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Abstract  

Kraft lignin is not widely utilized for industrial applications. In this MSc work, kraft lignin was 

modified by grafting hydrophobic groups to produce hydrophobic materials. The main objective 

was to study the grafting of lipophilic long alkyl chains on kraft lignin to improve its 

hydrophobicity. Dodecyl glycidyl ether was grafted at various molar ratios on kraft lignin in the 

presence of dimethyl benzyl amine catalyst. The influence of the grafting ratio of long alkyl chain 

to kraft lignin and methylated kraft lignin was comprehensively studied. The effect of grafting on 

the structure and thermal properties of lignin was investigated. The modified kraft lignin based 

products were characterised using a variety of methods including NMR, FTIR, TGA, DSC, GPC 

and elemental analysis, all of which demonstrated remarkable changes in the chemical and 

physical structure of kraft lignin after modification. The results showed that by increasing the 

grafting ratio, an increasing fraction of the phenolic hydroxy groups of lignin reacted with dodecyl 

glycidyl ether. Moreover, alterations in the surface tension of solvents and water containing 

modified kraft lignin as well as on the wettability of surfaces coated with modified kraft lignin 

were studied in detail. 
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Chapter 1:  Introduction 

 
1.1 Overview 

Currently, environmental, economical and supply issues are associated with the use of fossil fuel 

based products. Alternatively, chemicals with superior properties to fossil fuel ones can be 

produced from renewable resources (Hamaguchi et al., 2012; Jablonský et al., 2015). Currently, 

the production of different products from lignocellulosic biomass is being carried out throughout 

the world, especially in Canada (Ragauskas et al., 2006; Chen et al., 2014).  

Lignocellulosic biomass consists primarily of cellulose, hemicelluloses, and lignin (Ragauskas et 

al., 2006; Oveissi and Fatehi, 2015). Lignin could be considered as a valuable resource for bio-

based material production as it does not affect the food supply chain (in opposition to starch) and 

is considered an under-utilized by-product of the pulp and paper industry (Ragauskas et al., 2006; 

Chen et al., 2014).  

As lignin could be converted to many value-added products via chemical modifications, it has been 

studied for a wide range of industrial applications such as composites, surfactants and dispersants 

(Alekhina et al., 2015; Norgren and Mackin, 2009; Rafati et al., 2012; Hazarika and Gogoi, 2014). 

Lignin is a complex polymer with hydrophobic rings and hydrophilic groups attached to the rings. 

Any chemical modification to lignin would alter its hydrophobic/hydrophilic nature, along with 

other properties, and thus its application (Wu et al., 2012; Konduri et al., 2015; Chen et al., 2014; 

Lin et al., 2014). Although numerous attempts at improving lignin’s hydrophobicity using 

chemical modifications such as sulfonation, sulfomethylation, oxidation and phenolation have 
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been reported, the means by which lignin hydrophobicity may be enhanced still needs more 

investigation (Chen et al., 2014; Matsushita and Yasuda, 2005; Ouyang et al., 2009).  

In this study, the effect of grafting dodecyl glycidyl ether on kraft lignin in the presence of dimethyl 

benzyl amine as a catalyst was investigated. The extent of grafting was controlled by use of 

methylation to mask the reactive phenolic hydroxyl groups on lignin. The primary objective of this 

work was to increase lignin’s hydrophobicity by alkoxylation at different reactive sites and grafting 

ratios. 

1.2 Objectives  

The objectives of this thesis were to: 

1. prepare lipophilic long chain dodecyl glycidyl ether to be utilized in kraft lignin 

modification; 

2. modify kraft lignin via methylation; 

3. improve the hydrophobicity of kraft lignin by grafting dodecyl glycidyl ether at different 

grafting ratios; 

4.  improve the hydrophobicity of methylated kraft lignin by grafting dodecyl glycidyl ether 

at various grafting ratios; 

5.  investigate the influence of grafting ratio of dodecyl glycidyl ether and methylation on the 

structure and thermal stability of lignin; and 

6. investigate the impact of methylation and dodecyl glycidyl ether grafting on the surface 

tension, interfacial tension of N, N-dimethylformamide as well as wettability of glass slides coated 

with modified lignin. 
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Chapter one, which is the current chapter, covers the overall goals of this MSc thesis work. It also 

includes a brief summary of other chapters.  

Chapter two reviews literature relevant to this work, which includes the properties, production, 

and extraction of lignin as well as reactions to enhance its hydrophilicity and/or hydrophobicity.  

Chapter three discusses the materials and methods used in this thesis to characterize kraft lignin 

before and after modification.  

Chapter four presents the results and discussion of this thesis. 

Chapter five states the overall conclusions and future work of this thesis. 

1.3.  Novelty of this study 

The study is novel as the following aspects have not been previously studied:  

•  The production of a novel lignin based product via methylation and alkoxylation with 

lipophilic long alkyl chains (dodecyl glycidyl ether).  

•  An investigation of the modified kraft lignin’s properties, including its performance as 

hydrophobic material. 
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Chapter 2: Literature Review 

2.1. Introduction 

The industrial production of a wide range of chemicals and synthetic polymers greatly relies on 

fossil based resources, which are becoming increasingly scarce and expensive. Therefore, pressure 

is growing on industries to practice sustainability and utilize renewable resources, which requires 

the development of environmentally sustainable feedstocks that are competitive in terms of cost, 

performance, availability, and logistical feasibility with the fossil-based materials they aim to 

replace. Moreover, global warming circumstances make it a necessity to replace the fossil-based 

products with biomass-based products (Hamaguchi et al., 2012; Jablonský et al., 2015). In this 

regard, lignocellulosic materials are considered as promising feedstocks, which are from plentiful, 

inexpensive and renewable resources (Elraies and Tan, 2012; Gharbi et al., 2012, Hamaguchi et 

al., 2012; Hazarika and Gogoi, 2014; Isikgor and Becer, 2015, Olajire, 2014).  

Lignin is one of the main components of biomass, besides cellulose and hemicellulose, and is the 

second most abundant natural polymer after cellulose (El Mansouri et al., 2011; Hu et al., 2011; 

Tejado et al., 2007; Toledano et al., 2010; Watkins et al., 2015). Using lignin as a feedstock for 

producing value-added products has some advantages and disadvantages. In its favor, lignin is not 

used as food, but it is an under-utilized by-product of many food and pulping processes. 

Additionally, there are well-established commercial processes for producing different forms of 

lignin in a wide range of qualities and quantities. Increasing lignin use would also contribute to 

reduced greenhouse gas emissions. However, the downside is that lignin is a variable and 

chemically complex material which makes its utilization as a feedstock challenging (Jönsson et 
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al., 2008; Ragauskas et al., 2014; Satheesh Kumar et al., 2009). Although many products are 

commercially produced from cellulose, lignin has currently a limited commercial value. In the 

past, lignin has been mainly used as a fuel source, but recent studies have shown that it could be 

converted to many value-added products (Alekhina et al., 2015; Hazarika and Gogoi, 2014; 

Norgren and Mackin, 2009; Rafati et al., 2012). Lignin is a by-product of many chemical (e.g. 

kraft, sulfite, organosolv, soda, neutral sulfite semichemical (NSSC)) and biochemical (e.g. 

ethanol production) processes. Figure 2.1 depicts the complicated three-dimensional structure of a 

typical wood-derived lignin. It is clear that the chemical structure of lignin is complex, containing 

many functional groups such as carbonyl, benzyl alcohol, phenolic hydroxyl, and methoxyl, along 

with various types of linkages (Chen et al., 2014). The structure of lignin macromolecules can vary 

between plant species. It is also affected by wood treatment and the method of extraction (Toledano 

et al., 2010). As a result, the actual three-dimensional structure of lignin is often unknown without 

first engaging in detailed chemical investigations. 
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Figure 2.1: Structure of lignin macromolecule, revealing p-hydroxyphenyl (green), guaiacyl (blue) 

and syringyl (red) units (after Zakzeski et al., 2010). 

Coniferyl (guaiacyl), sinapyl (synringyl), and p-coumaryl (p-hydroxyphenyl) alcohols are the main 

repeating units of lignin (Figure 2.1) (El Mansouri et al., 2011; Helander et al., 2013; Watkins et 

al., 2015). Table 2.1 lists lignin compositions obtained from different sources (Gosselink et al., 

2010). It is evident that the number of hydroxyl groups, either aliphatic or aromatic, can differ 

depending on the lignin’s origin. For instance, Indulin AT lignin (alkali lignin) has a higher number 

of hydroxyl groups compared to others, but it does not possess any syringyl units within its 

structure. In addition, hardwood soda and Lignosolv lignins may contain condensed structures, 

however, they likely contain lesser quantities of functional groups (aliphatic and aromatic hydroxyl 

groups) compared to other forms of lignin, which affects their chemical structure and application 

significantly.  

4-O-5 

β-1 

β-O-4 

β-β 

5-5 

β-5/α-O-4 
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Table 2.1: Compositions of different lignins 

Lignin 
Condensed structures (mmol/g) Functional groups 

(mmol/g) 
Reference 

Syringyl 
OH 

Guaiacy 
OH 

p-Hydroxyl 
OH 

Aliphatic 
OH 

Phenolic 
OH 

Indulin AT  NR 1.62 0.23 2.08 3.15 Gosselink et 
al., 2010 

Sodium 
lignosulfonate 

NR NR NR 1.07 2.01 Yang, et al., 
2015 

Curan 100  NR 1.84 NR 1.78 2.39 Gosselink et 
al., 2010 

Switchgrass NR NR NR 3.88 1.00 Sannigrahi et 
al., 2010. 

Hardwood soda  0.92 0.51 0.34 1.34 2.48 Gosselink et 
al., 2010 

Wheat Straw NR NR NR 0.1 0.4–0.6 Lora and 
Glasser, 2002 

Lignosolv 
hardwoods  

1.05 0.7 0.2 1.08 2.71 Gosselink et 
al., 2010 

NR: Not reported 

Lignin of different origins (softwood or hardwood) possesses different percentages of the primary inter-

unit linkages (Table 2.2 and Figure 2.1). For instance, biphenol bonds (5-5) in softwood lignin are three to 

five times more abundant than those in hardwood. Pinoresinol bonds (β-β) have the lowest abundance in 

both types of lignin. Phenyl coumarane, 1,2-diaryl propane, and biphenol (β-5, β-1, and 5-5, respectively) 

bonds make up 10% of the linkages in hardwood lignin, but are more abundant in softwood lignin. The 4-

O-5 and α-O-4 bonds represent less than 10% of the total linkages, regardless of the wood source. Overall, 

the most abundant bonds in lignin are phenylpropane β−aryl ether (β-O-4) linkages, which are susceptible 

to pulping, bleaching and biological degradation reactions. Knowledge of which groups and linkages are 

present is important since they can behave very differently in terms of their reactivity with other chemicals 

(Brodin, 2009; Selyanina et al., 2007: Watkins et al., 2015).  
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 Table 2.2: Inter-monolignolic linkages as percentages of total linkages in lignin 

Types of linkage Name 
Linkages in lignin (%) 

Softwood1,2,4 Hardwood1,3,4 

β-O-4 Phenylpropane β−aryl ether 35-60 50-70 

β-β Pinoresinol 2-3 3-4 

β-5 Phenyl coumarane 9-12 4-9 

α-O-4 Phenylpropane α−aryl ether 6-8 7 

β-1 1,2-Diaryl propane 7-10 7 

5-5 Biphenol 18-25 ≈5 

4-O-5 Diaryl ether 4-8 7 

1- Sannigrahi et al., 2010; 
2- Santos et al., 2013;  
3- Patil, 2012;  
4- Brodin, 2009. 

2.2. Lignin properties  

The pulping industry remains the most significant lignin producer, with the sulfite and kraft 

processes being the two major techniques commercially used (Vishtal and Kraslawski, 2011). The 

lignin formed during the sulfite process is generally extracted as lignosulfonates, whereas that 

formed by the kraft method is usually burned as a fuel source. Lignosulfonates are of particular 

interest due to their high content of sulfonic acid functional groups attached to the aliphatic chain. 

This chemical composition renders them water soluble, with excellent binding and emulsifying 

properties. Kraft lignin, on the other hand, is much less soluble in water at neutral or acidic pH 

because of the lack of hydrophilic groups (Konduri et al., 2015; Qin et al., 2015; Vishtal and 

Kraslawski, 2011). Nevertheless, kraft lignin possesses several features distinguishing it from 
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other lignins. For instance, it contains a higher number of phenolic-OH compared to other types 

of lignin due to the extensive cleavage of β-aryl bonds during the pulping process.  

Table 2.3 lists the properties of lignin extracted from spent kraft and sulfite pulping liquors. As 

can be seen, the properties (molecular weight, ash content, and polydispersity) vary according to 

the pulping process. The sulfite pulping process produces lignin with higher molecular weight (up 

to 150,000 g/mol) and ash content (up to 8 wt.%) than kraft lignin. Lignosulfonate also has a higher 

anionic charge density due to its high sulfonate group content. 

Table 2.3: Chemical properties of some industrial lignins (Oveissi and Fatehi, 2015; Vishtal and 

Kraslawski, 2011; Yang et al., 2015).  

 NR: Not reported 

2.3. Lignin extraction process 

Properties Kraft lignin Lignosulfonate 

Molecular weight, Mw 1,500-5,000 (up to 25,000) 1,000-50,000 (up to 150,000) 

Ash (wt.%) 0.5-3 4-8 

Sugar (wt.%) 1-2.3 NR 

Sulfur (wt.%) 1-3 3.5-8 

Polydispersity (Mw/Mn) 2.5-3.5 4.2-7 

Anionic charge density (meq/g) 0.76 ± 0.02 1.52 ± 0.02 

Sulfonate group (meq/g) NR 1.33 ± 0.2 

Carboxylate groups (meq/g) 0.54 ± 0.03 0.11 ± 0.01 

Hydrodynamic diameter (nm) 6.3 ± 0.7 10.1 ± 0.7 
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Lignin is primarily extracted from spent pulping liquors, which also contain hemicellulose and 

inorganic impurities such as the pulping chemicals. Kraft lignin can easily be separated from black 

liquor by ultrafiltration and acidification (Qin et al., 2015; Vishtal and Kraslawski, 2011). The 

advantages of ultrafiltration are that it can be applied at any position in the mill (flexibility) and 

lignin can be separated without altering pH and temperature of the process. However, the extracted 

lignin needs further purification since it contains substantial amount of hemicellulose and ash, 

thereby increasing the overall cost of ultrafiltration (Qin et al., 2015; Vishtal and Kraslawski, 

2011). LignoBoost and LignoForce are two acidification-based methods that have been recently 

developed to improve the ultrafiltration process. With LignoBoost, carbon dioxide is used to treat 

the black liquor to reduce its pH to 10, causing lignin to precipitate. The precipitates are dispersed, 

washed with acid, and then separated via filtration. This process has been found to increase the 

yield and purity of the produced kraft lignin, while simultaneously decreasing the operational costs 

by reducing the amount of sulfuric acid used and circumventing the need for use of larger filter as 

filter area can be kept small (Tomani P., 2010). The newest technology, LignoForce, uses a mixture 

of carbon dioxide and oxygen to concentrate, cool and precipitate spent liquor, which is then 

washed and pressed with filters. The resulting lignin has high purity, while carbon dioxide 

consumption is reduced as is the emission of hydrogen sulfide from acidification of black liquor.  

2.4. Lignosulfonate application 

Lignin recovered from spent sulfite pulping liquor has great potential as a surfactant (Jiao et al., 

2007; Shulga et al., 2011), owing to the prevalence of hydrophilic sulfonate groups on the aliphatic 

side chains of hydrophobic aromatic rings (Elraies and Tan, 2012; Hong et al., 1987) as illustrated 

in Figure 2.2. Lignosulfonates are inexpensive and can be used as natural surfactants, dispersants 

and flocculants (Elraies and Tan, 2012; Tolosa et al., 2006). 
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Figure 2.2: The representative structure of a lignosulfonate 

Table 2.4 shows some chemical characteristics of lignosulfonates. It is observable that 

lignosulfonates have a significant amount of charge groups and varied molecular weight. The 

properties of lignosulfonate depend on their wood source as discussed earlier (Askvik et al., 1999; 

Ouyang et al., 2009; Vishtal and Kraslawski, 2011; Zhou et al., 2015). 

Table 2.4: Lignosulfonate chemical characteristics 

Parameters Zhou et al., 
2015 

Askvik et al., 
1999 

Vishtal and 
Kraslawski, 2011 

Ouyang et al., 
2009 

MW (g/mol) 13,021 62,700 1000-150,000 9,688 

Surface charge (mmol/g) 1.73  NR NR NR 

Polydispersity (Mw/Mn) 2.51 NR 4.2-7 3.02 

Sulfonate groups (mmol/g) 1.33  6.2% 3.5-8% NR 

Carboxyl groups (mmol/g) 0.82  4.5% NR NR 

Phenolic hydroxyl groups 
(mmol/g) 0.99  2.4% NR NR 

NR: Not reported. 

In addition to low production cost, the adsorption affinity, dispersability, and wettability of 

lignosulfonates (i.e. the tendency of a liquid to spread on a solid surface), they have been used in 

many applications. For example, they have been utilized as plasticizers in concrete, as emulsifiers 

and corrosion inhibitors in pesticides, and as ion-exchange resins (Borchardt, 1989; Calvo-Flores 

and Dobado, 2010; Elraies and Tan, 2012; Hong et al., 1987; Tejado et al., 2007). As also seen in 



14 
 

Table 2.4 lignosulfonates have excellent polydispersity properties. For instance, Grigg and Bai 

(2004) investigated the use of lignosulfonates as sacrificial agents for reducing the adsorption of 

other chemicals to porous materials for enhanced oil recovery application (Grigg and Bai, 2004). 

On the other hand, lignosulfonates have a limited ability to decrease the interfacial tension of the 

oil−water interface or the surface tension of water (Perkins, 1998), which limits their applications. 

This is because lignosulfonates produced in the sulfite pulping process may be contaminated with 

polysaccharides and inorganic pulping chemicals (Hazarika and Gogoi, 2014).  

Various schemes have been used to improve the charge density of lignosulfonates to widen their 

potential uses (Tolosa et al., 2006). For example, they have been used along with other synthetic 

and/or biological surfactants (either cationic or non-ionic) such as n-hexanol, n-heptanol, and alkyl 

benzene sulfonates (Sheng, 2015; Tolosa et al., 2006).  

2.5. Modification of lignin 

The properties (e.g. interfacial activity, reactivity) of lignosulfonates can be engineered by means 

of chemical modification. Similarly, other lignin sources, such as the kraft and soda lignin, can be 

modified for their potential uses in different applications (Dilling and Prazak, 1977; Hazarika and 

Gogoi, 2014; Jiao et al., 2007). Lignin can be subjected to many reactions such as alkylation, 

amination, carboxylation, acylation, halogenation, methylation, oxidation and reduction, 

sulfomethylation, sulfonation, and nitroxide formation that could modify its aromatic structure 

(Matsushita, 2015; Miller et al., 1999, 2002; Morrow, 1992; Pearl and Beyer, 1966). For example, 

hydrophilic functional groups can be introduced into the hydrophobic backbone by 1) substitution 

reactions introducing carboxylates, sulfates, or sulfonates to form anionic polymers, 2) reacting 



15 
 

with ammonium salts to form cationic polymers, or 3) reacting with alcohols (polyoxyethylenated 

chains) to form a more hydrophobic material.  

2.6. Application of hydrophilic lignin derivatives 

The chemical modifications of lignin result in different and improved properties. For example, 

introducing carboxylate groups into lignosulfonate molecules and using them under alkaline 

conditions increased their negative charges (Askvik, 2001). In another study, lignin was modified 

via alkylation, sulfonation, and oxidation to produce highly effective surfactants (Morrow, 1992). 

Moreover, a novel method was used to produce sulfonated benzyl alcohol/lignin phenol surfactant 

that is well suited to be used in the recovery of hydrocarbons from an oil field (Naae and Davis, 

1992). He and Fatehi (2005) reported that softwood kraft lignin can be oxidized by nitric acid (20 

wt% nitric acid at 100 °C for 1 h) and then sulfomethylated using formaldehyde and sodium 

metabisulfite (ratios of 1/1 and 0.5/1, respectively, at 100 ℃ for 3 h) to produce a water-soluble 

product with charge density of -3.87 meq/g which is effective at increasing the fluidity of cement 

admixtures. Ouyang et al. (2009) demonstrated that alkali lignin that is oxidized by hydrogen 

peroxide (30 wt% H2O2 for 1 h at 95 ℃) and then sulfomethylated (37 wt% formaldehyde, sodium 

sulfite at 75 ℃ for 2 h) yields a product with lower surface tension in water than commercial 

lignosulfonate.  

Another route for modifying lignin is the Mannich reaction (Laurichesse and Avérous, 2014). Yue 

et al. (2011), for example, carried out lignin amination in the presence of diethylamine and 

formaldehyde (at 75 ℃ and pH 11.5 for 3 h) to generate lignin-based products (as a glue) that 

showed a significant improvement in the performance of wood composites (Yue et al. 2011). In 

another work, a kraft lignin-based product was dissolved in NaOH solution and reacted with 

diethylenetriamine/formaldehyde (DETA/F) or N-(2-
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aminoethyl)dehydroabietamide/diethylenetriamine/formaldehyde (DAEA/DETA/F) at 90 ℃ for 3 

h (Liu et al., 2013). Whereas the kraft lignin reduced the surface tension of water to 45.62 mN/m, 

the modified lignin further reduced the surface tension of water to 29.85 mN/m at 5 g/L 

concentration (Liu et al., 2013).  

2.7. Application of hydrophobic lignin derivatives 

Many studies have reported different routes and ideas for lignin modification to change its 

hydrophobicity. It is claimed that hydrophobic lignin derivatives could have better interactions 

with other materials in organic solvents (Laurichesse and Avérous, 2014). The hydrophobicity of 

lignin can be improved via esterification and etherification, for example (Antonsson, 2007; Berlin 

and Balakshin, 2014; Laurichesse and Avérous, 2014). In one study, soda lignin was propylated 

via propylene oxide (37% concentration) under alkaline conditions for seven days at room 

temperature to produce propylated soda lignin (Ahvazi et al., 2011). This method generated a 

lignopolyol (propylated lignin) that had a potential use in polyurethane foams (Ahvazi et al., 2011). 

Furthermore, Gordobil and others (2016) have reported that esterification can improve the 

hydrophobicity of organosolv lignin (hardwood or softwood) to be used as a dispersant. In their 

study, organosolv lignins were dissolved in DMF and then reacted with dodecanoyl chloride at 20 

℃ for 2 h while using pyridine as a catalyst (Gordobil et al., 2016). The esterified lignin derivatives 

were found to be suited as a protective agent in wood products because of their high hydrophobicity 

and low glass transition temperature (Gordobil et al., 2016). Moreover, alkoxylation allows lignin 

derivatives to be used as components for production of polyurethane and polymer blends (Sen et 

al., 2015). The modified lignin may also have an application in paints and coatings, binders, flame 

retardants, water resistant composites, emulsifiers, and biomedicine (Sen et al., 2015). 

Hydrophobic lignin derivatives could also be used in unbleached pulp to improve its wet strength 
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and moisture adsorption (Antonsson, 2007). Others reported the use of lignin based hydrophobic 

products as antioxidants in plastics or compatibility mediator on strengthening pulp fibers in plastic 

composites (Antonsson, 2007). The improvement in hydrophobicity of lignin can be carried out 

via esterification with fatty acids or triglycerides and the product could be used in the production 

of polyesters, epoxy resins, and elastomeric materials (Ishikawa et al., 1961; Laurichesse and 

Avérous, 2014). In another work, soda lignin was esterified with maleic anhydride in 1,4-dioxane 

with 10/1 molar ratio to produce maleated lignins with high hydrophobicity characters to be used 

as polyols in polyurethane applications (Ahvazi et al., 2011). Further modification of this product 

as propylation (reaction with propylene oxide at room temperature for seven days) could improve 

the hydrophobicity of lignin even further (Laurichesse and Avérous, 2014). Moreover, Thielemans 

and others (Thielemans et al., 2001) reported that modified lignin with either maleic anhydride or 

epoxidize soybean oil could produce a product with potential use as a surface agent for fiber 

composites. Lignin would be suitable for biodegradable composites formation when it is combined 

with chitosan, which is a cationic polysaccharide. In this work, lignin was dissolved in 80 % 

aqueous acetic acid, and biodegradable blend films composed of chitosan, wherein lignin was 

successfully prepared via the solution-casting technique, which had a potential utilization in 

packaging (Chen et al., 2009). 

Lignin may offer the potential to be a renewable, widely available, and inexpensive feedstock for 

different applications. Overall, the utilization of lignin and its modification to increase its industrial 

use is clearly worth considering as it does not compete with food (Laurichesse and Avérous, 2014). 

The properties of unmodified lignins make them inferior to existing commercial products in most 

applications. However, by chemically modifying lignin, improved properties can be engineered. 
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Chapter 3: Experiments and Analysis  

3.1. Raw materials  

Softwood kraft lignin (KL) was supplied by FPInnovations from its pilot plant facilities located in 

Thunder Bay, ON. Canada. 1-dodecanol (98%), epichlorohydrin (ECH), tetrabutyl ammonium 

bromide (TBAB), sodium hydroxide (98%), toluene, N,N-dimethylbenzylamine (BDMA), 

petroleum ether, hydrochloric acid (37%), dimethyl sulfoxide (DMSO), dimethyl sulfate, pyridine, 

deuterated chloroform (CDCl3, 99.8%), cyclohexanol, chromium (III) acetylacetoate, 2-chloro-

4,4,5,5-tetramethyl-1,2,3-dioxaphospholane (TMDP, 95%), N,N-dimethylformamide (DMF, 

99.8%), poly(diallyldimethylammonium chloride) solution (PDADMAC; 100,000-200,000 g/mol, 

20 wt.% in water), anionic polyvinyl sulfate (PVSK; 100,000-200,000 g/mol, 98.4 wt% esterified), 

potassium hydroxide solution (8 M), para-hydroxybenzoic acid, ammonium hydroxide (NH4OH), 

methanol and phenolphthalein, all analytical grade, were purchased from Sigma Aldrich and used 

as received. Dialysis membrane with a molecular weight cut-off of 1000 g/mol was obtained from 

Spectrum Labs Inc., USA. 

3.2. Reaction procedure  

Figure 3.1 shows the reaction procedures followed to produce various modified lignins: 1) 

etherfying agent (dodecyl glycidyl ether, DGE) was prepared; 2) methylated kraft lignin (MKL) 

was also prepared via a methylation reaction and 3) DGE was grafted on KLMKL.  
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Figure 3.1: Overall reaction routes for producing DGE-grafted KL and DGE-grafted MKL.  

3.3. Dodecyl glycidyl ether (DGE) preparation 

The DGE was prepared according to the method described by Chen et al. (2014). 1-dodecanol was 

dissolved in toluene (0.99 mol) and combined with 25 g of 48 wt.% NaOH(aq) and 1.6 g of TBAB 

in a 250-mL round-bottom flask. 18.5 g of ECH were added dropwise at room temperature and 

stirring at 300 rpm, followed by heating at 50 °C for 6 h. The mixture was then quickly cooled by 

immersing the flask in water, whereupon it separated into an organic layer (the product in toluene) 

and an aqueous layer (unreacted materials). The organic layer was separated and purified by 

repeated washing with distilled water at 60 °C in a separatory funnel to extract unreacted materials. 

Then, the solvent was completely removed from the organic layer using a rotary evaporator 

(Rotaryevap Buchi R210) at room temperature under vacuum to obtain DGE. The product was 

chemically characterized.  

3.4. Methylation of kraft lignin 

To investigate the reaction of lignin with DGE, KL was methylated according to the procedure 

explained in the past (Sadeghifar et al., 2012; Kong et al., 2015; Argyropoulos et al., 2014; Sen et 

al., 2013). In this experiment, 1 g of KL was solubilized at room temperature in 15 mL of 0.7 M 
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NaOH via stirring at 300 rpm. Dimethyl sulfate was added to the mixture at a 1/2.5 molar ratio of 

phenolic hydroxyl group of lignin to dimethyl sulfate. At ambient temperature, the mixture was 

stirred for 30 min and then it was heated to 80 °C to react for 2 h. Due to the rapid hydrolysis of 

dimethyl sulfate producing sulfuric acid at the high ratio of methylation in this reaction, the pH 

dropped. Therefore, the pH of the mixture was maintained at 11 by continuously adding 0.7 M 

NaOH to the mixture throughout the experiment. After the reaction, the mixture was cooled to 

room temperature, and then the product (methylated kraft lignin, MKL) was precipitated by 

decreasing the pH to 2 by adding 2 M HCl. Afterward, the MKL was collected by filtration and 

thoroughly washed with deionized water until the sample pH reached neutrality. The MKL 

samples were then freeze dried under vaccum (Labconco, FreeZone 1L).   

3.5. Lignin modification with dodecyl glycidyl ether (DGE) 

KL and MKL were modified with DGE as described in the literature (Chen et al., 2014; Sadeghifar 

et al., 2012). In a 250-mL round-bottom three-neck glass flask equipped with a mechanical stirrer, 

2 g of lignin was dissolved under vigorous stirring (400 rpm) in 80 mL DMSO. BDMA (0.45 g) 

was then added as a catalyst, followed by DGE at different molar ratios of lignin hydroxide 

functionality to DGE. Afterward, the mixture was purged with nitrogen gas to remove oxygen. 

The first 30 min of the reaction occurred at room temperature, and then the mixture was heated to 

100 °C and reacted for another 5 h. The reaction was stopped by adding 2 M HCl (5 mL) and the 

mixture was stirred for another 30 min at room temperature to cool down. Petroleum ether was 

then added to facilitate the separation of different components via centrifugation at 1500 rpm for 

5 minutes. The solvent (DMSO) was then removed from the mixture by dialysis while changing 

water every hour for the first six hours, every 6 h for a day, and finally twice more over the 

following day. The resulting water-insoluble product was separated via centrifugation at 1500 rpm 
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for 5 min, oven-dried at 60 °C, and then appropriately labelled (KL-1, KL-2, KL-3, MKL-1, MKL-

2 or MKL-3). 

3.6. Determination of the epoxy equivalent weight (EEW) of dodecyl glycidyl ether (DGE) 

In this set of experiments, 2 g of DGE was added to 25 mL of 2 M pyridinium chloride (1 mL of 

concentrated hydrochloric acid in 61.5 mL of pyridine). The mixture was then stirred and heated 

to 50 °C for 30 min. After cooling the mixture, a few drops of methanol (0.1 M) and 

phenolphthalein were added. The solution was titrated against 0.2 M NaOH, and the blank titration 

was carried out as well. The EEW value of DGE was determined using equation 1 (Duraibabu et 

al., 2014), 

EEW= M

f(B−S)
                                 (1) 

where M is the mass (g) of DGE, f is the NaOH concentration (M), B is the amount of NaOH 

solution (mL) utilized for the blank test, and S is the amount of NaOH solution (mL) used for 

dodecyl glycidyl ether sample. 

3.7. NMR analysis 

3.7.1. 1H-NMR analysis 

The DGE sample was dissolved into CDCl3 with 20-30 mg/mL concentration. The solution was 

stirred for 30 min to fully dissolve the DGE. The 1H-NMR spectrum was recorded at room 

temperature using an INOVA-500 MHz instrument (Varian, USA) with a 45° pulse, 32 scans and 

interpulse delay time of 1.0 s. 

3.7.2. 31P-NMR analysis  
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The hydroxyl groups attached to KL were quantitatively analyzed by 31P-NMR, which helped 

identify the success of etherifying reaction (Salanti et al., 2016; Kong et al., 2015; Argyropoulos 

et al., 2014; Sen et al., 2013; Sadeghifar et al., 2012). The samples of KL-based material (36.6 mg) 

were dissolved into 500 L of pyridine/CDCl3 (1.6/1 v/v). Then, 35 L of internal QNMR standard 

(21.5 mg/mL of cyclohexanol in 1.6/1 v/v pyridine/CDCl3) plus 50 L of T1-relaxation agent (5.6 

mg/mL of chromium (III) acetylacetonate in 1.6/1 v/v pyridine/CDCl3) were added and the 

mixtures were stirred at room temperature for 40 min. Afterward, 100 L of TMDP was added as 

a phosphorylating agent for the detection and quantification of phenolic and aliphatic hydroxy 

moieties. The reaction mixtures were stirred at room temperature for another 10 min, prior to being 

transferred into a 5 mm NMR tube for NMR acquisition. The NMR spectra (in the range of 200 to 

-20 ppm) were recorded using a INOVA-500 MHz spectrometer (Varian, USA) with  a 90˚ pulse 

angle, 512 scans and a 5 s interpulse delay. 

3.8. Phenolate and carboxylate groups analysis 

The amount of phenolic hydroxyl and carboxylate groups in KL and MKL were analyzed by an 

automatic potentiometer (Metrohm, 728 Titrado, Switzerland), using the potentiometric titration 

method that was explained by Kondure et al. (2015). In this set of experiments, 0.06 g of each 

sample was dissolved in 1 mL of 0.8 M potassium hydroxide in a 200-mL beaker, then 4 mL of 

0.5% para-hydroxybenzoic acid was added as an internal standard. Then, 100 mL of deionized 

water were added to the mixture, and the mixture was titrated against 0.1 M HCl standard solution 

to determine the content of phenolic hydroxyl and carboxylate groups (mmol/g) following 

equations 2 and 3,  

Phenolic hydroxyl group (mmol/g) = [(V2`− V1`) − (V2− V1)] × C 

m
          (2) 
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Carboxylate group (mmol/g) = [(V3`− V2`) − (V3− V2)] × C 

m
                    (3) 

where C is the titrant concentration (the standard solution, 0.1 M HCl), and m is the dried mass of 

kraft lignin (g). V1, V2 and V3 are respectively the first, second and third endpoint volumes of HCl 

solution (mL) in the blank titration, while V1`, V2`, and V3` are respectively the first, second and 

third endpoint volumes of HCl solution (mL) used for the solution. 

3.9. Elemental analysis 

The organic elements of KL and MKL derivatives were assessed using an elemental analyzer 

(Elementar, Vario Micro, Germans). 2 mg of KL, dried at 60 °C overnight, were analyzed for their 

carbon, hydrogen, nitrogen, and sulfur contents by following a previously established method 

(Jahan et al., 2012; Fadeeva et al., 2008; Alkhalifa, 2017). An average of three independent 

experiments is reported. 

3.10. Fourier transform infrared (FTIR) spectroscopy 

To analyze the chemical structure of unmodified and modified KL, 50 mg of each sample was 

dried overnight at 60 °C to remove any moisture. Then, FTIR spectra were recorded using a Bruker 

Tensor 37, Germany, with ATR accessory. The spectra were recorded in the transmittance mode 

in the range of 500 cm-1 to 4000 cm-1 with resolution 1 cm−1 (Salanti et al., 2016). Each sample 

was scanned multiple times for consistency. 

3.11. Charge density 

A 1% suspension of different KL samples was stirred overnight at 500 rpm in a 50-mL centrifuge 

tube. It was then incubated for 2 h at 30 °C in a water bath shaker (Innova 3100, Brunswick 

Scientific, Edison, NJ, USA) and shaken at 170 rpm. The samples were centrifuged at 2000 rpm 
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for 5 min. The supernatant, containing the soluble component, was titrated on a particle charge 

detector (Mutek, PCD 04, 47 Germany) with a (0.005 M) PDADMAC standard solution. 

Afterward, the charge density of soluble lignin (meq/g) was determined according to equation 4 

(He and Fatehi, 2015; Couch et al., 2016):  

Soluble lignin charge density (meq/g) = 

 Volume of titrant × Concentration of titration

Mass of lignin
 ×  dilution factor                  (4) 

The charge density of insoluble lignin was also measured. A 0.05 g sample of undissolved lignin 

from the centrifuge tube was dried and then mixed with PVSK standard solution (0.005 M). The 

mixture was then immersed into the water bath shaker for another two h at 30 °C and 170 rpm. 

Meanwhile, a blank sample was also prepared. After collecting the supernatant of each sample, the 

charge density of insoluble lignin was measured by determining the concentration of PVSK 

solutions before and after mixing with lignin samples and they were titrated against standard 

PDADMAC solution. The charge density of insoluble lignin (meq/g) was determined according to 

equation 5 (He and Fatehi, 2015; Couch et al., 2016):   

Insoluble lignin charge density (meq/g) =       

(Vol.  PVSK for blank−Vol.  PVSK for sample) × conc.  PVSK × total mass PDADMAC

Mass of lignin × Mass PDADMAC 
                    (5) 

3.12. Solubility analysis 

The solubility of the lignin samples was determined according to the method described by Konduri 

and Fatehi (2015). A 0.2 g lignin sample was suspended in 20 mL of deionized water to produce 

a 1 wt.% solution, and the samples were immersed in a water bath shaker (Innova 3100, Brunswick 

Scientific, Edison, NJ, USA), and stirred at 170 rpm for 2 h at 30 ˚C. The samples were then 
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centrifuged at 1500 rpm for 5 min to separate soluble and insoluble lignin from the mixtures, and 

then filtered using nylon filters (0.45 µm pore size). The filtrates were dried at 105 °C to determine 

their lignin concentration and thus dissolved lignin mass. The solubility of the samples was 

determined following equation (6): 

Solubility (wt. %) =
Mass of dissolved lignin

Initial mass of lignin
×100                        (6) 

3.13. The degree of substitution (DS) 

The degree of substitution (DS) was calculated on the basis of 31P-NMR quantification analysis 

using the following equation (7), 

DSNMR  =  
Cf −Ci

Ci
                                        (7) 

where Cf and Ci are the final and initial concentrations of hydroxyl groups in the starting material 

and the modified kraft lignin, respectively. 

3.14. Molecular weight analysis  

KL and MKL derivatives were not water-soluble. Therefore, their molecular weight determination 

was only possible using a static light scattering (SLS) technique. Each sample was prepared at five 

different concentrations (0.2. 0.4, 0.6, 0.8, and 1 g/L) in DMF solution and stirred at 500 rpm 

overnight. These solutions were then filtered utilizing 30 mm nylon syringe filters with a 0.45 μm 

pore size (Celltreat Scientific Products). The intensities of the scattered light were measured using 

a static light scattering instrument (Brookhaven BI-200SM, Holtsville, NY), which was attached 

to a goniometer at various angles between 15 ° and 155 ° and the laser wavelength was set at 637 

nm. Finally, the generated data was analysed using BIC Zimm Plot software (Couch et al., 2016; 

Alkhalifa, 2017).  

3.15. Thermal analysis (TGA and DSC) 
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For determining the thermal stability of kraft lignin, 8-10 mg samples were dried for two days at 

60 °C to remove any moisture. Then, each sample was loaded in a platinum crucible and 

thermogravimetric analysis performed (i-1000 seriesTGA, Instrument Specialist Inc). Samples 

were heated isothermally at 100 °C, to ensure the removal of any moisture, and then at 10 °C/min 

to 700 °C under nitrogen (35 mL/ min) (Khazraie et al., 2017). The thermal behavior of KL 

derivatives was investigated with a differential scanning calorimeter (TA instrument, Q2000 DSC) 

using the standard cell RC mode. All samples were dried overnight at 60 ˚C prior to the DSC 

analyses. Approximately 10 mg of each sample was loaded into a hermetic aluminum pan and 

analyzed in the heat/cool/heat mode between 30 and 250 °C at a rate of 5 °C/min under 50 mL/min 

nitrogen flow. In the second heating cycle, the glass transition and melting point temperatures were 

determined (Argyropoulos et al., 2014).  

3.16. Surface imaging  

In this experiment, 1% solutions of each KL derivative were prepared in various solvents (water, 

ammonium hydroxide, and DMF), allowed to air dried for 24 h. After drying, the samples prepared 

as stated in section 3.17.3 was coated with gold (ERNEST F. FULLAM, INCORPORATED 

LATHAM, N. Y.) under vacuum (200 mTorr) for 2 min, and the images were recorded by a field 

emission scanning electron microscopy (FE-SEM; Hitachi Su-70).  

3.17. Surface forces and wettability measurements  

3.17.1. Contact angle analysis   

The contact angle is determined by a combination of the intermolecular and surface forces (surface 

tension) and external force (gravity) (Yuan and Lee, 2013; Wang et al., 2011; Janssen et al., 2006). 

The contact angle analysis is defined as the angle formed by surface intersection of liquid-solid 
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interface in a specific environment. In Figure 3.2, a drop of liquid rests on a horizontal solid 

surface, which may result in three different scenarios; 1) θ < 90° indicates that the wetting of the 

solid surface is favorable and the wetting will increase over time over a larger surface area, 2) θ > 

90° implies that the wettability of the surface is unfavorable, and 3) θ = 0° indicates a flat puddle 

and a complete wetting (Yuan and Lee, 2013; Fadeev and McCarthy, 1999). 

 

Figure 3.2. Illustration of contact angles formed by sessile liquid droplet on a smooth solid surface.  

In this set of experiments, the contact angle of each lignin sample in solutions was measured using 

an optical tensiometer instrument, Theta lite (Biolin Scientific, Finland) equipped with a camera 

with sessile liquid drops on a smooth solid surface (microscopic glass slides). At first, kraft lignin 

sample was prepared at various concentrations (0.2, 0.4, 0.6, 0.8 and 1 g/L) in DMF by stirring at 

500 rpm overnight and room temperature. It is worth mentioning that, the volume of the droplet 

(3 µL) and the recording time (20 seconds) were constant in all measurements. An average of three 

independent experiments and five droplets were considered in each experiment. The same 

measurements were applied on all kraft lignin and methylated kraft lignin derivatives. 

3.17.2. Surface tension measurements  

In a pure liquid droplet, the net force of each molecule in the bulk is zero as it is pulled equally in 

all directions by surrounding liquid molecules. However, this scenario is not the same for the 

molecule at surface. Instead, the surface molecules are pulled inward by neighboring ones causing 



33 
 

an internal pressure. This contraction from the molecules under the surface and from the molecules 

on the surface generate tension on surface of liquids. As a result, the surface tension is responsible 

for the shape of a liquid droplet, and could be determined by analysing its drop shape (Yuan and 

Lee, 2013; Mandavi et al., 2008; Janssen et al., 2006). 

The surface tensions of all solutions samples were measured using an optical tensiometer 

instrument, Theta lite (Biolin Scientific, Finland) equipped with a camera with pendant droplet 

shape analysis. When a drop of liquid hanging on the needle of the instrument, its shape could be 

studied from the balance of forces that include the surface tension. Equation 8 is used for 

determining the surface tension of a droplet following the pendant drop method (Yuan and Lee, 

2013):  

γ = ∆ρg
R0

2

β
                                    (8) 

where γ is surface tension, ∆𝜌 is the difference between density of phases, g is gravitational 

constant, R0 is the radius of drop curvature at apex, and β is a shape factor defined by the instrument 

(Yuan and Lee, 2013).  

In this set of experiments, each kraft lignin sample was prepared at five different concentrations 

(0.2, 0.4, 0.6, 0.8 and 1 g/L) to investigate the effect of the lignin concentration on the surface 

tension. The sample solutions were prepared at room temperature and 500 rpm in DMF. The 

volume of the droplet (5 µL) and the time (2 min) of analysis were constant. The same experiments 

were applied on all samples.   

In another set of experiments, a 20 g/L concentration of kraft lignin sample was prepared at 22 °C 

in DMF. The droplet valume was 5 µL and the analysis was conducted for 2 min. This analysis 

was conducted to investigate the effect of the molar ratios of DGE/lignin on modified lignin on 



34 
 

the surface tension of DMF. An average of three independent experiments was conducted in this 

test.  

3.17.3. Preparation of surfaces coated with lignin samples  

Several studies were reported on how to prepare a coated layer of different lignin or starch on 

various substrates (Notley et al., 2006; Maximova et al., 2004; Fadeev and McCarthy, 1999; Hu 

T., 2002). However, the properties of the coated lignin on surfaces are affected by roughness, 

uniformity, or stability, causing a limitation in fundamental studies (Norgren et al., 2006). To form 

a thin uniform films of kraft lignin solutions on flat substrates, spin-coating is generally used. In 

this set of experiments, an excess amount of solutions containing kraft lignin derivatives was 

placed on microscopic glass slides. The substrate was then rotated at various rpm (100, 500 and 

1000 rpm) using a spin coater, WS-650 (Laurell Technologies Corp) under vacuum with 60 Psi 

pressure to spread the fluid on the slide by the centrifugal force. Rotation was continued for 60 

seconds with fluid being spun off the edges of the substrate, until the desired film was formed. 

Some important factors that should be considered for forming a film successfully could be the 

viscosity of the sample solution and solvent type, the wetting and spreading characteristics of the 

solvents, as well as the evaporation rate (Norgren et al., 2006). All kraft lignin and methylated 

kraft lignin samples were dispersed in different solvents such as dimethylformamide (DMF), water 

and ammonium hydroxide (NH4OH, 0.75 M). For each lignin sample, nine substrates were 

prepared in three solvents (20 g/L). Three methods of natural evaporation at room temperature, 

heating in an oven at 60 °C and spin-coating drying at spinning rates of 100, 500 and 1000 rpm 

were conducted on all samples. Sodium lignosulfonate was also used as a reference. The aim of 

this section was to study the impact of preparation method on the surface properties of coated 

lignin samples. These samples were also used for SEM analysis. 
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For each lignin sample, 48 independent films were prepared to study different factors such as 

solvent (water, ammonium hydroxide, and DMF), temperature (22 °C and 60 °C), spinning rate 

(500 rpm, 1000 rpm), and recording time (5 s. and 20 s.).  

3.17.4. Contact angle of water on coated glass slides 

The contact angle of water with kraft lignin derivatives coated on microscopic slides was also 

measured by sessile drop method using the optical tensiometer, Theta lite (Biolin Scientific, 

Finland) equipped with camera (Norgren et al., 2006; Zhang et al., 2016). Approximately, 5 µL of 

water droplet was loaded on the microscopic slides coated with lignin samples and the contact 

angle between the water droplet and coated slides were determined via an optical tensiometer. In 

another set of experiment, a droplet of water (3 𝜇L) was loaded on the coated films and the contact 

angle was recorded at different times (5 s. and 20 s.). Five replicates were performed for each 

sample solution and the average values were reported.   

3.17.5. Interfacial tension analysis 

The wettability of kraft lignin derivatives and methylated kraft lignin derivaties was determined 

via an optical tensiometer instrioment, Theta lite (Biolin Scientific, Finland) equipped with 

camera. The tensiometer’s OneAttension software was utilized to measure the surface tention of 

kraft lignin via Zisman equation (9) (Zhu et al., 2009; Konduri, 2017). 

cos θ = 1 + b (γSV − γLV)                                (9) 

where γSV and γLV are surface tensions (mN/m) of solid (kraft lignin) and liquid (water), 

respectively. θ is the contact angle between the solid (kraft lignin) and liquid (water) in degrees. 

The cos θ is plotted against γLV yielding a straight line with slope b and γSV. 
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The interfacial tension between solid (kraft lignin derivatives) and water droplet was measured via 

utilizing Young equation (10). 

γLV cos θ = γSV − γSL                                (10) 

where γLV, γSV and γSL are the surface tensions (mN/m) of liqud vapour, solid vapour and solid 

liquid, respectively. The contact angle of water droplets on the kraft lignin derivatives coated slides  
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Chapter 4: Results and Discussion  

4.1. Dodecyl glycidyl ether (DGE) characterization 

Glycidyl ethers have been produced in various formulas via different routes as the starting 

materials for synthesizing alcohols (Renner et al. 1985; Zech, J., 1951; Bertram, J., 1972). 

Alcohols can be reacted with epichlorohydrin to generate glycidyl ethers (Rowell et al., 1994). In 

this work, dodecyl glycidyl ether (DGE) was prepared according to the method Chen and his 

coworker used (Chen et al., 2014). Scheme 4.1 shows the reaction for preparing glycidyl ethers. 

Epichlorohydrin was the source of epoxide ring and 1-dodecanol was chosen with aliphatic chain 

(12 carbons) to attach to an epoxide ring via ether bond. This alcohol was chosen with one hydroxyl 

group because otherwise the corresponding di and polyalcohol epoxy based products are either 

very high viscosity or solids and thus cannot be modified easily (Bertram, J., 1972). The reaction 

was carried out in steps. At first, alcohol deprotonated in the presence of the base (NaOH), then 

the catalyst (quaternary ammonium salt) transferred the charged derivative to the liquid where the 

reaction with epichlorohydrin took place. A 50 wt.% yield of the product (DGE) was obtained and 

a determination of epoxide weight content was followed. 

R OH + O

Cl
R

O

OH

OHO

O
Rbase

+
 

Scheme 4.1: the reaction route of epichlorohydrin and 1-dodecanol for glycidyl ethers production. 

The epoxide content of DGE could be expressed in epoxide number (eq./Kg) or equivalent weight 

(g/mol). In the present work, Duraibabu and coworker’s method (Duraibabu et al., 2014) was used 

to determine the epoxy value of DGE, which was 212.63 g/mol. Comparing to the theoretical value 
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(242.4 g/mol), it can be stated that the products contained a small amount of impurity, which 

contributed to the lower EEW (epoxide equivalent weight). Also, some diol may be formed as the 

products of side-reactions. 1H NMR spectrum of the product of DGE is shown in Figure 4.1. 

1HNMR was used to determine the ratio of main product (DGE) to the by-product (diol), which 

was 1/1 molar ratio. The resonance signal of epoxide group was reported to be between 2.5 ppm 

to 4.5 ppm (Garea et al., 2006; Hou et al., 2000; Garcia et al., 2003; Labbé et al., 2011).  

 
Figure 4.1: 1HNMR spectrum of the DGE in CDCl3 

4.2. Kraft lignin pretreatment  
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The main objective of this work was to increase lignin’s hydrophobicity by alkoxylation reaction 

and to study the effects of masking phenolic hydroxyl group of lignin via methylation on this 

modification reaction.  

4.2.1. Methylation of kraft lignin 

In this study, dimethyl sulfate was chosen to be the source of the methyl group because it has a 

high degree of hydrolysis at a high temperature (80 ℃) and pH (≈11.5). Generally, when the level 

of methylation is high (e.g. 2.5 mmol of dimethyl sulfate per each mmol of phenolic-OH group in 

softwood kraft lignin), the pH should be kept at 11.5 by continuously adding NaOH to the reaction 

to compensate for the rapid hydrolysis of dimethyl sulfate producing sulfuric acid. The phenolic-

OH group must be ionized to enable methylation and this happens under alkaline pH (Sadeghifar 

et al., 2012).   

Scheme 4.2 shows the methylation of kraft lignin with dimethyl sulfate to mask phenolic-OH 

(condensed and non-condensed phenolic-OH). It was reported that the ionization efficiency of the 

phenolic-OH group was significantly higher (≤ 80 times) than the aliphatic OH in a low basic 

aqueous medium (such as a 0.7 M NaOH medium) (Sadeghifar et al., 2012). Thus, the methylation 

was conducted in this basic aqueous medium. At a high pH, the hydroxyl group in lignin are 

converted to sodium phenolate (alkoxide salts) before further conversion to anisole to make the 

reaction site more reactive. Masking degrees of phenolic-OHs group could be controlled by the 

molar ratio of dimethyl sulfate/lignin.  
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Scheme 4.2: The reaction route for methylation of kraft lignin 

Kraft lignin was modified under different reaction conditions of methylation in the literature 

(Sadeghifar et al., 2012; Sen et al., 2015; Sen et al., 2013; Argyropoulos et al., 2014). Figure 4.2 

shows the 31P NMR spectrum of kraft lignin (KL) and methylated kraft lignin (MKL) in 

pyridine/CDCl3 mixture (1.6/1 v/v). The phosphitylating agent (2-chloro-4,4,5,5- tetramethyl-

1,2,3-dioxaphospholane) was used to obtain the qualitative and quantitative information about 

hydroxyl groups in kraft lignin before and after grafting with DGE. The peaks appeared in the 

range of 150.0 ppm and145.4 ppm belong to aliphatic-OH groups. The peaks appeared at 144.5 

ppm – 137.0 ppm range are associated with phenolic-OH groups (Argyropoulos et al., 2014). 
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Figure 4.2: Quantitative 31PNMR spectrum of kraft lignin (KL) and methylated kraft lignin (MKL) in pyridine/CDCl3 mixture (1.6/1 

v/v). 

Methylated kraft lignin 
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The areas under the peaks in Figure 4.2 were considered for quantifying the group contents 

attached to the lignin samples. Table 4.1 lists the mass of these groups. It is seen that the phenolic 

–OHs (condensed and non-condensed) peaks were significantly decreased from 0.47 mmol/g and 

0.68 mmol/g to 0.06 mmol/g and 0.08 mmol/g, respectively, due to the methylation. Condensed 

phenolic –OHs are defined as those that belong to aromatic groups but have a substituent in the 5th 

carbon position in the aromatic ring, while non-condensed phenolic –OHs have no such 

substituents. It was reported that the reaction rate of the non-condensed phenolic –OH groups was 

faster than that of the condensed phenolic –OH groups in lignin structure (Sadeghifar et al., 2012; 

Sen et al., 2013). The low reactivity of the condensed phenolic hydroxy groups is due to the 

sterically hindered environment of the condensed phenolic –OHs (Sen et al., 2013). The electron 

donating effect of ether groups or methylene groups (through the mesomeric effect or through 

positive inductive effect) most likely increased the nucleophilicity of the phenoxide ions. 

Moreover, the existence of these groups (ether groups or methylene groups) on neighboring carbon 

could provide to condensed phenolic –OHs the rotational freedom that increased the accessibility 

and reactivity of these groups (Sen et al., 2015). Therefore, the combination of sterically and 

electronically favorable consideration likely made non-condensed phenolic-OH groups relatively 

reactive (Sen et al., 2013; Argyropoulos et al., 2014).  

Table 4.1: The hydroxyl content analysis of KL and MKL by an automatic potentiometric titrator 

and 31PNMR. 

31P NMR 

Groups 
KL MKL 

mmol/g  % mmol/g  % 

Aliphatic 0.21 14.1 1.36 83.8 
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Condensed 0.47 31.7 0.06 3.5 

Non-condensed 0.68 45.9 0.08 5.2 

Carboxylic 0.12 8.1 0.12 7.5 

 Titration 

 KL (mmol/g) MKL (mmol/g) 

Phenolic-OH 1.20 (∓ 0.1) 0.12 (∓ 0.1) 

Aliphatic-OH 0.35 (∓ 0.1) 0.33 (∓ 0.12) 

 

Both titration and NMR analyses confirmed that phenolic -OH were significantly decreased after 

methylation, which implies the success of converting phenolic -OH to methoxide (OCH3). The 

remaining phenolic -OH were probably not accessible to dimethyl sulfite for the methylation 

reaction (e.g. via steric hindrance). As NMR is a proportional based analysis, the decrease in the 

phenolic -OH led to an increase in aliphatic -OH (Table 4.1). In titration analysis, the aliphatic-

OHs were not affected by the methylation reaction, which confirmed that the selectivity of 

methylation toward the phenolic -OHs was high. Moreover, the great reduction in the phenolic-

OHs indicated that the phenolic hydroxide groups were successfully converted to methoxide 

groups.  As the quantitative 31P NMR data showed that about 87.5 % of the phenolic hydroxyl 

groups were converted to methoxy groups in MKL production (Table 4.1).  It is also seen that the 

methylation enhanced the carboxylate content of lignin, which might be due to the conversion of 

hydroxy groups to sodium phenolate in the first step of the reaction.  

Figure 4.3 shows the FT-IR spectra of KL and MKL. The broad peak between 3200 and 3700 cm-

1 correspond to O–H stretching of the hydroxyl groups. This peak became weak in MKL. 

Simultaneously, the C–H stretching (between 2800 and 3200 cm−1) and C–O–C (at 1168 cm-1) 

peaks slightly increased after methylation reaction. Therefore, it is evident that during the reaction 
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of kraft lignin with dimethyl sulfate, its phenolic hydroxyl groups were converted to the 

corresponding methoxy groups as the CH stretching was increased in the MKL (between 2800 and 

3200 cm−1). The FT-IR analysis also confirmed the success of methylation reaction.  

 

Figure 4.3: FT-IR spectrum of MKL and KL. 

Table 4.2 lists the organic contents of KL and MKL. It is seen that the amount of carbon and 

hydrogen increased, but oxygen and sulfur decreased. These changes were attributed to the 

conversion of hydroxide groups to methoxide ones, while the impurity of kraft lignin such as salts 

was the cause of the oxygen’ and sulfur’s minor reductions. Based on these results, the chemical 

formula (on a basis of 9 carbons of repeating units) of KL and MKL can be C9 H9.84 O3.08 S0.06 and 

C9 H9.81 O2.75 S0.05, respectively.  

Table 4.2: The elemental composition and molar mass of KL and MKL. 

Sample 
Elemental analysis (wt.%) Mw (g/mol) C9 Formula 

C H Oa S   
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KL 63.75 5.81 29.17 1.26 (1.13±0.15) ×106 C9 H9.84 O3.08 S0.06 

MKL 65.94 5.99 26.94 1.13 (3.09±0.16) ×106 C9 H9.81 O2.75 S0.05 

a: by difference 

4.3. Reaction of kraft lignin and DGE 

A series of six samples were prepared with different molar ratios of DGE to lignin’s hydroxy 

content in DMSO at 100 °C for 5 h with both KL and MKL as starting materials. Typically, the 

reaction between epoxide ring and the hydroxyl groups in kraft lignin molecules can be accelerated 

by the addition of Lewis bases (Tänzer et al., 1993). Therefore, dimethylbenzylamine was used as 

the catalyst for DGE incorporation given the low reactivity of kraft lignin. The synthesis of kraft 

lignin and DGE is shown in Scheme 4.3. The epoxide ring reacts with the catalyst (tertiary amine) 

to form a zwitterion (due to its high basicity), which then reacts with the hydroxyl groups of lignin. 

The molar ratio of DGE/lignin was 0.348, 0.466 and 0.937 to produce KL-1, KL-2 and KL-3, 

respectively. The same ratios were used to produce MKL-1, MKL-2 and MKL-3.  

O

O R KL-O O
R

OH

O-OR

N+
CH3

CH3
DMBA

DGE zwitterion KL-DGE

Lignin-OH

- DMBA

 

Scheme 4.3: reaction of lignin and DGE in the presence of DMBA, where R= CH2-(CH2)10-CH3.  

Based on this reaction mechanism, the following phenomena can be hypothesized: 
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1) carboxylic-OH groups may react preferentially (compared to phenolic-OH) with DGE 

because of their relatively high acidity; 

2) by increasing the ratio of DGE/lignin, the amount of aromatic-OH in lignin would be 

decreased; 

3) there would be new aliphatic-OH groups derived from the open ring reaction of the epoxy 

group of DGE; and 

4) by increasing the ratio of DGE/lignin, the products’ hydrophilicity would be decreased. 

4.3.1. Structural analysis of KL-DGE product 

The products of KL and DGE reactions were characterized by 31P-NMR in Figure 4.4 for KL, KL-

1, KL-2 and KL-3 (Chen et al., 2014).  
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increased, supporting the first hypothesis that DGE reacted preferentially with carboxylic –OH 

groups. The loss of carboxylic –OH could explain the different charge density and water solubility 

of the lignin derivatives. By increasing the DGE/lignin ratio, the amounts of phenolic –OH 

(condensed and non-condensed) group decreased, while that of aliphatic OH increased from 0.21 

mmol/g in KL to 1.48 in KL-3. However, the total OH content is unchanged suggesting that one 

type of OH is converted to the other types. The variation between KL-2 and KL-3 is small (Table 

4.3), which is likely due to the fact that most of the phenolic –OH were converted at the lower 

DGE/lignin ratio. Overall, from the quantitative 31P NMR data (Table 4.3), the degree of 

substitution (DSNMR) was determined.  The DSNMR is increasing via raising the ratio of  

DGE/lignin, as KL-1, KL-2 and KL-3 display DSNMR of  0.22, 1.90 and 2.01, respectively. 

Table 4.3: Quantification of hydroxyl groups of KL before and after reaction with DGE using 

31PNMR. 

Samples 
Hydroxyl content (mmol/g of KL) DSNMR 

Phenolic-
OH 

Aliphatic-
OH 

Carboxylic-
OH Total OH 

 

KL 1.15 0.21 0.12 1.48 - 

KL-1 1.13 0.35 ND 1.48 0.22 

KL-2 0.08 1.41 ND 1.49 1.90 

KL-3 ND 1.48 ND 1.48 2.01 
 ND: not detected  

The degree of substitution was also measured based on NMR quantification analysis the results 

were shown in Table 4.3. The aliphatic chain (DGE) grafting to kraft lignin increased by increasing 

the molar ratios, confirming the success of this reaction.    
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Moreover, the products of KL and DGE reactions were analyzed for their organic contents by the 

elemental analyzer (Table 4.4). It is seen that the carbon and hydrogen contents of the product 

increased, but its oxygen and sulfur decreased as the ratio of DGE/lignin increased as a result of 

DGE attachment to KL. The chemical formulas for KL-1, KL-2 and KL-3 are C9 H10.11 O2.51 S0.1, 

C9 H11.52 O2.46 S0.04, and C9 H11.66 O2.46 S0.04, respectively, compared to C9 H9.84 O3.08 S0.06 for the 

original kraft lignin. Similar to the 31P-NMR analysis, there was only a small difference between 

the chemical formulas of KL-2 and KL-3.  

As listed in Table 4.4, the molecular weight of KL-1, KL-2 and KL-3 increased as the ratio of 

DGE/KL increased. The general trend supports the fact that grafting DGE to kraft lignin increased 

the molecular weight of lignin. At a lower DGE/KL ratio, DGE might only attach to OH of 

carboxylate group, as the reaction between carboxyl and glycidyl ether occurred first due to the 

relatively high acidity of carboxyl in lignin (Chen et al., 2014). However, at a higher DGE/KL 

ratio, DGE was also grafted to lignin at phenolic –OH reactive site leading to a reduction in 

phenolic –OHs concentration and an increase in the molecular weight.  

Table 4.4: The characteristics of KL-DGE product. 

Sample 

Elemental analysis 
(wt. %) Mw (g/mol) C9 Formula C9 Formula-DGE 

C H Oa S    

KL 63.75 5.81 29.17 1.26 (1.1±0.1) ×106 C9 H9.84 O3.08 S0.06 - 

KL-1 66.71 6.25 24.90 2.14 (5.5±3.6) ×106 C9 H10.11 O2.51 S0.1 
C9 H9.62 O3.08 S0.06. 0.22 C15H30O2 

 

KL-2 67.28 7.18 24.59 0.93 (1.8±2.1) ×107 C9 H11.52 O2.46 S0.04 
C9 H7.94 O3.08 S0.06. 1.90C15H30O2 

 

KL-3 67.32 7.27 24.54 0.86 (4.1±0.3) ×107 C9 H11.66 O2.46 S0.04 C9 H7.83 O3.08 S0.06. 2.01C15H30O2 

a: by difference 
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MKL based products were analyzed by the CHNS analyzer to investigate its organic elements and 

the results are available in Table 4.5. The carbon and hydrogen contents of MKL were increased, 

while its hydrogen and oxygen decreased as a result of DGE grafting onto MKL. Furthermore, the 

carbon content was higher in MKL-1, MKL-2 and MKL-3 (C9 H10.98 O2.51 S0.03, C9 H11.03 O2.40 

S0.03, and C9 H11.17 O2.25 S0.05, respectively) than in MKL (C9 H9.81 O2.75 S0.05).  The degree of 

substitution was shown in table 4.5. Based on the quantitative 31P NMR data, the degree of grafting 

DGE into methylated samples are 0.07, 0.56 and 1.13 for MKL-1, MKL-2 and MKL-3, 

respectively. Interestingly, the DSNMR in methylated lignins was lower than unmodified lignin 

samples which show a great agreement with the results show in Figure 4.2 and Table 4.1, phenolic 

-OHs reduction.  Furthermore, the molecular weight of MKL increased as its DGE amount 

increased. 

Table 4.5: the characteristics of methylated kraft lignin based products. 

Sample 

Elemental analysis 
(wt. %) Mw (g/mol) DSNMR C9 formula C9 Formula-DGE 

C H Oa S     

MKL 65.94 5.99 26.94 1.13 (3.09±0.16) ×106 - C9 H9.81 O2.75 S0.05 - 

MKL-1 67.43 6.86 25.10 0.60 (2.36±0.47) ×106 0.07 C9 H10.98 O2.51 S0.03 C9 H9.74 O2.75 S0.05 .0.07C15H30O2 

MKL-2 68.04 6.95 24.24 0.76 (1.43±0.84) ×107 0.56 C9 H11.03 O2.40 S0.03 C9 H9.25 O2.75 S0.05 .0.56C15H30O2 

MKL-3 68.81 7.12 22.98 1.08 (4.50 ±4.10) ×107 1.13 C9 H11.17 O2.25 S0.05 C9 H8.68 O2.75 S0.05 .1.13C15H30O2 

a: by difference 
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The FT-IR spectra of MKL, MKL-1, MKL-2 and MKL-3 are shown in Figure 4.7. Generally, the 

results support those of Figure 4.5. The O–H bond stretch between 3400 and 3100 cm-1 slightly 

increased for modified MKLs. The absorption at 2924 and 2853 cm-1 was also increased due to 

long alkyl chain introduction to MKL-1 MKL-2 and MKL-3.  

 
Figure 4.7: FT-IR spectra of MKL, MKL-1, MKL-2, and MKL-3. 

The aforementioned results are supportive of the hypothesis that reaction of MKL and DGE 

(scheme 4.3) increased aliphatic –OH groups and by increasing the DGE/lignin ration, the grafted 

ratio increased (hypothesis 2). 

4.4. Kraft lignin and lignosulfonate properties 

The properties of kraft lignin and lignosulfonate are listed in Table 4.6. The molecular weight and 

charge density of kraft lignin were found to be 35000 g/mol and 0.29 meq/g respectively. However, 

lignosulfonate (LS) exhibited a higher charge density (3.13 meq/g) and molecular weight (52000 

g/mol) compared to kraft lignin. High pH (10.4) of kraft lignins solution represents the presence 

OH C-H 
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of some salts as impurities. The lignosulfonate is 100% water soluble with 62.5 mN/m and 19.7 

g/L of surface tension and critical micelle concentration, respectively. On the other hand, kraft 

lignin has no effect on the surface tension of water and thus did not exhibited any CMC.  

Table 4.6: Properties of kraft lignin and lignosulfonate. 

Lignin  Mw 
(g/mol) 

Solubility 
in water 
(%)  

CDSL 
(meq/g) 

Concentration 
(g/L) 

pH  Density 
(g/cm3) 

CMC 
(g/L) 

ST 
(mN/m)  

LS 52,000 100 3.13 10 5.7 0.99 19.7  62.5  

KL 35,000 46 0.29  10 10.38 1.01 NA NA 

CDSL: Charge density of soluble lignin, Mw: molecular weight, CMC: critical micelle 

concentration, ST: surface tension, NA; not applicable. 

4.5. Thermal behavior of lignin samples 

4.5.1. Thermogravimetric (TGA) Analysis 

Figures 4.8 and 4.9 shows the results for TGA analysis of lignin samples. Compared to KL, 

modified kraft lignin samples exhibited low thermal stability. Interestingly, the modified lignin 

samples displayed similar thermal degradation pattern irrespective of their methylation 

pretreatment. The weight loss below 100 °C is attributed to the elimination of moisture in all 

samples. The lignin samples started to decompose at a temperature higher than 200 ºC. Brebu and 

coworkers (2010) also reported that, the lignin degradation started between 230 ºC and 260 ºC, 

which was attributed to the decomposition of propanoid side chain in lignin (Brebu et al., 2010). 

It is observed that KL-1 had a decomposition peak below 200 ºC (Figure 4.9), however, by 

increasing grafting, the degradation temperature risen to higher temperatures, which is due to the 

replacement of hydroxyls groups by DGE reducing the number of hydrogen bonding in lignin 



58 
 

molecule where the first step of decomposition occurred (Laurichesse et al., 2014). According to 

the literature, the weight loss rate of lignin between 440 and 500°C was ascribed to the breakdown 

of intermolecular bonding within lignin (Zhang et al., 2014; Alkhalifa, Z. 2017).  

Modified kraft lignins exhibited lower thermal resistance than unmodified lignins, and this less 

stability of modified lignin is attributed to the decomposition of alkyl chains (Brebu et al., 2010). 

The decrease in the thermal stability of lignin could be a disadvantage for its end-use applications 

(Wu et al., 2012).  
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Figure 4.8: a) Weight loss and b) weight loss rate of KL, KL-1, KL-2 and KL-3 conducted under 

N2 at a flow rate of 30 mL/min with heating rate of 10 ℃/min. 
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Figure 4.9: a) Weight loss and b) weight loss rate of MKL, MKl-1, MKL-2and MKL-3 conducted 

under N2 at a flow rate of 30 mL/min heated at 10 ℃/min.  

Table 4.7 lists the thermal degradation temperatures of lignin samples derived from TGA analysis. 

The temperature at which 10% of weight loss occurred (T10%) was found to decrease significantly 

by increasing the ratio of DGE/lignin (T10%= 307, 280, 260 and 246 °C for KL, KL-1, KL-2 and 

KL-3, respectively). Similarly, 50% of the mass loss occurred at markedly lower temperatures 

compared to unmodified kraft lignin. Furthermore, by increasing the molar ratio of DGE/lignin, 

ash content of lignin samples dropped. The results for methylated samples followed similar trends. 

Table 4.7; Thermal degradation temperatures at 10% (T10%) and 50% (T50%) weight loss of lignin 

samples, and ash content of lignin samples left at 700 °C (R700). 

Samples T10% (°C) T50% (°C) R700 (wt.%) 
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KL 307 589 35 

KL-1 280 510 36 

KL-2 260 498 35 

KL-3 246 441 27 

MKL 330 512 32 

MKL-1 261 479 28 

MKL-2 249 468 29 

MKL-3 216 447 37 

 

4.5.2. Differential scanning calorimetry (DSC) analysis 

To investigate the changes in thermal behavior of kraft lignin derivatives, the glass transition 

temperature, Tg, of the samples was analyzed and the results are represented in Table 4.8. As 

reported previously (Passoni et al., 2016; Laurichesse et al., 2014), the Tg of lignin vary depending 

on the type of lignin and the process lignin is produced. The Tg of kraft lignin is usually in the 

range between 90 and 170 °C. As shown in Table 4.8, the Tg of kraft lignin was found to be 154.33 

°C. Interestingly, grafting aliphatic chain (DGE) to kraft lignin reduced the Tg values with KL-1, 

KL-2 and KL-3 exhibiting Tg values of 116.82 °C, 89.23 °C and 70.19 °C, respectively. Grafting 

DGE to lignin results in reduction of hydrogen bonds via alkoxylation in the lignin molecule, 

which improves free volume, which is a free space in which the main molecules move inside the 

solution due to the repulsion of the neighboring molecules, in the molecule and thereby its mobility 

(Gordobil et al., 2017). The results for methylated kraft lignin also showed lower Tg (101 °C) 

values compared to kraft lignin, which was due to the reduction of hydroxy groups as some of 

them were converted to methoxy groups via methylation in the kraft lignin pretreatment. The Tg 
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values of methylated kraft lignin derivatives were found to be 69.46 °C, 68.53 °C, and 67.57 °C 

for MKL-1, MKL-2 and MKL-3, respectively. 

Heat capacity at constant pressure (Cp) of the lignin samples were also listed in table 4.8. The Cp 

values show the amount of heat required to change the sample temperature by ∆T (Hatakeyama et 

al., 1982). The results showed that by increasing the ratio of DGE/lignin, the Cp values decreased 

as the introduction of aliphatic chain in the lignin molecule increases. The lignin macromolecules 

behave as collapsed rigid spheres in DMF solutions (when samples were prepared); however, via 

grafting a long aliphatic chain (DGE) into lignin, the interaction between lignin molecules 

decreases and thus the mobility of the chains increases. Therefore, the heat capacity decreases by 

increasing the free volume in kraft lignin molecule (Praharaj et al., 2015; Teng et al., 2013; 

Aslanzadeh et al. 2016). This behavior is attributed to enhancement in crosslinking and free 

volume of kraft lignin derivatives (Hatakeyama et al., 2009). 

Table 4.8: Thermal properties of kraft lignin derivatives measured by DSC.     

Lignins Tg (℃) Heat capacity (J/g.℃) 

KL 154.33 0.2920 

KL-1 116.82 0.2882 

KL-2 89.23 0.2736 

KL-3 70.19 0.2573 

MKL 101.19 0.3386 
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MKL-1 69.46 0.2961 

MKL-2 68.53 0.2741 

MKL-3 67.57 0.2626  

 

The Tg of lignin is affected by its molecular weight, crosslinking structure and hydrogen bonds 

(Heitner et al., 2010; Gordobil et al., 2017). As the amount of DGE was increased, its crosslinking 

and entanglement ability with aliphatic chain was enhanced, which caused a reduction in Tg values. 

As MKL had a higher molecular weight (Table 4.2), its Cp was higher. The above results suggest 

that crosslinked kraft lignin molecules (KL)s were not as dense as methylated kraft lignins, as the 

latter had higher Cp values (Hatakeyama et al., 2009). However, the production of kraft lignin 

derivatives via attaching long aliphatic chains proved that it is an appropriate method to obtain 

lignin based products with suitable glass transition temperatures (Tg) to use them in composites 

and polyols for polyurethane applications (Gordobil et al., 2017; Ahvazi et al., 2011).   

4.6. Surfaces tension analysis   

4.6.1. Contact angle of DMF solutions containing kraft lignin derivatives  

The contact angle values of DMF solutions containing lignin derivatives are exhibited in Figure 

4.10. The contact angle for DMF on glass slide was found to be <10 °, as reported previously 

(Janssen et al., 2006; Redón et al., 2006). From Figure 4.10, it is observed that 1) KL increased 

the contact angle of DMF on glass slide, 2) contact angle of the DMF increased with DGE content 

of KL, 3) DMF with MKL had a higher contact angle than KL and 4) increase in contact angle of 

DMF on glass slide with concentration of lignin samples. These results indicate that the 
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modification of lignin made it more solvophobic, and increased the surface tension of the DMF 

molecules. The addition of MKL increased contact angle of DMF more than KL, which shows that 

methylated kraft lignin was more solvophobic due to masking of phenolic hydroxy groups 

(Gordobil et al., 2017). Also, as the contact angle of modified lignin was higher than KL, these 

samples were more solvophobic than KL. This behavior is due to the reduction in the number of 

aromatic hydroxy groups by methylation. Further lignin modification with DGE incoporated 

liphophilc groups in lignin, and their solvophobicity increased and thus the interaction between 

DMF molecules increased resulting an increase in the contact angle values (Gordobil et al., 2017; 

Sen et al., 2015; Notley et al., 2010).   

 

Figure 4.10: The effect of concentration of KLs and MKLs on the contact angle of DMF. 

4.6.2. Surface tension of DMF solutions containing kraft lignin derivatives  

The surface tension of DMF solutions containing KLs or MKLs (20 g/L) were investigated and 

the results were shown in Figure 4.11. In the absence of lignin samples, the surface tension of 
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DMF was found to be 27.9 mN/m. The addition of KL increased the surface tension of DMF to 

31.66 mN/m, which is due to the fact that the interaction between the DMF molecules could 

increase by KL addition. Teng and others reported that the large macromolecules assemble in 

lignin/DMF solutions due to intra- and intermolecular π−π interactions between aromatic rings in 

lignin (Teng et al., 2013). In this phenomenon, the attractive forces between lignin molecules are 

stronger than the dispersive forces of DMF molecules and thus DMF surface tension increased by 

the addition of lignin (Praharaj et al., 2015; Aslanzadeh et al., 2016). The increase in DGE content 

of lignin samples further improved the surface tension of DMF with KL-1, KL-2 and KL-3 

exhibiting surface tension values of 32.92, 35.02 and 37 mN/m, respectively. Furthermore, 

methylated kraft lignin samples also exhibited a similar trend. This behavior was probably due to 

the increased interaction between the DMF molecules as their solvophobicity was higher compared 

to KL. 

 

Figure 4.11: Surface tension of DMF solutions containing KLs and MKLs at a concentration of 20 

g/L and temperature (22 °C).  
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To investigate the effect of concentration of lignin derivatives on the surface tension of DMF, the 

surface tension of DMF was measured at varying concentrations (200 -1000 mg/L) of unmodified 

or modified lignin samples at room temperature and the results were shown in Figure 4.12. By 

increasing the concentrations of lignin derivatives, the surface tension of DMF was improved 

implying that at a concentration of 1000 mg/L, MKL-3 caused the maximum upsurge in the surface 

tension of DMF (36.29 mN/m). 

 

Figure 4.12: Surface tension of DMF at various concentrations (200-1000 mg/L) of KLs or MKLs 

and room temperature. 

4.6.3. Interfacial tension of DMF solutions containing kraft lignin derivatives 

Figure 4.13 exhibits the effect of lignin derivatives on interfacial tension between DMF and glass 

slide.   
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The interfacial tension between DMF and glass slide was increased due to addition of kraft lignin 

derivatives as γSV for glass slide was 12.3 mN/m. The addition of KL increased the interfacial 

tension between DMF and glass slide and this was further increased with using grafted KLs. This 

is in good agreement with surface tension results in Figure 4.12. MKL-3 caused the maximum 

increase in the interfacial tension (18 mN/m), which is possibly due to its maximum DGE grafting 

ratio. A similar behavior was observed for MKLs. 
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Figure 4.13: Effect of a) KL derivatives and b) MKL derivatives interfacial tension between DMF 

and glass slide.  

4.6.4. Contact angle of water droplet on glass slide coated with kraft lignin derivatives 

The contact angle that water droplet made with the surface of a glass slide coated with kraft lignin 

derivatives were analyzed as a function of time, spinning rate, solvents, and drying temperature. 

The initial equilibrium contact angle of water was 21° on uncoated glass slide (Redón et al., 2006; 

Janssen et al., 2006). However, contact angle of water did decrease over time to various levels in 

2 min of experiments. The results obtained under different conditions imply if the film was 

relatively non-swelling and non-porous.  

4.6.4.1. The effect of solvent type on the contact angle of coated film 

The solvent type reported to greatly influence the contact angle of the surface it made (Janssen et 

al., 2006; Norgren et al., 2006). Figure 4.14 displays the contact angle of water drop with the lignin 
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derivative films that were formed using different solvents. It is observed that 1) the contact angle 

was significantly affected by the type of solvent used, 2) by increasing the DGE grafting ratio, the 

hydrophobicity of the surfaces increased, 3) more noticeable change was observed for the samples 

prepared with ammonium hydroxide as solvent and 4) the contact angle of methylated samples 

was higher. The reason for more noticeable change in hydrophobicity of the surface for the samples 

prepared in ammonium hydroxide could be related to the surface texture of films.  
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Figure 4.14: The effect of solvent on the contact angle of the surface coated with a) kraft lignin 

derivatives and b) methylated kraft lignin derivatives, recorded at 20 s and 22 ℃. 

Figure 4.15 presents the SEM images of glass slides coated with different solutions containing 

lignin derivatives. The surface treated with water showed the non-uniform surface, while 

dimethylformamide formed smooth surface. However, the surface treated with ammonium 

hydroxide solution had more roughness. It was reported in the literature that an increase in surface 

roughness could improve its hydrophobicity (Norgren et al., 2006).   

0

10

20

30

40

50

60

Water NH4OH DMF

C
on

ta
ct

 a
ng

le
, ͦ

Solvents

MKL MKL-1 MKL-2 MKL-3

b



71 
 

 

Figure 4.15: SEM images of glass slides coated with different solutions containing KL-3, 10 g/L.  

Furthermore, as methylation covers the phenolic –OH of kraft lignin, it makes it more hydrophobic 

and thus its further modification with DGE enhances the hydrophobicity of the surface to a greater 

extent (Sen et al., 2015; Gordobil et al., 2017; Notley et al., 2010). 

4.6.4.2. The effect of spinning rate on the contact angle of coated film 

As reported previously (Norgren et al., 2006), the contact angle decreased by lowering the film 

thickness via increasing rotation speed of film making (rpm). The contact angle of the surfaces 

coated with kraft lignin derivatives is shown in Figure 4.16 as a function of coating spinning rates. 
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It is observed that by enhancing the speed from 500 to 1000 rpm, the contact angle generally 

dropped implying an increase in the hydrophilicity of the surface, and the reason for this behavior 

may be ascribed to a thinner layer of coating layers that can be made at higher rotational speed 

(Norgren et al., 2006).  

 

Figure 4.16: Contact angle of water droplet on a surface coated with kraft lignin derivatives at 

different spinning rates. 

4.6.7. The effect of temperature of coating process on contact angle 

Figure 4.17 shows the impact of coating temperature on the hydrophobicity of the coated film for 

water droplet. It is seen that the contact angle of water on coated films was higher at lower coating 

temperature. The reason for this behavior may be attributed to a better coating performance of the 

surface at lower temperature, as higher temperature may generate bubbles and harsher evaporation 

conditions that would affect the surface of coated film (Hu et al., 2002; Norgren et al., 2006; Erbil, 

H., 2006). 

It is also seen that the temperature affected the contact angle of the surfaces containing unmodified 

samples more greatly than methylated samples. The reason for this behavior is due to the existence 
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of hydrogen bond in unmodified kraft lignin which cause nonuniformity and instability in the 

surfaces due to the fast solvent evaporation. In other words, methylated kraft lignin derivatives 

were less affected by temperature due to the phenolic hydroxy groups masking in the pretreatment 

step (Griffini et al., 2015). 

 

Figure 4.17: The effect of temperature of film formation on the contact angle of water droplet and 

coated glass slide (lignin derivatives in NH4OH solution coated at 500 rpm).  

4.6.4.3. The effect of time on the contact angle of water droplet 

The contact angle of water droplet on the surface of the glass slide coated with various lignin 

samples is shown in figure 4.18. Three samples of KL, KL-3 and lignosulfonate (LS) were chosen 

in this test due to significant variations in the hydrophobicity of their films. Among the three 

samples, the contact angle between water droplet and the film coated with KL-3 was higher at both 

5 s (50 °) and 20 s (39 °), while the contact angle between water droplet and film coated with LS 

substrate was lower. This indicates that KL-3 made the most hydrophobic surface and LS made 
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the most hydrophilic surface. It is also clear that the contact angle did decrease over time in all 

substrates. However, even though the reduction rate was different between the surfaces, the contact 

angle showed the same trend at both time intervals recorded (5 s and 20 s). Furthermore, by 

extending the time of contact, the contact angle of the water droplet on all surfaces was reduced. 

This could be due to the water evaporation or some minor swelling of the film (Norgren et al., 

2006).  

 

Figure 4.18: Contact angle of water droplet on glass slide coated with KL, KL-3 and LS dissolved 

in ammonium hydroxide solution after 5 s and 20 s of time intervals.   
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Chapter 5: Conclusions and recommendations for future work 

5.1. Overall conclusions 

The present work successfully demonstrated grafting of long chain dodecyl glycidyl ether (DGE) 

to kraft lignin in the presence of N,N-dimethylbenzylamine as a catalyst. The impact of 

methylation to mask the phenolic hydroxide of lignin was also investigated. The results showed 

that the glycidyl ether chain was grafted to carboxylate groups when DGE/lignin ratio was low. At 

a higher ratio, the phenolic hydroxy would also react with DGE.  

Kraft lignin was successfully pretreated with dimethyl sulfate to mask the phenolic hydroxy groups 

at 80 ℃. 31P NMR and titration confirmed the conversion of hydroxy groups to methoxy groups 

as the total phenolic–OH groups (Condensed and non-condensed) were significantly decreased 

from 1.15 to 0.14 mmol/g, and from 1.20 to 0.12 mmol/g, respectively. Moreover, the aliphatic 

hydroxy groups were unaffected by kraft lignin pretreatment as confirmed by titration.  

31P NMR also confirmed the grafting ratio of DGE on unmodified and modified kraft lignin. 

Interestingly, DGE was grafted at the carboxylate group first due to its higher acidity. By 

increasing the DGE/lignin ratio, the phenolic–OH decreased. This observation indicates that DGE 

was successfully grafted to lignin. The results on the methylated kraft lignin were similar to 

untreated kraft lignin, but lower grafting ratios were obtained as the phenolic–OH groups were 

masked in the pretreatment step.   

The thermal behavior of lignin derivatives was studied by TGA and DSC. Generally, grafting DGE 

to kraft lignin reduced its thermal stability as well as glass transition temperature. However, 

modified kraft lignin derivates showed worse thermal stability than unmodified ones which was 
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due to the reduction of hydrogen bonds between the molecules by methylation and increase in 

crosslinking and entanglement of molecules via alkoxylation. 

Furthermore, by increasing the grafting ratio of DGE/lignin, the hydrophobicity of lignin based 

products was enhanced, and the surface tension, contact angle and interfacial tension of DMF 

increased by methylation. The surface tension and contact angle of DMF as well as the intenrfacial 

tension between glass slide and DMF were 27.9 mN/m, 9.95 ° and 13.93 mN/m, respectively. The 

surface tension and contact angle of DMF as well as the interfacial tension between the glass slide 

and DMF were increased to 30.7 mN/m, 31.54 °, and 18.83 mN/m, respectively when 1000 mg/L 

of MKL was dissolved in DMF. The surface tenstion and contact angle of DMF as well as the 

interfacial tenstion of glass slide and DMF were increased to 36.29 mN/m, 38.94 °, and 21.45 

mN/m when 1000 mg/L of MKL-3 was dissolved in DMF. Moreover, the contact angle of water 

droplet was 21° on a glass slide, but it was increased to 41.06 °, 48.68 °, respectively, for glass 

slides coated with KL-3 and MKL-3. The solvent used for coating glass slides, the spinning rate 

and and the temperature of drying had significant impacts on the surface roughness and thus 

hydrophobicity of coated glass slides. 

5.2. Recommendations for future work 

In this study, the results suggested that kraft lignin derivatives with high hydrophobicity could be 

obtained. In future, the hydrophobic modification of lignin could also be conducted with a 

chemical that has a higher alkyl chain. The application of the products on composites would 

disclose the potential use of these lignin based products. The sulfonation of the lignin derivatives 

might also show potential to produce sulfonated products for different applications, and thus 

recommended as future work.  


