H2S 

inhibited glucose uptake and utilization in HepG2 cells and primary hepatocytes isolated from 

WT and CSE-KO mice, respectively. H2S-mediated impairment of glucose uptake was 

dependent upon its ability to attenuate AMP-activated protein kinase (AMPK) phosphorylation 

(Thr172), which was reversed via treatment of an AMPK activation reagent in HepG2 cells 

(105).  AMPK is a pivotal regulator of energy homeostasis, whereby its stimulation hampers 

hepatic glycogenolysis and gluconeogenesis and induces the uptake and utilization of glucose in 

liver cells (6; 107; 108).  Lower AMPK activity likely contributed to higher hepatic glycogen 

content in CSE-KO liver tissues compared to WT liver tissues in the fed state.  Furthermore, we 

found that primary liver cells isolated from CSE-KO mice produced less glucose compared to 

isolated WT hepatocytes, a phenomenon that may be dependent on H2S-mediated increase in 

PEPCK activity (105).  Lastly, we observed that insulin inhibited CSE expression, and 

exogenous H2S decreased insulin-stimulated phosphorylation of Akt in HepG2 cells.  Overall, 

this study was the first to suggest that H2S plays a pivotal role in regulating insulin sensitivity 

and glucose metabolism in liver cells. 

In another study, we found that PC, one of the rate-limiting gluconeogenic enzymes, is 

also involved in H2S-mediated glucose production in liver cells (109).  Supplementation of 

NaHS or CSE overexpression increased PC activity (via S-sulfhydration) in HepG2 cells and 

mouse primary liver cells.  In fact, mutation of PC (Cys 265) diminished H2S-induced PC S-
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sulfhydration, and thus its activity, in HepG2 cells.  In agreement, PC overexpression increased 

glucose production, whereas its knockdown abolished H2S-simtulated glucose production in 

HepG2.   

Taken together, it is clear that H2S plays a fundamental role in hepatic glucose regulation.  

Knowing that H2S stimulates pgc-1α gene expression (22), and the role PGC-1α has in regulating 

both hepatic gluconeogenesis (105; 109) and mitochondrial homeostasis, implies that H2S may 

stimulate hepatic glucose production through other mechanisms.  It seems we are merely 

scratching the surface of fully understanding the role H2S plays in regulating hepatic glucose 

production  

 

3.4.2 H2S-mediated induction of hepatic mitochondrial energy production 

Mitochondria are unique organelles in the cell where they are surrounded by a double-layer 

membrane and retain their own small genome (mtDNA).  The majority of mitochondrial proteins 

are encoded in the nucleus, synthesized in the cytosol and then transported into the 

mitochondrion for mitochondrial biogenesis.  There are roughly 300-400 mitochondria in a cell 

(110).  Mitochondria produce the bulk of cellular energy by coupling cellular respiration to the 

production of ATP (also known as oxidative phosphorylation) (Figure 1-5).   

For years, the toxic biological actions of H2S have been known (62). At toxic 

concentrations, H2S binds to cytochrome c oxidase, thus preventing the binding of oxygen and 

inhibiting the ETC (as mentioned in section 3.2.1) (111).  However, recent research suggests that 

low concentrations of H2S may, in fact, hold a physiological role in normal mitochondrial 

function, for example, to serve as an inorganic electron donor to promote ATP production. 
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 H2S is endogenously produced in the mitochondrion by all known H2S-generating 

enzymes, CSE (43), CBS (46; 112), and MST (40; 52; 113; 114).  In 2007, Goubern et al. (115) 

suggested that exogenously applied H2S can act as an electron donor as well as an inorganic 

source of energy in mammalian cells.  Treatment with chemical H2S donors of Chinese hamster 

ovary cells overexpressing sulfide:quinone oxidoreductase (SQR), a complex II-related protein, 

resulted in increased cellular oxygen utilization and ATP production (115-117).  Additionally, 

Módis et al. (2013a) (113) demonstrated that SQR has the capacity of oxidizing H2S (Figure 1-

5).  Oxidation of two H2S molecules leads to the donation of two electrons to SQR, whereby the 

electron travels to complex II and passed through the ETC.  As a result, this fosters 

mitochondrial ATP generation, supporting cellular bioenergetics, and maintaining cellular 

viability.  In fact, H2S demonstrates a biphasic effect here, where low concentrations of H2S 

(0.1–1 µM) increase mitochondrial function (i.e. ATP production, oxygen consumption rate) in 

isolated murine liver mitochondria while higher concentrations (3–30 µM) were inhibitory (113).  

Silencing MST or SQR reduced mitochondrial function and ATP production in murine 

hepatocytes (113).  In fact, the functional effect of H2S just may be comparable to tricarboxylic 

acid cycle (TCA)-derived electron donors, such as NADH or FADH2 (113; 118).  Additionally, 

Fu and colleagues (2012) (43) demonstrated that by sensing mitochondrial oxygen level, 

cytosolic CSE translocates into the mitochondria to promote H2S generation, which increases 

mitochondrial ATP production under hypoxic conditions in VSMCs.  Therefore, on the basis of 

the results of Fu et al. (2013) (43) and from previous studies (113; 115-117), endogenous H2S 

plays a physiological role in the maintenance of cellular bioenergetics (Figure 1-5).  Indeed, the 

functional importance of H2S may become ever greater as a backup source of electrons under 

conditions in which TCA-derived electron donors are diminished (113).   
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3.4.3 H2S, insulin resistance, and diabetes 

The pathophysiological role of H2S has been extensively studied in both high-fat diet (HFD)-

induced insulin resistance and T1DM and T2DM animal models.  Expression levels of both CSE 

and CBS are higher in the liver (119-122) and pancreas (33; 119) of streptozotocin (STZ)-

induced rats (119-122), or Zucker diabetic fatty (ZDF) rats (33).  For instance, Yusuf et al. 

(2005) (119) showed that both CSE- and CBS-H2S generating enzymes were elevated in liver 

and pancreas tissues from STZ-treated rats, abnormalities that were later reversed with insulin 

treatment (8 U/kg, subcutaneously for 5 days).  Jacobs et al. (1998) (122) also demonstrated that 

the activities of both CBS and CSE  

 

 
 
Figure 1-5: The ETC and the regulatory role H2S plays in maintaining cellular 
bioenergetics.  The ETC consists of complexes I-IV and it exists in the inner mitochondrial 
membrane.  NADH and FADH2, acquired from the tricarboxylic acid cycle, TCA, donate high 
energy electrons to pass along the ETC.  The purpose of the ETC is to pump H+ protons from the 
mitochondrial matrix into the intermembrane space to generate a chemiosmotic gradient across 
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the inner membrane. This electrochemical gradient is what powers complex V, also known as 
ATP synthase, to catalyze the synthesis of ATP from ADP + Pi.  At the end of the ETC, the final 
electron acceptor is oxygen, and this ultimately forms water.  Low concentrations of H2S aids in 
the production of ATP via donating electrons to SQR localized on complex II, whereas high 
concentrations inhibit Cyt C in complex IV thus obviating ATP generation.  Cyt C: cytochrome c 
oxidase; e-: electron; ETC: electron transport chain; SQR: sulfide:quinone oxidoreductase; TCA: 
tricarboxylic acid cycle.  Modified from Módis et al. (2015) (110) and Módis et al. (2013a) 
(113).   
 

were significantly higher in the liver of STZ-treated rats; whereby insulin treatment also 

normalized the activities of these enzymes.  On the contrary, Manna et al. (2014) (123) reported 

that CSE protein expression and its activity were both reduced in livers of STZ-treated rats, 

which was associated with higher ROS generation.   

In regards to insulin resistance in the liver, Hwang et al. (2013) reported that the mRNA and 

protein levels of CBS and CSE are significantly higher in livers of mice fed with a high-fat diet 

(HFD), which resulted in a significant elevation of hepatic H2S production (124).  In agreement, 

Zhang et al. (2013) (105) showed that CSE expression was significantly upregulated in insulin-

resistant HepG2 cells (engineered via treatment with high levels of insulin (500 nM) and glucose 

(33 mM) for 24 hours) (105).  However, Yu et al. (2015) demonstrated that both CSE expression 

and H2S-mediated sulfhydration of PC were reduced in livers of mice fed with HFD (109).  

Additionally, other studies have found that H2S biosynthesis is decreased in both liver (125; 126) 

and adipose tissue (127) of HFD-fed mice.  These contradictory results may be due to different 

experimental conditions, severity of the disease, as well as different types of mouse genetic 

background, fat contents, the age of the animals, feeding periods, etc.   

Numerous lines of research show a strong correlation between a high H2S level and the 

deterioration of insulin secretion in pancreatic β-cells (33; 92; 93; 96; 97).  As discussed in 

section 3.2.3.1, H2S-mediated inhibition of insulin secretion is mainly accredited to its capability 
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to activate KATP channels in the insulin-secreting cell.  Intriguingly, the biosynthesis of H2S was 

shown to be upregulated in pancreas tissues from ZDF rats (33) and STZ-treated rats (119).  Wu 

and colleagues (2009) (33) demonstrated that inhibition of pancreatic H2S production in ZDF 

rats (via daily PAG i.p. injections for 4 weeks) significantly elevated serum insulin level and 

reduced hyperglycemia.  Also, another study showed 10 µM of glibenclamide, an antidiabetic 

drug which inhibits KATP channels, abrogated 100 µM NaHS-mediated inhibition of insulin 

secretion from pancreatic β-cells (93).  These data suggest that elevated levels of H2S in 

pancreatic β-cells could be involved in a maladaptive mechanism of impaired insulin 

secretion.  Interestingly, pancreatic CSE expression and H2S production were significantly 

greater in ZDF rat than in Zucker fatty (ZF) or Zucker lean (ZL) rats (33).  ZDF rats also had 

reduced serum insulin levels, hyperglycemia, and insulin resistance.  On the other hand, serum 

insulin levels were much higher in ZF rats than in ZL rats, which may indicate lower pancreatic 

H2S production.  However, no difference was observed in H2S production in pancreatic tissues 

from ZF and ZL rats (33).  Therefore, the relationship between circulating insulin and glucose, 

and pancreatic H2S production in the early or late stage of insulin resistance should be 

investigated further in different models of diabetes.  

Contrary to an elevated H2S level in the pancreas under diabetic conditions, H2S level was 

shown to be lower in the circulation and endothelium layer.  In fact, changes in H2S homeostasis 

has been suggested to play a role in the pathogenesis of endothelial injury.  Endothelial 

dysfunction is a well-documented complication of various forms of diabetes, prediabetes, as well 

as in atherosclerosis.  Recently, Suzuki and colleagues (128) suggested that H2S plays a 

protective role against hyperglycemic-induced endothelial dysfunction by attenuating 

mitochondrial-derived ROS production.  Endothelial cells placed in elevated glucose conditions 
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exhibited accelerated H2S consumption, which was attenuated by treatment with ROS scavengers 

or with mitochondrial uncoupling agents (128).  Inhibition of H2S production (by CSE siRNA 

silencing) exacerbated ROS production, whereas supplementation or overexpression of CSE 

reduced mitochondrial ROS production and protected endothelium cells from hyperglycemic-

induced cell dysfunction (128).  Moreover, supplementation of H2S, via H2S-releasing 

minipump, improved the endothelium-dependent relaxant responses of the thoracic aorta ex vivo, 

without affecting the degree of hyperglycemia in STZ-induced rats (128).  A similar study also 

showed that H2S treatment protected human umbilical vein endothelial cells against high 

glucose-induced apoptosis (129). Therefore, these observations indicate that 

supplementation/donation of H2S may be used as a therapeutic approach to maintain diabetic 

blood vessel patency and to protect against the development of diabetic complications.    

 

4.0 The PGC family 

The PGC family consists of three members, PGC-1α, PGC-1β, and the most distant cousin, 

peroxisome proliferator-activated receptor γ coactivator-related protein (PPRC).  PGC-1α is by 

far the most studied and well-known coactivator, whereas PPRC is the least understood.  These 

coactivators are involved in regulating thermogenesis, gluconeogenesis, mitochondrial 

biogenesis, and cellular growth (130-132).  All three PGC proteins contain leucine-rich motifs 

(133-135) and a conserved tetrapeptide motif (DHDY) (136-138) that enables interaction with 

two critical regulators of mitochondrial biogenesis, such as nuclear respiratory factor-1 (NRF-1) 

and NRF-2, respectively.   Emphasis of this literature review will be placed on the ability of the 

PGC family to stimulate gluconeogenesis and mitochondrial biogenesis (Figure 1-6).  
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4.1 PGC-1α 

As mentioned in section 1.1.2, in the fasted stated, glucagon and glucocorticoid are released into 

the bloodstream from pancreatic α-cells and the adrenal cortex, respectively, where these 

endocrine hormones act on hepatocytes to replenish the falling blood glucose level.   Stimulation 

of the glucagon receptor results in the activation of adenylyl cyclase, an enzyme that catalyzes 

the conversion of ATP to cAMP.  This secondary messenger activates protein kinase A (PKA) 

which then phosphorylates the cAMP response element binding protein (CREB; at Ser133).  The 

latter enters the nucleus and binds to the consensus cAMP response element (CRE) site on the 

PGC-1α promoter (139; 140), thus increasing its transcription.  Glucocorticoid also upregulates 

PGC-1α expression level via entering the hepatocyte and binding to its cytosolic receptor, 

whereby the glucocorticoid and glucocorticoid receptor (GR) complex enters the nucleus (141).  

Once inside the nucleus, the complex binds to the promoter region of the pgc-1α gene to induce 

transcription.  Glucocorticoid and the cAMP/PKA pathways work synchronically to increase the 

expression level of PGC-1α in hepatocytes (Figure 1-6). 

           PGC-1α activity is regulated posttranscriptionally by sirtuin (SIRT) 1.  During the fasting 

state, pyruvate and NAD+ levels increase that lead to elevated SIRT1 protein level as well as its 

activity (142; 143).  SIRT1 activates PGC-1α via deacetylation (142).  It was suggested that 

PGC-1α undergoes cycles of acetylation and deacetylation during the fed and fasted states, 

which are dependent on SIRT1 activity (143).  Little is known about the posttranslational 

modification of PGC-1β and PPRC, but it was speculated to also occur (144). 

          Recently, our laboratory has shown a link between endogenous and exogenous H2S and 

PGC-1α expression level.  Renal extracts from CSE-KO mice had decreased PGC-1α mRNA 

level compared to their respective WT controls (22).  Treatment with 30 and 50 µM NaHS 
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significantly upregulated PGC-1α mRNA expression level, along with its downstream target, 

fbpase, in A-10 cells (a rat vascular smooth muscle cell line) (22).   Interestingly, NO (145) and 

CO (146) were also shown to increase PGC-1α expression level in brown adipose tissues (145) 

and cardiac tissues (146).  How this relationship between H2S and PGC-1α correlates to hepatic 

glucose production remains to be seen. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1-6: General overview of the PGC family in hepatic glucose production.  PGC-1α 
induces the gene transcription of the rate-limiting gluconeogenic enzymes via coactivating and 
binding to specific transcription factors, FOXO1 and HNF-4α, in hepatocytes.  All three 
members of the PGC family, PGC-1α, PGC-1β, and PPRC, stimulate mitochondrial biogenesis 
with help from NRF-1 and NRF-2.  CREB: cAMP response element-binding protein; FOXO1: 
forkhead box protein O1; G6Pase: glucose-6-phosphatase; GR: glucocorticoid receptor; H2S: 
hydrogen sulphide; HNF: hepatocyte nuclear factor; mtDNA: mitochondrial DNA; NRF: nuclear 
respiratory factor; P: phosphorylation; P13K/Akt: phosphatidylinositide 3-kinases/Akt signaling 
pathway; PKA: protein kinase A; PEPCK: phosphoenolpyruvate carboxykinase; PGC: 
peroxisome proliferator-activated receptor-γ coactivator; PPRC: peroxisome proliferator-
activated receptor-γ coactivator related protein.  Modified from Finck and Kelly (2006) (130). 
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4.1.1 PGC-1α stimulates hepatic gluconeogenesis 

PGC-1α fires up hepatic gluconeogenesis in two ways: it directly upregulates the gene 

expression levels of the main rate-limiting gluconeogenic enzymes, pepck, fbpase, and g6pase; 

and it stimulates mitochondrial biogenesis and mitochondrial energy production to fuel the high 

energy demand of this pathway.   

 To upregulate the expression levels of the aforementioned genes, PGC-1α first 

coactivates hepatic nuclear factor (HNF)-4α and forkhead box protein O1 (FOXO1), by binding 

to their respective promoter regions and increasing their gene transcripts.  Once the proteins of 

HNF-4α and FOXO1 are synthesized and are translocated back into the nucleus, PGC-1α protein 

then binds to these cognate transcription factors, producing a unique protein tirade.  This protein 

complex has high specificity to bind to the promoter regions of pepck, fbpase, and g6pase, thus 

stimulating their gene transcription (132; 140; 147).  Indeed, Yoon et al. (2001) (140) 

demonstrated that PGC-1α physically interacts with HNF-4α, specifically at the amino-terminal 

190 amino acid of PGC-1α.  Substitution of Leu 145 to Ala in the GST-PGC-1 (1-190 amino 

acids) eliminated the binding of PGC-1α to HNF-4α (140).  Puigserver et al. (2003) (148) 

demonstrated that PGC-1α induction of gluconeogenic genes was blocked by a dominant-

negative effect of FOXO1 in Fao hepatocytes (a rat hepatoma cell line); whereas transfection of 

a functional FOXO1 yielded opposite results.  Also, through binding experiments, this group of 

researchers showed that FOXO1 binds to the carboxy-terminal part of PGC-1α (551-635 amino 

acids) and that PGC-1α interacts with the amino-terminal part of FOXO1 (1-300 amino acids) 

(148). 

The production of glucose for systemic consumption requires ATP, and PGC-1α 

regulates this process with the aid of certain coactivators.  Wu et al. (1999) (149) showed that 
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PGC-1α coactivates NRF-1 and NRF-2.  These transcription factors regulate the expression of 

mitochondrial transcription factor A (Tfam), which is a nuclear-encoded transcription factor 

crucial for the replication, maintenance, and transcription of mitochondrial DNA (150; 151).  

This role for PGC-1α in mitochondrial biogenesis is supported by gain/loss of function studies in 

cells (149) and in mice (152-154).  In fact, PGC-1α function is critical for the normal expression 

of mitochondrial genes; where the mRNA level of mitochondrial genes were dramatically 

reduced in skeletal muscle, heart, liver, brown fat, and brain of mice lacking the pgc-1α gene 

(153; 154).  Leone et al. (2005) (153) demonstrated that the loss of PGC-1α function resulted in 

significant functional deficits in the oxidative metabolism in multiples tissues (i.e. skeletal 

muscle, heart, liver) and rendered PGC-1α KO mice exercise intolerant. 

 

4.1.2 PGC-1α, insulin resistance, and T2DM 

Abnormal PGC-1α function has been implicated in the pathophysiological development of 

glucose intolerance, insulin resistance, and T2DM in both human and animal studies.  From 

human genetic variant studies, scientists have identified a polymorphism in the coding region of 

the pgc-1α gene (Gly482Ser) which is associated with an increased risk of T2DM (155-158).  

The Gly482Ser gene variant showed a 1.34-fold increase risk of T2DM development among 

Danish Caucasians (158) and a significant association among middle-aged Japanese men (155).  

In contrast, other groups dispute this claim (159; 160) in that the Gly482Ser variant did not 

predict diabetes in French Caucasians (159) nor in Pima Indians (161).  However, these studies 

were carried out in single populations.  The most compelling evidence came from Andrulionytè 

et al. (2004) (157) when they used a mixed population of 770 participants (387 men and 383 

women) with prediabetes enrolled in STOP-NIDDM (Study To Prevent Non-Insulin Dependent 
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Diabetes Mellitus).  This group found that the Gly482Ser variant in the pgc-1α gene was 

associated with a 1.6-fold higher risk for diabetes.  The authors also found a correlation between 

treatment with the anti-diabetic drug, acarbose (acts by slowing the conversion of carbohydrates 

into glucose in the GI tract) and genetic variation.  For instance, Andrulionytè et al. (2004) (157) 

showed that acarbose treatment significantly reduced the risk of T2DM development among 

prediabetic carriers of the Gly482Ser variant. 

In animal studies, PGC-1α activity was abnormally upregulated in the diabetic liver, 

potentially contributing to increased hepatic glucose production and thus hyperglycemia (140; 

148; 162-164).  Liver-specific overexpression and knockdown strategies showed that PGC-1α 

orchestrates hepatic glucose production, hepatic insulin resistance, and glucose overproduction 

(139; 140; 148; 162).  In fact, Koo et al. (2004) (162) proposed that PGC-1α induced hepatic 

insulin resistance by stimulating TRB-3 activity, a potent inhibitor of Akt signaling, thus 

interfering with insulin signaling in hepatocytes.  This group found that PGC-1α and TRB-3 

protein expression levels were upregulated in liver tissues from both db/db and liver-specific 

insulin receptor knockdown (LIRKO) mice.  Injection of an adenovirus expressing PGC-1α 

iRNA decreased both PGC-1α and TRB-3 expression levels in db/db and LIRKO mice, as well 

as improved glucose tolerance in db/db mice (162).  Lastly, normal mice transduced with the 

adenovirus encoding TRB-3 iRNA showed improved glucose tolerance, whereas hepatic 

overexpression of TRB-3 reversed this effect (162). 

Currently, little is known about the potential effects PGC-1β and PPRC may have in the 

development of hepatic insulin resistance or T2DM. 
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4.2 PGC-1β 

In contrast to PGC-1α, PGC-1β has little to no effect on the expression of hepatic gluconeogenic 

genes; it is not upregulated by cold exposure in brown fat, nor is it upregulated in skeletal muscle 

in response to exercise (165).  PGC-1β is, however, upregulated by high-fat feeding (166) and 

consequently was shown to induce the expression of genes related to fatty acid oxidation (167), 

hepatic lipid synthesis (166) as well as to mitochondrial biogenesis (167).  In fact, PGC-1β 

targets the same mitochondrial transcription factors as PGC-1α (132).  For example, PGC-1β 

upregulates and bind to NRF-1 and NRF-2, thus increasing the gene levels of tfam and ultimately 

the expression levels of nuclear respiratory genes, the latter leading to increased mitochondrial 

mass (130; 149; 165; 167; 168).  Moreover, studies found that PGC-1β null mice exhibited 

decreased mitochondrial gene expression (169; 170).  Despite this, one group showed that PGC-

1β was unable to compensate for the loss of PGC-1α as seen in PGC-1α null mice (154).  In fact, 

pgc-1β mRNA level remained unchanged in several energy demanding tissues (i.e. heart, liver, 

brown fat) in pgc-1α deficient mice (154).   

Both PGC-1α and PGC-β stimulate mitochondrial biogenesis but with different metabolic 

characteristics, suggesting that these two coactivators regulate the expression of overlapping but 

distinct set of mitochondrial genes.  For instance, mitochondrial respiration stimulated by PGC-

1β is tightly coupled than PGC-1α-mediated stimulation (171), indicating that fewer protons (H+) 

leak across the inner mitochondrial membrane and into the intermembrane space (via uncoupling 

proteins), and thereby generating heat instead of ATP (Figure 1-5).  PGC-1β appears to serve, 

more than PGC-1α, as a molecular machine committed to promoting cellular energy via fuel 

oxidation in hepatocytes (167; 171).  The differential effects of PGC-1α and PGC-1β may be due 

to their selective preferences to DNA-binding transcription factors and/or their ability to 
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communicate differently with the general mitochondrial transcription machinery (172).  

Therefore, modulating the cellular activity of PGC-1α and PGC-1β may lead to fine-tuning of 

mitochondrial function to meet the energetic demands of the cell in response to certain 

environmental conditions.  

 

4.3 PPRC 

PPRC was discovered by Andersson et al. (2001) (133) by a database search for sequences 

similar to PGC-1α.  This group found that PPRC was ubiquitously expressed in murine, human 

tissues, and various cell lines.  Similar to PGC-1α and PGC-1β, PPRC binds to nuclear 

transcription factors implicated in the expression of mitochondrial function, such as NRF-1 and 

NRF-2 (138; 173; 174).  Knockdown of PPRC in in vitro resulted in reduced respiratory chain 

expression and ATP production along with abundant abnormal mitochondria that lacked 

organized cristae and exhibited severe membrane abnormalities (133; 175; 176).  Unlike PGC-1α 

and PGC-1β, PPRC expression is rapidly induced by the introduction of serum (133).  In fact, its 

function has been widely implicated as an important cellular growth factor (133; 174; 177; 178).   

PPRC activity was shown to correlate with the cell proliferative cycle (133).  The steady-

state expression of PPRC mRNA and protein is remarkably high in growing cells but rapidly 

diminishes upon exit from the cell cycle as a consequence of treatment with cell-cycle inhibitors 

or from serum withdrawal (133).  Andersson et al. (2001) (133) demonstrated that PPRC protein 

was rapidly induced when quiescent fibroblasts re-entered the cell cycle in response to serum 

stimulation (133).  This group proposed that PPRC activity may be essential for mitochondrial 

maintenance and respiratory function in growing cells. 
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Cell growth and proliferation requires mitochondrial respiratory for its high energy needs.  

Goto et al. (1997) (179) showed that PPRC binds to host cell factor (HCF)-1(138), a chromatin-

associated protein required for progression through G1 of the cell cycle phase (179).  HCF-1 also 

functions as an NRF-2 coactivator (180), a component demonstrated to be critical for PPRC to 

bind to and trans-active NRF-2 (138).  Therefore, HCF-1 serves as a platform for PPRC 

transcription factor interactions via promoting the expression of genes needed not only for cell 

growth but also for mitochondrial biogenesis and respiratory function.  Needless to say, PPRC 

helps to integrate the expression of respiratory apparatus and mitochondrial biogenesis with the 

cell proliferative program. 

Interestingly, a member of the gasotransmitter family, NO, was shown to modulated the 

gene expression of pprc.  Raharijaona et al. (2009) (176) demonstrated that NO rapidly induced 

pprc expression in two human cell models of oncocytic thyroid tumours (XTC.UC1 and B-CPAP 

cell lines).  Not only did it increase PPRC mRNA level, but 100 µM SNAP (an NO donor) also 

elevated PPRC-mediated mitochondrial biogenesis (via NRF-1, Tfam) and respiration (via 

COX5B; a subunit of complex IV, also known as cytochrome c oxidase) (176).  Treatment with a 

PKG inhibitor (KT5823), an inhibitor of the NO/cGMP pathway, blocked this upregulation of 

the aforementioned genes (176).  Because NO upregulates PPRC expression as well as PPRC-

mediated induction of mitochondrial biogenesis and respiration, preludes to the possibility that 

H2S may regulate PPRC expression and mitochondrial biogenesis 

 

5.0 C/EBP-β, gluconeogenesis, and diabetes 

CCAAT-enhancer-binding proteins (C/EBP)-β belongs to the leucine zipper family of 

transcription factors from which other members have been characterized (i.e. C/EBP-α and 

https://en.wikipedia.org/wiki/Complex_IV
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C/EBP-γ) (181; 182).  Due to its high expression in hepatocytes (183), C/EBP-β has been linked 

to hepatocyte-specific gene regulation (184).  For instance, C/EBP-β contributes to regulating the 

acute-phase response of the liver in inflammation (185; 186), liver regeneration (187; 188), as 

well as liver gluconeogenesis (154; 189).   

C/EBP-β is another important transcription factor that regulates glucose homeostasis 

through the induction of PEPCK and G6Pase (154; 189).  In fact, C/EBP-β aids in cAMP/PKA-

induced glucose production via inhibiting PDE, thus increasing PKA activity (190).  Similar to 

PGC-1α, C/EBP-β gene expression level was also shown to increase in the fasted mouse liver 

(154) or in the liver of rats that received injections of a chemical analog of cAMP (191).   

C/EBP-β transcription is stimulated by cAMP/PKA in response to fasting-induced glucagon 

release (139; 192).  After its activation by cAMP, PKA phosphorylates CREB (Ser133).  The 

latter enters the nucleus and binds to the CRE site in the promoter region of the c/ebp-β gene 

(192), thus increasing its transcription.  C/EBP-β can be induced by the activation of the 

cAMP/PKA pathway as well as the GR pathway (193).  Similar to PGC-1α, insulin 

downregulates the expression level of C/EBP-β, thus inhibiting C/EBP-β-mediated induction of 

gluconeogenesis (194). 

Interestingly, C/EBP-β was shown to directly induce pgc-1α transcription via binding to 

its specific promoter region in both hamster kidney cells (187) and in mouse brown fat cells 

(195).  Wang et al. (2008) (187) characterized C/EBP-β binding sites in the promoter region of 

pgc-1α (-765/-752), which was shown to increase pgc-1α promoter activity by ~7 fold; an 

observation that was later confirmed by Kajimura et al. (2009) (195).  Mutation at pgc-1α (-765/-

752) binding site blocked C/EBP-β-induced pgc-1α promoter activity (187). 
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C/EBP-β is significantly upregulated in livers of STZ-induced diabetic rats (194) and 

mice (189).  One study showed that livers from STZ-treated rats exhibited a 3-fold increase in 

C/EBP-β mRNA level (194).  Subsequently, Arizmendi et al. (1999) (189) found that C/EBP-β 

deletion in mice delayed the status of hyperglycemia, prevented the increase in plasma free fatty 

acids, limited the full induction of pepck and g6pase genes, and reduced the gluconeogenic rate 

all in comparison to STZ-treated WT mice.  Since C/EBP-β regulates both glucose and lipid 

concentrations, the authors suggest that C/EBP-β may be used as a therapeutic target to treat 

multiple metabolic disorders (i.e. diabetes, obesity). 

 

6.0 Rationale and hypothesis 

Recent work from our group has clearly shown that H2S regulates glucose production (22; 105; 

106).  Studies done on CSE-KO mice revealed that isolated KO liver cells produced less glucose 

compared to isolated WT liver cells (105).  We further showed that PGC-1α mRNA level was 

lower in CSE-KO renal tissues and that it was upregulated by exogenous H2S in A-10 cells (22).  

Identifying that H2S stimulates the regulation of PGC-1α holds exciting prospects for this protein 

as it regulates an array of energy-consuming metabolism pathways, namely mitochondrial 

biogenesis and gluconeogenesis (5; 130; 142; 143; 154; 170; 196; 197).  Another important 

transcription factor, C/EBP-β, also regulates glucose homeostasis through the induction of 

PEPCK and G6Pase (154; 189), enhancing the activity of PKA (190) as well as upregulating 

PGC-1α expression level (187; 195).  Interestingly, CSE (119; 120), PGC-1α (139; 140; 162), 

and C/EBP-β (189; 194) are significantly upregulated in livers of streptozotocin-induced diabetic 

rats (119; 120; 194) and mice (140; 189), db/db (139; 162) and ob/ob mice (140), as well as in 

liver-specific insulin-receptor knockout mice (140).  These altered gene expression profiles 
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suggest a linkage between CSE/H2S system and PGC-1α and C/EBP-β in the context of 

gluconeogenesis regulation in the liver.  Additionally, since H2S was shown to upregulate pgc-1α 

expression level (22), suggests that it may also upregulate the expression levels of PGC-1β and 

PPRC.  Indeed, NO was shown to upregulate PPRC-mediated induction of mitochondrial 

biogenesis and respiration (176).  Therefore, my hypothesis is that endogenous H2S is an 

important regulator of hepatic glucose production; it does this by upregulating the major 

gluconeogenic enzymes (i.e. PEPCK, FBPase, and G6Pase) as well as mitochondrial 

biogenesis to fuel hepatic glucose production.  

  

7.0 Objectives and experimental approaches 

This thesis focuses on the relationship between H2S and hepatic glucose production and has been 

divided into two consecutive studies. 

 

7.1 Study 1:  Decreased gluconeogenesis in the absence of cystathionine γ-lyase and the 

underlying mechanisms 

Currently, the role of endogenous H2S availability in gluconeogenesis is unknown.  Therefore, 

we focused on the crucial role of CSE-generated H2S in hepatic glucose production under 

physiological conditions. How H2S enhanced gluconeogenesis, and the roles of PGC-1α and 

C/EBP-β play in H2S-mediated glucose production were investigated (Figure 1-7). Our 

objectives are as follows: 

1.0 To determine the in vivo effects of endogenous and exogenous H2S on the rate of 

gluconeogenesis via pyruvate tolerance test in both WT and CSE-KO mice. 
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2.0 To investigate the stimulatory effect of H2S on glucose production as well as changes in 

gluconeogenic factors (i.e. PGC-1α, C/EBP-β, PEPCK, etc.) in isolated primary liver cells 

from overnight fasted WT and CSE-KO mice.  Also, whether or not H2S increases the protein 

and S-sulfhydration levels of PEPCK, FBPase, and G6Pase, will be analyzed. 

3.0 To study the stimulatory effect of the cAMP/PKA and GR pathways on glucose production 

and protein expression levels of major gluconeogenic factors (i.e. PGC-1α, C/EBP-β, 

FBPase, etc.) via 8-Br-cAMP and dexamethasone treatment, respectively, in isolated 

hepatocytes. 

4.0 To analyze the signaling pathway(s) H2S mediates to induce hepatic glucose production in 

the primary liver cells (i.e. cAMP/PKA and/or glucocorticoid signaling pathway[s]). 

Inhibitors selective to the cAMP/PKA (KT5720) and GR (RU-486) pathway will be used. 

5.0 Lastly, we intend to determine if H2S-induced hepatic glucose production is dependent, or 

not, on PGC-1α and/or C/EBP-β signaling pathway(s) in both CSE-KO and WT hepatocytes. 

 

 

 

 

 

 

 

Figure 1-7:  Schematic diagram of the layout of Study 1. 
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7.2   Study 2:  Stimulatory effect of the CSE/H2S system on hepatic mitochondrial biogenesis 

and the underlying mechanisms 

After determining that H2S stimulates hepatic glucose production through the PGC-1α signaling 

pathway, we turned our attention to determine whether or not H2S induced mitochondrial 

biogenesis.  As mentioned earlier, it was shown that the other gasotransmitters, NO (145) and 

CO (146), are involved in adaptive oxidative metabolism by ameliorating mitochondrial 

biogenesis in brown adipocytes (145) and cardiac tissues (146).  In fact, both of these 

gasotransmitters use PGC-1α activity to induce mitochondrial biogenesis.  Therefore, since H2S 

increases PGC-1α protein expression as well as its activity (via S-sulfhydration) in primary 

hepatocytes, we investigated whether it could also induce mitochondrial biogenesis in liver cells 

(Figure 1-8).  To carry out this study, we wanted to determine the following: 

 

1. The endogenous mtDNA copy number in primary hepatocytes isolated from both WT 

and CSE-KO mice. 

2. The effect of endogenous and exogenous H2S has on mitochondrial biogenesis gene 

transcripts (i.e. nrf-1, nrf-2, tfam), as well as on the expression levels of PGC-1β and 

PPRC.  Furthermore, it would be necessary to determine if H2S sulfhydrates PGC-1β and 

PPRC in primary hepatocytes. 

3. The ability of endogenous and exogenous H2S to induce mitochondrial biogenesis in 

primary liver cells by using a fluorescence probe. 

4. Lastly, to investigate if H2S-induced mitochondrial biogenesis is dependent on PGC-1α 

signaling activity, or the activity of other mitochondrial biogenesis coactivators (i.e. 
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PGC-1β, PPRC) to stimulate mitochondrial content and distribution in primary 

hepatocytes. 

 

 

 

 

 

 

 

 

 

Figure 1-8:  Schematic diagram of the layout of Study 2. 
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MOUSE PRIMARY LIVER CELL ISOLATION 

Mouse primary hepatocytes were chosen as the ideal experimental model to study glucose 

metabolism due to their metabolic competence, practicality, cost, and due to our unique access to 

CSE-KO mice (discussed in Chapter 5).  Prior to cell isolation, mice (8-12 weeks) were starved 

for 16 h where glycogen content of hepatocytes was virtually depleted as shown in our previous 

study (105).  Hepatocytes were isolated from CSE-KO and WT mice as described previously 

(105) with modification.  In brief, mice livers were perfused through the inferior vena cava with 

a buffer consisting of the following: 140 mM NaCl, 2.6 mM KCl, 0.28 mM Na2HPO4, 5 mM 

glucose, and 10 mM HEPES (pH 7.4). The perfusion was first for 7 min with the buffer 

supplemented with 0.5 mM EGTA and then for 10 min with the buffer containing 5 mM CaCl2 

and 100 U/ml collagenase type IV (Worthington, Lakewood, NJ). The isolated hepatocytes were 

filtered on nylon mesh (100 µm pore size), and selected by centrifugation in a 26% percoll 

isodensity gradient and then seeded in DMEM (5.5 mM glucose) containing 10% fetal bovine 

serum and 1X penicillin-streptomycin-neomycin. After 2 h at 37ºC in a humidified atmosphere 

of 5% CO2, the medium was removed and replaced with DMEM (5.5 mM glucose) 

supplemented with only 1X penicillin-streptomycin-neomycin. Cell viability was measured by 

trypan blue staining (method described below). The viability of all preparations was above 95%.  

 

TRYPAN BLUE STAINING 

Trypan blue method was used to detect cell viability of primary liver cells after isolation.  

Freshly isolated primary liver cells were resuspended in low-glucose DMEM (5.5 mM glucose) 

supplemented with 10% FBS and 1X penicillin-streptomycin-neomycin (106 cells/mL). A 1:1 

ratio of 0.4% trypan blue and cell suspension (dilution of cells) were constituted and mixed 
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thoroughly via pipetting up and down. Approximately 10 μL of the trypan blue/cell mixture was 

applied to a hemacytometer. The unstained (viable) and stained (nonviable) cells were counted 

separately in the hemacytometer to obtain the total number of viable cells. Isolated mouse 

hepatocytes with cell viability at or above 95% were used for experiments. 

 

ENDOGENOUS H2S MEASUREMENT 

The endogenous H2S level was determined by the zinc-agar trap method as described elsewhere 

(198).  Primary liver cells were cultured in 50 mL cell culture flasks with a preset monolayer of 

zinc-agar (1% agar, 9 mM zinc).  After 24 h in cell culture, the medium was carefully aspirated, 

and the trapped H2S in the zinc-agar layer was liberated and quantified in situ via the methylene 

blue reaction.   Accordingly, 2 mL of N, N-dimethyl-p-phenylenediamine chloride (40 mM in 7.2 

M HCl) was added, and the flasks were incubated at room temperature for 10 min followed by 

the addition of 400 µL FeCl3 (30 mM in 1.2 M HCl).  After 20 min incubation, the absorbance 

was measured at 670 nm in a Multiskan Spectrum (Thermo Labsystems, Altrincham, CH, UK).   

Endogenous H2S released from the cells was quantified by a NaHS standard curve and 

normalized to total protein content that was determined by the Bradford method (Bio-Rad 

Laboratories, Inc., Mississauga, ON, Canada).   

 

GLUCOSE PRODUCTION ASSAY 

The glucose production assay was carried out as described previously (105; 109).  Primary 

hepatocytes isolated from WT or CSE-KO mice were plated onto 12-well tissue culture plates at 

a density of 5 x 104 cells per well and maintained in low-glucose (5.5 mM), serum- and insulin-

free DMEM (containing 1.25 mM pyruvic acid).  This maintenance medium prevents the 
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replenishment of glycogen stores in the isolated hepatocytes (199; 200).  Cells were treated with 

either NaHS (10 or 30 µM) for 6 h or with 8-Br-cAMP/Dex (1 mM/1 µM) for 3 h or 6 h.  For the 

PKA and glucocorticoid inhibitor studies, cells were pretreated for 1 h with 5 µM KT5720 or 5 

µM RU-486.  The medium was aspirated, and cells were washed with PBS before a 6 h treatment 

with NaHS (30 µM) or 8-Br-cAMP/Dex (1 mM/1 µM).  After treatment, the medium was 

removed, and cells were washed with PBS and incubated for 3 h in glucose-free DMEM.  

Thereafter, the medium was collected, and glucose concentration was determined using a glucose 

assay kit II (Biovision, Mountain View, CA).  The effects of KT5720 and RU-486 on cell 

viability was assessed by the trypan blue assay (201). 

 

SULFHYDRATION ASSAY 

The assay was conducted as described elsewhere (20; 109) with modifications.  Briefly, primary 

liver cells were sonicated three times (10 s/each) on ice using a cell sonicator (Sonic 

Dismembrator Model 100; Fisher Scientific) in HEN buffer [250 mM Hepes (pH 7.7), 1 mM 

EDTA, and 0.1 mM neocuproine] supplemented with 100 μM deferoxamine, 1:100 protease 

inhibitors, and 1% NP-40.  Samples were centrifuged at 14,000 rpm for 20 min at 4°C.  Blocking 

buffer (HEN buffer adjusted to 2.5% SDS and 20 mM MMTS) was added to the samples, which 

were then incubated at 50°C for 20 min with frequent shaking.  After the addition of acetone, 

proteins were precipitated at -20°C for 20 min.  Next, acetone was removed, and proteins were 

resuspended in HENS buffer (HEN buffer adjusted to 1% SDS) with the addition of biotin-

HPDP.  After incubation at 25°C for 3 h, the biotinylated proteins were precipitated by 

streptavidin agarose beads and washed 5X with HENS buffer.  The biotinylated proteins were 

eluted by 5X loading buffer, and samples were subjected to Western blot analysis. The total 
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targeted protein (i.e. total FBPase) was used as the normalizing control to quantify the 

densitometry of the S-sulfhydrated level of a targeted protein (i.e. SSH-FBPase). 

 

WESTERN BLOT ANALYSIS 

Cultured cells or liver tissue extracts were harvested in PBS supplemented with protease cocktail 

solution (1:100).  Samples were sonicated three times (10 s/each) on ice using a cell sonicator 

(Sonic Dismembrator Model 100) and were centrifuged at 14,000 rpm for 15 mins at 4ºC.  

Protein was determined via BCA method.  Equal amount of proteins were boiled in 1 X SDS 

sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 50 mM DTT, and 0.01% 

bromophenol blue).  Total cell lysates or liver tissue extracts (30-50 µg per lane) were separated 

by standard 10% SDS/PAGE and then transferred onto PVDF membranes (Millipore) and 

probed with selected primary antibodies.  The primary antibody dilutions were 1:1,000 for anti-

PGC-1α (Novus Biologicals, Oakville, ON, Canada), anti-PEPCK, anti-CSE (Abnova, Walnut, 

USA), anti-C/EBP-β, anti-G6Pase-α antibodies (Novus Biologicals); and 1:10,000 for anti-β-

actin antibody (Santa Cruz Biotechnology, Santa Cruz, CA).  HRF-conjugated secondary 

antibodies were used at either 1:10,000 or 1:5,000.  Immunoreactions visualised by enhanced 

chemiluminescence (ECL) and exposed to X-ray film (Kodak Scientific Imaging Film).  

Densitometric quantification was performed using ImageJ Software (National Institutes of 

Health).   

 

SHORT INTERFERING RNA (siRNA) TRANSFECTION  
 
All siRNAs were designed by and purchased from Santa Cruz Biotechnology.  Isolated primary 

liver cells were seeded in six-well plates at a density of 1×105 cells per well. Transfection of 

siRNA into primary liver cells was achieved using Lipofectamine® RNAi/MAX Reagent 
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(Invitrogen, Burlington, ON, USA).  Briefly, mouse primary liver cells were transfected with 

(70-100 nM) of targeting (siPGC-1α, siC/EBP-β, siPPRC) or non-targeting (control-siRNA-A) 

siRNA in Opti-MEM I culture medium (Invitrogen) without antibiotics for 4 h.  Afterwards, the 

transfection medium was removed, primary liver cells were washed with PBS, and fresh DMEM 

(5 mM glucose) supplemented with 1X penicillin-streptomycin-neomycin with or without 10% 

FBS was added to the cells.  Hepatocytes were incubated for another 56 h prior to their 

respective treatments.  

 

REAL-TIME PCR 

Total cellular RNA was isolated using TRIzol (Sigma), and treated with RNase-free DNase 

(New England BioLabs, Pickering, ON, Canada).  RNA quantity and purity was verified by 

A260/A280 measurements (Agilent 2100 Biosystem, Mississauga, Ontario, Canada). The 

integrity of the extracted RNA was determined by running a 1% agarose-formaldehyde 

denaturing gel stained with ethidium bromide to check the 2:1 ratio of the 28S and 18S bands 

(densitometric quantification was determined via ImageJ Software).  Only RNA samples with no 

RNA smearing below the 18S band and with a 2:1 ratio of the 28S and 18S bands were used for 

experiments.   

First-strand cDNA was prepared by reverse transcription using M-MuLV reverse 

transcriptase and random hexamer primers from a ProtoScript II RT-PCR Kit (New England 

Biolabs) according to the manufacturer’s protocol. The relative abundance of mRNA in each 

sample was measured by real-time PCR in a fluorescent temperature cycler (iQ5 Real-Time PCR 

Detection System, Bio-Rad, Mississauga, ON, Canada) with SYBR Green PCR Master Mix 

(Qiagen), as described previously (22; 34). Controls containing no reverse transcriptase were 

used to safeguard for genomic DNA contamination in each sample. Primer sequences specific for 
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either human HepG2 cells or primary mouse hepatocytes are listed in Tables 2-1 and 2-2, 

respectively.  All pre-designed primers were synthesized and supplied by Sigma-Aldrich 

(Oakville, ON, Canada).  β-actin was chosen as the reference gene as its mRNA level remained 

unchanged throughout various sample treatments.   As β-actin mRNA levels fluctuate between 

different mouse tissues (202), comparisons were only made from samples derived from the same 

experimental model (i.e. HepG2 cells or mouse primary liver cells).  The PCR conditions were as 

follows: denaturation at 95°C for 3 min, followed by 40 cycles of denaturation at 95°C for 30 s, 

annealing at 55°C for 1 min, and extension at 72°C for 30 s as described (22; 34). The specificity 

of PCR was determined by melt-curve analysis for each reaction. The relative difference in 

mRNA between samples was calculated using the arithmetic formula 2-ΔΔCT.  ΔCT is the 

difference between the threshold cycle of a given target mRNA and an endogenous reference β-

actin mRNA. Based on the calculated ΔCT value, the target mRNA level in the treated group 

was subsequently expressed as the percentage of that in the control group. 

 

STATISTICAL ANALYSIS  

All data sets are presented as mean ± S.E.M.  For primary liver cell experiments, n value 

designates the number of mice used in the experiments.  Results were analyzed using Student’s t 

test, or one-way ANOVA followed by a post hoc analysis (Tukey’s test) when applicable.  

Statistical significance was considered at P < 0.05. 
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Table 2-1: Real-time PCR primer sequences for gene targets in mouse hepatocytes 

Short name Forward primer 5ʹ-3ʹ Reverse primer 5ʹ-3ʹ 

PPRC GGTTTCAGTGGTCAGATGC CAGCCTGTCCCTCAAGTTC 

PGC-1β CTGGATGAAGGCGACACAC CTGGAACTGAGGCTGGTCTG 

NRF-1 CAGCACCTTTGGAGAATG CGACCTGTGGAATACTTG 

NRF-2 CTCACAGATGAAACAGGAG GTCACAATGATGGGCTGA 

Tfam CGTCTATCAGTCTTGTCTG GTATGCTTTCCACTCAGC 

ATP1a5 GCCTTACCAGTCATTGAAAC CACCCGCATAGATAACAG 

β-actin CCCATCTACGAGGGCTAT TGTCACGCACGATTTCC 

 

Table 2-2: Real-time PCR primer sequences for gene targets in human HepG2 cells 

Short name Forward primer 5ʹ-3ʹ Reverse primer 5ʹ-3ʹ 

PGC-1α GTCAAGCCACTACAGACACC CCGACATAAATCACACGG 

HNF-4α GTACTCCTGCAGATTTAGCC CTCATAGCTTGACCTTCGAG 

FOXO1 CCTCGAACTAGCTCAAATGC GGGATTGCTTATCTCAGAC 

PEPCK GGTGCTGGAGTGGATGTTC GGAGGTCGGCATTGACTTG 

FBPase CGATTGCCTTGTGTCCGTTG GACCAGAGTGCGATGAAC 

G6Pase CCTTCACAGGAATGGAGTGC CTGAGTTTCTTGGACCCACC 

β-actin GGACATCCGCAAAGACCTG GGACTCGTCATACTCCTGC 
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ABSTRACT 

Aims: To investigate the regulation of hepatic glucose production by cystathionine γ-lyase 

(CSE)-generated hydrogen sulfide (H2S) in hepatic glucose production under physiological 

conditions.   

Results: We found that CSE-knockout (KO) mice had a reduced rate of gluconeogenesis, which 

was reversed by administration of NaHS (an H2S donor) (i.p.).  Interestingly, isolated CSE-KO 

hepatocytes exhibited a reduced glycemic response to chemical-induced activation of the 

cAMP/PKA and glucocorticoid pathways compared to wild-type (WT) hepatocytes.  Treatment 

with the inhibitors for PKA (KT5720) or glucocorticoid receptor (RU-486) significantly reduced 

H2S-stimulated glucose production from both WT and CSE-KO mouse hepatocytes.  NaHS 

treatment upregulated the protein levels of key gluconeogenic transcription factors, such as 

peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and CCAAT-enhancer-

binding proteins-β (C/EBP-β).  Moreover, exogenous H2S augmented the S-sulfhydration of the 

rate-limiting gluconeogenic enzymes and PGC-1α and increased their activities, which were 

lower in untreated CSE-KO hepatocytes.  Finally, knockdown of PGC-1α, but not C/EBP-β, 

significantly decreased NaHS-induced glucose production from the primary hepatocytes.    

Conclusion: This study demonstrates the stimulatory effect of endogenous H2S on liver glucose 

production and reveals three underlying mechanisms; i.e. H2S upregulates the expression levels 

of PGC-1α and PEPCK via glucocorticoid receptor pathway; H2S upregulates the expression 

level of PGC-1α through the activation of the cAMP/PKA pathway, as well as PGC-1α activity 

via S-sulfhydration; and H2S upregulates the expression and the activities (by S-sulfhydration) of 

G6Pase and FBPase.  This study may offer clues for the homeostatic regulation of glucose 

metabolism under physiological conditions and its dysregulation in metabolic syndrome.  
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INTRODUCTION 

Glucose is the most efficient and abundant energy substrate for mammalian cells, fueling 

numerous physiological functions, including cell proliferation and growth, protein and nucleic 

acid synthesis, fatty acid and cholesterol synthesis, etc.  Glucose is converted to ATP, the energy 

currency of the cell, via oxidative phosphorylation mostly and anaerobic glycolysis to a lesser 

degree.  Thus, glucose homeostasis is critical for maintaining physiological function of our body, 

whereby its sustained disturbance may lead to metabolic syndrome.   

Fasting induces the release of glucagon and glucocorticoid from pancreatic α-cells and 

the adrenal cortex, respectively, into the bloodstream through which these endocrine hormones 

act on the liver.  The liver is the major glucose-producing organ, whereby the breakdown of 

glycogen produces glucose (glycogenolysis) and the de novo synthesis of glucose 

(gluconeogenesis) occurs within this organ.  Both glycogenolysis and gluconeogenesis are 

activated by glucagon signaling via increasing intracellular cAMP level, eventually leading to 

glycogen breakdown and the transcription of gluconeogenic genes.  Glucocorticoid, on the other 

hand, initiates only the gluconeogenic process via binding to its cytosolic receptor to activate the 

transcription of gluconeogenic genes.  The glucagon and glucocorticoid signaling pathways 

synergistically work together to enhance hepatic glucose production.     

Among many endogenous substances that regulate glucose production is hydrogen 

sulfide (H2S) (27,35,40).  H2S is a gasotransmitter with the ability to freely diffuse through cell 

membranes and elicit physiological responses (17,31,36,41).  In the liver, H2S production is 

largely catalyzed by cystathionine γ-lyase (CSE) and, to a lesser degree, by cystathionine β-

synthase (11).   Recently, we showed that liver cells isolated from mice lacking the cse gene 

(CSE-KO) have significantly lower basal glucose level compared to their wild-type (WT) 
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counterparts (40).  In subsequent studies, we discovered that NaHS (an H2S donor) upregulated 

the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in rat 

vascular smooth muscle cells, A-10 cells (27).  PGC-1α is a major transcription factor involved 

in an array of energy-consuming metabolism pathways, such as cholesterol synthesis, fatty acid 

oxidation, mitochondria biogenesis, and gluconeogenesis (6).  As an important gluconeogenic 

regulator, PGC-1α upregulates the expression of gluconeogenic rate-limiting enzymes, such as 

phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), and 

glucose-6-phosphatase (G6Pase) (6).   

CCAAT-enhancer-binding proteins-β (C/EBP-β), another important transcription factor, 

also regulates glucose homeostasis through the induction of PEPCK and G6Pase (1,15).   

Interestingly, CSE (8,39), PGC-1α (10,14,38), and C/EBP-β (1,2) are significantly upregulated in 

livers of streptozotocin-induced diabetic rats (2,8,39) and mice (1,38), db/db (10,14) and ob/ob 

mice (38), as well as in liver-specific insulin-receptor knockout mice (38).  These altered gene 

expression profiles suggest a linkage between CSE/H2S system and PGC-1α and C/EBP-β in the 

context of gluconeogenesis regulation in the liver.  We hypothesized that endogenous H2S is an 

important regulator for liver glucose production.  How H2S enhanced gluconeogenesis and the 

roles of PGC-1α and C/EBP-β play in H2S-mediated glucose production were investigated in the 

present study.   
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MATERIALS and METHODS 

Animal and Tissue Preparation 

CSE-KO mice were generated and home-bred as previously described (36).  Eight to twelve-

week-old male CSE-KO mice and age-matched male WT littermates were used.  All animal 

experiments were conducted in compliance with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication no. 85-23, revised 

1996) and approved by the Animal Care Committee of Lakehead University, Canada.   Mice 

were maintained on standard rodent chow with free access to food and water.  Liver tissues were 

isolated in ice-cold PBS, cleaned, and snap-frozen in liquid nitrogen immediately and stored at -

80°C until processing. 

 

Hepatocyte Preparation 

Prior to cell isolation, mice (8-12 weeks) were starved for 16 h where glycogen content of 

hepatocytes was virtually depleted as shown in our previous study (40).  Hepatocytes were 

isolated from CSE-KO and WT mice as described elsewhere (40) (please see Chapter 2 for 

method details). 

 

Pyruvate Tolerance Test 

Mice were starved overnight and injected i.p. with 2 g/kg pyruvate.  The animals received NaHS 

or saline (i.p.) 10 min prior to pyruvate injection.  Blood glucose level was measured using blood 

glucose strips (One-Touch Glucometer, Johnson, local pharmacy).   
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Hepatocyte Glucose Production Assay 

Primary hepatocytes isolated from WT or CSE-KO mice were plated onto 12-well tissue culture 

plates at a density of 5 x 104 cells per well and maintained in low-glucose (5.5 mM), serum- and 

insulin-free DMEM (containing 1.25 mM pyruvic acid).  This maintenance medium prevents the 

replenishment of glycogen stores in the isolated hepatocytes (28,29).  Cells were treated with 

either NaHS (10 or 30 µM) for 6 h or with 8-Br-cAMP/Dex (1 mM/1 µM) for 3 h or 6 h.  For the 

PKA and glucocorticoid inhibitor studies, cells were pretreated for 1 h with 5 µM KT5720 or 5 

µM RU-486.  The medium was aspirated and cells were washed with PBS prior to a 6 h 

treatment with NaHS (30 µM) or 8-Br-cAMP/Dex (1 mM/1 µM).  After treatment, the medium 

was removed and cells were washed with PBS, and incubated for 3 h in glucose-free DMEM.  

Thereafter, the medium was collected and glucose concentration was determined using a glucose 

assay kit II (Biovision, Mountain View, CA).  The effects of KT5720 and RU-486 on cell 

viability were assessed by the trypan blue assay (16). 

 

Endogenous H2S Measurement 

The endogenous H2S level was determined by the in situ methylene blue assay as described 

elsewhere (13) (please see Chapter 2 for details on method).   

 

Gene Silencing with siRNA  

Primary liver cells were transfected with 70 nM siRNA-A (control), siPGC-1α, siC/EBP-β, or 

both siPGC-1α and siC/EBP-β for 60 h.  The siRNA complexes were diluted in Opti-MEM 

media (Invitrogen, Burlington, ON, Canada) and Lipofectamine® RNAi/MAX Reagent 

(Invitrogen) was used as the transfection reagent.   
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Intracellular cAMP Levels  

Endogenous cAMP levels in primary mouse hepatocytes were determined by Cyclic AMP Select 

EIA Kit (Cayman Chemicals, Burlington, ON, Canada) according to the manufacturer’s 

instructions.  Briefly, after liver cells were treated for 6 h with NaHS (30 µM), cells were washed 

3X with ice-cold PBS and 1.657 mL of 0.1 M HCl was added to the 100 mm plates.  Plates were 

incubated at room temperature for 20 min and cells were scraped off and centrifuged at 1,000 g 

for 10 min.  The supernatant was diluted 1:2 with the supplied EIA buffer.  Thereafter, 50 uL of 

sample was added to the coated 96-well plate which also contained the appropriate amounts of 

the supplied EIA buffer, AChE tracer, and EIA antiserum.  The plate was incubated at 4°C for 18 

h, where after the wells were washed 5X with the supplied Wash buffer and 200 uL of Ellman’s 

Reagent was added to each well.  The plate was incubated in the dark for 90 min on a shaker.  

Thereafter, the absorbance was measured at 410 nm in a Multiskan Spectrum (Thermo 

Labsystems) and data was analyzed using the online Cayman spreadsheet program 

(www.caymanchem.com/analysis/eia).  Only sample values within the accepted %B/B0 range 

were used for statistical analysis.  Ultrapure water (Cayman Chemical) was used to make up the 

working solutions from the supplied concentrated stock solutions.   

 

Plasma Hormone Analysis 

Blood samples for glucagon measurement were collected in heparin-coated tubes (to prevent 

interference with the EIA assay) supplemented with aprotinin (20 mg/L) to prevent proteolysis 

(21).  Bloods samples for corticosterone were collected in EDTA-coated tubes.  Plasma was 

collected by centrifuging whole blood at 3,000 g for 10 min at 4ºC.  Plasma glucagon was 

measured via Glucagon (human/mouse/rat) EIA kit (Biovision) and corticosterone by 
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Corticosterone ELISA (Abcam, Toronto, ON, Canada).  Analyzes were performed according to 

the respective manufacturer’s protocols. 

 

Immunoblot Analysis 

Western blotting was performed as described before (7).  The primary antibody dilutions were 

1:1,000 for anti-PGC-1α, anti-C/EBP-β (Novus biologicals, Oakville, ON, Canada), anti-

PEPCK, and anti-CSE (Abnova, Walnut, USA) antibodies; 1:100 for anti-FBPase, anti-G6Pase, 

and anti-FOXO1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA); and 1:10,000 for anti-β-

actin antibody (Santa Cruz Biotechnology).   

 

Sulfhydration Assay 

The assay was conducted as described elsewhere (22) with modifications.  Briefly, primary liver 

cells were sonicated three times (10 s/each) on ice using a cell sonicator (Sonic Dismembrator 

Model 100; Fisher Scientific) in HEN buffer [250 mM Hepes (pH 7.7), 1 mM EDTA, and 0.1 

mM neocuproine] supplemented with 100 μM deferoxamine, 1:100 protease inhibitors, and 1% 

NP-40.  Samples were centrifuged at 14,000 rpm for 20 min at 4°C.  Blocking buffer (HEN 

buffer adjusted to 2.5% SDS and 20 mM MMTS) was added to the samples, which were then 

incubated at 50°C for 20 min with frequent shaking.  After the addition of acetone, proteins were 

precipitated at -20°C for 20 min.  Next, acetone was removed and proteins were resuspended in 

HENS buffer (HEN buffer adjusted to 1% SDS) with the addition of biotin-HPDP.  After 

incubation at 25°C for 3 h, the biotinylated proteins were precipitated by streptavidin agarose 

beads and washed 5X with HENS buffer.  The biotinylated proteins were eluted by 5X loading 

buffer and samples were subjected to Western blot analysis.  
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Gluconeogenic Enzyme Assays 

FBPase enzyme activity was assayed as described elsewhere (27).  Briefly, total cell lysates were 

added to an assay mixture that contained 40 mM glycine buffer (pH 9.1), 2.0 mM MgCl2, 1.0 

mM EDTA, 0.6 mM NADP+, and 1.2 U/mL of both glucose-6-phosphate dehydrogenase and 

phosphoglucose isomerase. The reaction mixture was equilibrated for 10 min at 37°C and 

initiated by the addition of 70 µM fructose-1,6-bisphosphate.   The increase in absorbance was 

measured at 340 nm via a Multiskan Spectrum.  Ultrapure water (Cayman Chemical) was used to 

make up the solutions.  FBPase activity was calculated by subtracting the content of cell lysates 

incubated in the absence of fructose-1,6-bisphosphate from that of a complete system incubated 

in the presence of the substrate.   

G6Pase activity was assayed as described elsewhere (9) with modifications.  Briefly, the 

assay was conducted at 37°C for 15 min in 100 mM cacodylate buffer (pH 6.5).  Hydrolytic 

activity was initiated with 100 µL of 100 mM glucose-6-phosphate mixed with 100 µL cell 

lysates.  After 15 min at 37°C, 1.8 mL of 10% trichloroacetic acid was added, and samples were 

centrifuged at 4,000 g for 10 min.  Afterwards, 1.0 mL of supernatant was added to 5.0 mL of 

0.25% ammonium molybdate and 1.0 mL 0.2% 1-amino-2-naphthol-4-sulfonic acid (EMD 

Millipore Chemicals, Chemicals, Billerica, MA).  The amount of liberated phosphate was 

measured at 700 nm via a Multiskan Spectrum.  Ultrapure water (Cayman Chemical) was used to 

make up the solutions.  G6Pase activity was calculated by subtracting the inorganic phosphorus 

content of cell lysates incubated in the absence of glucose-6-phosphate from that of a complete 

system incubated in the presence of the substrate.  A blank containing all reagents except cell 

lysates revealed no free inorganic phosphorus. 
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Chemicals and Statistical Analysis 

All chemicals and enzymes used in this study were obtained from Sigma-Aldrich (Oakville, ON, 

Canada) unless otherwise stated.  siRNA products were obtained from Santa Cruz Biotechnology 

(Santa Cruz, CA) and antibodies were purchased from Abcam unless otherwise specified.  All 

data sets are presented as mean ± S.E.M.  For primary liver cell experiments, n value designates 

the number of mice used in the experiments.  Results were analyzed using Student’s t test, or 

one-way ANOVA followed by a post hoc analysis (Tukey’s test) when applicable.  Statistical 

significance was considered at P < 0.05. 
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RESULTS 

Impaired gluconeogenic system in CSE-KO mice  

The pyruvate tolerance test (PTT) is an estimation of the rate of gluconeogenesis, reflected by 

the time the liver takes to generate glucose from pyruvate.  The injection of pyruvate to 

overnight fasted mice elicited a rapid glycemic response, where glucose level peaked 20 min 

after the injection and gradually declined over 2 h (Figure 3-1A).  The amplitude of glycemic 

response was significantly lower in CSE-KO mice than in WT mice (Figure 3-1A).  To 

determine if exogenous H2S can restore gluconeogenesis in CSE-KO mice, the KO mice were 

given i.p. injections of NaHS or saline 10 min prior to pyruvate injection.  NaHS pretreatment 

significantly increased basal plasma glucose level in CSE-KO mice before pyruvate stimulation 

(Fig. 1B).  The pyruvate-stimulated gluconeogenesis in CSE-KO mice was rescued by NaHS 

pretreatment at 39 µmol/kg and restored it to the same level as WT mice (Figure 3-1B).  NaHS 

pretreatment at a higher concentration of 63 µmol/kg resulted in significantly greater pyruvate-

stimulated glycemic response than other treatments (Figure 3-1B).  

To investigate specifically the stimulatory effect of H2S on glucose production in the 

liver, we isolated primary liver cells from overnight fasted WT and CSE-KO mice.  As expected, 

endogenous H2S level in cultured CSE-KO liver cells was about 39% of that in WT liver cells 

(Figure 3-2A).  To observe hepatocytes’ response to chemical-induced activation of the 

cAMP/PKA and glucocorticoid pathways, we treated the cultured liver cells with 8-Br-cAMP 

and dexamethasone (Dex), which are synthetic analogs for cAMP (38) and glucocorticoid (20), 

respectively.  Treatment with 8-Br-cAMP/Dex for 3 h and 6 h increased glucose production in 

WT cells by 87% and 246%, respectively (Figure 3-2B).  Interestingly, 8-Br-cAMP/Dex 

treatment for 3 h and 6 h elicited a higher percentile increase in glucose production response in 
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CSE-KO cells by 215% and 329%, respectively, compared to untreated CSE-KO liver cells 

(Figure 3-2B).  However, the actual glucose levels in CSE-KO cells were 54% and 40% of those 

in WT cells with 3 h and 6 h 8-Br-cAMP/Dex treatment, respectively. 

The changed gluconeogenic proteins levels followed the same trend as the glucose 

production level in 8-Br-cAMP/Dex-treated WT cells.  For instance, the protein levels of PGC-

1α, PEPCK, FBPase, G6Pase, and C/EBP-β (also known as LAP) were significantly increased in 

WT liver cells after 3 or 6 h treatment with 8-Br-cAMP/Dex (Figure 3-2C-H).  A similar increase 

in the protein level of forkhead box protein O1 (FOXO1; a PGC-1α co-activator (6)) was also 

observed in WT hepatocytes with 8-Br-cAMP/Dex treatment (Supplementary Figure 3-1A and 

B).  Interestingly, the basal levels of these proteins were significantly higher in CSE-KO liver 

cells than those of WT liver cells (Figure 3-2C-E, G and H, and Supplementary Figure 3-1), with 

the exception to FBPase (Figure 3-2C and F).  CSE-KO liver cells exhibited a moderate increase 

in PGC-1α expression level by 34% and PEPCK by 48% after treatment with 8-Br-cAMP/Dex 

for 6 h (Figure 3-2D and E).  Moreover, CSE expression level significantly decreased in WT 

hepatocytes with 8-Br-cAMP/Dex treatment (Figure 3-2C and I).   This downregulation suggests 

hormonal control of CSE protein expression by glucagon-stimulated cAMP signaling or/and by 

glucocorticoid signaling. 

It has been reported that under starvation conditions, PGC-1α and PEPCK are 

significantly upregulated in mouse liver (15,38).  C/EBP-β gene expression level was also shown 

to increase in the fasted mouse liver (15) or in the liver of rats that received injections of a 

chemical analogue of cAMP (24).   How these key gluconeogenic proteins are regulated by H2S 

under different nutritional states was unknown.   Here, we found a significant increase in PGC-

1α, PEPCK, and C/EBP-β expression levels in non-fasted CSE-KO livers compared to WT livers 
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(Figure 3-3A-D).  In agreement with Fig. 2I, CSE expression was decreased in fasted WT livers 

in comparison with the level in non-fasted WT livers (Figure 3-3A and E).  Furthermore, plasma 

levels of glucagon and corticosterone (a major glucocorticoid) were significantly elevated in 

non-fasted and fasted CSE-KO mice compared to the respective WT groups (Figure 3-3F and G). 

 

NaHS enhances glucose production, protein level and induces S-sulfhydration of major 

gluconeogenic factors 

Based on our previous study (40), it came to no surprise when we found that NaHS treatment 

significantly increased glucose production in primary cultured WT and CSE-KO liver cells 

(Figure 3-4A).  To dig further into this mechanism, we discovered that 30 µM NaHS increased 

the enzymatic activities of total FBPase and G6Pase in isolated hepatocytes (Figure 3-4B and C).  

Since H2S-indued S-sulfhydration was shown to enhance enzymatic activity (22), we determined 

it necessary to measure the sulfhydrated levels of these gluconeogenic proteins.  In fact, all three 

gluconeogenic enzymes: PEPCK, FBPase, and G6Pase, showed elevated levels of their 

sulfhydrated forms with NaHS treatment in both WT and CSE-KO hepatocytes (Figure 3-4D-I).   

Bucci et al. (2010) (3) demonstrated the ability of H2S to enhance endogenous cAMP in 

vascular smooth muscle cells.  Indeed, we found this similar phenomenon to also occur in 

primary hepatocytes treated with NaHS (Figure 3-5A).  Like its effect on the major 

gluconeogenic enzymes (Figure 3-4D-I), exogenous H2S also enhanced the S-sulfhydration level 

of PGC-1α by approximately 1 fold in both WT and CSE-KO liver cells with comparison to their 

respective control groups (Figure 3-5B and C).   Furthermore, NaHS treatment increased the 

protein expression levels of PGC-1α, PEPCK, FBPase, G6Pase, and C/EBP-β in WT and CSE-

KO hepatocytes (Figure 3-5D-I).   For example, NaHS at 10 µM and 30 µM increased the levels 
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of PGC-1α by 35% and 69% in WT cells, respectively (Figure 3-5D and E).    Contrary to 30 µM 

NaHS treatment, 5 mM L-cysteine (a major precursor for H2S biosynthesis) failed to induce 

glucose production and PGC-1α, FBPase, and G6Pase protein expression levels in isolated CSE-

KO hepatocytes (Supplementary Figure 3-2).  

 

H2S induces glucose production through the cAMP/PKA and glucocorticoid pathways 

To determine the signaling pathways for H2S-induced glucose production, we used 5 µM 

KT5720 to inhibit PKA and 5 µM RU-486 to inhibit glucocorticoid receptor (GR) in primary 

cultured WT and CSE-KO liver cells.  Pretreatment with KT5720 or RU-486 for 1 h did not 

affect cell viability as tested with trypan blue assay (data not shown), but the inhibitors 

significantly attenuated the gluconeogenic effect of 8-Br-cAMP/Dex (Figure 3-6A and B).  

Pretreatment of WT and CSE-KO liver cells with KT5720 or RU-486 also significantly 

suppressed NaHS-induced glucose production (Figure 3-6C and D).  The gluconeogenic effects 

of 8-Br-cAMP/Dex and NaHS on WT and CSE-KO liver cells were completely abolished by the 

co-treatment with both KT5720 and RU-486 (Figure 3-6).   

 

H2S-induced glucose production is dependent on PGC-1α in WT and CSE-KO primary 

liver cells 

To determine whether H2S-stimulated hepatic glucose production was mediated by PGC-1α 

and/or C/EBP-β, we transfected WT and CSE-KO primary liver cells with siPGC-1α, siC/EBP-β, 

or both siPGC-1α and siC/EBP-β for 60 h.  These maneuvers significantly knocked down the 

expression of the respective proteins (Figure 3-7A and B).  Transfection with siC/EBP-β had no 

effect on NaHS-induced glucose production in both WT and CSE-KO primary liver cells (Figure 
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3-7C).   However, glucose production induced by NaHS at 30 µM was completely abolished by 

siPGC-1α transfection in both WT and CSE-KO liver cells (Figure 3-7C).  In agreement, co-

transfection of both PGC-1α and C/EBP-β also abolished NaHS-induced glucose production in 

WT and CSE-KO liver cells (Figure 3-7C).   
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DISCUSSION 

We previously showed that exogenous H2S increased glucose production in cloned liver 

carcinoma HepG2 cells (40).  In the present study, we focused on the crucial role of endogenous 

H2S in hepatic glucose production under physiological conditions as well as under fasting 

conditions.  CSE-KO mice, with diminished hepatic H2S production, displayed significantly 

reduced glucose production after pyruvate supplementation.  Cultured primary liver cells isolated 

from CSE-KO mice produced significantly lower glucose and exhibited a reduced glycemic 

response to chemical-induced activation of the cAMP/PKA and glucocorticoid pathways 

compared to WT liver cells.  Endogenous H2S was also responsible for increased enzymatic 

activity and sulfhydration levels of major gluconeogenic factors.  Thus, we demonstrated that 

endogenous H2S stimulates gluconeogenesis in mouse liver, leading to increased net glucose 

production.  Our results also reveal the critical roles of PKA and glucocorticoid receptor (GR) in 

H2S-induced glucose production and that of PGC-1α in H2S-induced gluconeogenesis.  One very 

intriguing discovery from our study is the differential responses of endogenous H2S on the 

gluconeogenic proteins.  In comparison with WT liver cells, we observed higher levels of PGC-

1α, PEPCK, G6Pase, and C/EBP-β in untreated CSE-KO liver cells (Figure 3-2 and 3-5), thus 

indicating that endogenous H2S inhibited the gene expression of PGC-1α, PEPCK, and G6Pase 

(Figure 3-2 and 3-5).  On the other hand, NaHS treatment upregulated the expression of these 

gluconeogenic proteins (Figure 3-5).  In the case of FBPase, both endogenous and exogenous 

H2S increased its expression (Figure 3-2 and 3-5).  It seems that endogenous and exogenous H2S 

plays differential roles in the regulation of this protein. 

The stimulatory effect of endogenous H2S on gluconeogenesis was demonstrated in the 

present study with the pyruvate tolerance test (PTT) (Figure 3-1).   PTT measures net glucose 
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level, a balance between glucose production and its utilization.    The systemic utilization of 

hepatic glucose produced through pyruvate metabolism is dependent on glucose-stimulated 

insulin secretion and insulin sensitivity of peripheral tissues.  High endogenous H2S level in the 

pancreas of Zucker diabetic rats inhibits insulin synthesis and release (34).  By the same token, 

low endogenous H2S level in CSE-KO mice may lead to increased insulin release (35).  In fact, 

we previously showed that CSE-KO mice have an improved glucose tolerance compared to the 

WT control (35).  That unique metabolic feature of the CSE-KO mice was likely due to a higher 

level of glucose-stimulated insulin release (35), considering that H2S inhibits insulin release (via 

activating KATP channels) from pancreatic β-cells (37). Therefore, these previously published 

results support the notion that more insulin is released in response to glucose stimulation in CSE-

KO mice, leading to a faster clearance of glucose from the bloodstream.  Our previous study also 

showed no difference in the insulin tolerance test results between CSE-KO and WT mice (35), 

suggesting that endogenous H2S has no effect on peripheral insulin sensitivity.  On the contrary, 

other studies have reported that NaHS supplementation inhibits insulin-stimulated glucose 

uptake into both fat (5) and liver (40) cells, implying that exogenous H2S reduces insulin 

sensitivity.  The discrepancy between Yang et al. (2011) (35) and the aforementioned studies 

(5,40) was due to the use of different preparations, i.e., whole animal in vivo study (35) vs. 

isolated rat adipocytes (5) and cultured HepG2 cells (40). It may also reflect the difference in the 

effects of endogenous H2S (35) and exogenously applied H2S donors (5,40).  On another note, 

our present study shows that H2S enhances the rate of gluconeogenesis through PGC-1α 

signaling and by directly increasing the activities of FBPase and G6Pase.  Taking these current 

and previously published results into consideration, the decreased glycemic response to pyruvate 

stimulation in CSE-KO mice can be explained by the lack of endogenous H2S so that two effects 
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of H2S, i.e. the upregulation of gluconeogenesis in the liver and inhibition of insulin secretion 

from pancreatic β-cells, cannot be realized.  Future studies to compare the glucose levels, with 

pyruvate added to and insulin removed from the culture medium and vice versa, in cultured WT 

and CSE-KO liver cells will help differentiate H2S-induced gluconeogenesis from H2S-inhibited 

glucose utilization. 

To study the liver-specific effect of H2S on glucose production, we isolated and cultured 

primary hepatocytes from CSE-KO and WT mice.  The mice were starved overnight to deplete 

hepatic glycogen (40) prior to liver cell isolation.  Overnight starvation of rodents suppresses the 

ability of isolated primary liver cells to synthesize and accumulate glycogen (28).  To further 

prevent the replenishment of glycogen stores, primary liver cells were cultured in glucose (5.5 

mM), insulin- and FBS-free medium (28,29).  Under these conditions, we found that CSE-KO 

liver cells produced significantly lesser glucose than WT liver cells with the activation of the 

cAMP/PKA and glucocorticoid pathways by 8-Br-cAMP/Dex treatment.  The expression levels 

of PGC-1α, PEPCK, FBPase, G6Pase, and C/EBP-β proteins were increased in both WT and 

CSE-KO liver cells with the 8-Br-cAMP/Dex treatment; however, with the exception for 

FBPase, no significant difference was observed in these protein levels after 3 h of treatment in 

CSE-KO liver cells.  Thus, this diverse pattern of protein upregulation along with lower glucose 

levels suggests an impaired gluconeogenic system in the CSE-KO liver cells.  Moreover, the 

inability of supplemented L-cysteine to increase gluconeogenesis in CSE-KO liver cells 

(Supplementary Figure 3-2A-E) supports the notion that CSE is the dominative H2S-producing 

enzyme in the liver (11).  During starvation, gluconeogenesis is ‘switched on’, meaning that 

PGC-1α, PEPCK, FBPase, and G6Pase are upregulated to increase hepatic glucose output.  

Interestingly, CSE protein was downregulated upon starvation (Figure 3-3) and also in 8-Br-
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cAMP/Dex-treated WT hepatocytes (Figure 3-2), suggesting these gluconeogenic factors were 

upregulated in the presence of low endogenous H2S.  We assume that this fasting-induced 

downregulation of CSE is metabolically advantageous for two reasons: 1) It will prevent a 

massive outburst of hepatic glucose production into the circulation.  H2S is a potent stimulator of 

hepatic glucose production, via activating the cAMP/PKA and glucocorticoid pathways (Figure 

3-6) as well as increasing the activities of the rate-limiting gluconeogenic enzymes, FBPase and 

G6Pase (Figure 3-4).  Intermitted bursts of high amount of plasma glucose could lead to elevated 

levels of reactive oxygen species (ROS) and advanced glycation end-products (AGEs) in 

peripheral tissues (4).  The deleterious effects of elevated ROS and AGEs levels have been 

implicated in the development of hypertension (32) and insulin-resistance (4).  Additionally, the 

pancreas would have to respond to the high plasma glucose level by producing more insulin.  

This would put tremendous strain on the pancreas, which may eventually lead to pancreatic β-

cell failure, as seen in the late stages of T2DM (4).  2) The hepatocytes would be more sensitive 

to insulin signaling under fasting conditions, where the downregulation of CSE expression would 

enable an immediate “turned-off” of gluconeogenesis.  We recently showed that exogenous H2S 

blocked insulin-induced phosphorylation of Akt at Ser473 in HepG2 cells, which abolished the 

uptake and utilization of glucose (40).  Coincident or not, upregulation of CSE has been reported 

in livers of streptozotocin-induced diabetic rats (8,39) and in insulin-resistant HepG2 cells (40).  

Thus, it is metabolically beneficial to down-regulate the CSE/H2S system in hepatocytes during 

fasting in order to preserve glucose homeostasis and possibly prevent the development of 

metabolic diseases.   

We recently reported that hepatic lipolysis was reduced in CSE-KO mice (17,18).  Liver 

tissues from fasted CSE-KO mice had lower mRNA levels of pparα and pparγ, two critical 
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regulators of lipid metabolism (17).  FGF21, another important mediator of hepatic lipid 

metabolism, induced by fasting, is upregulated by PPARα (33).  With lower pparα mRNA 

expression level, FGF21 expression may also be decreased in fasted CSE-KO livers.  In fact, 

CSE-KO mice fed with a high fat diet (HFD) for 12 weeks developed severe dyslipidemia, 

hepatic injury (i.e. higher aspartate aminotransferase, alanine aminotransferase, and alkaline 

phosphatase levels), and fatty liver with comparison to the HFD-fed WT mice (17).  This 

observation suggests the defect in the clearance of excess dietary fat from CSE-KO mouse liver.  

Clearly, not only is the gluconeogenic system impaired, but lipid metabolism as well in these 

CSE-KO mice.  The impact of the impaired lipolysis system on the impaired hepatic 

gluconeogenic system in CSE-KO mice needs to be further clarified. 

PGC-1α and C/EBP-β transcriptions are stimulated by cAMP/PKA in response to fasting-

induced glucagon release (10,23).  After its activation by cAMP, PKA phosphorylates the cAMP 

response element binding protein (CREB).  The latter enters the nucleus and binds to the 

consensus cAMP response element (CRE) site on the PGC-1α promoter (10) or to the promoter 

region of the c/ebp-β gene (23), thus increasing their transcriptions.  It is possible that exogenous 

H2S increases PGC-1α and C/EBP-β expressions through the inhibition of AMP-activated 

protein kinase (AMPK) (40) and/or through the inhibition of phosphodiesterase (PDE) (3).  

Intriguingly, not only did H2S increase PGC-1α protein level but also its activity via S-

sulfhydration (Figure 3-5).   Mustafa et al. (2010) (22) describes protein sulfhydration as a 

physiological post-transcriptional modification of cysteine residues in the target protein that 

leads to enhanced protein function.  Sirtuin 1 activates PGC-1α via deacetylation (25); however, 

no deacetylation of PGC-1α was observed in primary hepatocytes treated with NaHS (data not 
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shown).  Thus, we propose a novel mechanism by which PGC-1α activity is also regulated by S-

sulfhydration in primary hepatocytes, leading to an enhanced gluconeogenic system. 

PGC-1α is crucial for NaHS-induced glucose production because siPGC-1α transfection 

significantly abolished NaHS-stimulated glucose output from both WT and CSE-KO primary 

liver cells (Figure 3-7).  The present study also demonstrates that both cAMP/PKA and 

glucocorticoid pathways are involved in NaHS-induced glucose production (Figure 3-6C and D).  

Preincubation with either PKA or GR inhibitor significantly reduced, and the co-treatment with 

both inhibitors completely abolished, NaHS-stimulated glucose production in both WT and CSE-

KO liver cells (Figure 3-6C and D).  PGC-1α can be activated by cAMP in primary rat (19,38) 

and mouse hepatocytes (19) and synergistically by both cAMP and Dex (19,38).  NaHS may 

increase endogenous cAMP level (Figure 3-5A) through the inhibition of PDE (3), leading to 

CREB activation and thus pgc-1α transcription (10).  C/EBP-β was shown to directly induce pgc-

1α transcription, via binding to its specific promoter region in both hamster kidney cells (30) and 

in mouse brown fat cells (12).  C/EBP-β can be induced by the activation of the cAMP/PKA 

pathway as well as the GR pathway (1,20).  Therefore, when the cAMP/PKA pathway was 

inhibited, NaHS could still stimulate PGC-1α expression via GR pathway-mediated C/EBP-β 

induction.  Furthermore, C/EBP-β can directly up-regulate pepck and g6pase gene expression 

levels (1,15).  In fact, GR is capable of directly inducing pepck transcription (1), thus increasing 

glucose production.  Clearly, the cAMP/PKA and GR pathways work as an interconnected 

network to regulate PGC-1α expression.  Maximal induction of NaHS-stimulated glucose 

production requires functional cAMP/PKA and GR pathways, whereby PGC-1α is the center 

piece of this signaling web.  Therefore, we propose H2S may increase gluconeogenesis through 

three main mechanisms.  1) H2S upregulates the expression levels of PGC-1α and PEPCK via 
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glucocorticoid receptor pathway.  2) H2S upregulates the expression level of PGC-1α through the 

activation of the cAMP/PKA pathway, as well as PGC-1α activity via S-sulfhydration.  3) H2S 

upregulates the expression and the activities (by S-sulfhydration) of G6Pase and FBPase (Fig. 8). 

A balanced and functionally intact CSE/H2S system is important for the homeostasis of 

adaptive energy metabolism.  A pathophysiologically over-activated CSE/H2S system in the liver 

could pre-dispose an individual to metabolic syndrome because H2S blocks insulin release from 

pancreatic β-cells (26,34) and inhibits insulin-stimulated glucose uptake into both fat (5) and 

liver (40) cells.  In this regard, it has been reported that both CSE (8,39) and PGC-1α (10,14,38) 

are robustly upregulated in the liver under diabetic conditions.  Correspondingly, it was 

demonstrated that the CSE protein is upregulated in insulin-resistant HepG2 cells where DL-

propargylglycine treatment (a potent inhibitor of CSE activity) improved glucose consumption in 

these cells (40).   In agreement, we previously reported that streptozotocin-induced diabetic 

CSE-KO mice exhibited a delayed onset to diabetic status (hyperglycemic, hypoinsulinemia, and 

insulin resistance) (35).  Overall, these findings stress the importance of targeting an over-

activated CSE/H2S system in the insulin-resistance liver to prevent or attenuate the progress of 

metabolic syndrome.  

The present study identifies key targets of the CSE/H2S system in liver gluconeogenesis, 

deepening insight on hepatic glucose metabolism under physiological conditions and shedding 

light on the potential impact of endogenous H2S on the dysregulated gluconeogenesis in 

metabolic syndrome. 
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Figure 3-1.  Gluconeogenesis in WT and CSE-KO mice.  The rate of gluconeogenesis was 

determined via pyruvate tolerance test on overnight-fasted mice.  (A) Mice were injected i.p. 

with 2 g/kg pyruvate at time 0.  n = 7-11 for each group.  (B) Mice were injected with NaHS or 

saline 10 min before pyruvate injection.  Pyruvate injection was given at time 0.  Blood glucose 

was measured with a One-Touch Glucometer.  n = 5-9 for each group.  Statistical analyses 

performed were: Student’s t-test (A) and one-way ANOVA followed by a post hoc analysis 

(Tukey’s test) (B). *P < 0.05 vs. respective WT group with or without saline injection; #P < 0.05 

vs. respective CSE-KO (39 µmol/kg NaHS) group; †P < 0.05 vs. respective CSE-KO (39 

µmol/kg NaHS) group.   
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Figure 3-2.  Reduced glycemic response in CSE-KO liver cells treated with cAMP/Dex.  

Primary liver cells were isolated from overnight fasted 8-12 week-old WT and CSE-KO mice. 

(A) Endogenous H2S level in WT and CSE-KO liver cells were determined via in situ methylene 

blue assay.  n = 6-7 for each group.  (B) Liver cells were treated with 1 mM 8-Br-cAMP and 1 

µM Dex (dexamethasone) for 3 h or 6 h.  Thereafter, the glucose level in these cells was 

measured with a glucose assay kit.  n = 5-8 for each group.  (C) Representative Western blot 

results of the changed expression levels of selective proteins in WT and CSE-KO liver cells with 

8-Br-cAMP/Dex treatment.  (D-I) Summary of the changed expression levels of selective 

proteins in WT and CSE-KO liver cells with 8-Br-cAMP/Dex treatment.  The densities of 

selective proteins were normalized to that of β-actin and expressed as a percentage of untreated 

WT cells.  PGC-1α: n = 6-9 for each group; PEPCK: n = 7-12 for each group; FBPase: n = 6-8 

for each group; G6Pase: n = 7-9 for each group; C/EBP-β: n = 7-8 for each group; CSE: n = 5-6 

for each group.  Statistical analyses performed were: Student’s t-test (A and I) and one-way 

ANOVA followed by a post hoc analysis (Tukey’s test) (B and D-H). *P < 0.05 vs. 

corresponding control (CT) group; #P < 0.05 vs. corresponding WT group; †P < 0.05.  
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Figure 3-3.  Downregulation of CSE in fasted WT livers along with upregulation of 

gluconeogenic factors in livers and plasma in non-fasted CSE-KO mice.  Liver extracts were 

harvested from non-fasted or 24 h fasted WT and CSE-KO mice. (A) Representative Western 

blot results of the changed expression levels of selective proteins in liver tissues from non-fasted 

and fasted WT and CSE-KO mice. (B-E) Summary of the changed expression levels of selective 

proteins in liver tissues from non-fasted and fasted WT and CSE-KO mice.  Plasma glucagon (F) 

and corticosterone (G) levels were analyzed from mice after a 16 h fast.  Glucagon: n = 7; 

corticosterone: n = 6.  PGC-1α: n = 6-8 for each group; PEPCK: n = 6-7 for each group; C/EBP-

β: n = 9 for each group; CSE: n = 8 for each group.  Statistical analyses performed were: one-

way ANOVA followed by a post hoc analysis (Tukey’s test) (B-D, F and G) and Student’s t-test 

(E). *P < 0.05 vs. non-fasted WT group; #P < 0.05 vs. non-fasted CSE-KO group. 
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Figure 3-4.  Exogenous H2S enhanced glucose production and gluconeogenic enzyme 

activities, as well as S-sulfhydrated PEPCK, FBPase, and G6Pase in primary hepatocytes.  

Primary liver cells isolated from overnight fasted WT and CSE-KO mice were treated with 30 

µM NaHS for 6 h.  (A) Glucose levels in liver cells.  n = 6-10 for each group.  (B, C) The 

enzymatic activities of total FBPase and G6Pase, respectively, in whole cell lysates.  For FBPase, 

n = 8 for each group.  For G6Pase, n = 10-12 for each group.  (D-F) Representative Western blot 

results of the S-sulfhydration (SSH) of selective proteins in WT and CSE-KO liver cells.  (G-I) 

Summary of changed SSH expression levels of selective proteins in primary hepatocytes.  The 

densities of selective SSH proteins were normalized to total selected protein and expressed as a 

fold change to that of untreated WT cells.  PEPCK: n = 10 for each group; FBPase: n = 7-8 for 

each group; G6Pase: n = 6-7 for each group.  Statistical analysis was performed using the one-

way ANOVA followed by a post hoc analysis (Tukey’s test).  *P < 0.05 vs. corresponding 

control (CT) group; #P < 0.05 vs. corresponding WT group.   
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Figure 3-5.  Exogenous H2S upregulated cAMP levels, induced PGC-1α S-sulfhydration, 

and increased protein levels of key gluconeogenic factors in isolated WT and CSE-KO 

hepatocytes.  Primary liver cells isolated from fasted WT and CSE-KO mice were treated with 

10 or 30 µM NaHS for 6 h.  (A) Endogenous cAMP levels in whole cell lysates.  n = 8-12 for 

each group.  (B) Representative Western Blot result of SSH-PGC-1α in whole cell lysates.  (C) 

Summary of the changed SSH expression level of PGC-1α in primary hepatocytes.  The density 

of SSH-PGC-1α was normalized to total PGC-1α protein and expressed as a fold change to that 

of untreated WT cells.  n = 5-7 for each group.  (D) Representative Western blot results of the 

changed expression levels of selective proteins.  (E-I) Summary of the changed expression levels 

of selective proteins. The densities of selective proteins were normalized to that of β-actin and 

expressed as a percentage of untreated WT cells.  PGC-1α: n = 6-9 for each group; PEPCK: n = 

8-12 for each group; FBPase: n = 6-8 for each group; G6Pase: n = 7-9 for each group; C/EBP-β: 

n = 7-9 for each group.  Statistical analysis was performed using the one-way ANOVA followed 

by a post hoc analysis (Tukey’s test).  *P < 0.05 vs. corresponding control (CT) group; #P < 0.05 

vs. corresponding WT group. 
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Figure 3-6.  The roles of cAMP/PKA and glucocorticoid receptor in NaHS-induced glucose 

production in WT and CSE-KO liver cells.  Primarily cultured liver cells were pretreated for 1 

h with 5 µM KT 5720 (a PKA inhibitor) or 5 µM RU-486 (a glucocorticoid receptor inhibitor) 

prior to a 6 h treatment with 8-Br-cAMP/Dex (1 mM/1 µM) or NaHS (30 µM).  The roles of 

cAMP/PKA and glucocorticoid receptor in 8-Br-cAMP/Dex-induced glucose production in WT 

(A) (n = 4-8 for each group) and CSE-KO (B) (n = 7-9 for each group) hepatocytes.  The roles of 

cAMP/PKA and glucocorticoid receptor in NaHS-induced glucose production in WT (C) (n = 6-

10 for each group) and CSE-KO (D) (n = 6-10 for each group) hepatocytes.  Statistical analysis 

was performed using the one-way ANOVA followed by a post hoc analysis (Tukey’s test).  *P < 

0.05 vs. untreated cells; #P < 0.05 vs. cAMP/Dex-treated group;
 †P < 0.05 vs. 30 µM NaHS-

treated group.   
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Figure 3-7.  NaHS-induced glucose production is dependent on PGC-1α in primary liver 

cells from WT and CSE-KO mice.  Primary liver cells isolated from 8-12 week-old WT and 

CSE-KO mice were transfected with siRNA-A (control), siPGC-1α, siC/EBP-β, or both siPGC-

1α and siC/EBP-β for 60 h.  Lipofectamine RNAiMAX was used as the transfection reagent.  (A) 

Representative Western blot results of the selected proteins in WT and CSE-KO liver cells.  (B) 

Summary of the changes in the selected proteins in WT and CSE-KO liver cells with different 

treatments.  The densities of the selected proteins were normalized to that of β-actin and 

expressed as a percentage of the corresponding siRNA-A transfected WT or CSE-KO liver cells.  

PGC-1α: n = 4-6 for each group; C/EBP-β: n = 4-6 for each group.  (C) Glucose production in 

transfected liver cells.  NaHS at 30 µM was used to treat the cells for 6 h and glucose production 

was measured via a glucose assay kit.  n = 7-14 for each group.  Statistical analyses performed 

were: Student’s t-test (B) and one-way ANOVA followed by a post hoc analysis (Tukey’s test) 

(C). *P < 0.05 vs. respective siRNA-A group; #P < 0.05 vs. respective 30 µM NaHS-treated 

group; †P < 0.05 vs. WT siRNA-A group.  Both siRNAs: siPGC-1α and siC/EBP-β. 
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Figure 3-8.  Schematic representation of H2S-induced glucose production and the proposed 

underlying mechanisms.  Endogenous H2S stimulates liver glucose production via three 

underlying mechanisms: 1) the glucocorticoid receptor-mediated upregulation of PGC-1α and 

PEPCK; 2) the cAMP/PKA-mediated upregulation of PGC-1α, as well as PGC-1α activity via S-

sulfhydration; and 3) the increased expression and activities (via S-sulfhydration) of FBPase and 

G6Pase.  Solid arrows represent either stimulation or the direction of the metabolic reactions.  

Dotted arrows represent degradation reactions.  C/EBP-β: CCAAT-enhancer-binding proteins-β; 

P-CREB: phosphorylated cAMP response element binding protein; DHAP: dihydroxyacetone 

phosphate; F-1,6-P: fructose-1,6-bisphosphate; F-6-P: fructose-6-phosphate; FBPase: fructose-

1,6-bisphosphatase; G-6-P: glucose-6-phosphate, G6Pase: glucose-6-phosphatase; GA3P: 

glyceraldehyde 3-phosphate; H2S: hydrogen sulfide; PDE: phosphodiesterase; PEP: 

phosphoenolpyruvate; PEPCK: phosphoenolpyruvate carboxykinase; PGC-1α: peroxisome 

proliferator-activated receptor-γ coactivator-1α; PKA: protein kinase A. 
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SUPPLEMENTARY DATA 

 

 
 
 
Supplementary Figure 3-1. Impaired glycemic response to cAMP/Dex-stimulated FOXO1 

upregulation in primary CSE-KO hepatocytes.   Primary liver cells isolated from overnight 

fasted 8-12 week-old WT and CSE-KO mice were treated with 1 mM 8-Br-cAMP and 1 µM Dex 

(dexamethasone) for 3 h or 6 h.  (A) Representative Western blot result of the changed 

expression level of FOXO1 in WT and CSE-KO liver cells with 8-Br-cAMP/Dex treatment.  (B) 

Summary of the changed expression level of FOXO1 in WT and CSE-KO liver cells.  The 

density of FOXO1 was normalized to that of β-actin and expressed as a percentage to that of 

untreated WT cells.  n = 8-9 for each group.  Statistical analysis was performed using the one-

way ANOVA followed by a post hoc analysis (Tukey’s test). *P < 0.05 vs. corresponding control 

(CT) group; #P < 0.05 vs. corresponding WT group; †P < 0.05. 
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Supplementary Figure 3-2. Exogenous L-cysteine has no effect on gluconeogenesis in 

primary CSE-KO hepatocytes.  Primary liver cells isolated from overnight fasted WT and 

CSE-KO mice were treated with 30 µM NaHS or 5 mM L-cysteine for 24 h.  (A) Glucose level in 

liver cells.  n = 12 for each group.  (B) Representative Western blot results of the changed 

expression levels of selective proteins. (C) Summary of the changed expression levels.  The 

densities of the selected proteins were normalized to that of β-actin and expressed as a 

percentage to that of untreated WT cells.  PGC-1α: n = 11-9 for each group; FBPase and G6Pase: 

n = 7-8 for each group.  Statistical analysis was performed using the one-way ANOVA followed 

by a post hoc analysis (Tukey’s test). *P < 0.05 vs. corresponding control (CT) group; 
#
P < 0.05 

vs. corresponding WT group.  L-cyt: L-cysteine. 
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ABSTRACT 

BACKGROUND AND PURPOSE  

We previously showed that hydrogen sulfide (H2S) upregulates peroxisome proliferator-activated 

receptor-γ coactivator (PGC)-1α in primary hepatocytes.  PGC-1α is a crucial regulator of 

mitochondrial biogenesis, a process required to maintain cellular energy homeostasis.  We 

investigated the regulation of hepatic mitochondrial biogenesis by cystathionine γ-lyase (CSE)-

generated H2S under physiological conditions.   

EXPERIMENTAL APPROACH 

Primary hepatocytes isolated from CSE knockout (KO) and wild-type (WT) mice were used in 

all experiments.  mtDNA (mitochondrial DNA) and mRNA levels were measured via real-time 

PCR.  Protein S-sulfhydration was determined via a modified biotin switch assay.  MitoTracker 

Green was used to quantify mitochondrial content and distribution. 

KEY RESULTS 

CSE-KO hepatocytes produced less mtDNA compared to WT hepatocytes.  Mitochondrial 

content was decreased in CSE-KO hepatocytes compared to normal hepatocytes, which was 

restored with NaHS (an H2S donor) treatment.  CSE-KO hepatocytes exhibited lower levels of 

mitochondrial transcription factors and the mitochondrial transcription coactivator, peroxisome 

proliferator-activated receptor-γ coactivator-related protein (PPRC) compared to WT 

hepatocytes.  NaHS administration upregulated PPRC, yet downregulated PGC-1β protein level 

in mouse hepatocytes.  Exogenous H2S induced the S-sulfhydration of PPRC, which was lower 

in untreated CSE-KO hepatocytes, but not that of PGC-β.  Finally, knockdown of either PGC-1α 

or PPRC significantly decreased NaHS-stimulated mitochondrial biogenesis in hepatocytes, 

where knockdown of both genes were required to abolish NaHS-induced mitochondrial 

biogenesis.     
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CONCLUSIONS AND IMPLICATIONS 

Endogenous H2S-induced liver mitochondrial biogenesis is dependent upon PGC-1α and PPRC 

signaling in primary hepatocytes.  This study may offer clues to the regulation of energy 

homeostasis under physiological conditions as well as mitochondrial dysregulation. 

 

Keywords: H2S ● PPRC ● PGC-1α ● mitochondrial biogenesis ● mouse hepatocytes 
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INTRODUCTION 

Mitochondria are highly specialized double membrane organelles that serve a fundamental role 

in energy production.  These intracellular powerhouses generate energy by converting 

monosaccharide (i.e. glucose) into ATP via oxidative phosphorylation.  One of the main 

mechanisms used to accommodate the energy demands of the cell is the initiation and regulation 

of mitochondrial biogenesis (the growth and division of pre-existing mitochondria).  

Mitochondrial biogenesis is a complex process governed by a distinguished set of nuclear-

encoded transcription factors assisted by transcriptional coactivators.  The former group includes 

nuclear respiratory factor (NRF)-1 and NRF-2 (also known as GABA); whereas the latter set 

involves the members of the peroxisome proliferator-activated receptor-γ coactivator (PGC) 

family, including PGC-1α, PGC-β, and peroxisome proliferator-activated receptor-γ coactivator-

related protein (PPRC) (Xu et al. 2013).  This interconnected network of nuclear-encoded 

transcription factors and transcriptional coactivators allows the cell to maintain and manage the 

cell’s energy-harvesting capacity to meet its energetic demands.  Mitochondrial biogenesis is 

influenced by environmental factors such as caloric restriction, exercise, cold temperatures, as 

well as cell division and differentiation (Jornayvaz & Shulman, 2010).  Evidently, given the 

crucial role the mitochondria have in energy homeostasis, reduced mitochondrial content 

(Morino et al. 2005) and mitochondrial genes (Mootha et al. 2003; Patti et al. 2003) have been 

linked to age-related diseases such as insulin resistance and type 2 diabetes.  

 Recently, we demonstrated that the gasotransmitter hydrogen sulfide (H2S) (Wang, 2002) 

regulates the expression and activity of PGC-1α in primary liver cells (Untereiner et al. 2015).  

H2S is endogenously produced in liver cells primarily by cystathionine γ-lyase (CSE) and to a 

lesser extent by cystathionine β-synthetase (CBS) and 3-mercaptopyruvate sulfurtransferase 

(Kabil et al. 2011).  H2S is involved in an array of physiological systems (Mani et al. 2013; Mani 
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et al. 2015; Untereiner et al 2015; Wang, 2012; Yang et al. 2008), where among these include the 

regulation of mitochondrial function.  By sensing the oxygen levels in the cytosol, cytosolic CSE 

translocates into mitochondria to promote H2S production, subsequently maintaining 

mitochondrial ATP production under hypoxic conditions in smooth muscle cells (Fu et al. 2012).  

Additionally, liver ischemia promoted the accumulation of CBS proteins in mitochondria 

resulting in increased H2S production, which prevented Ca2+-mediated mitochondrial 

cytochrome c release and hypoxia-induced-reactive oxygen species generation (Teng et al. 

2013).  Furthermore, H2S can act as an inorganic electron donor to complex II, a component of 

the electron transport chain (ETC) (Modis et al. 2013).  The donation of electrons from oxidized 

H2S was shown to promote mitochondrial ATP generation and support cellular bioenergetics in 

primary mouse hepatocytes (Modis et al. 2013).   

The literature reports that the other gasotransmitters, nitric oxide (NO) and carbon 

monoxide (CO) are involved in adaptive oxidative metabolism by optimizing mitochondrial 

biogenesis in brown adipocytes (Nisoli et al. 2003) and in cardiac tissues (Suliman et al. 2007).  

In fact, both of these gasotransmitters induced PGC-1α activity to upregulate mitochondrial 

biogenesis.  Additionally, NO was shown to upregulate PPRC-mediated induction of 

mitochondrial biogenesis and respiration in two human cell models of oncocytic thyroid tumours 

(XTC.UC1 and B-CPAP cell lines) (Raharijaona et al. 2009).  Therefore, we hypothesized that 

endogenous H2S is an important modulator for hepatic mitochondrial biogenesis through the 

regulation of critical mitochondrial transcriptional coactivator(s) (i.e. PGC-1α, PPRC).  In the 

present study, we investigated whether or not endogenous H2S stimulates mitochondrial 

biogenesis and if this mechanism is dependent upon the PGC family, including PGC-1α, PGC-

1β, and PPRC in primary hepatocytes. 
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MATERIALS and METHODS  

Animal handling 

CSE-KO mice were generated and home-bred as previously described (Yang et al. 2008).  Eight 

to twelve-week-old male CSE-KO mice and age-matched male WT mice were used.  All animal 

experiments were conducted in compliance with the Guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication no. 85-23, revised 

1996) and approved by the Animal Care Committee of Lakehead University, Canada.   Mice 

were fed standard rodent chow ab libitum with free access to water before isolation of primary 

liver cells.  

 

Hepatocyte preparation 

Primary hepatocytes were isolated from CSE-KO and WT mice as described elsewhere (Zhang 

et al. 2013) with modification. In brief, mouse livers were perfused through the inferior vena 

cava with a buffer consisting of the following: 140 mM NaCl, 2.6 mM KCl, 0.28 mM Na2HPO4, 

5 mM glucose, and 10 mM HEPES (pH 7.4). The perfusion was started for 7 min with the buffer 

supplemented with 0.5 mM EGTA and then for 10 min with the buffer containing 5 mM CaCl2 

and 100 U/ml collagenase type IV (Worthington, Lakewood, NJ). The isolated hepatocytes were 

filtered on nylon mesh (100 µm pore size), and selected by centrifugation in a 26% percoll 

isodensity gradient and then seeded in medium containing DMEM (5.5 mM glucose), 10% fetal 

bovine serum (FBS), and 1X penicillin-streptomycin-neomycin. After 2 h at 37ºC in a 

humidified atmosphere of 5% CO2, the medium was removed and replaced with DMEM (5.5 

mM glucose) supplemented with 10% FBS and 1X penicillin-streptomycin-neomycin.  Cell 

viability was measured via trypan blue staining and only cell preparations above 95% of viability 

were used in experiments. 
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Endogenous H2S level 

The endogenous H2S level was measured by the in situ methylene blue assay as described 

elsewhere (Kartha et al. 2012) (please see Chapter 2 for method details).   

 

Mitochondrial DNA quantification  

Mitochondrial DNA (mtDNA) was quantified via real-time PCR analysis of total genomic DNA 

as described elsewhere (Biesecker et al. 2003; Duncan et al. 2007; LeBleu et al. 2014).  Briefly, 

primary hepatocytes isolated from WT or CSE-KO mice were plated onto collagen I-coated 100 

mm petri dishes at a density of 3.3 x 106 cells/plate and maintained in DMEM (5.5 mM glucose) 

supplemented with 1X penicillin-streptomycin-neomycin and 10% FBS.  After 24 h in cell 

culture, total genomic DNA was extracted from cultured WT and CSE-KO primary hepatocytes 

via QIAamp kit (Qiagen).  Total DNA was recorded with a fluorimeter, whereby 50 ng of 

genomic DNA was amplified in a 25 μL PCR reaction containing SYBR Green PCR Master Mix 

(Bio-Rad, Mississauga, ON) and 40 nM of each primer.  Real-time PCR was performed in an 

iCycler iQ5apparatus (Bio-Rad) associated with the iCycler optical system software (version 

3.1).   mtDNA per nuclear genome was calculated by determining the relative levels of a 

mitochondrial gene (cytochrome b) to a nuclear gene (β-actin).   Primer sequences for 

cytochrome b (cyto b) and β-actin are listed in Table 4-1.  

 

Detection of mitochondrial content 

The ratio of the mitochondrial distribution was determined by measuring the fluorescent intensity 

of MitoTracker Green FM (Molecular Probes, Life Technologies Ltd, Burlington, ON) to 

Hoechst 33342 (Molecular Probes) in live primary hepatocytes. Briefly, with or without 
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incubation with 30 µM NaHS for 24 h, liver cells were incubated with 2 µg/mL Hoechst 33342 

dye for 30 min at 37ºC, washed twice, then with 50 nM MitoTracker Green FM for 30 min at 

37°C.  Cells were washed three times with phosphate buffered saline following observation 

under an inverted Olympus IX70 fluorescent microscope (Tokyo, Japan) or via Multiskan 

Spectrum (MitoTracker Green, 485/520 nm; Hoechst, 350/460 nm).   

 

Real-time PCR 

After treatment with or without NaHS (30 µM) for 6 h, the medium was aspirated, and primary 

liver cells were washed with ice-cold PBS.  Afterwards, total RNA was isolated using TRIzol 

(Sigma), and treated with RNase-free DNase (New England BioLabs).  RNA purity and integrity 

were verified by A260/A280 measurements (Agilent 2100 Biosystem, Mississauga, Ontario, 

Canada) and by 1% agarose-formaldehyde denaturing gel, respectively.  Reverse transcription 

was performed using the SuperScript First-Strand Synthesis system (Invitrogen).  The relative 

abundance of mRNA in each sample was measured by real-time PCR in a fluorescent 

temperature cycler (iQ5 Real-Time PCR Detection System) with SYBR Green PCR Master Mix 

(Bio-Rad), as described previously (Untereiner et al. 2011).   Mouse primers for PGC-1β, PPRC, 

Tfam, NRF-1, NRF-2, Na+/K+, ATPase-a5 (ATP1a5), and β-actin were used, and the sequences 

are listed in Table 2-1 on page 55.  The specificity of PCR was determined by melt-curve 

analysis for each reaction. The relative difference in mRNA between samples was calculated 

using the arithmetic formula 2-ΔΔCT. 
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Western blot analysis 

Primary hepatocytes were treated with or without NaHS (30 µM) for 24 h.  Thereafter, cells were 

washed twice with ice-cold 1X PBS and harvested in PBS supplemented with protease cocktail 

solution (1:100).  Samples were sonicated three times (10 s/each) on ice using a cell sonicator 

(Sonic Dismembrator Model 100; Fisher Scientific) and centrifuged at 12,000 rpm for 20 mins at 

4ºC.  Protein concentration was determined via BCA method.  Equal amount of proteins was 

boiled in 1 X SDS sample buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 50 mM 

DTT, and 0.01% bromophenol blue).  Total liver cell lysates (10-50 µg per lane) were separated 

by standard 7.5% SDS/PAGE and then transferred onto PVDF membranes (Millipore) and 

probed with selected primary antibodies.  The primary antibody dilutions were 1:1,000 for anti-

PGC-1α (Novus Biologicals, Oakville, ON, Canada), anti-PGC-1β, and anti-CSE (Abnova, 

Walnut, USA), 1:200 for anti-PPRC and 1:10,000 for anti-β-actin antibodies (Santa Cruz 

Biotechnology, Santa Cruz, CA).  HRF-conjugated secondary antibodies were used at 1:10,000.  

Immunoreactions were visualized by enhanced chemiluminescence and exposed to X-ray film 

(Kodak Scientific Imaging Film).  Densitometric quantification was determined via ImageJ 

Software (National Institutes of Health).   

 

The modified biotin switch assay  

The assay was conducted as described elsewhere (Mustafa et al. 2009; Untereiner et al. 2015) 

(please see Chapter 2 for method details). 
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Gene silencing with siRNA  

Primary liver cells were transfected with 100 nM siRNA-A (control), siPGC-1α, siPPRC, or both 

siPGC-1α and siPPRC for 60 h.  The siRNA complexes were diluted in Opti-MEM media 

(Invitrogen, Burlington, ON, Canada) and Lipofectamine® RNAi/MAX Reagent (Invitrogen) was 

used as the transfection reagent.   

 

Chemicals and statistical analysis 

All chemicals, enzymes, and primers used in this study were obtained from Sigma-Aldrich 

(Oakville, ON, Canada) unless otherwise stated.  siRNA products were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA) and antibodies were purchased from Abcam (Burlington, ON, 

Canada) unless otherwise specified.  All data sets are presented as mean ± S.E.M.  For primary 

liver cell experiments, n value designates the number of mice used in the experiments.  Results 

were analyzed using Student’s t-test, or one-way ANOVA followed by a post hoc analysis 

(Tukey’s test) when applicable.  Statistical significance was set at P < 0.05. 
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RESULTS 

H2S induces mitochondrial biogenesis in primary hepatocytes 

CSE is the dominant H2S-generating enzyme in the liver (Kabil et al. 2011). Primary hepatocytes 

isolated from CSE-KO mice showed a marked reduction in endogenous H2S level, 32% of that in 

cultured WT primary hepatocytes (Figure 4-1A).  Interestingly, relative mtDNA content was 

significantly reduced in cultured CSE-KO hepatocytes by 33% compared to normal cells (Figure 

4-1B).  In agreement, we found that basal mitochondrial content was significantly lower in 

cultured CSE-KO liver cells than those of WT liver cells, whereas 30 µM NaHS treatment 

significantly increased mitochondrial mass in both primary liver cells (Figure 4-2A-B).  

Additionally, both endogenous and exogenous H2S upregulated at transcription levels of nuclear-

encoded transcription factors (NRF-1 and NRF-2), a mitochondrial transcription factor (Tfam), 

as well as a subunit of complex V (ATP1a5) (Figure 4-2C).   

 

H2S upregulates the expression and activity of PPRC and downregulates PGC-1β in 

primary hepatocytes 

It is well established that the PGC family orchestrates mitochondrial biogenesis (Andreux et al. 

2013; Jornayvaz & Shulman, 2010).  Recently we demonstrated that H2S increased the protein 

level of PGC-1α in primary hepatocytes (Untereiner et al. 2015). Therefore, we sought to 

determine the potential role H2S may have in regulating the expression levels of PGC-1β and 

PPRC in hepatocytes.  We found basal PPRC mRNA level to be 57% lower, whereas basal PGC-

1β mRNA level was 158% higher in untreated CSE-KO hepatocytes that those in untreated WT 

hepatocytes (Figure 4-3A).   In agreement, basal PPRC protein expression level was 44% lower, 

and basal PGC-1β expression level was 169% higher in untreated CSE-KO liver cells than their 
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respective basal levels in untreated WT liver cells (Figure 4-3B-D).  Stimulation with 30 µM 

NaHS for 6 h increased PPRC and decreased PGC-1β mRNA levels in both WT and CSE-KO 

hepatocytes (Figure 4-3A).  Moreover, 24 h treatment with 30 µM NaHS significantly enhanced 

the protein level of PPRC and lowered the protein level of PGC-1β in both WT and CSE-KO 

hepatocytes (Figure 4-3B-D).  For instance, PPRC protein levels were elevated by 47% and 83% 

and PGC-1β protein levels were reduced by 34% and 82% in NaHS-treated WT and CSE-KO 

primary hepatocytes, respectively (Figure 4-3B-D). 

 Recently, we demonstrated that both endogenous and exogenous H2S increased the 

sulfhydrated form of PGC-1α in isolated primary hepatocytes (Untereiner et al. 2015).  The same 

results were obtained in this study (Figure 4-4A).  We further found the basal S-sulfhydrated 

(SSH) form of PPRC to be significantly lower in untreated CSE-KO hepatocytes than that in 

untreated WT hepatocytes (Figure 4-4B and D).  Treatment with 30 µM NaHS for 24 h 

significantly increased SSH-PPRC protein content in both WT and CSE-KO primary liver cells 

(Figure 4-4B and D).  The S-sulfhydrated form of PGC-1β, on the other hand, was not detected 

by the biotin switch assay (Figure 4-4C). 

 

H2S-induced mitochondrial biogenesis is dependent on both PGC-1α and PPRC signaling 

in WT and CSE-KO hepatocytes 

To determine whether H2S-stimulated hepatic mitochondrial biogenesis observed in Figures 4-1 

and 4-2 was mediated by PGC-1α and/or PPRC, we transfected WT and CSE-KO primary liver 

cells with siPGC-1α, siPPRC, or both siPGC-1α and siPPRC for 60 h.  These maneuvers 

significantly knocked down the expression of the respective genes (Figure 4-5A-C).  

Transfection with either siPGC-1α or siPPRC significantly reduced 30 µM NaHS-stimulated 
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mitochondrial biogenesis in both WT and CSE-KO hepatocytes when compared to their 

respective 30 µM NaHS-treated siRNA control groups (Figure 4-5D and E).   Interestingly, the 

induction of NaHS-stimulated mitochondrial biogenesis was completely abolished in co-

transfected siPGC-1α and siPPRC WT and CSE-KO primary hepatocytes (Figure 4-5D and E).   

  



113 
 

DISCUSSION  

The present study focused on the crucial role of H2S in hepatic mitochondrial biogenesis under 

physiological conditions.  CSE-KO mice, with diminished hepatic H2S production, displayed 

significantly reduced mtDNA content along with lower cellular mitochondrial content (Figure 4-

1 and 4-2).  Cultured primary liver cells isolated from CSE-KO mice produced significantly 

lower mRNA levels of mitochondrial transcription factors (i.e. NRF-1, NRF-2, Tfam), as well as 

a subunit of complex V (ATP1a5) than WT liver cells (Figure 4-2).  Thus, we demonstrated that 

endogenous H2S stimulates the transcription of mitochondrial genes in mouse liver, leading to 

increased mitochondrial biogenesis.  Our results also reveal the vital roles of PPRC and PGC-1α 

in H2S-induced hepatic mitochondrial mass.  One intriguing discovery from our study is the 

differential responses of H2S on the members of the PGC family.  In comparison with WT 

hepatocytes, we observed higher levels of PGC-1β in untreated CSE-KO hepatocytes (Figure 4-3 

and 4-4), whereby exogenously applied H2S inhibited the expression of PGC-1β.  On the other 

hand, H2S upregulated the expression levels of PPRC (Figure 4-3 and 4-4).  Furthermore, H2S 

selectively mediated the S-sulfhydration of PPRC, not PGC-1β, in primary hepatocytes (Figure 

4-5).  This study not only shows that endogenous H2S is an important player in hepatic 

mitochondrial biogenesis but also demonstrates the specific stimulatory role of endogenous H2S 

in the regulation of PGC-1β and PPRC. 

To investigate the liver-specific effect of H2S on glucose production, we have used 

primarily isolated and cultured hepatocytes from CSE-KO and WT mice.  Under these 

conditions, we found that endogenous H2S upregulated mtDNA content along with the 

transcription factors that govern mtDNA production, such as NRF-1, NRF-2, and Tfam in 

primary liver cells (Figure 4-1 and 4-2).  Reduced mitochondrial content (Morino et al. 2005) 

and specific mitochondrial-encoded genes (Mootha et al. 2003; Patti et al. 2003) have been 
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linked to age-related diseases such as insulin resistance and type 2 diabetes.  An early feature in 

the pathogenesis of type 2 diabetes is the reduction in mitochondrial oxidative and 

phosphorylation activity, leading to the accumulation of lipids in the hepatocyte, eventually 

resulting in mitochondrial dysfunction (Andreux et al. 2013; Kotronen et al. 2008).  In fact, the 

anti-diabetic drugs pioglitazone (Bogacka et al. 2005; Fujisawa et al. 2009) and rosiglitazone 

(Fujisawa et al. 2009) induced mitochondrial biogenesis in subcutaneous adipose tissue taken 

from type 2 diabetic patients (Bogacka et al. 2005) and in high glucose-treated human umbilical 

vein endothelial cells (Fujisawa et al. 2009) via enhancing  PGC-1α, NRF-1, and Tfam levels.  

Insulin resistance and type 2 diabetes are commonly associated with fatty liver disease (Firneisz, 

2014).  CSE-KO mice fed a high-fat diet (HFD) for 12 weeks developed hepatic injury (i.e. 

higher aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase levels) 

and fatty liver compared to the HFD-fed WT mice (Mani et al. 2015).  The HFD-fed CSE-KO 

mice exhibited a metabolic defect that severely affected the clearance of excess dietary fat from 

the liver, suggesting that mitochondrial fatty acid oxidation was compromised.  Overall, the 

downregulation of mtDNA and its critical mitochondrial transcription factors suggest impairment 

in the mitochondrial biogenesis and function in CSE-KO liver cells; whereby nutrient overload 

or environment stress could exacerbate mitochondrial dysregulation. 

 The PGC family consists of three members, PGC-1α, PGC-1β, and the more distant 

cousin, PPRC.  These three coactivators regulate a broad spectrum of mitochondrial genes and 

promote mitochondrial biogenesis (Finck & Kelly, 2006; Hock & Kralli, 2009).  The PGC 

proteins contain leucine-rich motifs and a conserved tetrapeptide motif (DHDY) which enable 

interaction with NRF-1 and NRF-2, respectively, and are thereby recruited to target regulatory 

sites to initiate transcription of mitochondrial genes (Hock & Kralli, 2009).   Recently, our 
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laboratory demonstrated a link between endogenous H2S and PGC-1α expression level in both 

mouse renal tissues (Untereiner et al. 2011) and isolated primary hepatocytes (Untereiner et al. 

2015).  In the present study, we focused on the regulatory role of endogenous H2S on PGC-1β 

and PPRC expression and activity levels in primary hepatocytes.  We found that both 

endogenous and exogenous H2S upregulated the mRNA and protein levels of PPRC and 

downregulated the mRNA and protein level of PGC-1β in WT and CSE-KO liver cells (Figure 2 

and 3).  Both PGC-1β and PPRC modulate mitochondrial biogenesis but do so under different 

physiological stimuli leading to different metabolic characteristics.  For instance, PGC-1β is 

induced via short-term high-fat feeding (Lin et al. 2005), whereas PPRC is upregulated by serum 

stimulation (Andersson & Scarpulla, 2001).  Mitochondrial respiration stimulated by PGC-1β is 

tightly coupled than PPRC-mediated stimulation (St-Pierre et al. 2003), indicating that fewer 

protons (H+) leak across the inner mitochondrial membrane and into the intermembrane space 

(via uncoupling proteins), and thereby produces heat instead of ATP.  How H2S regulates PGC-

1β and PPRC are unclear.  Unlike PGC-1α, the upstream factors that govern the gene 

upregulation of PGC-1β and PPRC are currently unknown.  However, what is intriguing is the 

selective regulation of PGC-1β and PPRC by H2S stimulation and the impact this may do for 

lipogenesis and cell proliferation studies. 

Moreover, we also demonstrated that H2S selectively augmented the S-sulfhydration of 

PPRC, not PGC-1β, in both primary WT and CSE-KO hepatocytes (Figure 4).  Protein 

sulfhydration is a physiological post-transcriptional modification of cysteine residues in the 

target protein that leads to enhanced protein function (Mustafa et al. 2009).  Currently, it is 

unclear whether or not PPRC activity is regulated via post-transcriptional modification.  

Therefore, we propose a novel mechanism by which PPRC activity is regulated at the post-
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translational level via S-sulfhydration in primary hepatocytes, thus inducing mitochondrial 

biogenesis. 

Both PGC-1α and PPRC are crucial for NaHS-induced mitochondrial biogenesis.  

Transfection of either siPGC-1α or siPPRC partially lowered NaHS-induced increase in 

mitochondrial mass, whereas co-transfection of both siPGC-1α and siPPRC completely 

abolished NaHS effects on mitochondrial biogenesis in both WT and CSE-KO primary 

hepatocytes (Figure 5).  Needless to say, maximal induction of NaHS-stimulated mitochondrial 

biogenesis requires functional PGC-1α and PPRC signaling pathways in primary hepatocytes.  

Therefore, we propose endogenous H2S-induced mitochondrial biogenesis occurs via stimulation 

of PPRC and PGC-1α activity (via S-sulfhydration), which induces the upregulation of NRF-1, 

NRF-2, and consequently Tfam, eventually leading to higher mitochondrial mass in primary 

hepatocytes (Figure 6). 

The present study identifies key targets of the CSE/H2S system in liver mitochondrial 

biogenesis, deepening insight on the regulation of hepatic energy homeostasis under 

physiological conditions and shedding light on the potential impact of endogenous H2S on 

mitochondrial dysregulation in insulin-resistant diseases. 
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Table 4-1: Real-time PCR primer sequences used to quantify mtDNA in mouse hepatocytes 

Short name Forward primer 5ʹ-3ʹ Reverse primer 5ʹ-3ʹ 

cyto b CCACTTCATCTTACCA- 

TTTATTATCGC 

TTTTATCTGCATCTGAG- 

TTTAATCCTGT 

β-actin CTGCCTGACGGCCAGG CTATGGCCTCAGGAGTTTTGTC 
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Figure 4-1:  Reduced endogenous H2S production and mtDNA transcripts in CSE-KO 

primary hepatocytes.  Primary liver cells isolated from 8-12 week-old WT and CSE-KO mice 

were incubated for 24 h.  A) Endogenous H2S level was measured via in situ methylene blue 

assay.  n = 5 for each group.  B) Relative mtDNA level was calculated as the ratio of cytochrome 

b DNA to β-actin DNA quantity via q-PCR as described in Materials and Methods.  n = 5-6 for 

each group.  Statistical analysis was performed using the Student’s t-test.  #P < 0.05 versus WT 

group. 
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expression levels were analyzed by q-PCR and normalized to β-actin.  n = 5-6 for each group.  

Statistical analysis was performed using the one-way ANOVA followed by a post hoc analysis 

(Tukey’s test).  *P < 0.05 versus respective CT (control) group; #P < 0.05 versus WT CT group; 

†P < 0.05 versus 30 µM NaHS-treated WT group. 
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Statistical analysis was performed using the one-way ANOVA followed by a post hoc analysis 

(Tukey’s test).  *P < 0.05 versus respective CT (control) group; #P < 0.05 versus WT CT group. 
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Figure 4-5:  H2S-stimulated mitochondrial biogenesis is dependent on the signaling 

pathways of both PGC-1α and PPRC in primary hepatocytes.  Primary liver cells isolated 

from WT and CSE-KO mice were transfected with siRNA-A (control), siPGC-1α, siPPRC, or 

both siPGC-1α and siPPRC for 60 h.  Lipofectamine RNAiMAX was used as the transfection 

reagent.  (A) Representative Western blot results of the selected proteins in WT and CSE-KO 

liver cells.  (B and C) Summary of the changed protein levels in WT and CSE-KO liver cells 

with different treatments.  The densities of the selected proteins were normalized to that of β-

actin and expressed as a percentage of the corresponding siRNA-A transfected WT or CSE-KO 

liver cells.  PPRC: n = 3-4 for each group; PGC-1α: n = 4 for each group.   NaHS at 30 µM was 

used to treat the cells for 24 h, and mitochondrial biogenesis was measured in WT (D) (n = 7-9 

for each group) and CSE-KO (E) (n = 9-11 for each group) hepatocytes via normalizing 

MitoTracker Green fluorescence (485/520 nm) to Hoechst fluorescence (350/460 nm).   

Statistical analyses performed were: Student’s t-test (B and C) and one-way ANOVA followed 

by a post hoc analysis (Tukey’s test) (D and E).  *P < 0.05 versus respective siRNA-A group; #P 

< 0.05 versus respective 30 µM NaHS-treated siRNA-A group; †P < 0.05 versus respective 30 

µM NaHS-treated siPGC-1α group; ‡P <0.05 versus respective 30 µM NaHS-treated siPPRC 

group. 
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GENERAL DISCUSSION 

Disturbed H2S metabolism plays crucial roles in the pathogenesis of insulin resistance and 

diabetes.  However, the role of endogenous H2S availability in gluconeogenesis and its impact on 

mitochondrial biogenesis under physiological conditions has been unknown.  Therefore, 

deducing these regulatory mechanisms of H2S on energy metabolism was the motivation of my 

Ph.D. thesis. 

In this study, we focused on elucidating the mechanisms by which endogenous H2S 

regulates hepatic glucose production and mitochondrial biogenesis under physiological 

conditions.  We provide evidence that endogenous H2S is a critical regulator of these two energy 

processes under normal conditions.  H2S stimulates glucose production through the PGC-1α-

signaling pathway via activating either the glucocorticoid receptor pathway or the cAMP/PKA 

signaling pathway in primary liver cells.  By upregulating PGC-1α as well as its activity (via S-

sulfhydration), H2S indirectly stimulated the induction of glucose-producing machinery in the 

liver cell.  Both FOXO1 and HNF-4α are critical to the PGC-1α-mediated induction of the major 

gluconeogenic enzymes, including PEPCK, FBPase, and G6Pase.  In fact, we found that H2S 

administration increased the gene expression levels of FOXO1 and HNF-4α in HepG2 cells 

(Supplementary Figure S-1).  The enhanced expression of PGC-1α and its gluconeogenic 

coactivators, FOXO1 and HNF-4α, lead to higher levels of PEPCK, FBPase, and G6Pase in 

primary liver cells and HepG2 cells (Supplementary Figure S-1).  Not only does H2S play an 

indirect role in the induction of the gluconeogenic genes, but we also found it to interact directly 

with their protein transcripts via post-translational modification.   The activities of G6Pase and 

FBPase were remarkably enhanced via H2S-mediated S-sulfhydration.  In another study, we 

found H2S increased the enzymatic activity of PC, again through S-sulfhydration (109).   Clearly, 

H2S is a potent inducer of hepatic glucose generation. 
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We also demonstrated that endogenous H2S is vital to maintaining mitochondrial 

homeostasis in isolated hepatocytes.  Mitochondria are the powerhouse for ATP and NADPH 

production, which is cruical to fuel gluconeogenesis.  By stimulating the signaling pathways of 

PPRC and PGC-1α (via protein upregulation and S-sulfhydration), H2S induced mitochondrial 

biogenesis in primary hepatocytes.  Once activated by H2S, both PGC-1α and PPRC upregulated 

the gene transcription of nrf-1 and nrf-2.  Once translated into their respective protein forms, 

both NRF-1 and NRF-2 where shown to bind to either PGC-1α or PPRC, whereby these tirade 

protein complexes work synchronistically to induce mitochondrial biogenesis in liver cells (150; 

151).  Indeed, we observed lower Tfam and mtDNA levels in primary hepatocytes lacking the 

cse gene to normal hepatocytes.  Additionally, we also found that H2S enhanced the 

mitochondrial membrane potential in both WT and CSE-KO primary liver cells (Supplementary 

Figure S-2), further supporting its role in the induction of ATP generation (43; 113).  In the end, 

the stimulation of hepatic mitochondrial biogenesis and mitochondrial function via H2S 

stimulation further strengthens with its impact on the induction of hepatic glucose production. 

Interestingly, unlike its induction of hepatic glucose production, H2S simulated hepatic 

mitochondrial biogenesis either through PGC-1α or PPRC activity, whereby maximal induction 

of mitochondrial biogenesis was achieved if both pathways were functional.  When PGC-1α was 

knockdown in primary liver cells, NaHS-induction of glucose production as completely 

eradicated.  On the other hand, knockdown of PGC-1α only partially suppressed NaHS-

stimulated mitochondrial biogenesis.  PGC-1α is a master regulator of hepatic gluconeogenesis.  

It does this by 1) upregulating the gene expression levels of the main rate-limiting gluconeogenic 

enzymes, pc, pepck, fbpase, and g6pase; and 2) by stimulating mitochondrial biogenesis and 

mitochondrial energy production.  In this case, with the downregulation of PGC-1α, the 
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expression levels of the critical glucose-producing machinery (i.e. gluconeogenic enzymes) 

would have been significantly lower.  Although, cellular ATP would have been slightly higher, 

due to PPRC activation, it was not enough to drive glucose production in primary liver cells 

upon H2S stimulation.   

Under physiological conditions, a functionally intact CSE/H2S system is important for 

human’s adaptive energy metabolism.  A reduced gluconeogenesis system limits one’s physical 

endurance by impairing both aerobic and anaerobic glycolysis, depending if sufficient oxygen is 

available.  In aerobic respiration, skeletal muscle cells use glucose to generate a substantial 

amount of ATP through first cytosolic glycolysis, the Krebs cycle, and then mitochondrial 

oxidative phosphorylation (203).  With a diminished glucose supply due to suppressed 

gluconeogenesis, ATP production would be hampered, causing the individual to quickly fatigue.  

In fact, not only can H2S induce the production of new mitochondria it was also demonstrated to 

regulate bioenergetics by increasing ATP generation (43) via serving as an inorganic electron 

donor (113).  When oxygen supply is insufficient, skeletal muscle cells will rely on anaerobic 

glycolysis, namely the Cori cycle.  Under strenuous activity, muscle glycogen is broken down 

via several pathways into lactate, released into the circulation, and taken up by the liver to be 

converted into glucose via gluconeogenesis (203).  From there, hepatic glucose is released back 

into the bloodstream to the muscle (203).  With a reduced gluconeogenic process, plasma lactate 

would accumulate, leading to lactic acidosis and the individual would again quickly fatigue.  

Additionally, a prolonged period of fasting could put a severe strain on the already weakened 

gluconeogenic process with a deficient CSE/H2S system, leading to hypoglycemia.   

On the other hand, an over-activated CSE/H2S system in the liver could predispose an 

individual to develop metabolic syndrome because H2S blocks insulin release (33; 204) and 
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insulin-stimulated glucose uptake into both fat (205) and liver (105) cells.  In this regard, it has 

been reported that both CSE (119; 120) and PGC-1α (139; 140; 162) are robustly active in the 

liver under diabetic conditions, as is C/EBP-β (189; 194). 

Overall, the present study identifies key targets of the CSE/H2S system in liver 

gluconeogenesis; thus, deepening our insight on hepatic glucose regulation under physiological 

conditions and highlighting the potential impact endogenous H2S may have on the dysregulated 

gluconeogenic system in metabolic syndrome. 

 

CONCLUSION 

The study provides evidence that CSE-generated endogenous H2S stimulates glucose production 

as well as mitochondrial biogenesis in the liver, which is critical in regulating glucose 

metabolism.  H2S stimulates liver glucose production and liver mitochondrial biogenesis through 

four underlying mechanisms: 1) H2S upregulates the expression of PGC-1α and PEPCK via 

glucocorticoid receptor pathway.  2) H2S upregulates the expression of PGC-1α through the 

activation of the cAMP/PKA pathway, as well as PGC-1α activity via S-sulfhydration.  3) H2S 

upregulates the expression and the activities (by S-sulfhydration) of G6Pase and FBPase.  4)  

H2S augments the protein expression level and activity (via S-sulfhydration) of PPRC.  By 

stimulating the combined activities of PPRC and PGC-1α, H2S induces mitochondrial biogenesis 

in primary hepatocytes (Figure 5-1). 
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Figure 5-1: Proposed mechanisms by which H2S stimulates glucose production and 
mitochondrial biogenesis in primary liver cells. 

 

SIGNIFICANCE of the STUDY 

In 2015, one in four Canadians (~9 million people) were estimated to be living with diabetes or 

prediabetes (13).   If nothing is done to curve this trend, by 2020, it will be one in three (13). 

Without a doubt, diabetes prevalence is growing at epidemic levels across Canada, and urgent 

action is needed to reduce the cost pressure on the Canadian health care system and economy. 

 Chronic hyperglycemia is the leading cause of diabetes-related complications, including 

heart disease, stroke, and hypertension. The major metabolic defect that contributes to 

hyperglycemia is uncontrolled gluconeogenesis from the insulin-resistant liver.  Interestingly, the 

abnormal metabolisms of CSE (119; 120), PGC-1α (139; 140; 162), and C/EBP-β (189; 194) are 
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significantly upregulated in livers of T1DM (119; 120; 140; 189; 194) and in T2DM (139; 140; 

162) animal models.   For the first time, we demonstrate a link between the CSE/H2S system and 

PGC-1α and C/EBP-β in the context of gluconeogenesis regulation in the liver.  We also 

highlight the importance of H2S in the induction of mitochondrial biogenesis in the liver via 

PGC-1α and PPRC signaling.  Because gluconeogenesis is abnormally overactive in the insulin-

resistant liver, stresses the importance of identifying factors that govern the induction of 

gluconeogenesis and mitochondrial homeostasis.  In fact, the most successful anti-hyperglycemia 

and anti-diabetic drug currently on the market is the hepatic gluconeogenic suppressor, 

metformin (206).  By clarifying the role the CSE/H2S system plays in hepatic glucose 

metabolism under physiological conditions suggests the potential impact it may also have in the 

induction of an overstimulated gluconeogenic system in metabolic syndrome.  The novelty of 

these discoveries contributes to the growing knowledge of the elaborate underlying mechanisms 

of the gluconeogenic system, and its abnormalities associated with insulin-resistant diseases.  

Overall, this study may lead to the development of new and protective interventions or 

therapeutic treatment for metabolic syndrome and its associated complications.   

 

LIMITATIONS of the STUDY 

A. Research Limitations 

Primary mouse hepatocytes were selected as the ideal experimental model compared to primary 

rat or human hepatocytes and the immortalized human hepatoma cell line, HepG2 cells.  

Naturally, the use of primary human hepatocytes would have been an extremely valuable tool to 

study the effects of H2S on glucose metabolism.  The homogeneous background of animals, 

under well-controlled experimental settings, do not always concordant with the diversity of 

human patients living in heterogeneous conditions (207).  However, due to limited availability of 
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donor material, the large metabolic variability between human donors (208-210), and the cost to 

obtain commercially available human hepatocytes for all experiments was infeasible.  Studies on 

HepG2 cells, on the other hand, would have easily provided us important insight on human 

hepatic metabolism; however, the fact that these are cloned carcinoma cells raises questions 

about whether or not data can be interpreted as physiological than compared to native normal 

liver cells.  In fact, HepG2 cells have lost many liver-specific functions (208; 211).  Furthermore, 

in comparison with  primary mouse hepatocytes, rat hepatocytes exhibit a rapid decline in liver-

specific functions (i.e. decrease in phase I and phase II genes involved in drug metabolism) (209; 

212; 213), suggesting that metabolic competence may also be weakened.  This drawback would 

have been detrimental to the reproducibility of all of our siRNA transfections experiments, as 

they were to be in cell cultured for 4-5 days.  Additionally, our laboratory generated mouse 

deficient in the cse gene (41), thus providing us with a unique opportunity to study the in vivo 

and in vitro effects of endogenous H2S on glucose metabolism.  Therefore, taking all of this into 

consideration, mouse primary hepatocytes were seen as the optimal experimental model for this 

thesis. 

Unfortunately, one of the major drawbacks to working with primary mouse hepatocytes 

was their quiescent nature once isolated, resulting in the continual need to freshly isolate cells for 

each experiment.  This required careful ordination of experiments, longer work hours to perform 

the isolation, and a continual replenishment of enzymes and chemicals necessary for the isolation 

(i.e. collagenase type IV, percoll).  Attempts were made to cryopreserve the freshly isolated 

hepatocytes; however, this yielded hepatocytes with extremely low cell viability (~30% via 

trypan blue assay).  Due to the sensitive nature of the primary hepatocytes, a controlled rate 

cooler (i.e. Kryo from CRYO Biotechnology; $9,000 - $21,000) was needed to time-dependently 
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lower the internal temperature of the primary hepatocyte mixture (i.e. at 4°C samples are to be 

cooled at −1°C/min to −6°C and held for 10 minutes then cooled at −1°C/min to −80°C).   

In Chapters 3 and 4, the interaction between H2S and PGC-1α/PPRC were investigated 

using transient siRNA knockout techniques.  siRNA-based gene silencing is not as precise or 

thorough as a traditional gene deletion.  Therefore, using PGC-1α-KO mouse model would 

provide a further confirmation of our findings. Also, the introduction of an adenovirus 

overexpressing the cse gene into WT mice would have provided additional support for the 

regulatory role the CSE/H2S system has in hepatic glucose production and mitochondrial 

biogenesis.  Many researchers have shown the effectiveness of adenovirus delivery via tail vein 

injection, which specifically targets the liver with minimum immune response (140; 214; 215).  

Our Ad-CSE and β-galactosidase have deletions in the E1, E2, and E4 genes, which prevents the 

transcription of viral proteins encoded by these DNA sequences, as well as viral self-replication.  

This safely minimizes the host immune response to adenoviral delivery and prolongs the gene 

expression in vivo (216).   Evidence from the adenovirus overexpressing CSE in livers would 

have contributed to further understanding the roles of endogenous H2S in hepatic glucose 

production as well as mitochondrial biogenesis and function.  Unfortunately, due to time 

constraints, we were unable to manufacture and delivery Ad-CSE via tail-vein injection into the 

WT mice. 

In Chapter 4, we analyzed mitochondrial biogenesis by measuring the fluorescence of 

MitoTracker Green FM from a spectrometer.  Spectrophotometry measures the bulk volume of 

the sample where the percentage of absorption and transmission of specific wavelengths are 

determined.  This method is reliable although it may be not as sensitive as flow cytometry, which 

measures the fluorescence of very single live cell in a sample; whereby fluorescence from dead 



140 
 

cells, cellular debris, and excess probe are excluded from the reading (217).  Attempts were 

made to use the Fluorescence-Activated Cell Sorting (FACS) at the Northern Ontario School of 

Medicine (NOSM) laboratory at Lakehead University.  Unfortunately, complications arose due 

to sample preservation because of a weakened and unpredictable fluorescence reading as the 

MitoTracker Green probe only stains live cells.  Additionally, if cell treatments were conducted 

at the NOSM laboratory, isolated primary hepatocytes would have needed to be transported from 

the CMRU laboratory to the NOSM laboratory (about 15 min driving) for every experiment. 

Considering the primary hepatocytes easily becomes quiescent once in cell culture, therefore, the 

flow cytometry analysis was opted out of our experiments due to practicality and time issues. 

 

B. Methodological Limitations 

The biotin switch assay, developed by Snyder and colleagues (20), was used for the detection of 

S-sulfhydrated proteins.  This assay is considered to be a reliable method to measure protein 

modification; however, the biotin switch assay indirectly measures protein S-sulfhydration.  The 

sensitivity of the biotin switch method depends on the effective blocking of the free thiol by 

MMTS.  After blocking, the modified thiol was labeled with a thiol-reactive biotin (which forms 

a mixed disulfide with the modified thiol).  Finally, the biotinylated proteins were pulled down 

via streptavidin-agarose and analyzed by Western blot.  LC-MS/MS, on the other hand, directly 

measure S-sulfhydrated proteins, without the application of MMTS or biotin to protein samples.  

LC-MS/MS can distinguish S-sulfhydration based on protein mass shift; whereas biotin switch 

assay depends on the thiol-biotin-streptavidin-agarose binding that is then analyzed via Western 

blot.  Quantifying S-sulfhydrated proteins via LC-MS/MS would have provided further 

supporting evidence in Chapters 3 and 4. 
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 In Chapter 3, we measured hepatic glucose production via a colorimetric method; 

however, the use of a radioactive method would have been more sensitive and precise.  As a 

result of our laboratory limitation, the radioisotope method was not adopted for our study.  

Additionally, in Chapter 3, we measured the enzymatic activity of G6Pase from total cell lysates.  

G6Pase is the only gluconeogenic enzyme that is located in the ER.  Once glucose is synthesized 

by G6Pase, it is packaged up in a vesicle and sent to the cell membrane for exocytosis.  

Therefore, ER isolation from primary liver cells would have produced more precise 

measurements of G6Pase activity; however, an ultracentrifuge was required to separate the ER 

from the rest of the cell components and debris.  Due to the limitation of our laboratory, ER-

isolation via ultracentrifugation was not incorporated into our study. 

 Lastly, the denaturing agarose-formaldehyde gel method was used to determine RNA 

integrity by visualizing the 2:1 ratio of the 28S and 18S bands (Chapter 4 and Supplementary 

Figure S-1). While the cost of analyzing RNA integrity by gel electrophoresis is relatively low, 

analysis requires a significant amount of handling and hands-on time. Also, since ethidium 

bromide stains bind to nucleic acids, they are potential carcinogens; therefore, careful handling 

was necessary.  Also, gel electrophoresis is not as sensitive as the 2100 Bioanalyzer (Agilent 

Technologies) or the Experion™ Automated Electrophoresis System (Bio-Rad).  These methods 

consume a substantial small amount of RNA, with faster analysis, and more accurate calculation 

of RNA quality.  However, these methods are expensive and require costly reagents and chips.   

Considering that the determination of RNA was only a small part in this thesis, incorporating the 

2100 Bioanalyzer or the Bio-Rad Experion system would have been considered, if extensive 

RNA analysis were required. 
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ETHICAL PERSPECTIVE  

Animal research has played a pivotal role in many scientific and medical advances, and it 

continues to aid our understanding of various diseases.  Around the world, people enjoy a better 

quality of life due to these advances, and the subsequent development of new medicines and 

treatments, which was made possible by animal research (218).  For instance, the discovery of 

insulin was made possible through animal studies.  In 1921, Frederick Banting and Charles Best 

showed that isolated pancreatic extracts dramatically reduced the hyperglycemia and glycosuria 

and prolonged the lives of dogs made diabetic by removal of the pancreas.  Next, Banting and 

Best developed a procedure to extract insulin from a bovine pancreas, whereby in the winter of 

1922, they treated their first human patient, a young boy, whose life was saved by a treatment 

achieved through animal research (219).  In conjunction with the successful discovery of insulin, 

animal testing has furthered our understanding of AIDS, asthma, tuberculosis, breast cancer, 

cystic fibrosis, Huntington’s disease, etc.  An up-to-date and comprehensive list of all the 

diseases animal research has aided in our understanding in is chronicled at 

http://www.animalresearch.info/en/medical-advances/diseases-research/.   

However, animal experimentation has been a subject of heated debate for many years. 

Despite the numerous medical advances, the tight controls governing animal experimentation, 

and the widespread implementation of the 3Rs [reduction, replacement, and refinement of the 

use of animals in research (220)], animal-rights groups are lobbying for a complete ban on 

animal research.  Pushing for non-animal replacement methods involves not only the 

development of the method but also its validation by national and international regulatory 

authorities, whereby any negligence could endanger human health.  Overall, the numerous 

medical achievements made possibly by animal research has led to critical drug discoveries 

http://www.animalresearch.info/en/medical-advances/diseases-research/
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throughout the years.  Abandonment of animal research could impose severe consequences on 

medical advances and public health. 

 

FUTURE DIRECTION  

As a follow-up to this Ph.D. study, the suggested future directions are divided into two parts: 

PART ONE: 

1. Perform a functional study on the WT mice via overexpressing CSE in vivo using our 

proven Ad-CSE transfection technology (1 x 1012 viral particles) (96; 105).  Control WT 

mice would be injected with an adenovirus encoding β-galactosidase (1 x 1012 viral 

particles).  Approximately 2-5 days after adenovirus injection, the following 

observational experiments are suggested: 

a. Measure the rate of gluconeogenesis via PTT   

b. Determine insulin resistance in hepatocytes isolated from Ad-CSE treated WT 

mice by treating the cells with insulin (100 nM for 15 min) and analyze:  

i. glucose production 

ii. phosphorylation of insulin receptor substrate (IRS) 

iii. Akt activation 

iv. phosphorylation of FOXO1 

v. PGC-1α and TRB-3 protein levels  

2. Redo the experiments listed in 1) but with PPG-treated Ad-CSE- and Ad- β-

galactosidase-treated WT mice.  PPG injections (40 mg/kg/day) are to begin one week 

prior to adenovirus delivery and to continue until the termination of the mice. 
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PART TWO: 

1. Induce T2DM in mice via a combination of a single i.p. injection of STZ (50 mg/kg) and 

high-energy intake diet (58% calories as fat) (Research Diets, New Brunswick, NJ) in 

both WT and CSE-KO mice.  The single STZ injection should be given after two weeks 

of dietary manipulation.  The STZ-HFD treatment was shown to effectively induce 

T2DM in both rats and mice by altering the related gene expressions in major metabolic 

tissues, leading to peripheral insulin resistance, which was accompanied by frank 

hyperglycemia (221-224).  Thereafter, the development of diabetes in these mice should 

be determined and compared.  The following experiments are suggested: 

a. Determine insulin sensitivity via insulin tolerance test 

b. Test the efficiency of insulin secretion via glucose tolerance test 

c. Measure the rate of gluconeogenesis via PTT 

d. Measure hepatic PGC-1α and TRB-3 protein levels  

e. Analyze hepatic mitochondrial function by measuring mitochondrial membrane 

potential (via specific mitochondrial probes) and ATP production (via 

commercially available ATP assay kit). 

2. Repeat the experiments listed in the above step but with a 3 week treatment of daily PPG 

injections.  It would be crucial to determine if PPG could reverse or alleviate H2S-related 

diabetes development in the type 2 diabetic WT and CSE-KO mice.  Daily i.p. injections 

of PPG (40 mg/kg/day) are to begin one week prior to dietary manipulation and to 

proceed the two weeks of the HFD feeding.  
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SUPPLEMENTARY MATERIAL 
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Supplementary Figure S-1:  NaHS upregulates the expression levels of gluconeogenic genes 

in HepG2 cells.  HepG2 cells were treated with or without 10, 30, or 60 µM NaHS or 1 mM PPG 

for 6 h.  A and B) Selected gene expression levels were analyzed by q-PCR and normalized to 

total β-actin. n = 3-4 for each group.  Statistical analysis was performed using the Student’s t-

test.  P < 0.05 versus control group (CT). 
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group. B) Summary of MitoTracker Red fluorescence measured via spectrophotometer at 

excitation/emission: 579/599 nm.  n = 3-4 for each group.  Statistical analysis was performed 

using the one-way ANOVA followed by a post hoc analysis (Tukey’s test).  *P < 0.05 versus 

control group (CT); #P < 0.05 versus WT CT group. 
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