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ABSTRACT

Luke, S.H. 2007. Riparian Vegetation Patterns and Links with Surface Waters in the 
Boreal Forest. 117 pp.

Riparian areas in the Canadian boreal forest represent the transition zone between 
terrestrial and aquatic ecosystems. Factors that influence riparian vegetation 
communities and the associated interactions with boreal streams were reviewed.
Regional and local drivers (e.g., climate and site hydrology) that affect upland boreal 
vegetation also operate in riparian areas. However, the proximity of riparian areas to the 
stream channel not only modifies some of these drivers, but it means that the stream itself 
becomes a driver of riparian vegetation dynamics. For example, hydrological 
disturbances like flooding and ice scour affect soil texture and alter successional 
pathways, sometimes completely denuding streambanks of vegetation. Even in riparian 
areas unaffected by such catastrophic disturbances, saturated soil conditions can influence 
riparian forest composition and nutrient cycling. Saturated soils support lower 
mineralization rates, therefore organic layers store relatively more carbon and nitrogen 
than adjoining upland soils, and primary productivity is generally lower. Saturated soils 
also have implications for the ability of the riparian area to “buffer” streams from surface 
and subsurface inputs of water and nutrients. For example, reducing conditions in 
riparian soils could be the sites for nitrate removal from groundwater by denitrification. 
Spatial variation in weather, soils, vegetation, and relief undoubtedly add to the 
complexity of understanding the role o f riparian systems in Canada’s vast boreal forest. 
However, the opportunity to identify patterns relating to riparian areas will assist in 
understanding and management of these multifaceted systems.

Among forested settings, riparian areas have been identified as having the most 
diverse vegetation, yet riparian communities seem to be among the least studied. The 
Forest Watershed and Riparian Disturbance project, a small watershed project initiated on 
the Boreal Plain, provided an opportunity to examine riparian diversity. The study design 
consisted o f pre-harvest/reference, one year post-harvest, and six year post-fire data 
collection and included: two mature stand types (deciduous: Populus tremuloides and 
Populus balsamifera and coniferous: Pinus contorta and Picea mariana), three vegetation 
communities (riparian, transition, and interior forest) inventoried for four layers (ground 
vegetation (<1 m), shrubs (1 to 3 m and >3 m), and trees), and four treatments (‘cut-to- 
shore’, 30 m buffer, fire, and pre-harvest/reference sites). Three transects with plots for 
all vegetation layers were established for 22 sites. Species inventory was used to 
calculate species richness (number of individual species) which was then subject to 
analysis. Overall, deciduous stands were more species rich when compared to coniferous 
stands. Pre-harvest/reference species richness for the: (1) deciduous stands for all 
vegetation layers remained relatively constant for the three communities, (2) coniferous 
stands for ground vegetation and shrub layers decreased from riparian to interior forest 
communities, (3) deciduous tree layers remained relatively similar for the three 
communities sampled, and (4) coniferous tree layers increased from riparian to interior 
forest communities. Post-treatment species richness for the: (1) tree layer of both stands 
in transition and interior forest communities decreased one year post-harvest under cut-
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to-shore conditions, (2) deciduous shrub > 3 m and 1 to 3 m layers decreased one year 
post-harvest under cut-to-shore conditions in interior forest, and riparian and transition 
communities respectively, (3) tree layer of both stands under buffer conditions is 
maintained in interior forest communities and in transition communities of coniferous 
stands when compared to cut-to-shore conditions, (4) ground vegetation layer of both 
stands under buffer conditions is maintained in interior forest communities when 
compared to cut-to-shore conditions, (5) coniferous stands appear to have re-established 
in all layers of as well as in shrub layers of deciduous stands six years post-fire, (6) tree, 
tall shrub, and ground vegetation layers of coniferous communities were generally less 
than that found in deciduous communities six years post-fire, and (7) ground vegetation 
layer for both stands appeared to be uniformly well established six years post-fire.

Keywords: Boreal forest; Buffers; Disturbance; Riparian area; Specie richness, Streams; 
Vegetation dynamics

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONTENTS
Page

ABSTRACT ii

TABLES vii

FIGURES viii

ACKNOWLEDGEMENTS x

CHAPTER 1: RIPARIAN AREAS IN THE CANADIAN BOREAL FOREST AND 
LINKAGES WITH WATER QUALITY IN STREAMS

1.1 INTRODUCTION 1

1.2 RIPARIAN AREAS IN THE BOREAL FOREST 6

1.2.1 Climatic controls on boreal riparian vegetation 6
1.2.2 Edaphic controls on riparian vegetation 12
1.2.3 Natural disturbance impacts on riparian vegetation 16

1.3 RIPARIAN VEGETATION AND THE AQUATIC 22
ENVIRONMENT

1.3.1 Sediment inputs and streambank stability 22
1.3.2 Streamflow and runoff 25
1.3.3 Nutrient concentrations 29
1.3.4 Stream Microclimate 35

1.4 RIPARIAN VEGETATION AS BUFFERS TO FOREST 37 
DISTURBANCE

1.5 CONCLUSIONS 41

CHAPTER 2: EFFECTS OF FOREST HARVEST AND FIRE ON BOREAL PLAIN 
RIPARIAN, TRANSITION, AND INTERIOR FOREST VEGETATION 
COMMUNITIES

2.1 INTRODUCTION 43

2.2 METHODS 47

2.2.1 Study location and design 47
2.2.2 Site identification 50
2.2.3 Transect and plot centre establishment 50
2.2.4 Vegetation plot establishment and inventory 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V

CONTENTS
Page

2.2.5 Analyses 53

2.3 RESULTS 57

2.3.1 Community composition 57
2.3.2 Annual differences in the reference stands 58
2.3.3 Hypothesis la: For the ground vegetation and 60

shrub layers in the absence of disturbance, there
will be higher species richness in riparian 
communities than in transition and interior forest 
communities regardless of stand class.

2.3.4 Hypothesis lb: For the ground vegetation and 62
shrub layers after harvest disturbance, there will be 
higher species richness in riparian communities
than in transition and interior forest communities regardless 
of stand class.

2.3.5 Hypothesis 2a: For the tree layer in the absence of 66
disturbance, there will be higher species richness in 
interior forest communities than in transition and 
riparian communities.

2.3.6 Hypothesis 2b: For the tree layer after harvest 66 
disturbance, there will be higher species richness in 
interior forest communities than in transition and 
riparian communities.

2.3.7 Hypothesis 3: Harvesting reduces species richness 68 
in all communities and stand classes and
cut-to-shore harvest more so than buffer harvest.

2.3.7.1 Comparing reference to harvested stands 68
2.3.7.2 Comparing cut to shore and buffer 70 

harvesting

2.3.8 Hypothesis 4: Post-fire species richness i. follows 71 
the same patterns identified in hypotheses 1 and 2
and ii. will be higher in coniferous than deciduous 
stands affected by pre-disturbance stand class.

2.4 DISCUSSION 74

2.5 CONCLUSIONS 80

LITERATURE CITED 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vi

CONTENTS
Page

APPENDIX A: THE /-VALUES FOR HARVEST TREATMENT AND 107
REFERENCE COMPARISONS

APPENDIX B: SPECIES RICHNESS MEANS AND SE VALUES FOR THE 109
HARVEST TREATMENTS

APPENDIX C: THE /-VALUES FOR HARVEST TREATMENT 112
COMPARISONS

APPENDIX D: THE /-VALUES FOR INTER-COMMUNITY FIRE 114
TREATMENT COMPARISONS

APPENDIX E: SPECIES RICHNESS MEANS AND SE VALUES FOR THE 116
FIRE TREATMENT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table

2 . 1.

2 .2 .

2.3

2.4.

2.5.

2 .6 . 

2.7.

vii

TABLES

Mature stands (60 to 80 years since disturbance) inventoried in 2003 
and 2004.

Summary of the vegetation inventory, 2003 and 2004.

Estimated Mean Squares (EMS) tables. Vegetation layers (ground 
vegetation, low shrub, tall shrub and trees) and stand class 
(deciduous and coniferous) were tested independently. In this balanced 
example, there are 5 replications (or stands). The actual number of 
observations varied with stand class. Main factors include year (Yr: 2003 
and 2004), community (Cmy: riparian, transition, interior forest) and 
stand (coniferous and deciduous).
a. Two-way ANOVA of reference stand data based on Eq. 1. Main 

factors are year and community.
b. Nested ANOVA based on Eq. 2. Main factors are stand and 

community.

a. ANOVA p -values and b. Scheffe Post-hoc tests comparing 2003 
and 2004 species richness in the riparian, transition and Interior 
Forest communities of the uncut coniferous and deciduous stand 
classes. Bolded values are significant.

b. Scheffe’s Post-hoc test results for both stand classes (deciduous and 
coniferous) and all vegetation layers (ground vegetation (GV), lower 
shrubs (LS), taller shrubs (TS), and trees) and communities.

Comparison of mean species richness between A. Pre-harvest/ 
reference communities and B. Post-harvest communities in deciduous 
and coniferous stands. Different letters indicate significant differences 
a tp <  0.05.

Results of the t-tests for differences between buffer (30 m) vs 
cut-to-shore harvest in the three communities in the four vegetation 
layers (/-values ranged from 0.00 to 5.29). All differences were 
significant at/? < 0.01.

Results for /-tests post-fire comparisons for coniferous and deciduous 
stands, all layers, and communities (riparian (R), transition (T), and 
interior forest (IF)).

Page

48

48

55

55

55

58

59 

61

70

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure

1. 1.

1.2 .

1.3.

1.4.

2 . 1.

2 .2 .

2.3.

2.4.

2.5.

viii

FIGURES

Page

Riparian and upland factors that affect vegetation diversity and stream 
water quality. A, a relatively undisturbed riparian area; B, biological 
disturbance (e.g., beaver activity increases: water level increases, coarse 
woody debris increases, trees are felled); C, anthropogenic disturbance 
(e.g., harvesting: trees are felled, water level rises, sedimentation 
increases).

The Boreal Plain and Shield Subregions within the Canadian boreal 
forest.

Forest serai stages and the influence of stand growth on soil ammonium, 
organic matter, pH, bulk density, and nitrate.

Topographical/lateral gradients o f plant community composition 
between aquatic and terrestrial environments and linkages to water 
movement. Precipitation may be intercepted by vegetation or move as 
subsurface flow to the stream channel (blue arrows) or to the water table 
(indicated by the hazy blue line). Also, water flowing to the stream 
channel will come into contact with soil nutrients (red and yellow 
diamonds), especially near plant roots.

Project location, watersheds with vegetation transects, and the Boreal 49
Shield and Plain subregions within the Canadian boreal forest.

Transect diagram illustrating plot layout: six ground vegetation, three 51
shrub, and three tree plots.

Mean ground vegetation species richness (with SE) pre- and post- 63
treatment by community and stand class. ’Means include all pre-harvest 
and 2003/2004 reference data, 2one year post-harvest. Harvest treatments: 
buffer (30 m), and cut-to-shore. * p  < 0.05, ** p  < 0.01, *** p  < 0.001.

Mean low shrub species richness (with SE) pre- and post-treatment by 64
community and stand class. ’Means include all pre-harvest and 2003/2004 
reference data, 2one year post-harvest. Harvest treatments: buffer (30 m) 
and cut-to-shore. * p <  0.05, ** p  < 0.01.

Mean tall shrub species richness (with SE) pre- and post-treatment by 65
community and stand class. 'Means include all pre-harvest and 
2003/2004 reference data, 2one year post-harvest. Harvest treatments: 
buffer (30 m) and cut-to-shore. * p <  0.05.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ix

Figure Page

2.6. Mean tree layer species richness (with SE) pre- and post-treatment by 67
community and stand class. 1 Means derived from all pre-treatment and 
2003/2004 reference data,2 one year post-harvest. Harvest treatments: 
buffer (30 m) and cut-to-shore: * p  < 0.05, ** p <  0.01, ***/?< 0.001.

2.7. Mean species richness (with SE) of all layers for the fire treatment 73 
(6 years post-fire) by community and vegetation layer. * p <  0.05,
* * p <  0.01, ***p<  0.001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X

ACKNOWLEDGEMENTS

If it were not for the moral support and encouragement provided to me by my mother, I 
may have never come this far. I am especially thankful for her love, kindness, and 
generousity throughout my life and academic career. She always believed in me, even 
when I questioned myself. For all of this, I will forever be grateful.

Dr. Nancy J. Luckai, thesis committee member, was a great motivator in my 
undergraduate and graduate years. I am very thankful for her guidance, encouragement, 
and support (financial and academic) over the years. The advice she has given me and 
the lessons she has taught me will forever be remembered.

Dr. Ellie E. Prepas, provided academic and financial support during the thesis process.
The FORWARD project is funded by many organization and companies including: the 
Natural Sciences and Engineering Research Council of Canada CRD, Discovery 
Programs, Millar Western Forest Products Ltd., and Blue Ridge Lumber Inc. (a Division 
of West Fraser Timber Company Ltd.).

Mr. Tim McCready, thesis committee member and Millar Western Forest Products Ltd. 
forester, was a great support, especially during field inventory. He graciously allowed 
me to use crew members from his field staff to collect data during summer months. Also, 
the feedback offered throughout the thesis process is appreciated.

Dr. Han Chen, thesis committee member, helped me fine-tune my writing style and 
encouraged me to challenge myself in all academic aspects.

Mr. Jonathan Russell and Millar Western Forest Products Ltd., Woodlands Manager for 
Millar Western Forest Products Ltd. ensured equipment and field crews were available to 
meet project deadlines.

Ms. Janice Burke, FORWARD Research Associate, helped to strengthen my writing 
skills. Her patience, encouragement, and support are sincerely valued.

Miss Aimee Linkewich, Mr. Dan Saurette, and Miss Jennifer Bond provided much 
support in the field and helped with data entry. I thank them for their dedication, sense of 
humour and words of encouragement.

Dr. Rebecca Montgomery was the external examiner for this thesis. I thank her for her 
comments, time, and effort.

Lastly, but certainly not least, I thank Natural Sciences and Engineering Research 
Council of Canada, Millar Western Forest Products Ltd., and Lakehead University for 
their scholarship contributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1: RIPARIAN AREAS IN THE CANADIAN BOREAL FOREST AND 

LINKAGES WITH WATER QUALITY IN STREAMS1

1.1 INTRODUCTION

Of the many definitions available, this review defines riparian areas in forested 

environments as the transition zones between the aquatic environment and the 

arborescent vegetation, which extends away from the channel bank or shore and includes 

the land and water that are associated with controlling the flux of energy and nutrients, as 

well as biotic interchanges (Gregory et al. 1991). Debates surrounding the definition of 

riparian areas are often centered on management prescriptions, the environments to 

consider as riparian (such as communities bordering wetlands, streams, lakes, and rivers), 

and the ecological functions of riparian areas (Ilhardt et al. 2000; Lee and Smyth 2003; 

Lee and Barker 2005). Riparian areas have been recognized as having environmental, 

social, and economic importance with regards to wildlife habitat, biodiversity, surface 

water quality, recreation, and primary resources (e.g., forestry and mining) (CCFM 

1998a; Naiman et al. 1988; Twery and Hombeck 2001; Hull et al. 2003).

Riparian areas in forested settings represent zones of ecological significance 

because they house diverse and dynamic biophysical habitats (Naiman et al. 1993), in 

part because they are exposed to disturbance events of intermediate frequency and 

intensity that usually prevent complete elimination of less competitive organisms 

(intermediate disturbance hypothesis; Hutchinson 1953). Their relationship with surface 

waters is reciprocal: not only do they influence streamflow and water quality, but there is 

strong evidence that hydrological disturbances, such as water level fluctuations, floods,

fA version of this manuscript has been published. Luke, S.H., Luckai, N.J. Lucaki, 
Burke, J.M., Prepas, E.E. 2007. Riparian areas in the Canadian boreal forest and linkages 
with water quality in streams. Environ. Rev. 15: 79-97.
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2

erosion, and alluvial deposition are the primary drivers of riparian vegetation dynamics, 

diversity, and nutrient cycling. (Naiman and Decamps 1997; Pabst and Spies 1998). 

Riparian vegetation communities are also influenced by factors like precipitation, the 

amount and quality of runoff water from upland areas, light, air temperature, and soil 

conditions. Natural (e.g., wildfire, beaver activity) and human (e.g., fire suppression, 

harvesting, site preparation) disturbances have the potential to influence riparian area 

dynamics because they also alter these physical factors. For example, a riparian zone 

(Fig. 1.1 .A.) could be exposed to higher light conditions and flooding because of tree 

removal due to beaver activity (Fig. 1.1.B.) or enhanced runoff from harvested upland 

areas (Fig. 1.1.C.). The challenge to understanding riparian vegetation ecology lies in the 

lack of baseline data such as riparian vegetation responses to disturbance, and the absence 

of clearly defined fundamental relationships such as riparian area microclimate and 

linkages with nutrient dynamics (Nilsson 1992). Data on riparian area form and function 

are essential inputs to developing qualitative and quantitative descriptions of near-shore 

and aquatic ecosystem response to forest disturbance.

More than three-quarters of Canada’s forested land lies within the northern boreal 

region, between 50 and 60 degrees north latitude (NRC 2006a). This review focuses on 

two Canadian boreal forest ecozones: the Boreal Shield and Boreal Plain (Fig. 1.2). The 

Boreal Shield has thinner soils (Peters et al. 1995) and relatively more conifer-dominated 

terrain (NRC 2006b) than the Boreal Plain to the west (Fig. 1.2). Whereas the Boreal 

Shield climate is humid (annual precipitation 400 to 1600 mm), the Boreal Plain is 

subhumid or semi-arid (annual precipitation 300 to 625 mm) (Zoltai et al. 1998; NRC 

2006b). A south to north temperature gradient exists in addition to this moisture gradient.
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This is manifested by the increasing occurrence of permafrost and accumulation of 

organic layers at the soil surface in more northerly boreal forests (Zoltai et al. 1998; 

Metcalfe and Buttle 2001).

A

B

C

Figure 1.1. Riparian and upland factors that affect vegetation diversity and stream water 
quality. A, a relatively undisturbed riparian area; B, biological disturbance 
(e.g., beaver activity increases: water level increases, coarse woody debris increases, trees 
are felled); C, anthropogenic disturbance (e.g., harvesting: trees are felled, water level 
rises, sedimentation increases).

The Canadian boreal forest faces increased disturbance from human activities, 

including road construction, oil and gas exploration and extraction, hydroelectric 

development, mining, insect control, fire suppression, recreation, and timber harvest. For 

example, forestry constitutes the largest resource-based industry in Canada and
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approximately half of the Canadian boreal forest is accessible by roads (NRC 2006a). In 

addition, 25% of the freshwater surface area on earth is within Canada (CCFM 1998b), of 

which a significant portion (30% or 540 000 km2) is in the boreal region (Canadian 

Forestry Association 2006). The elevated level of industrial activity in the boreal forest, 

combined with the importance of surface water resources, has heightened efforts by 

foresters, biologists, hydrologists, geomorphologists, and others to examine the role of 

riparian areas as “buffers” between watershed vegetation and receiving waters. Growing 

pressures to quantify environmental implications of silviculture (including: road 

construction, harvesting, renewal, and tending), a movement towards legislated science- 

based forest planning (Allen and Bames 1985; CCFM 1998a), and issues relating to 

overlapping jurisdictions and cumulative impacts in managed forests (Smith et al. 2003) 

have accentuated the need to better document riparian functions in the Canadian boreal 

forest. Currently, Canadian Provincial jurisdictions have a broad range of forest retention 

(buffer zone) guidelines surrounding waterways (see Lee et al. (2004) for examples), 

which are used to regulate only those activities directly related to the wood products 

industry.
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1  Boreal Plain 
Boreal Shield

Figure 1.2. The Boreal Plain and Shield Subregions within the Canadian boreal forest.

The vegetation dynamics of riparian areas have been reviewed on a continental 

scale (e.g., Gregory et al. 1991; Naiman and Decamps 1997), where different waterbody 

types (i.e. streams and lakes) were considered together in an attempt to reveal landscape 

level patterns. The importance of riparian areas in many forested systems outweighs their 

relatively small proportion of the land base, because their physical location means that 

they can function as both a hydrological link and hydrological barrier between upslope 

areas and the stream channel (Gregory et al. 1991; Burt 2005). This review focuses 

specifically on the Canadian boreal forest and the associated flowing waters because of 

the immediate connection they provide, relative to lakes and ponds, between upland 

disturbance and downstream response (e.g., Carignan and Steedman 2000; Kreutzweiser 

et al. 2004). The two main objectives of this review are to: (i) synthesize research related 

to riparian areas in the Canadian boreal forest, recognizing other sources when necessary
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(e.g., northern Europe) and (ii) draw attention to key gaps in riparian knowledge in the 

Canadian boreal forest as a basis for future research initiatives. The primary topics 

covered include: the role of and controls on riparian vegetation in the boreal forest 

(section 1.2), linkages between riparian vegetation and the aquatic (primarily stream) 

environment (section 1.3) and finally, the use o f riparian areas as buffers to forest 

disturbance (section 1.4).

1.2 RIPARIAN AREAS IN THE BOREAL FOREST

Given that riparian areas represent a forest edge bordering water, riparian vegetation is 

influenced by factors that control upland boreal forest vegetation, as well as those related 

to edge effects and proximity to water. Consequently, in this section, when information 

specific to riparian areas is lacking, upland/inland concepts relating to riparian areas were 

applied. Establishment and persistence of riparian vegetation in the boreal forest is 

largely determined by: (i) climate -  light quantity and quality, temperature, and moisture, 

(ii) edaphic conditions -  soil conditions, in particular as they relate to saturation (texture, 

nutrient mineralization, pH), and (iii) natural disturbances -  flooding, ice scour, beaver 

activity and wildfire.

1.2.1 Climatic controls on boreal riparian vegetation

On a global scale, the northern and southern boundaries of the boreal forest are defined 

by macroclimate factors (see Bonan and Shugart 1989), such as frost-free days and 

precipitation. Within boreal forest biome, a complex array of vegetation communities 

(ecozones) has developed based on differing climate and landscape characteristics, which 

include the: Boreal Plain, Boreal Shield, and Boreal Cordillera. Climatic characteristics 

of the: Boreal Plain are cold winters and moderately warm summers largely influenced by
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continental climatic conditions; Boreal Shield with the exception of the coastal margins 

where climate is moderated by maritime conditions, has a strong continental climate - 

long, cold winters and short, warm summers; Boreal Cordillera are long, cold winters 

with short, warm summers influenced by the Pacific Maritime conditions (CCFM 2005). 

Photosynthetic efficiency, which largely determines plant competitiveness and success, 

varies by species and is largely driven by climatic factors such as light, temperature, 

atmospheric and soil moisture, and ambient CO2 concentration (e.g., Lundmark et al. 

1998; Chen et al. 1999; Odasz-Albrigtsen et al. 2000; Stenberg et al. 2001). Riparian 

areas, nested within ecozones exhibit a unique suite of environmental conditions and add 

another layer of complexity to this hierarchy (Hylander et al. 2002).

Vegetation communities in the Canadian boreal forest include the following 

conifer tree species: white spruce (Picea glauca (Moench) Voss), black spruce (Picea 

mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), lodgepole pine (Pinus 

contorta Dougl. ex Loud. var. latifolia Engelm.), Engelmann spruce (Picea engelmanni 

Parry ex. Engelm.), balsam fir {Abies balsamea (L.) Mill.), and tamarack {Larix laricina 

(Du Roi) K. Koch). Broad-leaved trees are represented by: trembling aspen {Populus 

tremuloides Michx.), balsam poplar {Populus balsamifera L.), and paper birch {Betula 

papyrifera Marsh.). Common shrubs are: Labrador tea {Ledum groenlandicum Oeder), 

willow {Salix spp.), alder {Alnus spp.), and bracted honeysuckle {Lonicera involucrata 

Banks ex Spreng.). Compared to boreal forest vegetation as a whole, riparian vegetation 

communities appear to exhibit more spatial variability in vegetation features (e.g., 

density, basal area, canopy height, and vertical structure) and higher deciduous shrub and 

herbaceous cover (Mosley et al. 2006). However, a consistent definition cannot be
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applied across the boreal forest region for those plant species that constitute riparian 

communities. A general statement that can be made is that riparian vegetation 

communities in the Canadian boreal forest consist of species adapted to a wetter, more 

hydrologically dynamic environment than upland forests.

Light quantity and quality are critical drivers of plant competition (Ter-Mikaelian 

et al. 1997) and community composition (Shropshire et al. 2001). The duration of 

daylight and light intensity reaching the top of the forest canopy varies strongly on a daily 

and seasonal scale in the boreal region. In northerly latitudes, day lengths range from less 

than 8 hours during the winter to more than 18 hours in the summer, however maximum 

incoming (short wave) radiation levels are low (<1000 W m‘2) due to low solar elevation 

(Baldocchi et al. 2000). The diffuse nature of sunlight may contribute to the high light 

use efficiencies inferred by Still et al. (2004) for vegetation in boreal regions relative to 

regions at lower latitudes. Cloud cover further modifies light intensity and quality 

(Lieffers et al. 1999), adding another level of variability to the light regime.

Vegetation also modifies light, leading to differing light environments in the 

understory and canopy. As light passes through or is reflected by vegetation, light 

intensity decreases and the relative proportions of the various wavelengths change.

Above the forest canopy, there are peaks in blue and green wavelengths (450 to 570 nm), 

whereas under forest cover, the peak occurs in the lower end of the infrared spectrum 

(Gates 1965). The structure (i.e. light interception efficiency) and function (i.e. light 

conversion efficiency) of leaves in full light (“sun leaves”) versus shade (“shade leaves”) 

are quite different (Kimmins 1997; Reich 1998; Stenberg et al. 2001) and one tree or 

shrub can exhibit leaves of both types. In general, deciduous foliage absorbs red light
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(655 to 665 nm) better than coniferous foliage (Messier et al. 1989). Because of this 

physiological difference, as well as morphological differences between these two broad 

groups, light use efficiency is lower in the North American than the Eurasian boreal 

region, where deciduous species dominate (Still et al. 2004).

As boreal forest stands age, tree establishment, stand structure, and vegetation 

community composition change in response to changing light conditions (Chen and 

Papadiouk 2002). Pioneer plants, such as grasses, fireweed (Epilobium angustifolium L.), 

balsam poplar, and jack pine tend to be adapted to high light environments (i.e. shade 

intolerant), whereas later successional species, such as Labrador tea, bunchberry (Cornus 

canadensis L.), and balsam fir tend to be shade tolerant and are found under fully 

developed canopies. In general, understory growth is light limited after canopy closure in 

boreal forests (Lieffers et al. 1999). If the overstory of an established riparian area 

community is removed, the light environment at the ground level will change such that 

the next community will have to succeed under higher light conditions. Similarly, as a 

riparian community ages and larger shrubs or trees become established, the understory 

transforms to incorporate plants that can exist in a lower light environment. Understory 

vegetation species will differ in their response to disturbance with respect to shade 

tolerance levels (Harper and Macdonald 2001). For example, forest harvest improved 

seedling establishment and growth of shade intolerant species in a taiga forest in Canada 

(Bock and van Rees 2002). Seedlings and saplings that can modify their physiology and 

morphology in response to varying light conditions will have the best chance of survival 

(O’Connell and Kelty 1994). For the boreal forest, these adaptations will vary among 

species groups due to ontogenetic constraints (Kneeshaw et al. 2006).
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Light intensity affects soil temperature. The forest floor receives more solar 

radiation after forest removal. In a Boreal Plain study, mineral soil temperatures in 

August were an average of 3°C higher in riparian clearcut sites (without site preparation) 

than undisturbed sites. Mineral soil moisture content was also higher at the clearcut 

(32%) than undisturbed (23%) sites. The linkage between forest harvest and increased 

light intensity can also have a direct effect on the vegetation composition of a site. For 

example, after clearcutting a boreal forest in northern Europe, Palviainen et al. (2005) 

documented a decrease in feather mosses (e.g., schreber’s moss (Pleurozium schreberi 

Brid)) and stair-step moss (Hylocomium splendens (Hedw.) B.S. & G.). Increased light 

intensity and soil temperature can affect site hydrology by modifying moisture levels and 

can affect vegetation community composition by altering the existing microclimate.

Cool air temperatures generally limit growth in boreal forests, however, boreal 

riparian vegetation may be less affected than upland vegetation due to a difference in the 

micorclimate. On average, air temperatures remain below freezing for up to 6 months 

each year, and the growing season is short, less than 120 days (Baldocchi et al. 2000). 

Conifers in the boreal forest are not photosynthetically active in cold winters (Man and 

Lieffers 1997) and deciduous trees are leafless from approximately late September to 

May. Freezing air temperatures can damage photosystem II (the membrane protein and 

pigment complex that uses light energy to generate ATP) in spruce and pine under high 

light conditions (Lundmark and Hallgren 1987). Frozen soils also impede vegetation 

growth by preventing stem cambial cell division and the uptake of nutrients and carbon 

dioxide (Jarvis and Linder 2000). Cold soil temperatures in the boreal forest also slow 

soil organic matter decomposition rates, thus limiting nutrient cycling (Bonan 1990;
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Gower et al. 2001) and further reducing growth potential. The organic content of the soil 

and distance to the stream can affect the depth of frozen soil. For example, in the boreal 

forest o f northern Sweden, Nyberg et al. (2001) observed that the drier upland mineral 

soil had a deeper frost depth when compared to riparian organic soils. In addition, the 

fraction of soil water remaining unfrozen at temperatures well below the freezing point 

was much higher in the riparian organic soils (10 to 15 vol.%, compared to 5 to 7 vol.% in 

the upland mineral soil).

Transpiration is critical for the regulation of water balance, turgor pressure, and 

leaf temperature. Transpiration rates are determined by the water vapour gradient 

between the leaf mesophyll and the atmosphere outside the leaf. Therefore, in addition to 

depending on leaf characteristics, transpiration rates are negatively associated with higher 

atmospheric moisture and positively associated with higher air temperature and soil 

moisture (Sen’kina 2002). Transpiration rates are generally lowest in fall and highest in 

mid-summer and are higher for deciduous than conifer leaves. In west-central Canadian 

boreal forests that were studied as part of the BOREAS project, transpiration rates 

measured in the field from June through September ranged from 1.3 to 4.6 mmol H2O m"2 

for trembling aspen leaves (Middleton et al. 1997). Among conifers, transpiration rates 

ranged from 0.8 to 1.4 mmol H2O m'2 and from 0.5 to 1.3 mmol H2O m'2 for jack pine 

and black spruce needles, respectively (Middleton et al. 1997). Data from the Russian 

taiga indicate that transpiration rates from fir and larch are higher than from pine and 

spruce (Sen’kina 2002). Relative to shade intolerant plants, shade tolerant plants like 

spruce use water more efficiently (Patterson et al. 1997) and have a narrower range in 

terms of transpiration changes in response to increased moisture and temperature
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(Sen’kina 2002). It is reasonable to expect transpiration rates to be higher in riparian than 

upland forests due to edge effects and increased soil moisture because riparian areas 

receive water from streams, upland areas, and in some cases, groundwater (Tabacchi et 

al. 2000; Brooks et al. 2003). For example, water use by trees was 50% higher at the 

north-facing edge than in the interior of a Scots pine {Pinus sylvestris L.) stand in boreal 

Sweden (Cienciala et al. 2002)

1.2.2 Edaphic controls on riparian vegetation

Edaphic factors that affect boreal forest vegetation include soil texture, soil bulk density, 

soil moisture, organic matter, nutrient availability, and pH. For the riparian area, control 

of community composition and growth rates o f individual plants is mediated through the 

interaction of these factors with soil saturation and concomitant reducing conditions. The 

importance of edaphic factors is demonstrated by research, their inclusion in the 

preliminary steps o f site classification and the presence of an edaphic grid (usually 

nutrient status vs moisture regime) in many regionally based ecosystem classification 

guides (e.g., Archibald et al. 1996; Beckingham and Archibald 1996; Beckingham et al. 

1996). The broad range of guides that exist reflects the spatial and temporal variation in 

vegetation community structure across the Canadian boreal forest.

Riparian soil profiles are subject to stream channel wandering and periodic 

sediment deposition after flooding events, therefore soil texture can vary among riparian 

sites along a stream reach and with soil depth at a given site. In general however, riparian 

soils such as Regosols are poorly developed (Arocena and Abley 2006) and often coarse 

textured (Brooks et al. 2003; BLM 2003). Soil texture has implications for saturation and 

oxygen conditions. Coarse-textured soils transmit water rapidly and tend to be well
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aerated, whereas fine-textured soils have slow transmission rates and display periodic 

hypoxia (BLM 2003). Riparian soils are saturated at least some of the time or at some 

depths; therefore riparian vegetation communities contain species that tolerate 

inundation, such as willow and birch. Vegetation that is tolerant of hypoxic or anoxic 

conditions (i.e. via aerenchyma formation, adventitious root development, or quiescence) 

grows where riparian soils are fine-textured (BLM 2003).

Variation in riparian vegetation, such as communities o f trees, shrubs, herbs, and 

bryophytes on fine-grained floodplain soils (Nilsson 1999) has also been linked to soil 

texture via rooting ease (Jones 1983). Within the boreal forest, the rooting zone is quite 

shallow relative to forests farther south. More than 80% of root biomass is in the upper 

30 cm of the soil, a value that is exceeded only in the tundra (Jackson et al. 1996). 

Reported maximum rooting depths among all terrestrial biomes is highest for trees 

(approx. 7 m), lowest for herbaceous plants (approx 2.4 m) and intermediate for shrubs 

(approx. 5 m) (Canadell et al. 1996). Given the proximity of the riparian area to the 

water table, rooting depth is more limited by saturated (anoxic) soils as noted above, than 

by soil texture directly.

Nutrient pools in riparian soils differ from upland soils. Upland soils are 

generally considered to have higher nutrient availability because drier and warmer 

conditions promote mineralization relative to downslope areas (e.g., Grant 2004).

Indeed, carbon and nitrogen stores in the organic layers of riparian forest soils in central 

Canada were higher than in upland areas (Hazlett et al. 2005), which suggests that plant 

matter was accumulating. Nutrients can be translocated into the riparian area from 

upstream (flooding) and upland (erosion and leaching) areas. However, soil saturation in
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the riparian zone limits plant colonization, rooting depth, and nutrient mineralization, 

therefore it is probably the dominant factor responsible for observations (e.g., France et 

al. 1998) of lower vegetation production rates in riparian versus upland areas. The serai 

stages of riparian vegetation also determine the amount and structure of forest floor 

nutrient pools (depth and location, chemical quality, and amount of decomposition). For 

example, as communities move from deciduous shrub dominated to coniferous tree 

dominated, forest floor thickness increases until the end of the aggradation phase (Pare 

and Bergeron 1995). There tends to be more organic matter in the soil profile of 

older/more mature riparian forests when compared to younger/less mature forests (Fig.

1.3.) (Schwendenmann 2000; BLM 2003).

Establishing decid^ pf shrub Aspen
conifer Conifer

ammonium organic matter

pH bulk density nitrate

Figure 1.3. Forest serai stages and the influence of stand growth on soil ammonium, 
organic matter, pH, bulk density, and nitrate.

Soil pH is inversely related to the serai stage of boreal vegetation

(Schwendenmann 2000) and pH also decreases as communities move from deciduous
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shrub dominated to conifer tree dominated (Brais et al.1995). In turn, pH affects 

vegetation growth through its influence on nitrification and ammonification. In general, 

acidic conditions are associated with lower net nitrification rates (Ste-Marie and Pare

1999) and thus lower nitrate availability. In contrast, ammonification is often stimulated 

by acidic conditions (Pajuste and Frey 2003), which are thus associated with higher 

ammonium availability (Fig. 1.3.). Several coniferous species take up ammonium 

preferentially over nitrate (Kronzucker et al. 1997; Min et al. 2000). In addition, some 

boreal trees (e.g., Scots pine, Norway spruce (Picea abies (L.) Karst.)), shrubs (e.g., 

bilberry ( Vaccinium myrtillus L.)), and grasses (e.g., Deschampsia flexuosa (L.) Trin.) 

appear able to utilize organic forms of nitrogen (Naesholm et al. 1998) produced through 

nitrogen fixation (Brady and Weil 1999). A positive relationship between nitrogen 

fixation and forest succession rates has been observed in northern boreal stands of fire 

origin (Zackrisson et al. 2004), suggesting that as pH decreases, nitrogen fixation 

becomes more important.

Bulk density is generally higher in establishing vegetation communities (3 to 4 m 

above the channel) when compared to mature vegetation communities (6 to 8 m above 

the channel) (e.g., Schwendenmann 2000) (Figure 3). In addition, forest harvest has been 

associated with increased soil bulk density and higher soil moisture (reduced soil water 

deficits and lower soil moisture recharge requirements) (Cheng 1989). For example, on 

Boreal Plain floodplain and terrace sites that were clearcut in the winter, bulk density of 

the forest floor was higher (0.18 g cm' ) compared to undisturbed sites (0.12 g c m ' ) 

(Schwendenmann 2000). These alterations mean that more water is available for 

streamflow. For example, clearcutting of lodgepole pine over 25% of a watershed was
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followed by an increase in annual water yield of 52% and an increase in mean daily 

maximum discharge of 66% during the summer (Burton 1997). Effects on peakflows are 

less consistent among studies, but the generalization has been made that snowmelt- 

derived peak flows may be higher (increased snow accumulation in cleared areas) and 

occur earlier (more rapid snowmelt in cleared areas) (Verry et al. 1983; Matheussen et al.

2000). This pulse of water within the stream network would undoubtedly have local and 

downstream effects in terms of stream biogeochemistry. Effects of higher bulk density in 

adjacent soils will vary for each stream channel based on disturbance type, timing, 

frequency, duration of exposure, and the stream morphology that existed before the pulse.

1.2.3 Natural disturbance impacts on riparian vegetation

Hydrology is the dominant natural factor shaping riparian vegetation composition and 

structure (Naiman and Decamps 1997). Flooding of riparian areas next to stream 

channels can have an immediate and dramatic impact on riparian vegetation. For 

example, floods were estimated to explain 72% of riparian forest structure on the Peace 

River in western Canada (Timoney et al. 1997). The magnitude of the impact depends 

upon flood magnitude, duration and frequency, as well as timing of the flood relative to 

the growth phase of the vegetation (Johansson and Nilsson 2002). Floods create the 

opportunity for new vegetation to establish because: (i) silt is deposited over existing 

vegetation creating a new floodplain, (ii) vegetation is uprooted to create gaps, (iii) 

organic matter is removed and mineral soil is exposed (large floods), (iv) unstable 

substrate is created, and (v) anoxic conditions can evolve (Gumell 1997; Naiman and 

Decamps 1997; Gomi et al. 2002). The variability in flood frequency, duration, 

magnitude, and effects of floods on riparian communities are well documented in the
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United States (e.g., Hupp and Osterkamp 1996; Swanson et al. 1998; Friedman and Lee 

2002; Shafroth et al. 2002) and northern Europe (e.g., Johansson and Nilsson 2002) but 

poorly documented in Canada.

Interflow ♦

M i
Groundwater flow

Figure 1.4. Topographical/lateral gradients of plant community composition between
aquatic and terrestrial environments and linkages to water movement. Precipitation may 
be intercepted by vegetation or move as subsurface flow to the stream channel (blue 
arrows) or to the water table (indicated by the hazy blue line). Also, water flowing to the 
stream channel will come into contact with soil nutrients (red and yellow diamonds), 
especially near plant roots.

Topographic or lateral (from the stream channel to upland forest) and longitudinal 

(from upstream to downstream reaches) gradients in plant community composition (Fig.

1.4.) are intimately linked to the flood history of a given stream. In western Canada, 

flooding history is reflected in the mixture of age classes within the herb, shrub, and tree 

communities on the floodplains, terraces, or hillslopes immediately adjacent to stream 

channels. Active floodplains are usually composed of barren silt with little or no
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vegetation. Younger plants representing pioneer deciduous species (e.g., Alnus spp. and 

Salix spp.) are typically found on the first terrace 3 to 4 m above the stream channel, 

whereas later successional communities are found 6 to 8 m above the stream channel 

(Timoney et al. 1997; Schwendenmann 2000). The transition in vegetation communities 

from riparian to upland areas is similar in many studies, such as Nilsson (1987) and Lamb 

and Mallik (2003). For example, Mallik et al. (2001) observed that many boreal species 

either increased or decreased dramatically in abundance with distance from the stream. 

Graminoids and herbs presented the strongest relationship in terms of topographic/lateral 

gradients, increasing in mean representation as the distance (0 to 5 m) from the stream 

increased. Shrubs, liverworts, and mosses also increased along the topographical/lateral 

gradient but peaked about 3 m. Along a longitudinal gradient, plant communities 

resemble the upslope forest in constrained upstream reaches (often small headwater 

streams), where the riparian area is narrow. Moving downstream, where streams are 

larger and unconstrained (e.g., braided, meandering), riparian areas are wider and plant 

communities consist of heterogeneous patches of various successional stages. 

Representatives include herbs, grasses, deciduous trees, and conifers of many ages 

(Gregory et al. 1991).

Flooding affects riparian vegetation regeneration. Survival and growth of species 

such as Be tula spp. was reduced when submerged due to flooding for about 30 days. In 

contrast, little influence of flood duration was observed for Carex spp. (Johansson and 

Nilsson 2002). Clearly, the tolerance of plant species to under-water submersion will 

affect a sites vegetation diversity. Further, degraded streambanks may be subject to a 

loss or change in riparian plant species (Naiman and Decamps 1997). Riparian
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vegetation regeneration downstream of an unstable bank may also be affected by 

accelerated rates of erosion, as the sediment contributed to the floodplain can be 

substantial. The redistribution of sediment within riparian areas can disturb established 

plants and limit regeneration success of certain species; however, it can also favour 

young and productive stages of vegetation (Nilsson and Svedmark 2002).

Physical impediments to flow are important components of the hydrological 

disturbance regime and can affect riparian vegetation regeneration. Coarse woody debris 

(CWD), beaver dams, and ice can increase movement of flood waters and sediment from 

the stream channel to the floodplain (Prowse and Culp 2003). CWD can also slow 

streamflow, create steps and pools, retain or move materials, modify stream morphology, 

and create habitat (Gomi et al. 2003). Slower streamflow can alter sediment loading 

patterns downstream, thereby affecting vegetation establishment. Beaver dams are 

capable o f holding sufficient water and retaining deposited organic and inorganic matter 

(often referred to as sedimentation) (Naiman et al. 1986) therefore when a dam breaks, 

material held by the impoundment migrates down the channel network and can affect 

translocation and accumulation of debris and nutrients, as well as nutrient availability 

(Naiman et al. 1994). The presence of ice in a stream channel means that flooding 

associated with ice breakup in spring tends to be more severe than that which occurs 

when the channel is ice-free (Prowse and Culp 2003). Channel morphology will play a 

large part in determining whether physical impediments (e.g., CWD, sediment, ice) move 

down the stream channel or are pushed up on the bank.

Ice scour can occur in association with spring ice breakup, when moving ice is 

blocked by stationary ice (generally still attached to streambanks), creating ice jams that
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gouge the streambank and streambed (Beltaos 2000). The incidence, timing, and duration 

(in the order of weeks in the boreal region) of this disturbance depend on ice conditions 

in the channel and air temperatures in the spring. The expectation is that more “dynamic” 

breakup events would have a negative effect on riparian vegetation and that less intense 

events would have little to no effect or even enhance diversity. Dynamic ice scour events 

can remove riparian vegetation from streamside locations such that recolonization occurs 

annually, in particular at bends in the channel (Prowse 2001; Prowse and Culp 2003). In 

many cases, tree growth will occur only above the zone of ice action along a stream 

(Prowse 2001).

The American beaver (Castor canadensis) is ubiquitous in the Canadian boreal 

forest, and in particular in riparian forests. In addition to altering stream hydrology 

through dam building, beavers selectively cut trees, choosing poplar, aspen, and willow 

over fir and spruce (Pastor and Naiman 1992). As of the mid-1980s, the beaver 

population in North America was estimated to be 6 to 12 million animals (Naiman et al.

1986). The lifespan of a beaver can be as long as 12 years, during which time an 

individual can fell more than 200 trees annually (CWS and CWF 2006). By creating 

gaps in riparian forest, shade-intolerant, early-successional species are favoured (Pastor 

and Naiman 1992) (Figure 1). Therefore, beavers can have a significant impact on the 

landscape by altering vegetation patterns. The number of studies relating to beaver 

activities and landscape change is limited. A regional study in east-central Canada noted 

that the influence of beaver on riparian vegetation extends to be approximately 20 m from 

a beaver pond (Barnes and Mallik 2001). When deciduous trees comprise riparian 

vegetation, beaver activity may enhance water, particulate, and dissolved matter losses

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

movement to streams because water and nutrient uptake by vegetation is reduced. Beaver 

management in the boreal forest has remained essentially unchanged since their 

reintroduction just over a half century ago, and consists of removal on an ad hoc basis.

As an edge environment, the riparian area may be more susceptible to windthrow. 

The relative impact o f windthrow as a disturbance agent depends on the local wind 

regime, orientation of a given riparian area to prevailing winds, stream ‘valley’ width and 

slope, riparian forest density, soil depth, and the type of trees present (Steinblums et al. 

1984). Tall and shallow-rooted (e.g., spruce) trees are particularly susceptible to 

windthrow (Burton 2002). Clearcutting experiments in sub-boreal spruce forests 

demonstrated that edges were associated with windthrow levels 27% (south facing edges) 

to 216% (north facing edges) higher than was seen in forest interiors (Burton 2002).

Wildfire frequency, size, and intensity vary according to climate and topography, 

within the context of human intervention (Bergeron 1991). Riparian areas may bum less 

often and less intensely than their upland forest counterparts, due to their proximity to the 

waterbreak and high soil moisture. For example, fire frequency was lower in lowland 

stands of black spruce and white spruce than in upland stands of jack pine and trembling 

aspen in the relatively dry Boreal Plain forests of western Canada (Larson 1997). 

Regardless, wildfire can still be a strong determinant of boreal riparian communities and 

was the origin of 29% of undisturbed Boreal Plain forest stands on the Peace River in 

western Canada (Timoney et al. 1997).

The potential exists for the relative abundance of riparian plant species to be 

affected by wildfire that bums only the adjacent uplands. After fire in an upland Boreal 

Shield forest, early successional species such as red raspberry (Rubus idaeus L.), which
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had dominated upland vegetation before fire, became more prevalent in the riparian 

upland transition after the bum (Lamb et al. 2003). In addition, higher light levels after 

upland canopy removal near this transition zone may have caused the increased 

abundance of some riparian species (Lamb et al. 2003). On the whole, propagule 

longevity, burial patterns, and response to fire of most boreal species are poorly 

documented (Whittle et al. 1997). In riparian areas, as in other areas, recovery rates and 

patterns for non-commercial species are less understood than for commercial species 

(Whittle et al. 1997), whether the disturbance is fire or harvesting (covered in section

1.4.).

1.3 RIPARIAN VEGETATION AND THE AQUATIC ENVIRONMENT

Numerous studies on agricultural watersheds document the influence of riparian areas on 

streamflow and the movement of particulates and solutes to stream channels. Due to 

resource limitations, studies are often constrained as to the number of variables that can 

be assessed. However, patterns can be derived when theory and empirical evidence from 

various disciplines (i.e. forestry and hydrology) are merged to detect for example, effects 

o f forest harvesting on hydrological pathways. The review emphasizes linkages between 

forested riparian areas and the biogeochemistry of associated streams, including: 

streambank morphology and stability as they relate to channel integrity and sediment 

inputs, watershed runoff, nutrient concentrations in stream water, and stream 

microclimate.

1.3.1 Sediment inputs and streambank stability

One of the key functions ascribed to riparian zones in agricultural (e.g., Cooper et al.

1987), rangeland (e.g., Pearce et al. 1998a, 1998b), and forested settings (e.g., Clausen et
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al. 2000) outside the boreal forest is to trap or slow sediment being transported to the 

channel network in overland flow (surface runoff generated when water flows on the soil 

surface because it is prevented from infiltrating by impervious, frozen, or saturated soil 

layers) (Whigham et al. 1988; Gregory et al. 1991; Buttle 2002; Brooks et al. 2003). 

However, overland flow is rare when soils are unfrozen in the boreal forest because 

infiltration rates tend to be high relative to precipitation rates. On the Boreal Shield, soils 

are thin and on hillslopes, most precipitation water moves through preferential vertical 

flow paths in soils (e.g., dead roots) to the bedrock-soil interface and then along that 

shallow subsurface flow path to the stream channel (Peters et al. 1995; Hill et al. 1999). 

Similarly, infiltration rates tend to be high in the clay-poor surface (organic LFH and 

coarse-textured Ae) horizons of the Orthic Gray Luvisol soils that overlie glacial deposits 

on the Boreal Plain (ESWG 1996; AAC 1998). In addition, the water storage capacity of 

unsaturated upland soils overlying glacial deposits is high (Hinton et al. 1993; Nichols 

and Verry 2001). Thus, overland flow in the boreal forest is temporally restricted to 

periods when snowmelt or rain events occur on frozen ground or permafrost (e.g., Carey 

and Woo 2001; Jones and Pomeroy 2001; McEachem et al. 2006), which can constitute a 

significant portion of total annual runoff in mid- to high-latitude boreal forests (Metcalfe 

and Buttle 2001). Overland flow is spatially restricted to localized areas where soils are 

saturated, bedrock or other impermeable layers (including roads) are at the surface, or 

soils are compacted by harvesting activities or site preparation (Alcazar et al. 2002; 

Whitson et al. 2003).

Within this context then, the ability of boreal riparian forest vegetation to trap 

sediment depends upon soil type, vegetation cover, slope, accumulation of organic
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matter, and geographic location. Bulk density (inversely proportional to infiltration rates 

and, therefore, affects the capacity of soil to absorb water) is higher in early successional 

stages o f riparian areas (Schwendenmann 2000) (Fig. 1.3). As riparian vegetation 

becomes more established and increases in plant abundance and species diversity, more 

complex rooting systems develop, increasing soil porosity and soil infiltration rates.

Above ground, these changes are associated with increased physical impediments such as 

stems, CWD, and leaf surface, further decreasing the energy of overland flow. In 

addition, older serai stages that have more complex and larger plant species than younger 

serai stages, generally contribute larger amounts of organic matter, which absorbs and 

retains water. Collectively, older serai stages, more complex communities, larger 

vegetation, and an increase in organic matter accumulation all affect the capacity of 

riparian areas to buffer streams from sediment inputs.

In low relief areas of the boreal forest, sediment movement to aquatic systems 

from forests is not likely to be substantial, even after forest harvest (Steedman and France

2000), except where roads are located on stream crossings. In a high-retention buffer 

watershed (removal of all merchantable timber >30 cm diameter at breast height (DBH) 

within 20 m of the stream), post-harvest suspended sediment levels were observed to 

return to or become lower than pre-harvest predicted levels within three years or less 

(Macdonald et al. 2003b). By comparison, a low-retention buffer watershed (removal of 

all merchantable timber, >15 cm DBH for pine and 20 cm DBH for spruce within 20 m of 

the stream), suspended sediment levels did not return to pre-harvest predicted levels 

(Macdonald et al. 2003b). Ancillary activities associated with forest harvesting, such as 

road construction, can be a significant contributor of sediment loading to streams. For
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example, culvert installation and bridge construction on separate small boreal headwater 

streams in eastern Canada were followed by increased sediment loading compared to 

reference streams (Clarke and Scruton 1997).

Another mechanism by which riparian vegetation affects sediment loads to 

streams is stabilization of stream banks. Vegetation maintains bank stability and lessens 

erosion, especially during flood events (Nilsson and Svedmark 2002), by the combined 

effect o f low pore pressure in streambank soils (from high evapotranspiration rates) and 

root strength (Brooks et al. 2003). Riparian root studies are scarce, particularly for 

Canada’s boreal forest. Riparian root biomass studies in the northeastern United States 

documented that in the top 30 cm of an undisturbed site, the average root biomass was

•y
1330 g m' (Kiley and Schneider 2005). Upland forests have significantly lower amounts 

o f root biomass. For example, in a mature northern hardwood forest of the United States, 

root biomass was only 471 g m '. If riparian root systems are damaged, streambanks may 

be subject to a loss of soil or a loss of or change in riparian plants species (Naiman and 

Decamps 1997). Riparian areas downstream of an unstable bank can experience 

accelerated rates of sediment deposition, because the sediment contributed to the 

floodplain can be substantial (Timoney et al. 1997; Jeffries et al. 2003). The 

redistribution of sediment within riparian areas may disturb established plants and limit 

regeneration success of certain species; however, it may also favour young and 

productive stages of vegetation (Nilsson and Svedmark 2002).

1.3.2 Streamflow and runoff

Water enters the riparian zone from the stream channel, and from upland areas as: 

overland flow (rare on unfrozen soils in the boreal, as noted in section 1.3.1); interflow,
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generally defined as event water movement through shallow subsurface soil layers, and 

separated from the groundwater by an impervious layer of some sort; and groundwater 

flow (Fig. 1.4). Interflow is thought to be the most important flow path in the boreal 

forest, but groundwater can also be an important constituent of soil moisture in the 

riparian area because of its the lowland position (Brooks et al. 2003). In most field 

studies at the watershed scale, runoff is measured at the stream channel, therefore it 

represents an integration of overland flow, interflow, groundwater flow, and direct 

interception of precipitation by the stream channel (Brooks et al. 2003) (Fig. 1.4). In this 

section, the term runoff applies to this watershed-scale integrated response, unless 

otherwise noted.

Riparian vegetation has the potential to physically influence streamflow (e.g., 

direct interaction with overbank flow, induction of turbulence by roots), overland flow, 

and interflow (e.g., alteration of infiltration rates by riparian litter and root macropores) 

(Tabacchi et al. 2000). Within the saturated sediment that forms the boundary between 

the riparian area and stream, the hyporheic zone (see section 1.3.3), there also exists the 

potential for physical and chemical exchanges between water from upland areas and 

stream water. These local scale processes occurring between riparian vegetation, riparian 

soils, and runoff water combine to affect water movement at the regional or landscape 

scale (Tabacchi et al. 2000; Burt 2005).

In undisturbed boreal forests, water movement to the riparian zone from upland 

areas is determined in part by air temperature and precipitation patterns on both annual 

and seasonal scales. During periods when soil moisture is high (e.g., during spring melt 

and storm events), the riparian zone is linked to upland areas. Conversely, when soil
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moisture is low, the riparian area is hydrologically decoupled from upland areas (Burt 

2005). On a regional scale then, water sources to the riparian area may be intermittent in 

semi-arid Boreal Plain forests, unlike more humid Boreal Shield forests. On a local scale, 

runoff can be variable among years within a given watershed, as well as among 

watersheds within a given year. For example, runoff varied by factors of 5 and 6 within 

large (>1000 km2) Boreal Shield and Boreal Plain watersheds, respectively, between 1980 

and 2004 (Environment Canada 2005). Similarly, during one year, runoff varied by up to 

5 times among 9 first to third order Boreal Plain watersheds covering an area of only 230 

km2 (Prepas unpubl. data).

In spring through fall, relatively more rain arrives at the stream channel if it falls 

prior to leaf out or after leaf off, since interception and uptake of water by deciduous 

vegetation is lower. In winter, snowfall not only determines the potential spring runoff, 

but in combination with air temperature and soil moisture conditions prior to the winter, it 

determines the depth of soil frost. In general, soil frost inhibits infiltration, wetter soils 

are more impermeable than dry soils when frozen (less porosity), and organic soils have 

shallower frost depths than mineral soils. Spring rains falling on frozen soils rapidly 

generate overland flow. From 25 to 100% of precipitation became runoff (measured at 

the stream channel) when litter and upper soil organic horizons in Boreal Shield forests 

were frozen (Jones and Pomeroy 2001).

Wetlands cover approximately 46% of the Boreal Plain and 18% of the Boreal 

Shield (CCWS 2003) and their distribution within watersheds contributes to the temporal 

and spatial runoff variation noted above. Wetland cover within relatively undisturbed 

Boreal Plain watersheds has been positively associated with total runoff for three open-
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water seasons (May through October) (Prepas et al. 2006, unpubl. data). This suggests 

that wetlands accumulate and temporarily store spring melt waters, then release them 

(less water losses to evapotranspiration) to the stream channel during the open-water 

season. Alternatively (or additionally), wetland cover may simply be an indication of 

water table conditions in a watershed, with high groundwater discharge rates in 

watersheds with high wetland cover. Water movement through peatland-dominated 

watersheds is more complex. Peatlands, defined in Canada as wetland areas where at 

least 40 cm of peat accumulates (CSSC 1978), gain importance on the landscape in more 

northern boreal forests, where poorly drained soils - and sometimes discontinuous or 

continuous permafrost - and a cool climate slow decomposition rates and promote peat 

development (Zoltai et al. 1998). Their variable water storage ability, unpredictable flow 

paths, and the occurrence of permafrost complicate measuring water movement through 

peatland systems (McEachem et al. 2006).

Within the context of this myriad of factors that vary spatially and temporally and 

interact in a variety of ways, some broad generalizations can be made about boreal 

riparian vegetation in terms of its interaction with water moving from upland areas to 

streams. 1) Soils and litter layers in riparian areas are wet relative to upland areas year- 

round, therefore the capacity for riparian soils and litter to directly absorb runoff is 

limited. 2) Uptake of runoff water by riparian vegetation and soils is higher when 

antecedent soil moisture is low. 3) Soil in more mature riparian forests has a higher water 

holding capacity than less mature forests, in part due to more organic matter in the soil 

profile (Schwendenmann 2000; BLM 2003). 4) Moist soils, combined with edge effects, 

means transpiration may be a significant route for water loss from the riparian zone
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during the growing season. 5) The importance of spring melt as a component of total 

annual runoff in many boreal forest watersheds means that a significant portion of runoff 

water moves through the riparian zone before vegetation is active.

1.3.3 Nutrient concentrations

Tree growth in boreal riparian zones may be more limited by nutrients than water because 

saturated soils are associated with lower mineralization rates (Grant 2004). However, it 

has not been conclusively demonstrated that riparian areas in the boreal forest 

consistently reduce nutrient concentrations in water moving to stream channels.

Detection of patterns is made difficult by the suite of processes that add spatial and 

temporal complexity to nutrient dynamics in riparian areas such as atmospheric 

deposition, fixation, sorption/desorption, transformation, uptake, leaching, and erosion.

In the Canadian boreal forest, concentrations of nitrogen and phosphorus in streams and 

receiving waters have been the focus of a limited number of watershed studies and will be 

addressed here. On a regional scale, water quality concerns center on inorganic nitrogen 

on the Boreal Shield where thin soils overlay bedrock (Peters et al. 1995) and harvesting 

could lead to higher levels of mineralization and leaching (Simard et al. 2001; Hazlett et 

al. 2006). Water quality concerns in forests on the Boreal Plain center on erosion of soils 

derived from phosphorus-rich sedimentary parent materials (Prepas et al. 2003; Burke et 

al. 2005).

Partitioning of water between surface and subsurface flowpaths is an important 

determinant of nutrient movement to streams. Water that reaches the stream channel by 

overland flow on frozen soils is relatively dilute, having had little to no interaction with 

organic and mineral soils (Metcalfe and Buttle 2001). Particularly in northern boreal
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watersheds, timing of snow melt and spring rain events relative to soil thaw (active layer 

development) determines how much of the snow water and spring rain infiltrates into 

soils (Metcalfe and Buttle 2001). Slope angle was proposed to be a key feature to 

regulate partitioning of runoff between surface and subsurface flow paths on unfrozen 

soils in Boreal Shield watersheds, with lower slope angles (more saturation) supporting 

relatively more overland flow (D’arcy and Carignan 1997). On the other hand, on the 

relatively low-relief Boreal Plain, soil texture influences flow path partitioning, because 

wetland formation is linked with fine soils in lowland areas. In wetlands, most water is 

routed through shallow subsurface flow paths through organic layers (Schiff et al. 1998). 

Water leaving wetlands is in equilibrium with organic soil water, particularly in 

peatlands, because “old” water in the peatland is displaced by event water in a process 

termed piston flow (McEachem et al. 2006).

Nutrients in water moving through the rooting zone in the riparian area are taken 

up (plant and microbial uptake, sorption), released (desorption, decomposition), and 

transformed (primarily microbial cycling of nitrogen). Water that is not taken up by 

plants moves through the soil as interflow or groundwater flow (Fig. 1.4). Alterations to 

water chemistry in riparian soils depend upon conditions along the flow path (e.g., 

reduction-oxidation potential, presence of electron acceptors and substrates, microbial 

community composition) and residence time in the riparian zone. As noted by Burt 

(2005) for denitrification, when water residence time is short, there is little opportunity 

for the process to occur before water enters the stream channel; yet when water residence 

time is long, denitrification occurs but the water volume entering the channel is low and 

stream chemistry is not greatly affected.
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At the riparian groundwater-stream interface (hyporheic zone), mixing involves at 

least two hydrological pathways: groundwater inputs to the channel (gaining streams) and 

channel inputs to groundwater (losing streams) (Hill 1990; Dahm et al. 1998). This 

hydraulic gradient is highly dynamic, particularly in semi-arid forests, with the net water 

movement to the stream channel possible at one time and the net water movement to the 

hyporheic zone possible at another time. Similarly, water may enter the hyporheic zone 

from the stream in one portion of a stream bank and leave it farther downstream (Brooks 

et al. 2003). The hyporheic zone is also an active site for chemical and biological 

transformations that yield water that is low in dissolved oxygen, organic matter and 

available nutrients relative to stream water (Brooks et al. 2003).

Gross primary productivity in the boreal is limited by several factors including 

length of growing season, average annual temperature, soil moisture and nutrient 

availability. Most nitrogen in forest ecosystems is derived from nitrogen fixation by 

symbiotic and free-living microorganisms and stored in soils, primarily (-80%) as 

organic nitrogen that is not accessible by plants (Fenn et al. 1998). On the Boreal Shield, 

riparian forest stands had higher nitrogen stores in forest floor material and lower 

nitrogen stores in mineral soils than upland stands (Hazlett et al. 2005). Nitrogen cycling 

in soils is affected by plant uptake and litterfall, and factors that influence the 

composition and activity of microbial populations, namely soil temperature, moisture, 

and reduction-oxidation potential (Pinay et al. 2002). Ammonium usually comprises 

much more of the inorganic (bioavailable) nitrogen fraction than nitrate in soils of closed 

boreal forests (Brais et al. 1995, Smith et al. 2000) (Figure 3). Nitrification, the 

biochemical oxidation of ammonium to nitrate mediated largely by autotrophic bacteria,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

is more likely to occur under aerobic conditions, as would be common in well-drained 

upland soils. This process, however, is limited by ammonium (substrate), carbon, and 

oxygen. Nitrate is more mobile in solution than ammonium and is therefore the form of 

inorganic nitrogen most lost through leaching from the soil system (Munson and Timmer 

1995). Whenever nitrate exists in excess of plant or microbial demand, there is the 

potential for leaching in ground and surface waters.

Denitrification in organic soils and riparian groundwater is viewed as the main 

pathway by which nitrate from runoff in settings where nitrogenous fertilizers are used is 

removed from riparian areas (Hefting et al. 2005). It is the biologically mediated 

reduction of nitrate to gaseous nitrogen (molecular nitrogen or as an oxide of nitrogen). 

Conditions in riparian soils and groundwater that support denitrification are 

saturation/anaerobiosis and high carbon availability. There is the potential for this 

process to be more important in deciduous- than conifer-dominated areas, because it is 

inhibited by low pH (Dhondt et al. 2002). Available nitrate is rarely found in the soil of 

mature, closed forests therefore the raw material for denitrification is unavailable. 

However, significant denitrification has been measured after stand disturbances, such as 

harvesting (Martin 1985), suggesting that excess nitrate is readily available. In sites 

where upland disturbance results in conditions that favour nitrification over 

denitrification (that is, drier rather than wetter soils), excess nitrate may be transported 

towards streams. Under these conditions, riparian areas gain importance as zones of 

denitrification. In addition, riparian areas may buffer streams in areas where high 

atmospheric nitrogen deposition rates (e.g., up to 13 kg ha'1 y '1 in some areas on the 

Boreal Shield; Jeffries 1995) could cause nitrogen saturation.
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A second pathway by which gaseous nitrogen might be generated in riparian areas 

is anaerobic ammonium oxidation (anammox), a process that involves combining 

ammonium and nitrite, the latter which may have been generated by denitrification 

(Burgin and Hamilton 2007). Among freshwater systems, this process has only been 

documented in Lake Tanganyika, where it was estimated to contribute up to 13% of the 

gaseous nitrogen produced (which would previously have been attributed to 

denitrification) (Schubert et al. 2006). It is plausible that anammox could occur at or near 

aerobic-anaerobic interfaces in boreal soils, wetlands, hyporheic zones, and streambeds, 

because the bacteria that mediate anammox appear to have a low optimal temperature 

(Jetten 2001) and the process requires the presence of both nitrate and ammonium 

(Burgin and Hamilton 2007). However, anammox is inhibited where there are high 

concentrations of labile carbon (Jetten et al. 1998), a common condition in these 

environments. Ammanox remains to be studied as a pathway for nitrogen transformation 

in boreal forest riparian areas.

The length of contact time between water and soil along hydrologic pathways 

influences the biotransformation of nitrogen in runoff. Increasing contact between water 

and soil or sediment increases nitrogen retention and microbial transformations, provided 

the flow intercepts roots and microorganisms (Pinay et al. 2002). For example, on the 

Boreal Shield, Hazlett and Foster (2002) observed depletion of ammonium and H+ ions as 

forest floor leachate moved downslope and into mineral soils. The process of nutrient 

exchange between water to sediment also occurs in stream channels. In a comparative 

study that observed headwater streams from biomes throughout North America, Peterson 

et al. (2001) reported that the most rapid uptake and transformation of inorganic nitrogen
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occurred in the smallest streams. Small streams have shallow depths and narrow surface 

to volume ratios, characteristics that increase the contact between water and sediment, 

and favour nitrogen uptake and removal processes (e.g., denitrification). It is reasonable 

to hypothesize however, that headwaters will have threshold values for nutrient retention 

above which changes to water quality and perhaps habitat quality might be expected. The 

derivation of threshold values based on site-specific information and the length of contact 

between water and soil may provide an important indicator of disturbance and recovery.

More so than nitrogen, phosphorus is often the growth-limiting nutrient in fresh 

waters. Saturated and potentially anoxic conditions in riparian soils and groundwater are 

key to phosphorus dynamics, because they mediate at least three processes. First, gleying 

tends to occur in saturated soils if  iron or manganese is present in conjunction with other 

conditions (e.g., carbon and specific microbial populations). Gleying associated with 

reduction can lower the concentration of H+ ions, therefore soil pH may be elevated under 

anaerobic conditions. Elevated pH changes the solubility and concentration of various 

metal (aluminum, iron) and non-metal species (calcium, potassium, magnesium) (Stumm 

and Morgan 1996). At neutral to basic pH, phosphorus will bind to calcium to form 

insoluble calcium phosphates, hydroxyapatites, and apatites. Conversely, iron and 

aluminum phosphate become more soluble with increasing pH. Second, the water table 

in the riparian area is dynamic, and changes in moisture and oxygen conditions that 

damage or kill fine roots (Joslin et al. 2000) and microbial populations (Sylvia et al.

1999) can result in the release of a pulse of organic acids. Short-chained organic acids 

(e.g., citrate, salicylate) accelerate phosphorus dissolution rates in soil via direct ligand 

exchange or complexation of ions (like calcium) bound to P (Jones 1998; Hinsinger
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2001). Third, evidence from Boreal Plain lakes indicates that phosphorus is released 

from calcium and magnesium complexes in sediment under reducing conditions (Burley 

et al. 2001). Solution chemistry, which requires many inputs (including pH, total carbon 

and nutrient contents), has benefited from modelling to predict chemical speciation under 

the given conditions (e.g., Sposito and Mattigold 1980). Most work on solution 

chemistry has been done in microcosms under sterile lab conditions and it remains to be 

seen if  theoretical predictive tools for solution chemistry can be effectively transferred to 

field situations.

In Boreal Plain forests, particulate phosphorus loading to streams during storm 

events was attributed to erosion of phosphorus-rich soils in the watershed and streambed 

(Prepas et al. 2003; Burke et al. 2005). Retention of particulate phosphorus by the 

riparian area in this setting would be directly related to sediment retention as discussed 

above. Shallow soils in Boreal Plain forests were sources of dissolved phosphorus under 

high water table conditions that saturated organic layers (Evans et al. 2000). The riparian 

area acted as a source of dissolved phosphorus to surface waters when the water table was 

high (Evans et al. 2000).

1.3.4 Stream microclimate

The influence of riparian vegetation on stream water temperatures has been well 

documented (e.g., Johnson and Jones 2000, MacDonald et al. 2003a; Story et al. 2003). 

Riparian vegetation can: (i) intercept solar radiation before it reaches the water surface 

and (ii) determine the means and rates of heat and water entry into, and release from, the 

stream environment (Poole and Berman 2001). Shading has been recognized as a 

contributor to maintenance of water quality (Norris 1993). Shade provides thermal
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protection to stream water and dissolved oxygen concentrations decrease as water 

temperatures increase, all else remaining equal. Conditions that reduce dissolved oxygen 

concentrations have implications for the ability of a stream to assimilate organic wastes 

without excessive oxygen depletion (Norris 1993), and the distribution and composition 

of species within the system (Bjomsson et al. 2001). Therefore shade has the potential to 

influence stream biogeochemistry appreciably. Depending on baseline water 

temperatures and extent of riparian vegetation, routing of water by riparian vegetation can 

also be important to maintaining water temperature at optimal levels.

Riparian communities and aspect also exert strong control over the microclimate 

of streams (Naiman and Decamps 1997; Macdonald et al. 2003a); thus vegetation within 

riparian areas, aspect, and the microclimates of streams are linked. For example, in the 

western boreal forest, Macdonald et al. (2003a) observed an increase in stream 

temperatures following the removal of much of the riparian vegetation. Summer mean 

weekly maximum temperatures increased by 4°C after harvesting, particularly in a stream 

with a southerly aspect, where maximum temperatures increased by nearly 6°C.

In terms of tolerance to temperature fluctuations, fish have been studied more 

intensively than other aquatic organisms. If a fish enters water where temperatures 

exceed the upper or lower limits o f habitability for that species (while also considering 

size and sex) then that fish could die (Bjomsson et al. 2001; Davies and Bromage 2002). 

Fish have been used as “indicators” of stream health, but have limited usefulness as 

indicators in small headwater streams with little downstream connectivity, because they 

are usually absent. Temperature tolerances of alternate indicator organisms (e.g.,
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macroinvertebrates, periphyton) (Hylander et al. 2002) are not as well documented as 

those of boreal fish species.

Studies of invertebrate and algal interactions with riparian vegetation are often 

confounded by two important variables, water temperature and organic inputs, which are 

difficult to consider separately. A positive relationship has been observed between 

increased amounts of solar radiation and increased algal and invertebrate community 

diversity and abundance (Liljaniemi et al. 2002; Kiflhey et al. 2003; Melody and 

Richardson 2004). In some cases, this was accompanied by an increase in inorganic 

matter trapped by filamentous periphyton, which were dominant in areas where there was 

no riparian vegetation (i.e. more light) (Kiffney et al. 2003). Price et al. (2003) 

demonstrated that intermittent and perennial streams in old growth sites housed more 

algal biomass than streams with associated riparian vegetation in younger serai stages, 

even though the streams with the older trees had more cover (i.e. less light).

1.4 RIPARIAN VEGETATION AS BUFFERS TO FOREST DISTURBANCE 

Riparian buffers around lakes, streams, and ponds have been legislated in Canada to 

mitigate impacts of harvesting on receiving waters. Riparian buffers are also known as: 

retention buffers, buffer strips, buffer zones, vegetated buffers, forested buffers, and 

corridors. The many definitions imply that buffers are multifunctional. For example, 

“vegetated buffers” are intended to interrupt the flow of surface and subsurface waters 

and associated substances (Norris 1993). “Riparian corridors” are linear landscape 

elements that provide movement between habitat patches (Rosenberg et al. 1997).

Debate continues in terms of whether vegetated buffer strips per se or specific widths of 

buffer strips play a consistent role with respect to visible wildlife such as mammals and
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birds (Darveau et al. 1998,2001). Whereas the concept of riparian buffers has been met 

with little resistance, the details of application remain contentious (Buttle 2002). The 

range of Provincial buffer zone guidelines in Canada reflects uncertainties surrounding 

variation in the amount of protection needed for different biogeophysical conditions, the 

ability of buffers to reduce a response within a disturbed system, and the scientific basis 

for present practices.

Currently, there is no universally applied context in which to classify boreal 

streams on the landscape, and thus to project disturbance responses. In the Foothills of 

the Rocky Mountains in western Canada, the ROSGEN Stream Classification system has 

been applied (Rosgen 1994; McCleary and Bambrick 2003). However, the process of 

linking harvest practices around stream channels with the ROSGEN or other rigorous 

stream classification systems has yet to be developed for Canadian ecoregions. Accurate 

databases relating to stream type and location on the landscape are essential components 

of classification systems. Yet the mapping of small streams in forested areas is generally 

inadequate in Canada (Moore and Richardson 2003). For example, in the eastern 

Canadian province of Newfoundland, streams must appear on 1:50 000 topographic maps 

to require a vegetated buffer (Curry et al. 2002). Small streams are often under closed 

canopies and thus are hidden from satellite or aerial imaging equipment (Naiman and 

Decamps 1997; Moore and Richardson 2003). Aerial photography captures small 

streams more effectively if implemented before leaf-out in the spring or after leaf 

senescence in the fall, when canopy coverage is minimal. In addition, new technologies, 

such as lidar, have the potential to increase the capacity to map small streams (Reutebuch 

et al. 2003). Ground truthing with well-trained field staff in managed forested units is
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probably the best method of acquiring field information with regards to small streams 

(see Gomi et al. 2002). Nonetheless, uncertainties remain regarding how these streams 

should be treated once mapped on an industrial landscape.

To date, there is scattered evidence that buffers act as semi-permeable filters for 

substances carried by moving water. On most landscapes, dissolved and suspended ion 

concentrations are influenced by land use (e.g., forestry, oil and gas, mining, and 

agriculture), climate, and tectonic activity (Naiman and Decamps 1997). Distinct 

initiatives have been documented in the Canadian boreal forest focused on lakes and 

changes brought about by forest harvesting on the Boreal Shield (i.e. Carignan et al.

2000; Lamontagne et al. 2000; Steedman 2000) and Boreal Plain (i.e. Prepas et al. 2001). 

In these studies, forest removal influenced the dissolved fraction of nutrients and other 

ions in receiving lake waters. For example, phosphorus, potassium, chloride, total 

organic nitrogen, and dissolved organic carbon (DOC) concentrations are all documented 

to increase following forest harvesting (Carignan et al. 2000; Steedman 2000). In 

addition, potassium and chloride export rates were positively related to the proportion of 

the area cut and DOC and total phosphorus export rates were directly related to the 

drainage ratio (drainage area divided by lake area) (Lamontagne et al. 2000; Carignan 

and Steedman 2000). Clearly, the amount harvested and drainage ratio within a 

watershed plays important roles in determining water quality in receiving waters after 

harvest. The drainage ratio for streams (drainage area divided by stream area) will be 

larger in comparison to that of lakes, and therefore it can be expected that streams will be 

magnified in their responses to harvesting with respect to increasing nutrient and ion
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concentration. Studies that quantify the linkages between headwaters and downstream 

waters are essential to understanding the role of buffer strips.

The concept of varying the width of the undisturbed riparian area relative to 

watershed and stream features is gaining acceptance as a means to optimize the 

effectiveness of the riparian buffer. The riparian vegetation community composition is 

one such feature that can be incorporated into buffer width optimization. Allochthonous 

litter inputs ranging from CWD to fine particulate matter differ in amount and quality 

between deciduous and coniferous riparian forests. The shift in dominant species in the 

riparian vegetation community, which will take place over different distances for 

different landform types, may have implications for aquatic organisms, particularly in 

heterotrophic headwater streams. In addition, the amount of CWD produced differs 

among serai stages. A “U-shaped” temporal trend with respect to CWD volume is often 

observed in forested systems. For example, in the western boreal, the volume of CWD

i  1

was relatively low to intermediate in a 36 year old stand (32 m h a '), lowest in a 58 year 

old stand (15 m3 ha'1), and highest in an 80 year old stand (78 m3 ha'1) (Sturtevant et al. 

1997). Therefore, different buffer widths may be acceptable for different serai stages 

depending on management objectives and variables involved. Further, in northern 

Ontario on the Boreal Shield, mature stands harvested with varying buffer widths (30 to 

300 m) within the last five years were observed to vary by 34 to 62% in CWD inputs 

(Kreutzweiser et al. 2005). Understanding baseline conditions and CWD inputs under 

natural conditions for various forest types would help in identifying appropriate buffer 

widths for specific stand types within specific serai stages. A second feature to consider 

with regards to variable buffer strip width is topography. Topography exerts control over
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wind speed, and therefore has an effect on CWD input distance to the stream.

Topography and the width of the riparian area are determinants o f the amount of wind 

throw within the context of forest composition and age at a site (Ruel et al. 2001).

Soil type in the riparian area can also be considered in buffer width guidelines. 

Relatively wet soils can be associated with low mineralization rates and nutrient 

availability and anoxia, which limit rooting depth and influence vegetation presence. As 

a result, the ability o f boreal riparian areas to retain sediment, nutrients, and runoff may 

be limited in very wet areas. Flowing waters in granitic channels or those subject to 

periodic ice scour may lack vegetation from the high water mark to the zone colonized by 

trees. Effective buffer strips should encompass vegetated areas and their implementation 

should not assume vegetation begins at streamside. Further, soils that hold more water at 

field capacity, have relatively high organic content, and are fine textured, will likely 

respond more negatively to disturbance than those that hold less water when exposed to 

the same intensity and duration of precipitation (Archibald et al.1997). For example, 

forest harvesting sometimes results in soil compaction and increased soil bulk density, 

reducing soil water holding capacity (McNabb et al. 2001; Whitson et al. 2003). As a 

result, a site’s existing water pathways (Whitson et al. 2005) and soil water content 

(Elliott et al. 1998) can be affected. The response of soil texture and structure to forest 

harvesting has been well studied for upland boreal stands (e.g., McNabb et al. 2001; 

Startsev and McNabb 2001; Bock and van Rees 2002) compared to riparian areas.

Riparian buffer strips may moderate water temperatures with respect to both 

surface and subsurface water supplies via shading and water uptake following 

clearcutting. During post-harvest periods in west-central Canada, Story et al. (2003)
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observed that riparian buffer strips appeared to partially achieve the objective o f shading 

a stream, however, other factors such as groundwater inputs may contribute to altered 

water temperatures in small streams fed by shallow groundwater. Groundwater inputs 

can be responsible for either decreased or increased stream water temperatures (Curry et 

al. 2002). Groundwater temperature fluxes have been linked to elevated water tables 

after clearcutting and therefore, subsurface water that has more opportunity for solar 

heating and snowpack insulation may aid in increasing stream water temperatures.

1.5 CONCLUSIONS

Riparian areas in the Canadian boreal forest are characterized by features that require 

careful consideration if riparian buffers and the governing legislation are to be effective at 

protecting flowing waters from upland disturbance. Overall, riparian vegetation studies 

in Canada’s boreal forest are regional and do not appear to encompass intersite variation, 

which could stifle landscape integration of riparian areas within forest management plans. 

However, impacts of site disturbance can be site-specific, therefore implementing a 

national database or a simplified national look-up table describing the different watershed 

conditions and their responses to disturbances would be valuable to scientists and land 

managers alike. A national database housing information on changes in riparian or 

upland forest vegetation with and without disturbance, which incorporates elements of 

landscape variation with integrated resource management, would be informative for 

developing a science-based approach available for forest planners. Database elements 

could include: stream morphology, stream order, local topography, aspect, major soil and 

geological classifications, stream bed type (e.g., cobble, gravel, sand), role of organic 

(e.g., CWD) and inorganic inputs, plant species present, stand age, and past disturbances.
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CHAPTER 2: EFFECTS OF FOREST HARVEST AND FIRE ON BOREAL PLAIN 

RIPARIAN, TRANSITION, AND INTERIOR FOREST VEGETATION COMMUNITIES

2.1 INTRODUCTION

Among forested settings, riparian areas have been identified as having the most diverse 

vegetation (Naiman et al. 1993). Riparian areas have also been recognized as zones of 

importance with regards to wildlife habitat and surface water quality (Naiman et al. 1988; Twery 

and Hombeck 2001). Yet, riparian communities seem to be among the least studied (Luke et al. 

2007). Documentation of natural and harvest influenced landscape patterns that specifically 

include riparian zones will extend the data base on vegetation patterns. The Riparian Vegetation 

Study (RVS) reported here provides information on species richness in three linked forest 

community types (riparian, transition and Interior), before and after canopy removal (harvesting 

and fire) in mature boreal deciduous and coniferous stands in the Swan Hills o f Alberta.

In many operational forest activities, including mapping and management, the smallest 

unit is the stand. From an ecological point of view however, stand designations (e.g. coniferous 

or deciduous) are coarse and they mask the horizontal and vertical structure within. Within each 

stand, communities (e.g., riparian, transition, or interior forest) are distinguishable and within 

each community, vegetation layers (e.g. ground vegetation, low and tall shrubs, sub-canopy, 

canopy and super-canopy trees) exist. Each combination of stand, community and layer is likely 

to have a distinct species richness range (Harper and MacDonald 2001). Many jurisdictions are 

adopting forest classification systems that incorporate more characteristics than simply dominant 

tree species (e.g. Sims et al. 1990, Nesby 1997) because of the influence of these characteristics 

(e.g. ground cover, soil origin, depth and moisture status) on stand dynamics. In Ontario, each
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major region has its own specific series of silviculture manuals based on that region's ecosite 

classification system. Response to disturbance is also expected to vary based on species present. 

For example, under cut-to-shore conditions, ground vegetation under a coniferous canopy is 

expected to respond differently than that under a deciduous canopy because the change in light 

quantity and quality after harvest would be far greater for the former than for the latter. The 

vertical and horizontal stratification of relatively coarse stand classes to include vegetation layers 

and distinct patterns in vegetation cover as the distance from the watercourse increases allows for 

the identification of vegetation gradients, which help to describe the forested systems monitored. 

In this study, baseline information will be used to evaluate changes following disturbance.

The disturbance history of a site is also important to consider when interpreting species 

presence and abundance (Denslow 1980). Communities occupying riparian areas are prone to 

flooding and ice scour events, whereas those further away from the stream, such as transition or 

interior forest, are more likely to be exposed to fire, windthrow or harvesting (Luke et al. 2007). 

Most Canadian jurisdictions have adopted a "natural disturbance emulation" approach to forest 

management. Unfortunately, there are few data documenting natural or disturbed riparian 

community composition, transition zones between upland and riparian areas in Canadian forests 

are generally managed by leaving linear strips of forest vegetation called buffers (Lee et al. 

2004). In the second year of the RVS, clearcut harvesting with and without buffers were 

established and monitored in three of the project watersheds. The RVS provided the opportunity 

to capture before and after measurements of species richness. As such, these data will contribute 

to the information base on natural and disturbed riparian community composition.

Wildfire has largely led to the formation of a temporally and spatially dynamic forest 

mosaic on the Boreal Plain of Alberta (Bergeron et al. 2002; Timoney et al. 2003). In the
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absence of anthropogenic disturbance, forests on reasonably well drained soils are characterized 

by pure and mixed stands of Populus tremuloides, Pinus contorta, Pinus banksiana, and Picea 

glauca. There is a noticeable shift in the Pinus spp. when moving from east to west on the 

Boreal Plain. Pinus banksiana generally extends from the eastern border of the Boreal Plain to 

central Alberta (longitude 113° W). Pinus contorta generally begins at this point and extends 

throughout the western portion of the Boreal Plain (Critchfield 1966). The RVS includes only 

Pinus contorta. Stands located in wetter areas on the Boreal Plain are characterized by Picea 

mariana, Larix laricina, Populus balsamifera, and Betula papyrifera. Hence, landscape 

characteristics such as slope and drainage favour the establishment of different tree species, 

which impact the composition of the vegetation layers below.

The system of allocating large tracts o f forest land to private companies through Forest 

Management Agreements (FMA's) began in the mid-1900’s in the province of Alberta. Alberta 

FMA's vary in size from just over 58 000 km2 (Alberta-Pacific Forest Products Incorporated) to 

just under 600 km (Vanderwell Contractor’s Ltd.) (Sustainable Resource and Development 

2006). Due to the relatively young nature of the Alberta forest industry, the opportunity to 

capture baseline data related to forest harvesting may be greater than in other provinces. On the 

same land base increased fire suppression, consistent with the increasing value of natural 

resources (merchantable timber and oil and gas), has also occurred (Thompson et al. 1998). This 

shift from fire-driven to industrially managed ecosystems may lead to changes in community 

structure that could influence wildlife habitat and water quality. Baseline data are necessary to 

assess vegetation responses to disturbance among different stand classes and various stand 

components.
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The Forest Watershed and Riparian Disturbance (FORWARD) project, a small watershed 

project on the Boreal Plain (Smith et al. 2003), provided an opportunity to examine boreal 

vegetation in and near riparian areas under conditions of harvesting, fire and no disturbance. The 

objectives of the study were to: (1) inventory the species in riparian (R), transition (T), and 

interior forest (IF) communities o f mature deciduous and coniferous stands, (2) quantify post­

treatment effects of forest harvesting and fire on species richness, and (3) quantify differences 

between communities and vegetation layers.

The following hypotheses were tested:

(1) for the ground vegetation (GV) and shrub layers, species richness in R communities 

will be higher than in T or IF communities,

(2) for the tree layer, species richness will be higher in IF communities than in R or T 

communities, (Note: Hypotheses 1 and 2 will be considered both a. before and b. after 

disturbance.),

(3) clearcut harvesting reduces species richness in all communities and stand classes and 

cut-to-shore (CTS) harvesting moreso than harvesting with a 30 m buffer (buffer), and

(4) post-fire species richness

i. follows the same patterns identified in hypotheses 1 and 2,

ii. will be affected by pre-disturbance stand class and

iii. will differ from that in undisturbed stands.
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2.2 METHODS

2.2.1 Study location and design

The Riparian Vegetation Study (RVS) is located in the Swan Hills of Alberta on Crown Land 

managed by Millar Western Forest Products Ltd. (MWFP) and Blue Ridge Lumber Inc. (Fig.

2.1). The study was carried out over two years (2003,2004). The range of conditions included 

reference (no disturbance during the study), pre- and one year post-harvest and six years post­

fire. Harvest was either 1) clearcut CTS (as operationally feasible) or 2) clearcut with buffer. 

Harvest, fire, and reference conditions were dispersed among 9 small watersheds (approx. 400 ha 

each). Due to landscape variation within the study area, neither treatments nor stand classes 

were equally represented in the sampling design (Table 2.1). Species richness data were 

collected in three distinct communities: R (within 5 m of the stream edge); T (5 to 25 m from the 

stream edge); and IF (15.5 to 30 m of the stream edge) in mature coniferous (primarily >70% 

lodgepole pine) and deciduous (>70% trembling aspen) stands. Each community was stratified 

into four layers - GV, low shrubs (LS) (1 to 3m), tall shrubs (TS) (>3 m) and trees (> 1 m) (Table

2 .2).
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Table 2.1. Mature stands (60 to 80 years since disturbance) inventoried in 2003 and 2004.

Stand Treatment Number of Sites
Deciduous3 Reference 3C

Buffer 1
Cut-to-shore 2
Fire l d

Coniferousb Reference 5°
Buffer 2
Cut-to-shore 4
Fire 4d

Total Sites 22

a>70% trembling aspen (Populus tremuloides), >90% when combined with balsam poplar 
{Populus balsamifera)

b>70% lodgepole pine (Pinus contorta), primarily black spruce {Picea mariana) in the 
understory

0 all treatment data from 2003 uncut and 2004 reference stands were used as pre­
treatment/reference data in statistical analysis 

dfire data were collected in 2004

Table 2.2. Summary of the vegetation inventory, 2003 and 2004.

Component of Inventory N Summary Notes
Sites 22 19 stands, 3 sampled from 2 aspects1
Transects 66 3 per site
Vegetation Layers

Ground vegetation (< 1 m) 396 2 m2
Low Shrub (1-3 m) 198 20 m2
Tall Shrub (>3 m) 198 20 m2
Tree 198 60 m2

Total
1 . ___■' j _________

990

Aspects were separated by 180 degrees
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Figure 2.1. Project location, watersheds with vegetation transects, and the Boreal Shield and 
Plain subregions within the Canadian boreal forest.
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2.2.2 Site identification

Stands used for the study were classified using the Alberta Vegetation Inventory (Nesby 1997), 

identified by aerial photographs and digital maps made available by MWFP and Blueridge 

Lumber Inc., and confirmed through ground truthing. It took approximately two months to 

identify and locate the 22 stands used (Table 2.2). Inventories were carried out during June and 

July of 2003 and 2004 along each transect. The inventory included: species identification, 

ecosite classification (Beckingham and Archibald 1996), topography, photographs (cardinal 

directions, up and down) from each plot center, and universal transverse mercator (UTM) co­

ordinates. Number of species (species richness) was the variable used in the statistical and 

graphical (bar graph) analyses presented here.

2.2.3 Transect and plot centre establishment

With the exception of the fire stands, all stands were inventoried in the summer of 2003 to obtain 

pre-disturbance data. In the summer of 2004, following winter harvest, the stands were re­

inventoried and fire stands were added. At this time, the fire stands were six years old.

The starting point (directly adjacent to the stream) of each transect was randomly chosen. 

If anthropogenic disturbances (i.e., road, well site, seismic line, etc.) were encountered, another 

point was selected. Each transect was identified, marked, and UTM coordinates were obtained 

with a Garmin eTrex Legend global positioning system. A 30 m (level distance) transect was 

established on the azimuth running perpendicular to the stream. The first plot centre was always 

placed 2.5 m from stream edge to ensure the riparian vegetation was described. Subsequent plot 

centres were located based on the occurrence of vegetation changes (i.e., there was a shift in 

species composition) and captured only the vegetation within the defined community. The final
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plot centre, together with all associated sub-plots, fell within the interior forest community. Fig

2.2 illustrates a typical transect.

; Tree plot
5 m

; Shrub plot

; Ground Vegetation plot 6 m

Plpt centre Plot centre
"27;-5 m

2 m

0 m
0 m

30m
Streai

Interior

Figure 2.2. Transect diagram illustrating plot layout: six ground vegetation, three shrub (1 to 3 
m and >3 m), and three tree plots.
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2.2.4 Vegetation plot establishment and inventory

For each community along the transect, two 1 x 2 m sub-plots for GV, one 5 x 4 m sub-plot for 

sampling low and tall shrubs and one 5 x 12 m plot for sampling trees were established. GV 

included all plants below one metre: herbs, woody and non-woody perennials, grasses, mosses, 

lichens, and trees. Shrubs were stratified by height; LS (1 to 3 m) and TS (> 3 m), and were 

identified following Beckingham et al. (1996). Trees included any tree species taller than one 

metre and were identified following Beckingham et al. (1996). Almost 1000 plots and sub-plots 

were established over the course of two years (Table 2.2).

GV were generally identified to species, however, some were only identified to genus. 

These included Carex and Vaccinium; the mosses, Polytrichum, Sphagnum, and Dicranum; and 

the lichens, Cladonia, Cladina and Peltigera. All other lichens were classed simply as “lichen”. 

With the exception of Equisetum scirpoides Michaux, Equisetum spp. were also identified only 

to genus. In the shrub strata, all willows', with the exception of blueberry willow (Salix 

myrtillifolia Anderss.), were identified as Salix spp.. All other shrubs were identified to species 

and average heights were determined. In the tree strata, all trees, with the exception of Abies 

balsamea and Abies lasiocarpa, were identified to species. The two firs were classified as Abies 

spp.

In addition, all transects were line mapped and included site information such as slope, 

aspect, percent bare ground/rock/standing water, and evidence of fire (scars, charcoal).
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2.2.5 Analyses

Species richness is defined as the number o f species present (Magurran 1988) and is the measure 

used in this thesis. Prior to testing my initial hypotheses (these are also hypotheses), I evaluated 

whether there were non-treatment differences in the reference stands between the two study 

years (2003, 2004). Differences would suggest that factors other than disturbance affected 

species presence. In order to capture the widest range of natural variation, I included all the 

2003 (or pre-treatment) inventories from the stands scheduled for harvest as well as the identified 

reference stands. This resulted in an unbalanced two-way ANOVA design. The data were stand 

level averages for each community and layer therein. The linear model is shown in Eq. 1 and the 

Estimated Mean Squares in Table 2.3a. Scheffe's post-hoc tests were then used to dissect the 

community* year interaction and identify differences, if  any, between years one and two data 

related to specific communities. If there were no significant interaction effects, the data for both 

years within each uncut community (riparian, transition, or interior forest) could be combined for 

use in subsequent tests.

Yyk = p + Yr* + Cmyy + Yr*Cmy,y + Eq. 1

where:
Ytjk = species richness of the k* replicate o f the j1*1 community in the jth  year
p = the overall mean
Yr, = the fixed effect of the jth of 2 levels (2003 and 2004) of year
Cmyy = the fixed effect of the j th of 3 levels (riparian, transition, and interior forest) of

community
Yr*Cmy,y = the fixed interaction effect o f the jth level of Yr with the j**1 level of Cmy 
8(,y)jt =  the random effect of the kth experimental unit within the y**1 treatment combination.

The £(ij)k are assumed to be IID N(0, a 2).
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Hypothesis 1 and 2 (comparison of species richness across the three communities before and 

after disturbance): Based on the year 1 data only, ANOVA was used to determine if  stand class 

or community were sources of variation in any of the vegetation layers. Data for the combined 

2003 uncut and 2003/2004 reference inventories were used to test for differences in the absence 

of disturbance while data from 2004 inventories of harvested stands was used to test for 

differences following disturbance. However, because community is nested in stand class, we did 

not have sufficient data to test their interaction or to complete typical post-hoc tests for 

differences between group means (see Eq. 2 and EMS Table 2.3b). Subsequently, /-tests 

(Snedecor and Cochrane 1989) were used to evaluate differences between communities within a 

stand class (e.g., coniferous riparian vs coniferous transition, coniferous riparian vs coniferous 

interior forest and coniferous transition vs coniferous interior forest).

Yyk = p. + Stand, + Cmytoy + sm  Eq. 2

where:
Y,jk — species richness of the replicate of the / h community in the * stand
p = the overall mean
Stand, = the fixed effect of the jlh of 2 levels (deciduous and coniferous) of stand
Cmy, = the fixed effect of the f 1 of 3 levels (riparian, transition, and interior forest) of the

community nested within stand 
£(,yp = the random effect of the experimental unit within the j /1 treatment combination.

The £(,j)k are assumed to be IID N(0, ct 2).
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Table 2.3 Estimated Mean Squares (EMS) tables. Vegetation layers (ground vegetation, low 
shrub, tall shrub and trees) and stand class (deciduous and coniferous) were tested 
independently. In this balanced example, there are 5 replications (or stands). The 
actual number of observations varied with stand class. Main factors include year (Yr: 
2003 and 2004), community (Cmy: riparian, transition, interior forest) and stand 
(coniferous and deciduous).

a. Two-way ANOVA of reference stand data based on Eq. 1.
Main factors are year and community.

Source d f
F
2a
i

F
3a
J

R
5a
K

EMS F-ratio

Y r, 1 0 3 5 c 2+ 15 0  Yr MS(Yr)/MS(E)

Cmy j 2 2 0 5 o 2 + 10 O Cmy MS(Cmy)/MS(E)

Yr*Cmy y 2 0 0 5 o 2 + 10 0  Yr*Cmy MS(Yr*Cmy)/MS(E)

£ (ii)k 24 1 1 1 o2

b. Nested ANOVA based on Eq. 2. Main factors are stand and community.

Source d f
F
2a
I

F
3a
j

R
5a
K

EMS F-ratio

Stand i 1 0 3 5 a  2 + 15 <t> Stand MS(Stand)/MS(E)

Cmy (l)j 4 2 0 5 o 2 + 10 O Cmy MS(Cmy)/MS(E)

e (ij)k 69 1 1 1 a 2
a the number of levels relating to the factor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Hypothesis 3 (method of harvesting will affect species richness): Although a logical outcome of 

overstory removal is that community richness would change, this assumption was tested. As the 

communities were nested within stand type, I used /-tests to identify differences a. between 

reference and harvested communities and b. between harvest methods for each community.

These comparisons are made for each vegetation layer separately.

Hypothesis 4 (effect o f fire on species richness): /-tests were again used to evaluate differences 

between communities associated with the different stand classes (e.g. coniferous riparian vs 

deciduous riparian, coniferous transition vs deciduous transition, and coniferous Interior vs 

deciduous Interior). This approach allowed for different sample sizes in the groups. For all four 

hypotheses, /-tests were done manually with Excel as a calculator.
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2.3 RESULTS

2.3.1 Community composition

Species found in the GV, LS, TS, and tree layers of both deciduous and coniferous stands were 

typical for the Boreal Plain. Although GV and tree species differed between the two stand 

classes, shrub layers were very similar. With the exception of Lonicera involucrata and 

Vibernum edule in the LS layer, common species found in both shrub layers for both stand 

classes were similar for all three communities and consisted of Salix spp., Alnus tenufolia, and 

Alnus crispa.

Common tree species in deciduous stands in all communities were Populus tremuloides, 

Populus balsamifera, and Be tula papyri/era. Common species in the GV layers for: (1) R 

communities included Equisetum spp., and Rubus spp., (2) T communities were Cornus 

canadensis, and Vaccinium spp., and (3) IF communities were Pleurozium schreberi and Cornus 

canadensis. Calamagrostis canadensis was common in all three communities.

Common tree species in coniferous stands in all communities were Picea mariana, Pinus 

contorta, and Populus tremuloides. Common species in the GV layers for: (1) R communities 

were Calamagrostis canadensis and Equisetum spp. and (2) T and IF communities were Ptilium 

crista-castrensis and Cornus canadensis. Pleurozium schreberi was common in all three 

communities.
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23.2 Annual differences in the reference stands

As discussed in section 2.2.5,1 wished to learn if there were non-treatment differences

in species richness between 2003 and 2004 in each community. In the deciduous stands, neither

main effect (year, community) nor their interaction was a source of variation for any vegetation

layer. For all layers of coniferous stands, the year*community interaction was insignificant

hence there were no statistical differences between the 2003/2004 inventories of the three

communities. However, both year and community as main effects were significant. The main

effect o f community for GV, LS and TS is dealt with under Hypothesis 1. The main effect of

year in the GV layer likely reflects annual micro-climatic differences in the R (A 4 species) and

T (A 2 species) communities. Although transects were measured at about the same time each

year, differences in temperature and precipitation do occur and can affect species presence and

coverage. These factors are explored in the Discussion (section 2.4). To ensure the

representation of natural variation in uncut stands and increase sample size used in subsequent

comparisons, 2003 and 2004 reference data for each community were pooled for all layers.

Table 2.4. a. ANOVA p-values and b. Scheffe’s Post-hoc test comparing 2003 and 2004 species 
richness in the riparian, transition and interior forest communities of the uncut coniferous and 
deciduous stand classes. Bolded values are significant.

a. ANOVA Source of Ground Low Tall
Stand Variation d f Vegetation Shrubs Shrubs Tree

Deciduous Year 1 0.55 0.57 0.15 0.42
Community 2 0.72 0.84 0.54 0.22
Year*Cmy 2 0.69 0.99 0.98 0.58
Error 21

Coniferous Year 1 0.03 0.83 0.24 0.38
Community 2 <0.001 <0.001 <0.001 0.09
Year* Cmy 2 0.48 0.94 0.82 0.55
Error 42
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b. Scheffe’s Post-hoc test results for both stand classes (deciduous and coniferous) and all 
vegetation layers (ground vegetation (GV), lower shrubs (LS), taller shrubs (TS), and trees) and 
communities.

Stand Layer
Community

Year Riparian Transition Interior Forest
Mean SE Mean SE Mean SE

Deciduous GV 2003 18.9 1.6 17.3 1.3 17.8 1.3
2004 18.4 0.6 17.9 1.3 20.2 2.7

Overall 18.7 1.1 18.3 1.2 18.3 1.3

LS 2003 1.7 0.3 1.6 0.2 1.5 0.3
2004 1.9 0.4 1.8 0.4 1.7 0.7

Overall 1.8 0.2 1.6 0.2 1.6 0.3

TS 2003 1.1 0.2 0.9 0.2 0.7 0.2
2004 1.3 0.3 1.2 0.1 1.1 0.6

Overall 1.1 0.2 1.0 0.1 0.9 0.2

Tree 2003 2.3 0.2 2.0 0.3 2.0 0.4
2004 2.3 0.0 1.9 0.6 1.3 0.4

Overall 2.3 0.1 2.0 0.2 1.8 0.3

Coniferous GV 2003 15.4 1.3 13.5 0.7 11.4 0.8
2004 19.7 2.0 15.4 2.2 12.5 1.6

Overall 16.7a 1.2 14.1b 0.8 11.8b 0.7

LS 2003 1.6 0.2 0.5 0.1 0.2 0.1
2004 1.6 0.2 0.6 0.6 0.2 0.4

Overall 1.6a 0.2 0.5b 0.1 0.2b 0.1

TS 2003 0.8 0.2 0.3 0.1 0.1 0.0
2004 1.3 0.2 0.6 0.2 0.1 0.1

Overall 1.0a 0.1 0.4b 0.1 0.1c 0.0

Tree 2003 2.2 0.3 2.7 0.3 3.2 0.3
2004 2.9 0.3 2.6 0.3 3.5 0.5

Overall 2.4 0.3 2.7 0.2 3.3 0.3

Different letters indicate significant differences atp  < 0.05
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2.3.3 Hypothesis la: For the ground vegetation and shrub layers in the absence of 
disturbance, there will be higher species richness in riparian communities than in 
transition and interior forest communities regardless of stand class.

The nested ANOVA identified both stand and community as sources of variation for the GV, LS

and TS layers; deciduous stands had more species in each layer than did coniferous stands.

Mean richness values (dark bars in Figures 2.3 to 2.5) for GV ranged from 11.8 ± 0.7 to 16.7 ±

1.2 (mean ± standard error) while those for the LS and TS were almost always less than 1.5 (±

0.5 or less). In the GV, LS and TS layers of deciduous stands, prior to disturbance, species

richness in R communities was not detectably higher than in T and IF communities (Part A,

Table 2.5). In contrast, in GV layers of coniferous stands, species richness in R communities

was higher (16.7 ± 1.2) than inT  (14.1 ± 0.8; p  < 0.001) and IF (11.8 ± 0.7; p  < 0.001)

communities. The GV layer in T communities was also more species rich than that of the IF

communities (p < 0.001) highlighting a gradient of decreasing richness with distance from the

stream edge. Likewise, in undisturbed LS and TS layers of coniferous stands, species richness in

R communities was higher (1.6 ± 0.2 and 1.0 ± 0.1) than in T (0.5 ±0.1 and 0.4 ± 0 .l;p  < 0.001)

and IF communities (0.2 ± 0.1 and 0.1 ± 0.0; p  < 0.001). The T communities in the TS layer

were also more species rich than the IF communities {p < 0.01) thus repeating the gradient noted

in the GV layers. The hypothesis is therefore supported with respect to coniferous stands but not

deciduous stands in the absence of disturbance.
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Table 2.5. Comparison of mean species richness between A. Pre-harvest/reference communities and 
B. Post-harvest communities in deciduous and coniferous stands. Different letters indicate 
significant differences a tp <  0.05.

A. Pre-harvest/Reference1 ■ Treatment B. Post-harvest2
“ “““  Riparian Transition Forest Riparian Transition Forest

i. Ground Vegetation

Deciduous 18.7 18.3 18.3 Buffer
Cut-to-Shore

21.3a
23.0a

21.0a
17.5b

14.8b
16.7b

Coniferous 16.7a 14.1b 11.8c Buffer
Cut-to-Shore

11.8a, b 
18.0a

14.3b
11.9b

11.3a
7.2c

ii. Low Shrub

Deciduous 1.8 1.6 1.6 Buffer
Cut-to-Shore

0.0
2.0

0.3
0.8

0.3
0.5

Coniferous 1.6a 0.5b 0.2b Buffer
Cut-to-Shore

1.0a
1.0a

0.2b 
0.4a, b

0.0b
0.0b

iii. Tall Shrub

Deciduous 1.1 1.0 0.9 Buffer
Cut-to-Shore

0.0
1.5a

0.0
0.7a, b

0.3
0.2b

Coniferous 1.0a 0.4b 0.1c Buffer
Cut-to-Shore

0.5
0.9a

0.2
0.2b

0.0
0.0b

iv. Tree

Deciduous 2.3 2.0 1.8 Buffer
Cut-to-Shore

3.3
2.3a

1.3
1.2a

2.0
0.0b

Coniferous 2.4a 2.7a 3.3b Buffer
Cut-to-Shore

2.2
1.4

2.0
0.8

2.8
1.2

I  -  —   ■ Mil I I . . .  ■

means include all pre-harvest and 2003/2004 reference data, one year post-harvest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.4 Hypothesis lb: For the ground vegetation and shrub layers after harvest 
disturbance, there will be higher species richness in riparian communities than in 
transition and interior forest communities regardless of stand class.

This section compares each of the three communities (R, T, IF) after clearcut harvest with either 

CTS or buffer treatments in both the coniferous and deciduous stands. Mean species richness 

after harvest varied from 7.2 ± 1.2 (coniferous, IF communities, CTS) to 23.0 ± 2.3 (deciduous,

R communities, CTS) in the GV layer but was less than one in the LS and TS layers for all but 

one community (deciduous, R communities, CTS). The general species richness pattern of 

R>T>IF communities holds for both stand classes, both harvest methods and all three layers with 

three exceptions (deciduous, R communities, buffer and coniferous, R communities, buffer). In 

the deciduous communities however, the mean species richness values in the shrub layers are 

either 0.3 or 0.0 and not distinguishable.

In the GV layer, species richness in R communities exceeded that o f the IF with the 

exception of the coniferous buffer noted above. In this case, species richness in the GV layer 

was highest in the T communities (14.3 ± 2.2) but only significantly so in comparison to the IF 

communities (11.3 ± 0.8). In both stand classes, differences between R and T and T and IF 

communities were inconsistent occurring in both stand classes. The coniferous CTS treatment 

was the only combination where all three means differed and the gradient was the same as pre­

harvest.

In the LS layer of the deciduous stands, species richness did not differ between 

communities. However, in coniferous stands, both buffer and CTS resulted in no (i.e. 0 species) 

shrub species in IF communities, less than 0.5 species in the T communities and only 1 species in 

the R communities Differences between R and IF communities were detectable. In the TS layer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

and for both stands, species richness was higher in the CTS treatment than in the buffer and 

differences between R and IF communities were identified.

Similar to the data from undisturbed stands, the pattern of species richness decreasing 

with distance from the stream edge continued to hold after disturbance. Some variation 

associated with both stand class and harvest method was evident.
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Figure 2.3. Mean ground vegetation species richness (with SE) pre- and post-treatment by 
community and stand class. 1 Means include all pre-harvest and 2003/2004 reference data, 2one 
year post-harvest. Harvest treatments: buffer (30 m), and cut-to-shore. * p  < 0.05, ** < 0.01,
* * * p <  0 . 0 0 1 .

** See Appendices A and B for actual t-values and mean (SE) values, respectively.
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Harvest treatments: buffer (30 m) and cut-to-shore. * p  < 0.05.

** See Appendices A and B for actual t-values and mean (SE) values, respectively.
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2.3.5 Hypothesis 2a: For the tree layer in the absence of disturbance, there will be higher 
species richness in interior forest communities than in transition and riparian communities.

The nested ANOVA identified stand, but not community, as a source of variation. Mean species

richness prior to harvest in the tree layer ranged from 1.8 to 3.3 (dark bars in Figure 2.6). Results

of f-tests (Part A., Table 2.5) reveal that there were no community based differences in deciduous

stands. In contrast, in coniferous stands, tree species richness in IF communities (3.3 ± 0.3) was

higher than in T (2.7 ± 0.2; p  < 0.05) and R communities (2.4 ± 0.3).

As with the LV and shrub layers, the hypothesis is supported in coniferous stands but not

in deciduous stands. However, contrary to the patterns in GV, LS and TS, species richness in the

tree layer increases with distance from the stream.

2.3.6 Hypothesis 2b: For the tree layer after harvest disturbance, there will be higher 
species richness in interior forest communities than in transition and riparian communities.

In the tree layer, only the deciduous, CTS treatment resulted in detectable differences. In this

case, species richness declined from R to IF communities. The hypothesis is therefore not

supported after disturbance.
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stand class. Means derived from all pre-treatment and 2003/2004 reference data, one year post­
harvest. Harvest treatments: buffer (30 m) and cut-to-shore: * p <  0.05, ** p  < 0.01,
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** See Appendices A and B for actual Lvalues and mean (SE) values, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

2.3.7 Hypothesis 3: Harvesting reduces species richness in all communities and stand 
classes and cut-to-shore harvest more so than buffer harvest.

Results are divided into two parts: (1) comparison between reference and harvested communities 

and (2) comparison between the two harvesting methods.

2.3.7.1 Comparing reference to harvested stands

Ground vegetation layer

The number o f species in the GV layer changed after harvest in four of the 12 communities 

studied (see Fig 2.3). In three coniferous communities (R, buffer; T and IF, CTS), the number of 

species declined however, in the R communities of the deciduous stands under CTS harvest, the 

number of species increased from 18.7 to 23.0 (p < 0.01). Non-significant increases were noted 

in the deciduous buffer, coniferous buffer and coniferous CTS. The hypothesis of reduced 

species richness following harvest is only supported in the coniferous stands.

Shrub layers

Following harvest, shrubs from both layers responded similarly within a stand class (Fig. 2.4 and

2.5). In coniferous stands, there were no detectable differences between pre- and post-harvest 

species richness values. The pattern of decreasing species richness from R to IF communities 

was maintained. In the case of deciduous stands, the type of harvesting affected the pattern of 

species richness. Under CTS harvest, species numbers increased slightly in the R communities 

and declined in the T (LS) and IF (LS and TS) communities. Under buffer harvest, species 

counts in all three communities dropped to zero or near-zero. As described in section 2.4, this 

decline is attributed to increased beaver activity following the removal of trees. As such, the
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hypothesis that there are more species pre-harvest is supported for deciduous stands only the R 

and T communities under buffer conditions and IF communities under CTS condition.

Tree layer

Figure 2.8 presents the results of /-tests between reference and harvested communities in each 

stand class. Somewhat surprisingly, even in the IF communities, there were no detectable 

patterns in species richness before and after buffer harvest. With the exception of the R 

communities o f the deciduous stand class, specie richness under CTS harvest decreased in all 

communities. The hypothesis of fewer species following harvest is supported in the T and IF 

communities for both stands and in riparian communities of the coniferous stand class after CTS 

harvest, but not buffer harvest.
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2.3.7.2 Comparing Cut to Shore and buffer harvesting 

Ground vegetation layer

When effects of harvest on the GV layer were compared, there were three differences (Table

2.6). In coniferous stands, the number of species in R communities after CTS was higher than in 

buffer (21 ± 1.8 vs 12 ± 0.8, respectively ip < 0.01)). In coniferous IF communities and 

deciduous T communities, species richness under buffer conditions was higher than in CTS 

conditions (11 ± 0.6 vs 7 ± 1.1, respectively (p < 0.01) and 21 ± 1.8 vs 12 ± 0.8, respectively (p <

0.01)). The hypothesis of fewer species under CTS harvest is therefore supported in two 

instances out of six with respect to this layer.

Table 2.6. Results o f the /-tests for differences between buffer (30 m) vs cut-to-shore harvest in 
the three communities in the four vegetation layers (/-values ranged from 0.00 to 5.29). All 
differences were significant at p  < 0.01.

Vegetation Layer Differences

Ground Vegetation Coniferous Riparian 
Deciduous Transition 
Coniferous Interior Forest

Shrubs Deciduous Riparian

Tree Coniferous Transition 
Coniferous Interior forest 
Deciduous Interior forest

** See Appendix C for actual /-test values.
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Shrub layer

Only two comparisons in the LS and TS layers are different. These are both found in the R 

communities of the deciduous stands and in both cases the species richness after CTS harvest is 

greater than that found after buffer harvest. The hypothesis of fewer species after CTS harvest 

is therefore not supported.

Tree layer

In the tree layer, differences between the two harvest methods were found in the IF communities 

of both stands as well as the T communities of the coniferous stand. In each case, species 

richness was less under CTS harvesting than under harvest with a buffer. The R communities, 

however, were not affected. The hypothesis of fewer species after CTS is supported in three of 

the six comparisons.

2.3.8 Hypothesis 4: Post-fire species richness i. follows the same patterns identified in 
hypotheses 1 and 2 and ii. will be higher in coniferous than deciduous affected by pre­
disturbance stand class.

Six years after fire, two trends in community composition are evident from the information 

presented in Table 2.7 and Figure 2.7. First, gradients (richness declining with distance from 

stream) appear to have re-established in all layers of coniferous stands as well as in shrub layers 

of deciduous stands. Differences between communities were detectable for coniferous GV and 

LS as well as deciduous TS layers. Second, species richness in coniferous communities was less 

than that found in deciduous communities in ten of 11 possible comparisons (tree, TS, and GV 

predominantly). However, in the GV of the R communities, richness in the coniferous stands 

exceeded that of the deciduous stands.
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In terms of the hypotheses posed with respect to recently burnt areas: 1) the patterns 

observed under CTS conditions related to: a) declining species richness with distance from the 

stream is supported for the GV and LS layers of coniferous stands and for the TS layers of 

deciduous stands and b) relatively similar species richness among the communities in the tree 

layers of coniferous stands is also supported. 2) species richness is affected by pre-disturbance 

stand class, but is not higher in coniferous stands than deciduous.

Table 2.7. Results for /-tests post-fire comparisons for coniferous and deciduous stands, all 
layers, and communities (riparian (R), transition (T), and interior forest (IF)).

Layer
Post-fire

Deciduous Coniferous
R v sT R vs F T vs F R vs T R vs F T vs F

Ground Vegetation 2.09 1.13 0.94 4.51*** 5.68*** 1.60
Shrub 1 to 3m 0.95 1.25 0.67 4.21*** 3.34*** 0.31
Shrub > 3m 0.50 4.00* 1.73 1.48 1.48 na
Tree 0.00 0.00 0.00 1.18 1.34 0.28
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* * See Appendices D and E for actual /-values and mean (SE) values, respectively.
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The vegetation communities of the Boreal Plain are increasingly exposed to anthropogenic 

disturbances (e.g., forestry, oil and gas). The hypotheses tested in the RVS were designed to 

capture pre-treatment conditions and describe baseline trends, as well as analyze how vegetation 

responded to forest harvesting (buffer and cut-to-shore) and fire disturbance. The RVS found 

distinct pre-treatment differences between coniferous and deciduous stands with regards to 

species richness patterns, deciduous stands remained relatively stable for all layers (GV, shrubs, 

tree) whereas, coniferous stands displayed a decreasing species richness gradient with distance 

from the stream channel for the shrub and GV layers. The difference in vegetation patterns 

observed between coniferous and deciduous stands affected how the different communities 

responded to the disturbances, especially the CTS treatment.

In the RVS, species richness in GV and shrub layers was higher in deciduous stands than 

coniferous stands. In addition, pre-treatment species richness in deciduous stands for all three 

communities was relatively constant, when compared to coniferous stands. A positive 

correlation between the presence of deciduous tree species and species diversity was observed by 

Berger and Puettmann (2000). However, Haeussler et al. (2004) suggested that microsite and 

site factors rather than overstory composition play important roles in determining species 

richness. Yet, with the exception of Mallik et al. (2001), boreal riparian vegetation species found 

within specific microhabitats are not well documented. Mallik et al. (2001) observed that many 

boreal species either increased or decreased strongly in abundance with distance from shore on 

relatively larger floodplains. Perennials (e.g., herbs and graminoids) displayed a stronger lateral 

gradient and increased in mean representation as the distance from the stream increased, when
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compared to annuals. Nonetheless, the RVS documented a consistent positive relationship 

between deciduous cover and species richness.

In the RVS pre-treatment, inter-community species richness patterns observed in 

coniferous stands were similar to those documented by Timoney et al. (1997). GV and shrubs 

generally decreased in species richness from R up through to IF communities. Further, in the 

RVS study all three communities were distinct. In contrast, shrub species richness, pre­

treatment, in deciduous stands remained relatively constant from R to IF communities. The 

contrasting species richness patterns observed in the shrub layers of these stands were almost 

certainly related to light penetrating the tree canopy. Mature deciduous trees allow more light 

through their crowns when compared to coniferous trees. For example, in the same region o f the 

RVS, Constabel (1995) documented that light transmission through coniferous trees was one-half 

to one-tenth to that of deciduous trees. Increased amount of light below deciduous canopies may 

have allowed for the shrub layers to persist in all three communities. On the other hand, in the 

coniferous stands shrub layers decreased in species richness as distance from the stream 

increased and the coniferous canopy became more dominant, limiting light penetration. The 

difference in the two shrub species patterns influenced the harvest effects observed in the stands. 

As noted, number of shrub species in deciduous stands was higher when compared to coniferous 

stands, in particular, in T and IF communities. As such, deciduous stands were more affected by 

forest harvest. In T and IF communities of coniferous stands, there were few if any shrubs and 

therefore there was little, if  any, impact of harvest.

Identification of contrasting patterns of species richness within the shrub layers of both 

stands strengthens the need for site specific forest harvest and silvicultural guidelines. In the 

province of Ontario, for example, there are five different silvicultural guides for managing the
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variety of forest types (OMNR 2006), which allows for silvicultural flexibility. For instance, if 

shrub diversity in boreal forests is an important landscape component for a particular region then 

perhaps clearcutting may be acceptable for coniferous stands, but selective and/or shelterwood 

cutting might be more appropriate for deciduous stands to minimize the depletion of shrub 

species. In the province of Alberta, the Mixedwood Management Association is in the process 

o f developing an ecologically based silviculture guide, the Alberta Boreal Mixedwood 

Silviculture Guide, that will be useful for all forested ecosystems within province boundaries. 

The guide will standardize data collection procedures, describe possible silvicultural treatments 

and treatment combinations, quantify the positive effects and mitigate the negative impact of 

those treatments (GDC 2003). Clearly, forest management in Canada is moving towards 

providing forest practitioners with references regarding silvicultural options for forest 

management and is linking these options to predicted outcomes.

Species richness in the deciduous tree layer pre-treatment remained relatively constant in all 

communities. In contrast, species richness in the coniferous tree layer of IF communities was 

higher than T and R communities. As expected, the tree layer for both stands was most affected 

post-treatment under CTS conditions compared to layers below. With the exception of the R 

communities in deciduous stands, CTS reduced tree species richness for both stands in all 

communities. Considering the nature of the harvest (clearcut) this was expected. In the absence 

of natural disturbances (e.g., fire, windthrow, and insect outbreak), silviculture treatments 

employed on harvested lands will determine forest trajectories for the next stand rotation.

In contrast to species richness patterns observed in the tree layer post-treatment under 

CTS conditions, GV was among the least affected in deciduous and coniferous stands. Reasons 

for this included: (1) The relatively high species richness measured in GV layers pre-treatment
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may have contributed to the lack of response observed, (2) harvest in the RVS occurred during 

winter and as such soil disturbance may have been limited when compared to areas harvested in 

summer, (3) in the CTS treatment, one year post-harvest is too early to detect changes in species 

richness. In northern Wisconsin in deciduous forests, uneven-aged and even-aged stands (10 and 

40 years post-harvest, respectively) presented undetectable differences (p < 0.05) (Kem et al. 

2006). However, due to the time-frame relating to the inventory, vegetation communities in that 

study may have already recovered. In contrast, in the RVS, the lack of response detected post­

treatment under CTS conditions is most likely due to the post-treatment inventory being too early 

to capture treatment effects. During field inventory for the RVS, it was noted that individual 

specimens were struggling to survive. For example, in coniferous stands feather mosses were 

drying out because of the increased exposure to wind and solar radiation, however, they were 

still present one-year post-treatment under CTS conditions. A decrease in bryophyte species 

richness was expected following harvest (Hylander et al. 2002; Hylander 2005). In some 

coniferous sites inventoried in the RVS feather mosses made up the majority of the species 

present within plots, therefore, a shift in species composition following the first few years after 

the CTS treatment should be expected. Further, climatic variation will also influence species 

composition within these CTS stands post-treatment. For example, in deciduous stands species 

identified post-treatment that were not identified pre-treatment included: Marchantia 

polymorpha, Brachythecium rivular, and Caltha palustris. When weather data were compared 

between pre- and post-treatment years, there was more precipitation in the post-treatment year.

The ability of the buffer treatment to maintain species richness was accentuated in the tree 

layer, specifically in the T and IF communities and in the GV layer in IF communities. The tree 

layer was also the most affected post-treatment under CTS conditions, so these results were not
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surprising and are supported in the primary literature (Hylander et al. 2005). The ability o f the 

buffer to maintain species richness in the shrub layers was not confirmed, largely due to local 

beaver influence. Beaver activity was greater in the buffer treatments than CTS treatments, 

especially after harvesting was implemented. Further, slope was greater in the CTS treatments, 

which hindered harvest operations up to the stream edge. In coniferous stands species richness 

post-treatment under both buffer and CTS conditions did not differ from pre-treatment 

conditions. Similarly, in a study in northern Sweden, no apparent edge effects were noted in the 

shrub layer of coniferous stands post-harvest (Hylander 2005). GV responses were limited in R 

and T communities compared to IF communities. IF communities of both stands, were mre 

species rich under buffer conditions when compared to CTS conditions suggesting the buffer 

treatment. In a study in northern Ontario on the Boreal Shield in boreal mixedwood stands no 

detectable changes in vascular plant species richness were documented (Lamb et al. 2003). In 

contrast, in northern Sweden, two to five years post-harvest, Hylander (2005) documented a 

decrease in bryophyte species richness, particularly along north facing conifer forest edges.

With that being said, studies which document vegetation change over time post-treatment under 

buffer conditions are lacking, particularly during early successional stages and in deciduous 

stands. In the RVS site, as time passes and stands adapt to their new environment, it is expected 

that some new patterns will emerge, specifically in number of species in the GV layer.

Post-treatment, vegetation dynamics in fire treated stands had similarities when compared 

to what was observed and expected in the harvested stands. Species richness at the tree layer 

deciduous stands remained relatively constant among the three communities. In contrast, the 

coniferous stands were much slower to return six years post-fire. Fire intensity, which is 

influenced by relative humidity, may have been a contributing factor regarding the more species
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rich tree layer in the deciduous stands post-fire. With the exception of the bryophytes, the GV 

layer appeared to be more resilient to fire disturbance for both stands when compared to layers 

above. Excluding bryophytes, there is evidence that GV layers in coniferous stands are relatively 

well adapted to fire (Hamilton 2006). Further, in northern Ontario it has been documented that 

the number of vascular plant species present post-fire is generally highest within the first 10 

years when compared to later successional stages (Shafi and Yarranton 1973). However, with 

regards to bryophytes, species richness increases as the stand ages. For example, in a study in 

northwestern Quebec, Hylocomium splendens did not recolonize until 46 years post-fire and had 

the highest cover 167 years post-fire (DeGrandpre et al. 1993). In addition, in the RVS, the GV 

layer in deciduous stands appeared to be well established and had a greater number of species in 

T and IF communities than coniferous stands. This observation may also be a result of lower fire 

intensity within deciduous stands. The growth of deciduous shrub layers will most likely 

continue to limit light conditions on the ground, particularly in summer, the dominant growing . 

season. As such, coniferous tree species that are more shade tolerant when compared to 

deciduous trees are probably more likely to become established under current conditions. The 

shift in species composition from a deciduous dominated tree layer to a coniferous dominated 

tree layer could change the trajectory of the stand when compared to pre-fire conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 CONCLUSIONS

The RVS found that deciduous and coniferous stands differ in species richness patterns, and that 

this difference effects how vegetation responds to disturbance. It also documents how biological 

influences (e.g., beaver) and local topography impact treatment effects. The deciduous stands 

had greater species richness and were more affected by the treatments and beavers than the 

coniferous stands. The coniferous stands had a natural gradient of decreasing species richness as 

the distance from the shoreline increased, making detecting harvesting treatments almost 

impossible. In contrast, the more species rich and relatively constant species richness gradient 

observed in deciduous stands provided a more sensitive environment than coniferous stands 

when detecting treatment effects. With respect to the fire disturbance, deciduous tree density 

was such that the shrub layer was suppressed while the GV returned to levels of species richness 

which were likely very similar to pre-treatment conditions. In contrast, coniferous tree and shrub 

layers were slower to return, however, the GV layer was uniformly well established six years 

post-fire.

It should be noted that there is scant literature documenting vegetation patterns of boreal 

headwater streams. Thus, river and lake publications have been utilized as necessary. Further, 

documentation of species richness patterns of boreal vegetation were more common in upland 

than riparian sites (e.g., Qian et al. 1998). Studies like this one contribute to the essential 

baseline inventory for boreal headwater systems.
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Table A.I. /-values for ground vegetation layer for all communities.
Reference vs TreatmentStand Treatment

Riparian Transition Interior Forest
Deciduous
Deciduous
Coniferous
Coniferous

Buffer
Cut-to-Shore
Buffer
Cut-to-Shore

1.36
3.03**
2.95**
0.98

1.69
0.01
0.22

2.13*

1.75
1.21
0.54
5.17***

* p  < 0.05, ** p  <0.01, *** p  <0.001

Table A.2. f-values for shrubs 1 to 3 m layer for all communities._______
Reference vs TreatmentStand Treatment

Riparian Transition Interior Forest
Deciduous Buffer 
Deciduous Cut-to-Shore 
Coniferous Buffer 
Coniferous Cut-to-Shore

3.40**
0.58
1.43
1.84

3.06**
2.34*
1.18
0.44

1.96
2.30*
1.01
1.42

* p <  0.05,** p  <0.01

Table A.3. /-values for the shrub > 3 m layer for all communities._______
Reference vs TreatmentStand Treatment

Riparian Transition Interior Forest
Deciduous Buffer 
Deciduous Cut-to-Shore 
Coniferous Buffer 
Coniferous Cut-to-Shore

2.73*
1.12
1.61
0.27

2.52*
1.14
0.77
1.07

1.12
2 . 10*
0.62
0.88

* p <  0.05

Table A.4. /-values for the tree layer for all communities.

Stand Treatment Reference vs Treatment
Riparian Transition Interior Forest

Deciduous Buffer 
Deciduous Cut-to-Shore 
Coniferous Buffer 
Coniferous Cut-to-Shore

1.46
0.06
0.40
2.14*

1.31
2 . 11*

1.33
5.16***

0.26
2.97**
0.92
5  4 4 * * *

: p  < 0.05, ** p  <0.01, *** p  <0.001
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Table B. 1. Ground vegetation layer treatment means and SE for species richness in the
riparian, transition and interior forest communities of the coniferous and deciduous stand.

Treatment Community Deciduous Coniferous
Mean SE Mean SE

Buffer Riparian 21.3 0.0 11.8 4.0
Transition 21.0 0.0 14.3 2.2
Interior Forest 14.8 0.0 11.3 0.8

Cut to shore Riparian 23.0 2.3 18.0 2.5
Transition 17.5 0.0 11.9 1.9
Interior Forest 16.7 1.3 7.2 1.3

Table B.2. Shrub 1 to 3 m layer treatment means and SE for species richness in the 
riparian, transition and interior forest communities of the coniferous and deciduous stand.

Treatment Community Deciduous Coniferous
Mean SE Mean SE

Buffer Riparian 0.0 0.0 1.0 0.3
Transition 0.3 0.0 0.2 0.2
Interior Forest 0.3 0.0 0.0 0.0

Cut to shore Riparian 2.0 0.0 1.0 0.4
Transition 0.8 0.8 0.4 0.3
Interior Forest 0.5 0.5 0.0 0.0

Table B.3. Shrub > 3 m layer treatment means and SE for species richness in the riparian, 
transition and interior forest communities of the coniferous and deciduous stands.

Treatment Community Deciduous
Mean SE

Coniferous
Mean SE

Buffer Riparian 0.0 0.0 0.5 0.5
Transition 0.0 0.0 0.2 0.2
Interior Forest 0.3 0.0 0.0 0.0

Cut to shore Riparian 1.5 0.2 0.9 0.3
Transition 0.7 0.7 0.2 0.1
Interior Forest 0.2 0.2 0.0 0.0
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Table B.4. Tree layer treatment means and SE  for species richness in the riparian,
transition and interior forest communities of the coniferous and deciduous stands.

Treatment Community Deciduous Coniferous
Mean SE Mean SE

Buffer Riparian 3.3 0.0 2.2 0.2
Transition 1.3 0.0 2.0 0.0
Interior Forest 2.0 0.0 2.8 0.2

Cut to shore Riparian 2.3 0.3 1.4 0.3
Transition 1.2 0.5 0.8 0.3
Interior Forest 0.0 0.0 1.2 0.4
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Table C .l . Results for /-tests for buffer vs cut-to-shore treatments comparisons.

Stand Buffer vs Cut-to-Shore
V C g C la l lO I l  i ^ a y C i

Riparian Transition Interior Forest
Deciduous Ground Vegetation 0.70 2.94** 0.83
Coniferous Ground Vegetation 2.88** 1.95 3.00**
Deciduous Shrub 1 to 3 m 5.29** 0.79 0.31
Coniferous Shrub 1 to 3 m 0.00 0.62 na
Deciduous Shrub > 3 m 4.58** 1.22 0.51
Coniferous Shrub > 3 m 1.15 0.00 na
Deciduous Tree 0.94 0.2 5.29**
Coniferous Tree 1.03 2.90** 2.69**

* p <  0.05, ** p  <0.01, *** p  <0.001, na /-value could not be calculated.
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Layer
Post-fire

Coniferous vs Deciduous
Riparian Transition Interior Forest

Ground Vegetation 2.41* 6.68*** 6.16***
Shrub 1 to 3 m 2.72* 2.15 0.53
Shrub > 3 m 6.75*** 6.24*** na
Tree 4.01** 5.26*** 7.22***
* p  <0.05,** p  <0.01, 
calculated.

* * * p  <0.001, na /-value can not be
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Table E .l. Fire treatment means and SE for species richness for all layers in the riparian,
transition and interior forest communities of the coniferous and deciduous stands.

Layer Community Deciduous Coniferous
Mean SE Mean SE

Ground Vegetation Riparian 18.8 1.8 23.1 0.8
Transition 24.0 1.4 16.0 1.6
Interior Forest 21.7 1.8 14.1 1.5

Shrub 1 to 3 m Riparian 1.7 0.3 1.1 0.1
Transition 0.7 0.3 0.3 0.1
Interior Forest 0.3 0.3 0.2 0.1

Shrub > 3 m Riparian 1.3 0.3 0.2 0.3
Transition 1.0 0.6 0.0 0.0
Interior Forest 0.0 0.0 0.0 0.0

Tree Riparian 2.7 0.3 0.8 0.4
Transition 2.7 0.2 0.4 0.3
Interior Forest 2.7 0.2 0.3 0.3
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