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Abstract 
 
 

Na Zhao.  A New Fingerprint Design Using Optical Orthogonal Codes . 
 
 
 

Digital fingerprinting has been proposed to restrict illegal distribution of digital media, where 

every piece of media has a unique fingerprint as an identifying feature that  can be traceable. 

However, fingerprint systems are vulnerable when multiple users form collusion by combining 

their copies to create a forged copy.  The collusion is modeled as an average linear attack, where 

multiple weighted copies are averaged and the Gaussian noise is then added to the averaged 

copy.   In this thesis, a new fingerprint design with robustness to collusion is proposed, which 

is to accommodate more users and parameters than other existing fingerprint designs.  A  base 

matrix  is constructed by  cyclic shifts of binary sequences  in an optical orthogonal code and 

then extended by a Hadamard matrix.  Finally,  each column of the resulting matrix is used as 

a fingerprint.  The focused detection is used to determine whether a user is innocent or guilty 

in average linear attacks.  Simulation results show that the performance of our new fingerprint 

design is comparable to that of orthogonal and simplex fingerprints. 
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Chapter 1 
 
 
 
 

Introduction 
 

 
 
 
 

1.1  Digital Fingerprint Techniques 
 

We have been through the period of transition between industrial society and information 

society with revolution of information technology.  Digital information products have a more im- 

portant impact on our life than ever before. Smart phone, digital camera, MP3 player and other 

digital products become inseparable in our daily life through which we can enjoy music, photos 

and videos.  Moreover, internet provides a platform and thus we can share digital multimedia 

with others.  On  one hand, the internet technology inspires us to enjoy and deliver multimedia 

in a broader range.  On  the other hand, it also facilitates unauthorized distribution and illegal 

alteration. 

Illegal distribution has adverse effects on commercial applications, which results in harm- 

ing the interests of publishers. More seriously,  disclosure of confidential files has immeasurable 

consequences on institutions and organizations. Take music industry as an example, the Interna- 

tional Federation of Phonographic Industry (IFPI)  reports that global music piracy is still a big 

concern. It estimates that 37% of all CD  purchases are pirate copies, and puts their value at $4.5 

billion.  It  also estimates that  20 billion songs were downloaded  for free worldwide. Copyright 

protection is crucial to safeguard intellectual and economic resources. Access control is one fun- 

damental approach to protect digital content, which prevents illegal distributors from accessing 

content.   Multimedia forensics is another important method applied for copyright protection, 
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which detects illegal manipulation and identifies unauthorized users. 
 

Digital fingerprint technology is one important branch of multimedia forensics for copyright 

protection. Its goal is to deter users from illegally distributing the digital contents ensuring that 

it is used for the intended purpose. Digital  fingerprinting is an effective technique to make the 

media files uniquely identifiable.  Once digital media files are illegally distributed, the content 

owner (or the publisher) can trace them through the unique signature. In this way, the fingerprint 

is a threat,  which deters the users to release  unauthorized copies.  The fingerprints should be 

imperceptible to the original multimedia content and meanwhile can survive from attacks.   In 

this way the content owner can successfully identify the attackers without sacrificing the quality 

of multimedia. 

However, there is one problem in digital fingerprinting: multiple users can collude to identify 

or distort a fingerprinted copy and make the content owner difficult to detect distributors. Users 

with different fingerprinted copies conspire and combine their copies to remove or distort their 

fingerprints. These attacks are known as collusion attacks, which make improperly designed sys- 

tems vulnerable since a small coalition of colluders can complete a forged copy with no detectable 

trace. Therefore, it is necessary for the fingerprint design to be robust to attacks. 

Our research focuses on issues about collusion attacks and study to design a new fingerprint 

system with resistance to collusion attacks. 

 

1.2  Literature Review 
 

Prior works in digital fingerprinting mainly focus on studying the analysis of collusion attacks 

and the collusion resistance of fingerprinting systems. The analysis of collusion attacks includes 

the methodology of attacks, the number of colluders and types of attacks.  The studies of collusion 

attacks facilitate to analyze the collusion resistance of fingerprint systems and design effective 

fingerprint systems with robustness. 

1.2.1  Analysis of Collusion Attacks 
 

[1]  and [2]  studied the methodologies  of collusion attacks for generic data and multimedia 

data, respectively.  For generic data, [1] proposed  that colluders compared their copies to acquire 

the different values of certain code bits and regarded such codes as fingerprint codes. Multimedia 
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data  has different characteristics from generic data:   multimedia data  has natural robustness 

to distortion by minoring variations of values.   This  characteristic of multimedia data  makes 

the fingerprint codes too long to be removed from host data without perceptual loss while the 

fingerprint codes for generic data can be easily detected and changed.  [2]  introduced average 

collusion attack  model for multimedia data,  which was the common type of collusion attacks. 

The average collusion attack model is analyzed in detail in the following chapter of this thesis. 

In [3], F.  Ergun, J. Killian,  and R.  Kumar put that O
√

N/ log N  colluders  were enough to 
 

attack a fingerprint system, where N  is the length of signals. Similar results about the number 

of the maximum tolerated colluders can be found in [4]  and [5].  [5] presented   the parameters 

related to the maximum tolerated colluders of a fingerprint system. The parameters included the 

length of host signals, the total allowable users and the requirement of the system performance. 

The author of [2] studied several types of attacks and particularly presented that nonlinear 

attacks  were more efficient than  linear attacks.   The  analysis of collusion attacks  provided a 

good foundation for the design of fingerprint systems with resistance to collusions.  There are 

two approaches in design of robust fingerprints :  using making assumption  and using distortion 

assumption. 

1.2.2    Collusion Resistance of Fingerprinting System 
 

Marking assumption 
 

In marking assumption domain, the content owner assign a collection of marks also known as 

a codeword to the distributed copy.  The collection of marks consists of a fingerprinting system. 

Previous researchers focused on shortening the length of the codeword to improve the efficiency 

of fingerprinting systems.Boneh and Shaw [1] first presented a fingerprint design requiring code 

length O(k4 log k), which can catch at least one colluder out of k colluders with high probability. 

They uniquely marked and registered copies of digital data via assigning code-words. [6] proposed 

a similar work to [1], which investigated  the leakage of decryption keys instead of detecting digital 

content.  Compared to Boneh and Shaw’s design, Tardos [7] presented  a fingerprint design with 

a shorter length of code.  H.  Chu,  L.  Qiao,  and K.  Nahrstedt proposed a two-layer fingerprint 

system in [8], which integrated with the outer Boneh-Shaw codes.  The  Boneh-Shaw schemes 
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were also used to construct complex schemes with better anti-collusion properties in [9]  and 

[10]. S. Lin, M. Shahmohammadi, and H. El Gamal [11] applied the minimum distance decoding 

scheme to identify one colluder out of all the colluders under any collusion attack that satisfied 

the marking assumption.  There are also several works on researching the relationship between 

multiple access channels and fingerprint  problems [12]-[14]. There are other works on developing 

binary fingerprint codes, including [15]-[20]. 

Under marking assumption, the fingerprint is used as a ”mark” to label each copy.  In essence, 

the content owner insert additional information which can be used to identify each user.  Such 

a fingerprint has no impact on the original digital data.  Different from marking assumption, in 

distortion assumption regime, the fingerprint is embedded into the original data,  which distort 

the original data to some extent.  In the following section, we introduce the embedding process 

and how to control the distortion to maintain the quality of original digital data. 

distortion  assumption 
 

Another approach to design robust fingerprints uses distortion  assumption. In this regime, a 

unique fingerprint introduces a noise-like distortion to digital media. The power of the fingerprint 

added by  a  content owner should be limited to  preserve the quality of original media.   The 

fingerprints should be perceptually invisible if the original media is image data.   In  terms of 

distortion assumption, fingerprinting technology involves embedding process, which strengthens 

robustness by making it hard for colluders to identify or distort fingerprints through comparisons. 

Watermarking relevant to fingerprinting  is well-known  technology in this regime.  Cox  [21] 

proposed a secure algorithm by inserting a watermark constructed as an independent and iden- 

tically distributed (i.i.d)  Gaussian random vector.  The insertion should guarantee the overall 

quality of multimedia and makes colluders difficult to remove the watermark.  To  achieve this 

goal,  embedding process is necessary.    Only  several colluders may successfully detect or dis- 

tort the fingerprints without damaging digital media if identify basis is employed as orthogonal 

fingerprints, where embedding process is not available.   [21]  was inspired by spread spectrum 

communications and thus rotated the basis to make the fingerprints  distributed across signifi- 

cant dimensions of signals.  In this way,  it is difficult for the colluders to remove or distort the 
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fingerprints. More efforts of watermarking can be found in [22]-[24]. 
 

Wang et al. [25] proposed  a specific fingerprint design using Gaussian distributed fingerprints 

and orthogonal modulation. They considered an averaging collusion attack to analyze robustness 

of the designed fingerprint system.   Kiyavash  et  al.   [26]  proposed an  optimal structure   n - 

simplex fingerprints  in term of maximizing the error exponent of the detection test.  Recently, 

Fickus,  Mixon and Tremain [27]  designed a fingerprint system using equiangular tight  frames 

(ETF), where they used the Steiner system to construct a base matrix and then extended it by 

a Hadamard matrix. 

 

1.3  Motivation 
 

The performance  of Steiner ETF fingerprints  is comparable to that  of the orthogonal and 

simplex fingerprints, but they can accommodate  more users. Steiner ETF fingerprints have obvi- 

ous advantages over orthogonal and simplex fingerprints in term of the number of accommodated 

users. However, two concerns of ETF fingerprints may be raised for practical applications [34]. 

First, it consumes large storage since all the incidences of a Steiner system need to be stored. In 

practice, the fingerprint systems are applied to a large number of users and thus storage problem 

becomes more serious. Second, it is difficult to obtain many parameters for the length of signals 

and the number of accommodated users due to the limitation of optimal Steiner system [27]. 

To  overcome these potential drawbacks, we introduce a new fingerprint system using optical 

orthogonal codes. Our new fingerprint system is under distortion assumption. 

 

1.4  Thesis Contributions and  Outline 
 

In this thesis, we present a new fingerprint design using optical orthogonal codes (OOC) 

under distortion assumption. First, each cyclic shift of a sequence in an OOC is arranged as each 

column of a base matrix.  Then, a Hadamard matrix is employed to extend the base matrix, and 

each column of the resulting matrix is used as each user’s fingerprint. 

The new fingerprints are similar to Steiner ETF fingerprints  [28] with a more flexible struc- 

ture.  In Steiner ETF fingerprints, a (2, k, v) Steiner system is used to construct a base matrix. 

All the elements of the base matrix need to be stored. We only need to remember a few binary 
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sequences instead of a full base matrix, which requires less storage space in practical implemen- 

tation.  Also, our new fingerprints can accommodate  more users than some proposed fingerprints, 

for example, orthogonal and simplex fingerprints. Finally, we can use the fast Hadamard trans- 

form technique to improve the speed of construction and detection processes. 

The thesis is organized as follows. We start with the overview of digital fingerprinting system. 

In  Chapter  2.1 the general framework of fingerprinting system is given.   Then,  three typical 

fingerprints designs are presented in Chapter 2.2.  In Chapter 2.3, we consider the performance 

criteria and the requirements of fingerprint systems. 

In Chapter 2, we also give a general framework of digital fingerprinting techniques including 

fingerprints embedding, collusion attacks  and detection process.  The  mathematical formula- 

tions are used to represent fingerprinted  copies, average attacks and detector. Moreover, a brief 

introduction of other typical attack models is given. 

In Chapter 3 and 4, we address the construction of our new fingerprint design. In Chapter 3.1 

and 3.4, the fundamental definitions of optical orthogonal codes and modular Golomb ruler are 

presented along with their methods of construction. In Chapter 4, we present the error analysis 

of new fingerprint system to better comprehend its property. 

In  Chapter  5,  fast detection process is proposed.  In  Chapter  6,  we show the simulation 

results and analyze the performance of different fingerprint systems. In Chapter 7, we draw the 

conclusion and discuss future works. 



 

 
 
 
 
 
 
 
 
 
 

Chapter 2 
 
 
 
 

Digital Fingerprinting System 
 

 
 
 
 

2.1  Overview of Digital Fingerprinting System 
 

Figure 2.1 presents how the digital fingerprinting system works, which can be divided into 

three parts: embedding fingerprints, collusion attacks and detection process [41]. 

2.1.1  Embedding Fingerprints 
 

In the first stage, i.e.,  embedding fingerprints, a unique fingerprint is assigned to each user. 

For  example,  a  digital  fingerprint f1   is embedded into  a  multimedia document y1 , which is 

distributed to Alice,  one of the legal users.  The  multimedia document could be text,  audio, 

image, video or other digital contents.  In order to protect the digital contents, the fingerprints 

should be robust, that is, difficult to remove from the content.  If the location of the fingerprint 

is known, then attempts to remove or destroy the fingerprints should be detected.  In this case 

the embedded fingerprints must meet the requirements [41]: 

Imperceptibility :  The fingerprinted copy of Alice y1  should be perceptually the same as the 

host signal s. 

Robustness :  The fingerprint should be robust to the unintentional signal processing: crop- 

ping, rotating, attenuating, removing or other processes. 

2.1.2  Collusion Attacks 
 

In the second stage, multiple users, for example, Alice and Bob, may collude to forge a copy 

and illegally redistribute the document after the multimedia document is distributed to the users, 
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Figure 2.1: General Framework of Digital  Fingerprinting System 
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K 2 

which is called attacks.  At  the attackers’ side, it is now easy for a group of users with different 

fingerprints to attack against the original content since two different fingerprinted  copies can be 

compared and the differences between them detected. A simple and effective example of collusion 
 

attacks is average attacks,  where each fingerprint energy is assigned the same weight   1
 

 

, K  is 
 

the total number of colluders. 
 

There are other different types of collusion attacks: attacks based on the median operation, 

attacks based on the minimum operations, and attacks based on the average of the minimum and 

maximum operations. Besides the multiuser collusion, one colluder can take single copy attack, 

for example, low pass filter and compression [42]. After collusion attacks,  the colluded copy is 

illegally redistributed. 

2.1.3 Detection Process 
 

In the third stage, detection process is applied to trace and identify the colluders when the 

content owner finds out the existence of illegal distributions. Figure 2.1 shows that the content 

owner can extract the fingerprint and compare it to the existing fingerprints system to determine 

that  whether the user is guilty  or innocent.   From  the content owner’s (detector’s) point of 

view, there are two main detection scenarios: blind scenarios and nonblind scenarios [29], [30] 

depending on the presence  of the host signal.   A  detection process fails if either the detector 

fails to identify a guilty  user (false negative error) or an innocent user is found to be guilty 

(false positive error). A  robust fingerprint design should maximize the possibility of successful 

detection and minimize the error probability. 

 

2.2  Examples of Fingerprint Design 
 

In this section, we introduce three examples of fingerprints system design: orthogonal finger- 

prints [25], simplex fingerprints  [26] and Steiner ETF fingerprints  [28], respectively. 

2.2.1  Orthogonal Fingerprints 
 

Orthogonal fingerprints are conceptually simple.  The  correlation between any two finger- 

prints is zero and thus can be ignored.  In detection process, the orthogonality of fingerprints 

extremely helps the detector to reduce the probabilities of accusing an innocent user.  In prac- 

tice, the orthogonal Gaussian fingerprints are more popular. One method to achieve orthogonal 
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Gaussian fingerprints is to generate independent normally distributed random vectors and then 

orthogonalize them.  From the view of colluders, orthogonal Gaussian fingerprints are very diffi- 

cult to remove since the randomness of the fingerprints makes its system inherently resistant to 

collusion attacks.  From the view of detector, the orthogonality is an important factor while the 

randomness has no consequences on detection results. Therefore, we use an identity matrix [27] 

to construct orthogonal fingerprints to simplify the process in our simulation. Table 2.1 presents 

an example of orthogonal fingerprints for 5 users using a 5 × 5 identity matrix.
 

Table 2.1: Orthogonal Fingerprints for 5 users 
 

U sers  1 2 3 4 5 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 

 
 

From Table 2.1, we can see that each column of the identity matrix is used as the fingerprint 

of each user. Every fingerprint is orthogonal to other fingerprints. 

2.2.2  Simplex Fingerprints 
 

Another optimal structure in coherence is the simplex fingerprints system. In [26], the author 

presented an additive fingerprints design.  If the dimensions of the signal is N , the fingerprints 

system can apply more than N  users while the orthogonal fingerprint system can only apply 

as much as N  users. Moreover, the simplex fingerprints are maximally robust against Gaussian 

average collusion attacks,  which maximize the  probability of catching  at  least one colluder. 

Reliable detection is under the assumption that  the number of colluders is far less than  the 

length of the host signal.  We give an example of simplex fingerprints applied to 6 users [37] in 

Table 2.2. 

In Table 2.2, each column is one user’s fingerprint and the dimension of signals is 5.  The 

inner product of any two distinct fingerprints is −  1

 

 

= 0.2. 
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Table 2.2: Simplex Fingerprints for 6 users 

 
U sers 1 2 3 4 5 6 

 1 -0.2000 -0.2000 -0.2000 -0.2000 -0.2000 

 0 0.9797 -0.2449 -0.2449 -0.2449 -0.2449 

 0 0 0.9486 -0.3162 -0.3162 -0.3162 

 0 0 0 0.8944 -0.4472 -0.4472 

 0 0 0 0 0.7745 -0.7745 
 

Table 2.3: Block Design Parameters 
 

Parameters Definition 

v  The number of elements of set 
b The number of the subset(blocks) 
r  The number of blocks contains any element 
k  The number of elements of the subset(blocks) 
λ The number of blocks contains any 2 fixed elements 

 
 
2.2.3  ETF Fingerprints 

 

Let F = {f }M
 be a finite sequence of fingerprints in a real N -dimensional space RN . F is 

ETF fingerprints if ∥ fm ∥= 1 and | ⟨fm , fm′ ⟩ |= α for all m  = m′ , where α ≥ 0 [28]. Meanwhile,
 

the fingerprints  of F has unit norm and the inner products of any two distinct fingerprints  of 
 

F is constant, which is called equiangular tight frames (ETF) fingerprints. Fickus, Mixon and 
 

Tremain proposed a method to construct ETF fingerprints using Steiner system. 
 

In combinatorial mathematics, a Steiner system is a type of block design.   More details of 

block design can be found in [31]-[32].  A Steiner system with parameters (v, b, r, k, λ) is written 

as S(v, b, r, k, λ). 

Table  2.3 shows that  a v-element set V  together with a collection of b,  which is a set of 

k-element subset of V (called blocks), with the property that any element of V lies in exactly r 

blocks and that any 2-element subset of V  is contained in λ blocks [28]. These parameters are 

not all independent, v, k, and λ determine  b and r, and not all combinations of v, k, and λ are 

possible. There are two relations between the parameters: vr = bk and r(k − 1) = λ(v − 1), i.e., 

r = v−1
 

v(v−1)
 

k−1   
and b =  

k(k−1) 
.  In particular, (2, k, v) Steiner system is involved in the construction of

 
ETFs  fingerprints, which has the property that  2-element subset of V  is contained in the one 

 

block, that is, λ = 1. 
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√ 

 

 

 

 

1 
 
 

 

 

 

The transpose {0, 1} incidence matrix of a (2, k, v) Steiner system is presented as AT , which
 

is a b v ( v(v−1)  
v) matrix.  The base matrix is used to generate an ETF fingerprints system k(k−1)

 
consisting of M = v(1 + v−1 ) fingerprints in N  =  v(v−1) -dimensional space, if there exists a real 

k−1 k(k−1) 

Hadamard matrix of size 1 + v−1 . Take S(2, 3, 7) as an example, it consists of b = 7 blocks and 
k−1

 
each block consists of k = 3 elements.  There are v = 7 elements in total and each element is 

 

contained in r  = 3 blocks.   Any  two distinct elements are contained in exactly λ = 1 block. 

Correspondingly, its transpose {0, 1} incidence matrix AT
 

 
  

+  +  + 
  
 
+ +  +  

  
  
 + +  +  
 

AT   =  
 
 
 
 
 
 
 

 

+ + +  
 

+ + +  
 
 

+  + +   
 

+ +  +  
 
 

Choose a 4×4 Hadamard matrix H to extend the base matrix AT . For each column, each nonzero
 

entry is replaced by a distinct row of H.  In this example, we simply choose the second, third 

and fourth rows in order, which results in a real ETF fingerprint system F of N  = v(v−1) = 7 
k(k−1) 

and M = v(1 + v−1 ) = 28. F is of the form k−1

 
 
+   −    +   −    +   −    +   −    +   −    +   −  

 

  
 
+   +   −    −  +   −    +   −    +   −    +   −   

  
  
 +   −    −    + +   +   −    −  +   −    +   −    +   −    +   −     
  

√   +   +   −    −  +   +   −    −  +   +   −    −  
 

 
 

+   −    −    + +   +   −    −  +   +   −    −  
 

  
 

+   +   −    −    +   −    −    + +   −    −    + 
 

  

+   −    −    + +   −    −    +   +   −    −    + 

 
where  1 

3 
is the scaling factor [28]. 

The fingerprint system F can accommodate up to M  = 28 users with the length of signals N  = 7. 
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Compared to orthogonal and simplex fingerprints, Steiner equiangular tight frames (ETF) fingerprints 

can accommodate much more users (M  > N ) with comparable performance. 

2.3     Performance Criteria 
 

Different fingerprint systems have different properties, concerns and requirements. Basic assump- 

tions and performance criteria should be set up before examining and comparing the performance of 

different digital fingerprint systems. 

First,  we assume that  all the detection approaches are under a nonblind scenario.  In a nonblind 

detection scenario, the host signal (original document) is known to the detector.  On the other hand, in 

a blind scenario, the detector has no access to the host signal, which can be regarded as additional noise. 

Our  research focuses on the nonblind scenario and the noise level is measured by watermark-to-noise 

ratio (WNR). The blind scenario can be considered as a nonblind scenario, which has a low WNR.  In 

the following section, our simulation results show that the performance of fingerprint systems is related 

to WNR. 

Second, the noise added to the fingerprinted copy is identical and independent Gaussian noise. In 

our simulations, the power of the noise is modulated by the requirement of WNR. 

Catch one 
 

In design of fingerprint systems, our general goal aims at  catching colluders as much as possible 

while trying to reduce the probabilities of errors. In practice, some other concerns and evidences may 

be taken into consideration to design the fingerprint systems and make the final decision. In catch one 

scheme, there are mainly two components of the performance criteria, the probability of capturing at 

least one colluder Pd  and the probability of accusing an innocent user Pf a  [42]. 

The goal of catch one scheme is to maximize Pd  and minimize Pf a , which can be applied to provide 
 

digital evidence to the court.  From the view of detector, the detector has to succeed in catching at least 

one of the colluders and meanwhile not accusing any of the innocent users. Catch  one scheme is widely 

used in the research works of digital fingerprinting. The requirements of catch one can be presented as 

Pd  ≥ φd,  and  Pf a  ≤ φf a  (2.1)

 

where φd  and φf a  are determined by detector according to the purpose of detection. 
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Catch more 

In the catch more scheme [42], the ob jective is to catch a certain fraction of colluders. In this case, 

the probability of accusing innocent users correspondingly increases. The components of performance 

criteria in this scheme include the fraction of successfully detected colluders E[Fd ]  and the fraction of 

wrongly accused innocent users E[Ff a ]. The requirements of catch more are 

E[Fd ] ≥ λd,  and  E[Ff a ] ≤ λf a  (2.2) 

where the parameters λd and λf a  are properly chosen by detector according to the purpose of detection. 
 

Catch all 

In this scheme [42], the goal is to maximize the chances of catching all the colluders. Meanwhile, the 

probability of falsely accusing innocent users is kept at a low level. Catch  all scheme is usually employed 

in the protection of highly confidential documents, the disclosure of which leads to serious consequences. 

It  is crucial for the detector to catch all the colluders and fully prevent the illegal distribution.  Let  k 

be the number of colluders and M  the number of total users. Then,  the efficiency rate is defined as 
 

 

R = 
(M − K ) × E[Ff a ]

 
K × E[Fd ] 

 

.  (2.3) 

 
Let Pd,all   be the probability of catching all the colluders. The requirements of catch all scheme are 

R ≤ θr ,  and  Pd,all  ≥ λd  (2.4) 

where the parameters λd and θr  are determined by detector. 
 

In what follows, we introduce mathematical models of fingerprint scheme, attack model, and detec- 

tion process. 

2.4  Fingerprint Scheme and  Attack Model 

We assume that there are totally M  users in the fingerprint system.  The length of the signal is N , 

i.e., N -dimensional signal space. In order to avoid illegal distribution, a content owner embeds a host sig- 

nal with fingerprints before distributing.  The host signal is modeled as a vector s = (s0 , s1, · · · , sN −1)   ,
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∥ 

T 

k 

 

where si ∈ R, which is given to M  users. Specifically, the mth  user’s fingerprinted copy is given by [27]

 

xm = s + fm  (2.5) 
 

 
where fm  = (f0, f1, · · · , fN −1)

 
equal energy 

, fi  ∈ R, denotes the mth  fingerprint.  Assume that  the fingerprint has

 

γ2 =∥ fm     
2= N Df (2.6)

 

where Df   denotes the average energy per dimension of each fingerprint. 
 

We consider an average collusion attack as shown in Figure 2.1, which were studied by most previous 

researches. Let  K  ⊆ {1, · · · , M } denotes a group of users who forge a copy of the host signal.  Then,
 

their averaging attack is of the form 
 

 

y = 
∑ 

αk (s + fk ) + ϵ,  
∑ 

αk  = 1 (2.7) 
k∈K k∈K 

 
where ϵ is a noise vector introduced by the colluders. In (2.7), αk  is the weight of k th colluder’s copy in a 

forged copy and α = (α1, · · · , αM ) is a vector of all the colluders’ weights. Assume that ϵ is a Gaussian
 

noise with mean zero and variance σ2 , where σ2  is the noise power per dimension. The strength of the 
 

attack noise is measured as the watermark to noise ratio (WNR), which is of the form 
 

 
 

W N R = 10 log10 

( 
N Df 

)
 

N σ2 

 
.  (2.8) 

 
 

Note that  (2.7) is the average linear attack  model employed by us but it is worthy to mention other 

typical attack models. Assume that yj = (sj + αf 
j ) + ϵj , where k ∈ K and 0 ≤ j ≤ N − 1. α is constant

 
k  k 

 

and j represents jth  component of each fingerprinted copy,  which is distributed to kth  user.   Then, 

minimum attack model, maximum attack model, median attack model, minmax attack model, modified 

negative attack  model, and random negative attack  model are presented as the following equations, 

from equation (2.9) to equation (2.14), respectively [42]. 
 

 

y
j  j j j

 

min = (sj  + fmin ) + ϵj ,  fmin = min({f

 

}k ∈ K)  (2.9)
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max )/2 (2.12) 

y
j
 

y
j
 

 y
j
 

 

yj  j j j j j
 

max = (s + fmax ) + ϵ ,  fmax = max({fk }k ∈ K)  (2.10) 
 

y
j  j j j j j

 

median = (s + fmedian ) + ϵ ,  fmedian = median({fk }k ∈ K)  (2.11) 
 

y
j  j

 

minmax = (ymin + yj
 

 

y
j  j j j

 

modneg = ymin + ymax − ymedian  (2.13) 
 
 

 
 

randneg = 

 

min ,  with probability p 

 
 
(2.14) 

max ,  with probability 1 − p

 
where max(·), min(·), and median(·) denote maximize function, minimize function and median function.

 
Note that  colluders may apply all the components of the fingerprinted copy to collude in practice 

 

since they are not aware of which components belong to the host signal. 
 
2.5  Detection 

 

A focused detection is used to decide whether a particular user is innocent or guilty.  In the technical 

process, a focused detection computes a test statistic and performs a binary hypothesis test. 

In this thesis, we assume a nonblind scenario that the host signal is available to the detector. Thus 

the host signal s can be subtracted from a forgery of (2.7), which yields 

z = y − s = 
∑ 

αk fk + ϵ.  (2.15) 
k∈K 

 
The test statistic for the m th user is the normalized correlation function of z and the fingerprint, i.e., 

 
 

1 
Tm (z) = 

γ2 
⟨z, fm ⟩  (2.16)

 

where γ2 is the fingerprint energy in (2.6). 

For  the  m th  user,  let  H1(m)   denote the  guilty  hypothesis (m  ∈  K)  and  H0(m)   the  innocent
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hypothesis (m ∈/ K).  With  a correlation threshold τ , we use the following detector 
 
 
 

δm (τ ) = 

 
 H1(m),  Tm (z) ≥ τ,

 
 H0(m),  Tm (z) < τ. 

 
 
(2.17) 

 
 

The performance analysis of the focused detection is explicitly discussed in Chapter 4. 



 

∑n−1 

 
 
 
 
 
 
 
 
 
 

Chapter 3 
 
 
 
 

New Fingerprint Design 
 

 
 
 
 

In this chapter, a new fingerprint design using optical orthogonal codes is presented.  This  chapter is 

organized as follows. In Chapter  3.1, an introduction of optical orthogonal codes is given including its 

definition, construction and application.  We review the construction of Steiner ETF fingerprints and 

discuss its potential drawbacks in Chapter 3.2.  In Chapter 3.3, the core part of this chapter, we present 

constructions of the new fingerprint system using OOCs.  The property of the coherence between any 

two distinct fingerprints is also given in this section. Then in Chapter 3.4, we have a review of modular 

Golomb Ruler and several constructions of it. 

3.1     Optical Orthogonal Codes 

Let  a = (a0, · · · , an−1) and b = (b0, · · · , bn−1)  be a pair of binary sequences of period n, where
 

each entry is 0 or 1.  The  Hamming  correlation  function [33]  of the sequences is defined by θa,b (τ ) = 

t=0 at+τ bt , where 0 ≤ τ ≤ n − 1 and t + τ  is computed modulo n.
 

Definition 1 [34]: An  (n, w, λ) optical orthogonal code (OOC)  is a family of S  binary sequences 

of period n, i.e.,  F = {s(i)|0  ≤ i ≤ S − 1}.  In the OOC family F , each binary sequence has constant
 

Hamming weight w and the Hamming autocorrelation satisfies θs(i) ,s(j)   ≤ λ for any (i, j) and for every

 
τ , where τ  = 0 if i = j.

 
The application of multiple access fiber channels has motivated the study of OOCs. According to 

 

Definition 1, Hamming correlation between any two distinct sequences is low throughout.  This property 

reduces the influences of disturbing signals. The thumb-shaped Hamming autocorrelation facilitates to 
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detect the target signal [33]. Except  for multiple access channels domain, optical orthogonal codes are 

also used in mobile radio, radar, and spread spectrum communications. 

Fan  R.K concludes several methods to construct optical orthogonal codes.  Iterative methods and 
 

greedy algorithm can be used to construct codes [33].  Both  of the two methods yield lower bounds 

for code sizes.  Constructions from finite pro jective geometries are a large class of optical orthogonal 

codes. Many of constructed codes have optimal structures. There are other methods to construct optical 

orthogonal codes, such as using block design and algebraic coding theory.  There is a large amount of 

literatures in pro jective geometry filed.  In this thesis, we use pro jective geometry tools to construct 

optical orthogonal codes, which are employed in our new fingerprint design.  First,  we cyclically shift 

codewords of an OOC to construct a base matrix.  Then,  a Hadamard matrix is employed to extend it 

and each column of the new matrix is used as one user’s fingerprint. 

3.2     Steiner ETF  Fingerprints Design 
 

In [28], Fickus, Mixon and Tremain presented Steiner equiangular tight frames using (2, k, v) Steiner 
 

System.  Our new fingerprint construction is derived from their construction.  They used the transpose 

of the incidence matrix of a (2, k, v) Steiner system to construct the base matrix,  a b × v binary matrix
 

that has k ones in each row and r ones in each column, and the inner product of any distinct column pair 
 

of the base matrix is 1.  In [27] Fickus,  Mixon,  Quinn  and Kiyavash  used each column of the resulted 

matrix as each user’s fingerprint to construct ETF fingerprints. 

Steiner ETF fingerprints have two potential drawbacks.  First,  all nonzero entries rv(≈ M ) of the
 

base matrix need to be remembered, which consumes storage when signal dimension N  is great and the 
 number of users M  is large in practice.  Second, They replaced each entry of one by a (r + 1) × (r + 1) Hadamard matrix.  Then, there is a requirement of r + 1 ≡ 0 (mod 4) to construct a real-valued frame. 

If we focus on the Steiner ETFs from affine and pro jective geometries [27], the requirement turns into 

1 + qn −1
 

− 

n−1
 + qn−2

 + · · · + 2 ≡ 0 (mod 4), where q is a prime power and n ≥ 2.  Then,  a possible 

choice for q and n meeting the requirement is either q = 2, or q ≡ 1 (mod 4) and n ≡ 3 (mod 4), which
 

yields very few parameters for N  and M  [34]. 
 

Our new fingerprints construction is derived from Steiner ETF fingerprints construction but OOCs 

is used to construct the base matrix instead of Steiner system. Unlike Steiner ETF fingerprints, our new 
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design does not have to be optimal in coherence. Therefore, it has a more flexible structure and yields 

more parameters for N  and M .  For  example, we use the Bose-Chowla method to yield a (q, q2 − 1)
 

Golomb  ruler for any prime p, an positive integer n and q = pn. The value of parameter N  equals to 

N  = q2 − 1 = p2n − 1.  Affine geometries is used to construct a (2, p, pn ) Steiner system for any prime 

p.  Then,  N  = b = v(v−1)
 

= 
p  (p −1)

 
2(n−1)

 

k(k−1) p(p−1)  
≈ p

 
. For our new fingerprint design, any prime p and one 

positive integer n can yield one value of parameter N . However, for Steiner ETF fingerprints, p and n 

need to meet the requirements of p = 2, or p ≡ 1 (mod 4) and n ≡ 3 (mod 4), which results in fewer
 

parameters. 
 
3.3  New Fingerprints Using OOCs 

 

Our fingerprint design is motivated to remedy the potential drawbacks of the Steiner ETF finger- 

prints.  To  provide more parameters for the fingerprint length and the number of users, and to allow 

efficient implementation with less storage, we construct new fingerprints using OOCs. In what follows, 

we assume that entries of the Hadamard matrix H are ±1.
 

Construction 1 [34]: Let  {s(i)|0  ≤ i ≤ S − 1} be a set of S  binary sequences obtained from an 

(n, w, λ) OOC. For each sequence s(i), let Ω(i) = {d
(i)

, · · · , d
(i) } be its support. 0  w−1 

1) Cyclically  shift each sequence s(i) and arrange them as columns of a base matrix B, where the 
 

support of the tth column of B is given by 
 
 

(⌊  t ⌋) ∆t = {dh 
n

 
− t (mod n)|h = 0, 1, · · · , w − 1} 

 
 

for 0 ≤ t ≤ nS − 1.  With  L = nS, the n × L base matrix B is constructed with entries of 0 and 1.  The
 

Hamming weight of each column is w. 

2) For small δ, 0 ≤ δ < w, define a positive integer ν = w + δ such that ν ≡ 0 (mod 4).  Then use
 

a ν × ν Hadamard matrix H to extend the base matrix B. In each column of B, replace each entry of

 
one by each distinct row of H, and each entry of zero by all zero row of length ν . The extension yields 

 an n × ν L matrix Be = [Be,1 | · · · |Be,L ], where Be,j denotes an n × ν submatrix extended from a single column of B for 0 ≤ j ≤ L − 1. 
3) A  new fingerprints system is  given  by  F  =   1   Be    = [F1| · · · |FL ],  where Fj  =   1   Be ,  for

 
√

w  
√

w 

1 ≤ j ≤ L. F has entries of 0 and ±  1   , and each column of F is used as each user’s fingerprint. The
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length of each fingerprint is N  = n and the total number of supported users is M  = ν nS. 
 

In fact,  Construction 1 has been originally presented in [34] for compressed sensing matrices, and 

is now applied in fingerprint design. In Construction 1, the coherence of F is defined as the maximum 

magnitude of inner products between a pair of distinct fingerprints, i.e.,  µ = maxi =j ⟨fi , fj⟩, where fi  and
 

fj  are two distinct fingerprints of F. The coherence of F is given by [34] 
 

 
( 

λ  δ 
) 

µ ≤ max  
w 

, 
w  

.
 

 

Particularly, if w = O(
√

n) for small λ, δ = O(1), the fingerprints system F has the coherence of O(   1    ). 
N 

In this case, our new fingerprints system does not have an optimal structure in coherence. However, 

simulation results show that its performance is only slightly worse than that of orthogonal and simplex 

fingerprints systems with optimal structures, which is demonstrated in Chapter 6. 

In what follows, we present three example constructions of OOCs by employing modular Golomb 

rulers.  In  this thesis, we only employ Bose-Chowla  construction [35] to construct OOCs.  Then  the 

resulted OOCs is used to construct our new fingerprints. 

3.4     Modular Golomb Ruler 

Definition 2 [34]: A  (v, k)  modular Golomb  ruler is defined as a set of k integers (d0, · · · , dk−1)
 

such that all of the differences {di − dj |0 ≤ i  = j ≤ k − 1} are distinct and nonzero modulo v.

 
Let  G  be a  k  element set where each element is in  {0, 1, · · · , v − 1}.    Define the  characteristic

 
sequence of G as a = (a0 , · · · , av−1),  where 

 
 
 

at = 

 
 1, if t ∈ G,

 
 0, if t ∈/ G.

 

 
 
(3.1) 

 

 

The set G is called the support  of the characteristic sequence a. If the set G is a (v, k) modular Golomb 

ruler, the Hamming autocorrelation satisfies θa (τ ) ≤ 1 for any τ   = 0 and the Hamming weight of the
 

characteristic sequence is k.  Therefore, the characteristic sequence of a (v, k)  modular Golomb  ruler 
 

forms a (v, k, 1) OOC with S = 1. 
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3.4.1  Bose-Chowla Construction 
 

Definition 3 [35]:  Let q = pm for prime p and a positive integer m. Let GF (q) = {0, 1, β, β2, · · · , βq−2}, 
where βq−1  = 1, and β is a primitive element in GF (q).  Define 

B = {a : 1 ≤ a < q2 and βa  − β ∈ GF (q)}.

 

Then,  B  contains q integers which have distinct  pairwise differences modulo q2 − 1,  so this yields a
 

(q2 − 1, q) modular Golomb ruler.

 
Construction 1.1:  Let s be the characteristic sequence of a (q2 − 1, q) modular Golomb ruler in

 
Definition 1.  Then  F = {s} is an (n, w, 1) OOC of family size S  = 1, where n = q2 − 1 and w = q.

 
Set  ν = w + δ ≡ 0 (mod 4) for small δ,  0 ≤ δ < w.  With  the OOC and a ν × ν Hadamard matrix,

 
Construction 1 gives an N × M  fingerprints system with the following parameters.

 
1) N  = q2 − 1 and M  = ν N .

 
2) The coherence is µ = 1  if δ = 0 for q = 2m. 

 

3) The density is  w
 ≈ 

q 
. 

 

Table 3.1 shows the comparison of parameters between our new fingerprints design using Construc- 

tion 1.1 and Steiner ETF fingerprints when N is no greater than 1000. The parameters of Steiner system 

are a complete set of parameters obtained from affine and pro jective geometries. The parameters of our 

new fingerprints are a complete set of parameters for Bose-Chowla construction.  Our  new fingerprint 

design can employ any kind of OOCs, which is not restricted to Bose-Chowla construction. 

3.4.2    Singer Construction 
 

Singer [38] proposed  a (q2 + q + 1, q + 1, 1) perfect different set for the prime power q based on the 

pro jective geometry theory.   The  perfect difference set yields a (q2 + q + 1, q + 1, 1) modular Golomb 

ruler. Accordingly,  a (q2 + q + 1, q + 1, 1) OOC can be constructed. 

Construction 1.2:  Let s be the characteristic sequence of a (q2 + q + 1, q + 1, 1) modular Golomb 
 

ruler where q = pm for prime p and a positive integer m. Then F = {s} is an (n, w, 1) OOC of family 
size S = 1, where n = q2 + q + 1 and w = q + 1.  Set ν = w + δ ≡ 0 (mod 4) for small δ,  0 ≤ δ < w. With the OOC and a ν × ν Hadamard matrix, Construction 1 gives an N × M  fingerprints system with 
the following parameters. 



CHAPTER 3.   NEW  FINGERPRINT DESIGN 24  

N 
. 

 

Table 3.1: Comparison of Parameters between Steiner ETF and New fingerprint design 

 
k v r N M 

2 4 3 6 16 
3 7 3 7 28 
2 8 7 28 64 
3 15 7 35 120 
2 16 15 120 256 
3 31 15 155 496 
2 32 31 496 1024 
3 63 31 651 2016 
5 155 31 775 24800 
6 156 31 806 25792 

p 

2 

q 

2 

q2 − 1
 

3 

N 

3 

M 

6 
2 4 15 15 60 
2 8 63 63 504 
2 16 255 255 4080 
3 3 8 8 32 
3 9 80 80 640 
3 27 728 728 20384 
5 5 24 24 192 
5 25 624 624 14976 
7 7 48 48 384 

11 11 120 120 1440 
13 13 168 168 2688 
17 17 288 288 5760 
19 19 360 360 6480 
23 23 528 528 12672 
29 29 840 840 26880 
31 31 960 960 30720 

 

 

1) N  = q2 + q + 1 and M  = ν N C0  ≤ ν M .
 

2) The coherence is µ = max 
( 

 1    ,     δ    
)

. 
 

3) The density is  w
 

 
  1   ≈ q+1 

q+1 q+1 

3.4.3 Rusza-Lindström  Construction 

Construction 1.3 uses a (p2 − p, p − 1) modular Golomb ruler from Rusza-Lindström  Construction
 

[39], [40] for every prime p.  The specific examples of the construction can be found in Example 19.20 

of [43] for 3 ≤ p ≤ 17.
 

Construction 1.3:  Let s be the characteristic sequence of a (p2 − p, p − 1) modular Golomb ruler
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in Definition 3. Then F = {s} is an (n, w, 1) OOC of family size S = 1, where n = p2 − p and w = p − 1. Set  ν = w + δ ≡ 0 (mod 4) for small δ,  0 ≤ δ < w.  With  the OOC and a ν × ν Hadamard matrix, Construction 1 gives an N × M  fingerprints system with the following parameters 

1) N  = p2 − p and M  = ν N C0  ≤ ν M . 
( 
  1  

 
    δ    )   1  

 

2) The coherence is µ ≤ max p−1 
, 

p−1 
. In particular, if δ = 0 for p ≡ 1 mod (4), then µ ≤ 

p−1 
.
 

3) The density is  w
 =  p−1

 
p2 −p

 

= 1 . 



 

 
 
 
 
 
 
 
 
 
 

Chapter 4 
 
 
 
 

Error  Analysis 
 

 
 
 
 

4.1     General Framework of Error  Analysis 
 

We analyze two types of errors for detection process, false positive error (type I) and false negative 
 

error (type II). The former is the probability PI (F, m, τ, K, α) that an innocent user m(m  ∈/ K) is found guilty (Tm (z) ≥ τ ), which should be kept extremely low. The latter is the probability PI I (F, m, τ, K, α) that  a guilty user m(m  ∈ K)  is found innocent (Tm (z) < τ ).  They  depend on the fingerprints F, the coalition K, the weight vector α, and the threshold τ .  The  formulations of error analysis in [27]  are 
summarized in Table 4.1.  The models for Error type I and II are shown in Figure 4.1. 

 

In Table  4.1,  PI (F, τ, α)  and PI I (F, τ, α)  are the worst case probabilities of type I  and type II, 

respectively,  which are analyzed further in Theorem 1.  The  worst case error probability is defined as 

the maximum of these two error probabilities, i.e., 

Pe (F, τ, α) = max{PI (F, τ, α), PI I (F, τ, α)}.

 

Table 4.1: Formulations of Error Analysis 
 

False positive error False negative error 

PI (F, m, τ, K, α) = P rob[Tm (z) ≥ τ | H0(m)]  PI I (F, m, τ, K, α) = P rob[Tm (z) < τ | H1(m)]
 

Pf a (F, τ, K, α) = maxm∈/K PI (F, m, τ, K, α) Pm (F, τ, K, α) = minm∈K PI I (F, m, τ, K, α)
 PI (F, τ, α) = maxK Pf a (F, τ, K, α) PI I (F, τ, α) = maxK Pm (F, τ, K, α)

 - Pd(F, τ, K, α) = 1 − Pm (F, τ, K, α)
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}m=1 

σ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  WNR=0 dB  (b)  WNR=2.5 dB 

 
Figure 4.1 

 
 

The threshold parameter τ can be varied to minimize this quantity, yielding the minmax error probability 
 

 
 

Pminmax (F, α) = min Pe (F, τ, α) 
τ 

 
 

which will be bounded in Theorem 1. 
 
4.2  Error  Analysis of New Fingerprints 

 

In  this  section, we further discuss the two types of error probability using the new fingerprints 

design. 

Theorem 1:  Recall γ and σ in Chapter  2.  Consider a fingerprints system F = {fm  
M  , where

 
each fingerprint has the length of N .  Then,  the worst case probabilities of type I  and type II  error 

 

satisfy  
 
 
 
 
 
 

 
     u2 

 

 
γ 

PI (F, τ, α) ≤ Q[ 
σ 

(τ − µ′ )]

 
γ 

PI I (F, τ, α) ≤ Q[    (((1 + µ′ ) max αk  − µ′ ) − τ )] 
k∈K

 

where Q(x) =    1  
 

∞  
e( − 

)du. In Construction 1, µ′  = max 
( 

λ ,  δ 
while µ′  = 1  for Construction 1.1. 

√
2π 

∫
x  

2

 

) 

w    w  q 
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σ 

γ2 

Proof:  Under innocent hypothesis H0 (m), (m ∈/ K).  The test statistic for mth  user is 

 
1 

Tm (z) = 
γ2 
⟨
 

∑ 

n∈ K 

αn fm  + ϵ, fm ⟩
 

= 
∑ 

αn ⟨fn , fm ⟩ + ε′
 

n∈ K

 
= 
∑ 

αn cn + ε′
 

n∈ K 

 
where cn is the coherence of fn  and fm , which has three possible values −µ′ , 0 and µ′ . Recall Construction

 
1, if fn  and fm  are from the same subsystem Fj , for 1 ≤ j ≤ N − 1, c equals to −µ′  or µ′ . Otherwise,

 
it equals to 0.  ε′  is the pro jection of the noise to the fingerprint 

 

 

σ2 
ε′  ∼ N (0, 

γ2 
)
 

 
 

So 
2 

Tm (z) ∼ N ( 
∑ 

αn cn,  )
 

n∈ K 
 

Thus,  we can subtract the mean and divide by the standard deviation to obtain 
 
 

γ 
P rob[Tm (z) ≥ τ ] = Q[ 

σ 
(τ − (

 

∑ 

n∈ K 

 

αn cn))] 

 

where 
∑

k∈K αk  = 1 and max 
∑

n∈ K αncn  = 
∑

n∈  K αnµ′ = µ′ . We can also obtain the upper bound of
 

PI (F, τ, α) 
γ 

P rob[Tm (z) ≥ τ ] ≤ Q[ 
σ 

(τ − µ′ )]
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≤ 

Likewise, under guilty hypothesis H1 (m), (m ∈ K).  The test statistic for mth  user is 

 
1 

Tm (z) = 
γ2 
⟨
 

∑ 

n∈ K 

αnfn + ϵ, fm ⟩
 

= 
∑ 

αn⟨fn , fm ⟩ + ε′
 

n∈ K

 
= αm ⟨fm , fm ⟩ + 

∑

 
n∈K\{m} 

 

 

αn ⟨fn , fm ⟩ + ε′
 

= αm + 
∑

 

n∈K\{m} 

αncn + ε′ .
 

 
So 

Tm (z) ∼ N (αm +  
∑

 
n∈K\{m} 

 
σ2 

αn cn , 
γ2 

).
 

 

Since 1 − Q(x) = Q(x), the type II error probability can be bounded as 
 

γ 
P rob[Tm (z) ≤ τ ] = Q(− 

σ 
[τ − (αm +

 
γ 

≤ Q(− 
σ 

[τ − (αm +

 
γ 

∑ 

n∈K\{m}
 

∑ 

n∈K\{m}
 

 

αn cn)]) 

αn µ
′ )]) 

= Q( 
σ 

([αm (1 + µ′ ) − µ′ ] − τ )).
 

 
We can further maximize over all possible weightings α 

 

 
PI (F, τ ) = max PI (F, τ, α) 

α 

γ 
≤ Q[ 

σ 
(τ − µ′ )]

 
PI I (F, τ ) = max PI I (F, τ, α) 

α 

γ 
max Q[ 

α σ 

γ 

(max αm (1 + µ′ ) − µ′ ] − τ )] 
m∈K

 

= Q[ (min max αm (1 + µ′ ) − µ′ ] − τ )] 
σ 

γ 
= Q[ 

σ 

α  m∈K
 

1 
( 
K 

(1 + µ′ ) − µ′ ] − τ )].
 

 
The uniform weight vector α minimizes the value of αm , i.e.,  maximizes the probability of not catching 

any colluders. Linear average attack model is widely studied in prior works. 
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2 

d 

d∗ 
f 

−  − 

σ  σ 

1+µ′
 1+µ′

 

d 

 

Theorem 2: Recall Df , the minmax error probability can be bounded as 
 

 

d∗ 
Q(     low ) ≤ Pminmax (F, α) ≤ Q(

 

∗
 up 

) (4.1) 
2 

 
 

where 
 

 
 

low  = 

√ 
  M      

√
N D 

M −1
 √ 

σ 

√
N Df 

d∗ 

K (K − 1)

 

′ 

up  = (1 (2K  1)µ ) 
σK 

 

where K is the number of colluders. 
 

The proof of Theorem 2 is similar to that of [27]. 
 

Proof:  The lower bound is the sphere packing lower bound introduced in [45]. For the upper bound 

Pe (F, τ, α) = max{PI (F, τ, α), PI I (F, τ, α)} 

γ γ 
≤ max{Q[    (τ − µ′ )], Q[    (((1 + µ′ ) max αk  − µ′ ) − τ )]}. 

k∈K 

 
 The test statistic is normally distributed with the same variance under either the guilty hypothesis or the guilty hypothesis,the value of threshold τ  that minimizes the upper bound is the average of µ′  and 

K   − µ′ , that is, τ ∗  =

 

2K . Using this τ ∗ , we have
 

 
Pminmax (F, α) = min Pe (F, τ, α) 

τ 

= Pe (F, τ ∗ , α)
 

γ 
≤ Q( 

σ 
(τ ∗ −µ′ ))

 √
N Df 

= Q( 

 
= Q( 

 

σK 
∗

 up ) 
2 

(1 − (2K − 1)µ′ ))

 



 

 
 
 
 
 
 
 
 
 
 

Chapter 5 
 
 
 
 

Fast Processing 
 

 
 
 
 

Chapter 5 is divided into two sections. The first section introduces fast processing in detection using the 

property that only part of the entries are nonzero entries in the new fingerprint system.  This property 

reduces the computational complexity, which will be presented in theory.  Then, Inverse Fast Hadamard 

Transform (IFHT) [36] is employed to reduce the computational complexity further. The second section 

introduces the application of IFHT for fast processing. 

5.1     Fast  Processing In Detection 
 

This section describes how to apply the fast processing technique in detection process for our new 

fingerprint design.  In Construction 1, a ν × ν Hadamard matrix is used to extend each column of the
 

base matrix.  In this way,  there are w nonzero entries for each fingerprint of length N  from which the 
 

computational complexity can be reduced, since only the nonzero entries in each fingerprint are involved 

in the detection process.  In this section, we discuss a fast detection for the fingerprints presented in 

Construction 1.1.  It  is a particular example of Construction 1 when the number of cyclically distinct 

binary sequences equals to 1 (S = 1).  Then, the fast detection process for Construction 1 can be easily 

extended by the detection process for Construction 1.1. 

In Construction 1.1, all the users’ fingerprints system is presented as F = [f1|f2| · · · |fM ], where each

 
column fi  represents the i th user’s fingerprint, where 1 ≤ i ≤ M .  The  length of the fingerprint is N

 
and M  users are accommodated in total.  Recall that the support of the first column of the base matrix 
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t 

√
w 

-
 

t  =  H 

is d(0)  = {d
(0)

, · · · , d
(0) 

} and the support of the nth  column of the base matrix is
 

0  w−1 
 

 

d(n) = {d
(0) 

− n  (mod N )|t = 0, 1, · · · , w − 1} (5.1)

 

where 0 ≤ n ≤ N − 1 and w is the Hamming weight.

 
In  the  fingerprints F, let  us define an  N  × ν  subsystem Fn  =  [f(n−1)ν | · · · |fnν −1],  where F  =

 
[F1 | · · · |FN ].   In  Construction  1.1,  all  the nonzero entries of Fn  form a  w × ν  matrix    1   H, where 
  1  

 
  1  

 
√

w 
H-  = √

w 
[h1| · · · |hν ], hi is the ith column of H- , 1 ≤ i ≤ ν . Each row of H- is from a ν × ν Hadarmard 

matrix.    Moreover,  the  fingerprints of Fn  share the  same support d(n)  in  (5.1) as they  are from a 

single sequence. In detection process, let the ((n − 1)ν + j)th  user’s test statistic be t(n−1)ν +j , where
 

0 ≤ j ≤ ν − 1.  (2.16) implies that  t(n−1)ν +j is the normalized correlation function of the fingerprint

 
f(n−1)ν +j and z in (2.15).   In order to reduce the computational complexity,  the nonzero entries are

 
abstracted from f(n−1)ν +j and thus t(n−1)ν +j can be written as 

 
1 

t(n−1)ν +j = 
γ2
√

w 
⟨hj+1 , zd(n) ⟩,  0 ≤ j ≤ ν − 1

 

where z
d(n)  is a w × 1 vector, which takes only w entries of z with the same support d(n).

 
T Then,  a  ν × 1 vector tn  = [t(n−1)ν , · · · , tnν −1]

 
fingerprints {f(n−1)ν , · · · , fnν −1}, can be computed as 

, a  set of test  statistics  of ν  users having  their 

 
  1 

n 
γ2
√

w 
-

 

 

T zd(n) .  (5.2) 

 

 

From  (5.2),  the matrix-vector multiplication has the computational complexity of O(ν 2).   Therefore, 

the computational complexity of all the users’ test statistics turns out to be O(ν 2N ), that is, O(ν M ). 

If we employ the Inverse Fast  Hadamard Transform technique for (5.2), the computational complexity 

will be reduced from O(ν M ) to O(M log2 ν ).  In practice, the fast processing technique will improve the 

speed of detection and construction. 
 
5.2     Inverse Fast  Hadamard Transform 

 

In Chapter 5.1, we present fast processing in detection. In equation (5.2), all the nonzero entries are 

abstracted to form a w × 1 vector multiplied by a partial transposed Hadamard matrix.  In essence, the
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√ × 

2 

∑j<p 

− 

 

process of the multiplication is the partial Inverse Hadamard Transform of an input vector, where the 

input vector is zd(n)  and the output vector is tn . In this section, we introduce how to further reduce the 

computational complexity based on partial Inverse Hadamard Transform.  First,  we give the definition 
 

of a  Hadamard  matrix.    Then,  we present how to  convert the partial  Inverse Hadamard  Transform 

to Inverse Hadamard Transform.   In the last part of the section, we use the introduced definition of 

Hadamard matrix to explain the process of Inverse Fast  Hadamard Transform (IFIT) [36]. 

The  Inverse Hadamard  Transform [36] is an example of generalized class of Fourier transforms, 
 

which is a 2p      2p matrix scaled by a normalization factor    1    . It performs an orthogonal, symmetric, 
2p

 

linear operation on 2p real numbers. The Hadamard matrix is in fact equivalent to a multidimensional 

DFT of size 2 × 2 × 2 × 2 · · · × 2.   It  decomposes an arbitrary vector into a superposition of Walsh
 

Functions.   First,  we give the definition of the Hadamard matrix.   In  this thesis, we use the binary 

representation of the indices n  and k  to  define each entry of a  Hadamard  matrix  [44].  The  binary 

representation of the indices n and k is of the form 
 

 
i<p 

k = 
∑ 

ki 2
i  = kp 

i=0 

12p−1 + k
 
p−2

 
2p−2 + · · · + k12 + k0

 

 
(5.3) 

 

 
i<p 

n = 
∑ 

ni 2
i  = np

 
1 2

p−1 + n
 

2p−2 + · · · + n  2 + n
  

(5.4) 
 

i=0 

−  p−2  1  0

 

where the ki  and ni  are the binary digits (0 or 1) of k and n for the component 2i .  In a Hadamard 

matrix,  we define the indices of the entry in the top left  corner as the (0, 0)th  entry.   We  have the 
 

definition of the (k, n)th  entry  
 
Hν (k, n) = 

 

 

1 
ν (−1) 
2 

 
 

j=0 kj nj .  (5.5) 
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H8  =  

 

j=0 

2 

 

 

 

One example of such a Hadamard matrix follows 
 

  

1 1 1 1 1 1 1 1     
 1   −1 1 −1 1 −1 1 −1    
  
  
 1 1 −1   −1 1 1 −1   −1    
 
1   −1   −1 1 1 −1   −1 1    

  
  

 

 
(5.6) 

 1 1 1 1 −1   −1   −1   −1 
   

  
 
1   −1 1 −1 1 −1 1 −1    

  
 1 1 −1   −1   −1   −1 1 1    

  
 
1   −1   −1 1 −1 1 1 −1  

 

 

In (5.5), 
∑j<p 

kj nj is the product of the binary representations of the indices k and n. For example, if 

ν = 8, then Hν (3, 2) = (−1)3×2  = (−1)(1,1)·(1,0) = (−1)1+0  = −1 [44].
 

Before employing Inverse Fast  Hadamard Transform (IFHT), we need to change the ν × w partial 

transposed Hadamard matrix H- T  to ν × ν transposed Hadamard matrix HT . We can construct HT   by
 

ν ν 
 

T  T  T
 

adding cw , · · · , cν −1  to H- , where ci is the (i)th column of Hν  , w ≤ i ≤ ν − 1. The (n, k)th entry of Hν 

is defined as Hν (n, k),  where n = 0, 1, · · · , ν − 1 and k = 0, 1, · · · , ν − 1. The forged copy (input vector) 
zd(n)  is changed from a w × 1 vector to a ν × 1 vector by adding zero entries of z(w), · · · , z(ν − 1). 
The  entries of the input  vector are z(k), k  = 0, 1, 2, · · · , ν − 1.   Thus,  the partial  transposed Inverse 
Hadamard matrix is changed to Inverse Hadamard matrix. 

From the point of Inverse Hadamard Transform (IHT), Inverse Fast  Hadamard Transform (IFHT) 

is a  more efficient way of computation.   IFHT can be employed in our fast  processing technique to 

further reduce the computational complexity.  In what follows, we introduce the theoretical derivation 

of its application in fast processing technique.  We can break down the IHT  of the input vector with 
 

ν  points to  the operation of two components, which are the IHTs  of two subvectors with  ν
 

 

points. 
 

We  do the same thing  to  the resulted IHTs  until  the component is the IHT  of one point.   Usually 

inverse Hadamard transform would have a computational complexity of O(ν 2) and IFHT only requires 

O(ν log2 ν ).  Assume that the entries of the output vector are t(n), n = 0, 1, 2, · · · , ν − 1, where ν = 2p .

 



CHAPTER 5.   FAST PROCESSING 35  

∑  ∑ 

∑  ∑ 

2 

2 

2 

4 

 

Equation (5.2) can be computed as 
 

 
ν −1

 
tn = 
∑ 

Hν (n, k) · z(k)
 

k=0 

1 
ν −1  

j<p
 

= √      (−1)   j=0 kj nj · z(k) 
γ2    w 

 
1

 

 
k=0 

ν 
2

 

 
 
 
j<p 

ν −1
 

 
 
 
j<p 

 

(5.7) 

= √      (−1)   j=0 lj nj 
1 ∑ 

· z(l) +  
γ2 
√   ∑ 

(−1) 
j=0 lj nj · z(l) 

 

l=0 

= T ν z(k) + (−1)k′ 

T ν z(k) 

w 
l= ν +1 

2  2 

 
where T ν 

2 
is the transform of the subvector with the length of ν  points. k′  is the one of the binary digit, 

that is k′  = p − 1, p − 2, · · · 0.  In (5.7), k′  = p − 1.
 

Similarly,  we divide the IHT  of the subvectors with  ν
 

 

 
 
points into the operation of the IHTs  of 

 

the  subvectors with  ν
 

 

points until  we compute the  IHT   of only one point.    For  each entry  of the 
 

output vector, the computational complexity is O(log2 ν ) and thus for the ν entries, the computational 

complexity is O(ν log2 ν ).  In this way, the computational complexity of new fingerprints is reduced from 

O(N M ) to O(M log2 ν ). 



 

N 

 
 
 
 
 
 
 
 
 
 

Chapter 6 
 
 
 
 

Simulation Results 
 
 
 
 

In order to measure the robustness of different fingerprint systems, we compare the maximum number 

of colluders which can be tolerated.  We  plot the probability of detecting at  least one colluder Pd  as 

a function of the number of colluders K . The threshold τ  is picked to guarantee reasonably low Pf a . 

With  the given Pf a , we can explore the number of colluders required for an average attack  with high 

undetected probability.  We assume the fingerprint system requires Pd  ≥ 0.8 and Pf a  ≤ 10−3 [5]  since
 

high Pd  and low Pf a  are necessary to guarantee the systems’ robustness. 
 

In this section, we compare the performance of orthogonal, simplex and new fingerprint systems for 

N  = {63, 255, 1023, 4095}.  For orthogonal fingerprints, we use each column of an identity matrix as one
 

user’s fingerprint, where the total number of users equals to M  = N . We use simplex fingerprints having 

the same power (γ) and having the same inner product (−  1 ) [37], where M  = N + 1. Our construction
 

is from Construction  1.1, where q = 64, δ = 0, ν = q,  and M  = ν N .  While N  and N + 1 users are 
 

accommodated by orthogonal and simplex fingerprints, respectively, our fingerprints can support much 

more users up to ν N  about ν times more. 

Total  3000 average attacks  were simulated for each fingerprint system and collusion size K .  We 

randomly choose colluders and uniformly average their copies to form a forgery.   The  Gaussian  noise 

with power σ2  per dimension is added to the forged copy.  We pick a threshold τ  to ensure Pf a  = 10−3.
 

For each attack,  we measure Pd  by detecting every user in the fingerprint system. 
 

The simulations are divided into four groups. In the first group, we test the performance of orthog- 

onal,  simplex and new fingerprints for N  = 63 and WNR={−5, −2.5, 0, 2.5, 5}dB,  respectively.   The
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results are exhibited in Figure 6.1.  Clearly,  Figure 6.1 shows that  Pd  approaches 0 when the number 

of colluders increases. The  weight (contribution) of each colluder to the forged copy becomes smaller 

when more and more colluders are involved in an average attack.   The  test statistic of one colluder’s 

copy and the forged copy is also decreased. Put  it in an extreme case, there is obviously no difference 

existing in test statistics when all the users are colluders.  We  can observe the same trend in all the 

three different fingerprints systems. 
 

63, 64 and 504 users can be accommodated by  orthogonal, simplex and our new fingerprints in 

the first group simulations.   The  maximum number of colluders that  can be tolerated is similar and 

approximately one more than  our new fingerprint system in Figure 6.1 (c) and (d) and two more in 

Figure 6.1 (e). Overall, the maximum number of colluders that can be tolerated by a fingerprints system 

is very small since the dimension of the fingerprints is only 63. From Figure 6.1 (a) to (e), we can observe 

that the performance gap between our new fingerprints and the other two fingerprints becomes smaller 

when the noise level increases. 

In  the  following three groups of simulations,  we also compare the  performances of orthogonal, 
 simplex and new fingerprints for WNR={−5, −2.5, 0, 2.5, 5}dB, where the dimensions of the fingerprints are {255, 1023, 4095}, respectively.  Figure 6.2 shows the result of the second group of simulations, where 

255, 256 and 4080 users can be accommodated by orthogonal, simplex and our new fingerprints.  In 

Figure 6.2, the observations are similar to Figure 6.1 while the maximum number of colluders that can 

be tolerated increases when the dimension increases from 63 to 255. This trend is more obvious when 

the dimension is 1023 and 4095 much greater than 63, which can be observed in Figure 6.3 and 6.4. 

1023 and 1024 users can be accommodated by orthogonal and simplex fingerprints with the length 

N  = 1023. 4095 and 4096 users can be accommodated by orthogonal and simplex fingerprints with the 

length N  = 4095. In theory,  up to 32736 and 262080 users can be accommodated by our fingerprints 

with the length N  = 1023 and N  = 4095, respectively.  Due to technical limitations in simulation, 16368 

and 32768 users’ fingerprints are simulated. 

The important fact that the gap between our new fingerprints and the other two fingerprints with 

the same noise level is getting smaller can be observed by comparing Figure 6.1 (c), 6.2 (c), 6.3 (c) and 6.4 

(c), where the dimensions of the signals are {63, 255, 1023, 4095}.  We have the similar observation when
 

the noise level changes. The coherence of our new fingerprint design is no less than that of orthogonal 
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and simplex fingerprints.   Overall,  our new fingerprints perform slightly  worse than  orthogonal and 

simplex fingerprints in Pd  while accommodating much more users. 
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Figure 6.1 
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Figure 6.1 
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Figure 6.1: (a), (b), (c), (d), and (e) The probability of detecting at least one colluder Pd as a function of 

the number of colluders K , where N  = 63 and WNR=−5 dB, WNR=−2.5 dB, WNR=0 dB, WNR=2.5
 

dB and WNR=5 dB respectively. 
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Figure 6.2 
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Chapter 7 
 
 
 
 

Conclusions 
 

 
 
 
 

This  thesis has presented a new fingerprint design using optical orthogonal codes.  Compared to ETF 

fingerprints, our new fingerprint design has a more flexible structure which offers more parameters and 

less storage.  In practice, we can achieve fast processing in detection using IFHT, which improves the 

speed of detection.  Our new fingerprint system has a more flexible structure and can provide a faster 

detection process. 

About the performance of our new fingerprint system, there are many more directions that need to 

be further investigated. 

1) In the thesis, we assume that the attack model is average linear attack model when we compare 
 

the performances of fingerprint systems.   Other  types of attacks,  minimum attack  model, maximum 

attack model, median attack model, minmax attack model, modified negative attack model and random 

negative attack  model are also very common for colluding multimedia data.   It  is necessary to study 

the gap of performances between our new fingerprints and the other two fingerprints under other attack 

models. 

2) The  relationship between the  number of accommodated users and  the  maximum  number of 

colluders that can be tolerated by systems needs to be investigated. The results of such an investigation 

will help us better understand the characteristic of one fingerprint system. 

3) The  threshold τ  is an important factor that  influences the performance of fingerprint systems. 

The smaller τ guarantees a high probability of catching colluders but increases the probability of accusing 

innocent users. How to choose a threshold to achieve the best performance can be further studied. 
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