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Abstract

Vibration arises in almost all moving structures. Vibration control is important to many 

applications such as robotic arms, aircraft wings, buildings in wind, vehicle transmission systems, 

to name but a few. The objective o f  this thesis is to develop more efficient intelligent controllers 

for vibration suppression, mainly for time-varying flexible structures.

At first, based on TSO and T S l fuzzy models, novel neural-fuzzy (NF) controllers are 

developed for active vibration control o f  the flexible structures. The NF control paradigms are 

intended to integrate the advantages from both fuzzy logic and neural networks while 

overcoming their respective limitations. The control reasoning is undertaken by fuzzy logic 

whereas the fuzzy control system is optimized by neural network related training algorithms. A 

new strategy is suggested to simplify the architectures o f  the classical N F controllers so as to 

make the control process computationally efficient for real-time applications. A recurrent 

identification network (RIN) is developed to adaptively identify system dynamics o f the time- 

varying flexible structures. W hen system dynamics (e.g., mass, stiffness, and damping) varies, 

the proposed RIN and NF controller can effectively recognize the system ’s new dynamics and 

perform corresponding control operations. A novel hybrid training technique based on real time



recurrent learning (RTRL) and least square estimate (LSE) is suggested for real-time training o f 

the RIN scheme to optimize its nonlinear input-output mapping.

The effectiveness o f  the developed intelligent controllers and the related techniques has been 

verified by online experimental tests o f corresponding fixed and time-varying dynamic 

conditions. Test results have shown that the developed adaptive N F controller outperforms the 

classical controllers (e.g., PD) and other related intelligent control strategies.
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Chapter 1 Introduction

1.1 Overview

Vibration control and associated smart structure techniques are critically needed in many 

engineering applications such as robotic arms in the precise operations, aerospace systems, 

buildings in wind, vehicle transm ission systems, etc. This research will tackle the control 

problems in engineering systems especially for some more challenging flexible structures. The 

flexible structures contain infinite number o f vibration modes, and have low rigidity and small 

material damping. Even a small external excitation may lead to large amplitude vibration and/or 

long vibration decreasing time. The following summarizes the development o f  vibration control 

related to flexible structures in the literature.

1.2 Literature review

Generally speaking, vibration control can be undertaken either passively or actively. The 

passive vibration control methods utilize the passive elements such as masses, dampers and 

springs, to adjust the characteristics o f  controlled structures to suppress vibration [1]. Although 

the passive control is relatively simple in principle, passive control techniques are usually 

difficult to apply in the low frequency applications [2]. Furthermore, in many applications such 

as space vehicles, it is desirable to keep the weight as low as possible, correspondingly passive 

control with extra hardware systems becomes unattractive [3]. Since the last decade, modeling 

and active control o f engineering structures have received more interests in both research and 

applications [4-6]. Different from the passive control methods, the active vibration control
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supplies energy to suppress the vibration; it can provide higher control performance than most 

passive controllers. The implementation o f active vibration control, however, needs systematic 

system analysis and modeling, vibration measurement, actuator elements and the controller 

design and implementation. Based on comprehensive comparison studies, active vibration 

control will be applied in this work.

In the literature, a variety o f  control strategies have been reported for active vibration control, 

which are schematically summarized in Figure 1.1.
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1.2.1. Classical Vibration Control

The classical linear controller such as proportional-intcgral-dcrivativc (PID) [7] or 

proportional-derivative (PD) [8] has been widely applied to flexible beams or manipulators. 

However, these linear controllers are sensitive to parameter variations and load disturbance; their 

performance also depends on operating conditions and controller’s gains. It is usually difficult to 

adjust controller (e.g., PD and PID) gains to tackle the overshoot and load disturbance rejection 

problems simultaneously. In general, overshoot elimination settling will cause a poor load 

disturbance rejection, whereas rapid load disturbance rejection setting will cause overshoot or 

even instability in the system.

1.2.2 Adaptive and robust vibration control

In order to avoid the shortcomings o f  PD controllers, one important class o f  controllers are 

referred as adaptive feed forward controllers [9-11]. The suggested control methods in [9-11] are 

based on Model Reference Adaptive Control (MRAC), in which the process o f  system 

identification is followed by the adaptation o f the controller as a function o f the identified system 

parameters [12-15]. A typical approach to adaptive vibration control is to feed back an error 

signal through an appropriate filter (e.g., a simple low pass filter) and to apply the resulting 

signal to the plant. The parameters o f  the filters are tuned automatically by an adaptive algorithm 

to achieve the best vibration reduction. The most commonly used adaptive algorithm is the Least 

Mean Square (LMS) algorithm [16-18].

The other main class o f  controllers as described in the vibration control literature are linear 

feedback controllers which are designed by using robust control design techniques [19-24].



Another type o f active vibration control is based on adaptive and robust control strategies, 

such as H2 control [25, 26], Hoo control [27-29], and sliding mode control (SMC) [30-37], In 

paper [38], for example, some hybrid actuator schemes are suggested for the robust control 

against various modeling uncertainties. However, the performance o f  these controllers is usually 

highly dependent on accuracy o f  system models and their parameters, which limits these 

controllers’ limitations in smart structure applications. Furthermore, calculation in these adaptive 

and robust controllers is time-consuming, which makes them difficult to implement for real-time 

control application for time-varying systems.

1.2.3 Other classical vibration control

Other classical vibration control approaches that can be mentioned consist of: a) spatial 

control where vibration is minimized over an entire structure [39]; b) linear-quadratic-Gaussian 

(LQG) controller synthesis by which both the small amplitude random vibrations and higher 

order modes in flexible beams can be suppressed [40, 41]; and c) nonlinear methods for 

improving the active control efficiency o f  Smart Structures [42-44].

1.2.4 Intelligent vibration control

In order to overcome the disadvantages o f classical PD, adaptive and robust controllers, as 

well as nonlinear control methods, recently researchers have applied intelligent controllers for 

flexible beam applications. The main advantages o f intelligent controllers are the controllers’ 

independent o f  the system parameters, and their applications to the nonlinear systems.

The neural network (NN) is well known for its learning ability and approxim ation to any 

arbitrary continuous functions. It also possesses the tolerant capability in performing in noisy 

environments and operating with faulty and missing data. Therefore, N Ns can be trained to map



complex input-output mapping functions in various fields, including pattern recognition, 

identification, classification, speech, vision, and control systems. Some works have been 

reported on the use o f NN controllers for flexible beams [45, 46]. Because the NNs can adjust 

their inter-connections among network nodes to achieve optimal or near optimal input-output 

mappings, the major advantage o f NN learning is its ability to accommodate even poorly 

modeled and nonlinear dynamical systems. NN-based controllers may not be suitable for some 

linear or linearizable systems control, which can result in degradation in performance in terms o f 

computation time and controller convergence [47]. Unfortunately, the resulting distributed 

knowledge representation by NNs is usually difficult to understand for designers.

In order to overcome the need for precise process representation, Zadeh introduced the soft- 

computing concept o f fuzzy logic (FL), which may be viewed as a parallel representation to 

probability theory rather than as an alternative. FL aims at modeling the imprecise systems o f 

reasoning, by com mon sense reasoning, for uncertain and complex processes. The theory o f FL 

controller is based on the linguistic rules with an IF-THEN general structure, simulating the 

human logic based reasoning. These characters make FL controllers more attractive to flexible 

beams [48-53]. FL control has proven effective for complex, nonlinear and imprecisely defined 

systems for which classical model-based control techniques are impractical or impossible. On the 

other hand, FL control design also involves a number o f difficulties. A common bottleneck is 

how to properly set up fuzzy control rules; this task is usually time consuming and difficult, and 

relies to a great extent on the inputs from the process experts who, however, may not be able to 

transcribe their knowledge into the requisite rule form. To optimize control performance, the 

related fuzzy parameters, membership functions (MFs), and fuzzy sets for the input/output 

variables have to be optimized by trial and error. Unfortunately there exists no formal framework



for the choice o f  the fuzzy sets and parameters o f fuzzy systems; That is, fuzzy systems laek self- 

tuning and optimization eapabilities.

A solution to integrate the strengths o f both FL and 'NNs but to overeome their respective 

limitations is to use their synergetie schemes, in which the FL provides the eontroller a high- 

level IF-THEN control reasoning framework, whereas the controller strueture and parameters are 

optimized by the NN-based training. In another word, the synergetic schemes can integrate the 

properties o f  transparent and linguistic control rules o f FL and the learning ability o f the NNs. 

Neural fuzzy (NF) eontrollers have attracted much attention sinee the last deeade, and have been 

utilized by researchers for several flexible manipulator applications [54-57]. For example, the 

author in [58] presents an NF eontroller for the trajectory tracking o f  four degree-of-freedom 

rigid-link flexible and rigid joint Seleetively Compliance Assembly Robot Arm (SCARA)-type 

manipulators; A backpropagation related training algorithm is suggested to fine tune the 

controller parameters. In paper [59], the authors utilize the parallel processing eharaeteristies o f 

the NF system to solve a trajectory design problem o f a robot manipulator. The technique o f  this 

NF system replaces the rule base o f a traditional FL system with a backpropagation NN. A stable 

diserete-time adaptive traeking controller is proposed in [60] using an NF dynamic-inversion for 

a robotie manipulator; it is shown that the NF variable structure control can enhance the stability 

o f the eontrolled system and improve the system dynamic performance.

Despite the aforementioned advantages o f  NF eontrollers, the industry is still reluetant to 

directly implement these NF controllers for real-world industrial applications due to high 

computational burden o f  the controllers. A typieal NF controller eonsists o f the following layer 

functions: inputs, fuzzification, normalization, rules, and defuzzification, which leads to the 

higher eomplexity eompared to the FL eontroller and NN eontroller. The high eomplexity
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(associated with the large number o f MFs, rule weights, premise and consequent parameters, etc) 

causes high computational overhead. High computation burden will lead to low sampling 

frequency, which makes it difficult to implement an NF controller for real-time applications. 

Furthermore, in some practice, NF controllers may need more control requests (e.g. voltages) 

than some classical control strategies (e.g., PD) to achieve the required control performance.

1.2.5 System identification

Most o f these above techniques, however, are model based and require an exact knowledge 

o f  the flexible structure dynamics; It is usually difficult to derive accurate system models in most 

real engineering applications where the mechanical systems to be controlled are complex in 

structures and operate under noisy and/or uncertain environments. One o f  the solutions to these 

problems is to apply identification system to the control designing.

Nonlinear structural dynamics has been studied over a relatively long time, but the first 

contribution to the identification o f nonlinear structural models dated back to the 1970s, for 

example, by Ibanez [61] and Masri et al. [62]. Since then, numerous methods have been 

proposed in the literature because o f the highly individualistic nature o f  nonlinear systems. This 

research field has also attracted more researchers to concentrate on, especially in recent years. 

We note that:

>  The first textbook Nonlinearity in Structural Dynamics: Detection, Identification and 

Modelling was written by W orden and Tomlinson (2001 [63]).

>  Synthesis o f  nonlinear system identification in structural dynamics was made in several 

survey papers (Adams ;and Allemang, 1998 [64]; Hemez and Doebling, 2000 [65]; 

Worden, 2000 [66]; Hemez and Doebling, 2001a [67]).

8



>  From 1997 to 2001, a working group in the framework o f the European Cooperation in 

the field o f Scientific and Technical Research Action F3 Structural Dynamics was 

devoted to the Identification o f Nonlinear Systems (Golinval et ah, 2003b [68]). The 

researches focused on two benehmarks, namely the Eeole Centrale de Lyon benehmark 

and the benehmark from the Teehnical Researeh Center o f Finland (Juntunen, 2003 [69]; 

Thouverez, 2003 [70]), with different techniques.

>  A special issue on Nonlinear System Identifieation was published in the Nonlinear 

Dynamies journal (2005 [71]).

System identification is especially useful for modeling system when the model cannot be 

easily represented in terms o f first principles or known physical laws. Thus, one m ( or difficulty 

o f nonlinear system identification is that the functional S  [•], which maps the input x (t) to the 

output y  (t), y  (t) = S  [x (t)], is generally unknown beforehand. Physieal insight is most often o f 

great help to seleet a reasonably aceurate model o f the nonlinearity. Only if  this gives 

unsatisfaetory results or if  physieal insight is completely lacking, it is then time to move to 

nonlinear blaek-box modeling.

Some methods for performing the nonlinear mapping are summarized as follows:

>  Artificial neural networks (NNs) have come into prominenee because o f their universal 

approximation features;

>  Wavelet networks are attraetive because they unify multi-resolution features o f wavelet 

bases and universal approxim ation features o f  neural networks;

>  Splines are interesting funetions, because they are eomputationally very simple, ean be 

made as smooth as desired and are very économie to store;



>  N F  models combine the semantic transparency o f rule-based fuzzy systems with the 

learning capabilities o f  neural networks; they can be regarded more as grey-box models 

[72].

Among the different choices for nonlinear black-box modeling, NNs have received the most 

attention in identifying nonlinear structural dynamics. This method o f  identifying nonlinear 

dynamical systems is to estimate a system model from measured input-output data [73-76]. It 

plays a key role in the model-based prediction o f dynamical systems to target a given 

performance or to satisfy operating constraints. Recurrent neural networks (RNNs) [77-79] are 

generated by extending the struetures o f  NNs.

1.3 Objective of research

As discussed in literature review, the high complexity and computational burden have 

prevented the NF controllers from many practical applications. Correspondingly, the objeetive o f 

this thesis is to develop low computational NF controllers for active vibration control o f  the 

flexible beams. One strategy is suggested to simplify the complicated structure o f  the 

conventional NF controllers while maintaining the required system performance. The proposed 

NF eontrollers can reduce the computational burden by employing carefully selected input 

variables. The effectiveness o f  the developed NF controllers is verified by experimental tests. 

Test results show that the new N F controllers outperform the elassical eontrols (e.g. PD) and 

general NN eontrollers, and exhibit better performance in terms o f  overshoot, settling time, and 

the Rotating Angle (control requests).

Another objective o f  this work is to develop novel recurrent identification networks (RIN) to 

adaptively identify system models. A new  hybrid training technique based on real time recurrent
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learning (RTRL) method and least square estimate (LSE) method is adopted to adaptively 

optimize the control system model and to accommodate time-varying system dynamics. The 

viability o f the suggested RIN and its applications in NF control are verified by experimental 

tests.

To simplify the illustration in the following chapters, the research outline o f  this work is 

summarized in Figure 1.2.

TSO-NF
controller

with RIN

RTRL
algrithm

TSl-NF
controller

without
RIN

BP
algrithm

PD
controller

PD
controller

PD
controller

BP
algrithm

RTRL
algrithm

TSl-NF
controller

TSO-NF
controller

with changing the 
system dynamic

without changing 
the system dynamic

comparing the 
control results

comparing the 
control results

comparing the 
control results

Smart Structure 
Control

BP: backpropagation
RTRL: real time recurrent learning
TSO-NF: the zeroth-order T akagi-Sugeno N F  controller  
TSl-NF: the first-order Takagi-Sugeno NF controller

Figure 1.2. Research outline.



1.4 Thesis Organization

After the Introduction as described in this chapter, the remainder o f  this thesis are organized 

as follows. In Chapter 2, some fundamental theories related to this work are provided such as the 

FL systems, NN architectures, the synergetic NF schemes, as well as the related training 

algorithms.

In Chapter 3, the zeroth-order Takagi-Sugeno (TSO) NF controller and the first-order 

Takagi-Sugeno (T S l) NF controller are developed, respectively. The objective o f this chapter is 

to simplify implementation o f  the proposed NF controllers.

In Chapter 4, com parison tests show that the proposed NF controllers can not only simplify 

control structure, but also outperform the classical controllers (e.g., PD). The related system 

parameters in the controllers are updated online by the corresponding hybrid training technique.

The RIN is proposed in Chapter 5 for nonlinear system model identification. The objective 

is to provide a more accurate system model from measured input-output data for adaptive control. 

The performance o f  the RIN is updated by the suggested hybrid trained based on the RTRL 

method and LSE method, so as to optimize the control RET model and to accommodate time- 

varying system dynamics. The effectiveness o f the suggested techniques is verified by 

experimental tests.

Finally, some concluding remarks as well as the future works are summarized in Chapter 6.



Chapter 2 Description of Neuro-Fuzzy Controllers

2.1 The Structure used in this Research

This structure workstation used in this research work for controller development and test is 

as illustrated in Figure 2.1. This experimental setup consists o f a flexible beam clamped at one 

end while the other end is equipped with a servo motor. The servo motor drives an eccentric load 

which plays a role o f  the actuator. The purpose o f this structure workstation is to actively 

dampen out the vibrations in the flexible beam by the developed controllers through the drive 

motor.



Figure 2.1. The structure system used for vibration control in the flexible beam.

This system consists o f  the following components:

>  Base plate: The structure and some related devices are fixed onto the base plate which is 

rigid and anchored (by bolts) onto a desk.

>  Flexible beam: The beam  is instrumented with a strain gage calibrated to give 1 volt per 

2.54 cm, to indirectly measure vibration. The tested beam can be in different dimension, 

material, and orientation.
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>  M otor (Series 2338S006): The motor drives the load through a gear ratio o f 70:1.

>  The encoder (SRV02): The encoder measures the rotation angle by using a 1024 count 

disc which in quadrature results in 4096 counts/rev.

>  Strain gage (A9-232-0): The strain gage senses the beam deflection and the signal is 

sent back to the universal power module.

>  Inertia load is applied by two rigid beams and a round cross beam.

>  Universal pow er module (UPM-2405): The power module is a power amplifier that is 

required to drive each associated actuator. The power module consists o f one power 

supply (±12 Volt), four analog sensor inputs, and one power amplified analog output.

>  DSP board (A 11-368-3): It is a Quanser Q4 terminal board which contains the general 

A/D and D/A converters. All o f the connectors from the universal power module are 

connected to the DSP board by wires.

The tested beam can be in different structure, material and orientation. In this work, a 

(0.35% carbon content) steel beajtn with dimension (44x10.8x1.5mm) is used. In order to reduce 

the twisting in the member, the beam is placed in the vertical configuration. Extra magnetic 

blocks will be used to simulate time-varying system properties.

This system can be modeled as shown in Figure 2.2.
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Figure 2.2. Schematic representation of the experimental setup.

M

nir.

Figure 2.3. A simplified model.

The model as illustrated in Figure 2.2 can be further simplified and shown in Figure 2.3. For 

small deflections o f the flexible beam, the motion o f the motor can be considered to be linear



along the specified direction. The related parameters and their associated values used in this 

work are summarized in Table 2.1.

Table 2.1: Parametric values for the smart structure

Physical parameters Symbol Value/Units

Deflection o f the flexible beam £ ---

Rotation angle o f the rigid beam from zero position e ---

Mass of the motor and its fixture M 0.6 Kg

Cross beam mass m.p 0.05 Kg

Rigid beam inertia I 0.0039 Kg m2

Rigid beam length c 0.285 m

Rigid beam mass mt, 0.072 Kg

Effective stiffness o f the flexible beam along x direction K 30N/m

Encoder resolution 4096 Counts/rev

Flexible beam length b 0.44 m

Flexible beam mass rrif 0.22 Kg

Natural frequency with M attached fnat 1.25 Hz

Flexible beam effective stiffness along x (first mode only) k 30N /m

Strain gage sensitivity Gs 0.4 V/cm

Strain gage gain As 2.54 cm/volt



In the following subsections, a brief introduction is given to the background theories related 

to the developed intelligent controllers so as to have readers easier to follow the subsequent 

descriptions in the following chapters.

2.2 The fuzzy logic model structures

Fuzzy logic, FL, provides a very useful frame for representing lexically imprecise 

propositions, in a natural language based reasoning format [80]. Classical sets and variables have 

crisp boundaries. A lthough these classical sets are suitable tool for mathematics and computer 

operations, they do not reflect the nature o f human concepts and thoughts, which tend to be 

abstract and imprecise. In contrast to a classical set, a fuzzy set, as the name implies, is a set 

without a crisp boundary. That is, the transition from “belong to a set” to “not belong to a set” is 

gradual; this smooth transition can be characterized by membership functions (MFs) that give 

fuzzy sets more flexibility in modeling based on IF-THEN linguistic expressions which mimic 

human reasoning in comparable circumstances.

As an example, i f  A" is a collection o f  objects denoted generically by x, then a fuzzy set A  in 

2 fis  defined as a set o f  ordered pairs:

A = ^ x , j i i ^ { x ) ) \ x & x \  (2-1)

where jn^ix) is called the ME for the fuzzy set A. The MF maps each element o f to a 

membership grade (or membership value) between 0 and 1. Fuzzy sets play an important role in 

the areas such as nonlinear system modeling, pattern recognition, and communication o f 

information, etc.
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The fuzzy inference system is a specific computing framework based on the concepts o f 

fuzzy set theory, fuzzy rules, and fuzzy reasoning [81], which has found many efficient 

applications in a wide variety o f  fields such as a single-link flexible m anipulator [48]. The basic 

structure o f  a fuzzy inference system consists o f  three conceptual components: 1) a rule base, 

which contains a selection o f  fuzzy rules; 2) a database, which defines the MFs used in the fuzzy 

rules, and 3) a reasoning mechanism, which performs reasoning inference operations, based on 

the fuzzy rules (and some other given facts) to derive a corresponding output or conclusion.

A typical fuzzy inference system (within the dashed lines) is illustrated in Figure 2.4, where 

X  is a collection o f inputs, Y  is the output. A and B  are fuzzy sets, r is the rule number in the 

fuzzy inference system, and Wr is the weight in each rule. The basic fuzzy inference system can 

take either fuzzy inputs or crisp inputs, but the generated outputs are usually fuzzy sets. I f  a crisp 

output is required, such as in control applications, an appropriate defuzzification method should 

be applied to transform an output fuzzy set into a crisp single value.

Rule 1

(Fuzzy)

Rule 2
(Crisp or 
Fuzzy) (Fuzzy) (Fuzzy) (Crisp)

Y

Rule r

(Fuzzy)

Defuzzifier

Figure 2.4. Block diagram for a fuzzy inference system.
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A number o f fuzzy inference systems have been suggested in the literature, such as Mandani 

fuzzy models (also known as linguistic fuzzy systems) [82] and the Takagi-Sugeno (TS) fuzzy 

systems [83, 84]. A typical TS fuzzy fuzzy model has the form o f

IF (%i is ^ ) AND (%2 is B), THENjg =/(% ,, %), (2-2)

where A and B  are input fuzzy sets (antecedent), and y  = f  (xi, x%) is an output function 

(consequent). If f  (x,, xz) is a polynomial o f  the input variables xi and xi, equation (2-2) is called 

the first order TS model, or T S l. Otherwise, if f  (x,, x%) is a constant, equation (2-2) becomes the 

zeroth order TS fuzzy model, or TSO. TSO can be viewed as a special case o f  the Mamdani fuzzy 

inference system, in which each rule’s consequent is a fuzzy singleton [82].

Fuzzy operations require appropriate logical connective operators such as AND 

(conjunction), OR (disjunction) or NOT (complement). The generalization o f  conjunction 

(intersection) to fuzzy sets is called t-norms, such as the minimum and the product operators. 

Given C -  H F, the rule firing strength will be

yUg (x) = min ( (x, ) ,  //^  (x^ ) ) (2-3)

w here//£ (x, ) and//y, (x 2 ) are the MFs for inputs xi and x%, respectively. The minimum operator 

can also be denoted by (x) = ju^ (x, ) a  ///, (Xj ) ,  as shown in Figure 2.5(a)
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mm

X
/ /g (x ,)  and  f Uf i x i )

(a) conjunction

max

(b) disjunction

Figure 2.5. (a) Conjunction of two fuzzy sets; (b) Disjunction of two fuzzy sets.

The disjunction (union) is generalized by t-conorms, such as the maximum operators. Given 

C = £■() T’, o f  the corresponding membership degree will be,

/ / c W = m a x ( / /g ( x ,) , / / ^ ( x 2 ) )  (2-4)

The above m aximum operation can also be represented by (x) = (x, ) v  /u,,. (x^ ) ,  as

illustrated in Figure 2.5(b).

The complement operator is represented by // -  (x, ) =1 - //g (x, ) .

After fuzzy operations, the final output is the weighted average o f  all rule outputs
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  (2-5)

/=1

where j = 1 , 2 .. .A, is the total number o f  rules.

Compared with a M amdani system, the TS model can use adaptive techniques for fuzzy 

model constructions, which can customize the MFs to achieve optimal input/output data 

mapping. Furthermore, because o f  the linear dependence o f  each rule on the input variables, the 

TS model is ideal to interpolate MIMO controllers to different operating conditions.

2.3 Introduction to neural network models

A NN is a parallel distributed processing model. It resembles the human brain reasoning in 

two respects:

1. Knowledge is acquired by the network through a learning process.

2. Intemeuron connection strengths (e.g., synaptic weights) are used to store the knowledge.

A neuron is an information-processing unit that is fundamental to the operation o f  a NN. Figure

2 .6  shows the model for a neuron, which has three basic elements:

1. A set o f synapses or connecting links, each o f which is characterized by a weight or 

strength. Specifically, a signal Xj at the input o f  synapse j  connected to neuron k  is 

multiplied by the synaptic weight Wkj.

2. An adder for summing the input signals, weighted by the respective synapses o f  the

neuron. These operations constitute a linear combiner.
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3. An activation function  for the output o f  a neuron. The activation function squashes (limits) 

the permissible amplitude range o f the output signal. Typically, the normalized amplitude 

range o f the output o f  a neuron is used, such as the intervals [0 , 1 ] and [-1 , 1].

Furthermore, an externally applied thresholds^ in Figure 2.6 has the effect o f  lowering the 

net input o f the activation function. On the other hand, the net input o f  the activation function 

may be increased by em ploying a bias term rather than a threshold.

Input i 
signals

Activation
function

Output

Summing
junction

X p
ThresholdSynaptic

weights

Figure 2.6. Nonlinear model of a neuron. 

M athematically, a neuron k  can be described by the following equations:

(2-6)

and (2-7)

where x\ ,X2 ,,„,Xp are the input signals; Wk\, Wki, a r e  the synaptic weights o f neuron k\ is 

the linear combiner output-, 6 *̂ is the threshold-, ^ (  ) is the activation function-, and is the 

output o f the neuron.
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Different squashing functions can be used in a neuron. For example, the commonly used 

Sigmoidal function is in the form o f

1
\ + e -(% -Sk ) (2-8)

Consider the network as shown in Figure 2.7, which contains three inputs, two outputs, and 

three hidden neurons. Each neuron in this network has the same activation function. For instance, 

the activation function o f  neuron 7 is

1

l + e '
(2-9)

where X4, X5, and xg are outputs from neurons 4, 5, and 6 , respectively, and the parameter set o f 

neuron 7 is denoted by ( ^ 4 ,7 , we,7 , t j ) .  wt j  is the weight associated with the link connecting

neuron / and j ,  and tj is the threshold associated with neuron j .  (note that this weight-link 

association is only valid in this type o f  network.)

7:2

7:3

4

7

\ / 'W€::L

\

lr

Layer 0 Layer 1
(Input Layer) (Hidden Layer)

7:8

Layer 2 
(Output Layer)

Figure 2.7. One 3-3-2 NN.
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NNs should be adjusted (or trained) so as to achieve an optimal input-output mapping, as 

illustrated in Figure 2 .8 .The type o f  learning is determined by the manner in which the parameter 

changes take place. One o f  the main properties o f  a NN is its ability o f  learning from its 

environment so as to improve its performance. After the network is properly trained, it will 

become more knowledgeable about its environment.

Target

NN
including connections 

(called weights) 
between neurons

OutputInput
-►( Com pare

Adjust weights

Figure 2.8. Representation of NN training.

Several learning algorithms have been suggested in the literature, and are summarized in 

Figure 2.9. Supervised learning is performed under the supervision o f  an external ''ta rg e f\ 

Unsupervised learning is performed in a self-organized manner in that no external target or critic 

is required to instruct synaptic changes in the network. The target stands for the knowledge o f 

the environment represented by a set o f input-output data pairs. The network parameters are 

adjusted under the com bined influence o f  the training data and the error signal between the 

actual response o f  the network and the desired response. This training adjustment is carried out 

iteratively with the aim o f eventually making the NN emulate the target; the emulation is 

presumed to be optim um  in some statistical sense.
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Learning process

Rule training Parameter training

Error- Bolzmann Thorndike’s Hebbian Competitve Supervised Reinforcement Self-organized 
correction learning law of learning learning learning learning (unsupervised)
learning effect learning

Figure 2.9. Taxonomy of the learning process.

In this thesis, supervised learning is applied in experiments. Gradient (or steepest gradient) 

method is perhaps the most commonly used training algorithm [85]. Suppose that a given feed 

forward NN with L layers and each layer contains N{1) neurons (/ = 0, 1... Z,-l). Assuming that 

the given training data set has P  entries and On is the output o f neuron z (z = 1 ,2 ... jV(/)) in layer 

I , then the objective error function for the pXh. (1 < p  < P) entry o f the training data can be 

defined as:

Ni l )

4  = (2 - 1 0 )
k=\

where dk is the Ath component o f  the pXh desired output vector. Therefore the objective is to 

minimize an overall error measure E„ -  E „ .
P Z ^ o = I  P

To use the steepest gradient algorithm to minimize the error measure, the first step is to 

obtain the gradient vector, which can be illustrated in Figure 2.10 where the arrows indicate 

causal relationships. That is, the basic concept in calculating the gradient vector is to pass the 

derivative information starting from the output layer and going backward, layer by layer, until 

the input layer is reached.
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param eter a
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netw ork’s 

outputs

Figure 2.10. The causal relationships to obtain the gradient vector.

To facilitate the discussion, we define the error signal as the derivatives o f the error

measure Ep with respect to the output o f node i in layer /, taking both direct and indirect paths 

into consideration. In symbols,

(2-11)

This expression has called the ordered derivative by Werbos [8 6 ]. The difference between 

the ordered derivative and the ordinary partial derivative lies in the way we view the function to

be differentiated. For an internal node output Oij (where / ^  L), the partial derivative is

equal to zero, since Ep does not depend on 0 ^  directly. However, it is obvious that Ep does 

.depend on O/,, indirectly, since a change in 0 ^  will propagate through indirect paths to the 

output layer and thus produce a corresponding change in the value o f  Ep. Therefore, s,j can be 

viewed as the ratio o f  these two changes when they are made infinitesimal.

We can improve the performance o f the steepest gradient algorithm if  we allow the learning 

rate to change during the training process. An adaptive learning rate attempts to keep the 

learning step size as large as possible while keeping learning stable. The step size is the length o f 

each transition along the gradient direction in the parameter space. Usually, we can change the 

step size to vary the speed o f convergence.
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2.4 Introduction of NF model structure

By the aforementioned brief introduction to NN and FL schemes, FL and neural systems 

have contrasting control application requirements. On the one hand, fuzzy control systems are 

appropriate if  sufficient expert knowledge about the process is available, while on the other hand, 

neural systems are useful if  sufficient process data are available or are measurable. Despite this, 

there exists a lot o f  similarity and a synergetic relationship between NNs and FL systems [87, 

8 8 ]. Both the approaches build nonlinear systems based on bounded continuous variables; the 

difference lies that neural systems are treated in a numeric (quantitative) manner whereas fuzzy 

systems are treated in a symbolic (qualitative) manner.

Generally, both NNs and FL are powerful control design techniques, but each having its 

own strengths and weaknesses. NNs can learn from data sets, while FL solutions are easy in 

knowledge implementation and verification. From the summary in Table 2.2, it becomes obvious 

that an efficient com bination o f the two technologies would deliver better solutions.

Table 2.2: Strengths and Weaknesses of NN and FL

NN FL

Knowledge
Representation

Implicit, the system cannot 
be easily interpreted or 

modified

Explicit, verification and 
optimization is easy and 

eiffient

Train ability Trains itself by learning 
data sets

None, we have to define 
everything explicitly
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As stated in Chapter 1, NF synergetic schemes can be formed by synthesizing the NN and 

FL systems, which integrate the properties o f the explicit knowledge representation o f  FL with 

the learning pow er o f  NNs. Figure 2.11 illustrates a mathematical framework that maps FL 

model to neurons in a NN.

InferenceFuzzification Defuzzification

Rule base

Data base

Reasoning
mechanism

Figure 2.11. A mathematical framework mapping FL model to neurons in an NN.
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A NF system should follow the following four primary steps:

Step 1: obtaining training data

The first step is to obtain the data sets that represent the desired system behaviour. Each data 

set gives sample output values for a combination o f  input variables.

Step 2: creating a primary FL system

The NF training process starts with an initial FL system, for example, the rules and the MFs.

Step 3: learning

In this step, we must select the parts o f  the NF system to be trained, such as parameters 

and/or fuzzy structure, and if  the training is in online or offline pattern.

Step 4: verification

The result o f neural fuzzy training is a normal FL system. After system verification, we may 

implement the solution to the experiments.

Consider a widely used NF example. Adaptive network-based fuzzy inference system 

(ANFIS) suggested by Jang [89]. ANFIS is a feed forward network as illustrated in Figure 2.12. 

Although we can apply a gradient algorithm to identify the parameters in this adaptive network, 

this training process usually takes a long time which is not suitable for control applications. We 

may observe, however, that an adaptive network’s output (assuming there is only one) is linear 

in some o f the netw ork’s parameters. As a result, a hybrid method can be used in this case: these 

consequent linear param eters can be identified by the linear least-squares (LSE) method, 

whereas nonlinear MF parameters are optimized by gradient algorithm [89, 90] The training
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operations takes two procedures; 1) in the forward pass, the consequent parameters are trained 

by LSE, while the antecedent parameters are fixed; 2) in the backward pass the antecedent 

parameters are trained by the gradient algorithm, while the consequent parameters remain fixed. 

This procedure is then iterated until the training goal in terms o f  cycles or error tolerance is 

achieved.

Xi

X2

A

\

^2
X2

B2

\

Xi %2

u\ f]=p\X\+q\X2+r\

z =

=wiy;+M2/ j
»2 fi=P2X\+q2X2+r2

Layer 1

(a)

Layer 2 Layer 3 Layer 4 Layer 5

U 2

(b)

Figure 2.12. (a) A two-input first-order Takagi-Sugeno fuzzy model with two rules; (b) equivalent ANFIS

architecture.
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Consider a simple reasoning mechanism in Figure 2.12(a) with a T S l model having two 

inputs x\ and %% and one output z [83, 84, 91]. The corresponding equivalent ANFIS architecture 

is as shown in Figure 2.12(b), which contains five layers: input, fuzzification, normalization, 

rules, and defuzzification. Consider two fizzy if-then rules with the following format:

Rule 1: IF (%% isv4i) AND (x2 i sBi ) ,  THEN ( f i ^p\X\+qiX2+r\) (2-12)

Rule 2: IF (xi is A 2) AND (x2 is B 2), THEN (f2 = PiXi+qiXi+ri) (2-13)

where Aj and R, are linguistic fuzzy sets ( i= l,  2 ). //, in figure 2 .1 2  represents the rule firing

strength, p .  is a normalized firing strength from layer 3; and {p,, qt, r,} are consequent

parameters, z is the overall output.
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Chapter 3 Designing of Neural Fuzzy Controllers

In order to properly setup the flexible structure system and obtain necessary system 

information for the development and implementation o f the advanced NF controllers, system 

properties are studied first based on a PD controller.

3.1 System property investigation based on a PD controller

To properly investigate the important system properties for advanced control applications, a 

PD controller is designed and implemented first to the flexible structure for system control 

testing. Figure 3.1 illustrates the SIMULINK model for the tested system based on the PD 

controller.

"  X ' : -B

E x p e rim en ta l S e tu p

[ > /■---pi V ►
2 ‘p i- (n a f2

D istu rbance S e q u e n c e
D istu rbance  G ain  Limit 

(deg)

sr-2*pi*fnat*2
F iiter

Defieetion 

R e ta in  j  Angie 

Defieetion dot '

R otating  Angle dot , 

D i i t j 'b j i i . .e  S q je n c e  Signal 

C c n in i  S cq L en ce  S g n  il

Vol

C on tro ller

C ontrol S e q u e n c e

Figure 3.1. The SIMULINK model with the PD controller.
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This flexible structure model has been given in Figure 2.2 in Chapter 2. Its input variable is 

the control output to drive the motor o f  this structure, and its four output variables are(6 ' ,^ , f ,^ ) ,

where 0  and 6  represent the rotating angle o f the rigid beam and its derivative; f  and ^ are the 

deflection o f  the flexible beam, and its derivative, respectively. These four elements will be used 

as the input variables to the two PD controllers.

Control Sequence 

S igna l

D isturbance S equence 

S igna l

Outer Loop

D eflection

D eflection  dot

S atura tion  S e lec t C om m and 
T o Inne r Loop

R ota ting  A ng le

R ota ting  A n g le _ d o t

Contro l

INNER LOOP

S u m i Sum 2

Figure 3.2. The SIMULINK model of the PD controller.

In this case, the control system consists o f two loops, an outer PD (proportional gain A:pt ■

derivative gain kj,)  and an inner PD loop (proportional gain derivative gain kj^).  From

Figure 3.2, control inputs 1 to 6  are, respectively, the Deflection variable, the Rotating Angle 

variable, the Deflection dot variable, the Rotating Angle dot variable, the Disturbance Sequence 

Signal variable, and the Control Sequence Signal variable. Variables 1 to 4 are from the flexible 

structure outputs as shown in Figure 3.1.
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The disturbance added to the system is defined as an external angle value in degrees, which 

is illustrated in Figure 3.3. The force is automatically added to the apparatus from t -  1 s', and is 

repeated every 10 s. The amplitude o f  the rotation is 5 deg, and the duration for each force is 

over 0.88 s. A control sequence signal is applied with a command value o f  1 (i.e., control off), 

which makes the beam track the disturbance sequence signal command. At t = 3 . 5  s, the 

controller is switched to the command value o f 2  (i.e., control on); the outer loop commands the 

inner loop, as shown in Figure 3.3, and the full controller is operational. The outer loop remains 

active until r = 9 s at which the controller is switched off. The disturbance sequence is repeated 

every 10 s while the control sequence is repeated every 20 s, as illustrated in Figure 3.3. The 

control results o f  the PD controller are presented by Figure 3.4. In figure 3.4, the unit o f  time is s, 

the Deflection’s unit is cm, and the Rotating A ngle’s unit is deg.

y
(deg) 

5 -
Disturbance

Control on

1 . 8
1 1

Control off

11.8
21

21.88
X

(sec)

Figure 3.3. The disturbance and control sequence signals.
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Figure 3.4. (a) The result of Rotating Angle without control signal; (b) The control output (voltage)

without control signal.
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Figures 3.4(a) and 3.4(b) represent the states o f the rotating angle and the control output 

voltage without control sequence signal, respectively. From the t = 1 to 1.44 s, there exists a peak 

in Figure 3.4(b). It is because the disturbance signal is added to this system from t = 1 6' in the 

positive direction, with the duration o f  0.44 s as shown in Figure 3.2. Figures 3.4(a) and 3.4(b) 

are similar in shape except the part between t = 1 s' and 1.44 s. The reason o f  choosing these two 

sets o f results without control sequence signal is that the control output voltage value is reflected 

by the rotating angle directly.

The operation o f  this PD controller is performed by switching the command to the inner loop, 

and then making the outer loop to command the inner loop. If  the rotating angle and the control 

output voltage are chosen as the references when the control sequence signal is on, the results are 

not accurate to represent their relationship, which will be proved as follows.

Using Lagrangian dynamics, if  the effects o f  gravity are neglected, the nonlinear dynamic 

equations o f  the system can be obtained as:

{M  + mp)s  -THp •c-sm{d{t))-9^{t )  + mp ■ c ■ c,os{9{t)) ■ 9  + K  ■ s{t)  = 0 (3-1)

trip-c- cos(9(t)) ■ £ + {nip -c^ + 1 ) - 9  = T  (3-2)

It should be stated that this model can also be applied to the horizontal or other 

configurations o f the flexible beam.

Consider the motor equation:

T = .^ (0 )  (3-3)
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Linearizing (3-1) to (3-3) yields the state space equations:

{m -c + I ) - K

{nip -c ■ M  + 1 ■ nip + 1 ■ M ) 
nip 'C■ K  

{m - c ^ - M  + I - m  + I - M )

0 1
0 0

0 0 

0 0

0
1

{nip -c ■ M  + 1 ■ nip + 1 ■ M )- 

{nip • • M  +1 • nip + 1 ■ M ) ■ R^

+
m„ -c ■ K„ -K^

{n ip -c  ■ M  + 1 -nip + I  ■ M ) - R ^  
{nip + M ) - K „ ,  - Kg

{nip -c^ ■ M  + I  -nip + 1 ■ M ) -  R^

■V (3-4)

Table 3.1: Parametric values for the motor

Physical parameters Symbol Value/Units

M otor Torque constant Km 0.0767 Nm/Amp

Total gear ratio K , 70

M otor Armature resistance Rm 2.6 Ohm

M otor voltage V V

M otor torque T Nm

Table 3.1 summarizes the related physical parameters o f the tested system. Considering 

Table 2.1 and Table 3.1, the /I and B  matrices will be:

A =

0 0 1 0 0

0 0 0 1
B =

0

-4 8 .0 0 0 31.8 - 5 .9

8 6 .0 0 0 -1449 .7 . 270
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The Q  and R matrices are chosen as: Q = diagi^SOOOO 1000 50 Oj) an d i?  = 10 , 

respectively; the resulting gains will be:

yt = [ - 192.6 25.8 18.9 0.4405]

The feedback controller is in the form of:

F  = -(A:, •£• + ^2 -<9 + ^3 -£ + ^4 -(9) (3-5)

If  this feedback is implemented, it cannot determine how far the rigid beam would rotate. If 

the gains or errors are too large, the rotation angle o f the the beam will be so large that the cross 

beam could collide with the flexible beam, which is undesirable.

We can re-write the feedback equation as:

4  ̂ . 6) (3_6)
^2 «2

- 1 , . 9  (3-7)

k==--&„(2 - - (3-8)

Equation (3-8) is a  feedback loop that makes the motor track a desired position 6^ which is 

derived by:

^2

-  -kpiS - k ^ , - £  (3-10)
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Then resulting gains will be;

= 2 5 .S F /r a 6 /  = 0 .4 5 F /6 /e g

-  0.44 V !{rad / sec) = 0.0077 V l{deg/sec) 

kpi = -1 1 6 .8 /  26.4 = -7 .46  rad I m = -4 .2742 deg  / cm 

kj, = 12 /26 .4  = 0.135 rad l{m/sec) -  0.4211 deg /(cm/sec)

It should be noted that the gain = 3 for the power amplifier when using the available cables 

in the tests. Correspondingly, the actual implemented values o f and are divided by 3.

Because k^^ is very small ( = 0.0077 F /(deg/sec) in this case), equation (3-8) can be

approximated by:

--<%,) (3-11)

which means w hen the control signal is applied by the value o f 1 (control off), and 6 j = 0 , then 

F  =  -A,J9 (3-12)

In fact, the rotating angle 6  is inversely proportional to the voltage F , with an inverse ratio 

kp^ . On the contrary, when the control sequence signal is 2 (i.e., control on), O ^ ^ O,  then F  and

9  do not follow a linear relationship. That is the reason why we choose the rotating angle and 

the control output voltage without the control sequence signal.

The control output is voltage. I f  the disturbance sequence signal is selected as a voltage

added to the system, we have to find the relationship between the rotating angle and the voltage.
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Based on equations (3-5) - (3-10) and the values o f }, the ratio o f  V and 6

should be kj or , which equals 25.8.

Next is to define the disturbance and control sequence signals. As illustrated in Figure 3.5, 

the period o f  the disturbance signal is still repeated every 10 s, and the amplitude is 5 deg. 

However, there is only one positive value for each sequence signal, and the duration for each 

disturbance becomes 0.44 s. The controller is switched on (i.e., control = 2) at t = 3.5 s, which 

remains active until t = 9 s when the controller is switched o ff (i.e., control = 1 ) again. The 

disturbance sequence repeats over every 1 0  5  while the control sequence repeats every 1 0  s.

(deg) Disturbance

Control on offCont

3.5

22.4412 12.44 (sec)

Figure 3.5. The re-defined disturbance and control sequence signals.

First we change the value o f D isturbance gain in Figure 3.1 to zero, and give the rigid beam 

several arbitrary distrubances; then we can examine the values o f  the rotating angle and the 

voltage from the scopes, and record the peak values o f the angle and the voltage at the time when 

external forces are being applied to the system. The average ratio o f  the rotating angle and 

voltage will be:

41



K V V
= 2() (3-13)

where m is the number in which the arbitrary force has been applied.

3.2 The TSO-NF controller

3.2.1 Control input and output variables

The purpose o f  the developed controller is to dampen out the vibrations in the flexible beam 

by driving the actuating system. Correspondingly, the deflection e at the top o f the flexible beam, 

in Figure 2.2, is considered as one o f the control input variables. A servo motor is equipped at 

the top o f  this flexible beam, and drives an eccentric load. This motor plays a role in damping, 

thus the rotating angle 6 o f  the rigid beam is considered as the second control input variable. The 

feedback voltage value that comes out o f the controller and gets into the structure can be still 

assumed as the control output variable. M oreover, in order to minimize the computation burden 

o f the classical NF controllers, only two control input variables will be utilized in this case.

The deflection value (e) in cm  can be estimated as the multiplication o f  the output voltage 

value and a gain  which is selected as 2.54, with the unit o f cm/volt. Since the nature frequency o f 

this flexible structure is about 1.13 HZ, the deflection can be observed after the multiplied value 

is low-pass filtered (with a cut o ff frequency o f  2.26 Hz) to remove the higher frequency 

components.
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The disturbance signal is driven by the motor drive through a gear ratio o f  70:1. The encoder 

measures the angle with a 1024 count disc which in quadrature results in 4096 counts/rev. Thus, 

the value o f the rotating angle can be determined by the encoder when the voltage is transformed 

to the count value and is multiplied by a gain o f  360/4096 deg/count.

3.2.2 The membership functions (MFs)

As discussed in Chapter 2, a fuzzy set is characterized by its MF. Since most fuzzy sets in 

this work have a universe o f  discourse X,  a convenient and concise method to define an MF is to 

express it as a mathematical formula. M any parameterized functions can be used as MFs in one 

and two dimensions, whereas MFs o f  higher dimensions can also be defined accordingly.

In this work, only one-dimensional MFs (i.e., MFs with a single input) are applied, which 

are summarized as follows:

1) Triangular MFs

A triangular MF is specified by three parameters {a, b, c} such as:

triangle (x; a, b, c) =

0, X <a. 
X  - a

-, a < x < b .
(3-14)

c - x  ,
, b < x < c .

c - b  
0, c < X.

By using minimum (min) and maximum (max) functions, some alternative functions could 

be formulated:

triangle (x; a, b, c) == max (min ( - — - ,  - — - )  ,0 )  (3-15)
b - a  c - b
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The parameters {a, b, c}, where a < b < c, determine the shape o f the triangle function, as 

illustrated in Figure 3.6 as an example.

0.80)"O

■ È  0.6
a
Ë

5  0.4

0,2

0

■y=tr angle (x;20,60,80)

0 10 20 30 40 50 60 70 80 90 100
Input variable

Figure 3.6. Triangular MF defined by triangle (x; 20, 60, 80).

Due to its simple formulation and computational efficiency, a triangular MF is especially 

useful in real-time implementations. However, since the MFs are composed o f  straight line 

segments, they are not continuous at the corners. Some continuous MFs are also applied in this 

work, which are described as follows.

2) Gaussian MFs

A Gaussian M F is specified by two parameters { a , c } :

-H— Ÿ
Gaussian ( x ; a , c ) = e ^  ^ (3-16)
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where a and c represent the center and the width o f the function, as illustrated in an example in 

Figure 3.7

0,8

(1)

O 0.6
Q.
€

^  0.4

0.2

0

yi

y2

y1= g au ssian  (x;50,20) 
y2= g au ssian  (x;50,10)

0 10 20 30 40 50 60 70 80 90 100
Input variable

Figure 3.7. Gaussian MF defined by Gaussian y l=  (x; 50, 20) and y2= (x; 50, 10).

3) Sigmoidal MFs

A Sigmoidal M F is defined by

Sig (x; a, c)
1

l + e (-a(x-c)) (3-17)

where a determines the slope at the crossover point x  -  c. Depending on the sign o f  the 

parameter a, a Sigmoidal MF is inherently open right or left and thus is appropriate for 

representing sets such as “very large” or “very negative” . Figure 3.8 shows two examples 

defined by sig (x; 1, -5) and sig (x; -2, 5), respectively.
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1.2

-D 0 .8
£50

Î  0-6
1

0.4

0.2

-10

i 1

y1=slg(x;1,-5)
y2=slg(x;-2,5)

y1

y2-

------------- ------------- --------------- _

J...........

-8 -2 0 2 4
Input variable

8 10

Figure 3.8. Two Sigmoidal functions defined by y, = sig (x; 1, -5) and y^^ sig (x; 2, 5).

All these aforementioned three MFs are utilized in the NF controllers. In this TSO-NF 

controller, three MFs are assigned to each input variable; one Sigmoidal MF open left, one 

Gaussian MF, and one Sigmoidal MF open right, respectively. The initial states o f  the MFs to 

each input variable are shown in Figure 3.9, which are subjected to updating during training 

processes as discussed in the following sections.
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0.8

(3 0.6

(5

J  0.4

0.2

0 -  

-20 -15 -10 -5 0 5
Input variable

Sig MF open right 
Sig MF open left 
G aussian MF

10 15 20

Figure 3.9. The initial MFs for each input variable.

3.2.3 The reasoning rules in the NF controller

As stated earlier, the fuzzy reasoning in the NF controllers are performed by fuzzy logic. If  n 

input variables are considered, x,, / = I, 2 ...« , a typical fuzzy rule base is represented in the 

following form

IF (x, is 4 "  ) AND (X2 is A'^) AND ... AND (x, is 4" ), THEN ( is wj)  (3-18)

where 4'" is a linguistic term; w j  is a singleton, y = and M is  the total number o f rules;

v =  1 ,2... Z, Z is the number o f MFs.

For this TSO-NF controller model, a common rule set with nine fuzzy if-then rules is based 

on equation (3-18), which is shown in Table 3.2. These rules are presented by the links between 

the second layer and the third layer.
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R‘: i f  (xi is Al ) AND (xz is A\ ), THEN ( /  is wi), 

R^: IF (xi is Al ) AND (xz is ^  ), THEN ( is W2 ),

(3-IS))

(3-20)

R^: IF (xi is Al ) AND (xi is A^ ), THEN ( fg is W9), (3-21)

Table 3.2: Fuzzy logic rule base

Deflection e (x%)

Negative A^ Zero Al Positive a I

Position (9 (xi)

Negative a I Wi W 2 W3

Zero a I W 4 Ws W6

Positive a I W 7 Wg W9

These nine rules are derived from the motion o f  this structure. The conditions o f the rotating 

angle o f the rigid actuating beam and the deflection o f  the flexible beam  are illustrated in Figure 

3.10.

48



Rigid Beam P

e<0

Flexible Beam

Rigid Beam O)

CD
Flexible Beam

Rigid Beam

O)
Flexible Beam

o
o_
0)
CD

6>o

Rigid Beam O)

e>0

Flexible Beam

Figure 3.10. Sign convention used to set-up the rule base.

49



The network architecture o f  the developed TSO-NF controller is schematically shown in 

Figure 3.11, in which M  = 9, Z = 3, and n = 2.

Layer 4

Layer 3 I.

w,

/

Layer 2

Layer 1 (  )

,3\

Figure 3.11. Network architecture of the TSO-NF controller.

•  Layer 1: The inputs xi and X2 are fed to the network; the neurons in this layer just transmit 

input values to the next layer.

(%(1) = X, (3-2:2)

Layer 2: Fuzzification: The input variables are fuzzified in this layer. If  Gaussian and 

Sigmoid MFs are applied in this case, the respective node outputs will be

1
0 1 (2 ) = / /  , (x, ) = ^ (x ,, al ,cl) =

l + e""'"I (x, -4 ) ; / = i , 2 (3-23)
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CfCZ) =  (%,) =  (?(x,,a;\c?)== g : cf ; (S-SUl)

0/  (2) -  /u ĵ (x^) -  S(x^,a^ i (3-25)
1 + g

where af and cj represent the center and spread o f the Gaussian MF in equation (3-24), 

respectively. And a] and a? are the slope as x, = c? and x, = -  cf in equation (3-23) and (3-25). 

The upper subscripts o f  G?(2), Of (2) ,  or G? (2) denote the number o f  MF corresponding to each 

input variable.

• Layer 3: The links in this layer perform precondition matching o f  fuzzy rules. Every neuron 

represents for a specific fuzzy operation, whose output is the product o f  all the incoming 

signals:

<:y(3i)== G,'(:;).G;(:2)==/v;' =  , Uj , (x, ) - ( x , ) ,  v =  i , : ; ,  and 3 C3-26)

(?;(3) =  G f(2 ) . 0 ; ( 2 )  =  /z; =  /Z j,(x ,) - f , , , ,(.&,), v = l ,  2 , and 3 (3-27)

(:%(3) ==(:f(:)).G ;(:!) ==/z; =  /Zj , (x, ) . Oq,),  v =  1,:Z, and 3 (3-28)

The upper subscript v o f Of (3 ) , Of (3 ) , orGj'(3) is the corresponding number o f  the MFs for 

the second input variable. The lower subscripts represent the first three outputs, the middle three 

outputs, and the last three outputs in the third layer, respectively. These letters have been shown 

in Figure 3.11.

• Layer 4 : The single neuron in this layer is a fixed neuron which computes the overall output 

as the summation o f  all incoming signals, that is,
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Z M

(3-29)

where y  is the output variable, jUj = ( ^ 2) ”  is a firing strength o f rule j .

Equation (29) can be rewritten:

 ̂ ,(>  ,JU'n-W’„)
; / ?  = l ,2 ,a n d 3  (3-30)

The purpose o f  using equation (3-30) to replace equation (3-29) is to clarify the following 

fact. Actually, the first input xi should be the rotating angle error between the desired and the 

real positions o f the rigid beam, and the second input x% should be the deflection error o f  the 

flexible beam. Because both the desired input values o f this structure are zero, the rotating angle 

error can be realized as the actual rotating angle, and the deflection error can be also realized as 

the actual deflection value.

3.3 The TSl-NF controller

As illustrated in section 2.2, IF (xi is A) and (x% is B), THEN (y = f  (x\, x%)), it is a TSO 

model if f  (x%, x%) is a constant, as described in section 3.2. On the other hand, it becomes a TSl 

NF model if f  (x%, x%) is a first-order polynomial [80, 87].

IF (Xi i s ) AND (xzis ,4^ ), THEN ( / ,=  j:,.. ^ ), 7=1, 2 .. .9 (3-31)
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For instance:

R ’: i f  (xi is 4 ' ) AND (xz is A\ ), THEN p^-x^+q^■X2 +r^),

R^\ IF (xi is Af ) AND (xz is A f  ), THEN ( 4  = + Z2 ' ^2 + ^2 ),

(3-32)

(3-33)

(3-34)R^: IF (xi is Af ) AND (xz is Af ), THEN ( /g  = • x, + • Xj + r, ),

The network architecture o f  this T S l-N F  controller is schematically shown in Figure 3.12.

t y

L ayer 4

L ayer 3 (,

( )

, /  V

/

/̂ 3

( ) 1 ) V ) f , I
'-Tf O  ,r

L ayer 2

L ayer 1 )

▲

X,

Figure 3.12. Network architecture of the TSl-NF controller.

Layer 1 : The same inputs xi and xz are still fed to the network. They can be described by 

equation (3-22). 0 ,{ \)  J  = 1, 2 is the output o f  the first layer.
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• Layer 2: Fuzzification; The input variables are fuzzified in this layer. The same equations 

(3-23) to (3-25) can be also applied in this case. In order to achieve real-time application by 

using T S l-N F  controller, the parameters in MFs { af ,c f , v  = 1, 2, 3 and / = 1, 2} have to be

fixed and applied as constant to the implementation. G? (2 ) , Of (2) , and Of (2) are the 

outputs o f the second layer.

• Layer 3: The links in this layer perform precondition matching o f  fuzzy rules. Every neuron 

represents for a specific fuzzy operation, whose output is the product o f all the incoming 

signals, which can be represented by equations (3-26) to (3-28). They have been illustrated 

in the above section. G,'’(3 ) , G  ̂(3 ), and Of (3) are the outputs o f the third layer.

•  Layer 4: The single neuron in this layer is a fixed neuron which computes the overall output 

as the summation o f all incoming signals, that is,

y  U ■ f
T =  \  7 =  1 , 2 . . . 9  (3 -35)

where y  is the output variable o f T S l-N F  controller, equation (35) can be rewritten;

G(4) = y  = ■
Z _ : ( Z L o ; ( 3 ) )

^  1 2 , and 3 (3 -36)
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Chapter 4 Testing of Neural Fuzzy Controllers

Once the NF controllers have developed as discussed in Chapter 3, the controller parameters 

should be trained properly so as to achieve better control performance. In this chapter, the related 

NF classifiers are firstly trained, then they are implemented and tested for performance 

evaluation.

4.1 Training of NF controllers

4.1.1 Parameter training for the TSO-NF controller

This TSO-NF controller has both linear and nonlinear system parameters. A hybrid training 

method is adopted in this work to train the controllers as discussed in Section 2.3. The nonlinear 

parameters in the M Fs o f  the TSO-NF controller are trained by the use o f  the steepest gradient 

method, whereas the linear link weight parameters are fine-tuned by LSE. The training process 

requires a set o f  representative data pairs between the network inputs and corresponding target 

outputs. The training goal is to iteratively minimize the network objective (or error) function 

defined as

E ' ~ ~ ' i y ‘̂ ~ y Ÿ  (4-1)

where y  is the actual output and y ‘̂  is the desired output for input vector x  = (xi, Xz)

Substituting equations (3-26) - (3-30) into (4-1) yields
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y

1
2

, P  = \, 2 and 3 (4-2)

Since the shape o f  the MF /^^„(0 is defined by af and c f , v  = \, 2, 3 and /=  1, 2. Flence, 

the learning rules based on gradient algorithm for the MFs can be derived as follows:

a] (A: +1) = a\ (k) -  ■ AaJ = af (k) - (4-3)

cf (^ +1) -  cj (k) -  T ■ AcJ = cf (k) -  T
dc:

(4-4)

where

dE ^ d E  dy 
daf dy dju^, daf

(4-5)

6c/ ^  6// 6c/
(4-6)

a/(A:) and c/(A:) are the values o f  the variables at the Ath time step; A a/and A c/are the current

gradient; and and r̂ ,, are the learning rates that affect the training convergence and stability o f

the parameters. A larger learning rate could speed up the convergence but might result in 

overshooting, while a smaller learning rate has an opposite effect. and ranging from  10'^

to 10 have been tested in this work and are used in the experiments.
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For instance, if  a\ (o ra / w henu = 1 and / = 1) is needed to he trained on-line, equation (4-3) 

and equation (4-5) will he used by the Embedded MATLAB Function in the Figure 4.1.

IISSa
k . .a i |. i  . .  .

E m b e d d e d  
MATLAB F unction

u aH = u 1 + u 2 + u 3 + u4+ u5+ u6+ u7+ u8+ u9

ProducH

Product2

P roduct 4

z t r
P roduct 5

P roduct 6

- t [
P ro d u c t  7

z t r
P roduct 8

Unit Delay2

G ain  1

P roductIO S a tu ra tio n

Unit D elay l

À A A A A A A A A

W1-W9

Figure 4.1. Training Block for the updated parameter a;

Figure 4.1 was huilt by using MATLAB blocks. 1) The Embedded M ATLAB Function 

hlock includes ten inputs; a■̂ and c , ,which are needed to he trained hy using the gradient method, 

are the parameters in M F , ; U A ll ,  U A 12...U A 23 present the outputs o f  the six MFs in the

TSO-NF controller’s network, respectively; is the summation o f  all t h e , j  = 1, 2 ...9

(o r / / / ,  /? = 1, 2, 3; v = 1, 2, 3). The outputs o f the Embedded MATLAB Function block are nine

derivatives o f P j _ a v g _ d  with respect to the parameter a\. Each value o f  P j _ a v g _ d  is

calculated by the e q u a t i o n A y  • 2) The derivative equation can be

described by dElda^ = ^(A; _ <3vg_<7_a j  - Wj in figure 4.1. Wj is the consequent parameter.
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which will be trained by using the LSE method in the following part. 3) The value o f  the tuning 

rate can be represented by Gain 1 in Figure 4.1.

The gradient training method forms the basis for many direct methods used in optimizing 

both constrained and unconstrained problems. Despite its slow convergence, the gradient method 

may be the most commonly used nonlinear optimization technique due to its simplicity. The 

gradient method also enables to train a network without the use o f  all available input/output pairs.

The LES algorithm is used to train the consequent parameters (or the weights) w / . From 

equation (3-30), it is observed that the final output y  is a linear function o f the consequent 

parameters Wj. Hence, given the values o f the membership parameters (centers and widths) and g

training , k= I, 2 . . .  g, we can form g  linear equations in terms o f  the consequent

parameters as follows;

'w , ■

y(2)
p P  ■ Wj + J j .p  ■ W2 + ... + p P  ■ W2

. w, + . W; + ... + ^ j;(.8 ) j j ( s )  77(g) _Ai M2 ■••Mm

(4-7)

where A ^ =  A P  ^  P P  can be replaced by

( j  ; M  = 9  ̂ /? = 1,2,3 ; v = l , 2,3 ) in equation (4-2). The values o f

calculated by equations (3-26) - (3-28) when the input isx^*^.

Define the following vectors;
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= ... (4-8)

^ ra o = [^ reo (4  ^rso(2) •■■ ^ tso(^)] (4-9)

W’rao = K  ^2 -  (4-10)

y  = [ / ( ' )  / ( 2 )  ... (4_11)

To simplify notation, equation (4-7) can be expressed in a matrix-vector form:

y~ ^TSo '^T SO  (4-12)

According to linear equation (4-12) the tuning o f  Wj can be viewed as a problem of

parameters estimation. The LSE method is a useful technique for param eter estimation, which is 

very simple if  the model is linear in terms o f the parameters such as those in equation (4-12). A 

concise approach to solve equation (4-12) is to use the pseudo inverse technique,

(4-13)

where (^^so ' ^ tsoT^ - is the pseudo inverse o f if  nonsingular. Then the

LES loss function can be minimized.

In many cases, the row vectors o f matrix (and the corresponding elements in F  ) are 

obtained sequentially in real time; hence the LSE o f w^^g in equation (4-12) can be computed 

recursively. Let the /th row vector o f  matrix in (4-12) be (plsA)  the /th element o f 

F  be then wf^g can be calculated recursively using the following formula:

< , , ( ; + 1 ) = + « K . ( ) +1)  ■ (/* '*  -  +1) • < . ( / ) ) .  (4-14)
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y^rso 1) ~ ^rso 1) ' ^rso 1)

= ^Tso (0 ■ Ç̂ rso (̂  +1) ■ (7 + Ç̂TSo (̂  "*■ 1) ■ ^rso (0 ' Ç̂tso (J D  (4-15)

T̂SO 1) = ^TSa (0  — ̂ TSd (0  ■ 1)

• ( /  +  Ç7./jo(/+ 1) •iS’y.joC/)-(^reoC^ + 1)) ' '<Prso(^ + ^) 'Srso{l)

= ( /  -  +1). +1)). ^^o(Z) (4-16)

The initial conditions are Wq = 0  and S(0) = y - I ,  where y is a positive large number and I  is 

the identity matrix o f  dimension M x M .

Since the error = y ‘̂ -  y  at the output vol o f the NF controller is not directly available, 

and only the system error eg= 9^  - 9  and e ^ = s ‘̂ - s  can be measured at the outputs {9, e)  o f  plant 

due to = 0 , and = 0 ,  will be the actual rotating angle 9 .  Furthermore, will be the actual 

deflection e  • therefore, we chose 9 “̂ as the desired control output (target output) instead o f using 

the desired controller’s o u t p u t . Moreover, by both the analytical analysis and the PD control 

experiment, it has been proved that one o f  the plant’s output 9  and the control output y  follow a 

reverse relationship. Thus, equation (4-1) can be replaced by:

j  (y" -  F)' = j  C ,. (^" -  ̂ )' (4-17)

where Q  is the negative ratio o f and . The derivative for param eter af in equation (4-3) 

can be calculated by
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&;/ 6 ^  ^  6//^, 6a/ ^

The common parts o f  equation (4-3) will become;

=  Q . ( ^ " - ^ ) . ( - l )  (4-19)

-  -  ^ | Â  (4-20)
dy

^  - r ;  (by equations (3-26) - (3-30)) (4-21)

» a,A  , (by equations (3-23) - (3-25)) (4-22)
da

Based on the LSE method, m = [vr, ... will be tuned by equations (4-14) - (4-

16).

In equation (4-14), y ‘̂ can be replaced by 0 ‘‘ as illustrated in equation (4-17). Then equation 

(4-14) can be re-written as following:

WtsoO +1) = ^TsoO) + +1) • -  (pIsqQ +1) • Wj-sgfl)) (4-23)

where C„ is the ratio o f  g^, and when the consequent param eters w ^re trained by LSE- 

Correspondingly, the tuning rate o f the weights is determined by equation (4-24) in this case.

‘̂ w TSQ~ rso (4-24)
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4.1.2 Parameter training for the TSl-NF controller

The nonlinear MF parameters in the T S l-N F  controller are trained by the use o f the gradient 

algorithm similar to that in the TSO-NF controller as discussed in section 4.1.1. The linear 

consequent parameters o f  the T S l-N F  controller are optimized by the LSE method.

Equation (4-7) can be re-written as:

d(\)

d(2)

y d(g)

r O )

m P  • / i  + ■ A  + -  + Mm ’ • /ar ( 2 )

r(g)

77(1)
M

( 2 )
M

ip)
M

A

A

/ aM .

Xi Xj 1 0 0 0

0 0 0 Xj Xg 1

0 0 0 0 0 0

0 0 0
0 0 0

X, X, 1

P^
4,

P9
qg

-A’ n ’ •-

lA ’ n ’ • 74^^'^ 7 ^

jP - 7 ^ '

(4-25)
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where g  is the given training data , k =  I, 2 ... g,

and , //;(")) . T he values o f

calculated by equations (3-26) - (3-28) when the input isx^^' -  (x/^^Xg^')'^ .

74'^-x, 74'' 74"-^ 74"-^ 74" -  74 '̂-;̂  74:'-:^ 74:'] (4-26)

^Tsi ~\yPrs\P) ^rsi(2) ••• ^rsi(^)] (4-27)

W'rai=[Ai 9i n ••• A  ?9 h i  (4-28)

y  = [ / ( ' )  ... (4-29)

For the LSE method used in T S l-N F  c o n t r o l l e r ,c a n  be replaced by 8 “̂ as illustrated in 

equation (4-17). Thus, the matrix o f  trained parameters will be calculated by:

+1) = w „ ,( l)  +  +1). C, _, „ ( £ ) ■ « ' > +1) .  Wrs,(l)) (4-30)

where is the ratio o f  and gg in tuning the consequent parameters , and the tuning 

rate o f the weights is determined by equation (4-31).

'̂ w_Ts\ ~ +1) ■ 6̂ w_rei (4-31)

For the recursive LSE formula to account for the time-varying characteristics o f  the system, 

the effects o f  old data pairs must delay as new data pairs become available. This problem has 

been well studied in the adaptive control and system identification literature. One typical method 

is to formulate the squared error measure as a weight and to give higher weighting factors to
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more recent data pairs, by applying a forgetting factor A to the original recursive formula (4-14) - 

(4-16).

The weights (consequent parameters) are trained by equation (4-30), by the computational 

procedures in (4-32) and (4-33):

H tsi (/ + !) = ‘S’jrs, (/ + !)• <Pts\0  +1)

= 5'y.g, (/) • (/ +1) • (1  + (/ + !)• 5"^, (/) • (  ̂+1)) ' (4-32)

Stsi ( / + ! ) - — ( / ) ( / )  • (Prsi Q+1)

■ +  VtS\ +  1) ■ *̂ 7X1 ( 0  • 9̂ 751 +  ^)) ■ V tS\ (  ̂+  1) ■ *̂ 7X1 ( 0 ]

= I  [ ( / - / / „ , ( / + 1 )  ■ (Î.J,, (; + D) ■ (/)] (4-33)
A

The typical value o f  A in practice is between 0.9 and 1. The smaller A is, the faster the 

effects o f  old data decay, and more capable the algorithm is in tracking time-varying parameters. 

A small 1  sometimes causes numerical instability, therefore, the value o f 1  is often task- 

dependent and has to be determined experimentally.
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4.2 Testing the NF controllers

4.2.1 The PD controller

For the purpose o f  comparison, the control test results from a PD control are also included in 

this section. Since the required disturbance signal in the following experiments is in voltage with 

a value o f 1 v, we have to use the angle o f 20 deg  for the Disturbance Gain to replace the angle 

o f 5 deg  as illustrated in Figure 3.5. The experiment results by using the PD controller with new 

Disturbance and Control sequence signals are shown in Figure 4.2. In this chapter, the unit o f 

time is s, the Deflection’s unit is cm, and the Rotating A ngle’s unit is deg.
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Figure 4.2. (a) The control result of the Deflection; (b) The control result of the Rotating Angle.

The overshoot o f  deflection in Figure 4.2(a) is 1.718 cm, and the settling time is about 3 s 

from / = 2 x t o /  = 5s .  The measurement o f  overshooting is applied to describe a situation where 

the initial reaction o f  a variable to a shock is greater than its long-run response. The settling time 

is a measurement to describe how fast the response converges within ± settling time percentage 

{Sp) o f the steady state or the final value o f the response. Sp depends on specific application 

requirements, and Sp  = 2% is used in this work.

Figure 4.2(b) describes the control output in terms o f  the Rotating Angle, and its maximum 

magnitude value is 23.12 deg. This peak magnitude can also reflect the control request indirectly. 

The larger value o f  the rotating angle is, the more control request o f the motor is consumed.
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4.2.2 The NN controller

Usually, an NN consists o f  many interconnected nonlinear processing elements called 

neurons. The conventional NN  is that individual neurons sum their weighted inputs and yield an 

output through a nonlinear activation function, which is called a static model. As the extension o f 

the static NN, dynamic recurrent NN is constructed by the static neurons through adding state 

feedback. In this thesis, a three-layer dynamic recurrent NN  is developed, which includes one 

hidden layer with 2 nonlinear neurons and an output layer w ith one nonlinear neuron. The 

nonlinear neurons are used to capture the nonlinearities o f the approximated system. Each neuron 

has two incoming signal, and its output is computed by passing the summation o f all incoming 

signals through the nonlinear Sigmoid function.

As a comparison, the experiment results o f the NN controller with the same Disturbance 

sequence signal (Figure 4.3) is as shown in Figure 4.4.

y *
(v)

1 -
Disturbance

2 2.44 12 12.44 22 22.44
(sec)

Figure 4.3. The disturbance signal using in TSO-NF controller.

The difference o f  disturbance signals between the PD controller and the TSO-NF controller 

is related to the unit o f  sequence signal: voltage with the amplitude o f  Iv in the NF controller, 

and degree with the amplitude o f 20 deg  in the PD controller. There exists no switching control
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sequence signal. The disturbance sequence still repeats every 10 s, and each pulse’s duration is 

over 0.44 s.
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Figure 4.4. (a) the control result of Deflection; (b) the control result of Rotating Angle.
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Figure 4.4(a) and 4.4(b) show the control results o f the Deflection and the Rotating Angle 

by using the NN controller, respectively. The overshoot o f  deflection is 1.532 cm. The largest 

magnitude o f negative value is about 0.5 cm, and the settling time is around 2 x. In Figure 4.4(b) 

the overshoot o f Rotating Angle is 23.43 deg, and the steady state value is near 2.5 deg.

In terms o f the overshoot, the NN controller has a relatively smaller overshoot than in the 

PD. The better performance o f  the NN controller is due to its training effect to fine-tune system 

parameters for better modeling. However, the experimental structure is simple in this case; any 

external environmental influence can make a significant change in system dynamics. Therefore, 

it is difficult to recognize NN controller’s other advantages over the PD controller. Although the 

NN results are very limited to a couple o f  data sets, NN can be used for time-varying systems 

but PD cannot.

4.2.3 The TSO-NF controller

The structure o f  the TSO-NF controller is shown in Figure 4.5. Two inputs (^, g) are chosen 

in this controller in the first layer, which is different from the inputs (^ ,^ ,e ,g )  in the PD 

controller.

Six MFs (subsystem 1, subsystem 2 ... subsystem 6) based on Sigmoidal and Gaussian 

functions are used for both input variables in the second layer. The im plem ented SIMULINK 

models o f the MFs are shown in Figure 4.6.

In this experiment, the sampling time o f the system is chosen O.OOlx. The learning rate in 

equation (4-24) is selected as = 0.6 to improve training convergence and instability. Due
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to the limitation o f  tolerance o f the updated parameters when the system is stable, by simulation 

tests, the learning rate in equation (4-3) and (4-4) is selected as -  0.001, or -  0.001.
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Figure 4.5. The SIMULINK model of the TSO-NF controller.
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Figure 4.6. (a) Sigmoidal MF; (b) Gaussian MF built by the Matlab blocks.

The difference between the subsystem 1 (or 4) and the subsystem 3 (or 6) is depending on 

the sign (negative or positive) o f xi (or X2 ) to make the Sigmoidal MF open left or open right.

The experiment results with the developed TSO-NF controller based on the Disturbance 

sequence signal (Figure 4.3) is as shown in Figure 4.7.
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Figure 4.7. (a) The control result of Deflection; (b) the control result of Rotating Angle.

Figures 4.7(a) and 4.7(b) illustrate the control results o f the Deflection and the Rotating 

Angle by using the TSO-NF controller, respectively. The overshoot o f deflection in Figure 4.7(a) 

is 1.129 cm. The largest negative value is -0.7 cm, and the settling time is about 3.5 s. In Figure
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4.7(b) the overshoot o f  the Rotating Angle is 9.756 deg, and the largest negative value is near -7

4.2.4 The TSl-NF controller

In this experiment, since the TS l-N F  controller involves more linear parameters (twenty 

seven) to be tuned by the LSE method than those in the TSO-NF controller (27 vs. 9), more time 

will be required in training in this experiment. Correspondingly, the sampling time is chosen

0.002 s (instead o f 0.001 s in the TSO-NF controller). The learning rate for linear consequent 

parameters in equation (4-31) is r^  = 0 .7 . Because it is a recursive LSE training process, the

forgetting factor À, = 0.9998 is selected in equation (4-32) and equation (4-33) in this experiment.

The experiment results with the developed T S l-N F controller based on the same 

Disturbance sequence signal (Figure 4.3) are as shown in Figure 4.8.
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Figure 4.8. (a) the control result of Deflection; (b) the control result of Rotating Angle.

Figure 4.8 shows the control result o f  Deflection and the Rotating Angle by using the T S l- 

NF controller, with the overshoot o f  deflection 1.462 cm, the largest negative value -0.5 cm, the 

settling time 2 s, the overshoot o f  the Rotating Angle 21.27 deg, and the largest negative value 0

Based on the aforem entioned test results from different controllers, the following 

conclusions can be reached.

1) Both the proposed two NF controllers (TSO and T S l) can be real-time implemented 

efficiently (i.e., over a  short sampling time).

2) The adopted hybrid training method can effectively optimize the controller parameters. 

The training errors can be directly used for self updating o f  the controllers.

3) In terms o f  the Deflection among the four controllers, TSO-NF controller has the best 

performance (with the amplitude o f  overshoot 1.129 cm). Although T S l-N F  controller has a little
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larger overshoot than in the TSO-NF controller, it has a smaller undershoot with the amplitude 

less than 0.5 cm. That is, both NF controllers have their own advantages and disadvantages.

4) In terms o f  the Rotating Angle among these controllers, although the TSO-NF controller 

has a relatively large undershoot, it has a much smaller overshoot (9.756 deg) than other 

controllers. That is, TSO-NF controller requires less control request o f  motor consumed. On the 

other hand, although the T S l-N F  controller has a relatively larger Rotating Angle than in the PD 

controller, it can reach a desired steady state (zero degree) after controlling; its control request is 

needed on one side only.

5) Compare the control results with the NN controller and NF controllers, both the NF 

controllers outperform the NN controller in terms o f  the overshoot, system convergence and 

control request (e.g. Rotating Angle). From figure 4.4, it is seen that the training convergence o f  

the NN controller is slow. The reason is that the NN controller is a black box processor; the 

resulting distributed knowledge after training representation in a NN is usually difficult to 

understand. Expert knowledge cannot be implemented in a NN effectively to further improve 

control reasoning and performance.

In order to overcome the need for precise process representation, the FL provides the 

controller a high-level IF-THEN control reasoning framework, moreover, the controller structure 

and parameters are optimized by NN based training. Therefore, both TSO and T S 1 NF controllers 

are used in this work.

6) In terms o f  the settling time, the TS l-N F  controller has the shortest settling time 

compared with other controllers; it takes only 2 jf to  make the structure to the steady state.
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Based upon the above comprehensive investigation, it is clear that the developed TSO-NF 

and TSl-N F controllers outperform the classical PD and NN  controllers. The reasons are 

summarized as follows:

>  Intelligent controllers possess the ability to perform in noisy environments and can 

tolerate faults and missing data; they can represent the imprecise models by elastic 

(non-crisp) or fuzzy constraints on variables.

>  NF controllers can approximate arbitrary continuous functions by appropriate training 

processes. Properly changing the learning rates can significantly improve training 

convergence and accuracy.

>  Based on on-line training, more accurate system parameters enable the NF controllers to 

achieve optimal or near optimal input-output mappings.
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Chapter 5 Vibration Control of Time-Varying Systems

5.1 Overview

As discussed in Chapter 1 (section 1.2), system identification is necessary in modeling 

system whose dynamic properties cannot be easily represented in terms o f  first principles or 

known physical laws. If  the dynamics o f the system to be controlled varied with time, the key 

step is to accurately identify the new system in real-time. In general, the purposes o f  system 

identification are as follows:

• To predict a system ’s behavior such as in time series prediction and weather forecasting.

• To explain the interactions and relationships between inputs and outputs o f a system.

• To design a controller based on the model o f a system, and to do computer simulation o f 

the system under control.

System identification usually involves two steps:

1. Structure identification: In this step, a priori knowledge about the target system is

applied to determine a class o f models within which the most suitable model is to be 

selected. Usually this class o f  models is denoted by a param eterized function y  = / ( « ;  h>) , 

where y  is the m odel’s output, « is the input vector, and h> is the param eter vector. The 

determination o f  the function f  is problem dependent.

2. Param eter identification: In this step, the selected structure o f  the model is optimized to 

determine the param eter vector fv = iv such that the resulting model y  = / ( « ;  iv) can 

describe the system appropriately.
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In general, system identification is not a one-pass process, but a repetitive identification 

procedure for both the structure and the parameters until a satisfactory model is derived. The 

general procedures are as follows [81]:

1. Specify and parameterize a class o f mathematical models representing the system to be 

identified.

2. Perform param eter identification to choose the parameters that best fit the training data 

set.

3. Conduct validation tests to see if  the model identified responds correctly to an unseen 

data set.

4. Terminate the procedure as soon as the results o f the validation test are satisfied. 

Otherwise, another class o f  models is selected and steps 2 through 4 are repeated.

For the estimation o f  model parameters from measured data, the procedure can be 

undertaken in three distinct steps: data collection, system identification and determination o f 

modal parameters from the identified system description. These steps are illustrated shown in 

Figure 5.1.
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Figure 5.1. Block diagram for parameter identification.

As shown in Figure 5.1, an input after a negative feedback o f y ^ { k  + \ ) , k = \ , 2  ...m , as time 

steps, is applied to the controller; the difference between the target system ’s output y^ { k  + 1) and 

the model’s output y^ { k  +1) is used, in an appropriate manner, to update all network parameters 

so as to reduce this difference. Actually, both desired and predict outputs (A: +1) and (A: +1) 

involve two parts: one is the rotating angle o f the rigid beam 0^ (A: + 1 ), and another is the 

deflection o f  the flexible beam 6-^(A: +1) , such asy^(A: + l)=  { 6 ^ { k  + \) + \ ) ) . Both the

output o f controller V^{k)  and the outputs o f smart structure after a unit delay y^{k)  will be the 

inputs to this identification network. These m desired input-output data pairs, y/ = 1, 2 ...m , are 

the training data sets (or sampled data sets).
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In this chapter, a novel recurrent identification network, RIN, is developed to adaptively 

recognize the system dynamics. A new hybrid online training technique, based on RTRL and 

LSE, is adopted to optimize RIN parameters; its training efficiency is compared with a classical 

training method based on the gradient algorithm.

5.2 The recurrent identification network (RIN)

The network architecture o f  the developed RIN is schematically shown in Figure 5.2. This 

RIN has three layers, each hidden layer neuron having a dynamic recurrent feedback link. The 

mapping relationship o f  this RIN network is described as follows.

Layer I Layer 2 Layer 3

Figure 5.2. Structure of RIN by using gradient method.

The input layer contains three inputs in this case. They transm it the input information to the 

second (or hidden) layer;
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f { k )  = x^{k) {(!)=\,2,3>) (5-1)

Hidden layer: a feedback link is connected to each neuron in layer 2 in order to improve the 

controlled accuracy and convergence property (stability). The signal in each feedback link 

represents the neuron output in the previous time step (i.e., at k-\) ,  and at each time step it is 

stored in the training database.

= /(nefjdjk)) (<? = 1 ,2  . !()) (5-2)

netg{k) = ■ O f \ k  - 1) + (5-3)

where netg{k) is the input to the th neuron in the hidden layer; O f \ k )  is the output o f  the 5  th 

neuron in the hidden layer; / ( * )  is the activation function, which is chosen as a continuous

nonlinear sigmoid function, /(% ) = - — ^-37  ; , vJ'P are the weights o f  the inputs to the hidden

layer, and the weights o f  the hidden neurons, respectively; are the bias o f  the second layer.

Output layer: the neurons in this layer are fixed neurons labelled, which compute the 

outputs as the summation o f  incoming signals as shown in equations (5-4) and (5-5).

+ ( ^  = l ,2 . . .5 )  (5-4)
3=\

10

(TfXit) = .(?(:)(&) (5-5)
(5 = 6

where OP^(^) and o f  ̂ (^) are the neural network outputs in the third layer; w f ̂ , a r e  the 

weights o f  the hidden neurons in the output layer. , 6f^ are the bias o f  the third layer.
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The error function is as defined in equation (4-1)

where yx{k)  and y^(&) are the desired outputs o f  the system; and y , ( t )  = O f^(^) and 

y 2 (k)  = Of^(it) are the output o f the RIN.

45000 data are chosen as the training data for each input variable (A:) and each output 

variable y, (it:), / = 1, 2. After 100 training epochs, all the related weights can achieve the desired 

outputs. Each epoch represents one cycle when all 45000 data sets are input to the scheme for 

processing.

The weights o f the dynamic recurrent network will be updated by using the gradient method, 

as follows

= _(,,(/;). 0(2) ( t ) , ( a  = 1 ,2 ...5 )  (5-8)

-e,(&) - (d:=<5,7... 10) (5-9)
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== --g,(&) Tyg). ?,y)(it), ((?== 1,:2. . .5) (5 -l())

aw/iy ^   ̂ aojf'Ok)

==--]»](;,(/:) - wg) ' (4;== 1,:!-- 5) (5-1:%)
<5=1

a A  = _ f . .  m
S w ïï“ “ è  ' ' < 5 0 f w '  duf«

10

:- 2 a W • A ’ ■ ® 2 ’w , ( #  = 1, 2 ...S )  (5-13)
5̂=6

= -e,(&)
(%,(:) (%:%:)(&) g6(:) '

==--e,(t).Tvg).6%')(it), (,5 =  1 ,2 . . .5 )  (5-14)

2c% ^(t) a o f ) ( ^ )  
c%,f) ' aO (:)(t) ' a&(:) '

--gzfJt).*(:).6%')(A;), ((?==:6, 7...11)) (5-15)
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. « . s p

-2,(4:) (5-16)

= -22(4:) CS-llf)

9 f { k )  = = f X ’iehik)) ■ (O f >(t -1 ) + » f  >. ') )

= f ( m t , ( k ) )  ■ (O f'(t -1) + wf > ■ y f ' ( t  -1)) (5-18)

®2’(*) = - ^ 7 7 ^  = f ( " ‘h(k)) ■ (y,(k) + w f> ■ — « Æ  0 )

= /'(M gf/A ;)). ( x / t )  + ). arg)(A; -1 ))  (5-19)

A '  (k)  = = /'(« « < . (*)) (5-20)

where e, (k) = y f  (k)  -  y, {k) , (k) = ^  (A:) -  (4:) ; f \n e tg  {k)) = O f) • (1 -  O f  ) . Note that

equations (5-18) to (5-20) are nonlinear dynamic recurrent equations which can be obtained 

recurrently using the initial conditions (pf i f i )  = 0 and (0) = 0 .

Thus, the weights o f  the RUsf can be updated by

w{k +1) = w{k) + 7gp • ( -1 ^ )  (5-21)
5»v
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where w are the RIN weights including , w f , w f , w f  ; 7 ,̂, is the adaptive learning rate.

5.3 The real-time recurrent learning (RTRL) with the LSE method

Consider a network consisting o f  a total o f  A  neurons with M  external input connections. Let 

x(^) denote the M -hy-\ external input vector applied to the network at the discrete time instant k, 

and let <9(4:+1) denote the corresponding A-by-1 vector o f individual neuron outputs generated 

one step later at time 4+1. The input vector x(4) and one-step delayed output vector <9(4) are 

concatenated to form the (M+A()i-by-l vector. Let A  denote the set o f  indices i, i = \ ,  2. . .M,  for 

which x,(4) is an external input, and let B  denote the set o f  indices7 , 7  = 1 ,2 .. .N, for which 0 /4 )  

is the output o f  a neuron.

We may distinguish two distinct layers in the network, namely, a concatenated input-output 

layer and a processing layer, which is illustrated in Figure 5.3 for M  = 3 a n d #  = 6  . The three 

input variables will be assumed the same as those as illustrated in Figure 5.2, that is, x(4) 

{9j {k ) ,S j {k) , vol {k )} . N  o f  the feedback connections are in actual self-feedback  links. Because

the number o f  the output neurons <9(4+1) equals the number o f  one-step delayed output vector 

<9(4), we denote the indices also by r, r -  \ , 2 . . . N . Moreover, the indices /, 7 = 1 ,2 , are denoted 

for which y/(4+l) are the two outputs o f the developed recurrent network (namely, the predicted 

data sets {(9(4 +1), e{k  +1)}.

Three kinds o f  weights are included in this network, Wy, Wrj, and Wji. They represent the 

weights o f  the connections between these M  external inputs and N  hidden layer neurons, the
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feedback links between the hidden layer neurons, and the connections between the hidden layer 

neurons and the two output neurons, respectively.

x^{k) x^{k)  x.^{k)

Figure 5.3. The architecture of a real-time recurrent network. 

The internal activation o f  neuron j  at time k  is represented by

Pj (k) = W  + Z  %  (^) • {k) (5 -22 )
(=1 r= \

At the following time step yt+1, the output o f neuron j  is computed by passing (A:) through 

the nonlinearity cr(-), or

O i k +  \) = ( j {p Ak)) (5 -23 )
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It should be noted that as indicated in equation (5-23), the external input vector x(k)  

{ûj (k) , s^(k) , vol (k) }  at time k  does not influence the output o f  any neuron in the network until 

time k+l.

With these obtained dynamic equations, the next task is to derive the RTRL technique for 

system training. RTRL is a modified steepest gradient algorithm, which aims to match the 

outputs o f  certain neurons in the processing layer to desired values at specific time instants.

Due to the desired (target) data sets being (0^(A :),e^(k)}, we define the time-varying 

error e^(k) znàe^{k)  :

ed(k) = O j ( k ) - 0 ( k )  (5-24)

= (5-25)

The instantaneous sum o f squared error at time k  will be defined as

J?(t) = ;^[(4j(4:)--<?(&))= + (f„(&) - f (&))'] (5-26)

The objective is to minimize the overall cost function £,0,0/ (A:) over all time instants; that is,

£ ,» ,(* )  = (5-27)
k

To accomplish this objective we compute the steepest gradients o f  the cost function,

= (5-28)
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dE,V F - total

a
(5-29)

where V^ £'(A:) and V^ E'(A:) are the gradient o f E (^) with respect to the weights and , 

respectively.

In order to develop the RTRL algorithm that can be used to train the recurrent network in 

real time, we will use an instantaneous estimate o f the gradient, E{k)  and V^  E{k)eA each

time step k, which will result in an approximation to the steepest gradient method. Figure 5.4 

illustrates the error propogation within the network.

,1 
I 1

a^(2)
ac^(2)

A
1 2 I

T T a

a^(3)
ac\(3)

JLM-"

dEjk)

(a) (b) (c) (d)

Figure 5.4. Error-propagation networks at different time steps: (a) / = 1; (b) i = 2; (c) i -  3; (d) a general 

situation where the thick arrow represents d^Oj ( k - l ) /  dŵ j and d*Oj {k — X)l dw,.j.

I f  ^ = 1, the error-propagation is as shown in Figure 5.4(a) and we have:

a+ o /1 )  _ f o / i )  8+^(1) _ ^ ( i )  a+ o /1 )
(5-30)

dw„ dw,. ao Y i)
(5-31)
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If  A: = 2, the error-propagation network is as illustrated in Figure 5.4(b) and we have:

a+0Y2) a o /2 )  a o /2 )  ao+xi) i----- = — i------1 i---------------------------and
dWjj dw ĵ dOj{\) dŵ j

g+.E(2) ^  a^ (2 ) a + o /2 )  

g o , (2) gw,,

g+0 / 2) _ go/2) go/2) eo\(l)

(5-32)

H  -----------------   and
dw,.j gw^ gOy(l) dw^j

g+Æ:(2) ^ g^ (2 ) g " 0 /2 )  

gw/,̂  g O /2 )  gw/,̂

If  k = 3, the error-propagation network is as shown in Figure 5.4(c) and we have:

g + 0 /3 )  g O /3 )  g O /3 )  60+v(2)

(5-33)

gŵ . gw^ 5 0 / 2 ) gŵ .

g+.E(3) g^(3) 5 ' 0 / 3 )

5 0 / 3 ) gWj,.

g + 0 /3 ) _  5 0 / 3 ) 1 5 0 / 3 ) 5 0 + /2 )

gw^ 5 0 / 2 ) gw .̂

(5-34)

and

g+E(3) ^  g^(3) a + 0 /3 )  

gw,y 5 0 / 3 )  gw,^

In general, for the error-propagation at time instant k, we have:

g + 0 .( t)  g O ,( t)  g O /^ )  g O \(A :- I )
----------- —------------ 1------------------------------------------- and

dWy dwy ô O j ( k - l )  dWy

(5-35)
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d^Ejk)  ^  dEjk)  d X k j k )  

ÔW. dO:{k) dw.
(5-36)

d^Oj jk)  _  dOj jk)  ^  dOjjk)   ̂dO"' j {k~\ )  

dw^j dw^j d O j ( k - \ )  gw^

g+Æ(A:) ^  gÆ(A:) 5+0/A:) 

5w,. gO/A;) gŵ ,
(5-37)

Where ^  — — and —  — — are already available from the calculation at the previous
gw^ 5w^

time instant. Figure 5.4(d) shows this general situation, where the thick arrow represents

—— and ^  — —, which are already available at the time instant k -\.
gw^ gw .̂

Therefore, by trying to minimize each individual £’(A:), we can recursively find the gradients

—  and at each time instant; there is no need to wait until the end o f  the presented
gŵ . gw^

sequence. Since this is an approxim ation o f the original gradient formula:

(5-38)

Aw, (5-39)

the learning rate o f  and 7 ,̂  in equations (5-38) and (5-39) should be kept small.

The weights and are updated in accordance with
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w/Â: +1) = Wy {k) + AWy {k) 

+1) = w^j{k) + Am-v/â:)

(5-40)

(5-41)

The developed RIN is trained by a hybrid technique based on the RTRL and LSE. The 

parameters o f the recurrent linlcs and the connections between these M  external inputs and N 

hidden layer neurons are trained by the use o f  the RTRL as discussed in the last section. The 

weights Wji connected between the hidden layer neurons and the two output neurons in this 

network are fine-tuned by using the LSE method when the antecedent parameters (parameters in 

MFs) remain fixed.

Given g  training data, equation (4-7) can be re-written as:

O /  ' W,] 4- . Wj i  - t- .

y r (9 ^ ^  ■ -t- • W j, -t-.

j F ' . o / )  • w , ,  -t- . W 2 1  4 -.

. . .  o j ') ^21
(5-42)

where O / '  ( y = 1 ,2 ,..., 7/ ; 7/ = 6 ) are the outputs o f neurons in the second layer. 

(p/A:) = [0(") ... Oy)]

d > = [ / ( l )  / ( 2 )  ... / ( g ) f

(5-43)

(5-44)
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»’/ = [«Il «21 -  «2/1^ (5-45)

y, = [ / " '  / < «  ... /< » ) ] ' (5-46)

where k = \ ,  2. . .  g.

To simplify notations, equation (5-42) will be expressed in a matrix-vector form:

F; = 0  • IV; (5-47)

Then equations (4-13) can be represented by

= ( 0 ^  .0)->  . 0 '^ -F;, (5-48)

where (<^^ -<^)“’ is the pseudo inverse o f ^  if  - 0  is nonsingular.

Let the zth row vector o f  matrix 0 ^  defined in equation (5-47) be q)‘ (z) and the zth element

o f F; be ; adding a forgetting facto rÂ ( Â =  0.9998 in this case), then iv* can be calculated

recursively using the following formulas:

IV;*( z -f 1) = IV*(z) + f f (z  +  1 ) - - cp '̂(z + 1)• IV/*(z)) (5-49)

^ R T R L  (Z +  1) =  S r t r l  "b 1) • < p ( z  -f 1)

= S rtrl(^) • H z  + \ ) - { X  + H { z  +  \ )-  5';ot/.(z) • H z  + 1))"' (5-50)

^RTRl (.Z d " ! )  — ^  [^ R T R L iz )  — ̂ R TR l H )  ' H F  +  1)
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-(A + (g + + (g (z + 1)

= ^  [( / -  i z  + \ ) - (p ' \ z  + 1 ))  • ( z ) ] (5-51)

5.4 Control performance comparison based on training techniques

5.4.1 Implementation of the RIN in the experiment

Figure 5.5(a) shows the block diagram o f the flexible structure control system without RIN. 

6 and e are the control input variables, and vol  is the control output variable. The block 

‘controller’ is the NF controller as developed in Chapter 3. Figure 5.5(b) illustrates the block 

diagram o f the experiment when the RIN is applied. The difference between the systems in 

Figures 5.5(a) and 5.5(b) is related to the RIN which is used to automatically estimate the model 

o f the tested flexible structure. In training the RIN, the desired data sets are those o f the control 

results { d j i k ) , E j { k ) } without RIN. Then when the actual outputs o f RIN { 6{k  +1), E{k +1)} 

are similar to those o f  { 9^{k) , s ^ { k ) }, it is assumed that this RIN has identified the model o f 

tested flexible structure.

Disturbance
Input

variables
Output

variable

vol
Smart Structure Controller

- !>

(a)
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Smart Structure sÀk), RIN

vol(k)

Input
variables

9(k+l)

e(k+l) Controller

Output
variable

vol(k^

Disturbance

+

(b)

Figure 5.5. (a) The flexible structure control system without RIN; (b) The flexible structure control

system with RIN.
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Figure 5.6. The RIN structure by using MATLAB blocks.
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Figure 5.6 shows the implemented RIN in SIMULINK in experiment. The connections 

between the first layer and the second layer o f this network are described by the first ten 

subsystems describe as shown in Figure 5.7. The unit continuous nonlinear sigmoid

1
functions, /  (x)

\ + e
j ,  J  = 1 , 2 ... 1 0 , are represented by and the last ten subsystems as

shown in Figure 4.6(a). Furthermore, it is assumed that - 1 ,  and = 0 in this experiment. In

Figure 5.6, are replaced by the variables w((zi )̂ , (z) = 1, 2, 3, S = ^ q = \ ,  2. ..10; w y  are 

replaced by the variables and are replaced by www(^l) and www{^2)  , ^  = 1 ,

2. ..5. In the following tests, the sampling time is 0.001 s.

C o n s ta n t  1

T h e ta  
(R o ta t in g  A n g le )

Constant 2

D eflation

*3c
Constant 3

V o lta g e

Product 1 

->■

P ro d u c t  2 

-►

P ro d u c t  3

C D
Oq

Figure 5.7. The connections between the first layer and the second layer.

5.4.2 The predicted results based on the gradient training algorithm

In this test, based on limitations o f the DSP board, the sampling frequency is selected as 

1000 Hz, or the sampling time is 0.001 s. The RIN is trained based on the classical hybrid 

training method o f  the gradient algorithm. As stated in section 5.4.1, i f  the actual outputs o f  RIN
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{6{k  +1), s{k  +1) } are similar with the desired control results { 6 y k )  , S j { k ) ) , \ \ . \ s  believed that 

the RIN has identified the model o f  the flexible structure. To improve training efficiency, the 

TSO-NF controller as developed in Chapter 3 is applied in this RIN experiment. Z-shaped MFs, 

triangle MFs, and S-shaped MFs are applied in the second layer o f the NF controller for each 

input variable; all o f the antecedent parameters remain constant in training to improve learning 

efficiency.

The desired data sQ\0j{k)  and the predicted data scX6{k + l ) o f  the Rotating Angle are shown

in Figure 5.8(a), and the predicted error O { k + \ ) - 0 ^ { k )  o f  Rotating Angle is shown in Figure

5.8(b). It is seen from Figure 5.8(b) that the largest absolute value o f  the Rotating Angle error is 

7.28 deg.
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Figure 5.8. Test results based on gradient training algorithm, (a) The desired data set (solid line) and the 

predicted data set (dashed line) of the Rotating Angle; (b) the predicted error of Rotating Angle.

The desired data set Sj (k) and the predicted data set s ( k  + 1) o f the Deflection and the

predicted error s { k  +  V ) - S j { k )  are as shown in Figure 5.9(a) and 5.9(b), respectively. It is clear

that the largest Deflection error is 0.932 cm  in Figure 5.9(b). There are several small undershoots 

in Figure5.9 (b) when each disturbance is applied. The average undershoot value is around -0.3 

cm.
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Figure 5.9. Test results based on gradient training algorithm, (a) The desired data set (solid line) and the 

predicted data set (dashed line) of the Deflection; (b) the predicted error of Deflection.

100



5.4.3 The predieted results based on RTRL with the LSE training method

In this test, the RIN is trained based on the adopted hybrid training method o f RTRL and 

LSE. The desired data set and tire predicted data set o f the Rotating Angle are shown in Figure 

5.10(a). The predicted error o f Rotating Angle is shown in Figure 5.10(b), where the largest 

Rotating Angle error is 3.978 deg.
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Figure 5.10. (a) The desired data set and the predicted data set of the Rotating Angle; (b) the predicted

error of Rotating Angle by using RTRL with LSE.

The desired data set and the predicted data set o f the Deflection are shown in Figure 5.11(a). 

The predicted error o f Deflection is shown in the Figure 5.11(b), and the largest Deflection error 

is 0.429 cm. It is seen from Figure 5.11(b) that there are several small undershoots with the 

average value is around -0 .1  cm, when each disturbance is introduced.
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Figure 5.11. (a) The desired data set and the predicted data set of the Deflection; (b) the predicted error of

Deflection by using RTRL with LSE.

From figure 5.8 to figure 5.11, it is seen that both RINs can effectively capture the system ’s 

dynamic behaviors. Compared to the predicted results by using the gradient method (Figure 5.8

103



and Figure 5.9) and RTRL with LSE method (Figure 5.10 and Figure 5.11), RTRL with LSE 

method has a better prediction on both the Rotating Angle o f the rigid beam and the Deflection 

o f the flexible beam because o f its adaptive network architecture in which more dynamic 

recurrent feedback links are connected to each neuron in the second layer; and because o f its 

effective training process which simply minimizes the instantaneous error squared, thereby 

reducing the storage requirement to the minimum possible.

Figure 5.12 shows the root mean squared error (RMSE) curves for the NN controller 

introduced in Chapter 4 and two designed RINs with the proposed NF controller. 45000 data are 

chosen as the training data for each input variable and each output variable.

b
HI

m3W
CO

I

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 11 Hi

tiL' M  11.11

Neural Network

’ 14

RIN with Gradient method

RIN with RTRL and LSE method

50 100 150
Epochs

200 250

Figure 5.12. RMSE curves for the NN and RINs.
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In this figure, it is found that the training convergence o f  NN controller is slower, and the 

convergence o f  the RIN with the novel hybrid training algorithm (RTRL and LSE) is the fastest 

in performance.

5.4.4 The control results based on the gradient training algorithm

The experiment result by using the designed RIN trained by the gradient method, with the 

Disturbance sequence signal (as shown in Figure 4.3) is illustrated in Figure 5.13. The overshoot 

is 0.902 cm, the largest negative value is -0.35 cm, and the settling time is about 2 5 .

1.5

E
O 0.5

-0.5

X: 2.896 
Y : 0.9022

I
- I -  F  1- -

À

0 1 2 3 4 5 6 7 8 9  10
Time Steps (s)

Figure 5.13. The control result of Deflection.

5.4.5 The control results based on RTRL with the LSE training method

The experiment result by using RTRL with LSE method with the Disturbance sequence 

signal (as shown in Figure 4.3) is in the Figure 5.14. The overshoot is 0.331 cm, and the largest 

negative value is still near -0.35 cm. The settling time is less than 2 5 .
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Figure 5.14. The control result of Deflection.

Compare the control results o f  Deflection. Firstly, the control results with RIN trained by 

either gradient or RTRL with LSE methods are better than those without RIN. The reason is that 

the nonlinear dynam ical equations o f the tested flexible structure are derived by using 

Lagrangian method. Errors are introduced due to linearization. Secondly, the Deflection control 

by using RTRL with LSE outperforms the control based on gradient training. The error- 

propagation Ei in the RLRT with LSE approach is calculated at each time step instead o f trying 

to minimize the overall error function at the end o f  each sequence as in
k

gradient algorithm; therefore, the control based on RTRL with LSE is much better in 

performance and faster in convergence.
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5.5 Control of time-varying systems

In this experiment, a couple o f  magnetie bloeks (eaeh one is lOOg) are used to ehange 

system dynamies o f  the flexible beam to simulate the time-varying conditions. I f  the magnetic 

blocks are attached on the flexible beam and/or their positions are changed continuously, the 

natural frequency o f the system will be changed and the overall dynamic equations o f  the tested 

system will be modified correspondingly. Different magnetic block position corresponds to a 

different system dynamics. This test is to verify the effectiveness o f the proposed RUN in 

automatically identifying new system model and transferring it for control applications. It should 

be stated that the PD controller cannot work properly in this test because o f  the lack o f accurate 

estimate o f the dynamic characteristics o f the tested system.

5.5.1 Control test based on the gradient training

The experiment results by using the designed RIN based on the classical gradient training 

with the Disturbance sequence signal (as shown in Figure 4.3) are illustrated in Figure 5.15. 

Figure 5.15(a) shows the control result o f  Deflection when the magnetic blocks are attached at a 

bottom position o f the flexible beam, with the overshoot o f  0.921 cm. Figure 5.15(b) 

demonstrates the control result o f Deflection when the magnetic blocks are attached at the 

middle position o f  the flexible beam, with an overshoot about 0.964 cm. Figure 5.15(c) shows 

the control result when the blocks are at a top position o f  the flexible beam, where the overshoot 

is 0.937 cm. From these results, it is seen that their undershooting and the settling time are 

similar as in Figure 5.13 when the system has no extra blocks attached.
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Figure 5.15. (a) using RIN with BP method when the magnetic material at lower position; (b) the 

magnetic material at middle position; (c) the magnetic material at upper position.

5.5.2 Control test based on RTRL with LSE training method

W hen the RIN is trained by using the hybrid technique based on RTRL and LSE, the 

experiment results are as shown in Figure 5.16. The control result o f  Deflection when the 

magnetic blocks are attached at a bottom position o f  the flexible beam is illustrated in Figure 

5.16(a), where the overshoot is 0.347 cm. Figure 5.16 (b) shows the control result o f Deflection 

when extra blocks are positioned at the middle area o f the flexible beam, with the overshoot o f 

0.349 cm. Figure 5.16 (c) demonstrates the corresponding control result when the blocks are 

attached at a top position o f the flexible beam; The overshoot is 0.302 cm. Compared with the
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results shown in Figure 5.14, the corresponding undershooting and the settling time are similar 

as those tests when the system has no external materials attached.
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Figure 5,16. (a) using RIN with RTRL method when the magnetic material at lower position; (b) the 

magnetic material at middle position; (c) the magnetic material at upper position.

Compare the control results o f Deflection when the dynamics is changed by attaching 

external materials, the RIN can quickly and effectively identify the system new dynamics and 

implement it to the control applications accurately.

5.6 Result discussion

1) In terms o f the control requests o f the system with RIN, the control results o f Rotating 

Angle, based on both training methods, are about +15 deg. Specifically, when the system 

dynamics is changed by attaching the extra magnetic block, the Rotating Angle is still around 15 

deg. That is, the control requests o f the motor remain similar when the system dynamics varies.



2) In terms o f the selection o f appropriate learning rate, by simulation tests, the learning rate 

o f weights is chosen as 0.01 in gradient algorithm, and 0.001 in the RTRL with LSE. Gradient 

training is usually performed off-line in the sense that the parameters are not updated until the 

sequence {k=\ ,  2 . . .m)  is completely input to the system. However, RTRL with LSE is an on

line training technique. The parameters can be updated immediately after each input-output pair 

is presented to the system. Thus, the gradient algorithm requires more time than RTRL with LSE 

method to train and minimize the error functions between the actual and the desired control 

outputs.

3) When the dynamics is changed by attaching an external materials to the system, PD 

controller cannot adapt it to the system ’s new dynamics by properly modifying its gains, it 

cannot be for the vibration control o f  time-varying systems. During this experiment with the PD 

controller, the control motor generates a lot o f noise as the flexible beam with the block is 

vibrating.



Chapter 6 Conclusions and Future Work

6.1 Conclusions

In this thesis, new intelligent schemes have been developed for active vibration control 

mainly for flexible engineering structures. The control effects are achieved based on two 

sequence signals: disturbance signal and the control signal. The principle o f adding the 

disturbance signal to the system is to change the degree o f  the rigid beam to generate the 

disturbance effects.

Novel NF controllers have been developed for active vibration control, in which the control 

reasoning is performed by FL whereas fuzzy system parameters are updated by NN based 

training algorithms. NF controllers are intended to integrate the merits from both FL and NN 

based controllers while overcome their respective limitations. Because o f  the more complex 

architecture, the NF controller requires higher computational effect, which will result in lower 

sampling frequency. Consequently, high computational burden may make it difficult to 

implement an NF controller for real-time applications. To solve this problem , the developed NF 

controllers employ simplified network architectures so as to improve control process 

computationally efficiency. The developed NF controllers are trained by using a hybrid 

algorithm for fast identification o f parameters: The antecedent parameters are updated by 

gradient method whereas the consequent parameters are tuned by LSE.

For time-varying systems, the dynamics o f the system will change; correspondingly, the new 

dynamic equations have to be re-determined accordingly. It is a hard task especially for 

nonlinear systems. In this work, a  novel recurrent network, RIN, has been developed to real-time
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system dynamics identification. A novel training technique is adopted to improve the 

convergence o f the RIN scheme and to accommodate different system conditions. This training 

technique is hybrid method; the recurrent network parameters are optimized by the RTRL 

algorithm whereas the consequent linear system parameters fine-tuned by LSE.

The effectiveness o f  the developed intelligent controllers, RIN, and the related training 

techniques has been verified by online experimental tests on a flexible beam structure. The time- 

varying effects are undertaken by moving the position o f  magnetic blocks attached onto the 

flexible beam. From the comprehensive investigation, it is demonstrated that the developed NF 

control technique a good candidate for real-time active vibration control for time-varying 

systems. Based upon the experiment results, firstly it is shown that the developed NF controller 

has the capability o f  mapping the input-output data sets to achieve the target (or desired) output 

o f the time-varying systems. It outperforms the classical as well as other related intelligent 

controllers. The novel NF controller has better performance in terms o f overshoot, settling time, 

and the Rotating Angle (control requests). The online learning algorithm can also improve the 

controller’s training convergence.

Secondly, the control results with the RIN are better than those without the RIN. It is 

because the modeling errors are unavoidable when the system dynamics are transferred from 

nonlinear equations to linear equations. Furthermore, if  system dynamics varies, the RIN can 

effectively identify the system ’s new  dynamics and implement it for real-time control 

applications.
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Thirdly, the Deflection control results by the hybrid training technique based on the RTRL 

and LSE are better than those by the classical training algorithm based on gradient. The control 

effect by using RTRL w ith LSE method is the most obvious and fastest.

6.2 Future works

1) In Chapter 3, two novel N F controllers (TSO-NF and T S 1 -NF) have been developed. In 

the TSl-N F controller, only the linear consequent parameters are trained on-line during the 

experiment. In future work, a more efficient training algorithm will be suggested to online train 

both the liner and nonlinear fuzzy param eters in the controller.

2) Improve the architecture o f the proposed RIN, by adding more neurons in each layer or 

re-design the network connections, so as to enhance the mapping accuracy between the input- 

output spaces.

3) Propose more efficient online training algorithms to further improve the training 

convergence o f  the controller and RIN, and to recognize and accommodate time-varying system 

dynamics.
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