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Abstract

Listeria monocytogenes, a food-borne pathogen associated with severe disease, 

forms resistant biofilms which enable it to persist in food processing environments. 

Recently, surface active compounds and other microbially secreted substances have 

been reported to antagonize biofilm formation (Ihe et al. 2005. FEMS Microbiol Lett 250, 

237-243; Valle et al. 2006. Proc. Natl. Acad. Sci. U.S.A. 103, 12558-12563). These 

findings led us to investigate the use of secreted substances as a method for Listeria 

biofilm reduction. We screened isolates obtained from paper mill slimes for novel 

surfactant producing organisms, but were unable to find an isolate of interest. We then 

turned our investigation to the interactions between pseudomonads and Listeria. 

Conflicting reports regarding the influence of pseudomonads on the growth of Listeria 

biofilms led us to investigate the effect of substances secreted by Pseudomonas putida 

and Pseudomonas aeruginosa PA01 on L. monocytogenes EGDe biofilms.

Listeria biofilms were grown on stainless steel and polystyrene at 22, 30, and 

37°C and exposed to conditioned medium prepared from either P. Putida or P. 

aeruginosa. P. putida was found to secrete substances that significantly enhance 

Listeria attachment at 37°C. In contrast, P. aeruginosa was found to inhibit biofilm 

formation and disperse mature biofilms at temperatures < 30°C. Treatment with P. 

aeruginosa conditioned medium reduced biofilms on stainless steel by 1.65 Log 

CFU/cm^ and virtually eliminated all biofilm on polystyrene. The influence of 

temperature suggests that this reduction in biofilm formation may involve the flagella of 

Listeria.



To elucidate the genetic basis for this removal, 1416 random Tn5 mutants were 

screened for an altered ability to remove biofilm. One mutant was found to exhibit 

impaired biofilm removal, and it was determined that the transposon had disrupted the 

lasB gene, coding for the secreted metalloprotease elastase. These results indicate that 

elastase could potentially be developed as part of a novel antimicrobial strategy for the 

control of biofilms in the food industry.
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1. Literature review

1.1 L/sfena monocyfogenes and listeriosis

Listeria monocytogenes is a ubiquitous environmental bacterium and a food 

borne pathogen that is responsible for one of the most serious food borne infections, 

listeriosis, which has a mortality rate of 30%. L. monocytogenes has been implicated in 

both sporadic and epidemic outbreaks, and although it accounts for just 1% of all cases 

of food-borne disease, it is responsible for 28% of food borne disease related deaths 

(Mead et al., 1999; Recourt et al., 2001; Schuchat et al., 1991).

The majority of cases of listeriosis occur in individuals with impaired cell 

mediated immunity, such as pregnant women, the elderly and very young, and 

immunocomprimised individuals. In adults, invasive infection may result in meningitis, 

meningoencephalitis, and less commonly, abscesses of the brain or spinal cord or 

endocarditis (Farber & Peterkin, 1991). In pregnant women, infection is most common 

during the third trimester and can result in preterm labour, spontaneous abortions, or 

still birth. Neonatal disease from intrauterine infection can result in meningitis and has a 

mortality rate of 38% (Schuchat et al., 1991 ).

There are 13 serotypes of L. monocytogenes, yet only four of these are 

responsible for 98% of human listeriosis, and the majority of outbreaks and sporadic 

cases have been linked to serotype 4b (Buchrieser, 2007). L. monocytogenes has been 

described as having a Jekyll and Hyde personality, being well adapted to life as a 

saprophyte in soil and vegetation, yet in response to environmental cues is able to 

transform itself into a potentially deadly pathogen (Gray et al. 2006). Through complex 

regulatory pathways L. monocytogenes becomes a facultative intracellular pathogen
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that can be engulfed by phagocytes, but it is also able to provoke engulfing by cells that 

are normally considered non-phagocytic. L. monocytogenes expresses two surface 

proteins, internalin A and B, which mediate its entry into host cells (Ireton, 2007). Once 

inside a cell, it leaves the phagocytic vacuole to replicate in the cytoplasm and uses 

actin based polymerization for motility and cell to cell spread (Ireton, 2007). Infection 

begins when Listeria enters intestinal epithelial cells, from which it can spread to the 

blood and into the liver, the major site of replication. Blood borne bacteria may also 

spread and infect the central nervous system (Gandhi & Chikindas, 2007; Gray et al. 

2006).

Once L. monocytogenes is ingested by a host, it has several mechanisms to 

evade host defenses. During infection, flagella will provoke a strong immune response; 

therefore, suppression of flagella is believed to have evolved as a means of evading the 

host immune system. When Listeria encounters physiological temperature (37°C), it 

rapidly down regulates its expression of flagella. At 37°C, the motility gene repressor 

(MogR) blocks transcription of flaA, the flagellin subunit. MogR also represses 

transcription of its own anti-repressor, GmaR. However, at low temperatures a fourth 

protein, DegU, activates transcription of gmaf? through an unknown mechanism, 

allowing GmaR to remove MogR, thus enabling production of flagellin (FlaA) (Shen & 

Higgins, 2006; Shen et al., 2006). Listeria also demonstrates a high level of acid 

tolerance, which enables it to survive the low pH of the stomach. Acid tolerance has 

been linked to virulence, and pre-adaptation to low pH values, such as those 

encountered in the stomach, has been reported to increase invasiveness and survival of 

Listeria (Gray et al. 2006).
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Despite the serious illness that can result from infection with L. monocytogenes, 

the organism was not identified as a food-borne pathogen until 1981, following a large 

outbreak in Nova Scotia linked to consumption of coleslaw produced from contaminated 

cabbage (Schuchat et al., 1991). Since then, several large outbreaks have occurred 

linked to foods such as contaminated milk and soft cheeses. L  monocytogenes has 

been identified in nearly all types of foods; however, some of the more common ones 

include vegetables, soft cheeses, seafood, ice cream, pork, ready-to-eat meats and 

foods stored at refrigeration temperature for long periods of time (Recourt et al., 2001 ; 

Schuchat et al., 1991 ; Thevenot et al., 2006; Zhu et al., 2005).

L. monocytogenes is a small, non-spore forming Gram positive rod. It is a 

facultative anaerobe and lives in variety of habitats, including soil, water, sewage, and 

decaying vegetation, and has been reported to survive in plant materials for up to 10-12 

years (Gray et al. 2006; Schuchat et al., 1991). As it is widespread in the environment, 

Listeria can easily enter food processing settings and once there, several characteristics 

of its physiology enable it to persist. Foremost is its ability to survive and grow at 

refrigeration temperature. Although it has an optimum growth temperature of 30-37°C, it 

is capable of survival and growth at 1-45°C. Thus, refrigerated ready to eat foods are of 

particular concern (Gandhi & Chikindas, 2007). Listeria is also tolerant to osmotic 

stress and a wide range of pH values. However, the major factor in enabling its survival 

and persistence food processing environments is its ability to form resistant biofilms.

1.2 L/sfer/a biofilms and biofilms in the food industry

Biofilms are communities of surface attached cells embedded within a matrix of

extracellular polymeric substances (EPS). Compared to planktonic cells, those that are
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part of a biofilm demonstrate increased resistance to desiccation, sanitizers and anti 

microbial agents. Biofilms within food processing environments are a major concern 

because they are difficult to prevent and remove, and they create a persistent risk of 

contamination.

Just as Listeria has a number of mechanisms that enable it to effectively invade 

and establish itself as a pathogen in host organisms, it is also well adapted for survival 

in the environment. While expression of flagella may be detrimental during infection, 

motility of the flagella has been reported to be critical to Listeria biofilm formation 

(Lemon et al., 2007), and at temperatures of 30°C or below L. monocytogenes becomes 

motile with peritrichous flagella. The expression of flagella enables Listeria to adhere to 

surfaces and initiate biofilm formation, and it has been demonstrated to form biofilms on 

a variety of materials commonly used in the food industry (Beresford et al., 2001 ). Some 

of the more problematic areas for biofilm formation include floors, bends in pipes, 

stainless steel surfaces, and conveyor belts (Kumar & Anand, 1998).

Once established, the Listeria biofilms can survive for long periods of time, 

becoming a persistent source of contamination. Detaching cells can contaminate foods 

before and after processing, and cross contamination may occur at any stage between 

the processing plant and the consumer, and contamination in the home is also a risk 

(Thevenot et al., 2006).

Biofilms and contamination are a continual problem in the food processing 

setting, and a number of strategies are currently used to control biofilm formation. 

Mechanical methods of biofilm removal include ultrasound, electrical fields, and 

combinations of these treatments with biocides or antibiotics (Kumar & Anand, 1998).
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other strategies include the use of detergents, anti-fouling paints containing silver, and 

food packaging materials containing edible films of antimicrobials (Gandhi & Chikindas, 

2007; Kumar & Anand, 1998). Another approach is active packaging, in which materials 

are incorporated into the packaging to control the atmosphere and inhibit growth of 

pathogens on the food product (Gandhi & Chikindas, 2007). Substances of microbial 

origin, including bacteriocins, such as the antimicrobial peptide nisin, have been used 

both on food processing surfaces and directly in food products. Enzymes such as 

endoglycosidase and EPS degrading enzymes from Streptomyces have also been used 

in biofilm control (Kumar & Anand, 1998). Despite the variety of options available, 

biofilms in many industries remain problematic, and due to evidence of increasing rates 

of resistance to antibiotics, sanitizers, and bacteriocins, there is an ongoing effort to 

develop effective methods to prevent the growth of Listeria (Gandhi & Chikindas, 2007; 

[Anon], 2006).

1.3 Quorum sensing

There is evidence that many species require quorum-sensing for the construction 

of biofilms (Parsek & Greenberg, 2005). Quorum-sensing (QS) is a form of cell-cell 

communication that involves the release and detection of signalling molecules called 

autoinducers (Daniels et al., 2004; Waters & Bassler, 2005).

In Gram-negative species the most common autoinducers are acylated 

homoserine lactones (AHLs) (Whitehead et al., 2001). Although it is not a wide spread 

phenomenon, production of AHLs is a highly conserved regulatory system and 

approximately 4%, over 50 species, of Proteobacteria genera have been found to 

produce these molecules (Fuqua et al., 2001; Manefield & Turner, 2002).
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The paradigm for AHL quorum-sensing is based on the LuxIR system found in 

Vibrio fischeri, the first of such systems to be described. The two main components of 

the system are the autoinducer synthase, LuxI, and the autoinducer receptor/DNA- 

binding transcriptional activator, LuxR. Newly synthesized autoinducers diffuse freely 

from the cell, and as the cell density increases, there is a corresponding increase in 

their extra-cellular concentration. The threshold concentration is reached once 

autoinducers begin binding to their receptor, LuxR. The LuxR-autoinducer complex then 

activates transcription of quorum-sensing controlled genes, including the one encoding 

LuxI. The result is a positive feedback loop that floods the extracellular space with 

autoinducers (Chen et al., 2005; Fuqua et al., 2001; Waters & Bassler, 2005).

The Gram positive counterpart to the AHL signalling systems of Gram-negative 

species is based on oligopeptide signals. Oligopeptides, which are 5-17 amino acids 

long, bind to membrane bound histidine kinase receptors and initiate a phosphorylation 

cascade that ultimately alters the activity of DNA-binding transcriptional regulatory 

proteins (Camilli & Bassler, 2006; Waters & Bassler, 2005).

Both the AHL and oligopeptide systems are believed to be designed 

predominantly for intraspecies communications due to the high level of specificity 

between the signals and their receptors (Waters & Bassler, 2005). In contrast, LuxS 

quorum sensing has been suggested to be an interspecies communication system. It is 

based on an autoinducer called AI-2 which has been identified in a wide variety of 

Gram-negative and Gram-positive species. AI-2 is produced by the LuxS autoinducer 

synthase, which produces 4,5-dihydroxy-2,3-pentanedione (DPD) that then undergoes a 

variety of spontaneous, species specific rearrangements (Camilli & Bassler, 2006). The
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luxS gene is highly conserved among a diverse range of species; thus, it has been 

proposed to be a universal signal (McNab et al., 2003; Xavier & Bassler, 2003).

Natural mechanisms for QS signalling interference among prokaryotes, and 

between prokaryotes and eukaryotes, have been reported for a variety of species. 

Examples include the destruction of AHLs by Bacillus spp., inhibition of oligopeptide 

signalling between strains of Staphylococcus aureus, and destruction of AI-2 by E. coli 

(Camilli & Bassler, 2006). The evidence for interspecies communication has led to 

investigation of signal transduction interference as a novel method of biofilm control, 

and signal molecules such as AI-2 have been suggested as novel targets for biofilm 

prevention (Scheie & Petersen, 2004).

1.3.1 Quorum sensing in Pseudomonas aeruginosa

The complexities of quorum-sensing are illustrated by the systems operating in 

Pseudomonas aeruginosa, in which the expression of up to 400 genes is under QS 

control (Parsek & Greenberg, 2005). There are two distinct AHL quorum-sensing 

systems in P. aeruginosa, the LasIR system, the RhIIR system, and a third non-AHL 

system, which is based on the Pseudomonas quinolone signal (PQS) (Camilli &

Bassler, 2006; Waters & Bassler, 2005).

The Las and RhI AHL systems are arranged in a hierarchical series, and both 

are homologous to the LuxIR system of V. fischeri (Chen et al., 2005; Daniels et al., 

2004; Latifi et al., 1996; Waters & Bassler, 2005).The LasIR system is the first to be 

activated, and is responsible for the activation of the RhIIR system (Latifi et al., 1996; 

Waters & Bassler, 2005). LasI synthesizes an AHL autoinducer, A/-(3-oxododecanoyl)-L- 

homoserine lactone, (3QC12)-HSL, which binds to LasR once it reaches the threshold
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concentration. The LasR-(30C12)-HSL complex then activates transcription of the 

genes controlled by the Las system, in addition to activating the RhIIR system. Rhil 

synthesizes a second AHL autoinducer, /V-butanoyl-L-homoserine lactone, (C4)-HSL, 

that binds to RhIR upon accumulating to the necessary threshold concentration (Chen 

et al., 2005; Daniels et al., 2004; Waters & Bassler, 2005; Whitehead et al., 2001). The 

RhlR-(C4)-HSL complex then activates transcription of its own set of target genes 

(Chen et al., 2005; Waters & Bassler, 2005; Whitehead et al., 2001). The expression of 

some genes is specific to either Las or RhI QS, however, there are also many genes 

that are under the control of both systems (Nouwens et al., 2003).

An additional system, based on the Pseudomonas quinolone signal (PQS), is 

involved in the expression of virulence factors and biofilm formation, and is intertwined 

with both the Las and RhI systems. PQS has been identified in P. aeruginosa, and PQS 

systems are also believed to present in other Pseudomonas spp. and Burkholderia spp. 

(Diggle et al., 2007).

1.4 Biosurfactants

While targeting QS itself, and by using signalling molecules, is one approach to 

biofilm removal or prevention, an alternative strategy is to investigate other secreted 

substances of microbial origin, many of which are regulated by QS.

Many of the known secreted substances produced by microorganisms that show 

potential for use in industry have surface active properties. Surface active agents are 

amphiphilic compounds characterized by the ability to form micelles and to lower 

surface and interfacial tension (Singh et al., 2007). Surfactants of microbial origin, 

referred to as biosurfactants, are synthesized by a wide variety of bacteria and yeast
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genera and comprise an array of chemical structures including glycolipids, lipopeptides, 

lipoproteins, phosopholipids, fatty acids, and neutral lipids (Rodrigues et al., 2006a).

The majority of known biosurfactants are glycolipids, and examples include 

rhamnolipids produced by Pseudomonas spp., trehalolipids produced by species 

belonging to Mycobacteria and Nocardia, and sophorolipids produced by several 

species of yeast (Desai & Banat, 1997). Lipopeptide and lipoprotein biosurfactants have 

also been identified, many of which have antibiotic properties and high surface 

activities. Examples of these types of compounds include the surfactants surfactin and 

iturin, both produced by Bacillus subtilis, Serratia produced serrawettins, and gramicidin 

and polymyxin antibiotics produced by Bacillus brevis and Bacillus polymyxa 

respectively (Ahimou et al., 2000; Rodrigues et al., 2006a; Tanikawa et al., 2006).

The physiological roles of biosurfactants are not well understood and few 

have been studied in detail (Van Hamme et al., 2006). The diverse nature of the 

compounds, and the organisms producing them, make generalizations difficult and the 

various types of surfactants likely have different roles (Rodrigues et al., 2006e; Ron & 

Rosenberg, 2001). To date, surfactants have been found to be involved in a wide range 

of functions, including the uptake of water-insoluble substrates, motility and swarming, 

amensalism, virulence, biofilm formation and maturation, and in many cases numerous 

functions have been identified for a single compound (Rodrigues et al., 2006b; Ron & 

Rosenberg, 2001; Van Hamme et al., 2006).

1.4.1 Rhamnolipid biosynthesis

Some of the most studied substances secreted by P. aeruginosa, and the best 

characterized of all biosurfactants, are rhamnolipids (Desai & Banat, 1997; Maier &
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Soberon-Chavez, 2000; Rodrigues et al., 2006a). Rhamnolipid production is controlled 

by the RhI QS system (which is in turn controlled by the Las and PQS systems) and 

involves the addition of rhamnose to the hydrophobic fatty acid moiety, 3-(3- 

hydroxyalkanoyloxy)alkanoic acid (HAA) (Chen et al., 2004; Qchsner & Reiser, 1995; 

Pearson & Hansen, 2007; Pearson et al., 1997). The genes involved in rhamnolipid 

synthesis are arranged in two opérons, with rhIA, rhIB, rhIR, and rhIl forming one 

cluster, while the rhIC gene is located elsewhere on the chromosome in an operon with 

a second gene (PA1131 ) whose function is unknown (Soberon-Chavez et al., 2005).

There are three main proteins involved in rhamnolipid synthesis: RhIA, RhIB, 

and RhIC. RhIA is involved in the synthesis of HAAs (Deziel et al., 2003). These 

molecules are both an end product and an intermediate, as some HAAs are released 

from the cell without further modification, while others will have either one or two 

rhamnose moieties attached to become mono or dirhamnolipids prior to being excreted. 

RhIB is a membrane bound rhamnosyl transferase that produces monorhamnolipids 

through the addition of dTDP-L-rhamnose to an HAA (Soberon-Chavez et al., 2005).

Like their precursor HAA, monorhamnolipids may either be excreted from the cell or 

have a second rhamnose added to produce a dirhamnolipid. This reaction is carried out 

by RhIC, a second membrane bound rhamnosyl transerferase which adds dTDP-L- 

rhamnose to monorhamnolipids (Rahim et al., 2001). The production of rhamnolipids is 

illustrative of the complex networks of QS hierarchies in Pseudomonas, and the number 

of interacting factors that may be involved in the synthesis of secreted substances.
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1.4.2 Physiological role

Several physiological functions for these biosurfactants have been identified to 

date. A number of studies have suggested that the physiological role of biosurfactants, 

including rhamnolipids, involves the émulsification and uptake of water immiscible 

substrates. However, there is evidence indicating that this is not their primary function 

(Desai & Banat, 1997; Francy et al., 1991; Guerrasantos et al., 1986; Koch et al., 1991; 

Ochsner et al., 1994).

Conflicting with the assumption that biosurfactants are produced to enable 

growth on hydrocarbons, is the finding that rhamnolipids are produced most efficiently 

when grown with water soluble substrates, and a linear increase in production is 

observed with increased amounts of glucose (Guerrasantos et al., 1986). Similarly, 

when screening for surfactant producing organisms, glucose has been found to be the 

substrate that will support surfactant production in the greatest number of species 

(Batista et al., 2006). Another soluble substrate, glycerol, has been identified as the 

optimal substrate for rhamnolipids production, giving higher yields than other soluble 

carbon sources or n-alkanes (Arino et al., 1996). Furthermore, Beal et al. (2000) found 

that rhamnolipids provide only a minor enhancement in hexadecane uptake, that they 

are not necessary for the process to occur, as a rhamnolipid deficient mutant 

assimilated 69% of the hexadecane taken up by the wild type strain. The fact that 

rhamnolipids are produced during the stationary phase of growth further contradicts the 

idea that their role is in substrate uptake (Arino et al., 1996).

In an attempt to reconcile these findings with the presumed natural function of 

assimilation of insoluble substrates, it has been suggested that the high production of
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rhamnolipids using glucose is an example of the over-production of seemingly 

unnecessary metabolites as a result of the cultivation conditions (Guerrasantos et al., 

1986). However, as was pointed out by Van Hamme et al. (2006), it may be difficult to 

rationalize the difference between industrial applications of biosurfactants and their 

natural roles in microbial physiology. The most probable explanation appears to be that 

the primary function of these molecules is not related to substrate bioavailability (Arino 

et al., 1996; Soberon-Chavez et al., 2005). In contrast, there is evidence that 

rhamnolipids are involved in a range of functions including swarming and motility, 

maintenance of biofilm structure and dispersal, and they have antimicrobial properties 

that are effective against a range of other microorganisms (Caiazza et al., 2005; Pamp 

& Tolker-Nielsen, 2007).

1.5 Potential uses for biosurfactants

Studies involving biosurfactants indicate that they have potential for use in a 

broad range of industries. The most common examples are applications involving oil 

processing and microbial enhanced oil recovery (MEOR), or bioremediation of soil and 

water with hydrophobic or metal contaminants (Banat et al., 2000; Batista et al., 2006; 

Bodour et al., 2003; Mulligan, 2005; Plaza et al., 2006; Singh & Cameotra, 2004; Singh 

et al., 2007). Biosurfactants are well suited to bioremediation because they can be 

synthesized in situ and are less toxic than chemical surfactants, which due to their 

toxicity may represent an additional source of contamination (Batista et al., 2006).

Another major area of research is in biomedical sciences. A number of 

biosurfactants have been shown to have antiviral, antifungal, or antibacterial activities
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(Singh & Cameotra, 2004). Surfactin, a biosurfactant produced by Bacillus subtilis, 

shows potential for use as a thrombolytic agent for both urgent disorders and long term 

use (Singh & Cameotra, 2004). B. subtilius has also been found to exhibit antitumour 

activity, and a variety of glycolipid surfactants have been shown to induce cell 

differentiation, growth arrest, and apoptosis instead of proliferation in mouse malignant 

cells (Cameotra & Makkar, 2004; I soda et al., 1997; Rodrigues et al., 2006a; Singh & 

Cameotra, 2004). Lipopeptide surfactants have been reported to act as 

immunomodulators and to inhibit specific enzymes (Rodrigues et al., 2006a). A number 

of biosurfactants have been shown to prevent adhesion of pathogenic organisms, and 

have potential for use as a coating for catheters or prosthetic devices to prevent 

infection and biofilm formation (Rodrigues et al., 2006a; Rodrigues et al., 2006b; 

Rodrigues et al., 2006c; Rodrigues et al., 2006d; Rodrigues et al., 2006e; Rodrigues et 

al., 2004a; Rodrigues et al., 2004b). Additional areas where biosurfactants show 

potential for use include agriculture, cosmetics, food, and manufacturing industries 

(Banat et al., 2000; Singh et al., 2007).

1.6 Objectives of this study

The objective of our study is to identify substances of microbial origin that could 

potentially be used to control Listeria monocytogenes biofilms in food-processing 

settings, thereby reducing the risk of food-borne disease. We started our study by 

attempting to identify novel surfactant producing organisms, and screened bacterial 

isolates obtained from paper mill slimes in search of biosurfactant producers. As paper 

mill slimes have been found to consist of a variety of bacterial species that rapidly
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produce large amounts of EPS and biofilm (Chaudhary et al., 1997), we hypothesized 

that the slimes could be a source of isolates that secrete biosurfactants, which could 

then be tested for the ability to prevent or reduce Listeria biofilms.

Next, we focused our work on two Pseudomonas species, P. aeruginosa PA01 

and P. putida, to determine if substances secreted by these organisms are capable of 

removing Listeria biofilms, as well as to gain a better understanding of how substances 

secreted by Pseudomonas spp. modulate the growth of Listeria biofilms under a range 

of growing conditions. As Listeria and Pseudomonas are both common environmental 

species, they encounter each other in the environment and studies investigating the 

effect of Pseudomonas species on the growth of Listeria biofilms have produced 

conflicting results (Carpentier & Chassaing, 2004; Guobjornsdottir et al., 2005; Norwood 

& Gilmour, 2001).

Our investigation revealed that Pseudomonas aeruginosa PA01 conditioned 

medium inhibited Listeria biofilms, thus our final objective was to identify the compounds 

involved. By screening a library of P. aeruginosa random knockout mutants, we 

determined that the enzyme elastase (LasB) plays a role in preventing and removing 

Listeria biofilms.
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2. Screening pulp and paper isolates for a novel biosurfactant 
producing organism

2.1 Introduction

Potential applications for microbial surfactants have been identified in a wide 

range of industries and there has been increasing interest in their commercial 

development. Biosurfactants offer several advantages over chemical surfactants, 

including mild production conditions, lower toxicity, higher biodegradability, and 

effectiveness at extreme temperatures, pH values, and salinity (Plaza et al., 2006; 

Rodrigues et al., 2006a). They may also possess unique structures, not found among 

chemical surfactants (Maier & Soberon-Chavez, 2000). However, few biosurfactants 

have actually been used on an industrial scale due to the lack of economical production 

processes, and there is an ongoing search for cost effective surfactant producers 

(Batista et al., 2006).

Despite their recognized potential, the distribution of surfactant producing 

organisms in the environment is not well understood and there have been few studies 

aimed at screening for biosurfactants and the organisms that make them (Bodour & 

Miller-Maier, 1998; Bodour et al., 2003). Bodour et al. (2003) conducted one of the few 

screening studies that have been published to date, which examines the distribution of 

biosurfactant-producing bacteria in undisturbed and oil/metal contaminated soils in the 

South-western United States. Other studies screening for biosurfactant producers 

typically involve environments where the surfactant producing organisms could be used. 

These include locations such as hydrocarbon contaminated soil and water (Batista et
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al., 2006; Bonilla et al., 2005; Chang et al., 2005) petroleum sludge (Dubey & Juwarkar, 

2001 ; Plaza et al., 2006), and dairy equipment (Busscher et al.,1996).

As there are no common genes among surfactant producers, molecular 

approaches are not applicable, and screening must be done using other techniques 

such as surface tension analysis (Bodour et al., 2003). The most widely used method 

for the measurement of surface tension is the du Nouy ring method, which measures 

the force needed to pull a platinum wire ring through an interface. The criteria used to 

determine if an organism produces biosurfactant is the ability to reduce the surface 

tension below 40 mN m"̂  (Batista et al., 2006). Although accurate, the technique is not 

well suited to screening large numbers of isolates because it is time-consuming, 

requires specialized equipment, and uses a relatively large volume of sample (Bodour & 

Miller-Maier, 1998; Busscher et al., 1996; Youssef et al., 2004). Other methods used to 

test for the presence of surfactants that are more amenable to screening studies include 

the drop-collapse method, blood agar lysis, oil spreading, and axisymmetric drop shape 

analysis (Busscher et al., 1996; Youssef et al., 2004).

In this study, the drop-collapse method was used to test for surfactant production 

by bacterial isolates obtained from a paper mill. The pulp and paper industry provides 

an ideal environment for bacterial growth due to the constant supply of water and 

nutrients, and the varied conditions, such as a range in temperature and pH values and 

the use of various additives, should result in the development of diverse microbial 

communities (Chaudhary et al., 1997). The aim of our study was to screen paper mill 

biofilms for novel surfactant producing organisms.
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2.2 Methods

Cultures of 80 bacterial isolates obtained from paper mill slimes were tested for 

their ability to produce biosurfactants using the qualitative drop-collapse technique 

(Bodour & Miller-Maier, 1998; Jain et al., 1991). Each isolate was tested after growth in 

10 ml of R2A broth (Becton Dickinson Difco, Sparks MD) and in 10 ml of R2A broth 

supplemented with 2% glucose (Batista et al., 2006; Bodour et al., 2003). The cultures 

were grown in glass test tubes incubated for 24h at 30°C. Tests were performed in the 

polystyrene lid of a 96-well microtiter plate (Costar 3596). To each well, 1.8 pi of 10W- 

40 oil (Penzoil, Oil City, PA) was added and allowed to equilibrate for 24 h at room 

temperature (Batista et al., 2006; Bodour et al., 2003). A sterile pipette was used to 

dispense 5 pi aliquots of the cell suspensions into the centre of the wells and each 

isolate was tested in triplicate. Drops that remained beaded were considered negative 

for the production of biosurfactants, while drops that spread out and collapse were 

considered positive. A 10'^ dilution of Tween 20 (Fisher BioReagents) was used as a 

positive control and ddHgO was used as a negative control. To maximize the likelihood 

of finding a surfactant producing organism and to increase efficiency, the tests were 

conducted using cell suspensions, rather than filtered supernatants. Biosurfactants can 

be either adhered to, or an integral part of, a cell surface, thus cell suspensions are 

used for initial screening, and the cell free supernatant of those that produce a positive 

result can be tested to reveal whether the surfactant is released into the medium 

(Batista et al., 2006; Bodour & Miller-Maier, 1998; Bodour et al., 2003; Youssef et al., 

2004).

33



2.3 Results and Discussion

All 80 isolates screened for the ability to reduce surface tension produced a 

negative result. It is possible that this result represents the true nature of the biofilms, 

and that the paper mill slimes tested here are not from an environment that supports 

surfactant producing organisms. However, there are many variables affecting surfactant 

production, and the method used to detect surfactant production, the growth medium, 

and the incubation length and temperature would all impact surfactant production and 

its detection.

The drop-collapse test was used to test for the presence of biosurfactants. This 

technique is based on the principle that a drop of a polar liquid applied to a hydrophobic 

surface will form a bead, while a liquid containing a surfactant will collapse and spread 

due to the reduced interfacial tension (Bodour & Miller-Maier, 1998; Jain et al., 1991). 

Youssef et al. (2004) compared methods of testing for biosurfactants and found that the 

drop-collapse technique gave reliable results, with false negatives limited to cultures 

containing only low levels of surfactant. Although it was found to be less sensitive than 

the oil-spreading technique, the drop-collapse method is recommended as an effective 

first line of screening to identify cultures that produce moderate to high levels of 

surfactant (Youssef et al., 2004). Thus, it is possible that some of the isolates were 

producing low levels of a surfactant that went undetected due to the limited sensitivity of 

the test. The oil-spreading technique may have been able detect dilute surfactants that 

were missed by the drop-collapse technique; however, the utility of such organisms as a 

source of biosurfactants is questionable (Youssef et al., 2004).

34



Surfactant production is dependent on the type of carbon source used as well as 

the types and amounts of other nutrients present in the growth medium (Bodour et al., 

2003; Davis et al., 1999; Mukherjee & Das, 2005; Nitschke et al., 2005). In this study, 

glucose was chosen as the carbon source as it has been found to support the 

production of a variety of surfactants (Batista et al., 2006; Bodour et al., 2003). Had a 

different carbon source been used, it is possible that a surfactant producing organism 

may have been detected.

Another factor that may have impacted the results was the length of incubation. 

There is considerable variation among species in the phase of growth in which the 

onset of surfactant production occurs. Strains of Lactobacillus have been found to 

synthesize surfactants mainly during the first four hours of growth (Rodrigues et al., 

2006c), while in other species, such as P. aeruginosa, biosurfactant production is not 

initiated until the stationary phase (Batista et al., 2006; Ron & Rosenberg, 2001). It is 

possible that the 24 h incubation period used in this study was insufficient for 

biosurfactant production to occur in some of the isolates, and the results may have been 

different had the isolates been incubated for an extended period of time. Although some 

studies use incubation times of up to seven days (Bodour & Miller-Maier, 1998; Plaza et 

al., 2006), Batista et al. (2006) speculated that prolonged incubation times may lead to 

degradation of the surfactants and suggested testing for surfactant production after 24- 

48 h.

Another explanation for why a biosurfactant producing organism was not 

detected may be that the sample size was too small. Results from studies that screen 

for such organisms suggest that these species may comprise a relatively small portion
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of the culturable bacteria. Batista et al. (2006) screened 192 isolates from contaminated 

soil and water samples, and found that 19 (9.9%) of the isolates tested positive for 

surfactant production using the drop-collapse technique, and of these only five isolates 

secreted their surfactants into the culture medium. Boudour et al. (2003) screened 

1305 isolates obtained from contaminated and undisturbed soils and found 45 putative 

surfactant producers, or 3.4% of the isolates.

Rather than continuing to screen pulp and paper isolates for novel surfactant 

producers, a decision was made to choose an organism that had been previously 

identified to produce biosurfactants for the remainder of the study. The strain that was 

selected was Pseudomonas aeruginosa P A01, which produces rhamnolipids, a 

glycolipid biosurfactant. P. aeruginosa rhamnolipids were chosen because they are the 

best characterized of all biosurfactants, and their chemical structure and properties, as 

well as their biosynthesis, have been studied in detail (Desai & Banat, 1997; Maier & 

Soberon-Chavez, 2000; Rodrigues et al., 2006a). In addition to this, I he et ai. (2005) 

found that rhamnolipids were capable of dispersing Bordeteiia bronchiseptica biofilms 

after 4 hours of exposure to P. aeruginosa PA01 conditioned medium. Similarly, 

Rodrigues et al. (2006b) found that an adsorbed rhamnolipid surfactant layer will 

prevent the adhesion, and therefore biofilm formation, of bacteria and yeasts on silicone 

rubber.

The PA01 strain of P. aeruginosa was chosen because it has been used in a 

number of studies involving rhamnolipids (Boles et al., 2005; Davey et al., 2003; Irie et 

al., 2005) and its genome has been sequenced (Stover et al., 2000).
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3. Substances secreted by Pseudomonas putida and Pseudomonas 
aeruginosa PA01 modulate the growth of Listeria monocytogenes 
biofilms

3.1 Introduction

Listeria monocytogenes, the etiologic agent of listeriosis, is a pathogenic 

bacterium associated with food borne disease outbreaks characterized by widespread 

distribution, hospitalization rates of over 90%, and mortality rates of 20 -  40% (Borucki 

et al., 2003; Farber & Peterkin, 1991; McLauchlin et al., 2004; Mead et al., 1999). The 

principle route of infection is ingestion of contaminated foods, and those most 

susceptible to the disease include the elderly, pregnant, and immunocompromised 

individuals (Gandhi & Chikindas, 2007).

L. monocytogenes has been found to contaminate a wide range of foods, 

including a variety of dairy products, meats, eggs, seafood, and vegetables (Farber & 

Peterkin, 1991). Its control in food processing environments is difficult due to its ability 

to grow at refrigeration temperatures (2-4°C), adapt to high salt concentrations, and to 

survive in acidic foods (Gandhi & Chikindas, 2007). Certain strains have been found to 

persist in food processing environments for extended periods of time and this 

persistence is aided by Listeria’s ability to form biofilms (Holah et al., 2002; Pan et al., 

2006). Biofilms are multispecies communities of microorganisms attached to a surface, 

and are particularly problematic due to their increased resistance to desiccation, 

disinfectants, sanitizing agents, and UV light compared to their planktonic counterparts 

(Costerton et al., 1999; Gandhi & Chikindas, 2007; Meylheuc et al., 2006). Within food 

processing environments biofilms can serve as a continual reservoir of bacteria.
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creating problems of cross-contamination and post-processing contamination (Gandhi & 

Chikindas, 2007; Kumar & Anand, 1998; Pan et al., 2006).

It is hypothesized that the resident micro-organisms of food processing 

environments have a major impact on the likelihood of finding Listeria, and that it may 

be properties of the extracellular polymeric substances (EPS) secreted by these 

organisms that are responsible (Bremer et al., 2001 ; Carpentier & Chassaing, 2004; 

Leriche & Carpentier, 2000). L. monocytogenes biofilms have been reported to be either 

enhanced (Bremer et al., 2001 ; Carpentier & Chassaing, 2004) or prevented (Carpentier 

& Chassaing, 2004; Leriche & Carpentier, 2000; Norwood & Gilmour, 2001; Zhao et al., 

2004) by the presence of other organisms; and even studies limited to investigating the 

effect of Pseudomonas species have produced conflicting results (Carpentier & 

Chassaing, 2004; Guobjornsdottir et al., 2005; Norwood & Gilmour, 2001).

Knowledge of how resident organisms modulate Listeria biofilm formation is an 

important aspect of their control. Recognition of species that are capable of enhancing 

the growth of Listeria may help to predict conditions that favour biofilm formation. On the 

other hand, species that inhibit the growth of Listeria may help to provide insight into 

strategies to control and prevent its growth. For example, Zhao et al. (2004) suggested 

the use of competitive-exclusion organisms to control L. monocytogenes biofilms, while 

a number of studies have investigated the use of non-antibiotic microbially secreted 

compounds, often with surface active properties, to prevent or eliminate biofilm 

formation by a variety of Gram negative and Gram positive species. It has also been 

reported that the adhesion of a variety of bacteria and yeasts could be prevented by 

preconditioning silicone rubber with rhamnolipid biosurfactant produced by
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Pseudomonas aeruginosa (Rodrigues et al., 2006b), and also with surfactants produced 

by Lactococcus iactis (Rodrigues et al., 2004) or Streptococcus themophiius (Rodrigues 

et al., 2006a). In addition to preventing biofilm adhesion and formation, there is also 

evidence to indicate that such compounds are able to disrupt mature biofilms. For 

example, Irie et al. (2005) found that Pseudomonas aeruginosa PA01 spent medium 

was able to disrupt Bordeteiia bronchiseptica biofilms after 10 minutes of exposure, and 

eliminated large portions of biofilm after 4 h. Likewise, Mireles et al. (2001) 

demonstrated that a surfactant produced by Baciiius subtilis, surfactin, is able to both 

prevent and disrupt biofilms of Salmonella enterica.

In this study, the effect of substances secreted by Pseudomonas aeruginosa 

PA01 and Pseudomonas putida on Listeria monocytogenes EGD biofilms was 

investigated. Pseudomonads are commonly found in food processing environments and 

their ability to modulate Listeria biofilm formation is a concern from a food safety 

standpoint. As it has been shown that Listeria exhibits differential, temperature 

dependent adherence and biofilm formation, the impact of the Pseudomonas spp. spent 

medium on the growth of Listeria biofilms was examined at 22, 30, and 37°C on two 

common food industry materials, stainless steel and polystyrene (Chavant, et al., 2002; 

Ells & Hansen, 2006; Lemon et al., 2007; Norwood & Gilmour, 2001).

3.2 Materials and methods

3.2.1 Bacterial strains and growth conditions

Strains used in this study included: Listeria monocytogenes EGD, Pseudomonas 

aeruginosa P A01, and Pseudomonas putida LV-4, an isolate from a biofilm in a milk 

processing line (Chumkhunthod et al., 1998). Cultures were grown in either trypticase
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soy broth (TSB; Becton Dickinson BBL, Sparks MD) or on trypticase soy agar (TSA; 

Becton Dickinson BBL, Sparks MD). Isolates were stored in TSB with 25% glycerol (v/v) 

at -80°C, and working cultures were maintained on TSA at 4°C.

3.2.2 Production of Pseudomonas conditioned medium (PCM)

Experiments were carried out with two Pseudomonas species: P. aeruginosa 

PA01 and P. putida, which were used to prepare P. aeruginosa PA01 conditioned 

medium (PA01 PCM) and P. putida conditioned medium (P. putida PCM).

PA01 PCM was prepared by growing P. aeruginosa PA01 cultures in 80 ml of 

TSB for 48 hours at 37°C. Cells were removed by centrifugation at 14,000 x g at 4°C for 

30 minutes, and the supernatant was filtered through a 0.22 pm filter. The filtered 

supernatant was then mixed with an equal volume of 2x concentrated TSB (Irie et al., 

2005; Valle et al., 2006).

P. putida PCM was prepared as described above, from cultures of P. putida 

grown in 80 ml of TSB for 48 hours at 30°C.

3.2.3 Formation of biofilms on stainless steel

3.2.3.1 Preparation of stainless steel

Biofilms were grown on 1 cm^ stainless steel coupons (#316). Prior to use, the 

coupons were prepared as described by Meylheuc et al. (2001). Briefly, the coupons 

were soaked for 15 minutes in a 2% (v/v) solution of RBS 35 Concentrate detergent 

(Pierce, Rockford IL), rinsed three times for five minutes with water at 50°C, and then 

rinsed three times with distilled demineralised water at 20°C. The coupons were then 

placed in glass Petri dishes and sterilized by autoclaving at 120°C for 20 minutes.
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3.2.3 2 Biofilm growth and treatment with PCM

The effect of substances secreted by Pseudomonas spp. on Listeria biofilms was 

examined by introducing either PA01 PCM or P. putida PCM to Listeria biofilms at 

different times after biofilm initiation (0, 3, 24 h), as outlined in Table 1. This approach 

enabled investigation of the effect of PCM on the biofilms at three stages of 

development: (1 ) initial cell attachment (2) growing biofilms and (3) mature biofilms.

L. monocytogenes biofilms were grown on the stainless steel coupons as 

described by Chae and Schraft (2000), with the following modifications. Listeria cultures 

were grown in TSB at 37°C for 24h, washed twice in phosphate buffer saline (PBS; 137 

mM NaCI, 2.68 mM KCI, 10.1 mM Na2HP04, 1.76 mM KH2PO4. pH 7.4) by centrifugation 

at 3,000 X g at 4°C for 10 min, and standardized to ODeoo = 0.32 ± 0.01 (corresponding 

to 10®cfu/ml) using a spectrophotometer. A sterile pipette was used to dispense 20 ml 

of the standardized cell suspension into sterile glass Petri dishes each containing three 

stainless steel coupons. The Petri dishes were then placed into larger Petri dishes 

containing moist paper towels to minimize evaporation, and incubated at either 37°C or 

22°C with shaking at 90 rpm for 3 h to allow adhesion to occur. Following the 3 h 

incubation, non-adherent cells were removed by gently washing the steel coupons 2 

times with 25 ml of PBS using a sterile pipette, and the biofilms were then 

supplemented with 20 ml of fresh medium.

To study the impact of PA01 PCM and P. putida PCM on initial attachment and 

Listeria biofilm formation, biofilms were grown using either PA01 PCM or P. putida 

PCM throughout the entire incubation period (Table 1A). The standardized cell 

suspensions were prepared in PCM initially, and fresh PCM was added following the 3 h
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adhesion period. Controls were prepared using TSB in place of PCM. The biofilms were 

incubated for a total of 24 h.

To examine the impact on a growing biofilm, the PCM was introduced 3 h after 

biofilm initiation. Listeria biofilms were prepared in TSB and incubated for 3 h, at which 

time they were washed twice with 25 ml of PBS using a sterile pipette. The biofilms 

were then supplemented with 20 ml of either PA01 PCM or P. putida PCM and 

incubated for an additional 21 hours, control biofilms were supplemented with fresh TSB 

(Table IB).

Finally, mature L. monocytogenes biofilms were supplemented with PCM, 24 h 

after biofilm initiation. Biofilms were grown in TSB as described above, including the 

addition of fresh medium following the 3 h adhesion period, for a total of 24 h. At this 

time the spent medium was removed and the biofilms were washed twice with 25 ml of 

PBS, prior to the addition of 20 ml of either PA01 PCM or P. putida PCM. Control 

biofilms were washed with PBS and supplemented with fresh TSB. The biofilms were 

then incubated for another 24 hours (Table 1C). All biofilms were incubated at either 

22°C or 37°C with shaking at 90 rpm.

3.2.3.3 Enumeration of biofilm cells

Following incubation, the biofilms were analyzed by determining cell counts. 

Spent medium was removed and 25 ml of PBS was slowly pipetted into the Petri dishes 

to remove non-adherent cells from the steel coupons. Then, each coupon was placed 

vertically into a sterile tube where they were rinsed twice more by pipetting 10 ml of 

PBS into the tubes. Next, adherent cells were detached by vortexing for 3 min in 3 ml of 

PBS. The cell suspensions were serially diluted in PBS and enumerated by standard
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plate counts using the drop-plate method. For each dilution, five 10 pi drops were 

dispensed on TSA and the colonies were enumerated after incubation for 24 h at 37°C.

3.2.4 Formation of biofilms on polystyrene

3.2.4.1 Biofilm growth and treatment with PCM

The effect of substances secreted by Pseudomonas spp. on Listeria biofilms on 

polystyrene was examined using the same approach described for stainless steel, by 

introducing either PA01 PCM or P. putida PCM to the microtiter plates at different times 

after inoculation (0, 3, 24 h). Listeria biofilms were supplemented with PA01 PCM or P. 

putida PCM at three stages of biofilm development: (1) initial cell attachment (2) 

growing biofilms and (3) mature biofilms, as outlined in Table 2.

L. monocytogenes biofilms were grown in sterile tissue culture treated 96-well 

plates (Costar 3596) using a modified version of previously published protocols (Borucki 

et al., 2003; Lemon et al., 2007). Listeria cultures were grown 24 h at 30°C on TSA 

plates from frozen stocks stored at -80°C. Single colonies were then swabbed over TSA 

plates and incubated overnight at 30°C. The bacterial lawns were scraped into sterile 

medium and dispersed using a vortex mixer. The resulting culture was then diluted to 

ODeoo = 0.05 ± 0.01 (corresponding to lO^cfu/ml), and wells were inoculated with 150 pi 

of the standardized cell suspension. After 24 h, spent medium was removed and the 

biofilms washed with 150 pi of PBS. Fresh medium (150 pi) was then added to each 

well and the plates were incubated for an additional 24 h. All biofilms were incubated for 

a total of 48 h, with fresh medium added after 24 h. Each plate included 8 control wells 

containing sterile TSB.
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To study the impact of treatment on biofilm formation, Listeria biofilms were 

prepared as described above using either PA01 PCM or P. putida PCM throughout the 

entire incubation period, with fresh PCM added after 24 h (Table 2A).

To examine the impact on a growing biofilm, PCM was introduced 3 h after 

biofilm initiation in TSB. Following a 3 h adhesion period, the biofilms were washed 

once with 150 pi of PBS, and supplemented with 150 pi of either PA01 PCM or P. 

putida PCM. Control biofilms were washed with PBS and supplemented with fresh TSB. 

The medium was replaced after 24 h of incubation (Table 2B).

To test the ability of PCM to disrupt mature biofilms, the biofilms were grown in 

TSB for 24 h prior to the introduction of the conditioned medium. After 24 h, the wells 

were washed once with 150 pi of PBS, and 150 pi of either PA01 PCM or P. putida 

PCM was added. Control wells were washed once with PBS and supplemented with 

fresh TSB. The plates were then incubated for an additional 24 h (Table 2C). Biofilms 

were incubated statically at 22, 30, or 37°C for a total of 48 h, with at least 12 replicates 

for each test.

3 2.4.2 Quantification of biofiims on polystyrene

Following incubation, residual medium was removed using a multi-well pipettor 

and the wells were rinsed three times with 150 pi of sterile distilled water to remove 

loosely attached cells. The plates were dried in an inverted position for 30 minutes prior 

to staining with 50 pi of a 0.1% crystal violet solution for 45 minutes at room 

temperature. The plates were washed by rinsing 3 times with 150 pi of sterile distilled 

water and stain retained on the wells was solubilised by incubating for 30 min at 4°C
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with 200 pi of 85% ethanol. The liquid was then transferred (150 pi) to a clean 96-well 

plate and the ODeoo of the crystal violet was measured using a microtiter plate reader 

(FLUOstar Optima, BMG Labtech).

3.2.5 Statistical analysis

Data was analyzed using SigmaStat software (version 2.03). Mann Whitney tests 

were used to compare significant differences between treatments.

3.3 Results

3.3.1 Treatment with P. put/da PCM

The effect of the P. putida PGM on L. monocytogenes biofilms was variable, 

depending on substrate material, incubation temperature, and the stage of biofilm 

development when the conditioned medium was introduced (Table 3).

3.3.1.1 Biofilms grown on stainless steel

At 22°G, length of development of the biofilm prior to exposure to P. putida PCM 

played a role. The biofilms were supplemented with P. putida PCM at three different 

stages of development. Biofilms grown entirely in the conditioned medium showed a 

slight reduction in adhesion, while treatment of a three hour biofilm did not affect 

adhesion. When a mature 24 h Listeria biofilm was supplemented with P. putida PCM a 

slight increase of 0.56 Log CFU/cm^ over the control was observed (figure 1A).

At 37°C, P. putida PCM enhanced the growth of L. monocytogenes biofilms at all 

stages of growth (figure 1B). The greatest enhancement was observed for L.

48



monocytogenes biofilms grown entirely in the presence of P. putida PCM. This 

treatment produced a 0.78 Log CPU cm'^ increase in the number of adherent cells.

3.3.1.2 Biofilms grown on polystyrene

Tests conducted on polystyrene were carried out at 22, 30 and 37°C. In 

comparison to biofilms grown on stainless steel, results on polystyrene indicate that the 

properties of the substrate material affect the interaction between L  monocytogenes 

and P. putida PCM. At 22°C, as with biofilms grown on stainless steel, the effect 

depended on the stage of biofilm development when the PCM was introduced (figure 

1C). Biofilms grown entirely in the presence of P. putida PCM were significantly reduced 

compared to the controls. However, when the L  monocytogenes biofilms were allowed 

to develop for 3 and 24 h prior to exposure to P. putida PCM, the decrease in adhesion 

was not as dramatic. Biofilms incubated at 30°C showed similar results, with significant 

inhibition of adhesion occurring for biofilms grown entirely in the presence of P. putida 

PCM, a minor decrease in adhesion of a 3 h biofilm, and no significant change in the 

mature biofilm (figure 1D). These results suggest that P. putida produces a substance 

that interferes with the initial adhesion of L. monocytogenes to polystyrene, but that is 

less efficient in dispersing a preformed biofilm.

L. monocytogenes was found to adhere poorly to polystyrene at 37°C, with little 

detectable biofilm remaining following the washing steps. Despite weak attachment at 

this temperature, biofilm formation was significantly enhanced with the addition of P. 

putida PCM (figure 2).
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3.3.2 Treatment with P. aerug/nosa PA01 conditioned medium

PA01 PCM modulated the growth of L  monocytogenes biofilms in a more 

consistent pattern than was observed with P. putida PCM. Although results did vary 

depending on incubation temperature, similar outcomes were obtained regardless of the 

substrate material used or the stage of biofilm growth at the time of treatment (Table 3).

3.3.2.1 Biofilms grown on stainless steel

On stainless steel, the effect of PA01 PCM on L. monocytogenes biofilms 

depended on incubation temperature. When incubated at 22°C, exposure to PA01 PCM 

reduced the number of adherent cells by up to 1.65 Log CFU/cm^ (figure 3A). This 

reduction was observed regardless of the stage of development when the biofilms were 

exposed to the medium, indicating that PA01 PCM secretes a substance that is 

capable of both preventing the formation of L  monocytogenes biofilms as well as 

dispersing mature, preformed biofilms. In contrast, at 37°C treatment with PA01 PCM 

did not produce a significant change in the cell counts of L. monocytogenes, with the 

exception of the 3 h biofilm which showed a slight increase in adhesion (figure 3B).

3.3.2 2 Blofilms grown on polystyrene

There did not seem to be an effect when PA01 PCM was introduced to the 

biofilms at 37°C (data not shown). As Listeria did not produce stable biofilms on 

polystyrene at this temperature, any decrease in adhesion would not be detectable, and 

treatment with PCM did not enhance adhesion. However, at 22°C PA01 PCM 

significantly inhibited the growth of L. monocytogenes biofilms at all stages of
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maturation. Although the trend was the same as on steel, the effect was more dramatic 

on polystyrene where treatment eliminated virtually all detectable biofilm. PA01 PCM 

both prevented the formation of L. monocytogenes biofilms when added during the early 

stages of development, and eliminated the mature biofilms when added after 24 h of 

growth (figure 3C). Similar results were observed at 30°C, where treatment with PA01 

PCM significantly inhibited biofilm formation at all stages of growth (figure 3D).

3.4 Discussion

Numerous studies have investigated the growth of Listeria in mixed culture 

biofilms, and there have been conflicting reports of both enhancement and reduction of 

growth. For example, Guobjornsdottir et al. (2005) reported that L  monocytogenes 

grown with P. fiuorescens have a lower rate of attachment to stainless steel, while a 

culture of mixed Pseudomonas spp. significantly enhances biofilm growth. Similarly, 

when Carpentier and Chassaing (2004) investigated the growth of L. monocytogenes 

biofilms in mixed cultures with a range of organisms isolated from a food processing 

environment, two strains of P. fiuorescens were found to decrease attachment of 

Listeria to steel and one strain had no effect, while five strains of P. putida decreased 

attachment and a sixth had no effect.

This type of variation in the impact on Listeria biofilms can also be seen when a 

single strain of Pseudomonas sp. is tested under varying environmental conditions. For 

example, Buchanan and Bagi (1999) examined the effect of a single strain of P. 

fiuorescens on the growth of L, monocytogenes under varying temperature, pH, and 

sodium concentrations and found that, depending on the culturing conditions, P.
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fiuorescens could enhance, suppress, or have no effect on the growth of L  

monocytogenes. Similar disparities were observed in this study when culture 

supernatants of single strains of P. putida and P. aeruginosa PA01 were tested (Table 

3). As was pointed out by Buchanan and Bragi (1999), this type of result may explain 

the numerous and conflicting reports regarding the impact of Pseudomonas spp. on the 

growth of Listeria.

In this study, biofilms of L. monocytogenes were treated with filtered 

supernatants from P. putida and P. aeruginosa cultures to determine whether these 

species secrete substances capable of modifying Listeria biofilms. It has been 

suggested that Listeria requires the cells and EPS of a primary colonizer, particularly 

Pseudomonas spp., to enhance its biofilm forming ability (Chavant et al., 2002;

Sasahara & Zottola, 1993). The results of this study demonstrate that substances 

secreted by Pseudomonas spp. into the medium also modulate Listeria biofilm 

formation, and that incubation temperature, substrate properties, and the stage of 

biofilm development at the time of exposure to these substances will determine the 

manner in which biofilm growth is altered.

3.4.1 Effect of temperature

Although a reduction was observed when the biofilms were supplemented with 

PA01 PCM during all stages of biofilm development and on both surface materials 

tested, the effect was temperature dependent. Treatment with PA01 PCM clearly 

reduced biofilm formation at 22 and 30°C; however, treatment did not affect biofilms 

grown at 37°C. Temperature also affected how the biofilms responded to treatment with 

P. putida PCM, where increases were consistently observed for biofilms grown at 37°C,
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while at 22 and 30°C the outcome varied with substrate material and the stage of biofilm 

development.

The role of incubation temperature in how the conditioned medium altered L. 

monocytogenes biofilms likely reflects the temperature-dependent physiological 

changes known to occur in Listeria. Characteristics such as cell surface hydrophobicity 

(Chavant et al., 2002), membrane composition (Gandhi & Chikindas, 2007), and 

flagellation and motility (Grundling et al., 2004; Shen & Higgins, 2006) are all affected 

by incubation temperature. Notably, Listeria is motile and produces peritrichous flagella 

when grown at 30°C and below, whereas transcription of flagella is repressed at 37°C 

(Shen & Higgins, 2006; Shen et al., 2006).

Lemon et al. (2007) demonstrated that flagellar motility is critical to biofilm 

formation by L. monocytogenes, during both the initial attachment stages as well as the 

subsequent biofilm growth. This observation hints towards two possible mechanisms for 

how P. aeruginosa PCM reduces biofilm formation, as this reduction was only observed 

at temperatures amenable to flagella expression. The conditioned medium could alter 

biofilm formation by either interfering with the expression of flagella, or by interfering 

with the motility of the flagella, as it has been shown that flagella-minus and paralyzed- 

flagellum mutants have comparable defects in biofilm formation (Lemon et al., 2007).

The finding that flagella are essential to both the initiation and subsequent 

development of L. monocytogenes biofilms (Lemon et al., 2007) fits with the hypothesis 

that P. aeruginosa PCM modifies either the presence or motility of Listeria’s flagella and 

the observation that treatment with conditioned medium alters biofilm formation at all 

stages of growth.
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Furthermore, Lemon et al. (2007) found that the defect in adhesion to stainless 

steel by non-motile mutants was less pronounced than their defect in adhesion to glass, 

and propose that the role of motility may be more important on some surfaces than 

others. Similarly, Chavant et al. (2002) found that L  monocytogenes could produce 

stable biofilms on PTFE when grown at 20°C, but not at 37°C, suggesting that flagella 

facilitate contact with the surface by overcoming electrostatic repulsion forces. These 

findings are compatible with observations made in this study, where a greater reduction 

in biofilm formation was observed on polystyrene than on stainless steel. This may also 

explain why at 37°C, when expression of flagella is repressed, stable control biofilms 

could be produced on stainless steel, but not on polystyrene.

The effect of P. putida PCM on the attachment of Listeria may also involve the 

flagella. It is possible that P. putida may secrete a substance that compensates in some 

way for Listeria’s lack of motility at high temperatures, as attachment was enhanced 

after treatment with P. putida PCM at 37°C, when L. monocytogenes is not flagellated. 

Biofilms grown on stainless steel at 37°C that were exposed to P. putida PCM had a 

similar level of attachment as the flagellated control biofilms grown at 22°C. Similarly, at 

37°C on polystyrene, where only minimal amounts of attached cells could be detected 

for biofilms grown in TSB, supplementation with P. putida PCM doubled adhesion of 

Listeria.

3.4.2 Effect of substrate

L. monocytogenes biofilms were grown on two common food contact surfaces 

with different physicochemical properties, stainless steel 316 (hydrophilic) and 

polystyrene (hydrophobic) (Palmer et al., 2007; Tresse et al., 2007).
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In general, the physicochemical properties of the support and the bacterial cell 

surface are considered to affect the attachment of cells, as biofilm formation involves 

van der Waals and electrostatic forces and hydrophobic interactions (Palmer et al.,

2007; Planchon et al., 2006; Tresse et al., 2007). It has also been found that the 

proteinaceous complexes and cellular features formed by attached bacteria can differ 

depending on the nature of the substrate (Cheung et al., 2007). Despite this, pure 

cultures of L. monocytogenes have been reported to adhere to stainless steel and 

polystyrene in similar numbers (Tresse et al., 2007), and Listeria has been shown to 

attach to a variety of materials of differing hydrophobicities representing metals, 

rubbers, and polymers (Beresford et al., 2001). Based on these observations, it has 

been concluded that the ability of Listeria to adhere to an inert surface is stronger than 

the influence of the physicochemical surface properties (Tresse et al., 2007). However, 

Chavant et al. (2002) found that the presence of similar initial populations does not 

imply the same kinetics of colonization on different surfaces, and the properties of the 

substrate material do appear to play a role in how L. monocytogenes biofilms respond 

to treatment with Pseudomonas conditioned medium.

Treatment of the biofilms with P. putida PCM on stainless steel had little effect at 

22°C, whereas those grown on polystyrene showed a more consistent reduction in 

adhesion. In contrast, treatment with PA01 PCM had the same effect on both materials, 

decreasing the numbers of attached cells, although the magnitude of this decrease was 

greater on polystyrene where the biofilms were virtually eliminated. These findings 

suggest that attachment to polystyrene may be weaker and more easily interrupted than 

on stainless steel. This may be related to the hydrophobic interactions between the
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hydrophobic polystyrene surface and the cell surface of L  monocytogenes, which has 

been shown to be hydrophilic {Mafu et al., 1991).

In the case of the control, biofilms produced using L. monocytogenes alone, 

biofilm development on polystyrene at 37°C was minimal, whereas on stainless steel 

cell counts were lower at 37°C than 22°C, but the difference was not statistically 

significant. Chavant et al. (2002) noted that significant detachment occurs when L. 

monocytogenes biofilms are grown on PTFE at 37°C due to weak interactions between 

the cells and the surface, and a similar scenario may apply to the polystyrene used in 

this study.

Biofilms prepared on steel were inoculated with high density culture (10® cfu/ml) 

and incubated for a 3 h adhesion period before removing planktonic cells, whereas 

biofilms prepared on polystyrene were inoculated with a low density culture (10® cfu/ml) 

for 24 h prior to washing. This discrepancy in the methods used to prepare biofilms on 

steel and polystyrene cannot be discounted as a factor in the observed differences 

between the two substrates. However, preliminary tests with biofilms grown on 

polystyrene that included a high inoculum and a 3 h adhesion period did not produce 

significantly different results from those that used a lower inoculum without washing 

(data not shown). A protocol that used low density inoculum was chosen to remain 

consistent with previously published studies using microtiter plates (Borucki et al., 2003;

I rie et al., 2005; Lemon et al., 2007; Valle et al., 2006).

3.4.3 Effect of stage of biofilm development

To examine how Pseudomonas conditioned medium (PCM) affect L. 

monocytogenes biofilms at different stages of maturation, the biofilms were exposed to
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Pseudomonas conditioned medium after 0, 3, and 24 hours of development. This 

approach enabled observation of any alterations in biofilm initiation and growth, and the 

impact on mature biofilms.

Biofilm formation is considered a well regulated developmental process, 

consisting of discrete stages (reversible attachment, irreversible attachment, maturation, 

dispersal) (O'Toole et al., 2000; Sauer et al., 2002), each of which have distinct 

physiological characteristics (Sauer et al., 2002). For example, Sauer (2002) found that 

protein expression in planktonic P. aeruginosa was more similar to that of P. putida than 

to P. aeruginosa in the maturation stage of biofilm development. They also 

demonstrated that P. aeruginosa displays multiple phenotypes and stage-specific 

physiology during biofilm development. The temporal expression of biofilm specific 

genes has also been demonstrated in P. aeruginosa (Southey-Pillig et al., 2005), and 

although fewer studies have been conducted using L. monocytogenes, gene expression 

has been demonstrated to vary with the stage of biofilm development (Rieu et al.,

2007).

The significance of the stage of biofilm development on the impact of PCM was 

most evident when P. putida PCM was applied to L  monocytogenes biofilms grown on 

polystyrene at 22 and 30°C. When added at time 0, P. putida PCM significantly inhibited 

biofilm formation. When added after 3 and 24 h of biofilm development, the P. putida 

PCM also reduced the amount of biofilm formed, but this was not always statistically 

significant. On stainless steel, P. putida PCM enhanced growth at all stages of biofilm 

development at 37°C, with slightly greater enhancement when the conditioned medium 

was added during the early stages of development.
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other studies have also found that the stage of maturation may lead to 

differential responses to exposure to conditioned medium. Valle et al., (2006) reported 

that spent supernatant from the uropathogenic E. coli strain CFT073 prevented initial 

biofilm formation of the commensal E. coli strain MG1655 F’ and blocked further 

development of biofilms when added at 0, 1, 3, and 6 hours after biofilm initiation; 

however, the supernatant did not induce dispersal of mature pre-formed biofilms. It is 

possible that the effect of P. putida PCM in this study may be similar to that observed by 

Valle et al. (2006) for E. coli CFT073, where treatment is slowing additional growth of 

the biofilm. However, as there is no reduction in growth for biofilms on stainless steel at 

any stage of biofilm development, it appears more likely that that the conditioned 

medium only interferes with the initial stages of attachment of Listeria on polystyrene.

Treatment with P. aeruginosa PA01 PCM reduced biofilm growth at all stages of 

biofilm development below 37°C. P aeruginosa secretes a substance that is capable of 

halting biofilm formation, as well as disrupting preformed biofilms on both stainless steel 

and polystyrene. I he et al. (2005) reported similar results using the spent supernatant 

from P. aeruginosa PA01, which was found to disrupt pre-formed biofilms of B. 

bronchiseptica after four hours of exposure, and after 10 minutes under conditions of 

high mechanical sheer.

3.5 Conclusion

This study demonstrates that substances secreted by Pseudomonas spp. are 

capable of modulating the growth of L. monocytogenes biofilms. Depending on the 

species and environmental conditions, the outcome may be either an increase or a 

decrease in biofilm growth.
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The strong influence of culturing conditions on the effect of treatment with P. 

putida conditioned medium suggests the possibility that a number of different 

compounds are produced which have varied effects depending on the environment. It 

also illustrates the importance of environmental factors in the interactions between 

organisms in a food processing setting.

The observed reduction in attachment and disruption of L. monocytogenes 

biofilms when treated with P. aeruginosa PA01 conditioned medium suggests that this 

bacterium secretes a substance that could be used as part of an antimicrobial strategy. 

Other studies have investigated the use of substances produced by microorganisms as 

a method to prevent the formation of Listeria biofilms. For example, Leriche and 

Carpentier (2000) found that Staphyiococcus sciuri biofilms significantly reduced the 

adhesion of L. monocytogenes to stainless steel. They hypothesize that the decreased 

adhesion may involve the properties of the EPS, and suggest the use of S. scuri 

biofilms to enhance the fight against Listeria in food industry premises. Similarly, 

Meylheuc et ai. (2006) found that preconditioning stainless steel with biosurfactants 

produced by Pseudomonas fiuorescens and Lactobaciiius heiveticus reduced adhesion 

of L. monocytogenes by 75.2 and 99.7%, respectively, and suggest conditioning solid 

surfaces in industrial plants to prevent contamination by Listeria.

The consistent reduction in biofilm formation as a result of treatment with P. 

aeruginosa PA01 PCM may indicate that a single secreted substance or group of 

substances is responsible for the reduction. A notable candidate would be the 

biosurfactant rhamnolipid, which I he et al. (2005) identified as the substance in P. 

aeruginosa PA01 conditioned medium responsible for the disruption B. bronchiseptica
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biofilms. Rhamnolipids possess anti-adhesive activity against a variety of bacteria and 

yeasts (Rodrigues et al., 2006), and have been proposed to reduce adhesion of 

planktonic cells to preformed biofilms in addition to accelerating the dispersion phase of 

biofilm development (Davey et al., 2003; I rie et al., 2005). The temperature dependent 

manner in which the P. aeruginosa PA01 PCM disrupted L. monocytogenes biofilms 

implies that one or several substances in the PA01 PCM affected the flagella of the 

Listeria cells. If the conditioned medium is altering the function of Listeria flagella, it may 

be doing so via a physical modification of the flagella or through a cell-signalling 

mechanism and identification of the substance responsible may give clues to the 

mechanisms behind the observed reduction in biofilm formation.
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Time (h) PA01 PCM

Treatment 

P. putida  PCM Control

A. 0 PCM PCM TSB

3 PCM PCM TSB

24 Analyze Analyze Analyze

B. 0 TSB TSB TSB

3 PCM PCM TSB

24 Analyze Analyze Analyze

C. 0 TSB TSB TSB

3 TSB TSB TSB

24 PCM PCM TSB

48 Analyze Analyze Analyze

T ab le  1. T rea tm en t o f  Listeria  b io film s  g ro w n  o f s ta in le s s  s tee l

(A) Blofilms exposed to PCM at the beginning o f biofilm initiation; (B) biofilms exposed to PCM 3 h after 
biofilm initiation; (C) mature biofilms exposed to PCM 24 h after biofilm initiation, fo r an additional 24 h.
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Time (h) PA01 PCM

Treatment 

P. putida  PCM Control

A. 0 PCM PCM TSB

24 PCM PCM TSB

48 Analyze Analyze Analyze

B. 0 TSB TSB TSB

3 PCM PCM TSB

24 PCM PCM TSB

48 Analyze Analyze Analyze

C. 0 TSB TSB TSB

24 PCM PCM TSB

48 Analyze Analyze Analyze

Tab le  2. T re a tm e n t o f Listeria  b io film s  g ro w n  on  p o ly s ty re n e

(A) Blofilms exposed to PCM at the beginning o f biofilm initiation; (B) biofilms exposed to PCM 3 h after 
biofilm initiation; (C) mature biofilms exposed to PCM 24 h after biofilm initiation, fo r an additional 24 h.
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I p. pu tida  PCM î*  Control

0 3 24

Length of Listeria biofilm development before exposure to 
P. putida PCM (h)

F igu re  2. E ffec t o f P. putida  PCM on Listeria  b io film s  on  p o lys ty re n e  a t 37"C

L. monocytogenes exhibited poor adhesion under these conditions; however treatm ent with P. putida 
PCM significantly enhanced attachment. Tests were lim ited to 0 and 3 h Listeria biofilms. For each 
treatment, bars with the same letter are not significantly different from each other (p < 0.05).
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4. Identification of Pseudomonas aeruginosa PA01 genes involved in 
inhibiting the growth of Listeria monocytogenes biofilms by 
transposon mutagenesis

4.1 Introduction

Mobile genetic elements are segments of DNA that can relocate between 

genomic sites, such as transposons, insertion sequences, pathogenicity islands, and 

plasmids (Hayes, 2003; Nagy & Chandler, 2004). They are ubiquitous in nature, and 

have been found in Eubacteria, Archaea, and Eukarya (Hayes, 2003). DNA 

transposition is a biological phenomenon that provides adaptive advantages such as 

genetic plasticity, inheritance of antibiotic resistance, and integration of retroviral DNA 

(Goryshin et al., 2000), and has also proven to be an important tool in bacterial genetic 

research.

Transposon mutagenesis has been used to study a variety of yeasts and 

bacteria, including both Gram negative and Gram positive species (Goryshin et al., 

2000; Mormann et al., 2006). Furthermore, it has also been shown to be an effective 

technique even in slow-growing, fastidious species such as Bartonella sp., and in 

species with large genomes such as Pseudomonas spp. (Filiatrault et al., 2006; 

Hoffman et al., 2000). Integration of a transposon into the genome may result in gene 

knockouts or altered expression of nearby genes, producing phenotypic changes in the 

host organism and enabling the study of non-essential genes (Hoffman et al., 2000). 

This approach has been used to produce near-saturation libraries of a number of
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species, including Neisseria sp., Mycopiasma sp., and Pseudomonas aeruginosa 

(Geoffroy et al., 2003; Hutchison et al., 1999; Jacobs et al., 2003).

Conventional studies using random mutagenesis produce knockout mutant 

libraries, from which individual mutants are then screened for a phenotype of interest 

based on negative selection. More complex uses of transposons include techniques 

such as signature-tagged mutagenesis (STM), a negative selection method used to 

study genes in a pathogen that are required for host colonization, in which the 

transposons contain sequence tags that can be amplified by PCR (Hayes, 2003; Saenz 

& Dehio, 2005; Salama & Manoil, 2006).

Transposons containing reporter genes such as /tvxCDABE, iacZ, and phoA have 

been used as a tool to investigate gene expression (Hayes, 2003; Lewenza et al.,

2005). Screening of random mutants has also been paired with genomic microarrays to 

enable analysis of large numbers of mutants (Salama & Manoil, 2006; Winterberg et al., 

2005).

Transposon mutagenesis provides a practical approach to analyze genes of 

unknown function and unknown bacterial pathogenicity factors, and the transposons 

that are most commonly chosen as genetic tools are those that insert randomly, such as 

the Tn5 (Hayes, 2003; Riess et al., 2003; Saenz & Dehio, 2005). Tn5 DNA transposition 

requires just three macromolecules: the transposon, target DNA, and transposase (Tnp) 

which catalyses the reaction (Reznikoff, 2003). The traditional view of theTn5 

transposon consists of two inversely oriented insertion sequences (IS) (IS50 elements), 

each containing two 19 bp sequences that are critical Tnp binding sites, separated by 

resistance genes for kanamycin, bleomycin, and streptomycin (Hayes, 2003). The gene
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coding for Tnp is on the IS50 element. However, as long as there is a source of Tnp, a 

simplified transposon can be produced consisting of the specific 19 bp sequences on 

either end of virtually any DNA fragment (Reznikoff, 2003).

Transposition proceeds via a cut and paste mechanism that involves the 

following steps: (1) Tnp binds the ends of the transposon together in a synaptic 

complex: (2) DNA cleavage to release the transposon from its donor site; (3) binding to 

target DNA, to join the transposon ends to the new site; (4) removal of transposase and 

repair of DNA gaps at the insertion site by host factors (Goryshin et al., 2000; Hayes, 

2003; Reznikoff, 2003). The wild-type Tn5 transposase is a relatively inactive protein, 

as regulation of transposition activity is necessary to balance adaptive advantages with 

potentially lethal DNA rearrangements (Gueguen et al., 2005). This inactivity is due in 

part to poor binding to the 19 bp end sequences, however, a hyperactive mosaic 

version of the 19 bp end sequence has been identified (mosaic ends), and this 

enhanced Tnp activity enables the use of Tn5 transposons as an effective tool for 

genetic analysis (Reznikoff, 2003).

One approach to transposition involves the introduction of the transposon into the 

host on a suicide vector, with expression of transposase within the host in subsequent 

generations. Alternatively, a stable Tn5 transposition complex called a Transposome, 

consisting of a transposon and purified transposase in the absence of Mg**, can be 

produced in vitro and electroporated into the target cell (Goryshin et al., 2000). The 

Transposome undergoes transposition in the presence of target DNA and Mg**, which 

are required for the insertion of the transposon, and allows for in vivo insertion of the 

transposon into the chromosome (Hoffman et al., 2000).
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Random mutagenesis using Transposomes has been carried out in a variety of 

bacterial species to create knockout mutants (Filiatrault et al., 2006; Goryshin et al., 

2000; Hoffman & Jendrisak, 2002; Hoffman et al., 2000; Riess et al., 2003). In this 

study, Transposomes were used to randomly mutate P. aeruginosa PA01 to gain 

insight into the genetic basis of its ability to remove Listeria biofilms, and screening of 

the mutants revealed that the secreted protease elastase is involved.

P. aeruginosa secretes a variety of substances into the extracellular 

environment, including virulence factors such as ExoS, ExoT, ExoU and ExoY, as well 

as many other proteins, and at least four proteases: elastase, LasA, alkaline protease, 

and a lysine-specific endopeptidase called protease IV (Braun et al., 2001 ; Cowell et 

al., 2003; Kessler et al., 1998; Malloy et al., 2005). The most abundant secreted protein 

is elastase, a 33 kDa zinc metalloprotease encoded by the iasB gene (Braun et al., 

2001; Kessler et al., 1998).

Besides being the predominant secreted protein, elastase is also the most potent 

of the P. aeruginosa proteases, and it is able to cleave many proteins at multiple sites 

(Kessler et al., 1998). It has been demonstrated to degrade or inactivate a range of host 

tissues, immune system components, and proteases (Rust et al., 1996). In addition to 

exhibiting elastolytic activity, elastase also degrades collagen and fibrin, as well as 

immunoglobulins, serum complement factors, MMP2 AND MMP9, and the cytokines 

gamma interferon and tumor necrosis factor alpha (Cowell et al., 2003; Kessler et al., 

1998; Rust et al., 1996). The major role of P. aeruginosa proteases during infection is 

thought to involve tissue penetration, and elastase has been reported to be involved in 

the regulation of invasion (Cowell et al., 2003).
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Beyond its functions during infection, a number of other roles have been reported 

for elastase. For example, it has been demonstrated to be essential for normal biofilm 

development, and mutants lacking elastase produce biofilms with about 50% less 

biomass (Overhage et al., 2008). It is also critical to swarming motility, a multicellular 

phenomenon that involves the movement of bacterial populations across a semi-solid 

surface and is characterized substantial changes in gene expression (Overhage et al., 

2008; Overhage et al., 2007). Furthermore, it is responsible for processing secreted 

proenzymes, such as pro-LasA and pro-LasD, to convert them to their active form 

(Braun et al., 1998; Kessler et al., 1998).

Elastase itself is produced as a proenzyme, and is secreted by the type II 

secretion system. Secretion of enzymes synthesized in the cytoplasm of Gram negative 

species involves passing through both membranes of the cell envelope, and six major 

mechanisms for protein transport have been identified (Bingle et al., 2008). P. 

aeruginosa uses a number of these pathways for the secretion of proteins, including 

types I, II, and III, the autotransporter pathway (also known as the type V system), as 

well as the most recently identified pathway, the type VI secretion system (Bingle et al., 

2008; Braun et al., 2001; Henderson et al., 2004). Along with elastase, the majority of P. 

aeruginosa exoproteins are secreted by the type II pathway, including lipase, alkaline 

phosphatase, exotoxin A, LasA among others (Braun et al., 2000b). The type II pathway 

is a two step process that involves translocation across the inner membrane by the Sec 

machinery and subsequent secretion across the outer membrane via a complex 

consisting of at 12 proteins encoded by the xcp genes (Henderson et al., 2004).
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The synthesis of elastase as a pre-proenzyme, consisting of a signal peptide, a 

propeptide, and the enzyme, facilitates its transport across the cell envelope via the 

type II pathway. First, the N-terminal signal peptide targets the protein for translocation 

from the cytoplasm into the periplasm by the Sec secretion system, and is removed in 

the process (Braun et al., 2001; Kessler et al., 1998; Mclver et al., 2004). In the 

periplasm, the propeptide serves as an intramolecular chaperone required for folding, 

and after further processing by autoproteolytic cleavage, the propeptide remains 

noncovalently associated with mature elastase as an inhibitor. The inactive propeptide- 

enzyme complex is then secreted by the Xcp complex to the extracellular space, where 

the propeptide dissociates and is degraded, presumably by elastase itself (Bingle et al., 

2008; Braun et al., 2000b; Mclver et al., 2004). Dissociation of the propeptide requires 

a host specific factor, which has been hypothesized to be part of the Xcp secretion 

machinery (Braun et al., 2001 ).

Pseudomonas putida does not produce elastase, and attempts to express P. 

aeruginosa elastase in P. putida did not result in secretion of the active enzyme (Braun 

et al., 2000a). As elastase is the most abundant of the proteins secreted by P. 

aeruginosa, it would be a principal component of PA01 conditioned medium, and 

therefore it is likely that the composition of PA01 conditioned medium would vary 

considerably from that of P. putida. This is consistent with our finding that P. aeruginosa 

conditioned medium inhibits Listeria biofilms, while treatment P. putida conditioned 

medium does not produce the same effect. In this study, we use random mutagenesis 

to demonstrate that P. aeruginosa elastase is involved in the removal of Listeria 

biofilms.
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4.2 Materials and Methods

4.2.1 Optimizing growth of L. monocytogenes biofilms on polystyrene

To optimize the growth of L  monocytogenes biofilms on polystyrene, biofilms 

were grown in sterile tissue culture treated 96-well plates (Costar 3596) using inoculum 

grown at either 22 or 30°G. To prepare the inoculum, L  monocytogenes cultures (strain 

EGD) were grown for 24 h on TSA plates from frozen stocks stored at -80°G and single 

colonies were then swabbed over TSA plates and incubated overnight at either 22 or 

30°C. The bacterial lawns were scraped into sterile TSB and dispersed using a vortex 

mixer and the resulting culture was then diluted to ODeoo = 0.05 ± 0.01 (corresponding 

to 10®cfu/ ml).

These standardized cell suspensions (150 pi) were used to Inoculate five eight- 

well rows in a 96-well microtiter plate, and experiments were carried out in triplicate for 

each inoculum growth temperature. Empty wells were filled with TSB to minimize 

evaporation. The plates were sealed with parafilm and incubated at 30°C for 24 h. 

Planktonic cells were then removed by washing with 150 pi of PBS using a multi-well 

pipettor, and 150 pi of fresh TSB was deposited onto the adherent bacteria. The plates 

were then sealed with parafilm and incubated for an additional 24 h. Subsequently, the 

biofilms were washed and stained with crystal violet as described in chapter 3 (section 

3.2.4.2). To assess the amount of variation among the biofilms, a one-way ANOVA (p < 

0.05) was performed to compare individual rows within a single plate and a second test 

was performed to evaluate the variance between plates.
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4.2.2 Construction of P. aerugmosa PA01 Tn mutants

P. aeruginosa PA01 was subjected to insertional mutagenesis using 

Transposâmes prepared with the EZ;Tn5 <Tet-1> Insertion Kit (Epicentre 

Biotechnologies, Madison, Wl) according to the manufacturer’s instructions. Briefly, 

Transposomes were formed by combining 2 pi of the Tn5 transposon with 4 pi of 

transposase and 2 pi of 100% glycerol. The mixture was vortexed at maximum speed 

and incubated at room temperature for 30 minutes. Electroporation and preparation of 

electrocompetent P. aeruginosa cells using a microcentrifuge based method with 300 

mM sucrose were carried out as described by Choi et al (2006). The electrocompetent 

cells and 1 pi of the Transposome mixture were transferred to a 2.0 mm gap 

electroporation cuvette (Eppendorf) and electroporated at 2500 volts (Eppendorf 

Electroporator 2510). Transformed cells were selected by plating on Luria-Bertani agar 

(LB; Becton Dickinson BBL) supplemented with 100 pg/ml tetracycline. After incubation 

at 37°C for 18h, individual resistant colonies were transferred with sterile toothpicks to 

96-well microtiter plates containing 150 pi of LB medium supplemented with 10% 

glycerol. Plates were sealed with parafilm, incubated for 18h at 37°C, then frozen and 

stored at -80°C. A total of 1416 mutants were obtained. Insertion of the Tet-1 

transposon into the chromosome was confirmed by PGR in five randomly selected 

mutants (forward, 5'-TATTTGTAGATTTGAGTGGAATTTA-3’; reverse, 5'- 

AGTGTAGAGGATGATGGGGAGGG-3') using the following conditions; dénaturation at 

95°G for 3 min, annealing at 55°G for 30 s, and elongation at 72°G for 3 min for a total of 

35 cycles.
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4.2.3 Screening Tn insertion mutants

To elucidate the genetic basis of the antibiofilm effect, we tested the supernatant 

activity of the insertion mutants for an impaired ability to remove 24 h Listeria biofilms 

grown in polystyrene plates (Fig. 4). Tn mutants were incubated at 37°C for 48 h in 96- 

well 0.22 pm filter plates (Millipore Multiscreen HTS) containing 250 pi of TSB per well. 

Sterile supernatant from each of the mutants (mutant PCM) was obtained by 

centrifugation at 1000 x g for 10 minutes. Mutant PCM (-30  pi) was mixed with 100 pi of 

fresh TSB and used to treat L. monocytogenes biofilms (Valle et al., 2006).

The L. monocytogenes biofilms were prepared as described above (section 

4.2.1) using inoculum prepared at 30°C. After incubation for 24 h at 30°C, spent 

medium and planktonic cells were removed using a multi-channel pipette and the 

biofilms were washed once with 150 pi of PBS. Biofilms were then incubated for an 

additional 24 h at 30°C in the presence of mutant PCM. Negative controls were 

incubated with TSB alone. Following incubation for an additional 24 h at 30°C, the 

biofilms were stained with crystal violet. Wells that retained the crystal violet stain were 

determined by visual inspection. Seven mutants produced supernatants that failed to 

remove adherent L. monocytogenes cells and were singled out for additional tests.

First, the screening process was repeated as described above with eight 

replications for each mutant. The mutants were then used to prepare larger volumes of 

Pseudomonas conditioned medium (PCM) as described in chapter three (section 3.2.2), 

by combining sterile mutant PCM with 2X concentrated TSB. Listeria biofilms were 

grown in 96-well plates for 24 h at 30°C, washed once with PBS and supplemented with 

150 pi of mutant PCM or 150 pi of fresh TSB (controls). The plates were then incubated
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for an additional 24 h, stained with crystal violet and biofilms quantified using a 

microtiter plate reader.

4.2.4 Characterization of Tn mutant 5B9

P. aeruginosa mutant 5B9 demonstrated impaired biofilm removal abilities and 

was selected for additional studies. Insertion of the Tet-1 transposon was confirmed by 

PGR using the conditions described above. Mutant 5B9 was found to be Gram negative 

and oxidase positive.

To analyze the growth of mutant 5B9, its growth curve was compared to the wild- 

type P. aeruginosa P A01. Overnight cultures of mutant 5B9 and P. aeruginosa were set 

to an ODeoo of 0.05 in LB (corresponding to 10® CPU ml'^ for both mutant 5B9 and the 

wild type), and 1 ml of the standardized cell suspensions was used to inoculate 20 ml 

LB. Cultures were incubated at 37°C, shaking at 150 rpm, and the ODeoo was measured 

at 2 h intervals for 16 h.

4.2.5 Determination of Tn Insertion sites

The location of the insertion site was determined by cloning and sequencing of 

the transposon insertion site (Fig. 5). Chromosomal DNA from mutant 5B9 was obtained 

using the Wizard Genomic DNA Purification Kit (Promega, Madison, Wl) according to 

the manufacturer’s instructions. The chromosomal DNA (0.4 pg) was digested with 20 U 

EcoRI (Fermentas) for 4 h at 37°C and purified using the QIAquick PCR Purification Kit 

(Qiagen). The fragments were then ligated into the plasmid pUC19. To prepare the 

plasmid DNA, EcoRI-digested pUC19 (0.57 pg) was dephosphorylated with 1 U of calf 

intestine alkaline phosphatase (CIAP) (Fermentas) at 37°C for 30 min and purified using
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the QIAquick PCR Purification Kit. Fragments of mutant chromosomal DNA (0.14 pg) 

were ligated into the digested and purified pUC19 (0.05 pg) by incubating for 1 h at 

22°C with 5 U of T4 DNA Ligase using the Rapid DNA Ligation and Transformation Kit 

(Fermentas). E. coli JM109 was then transformed using 5 pi of the ligation mixture (0.05 

pg DNA) according to the manufacturer’s instructions. Transformants containing the 

tetracycline resistance gene were selected on LB medium containing ampicillin (50 

pg/ml), tetracycline (12 pg/ml), X-Gal and IPTG (Fermentas), and the yield of white 

colonies after transformation was 10^ CFU/pg DNA. As a positive control for the ligation 

step, a portion of the transformed cells were plated on LB medium containing only 

ampicillin (50 pg/ml), X-Gal and IPTG, and the transformation efficiency was 10®

CFU/pg DNA. A second control for the transformation process was prepared by 

transforming E. co//JM109 with 100 pg of supercoiled pUC19 DNA and plating on 

ampicillin (50 pg/ml), X-Gal and IPTG. The yield of blue colonies was >10® CFU/pg 

DNA.

Plasmids from the tetracycline resistant cells were isolated using the Gene JET 

Plasmid Miniprep Kit (Fermentas). To confirm the presence of the transposon, it was 

amplified using the PCR conditions and primers described above (section 4.2.2). The 

plasmid DNA (0.9 pg) was also digested with 20 U of EcoRI for 16 h at 37°C and 

analyzed by gel electrophoresis in order to estimate the size of the insert. Finally, the 

plasmid containing the insert was sequenced to determine the genes flanking the 

transposon.
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4.2.6 Genomic sequence analysis

DNA sequencing was performed using automated sequencing (Mobix Lab, 

McMaster University, Hamilton, ON). Sequencing was carried out using Tn specific 

primers supplied with the EZ-Tn5 <Tet-1> Insertion Kit (Epicentre) (FP-1 5'- 

GGGTGCGCATGATCCTCTAGAGT-3'; RP-1 5'-TAAATTGCACTGAAATCTAGAAATA- 

3') and M13 Forward and Reverse universal primers. Sequences were analyzed using 

BLAST and compared to the P. aeruginosa PA01 genomic sequence (Stover et al., 

2000).

4.3 Results

4.3.1 Optimizing the growth of L. monocytogenes biofilms in microtiter plates

Incubation temperatures used to prepare inoculum for Listeria biofilms vary 

among different studies (Borucki et al., 2003; Lemon et al., 2007), and inoculum growth 

temperature has been found to affect the subsequent development of L. 

monocytogenes biofilms (Dykes, 2003; Francois et al., 2007). Therefore, to optimize 

biofilm growth two pre-incubation temperatures, 22 and 30°C, were examined.

Although there was not a significant difference between the two temperatures, inoculum 

incubated at 30°C did result in a higher level of adhesion and was chosen for 

subsequent experiments (Fig. 6 ). The analysis of biofilm formation revealed a large 

degree of variation from one microtiter plate to another, and among the rows of biofilms 

within a single plate (Fig. 7).
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4.3.2 Construction and screening of Tn mutants deficient in L/ster/a biofilm 
removal

To identify the genetic basis for removal of L  monocytogenes biofilms by P. 

aeruginosa PA01, the supernatants of 1416 Tn mutants were screened, and six 

mutants that demonstrated a reduced ability to remove Listeria biofilms were selected 

for additional studies. First, the initial screening process using filter microtiter plates was 

repeated with eight replicates for each mutant. Results indicated that several mutants 

identified through the screening process had been false positives (data not shown). This 

same set of mutants was also used to prepare PCM as described in chapter three, by 

mixing sterile supernatant 1:1 with 2x concentrated TSB. Results confirmed that the 

majority of the mutants identified through the screening process had been false 

positives; however, one of the mutants was impaired in its ability to inhibit Listeria 

biofilms (mutant 5B9) (Fig. 8 ).

Mutant 5B9 removed significantly less biofilm than the wild-type PA01 strain, and 

the amount of biofilm retained in the wells was not significantly different from the 

negative control. The growth curve for mutant 5B9 demonstrated a rate of growth that 

was comparable to that of the wild-type strain PA01 (Fig. 9). To confirm the presence of 

the transposon, the tetracycline resistance gene was amplified by PCR (fig. 10).

4.3.3 Determination of transposon insertion site

The insertion site of the Tn mutation was determined by subcloning as attempts 

at inverse PCR were unsuccessful. EcoRI digested genomic DNA from mutant 5B9 was 

ligated into the cloning vector pUC19 and used to transform E. coli JM109. Colonies 

that were successfully transformed by plasmids containing the transposon insert were
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identified by blue white screening and their growth on tetracycline plates. The relatively 

low transformation efficiency observed for transformants containing the Tn (10® CFU/pg 

DNA) is reflective of the small proportion of genomic DNA fragments harbouring the 

transposon.

To confirm the presence of the transposon, the plasmid DNA was recovered and 

the 1674 bp transposon was amplified by PCR. To determine the total size of the insert 

containing the transposon, the plasmid was digested with EcoRI and analyzed by gel 

electrophoresis. A band representing the 2686 bp pUCI 9 fragment was observed in 

addition to the insert, which was revealed to be approximately 10 kb (Fig. 11 ).

Sequencing results were compared to the P. aeruginosa PA01 genomic 

sequence. The -1075 bp sequence obtained from the M l3 forward primer 

corresponded to a partial sequence for PA3716 and the complete sequence for the 

small adjacent gene, PA3717 (Fig. 12). The M l 3 reverse primer gave -900 bp 

sequence corresponding to the Tet-1 transposon. Results from the Tet FP-1 primer 

included in the EZ-Tn5 insertion kit produced a -1025 bp sequence corresponding to 

the 19 bp mosaic end sequence of the transposon followed by a 918 bp segment of 

PA3724 {lasB) and a small portion of the non-coding region upstream from PA3723. 

This indicated that the transposon was located in the lasB gene. lasB is 1497 bp and 

codes for the secreted metalloprotease elastase (Stover et al., 2000).

4.4 Discussion

Transposon mutagenesis has been used to identify genes essential to a 

broad range of functions, including biofilm formation, virulence, motility, and anaerobic 

growth (Filiatrault et al., 2006; Li et al., 2007; Nian et al., 2007; Pearson & Hansen,
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2007). It has also been used as an effective method to identify substances secreted by

E. coli capable of inhibiting biofilm formation (Valle et al., 2006). In this study, random 

mutagenesis was used to elucidate the genetic basis of the Listeria biofilm inhibition 

demonstrated by P. aeruginosa PA01.

4.4.1 Screening Tn mutants

A library of 1416 mutants was produced by random mutagenesis and 

screened for an impaired ability to remove Listeria biofilms. Prior to screening, the 

growth of Listeria biofilms in 96-well polystyrene plates was assessed to determine the 

degree of variation in the growth of the biofilms and the temperature at which the 

inoculum would be prepared. Inoculum grown 30°C was used in the subsequent 

experiments because it produced more biofilm than inoculum grown at 22°C, although 

the difference was not significant.

Analysis of Listeria biofilm growth on polystyrene revealed a large degree of 

variation. Results showed that there may be a significant difference between separate 

microtiter plates and among the biofilms within a single plate. Despite this variation, 

even the lowest levels of biofilm formation observed in TSB was significantly higher than 

the amount observed for biofilms treated with PA01 PCM. Based on this observation, it 

was determined that the variance among control biofilms should not interfere with the 

preliminary screening process, and all candidates identified through the initial screening 

were subjected to additional tests.

The preliminary screening process produced six false positive results 

(0.4% of the mutants tested).These may have been a result of mechanical errors such 

as problems during staining and washing steps. Another possibility is that there was an
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insufficient volume of sterile Pseudomonas supernatant filtrate transferred to the Listeria 

biofilms, as only small volumes of supernatant were recovered and the amount varied 

from well to well. Other complications known to occur in screening mutant libraries 

include non-null mutations in which a transposon insertion fails to fully eliminate target 

gene function, cross-contamination of one mutant by another in an adjacent well 

resulting in mutants being missed during screening, and polar effects where an insertion 

may reduce expression of downstream genes in an operon (Salama & Manoil, 2006).

4.4.2 Elastase LasB may be Involved in the removal of L/ster/a blofilms

Based on sequencing results, it was determined that the transposon had 

disrupted the iasB gene. The product of iasB, elastase, is a secreted zinc 

metalloprotease and a known virulence factor of P. aeruginosa. Elastase is capable of 

degrading or inactivating a range of biological tissues and immunological agents, 

including elastin, collagen, and immunoglobulin G (Adonizio et al., 2008; Bever & 

Iglewski, 1988). The elastolytic activity of elastase is associated with invasiveness of P. 

aeruginosa PA01, due in part to its ability to disrupt the tight junctions of epithelial cells 

(Cowell et al., 2003). Expression of iasB is regulated by both the Las and RhI quorum- 

sensing systems (Nouwens et al., 2003; Pearson et al., 1997; Schuster & Greenberg, 

2006). Nouwens et al. (2003) demonstrated that production of elastase was present, 

although significantly reduced, in both A/as and Arhi mutants, and only mutants with 

deletions from both QS systems failed to produce elastase. P. putida does not produce 

elastase (Braun et al., 2000), which is consistent with earlier observations that P. putida 

does not remove Listeria biofilms.
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While It does appear that elastase is involved with the removal of Listeria 

biofilms, it remains to be determined if elastase inhibits Listeria biofilms directly, or is 

indirectly involved.

As elastase has a broad substrate range, is secreted from the cell, and is a 

major constituent of PA01 supernatant, accounting for approximately 60% of 

supernatant protein content (Nouwens et al., 2003), it is possible that elastase directly 

inhibits Listeria biofilms.

The temperature dependence of the biofilm removal reported in chapter 

three suggested that treatment with PA01 conditioned medium may impair motility of 

Listeria, either by repressing the expression of flagella or by altering their function, as 

flagellar motility has been reported to be an important factor in Listeria biofilm 

development (Lemon et al., 2007). Interestingly, in P. aeruginosa neutrophil elastase 

(NE) has been reported to impair motility by suppressing synthesis of flagellin, the 

principle component of bacterial flagella. Transcription of flagellin in P. aeruginosa 

depends on prior assembly of the flagellar hook basal body, and NE destroys the 

flagellar hook, therein repressing the expression of flagellin at the transcriptional level 

(Jyot et al., 2007). NE was found to have no effect on P. aeruginosa viability, just as 

PA01 conditioned medium had no effect on the viability of Listeria in this study 

(Sonawane et al., 2006). This suggests the possibility that LasB elastase may directly 

affect Listeria flagella by degrading components of the flagella itself, or by affecting 

other factors normally involved in the anti-repression of flagella observed at 

temperatures below 37°C, such as GmaR or DegU (Shen et al., 2006).
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Elastase is known to have a broad range of substrates (Anderson et al., 

1999), and even structures on the surface of P. aeruginosa have been found to be 

degraded in the presence of its own stationary phase supernatant. Quorum sensing 

mutants of P. aeruginosa unable to synthesize elastase were found to have significantly 

increased expression of membrane proteins, including flagellin and a flagellar hook 

associated protein, FIgK (Nouwens et al., 2003). Thus elastase may be acting directly to 

degrade components of Listeria cell surface (Nouwens et al., 2002).

Alternatively, elastase may not be affecting Listeria directly, as activity of 

elastase has been demonstrated to affect other secreted substances from P. 

aeruginosa. Cowell et al. (2003) demonstrated that elastase degrades, and may prevent 

the secretion of ExoS, a type-111 secreted protein produced by P. aeruginosa that inhibits 

its uptake of by epithelial cells. The authors hypothesize that elastase could be partially 

active in the periplasm where it may activate or degrade other proteins, or affect 

components of secretion machinery. Thus, it is conceivable that elastase may be 

involved in activating other substances that are involved in the removal of Listeria 

biofilms.

Whether elastase is directly or indirectly responsible for the biofilm inhibition, 

it is possible that additional factors, unrelated to elastase, may be involved. Although 

treatment with Mutant 5B9 PCM did not result in a significant reduction in biofilm, the 

amount was lower than the negative control; therefore, other substances secreted by P. 

aeruginosa may also play a role in the complete removal of the biofilms. For example, 

Irie et al. (2005) found that rhamnolipids disrupted Bordetella biofilms, however, when 

experiments were conducted with purified rhamnolipids, as opposed to Pseudomonas
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conditioned medium, the purified rhamnolipids were less effective at biofilm removal and 

it was suggested that the difference was likely due to other additional substances 

present in the conditioned medium. It may be that other substances in addition to 

elastase, perhaps rhamnolipids, are also involved in the removal of Listeria biofilms.

One possible candidate is LasA, a staphylolytic protease. Full expression of 

the elastolytic phenotype in P. aeruginosa is dependent on the expression of both 

elastase and LasA (Kessler et al., 1993). Together LasA and elastase function in a 

synergistic manner, however, LasA does exhibit a low level of elastolytic activity on its 

own (Cowell et al., 2003). Furthermore, it was reported that mutation of IasB reduced 

invasiveness of P. aeruginosa by 77%, whereas mutation of lasA resulted in a 70% 

reduction (Cowell et al., 2003). These findings indicate that LasA and elastase can 

produce similar effects, and the activity of LasA may contribute to reducing the amount 

of Listeria biofilm compared to the negative control.

An additional possibility is that the effect of some substances in the 

supernatant may become more prominent in the absence of elastase. Elastase is 

normally the principle component of P. aeruginosa supernatant, thus the conditioned 

medium from the Mutant 5B9 would differ considerably in its composition compared to 

the wild-type. The loss of LasB, and its proteolytic activity, results in greater amounts of 

secreted proteins with longer half-lives (Nouwens et al., 2003), some of which may be 

affecting the Listeria biofilms in ways that would not occur in the wild-type.

To narrow down these possibilities, additional tests carried out with purified 

elastase would be necessary to determine if it is directly involved in removing Listeria 

biofilms. In addition to investigating the effect of elastase, to gain a more complete
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picture of the genes involved in removal of Listeria biofilms, screening should also be 

conducted on a considerably larger scale. In this study, 1416 mutants were screened, 

however, due to the large size of the P. aeruginosa genome (6.3 Mbp) this represents 

only a small fraction of non-essential genes. For example, Jacobs et al. (2003) 

developed a saturated library of P. aeruginosa PA01 consisting of 30,100 sequenced- 

defined transposon mutants. Similarly, Filiatrault et al. (2006) screened 35 000 random 

P. aeruginosa PA01 mutants to identify genes involved in virulence and anaerobic 

growth. If additional tests reveal that elastase is not the primary substance involved in 

removing the Listeria biofilms, additional screening may lead to the identification of 

other factors that play a role in biofilm inhibition. On the other hand, if elastase does 

efficiently remove Listeria it may have potential for use in the prevention or removal of 

Listeria biofilms in food processing environments.
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Figure 10. PCR amplification of the EZ-TnS <Tet-1> transposon

Lane 1: ladder; lane 2: P A O l wild-type; lane 3: amplification o f the tetracycline resistance 
gene o f the Tn5 trsposon in mutant 5B9.
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transposon in the lasB  gene. Black arrows indicate the position o f iasB and the transposon in the 
genome. The ends o f the transposon are flanked by two 19 bp m osaic end sequences (ME) that can be 
used as a m arker to determ ine the end point o f the transposon (im ages are not drawn to scale).
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5. Conclusions

The main findings of our study are that: i) substances secreted by Pseudomonas 

are capable of altering the growth of Listeria biofilms; ii) substances produced by P. 

putida enhance the attachment of Listeria biofilms grown at 37°C; ill) P. aeruginosa 

secretes substances that prevent and remove Listeria biofilms grown at temperatures < 

30°C, and the secreted virulence factor elastase plays a role in this removal.

At the onset of our study our goal was to identify a novel secreted substance 

capable of preventing or removing Listeria biofilms. A variety of microbially secreted 

substances produced by different species have been reported as having anti-biofilm 

effects, either preventing adhesion or dispersing mature biofilms. A common 

characteristic among many of these substances is that they exhibit surface active 

properties; therefore, in search of a novel substance to control Listeria biofilms, we 

screened bacteria isolated from paper mill slimes for biosurfactant production. While this 

type of broad screening may lead to the discovery of novel substances, and even new 

organisms, it is a large undertaking that can involve a lengthy investigation.

We then turned our investigation to the well characterized and fully sequenced P. 

aeruginosa strain PA01. The benefits of working with a fully sequenced organism were 

apparent when P. aeruginosa was found to remove Listeria biofilms and we were able 

to investigate this finding using random mutagenesis. As sequencing results could be 

searched against the genome database, the use of a sequenced organism facilitated 

rapid determination of the genetic factor involved in the observed biofilm removal.

Similarly, the observation that P. putida secretes substances that enhance the 

attachment of Listeria could be further investigated using random mutagenesis, as was
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done with P. aeruginosa. The use of a sequenced strain of P. putida would make this 

type of investigation possible, and could potentially identify the genetic basis behind the 

enhanced attachment of Listeria.

To gain a better understanding of the effect of lasB on Listeria biofilms, additional 

analysis will be necessary. A critical step to determining the role of elastase in biofilm 

removal will be to find out if it is directly or indirectly involved, by introducing elastase 

into a Listeria biofilm, apart from Pseudomonas conditioned medium. To do this, lasB 

could be cloned into another species and used to produce conditioned medium; 

however, elastate is secreted as a proenzyme, and attempts to express it in P. putida 

and P. fiuorescens have failed to produce the functional enzyme. The mechanisms 

behind the dissociation of the propeptide from the enzyme are not well understood, but 

it is believed to be a factor supplied by P. aeruginosa’s secretion machinery that is not 

present in the heterologous hosts (Braun et al., 2000). Alternatively, another strategy 

would be to produce purified elastase from culture supernatants (Mariencheck et al., 

2003).

A further area of interest will be to test the effect of the conditioned medium with 

a variety of Gram-positive and Gram-negative bacteria. Substances secreted by P. 

aeruginosa have been previously reported as having antimicrobial and anti-biofilm 

activity against a number of species (Nitschke & Costa, 2007) and, as this study 

demonstrates, it is likely effective against a number of organisms yet to be identified. It 

would be worthwhile to continue investigating the effects of Pseudomonas secreted 

substances, and elastase, on adhesion and biofilm formation and tests with other 

organisms problematic to the food industry would be of particular interest.
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To determine if the motility is being affected as hypothesized, the mechanism 

behind the dispersal of Listeria biofilms could be investigated. One approach to this 

would be through microarray analysis, to examine how Listeria gene expression is 

affected by exposure to PA01 PCM, and to elastase. Understanding how PA01 PCM 

mediates dispersal of the biofilms may identify vulnerabilities in Listeria that could then 

be targeted with additional substances, in addition to giving broader insights into factors 

involved in biofilm formation.

Controlling the adhesion of microorganisms to food contact surfaces is essential 

to ensuring food safety, and due to the difficulties encountered in biofilm removal there 

is ongoing research into novel strategies for biofilm control. It has been suggested that 

the use of substances that are able to disperse biofilms in combination with 

antimicrobials may be an effective strategy to overcome the inherent resistance of 

biofilm cells (Ihe et al., 2005; Nitschke & Costa, 2007). If it is established that elastase is 

directly responsible for the dispersal of Listeria biofilms observed in this study, it could 

potentially be employed in such an antimicrobial strategy.

In addition to identifying a substance that shows potential as a novel anti liste rial 

treatment and contributing to the knowledge of how the growth of Listeria biofilms is 

influenced by other organisms, the findings of this study should serve as a solid 

foundation for future investigations regarding the interactions between Pseudomonas 

spp. and Listeria monocytogenes.
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