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Abstract

To prevent further range recession, habitat features essential to the life history requisites 

of woodland caribou (Rangifer tarandus caribou) such as calving and nursery areas need 

to be protected for the persistence of the species. Forest-dwelling woodland caribou may 

minimize predation risk during calving by either spacing out or spacing away from 

predators in the forest to calve on islands, wetlands, or shorelines.

The first objective of this thesis was to determine if  in fact the same female caribou was 

using the same area for calving and nursery activity year after year. Caribou faecal 

samples for DNA extraction were collected from nursery areas in 2 provincial parks in 

northern Ontario: Wabakimi and Woodland Caribou Provincial Parks. Extraction yield 

was poor in smnmer-collected faecal samples and site fidelity on a specific lake could not 

be demonstrated. However, differentiation of caribou DNA samples between parks 

suggests that caribou may be exhibiting female philopatry during the nursery period: 

female caribou typically return to a particular area year after year for calving and nursery 

activities (Brown and Theberge 1985, Gunn and Miller 1986, Fancy and Whitten 1991).

Another objective was to determine the fine-scale characteristics of shoreline habitats 

used as calving and nursery areas by female woodland caribou in the 2 parks. Detailed 

vegetation and other site characteristics were measured at shoreline nursery sites used by 

cow-calf pairs and compared to shoreline sites that were not used by caribou within each 

park. Important characteristics were used to develop and evaluate Resource Selection 

Functions (RSFs) for calving woodland caribou in northern Ontario. Habitat 

characteristics determined at nursery sites were postulated to reflect predator avoidance 

strategies. Observed differences in habitat variables selected by female caribou in the 2 

study areas primarily reflected broad ecoregional differences in vegetation and 

topography rather than differences in female choice. In Wabakimi Provincial Park, 

higher understorey tree density and lower ground detection distance played key roles in 

distinguishing nursery sites from sites that were not used. In Woodland Caribou 

Provincial Park, groundcover vegetation and shrub density were important in the
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selection of nursery sites by female caribou. Generally, female caribou in both parks 

selected nursery sites with greater slope, lower shrub density, but thicker groundcover 

vegetation, and higher overstorey cover than shoreline sites that were not used.

The last objective was to determine what physical characteristics caribou might be using 

at a larger scale (i.e., distance to nearest land feature from nursery sites, distance to 

closest fly-in outpost from nursery sites). In Woodland Caribou Provincial Park more 

nursery sites occurred in the coniferous forest landcover type when compared to unused 

or random sites. In Wabakimi Provincial Park, there was no difference between nursery 

activity and landcover types randomly available in the study area. Generally, female 

caribou in both parks selected nursery sites with shorter escape distances than provided 

by unused or random sites, and islands were the feature type most frequently used for 

nursery activity. Female caribou also used clusters of land features within shorter 

distance of one another as compared to random points along the shoreline. Caribou cow- 

calf pairs typically used areas for nursery activity that were 9.0km (± 6.5km, range 2.3- 

20.6km) in Wabakimi Provincial Park and 10.0km (± 6.9km, range 0.7 -  32.6km) in 

Woodland Caribou Provincial Park from any human recreational disturbance.

The identification of these important characteristics of caribou nursery areas at 2 different 

spatial scales provides baseline information that may be used to predict the locations of 

potential caribou nursery sites both within protected area boundaries and across the 

broader range of this valued species in northern Ontario. It is suggested that a first 

iteration spatial model be developed from the outcomes of this study to enable validation 

and refinement and to enhance the management and understanding of this critical life 

history requisite.

Ill
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Preface

In 2001, Ontario Parks received funding from the Ontario Ministry of Natural Resources 

Species at Risk program to identify nursery areas for forest-dwelling woodland caribou 

{Rangifer tarandus caribou) in both Wabakimi and Woodland Caribou Provincial Parks. 

This sub-species of caribou has been designated as “threatened” by both the Committee 

on Species at Risk in Ontario (COSSARO) and the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC). By identifying these nursery areas and 

examining their characteristics, as well as traditional use and characteristics of these sites, 

management decisions can be made to protect habitat essential to this threatened species.

Calving sites are generally taken to be locations at which parturition occurs, whereas 

nursery sites are areas occupied by cow-calf pairs during the post-partum period (Lent 

1974, Addison et al. 1990, Schaefer et al. 2000). Calving and nursery sites cannot always 

be readily distinguished by physical evidence (i.e., calf beds, pellets, or tracks) observed 

in transect surveys. No direct evidence of parturition was seen in this study. Therefore, 

all cow-calf sites were classified as nursery sites, even though birthing activity may have 

taken place as well. Absence sites were defined as areas with no evidence of use by 

caribou.

The primary intent of this study was to examine the physical and vegetation 

characteristics, as well as traditional use, of woodland caribou nursery areas. The general 

research hypothesis was that woodland caribou use the same nursery areas year after year 

and that these areas may have particular vegetation and topological features (e.g., on an 

island or peninsula) that may minimize predation risk. Chapter 1 investigates the 

traditional use of nursery sites. Chapter 2 examines the fine-scale attributes of vegetation 

and physical features at nursery sites in comparison to unused “absence” sites and, 

finally. Chapter 3 investigates the landscape-scale characteristics of these sites.

Xll
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General Introduction

Mortality rates of animals in the first stages of life are often quite high and the 

proliferation of a species depends on some animals surviving this critical phase.

Predation is a major selective force and many adaptations we see in organisms, such as 

warning coloration, have their explanation in predator-prey coevolution (Krebs 1994). 

Therefore, species must develop strategies that minimize the risk of predation of their 

offspring during this stage. Given a choice, animals should opt for areas that are most 

likely to improve survival and reproduction (Festa-Bianchet 1986). Animals that choose 

poor, marginal habitats will not raise as many progeny and consequently will be selected 

against (Krebs 1994). Natural selection may act directly upon the behaviours that result 

in habitat choice, or it may select for individuals that have the capacity to learn which 

habitat is appropriate (Krebs 1994).

Predators can kill more than 50% of young ungulates in free-ranging populations 

(Bergerud 1971). Ungulates appear to be particularly vulnerable in the first few weeks of 

life when they are old enough to flush from hiding, but are still too young to outrun 

predators (Fitzgibhon 1990). Year round studies of moose {Alces alces) and caribou 

{Rangifer tarandus) report that calves are most vulnerable to brown bear {Ursus arctos), 

(Stuart-Smith et al. 1997), black bear {Ursus americanus) (Ballard 1994, Ballard and Van 

Ballenberghe 1998), and wolf {Canis lupus) (Bergerud and Page 1987, Messier 1991) 

predation in their initial weeks of life. Similarly, elk {Cervus elaphus) calves are most 

susceptible to bear and coyote {Canis latrans) predation in the first month follow ing birth 

(Singer et al. 1997). As well, white-tailed deer {Odocoileus virginianus) fawns are most 

frequently predated upon by wolf, bear, and coyote in their first summer (Kunkel and 

Mech 1994).

Caribou have developed space-use strategies to avoid predation (Bergerud et al. 1990, 

Rettie and Messier 2001), which is considered the main proximate factor of population 

limitation of woodland caribou across North America (Bergerud 1974a, Seip 1992, 

Ouellet et al. 1996, Stuart-Smith et al. 1997, Rettie and Messier 1998). Female caribou
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are thought to minimize predation risk during calving by either “spacing out” (individuals 

separating from each other) or “spacing away” (dispersing across the landscape) from 

predators (Bergerud 1985). In this regard, woodland caribou behave differently at 

calving time across Canada. “Sedentary” caribou are known to space out in the forest to 

calve individually on islands, small openings in wetlands, or along lakeshores, which are 

considered relatively safe habitats (Bergerud 1985, Bergerud et al. 1990). “Migratory” 

caribou may space away from wolves and non-calving caribou by migrating several 

hundred kilometres to tundra calving grounds (Heard et al. 1996). In mountainous 

terrain, sedentary caribou space away from wolves, alternate prey, and non-calving 

conspecifrcs to calve at high elevation away from the travel routes of wolves in valleys 

and moose in forested areas (Bergerud and Butler 1984, Bergerud 1985). If they inhabit 

lowland forests without mountains, caribou disperse widely at calving (Fuller and Keith 

1981, Brown and Theberge 1985). Female caribou in herds in areas where there are no 

mountains, and situated far enough north that lakes are frozen at calving time, disperse to 

small openings in wetlands (Fuller and Keith 1981, Brown et al. 1986). Many of these 

small openings could allow females to see an approaching predator and many of these 

small openings contain small ponds that become free of ice earlier than the larger lakes 

and may allow females to more readily see an approaching predator. The woodland 

caribou that migrate to mountains or small wetlands to calve are more dispersed at 

calving than in any other season (Fuller and Keith 1981, Bergerud and Butler 1984, 

Brown et al. 1986, Edmonds 1988).

Densities of caribou populations spacing away from predators on tundra calving grounds 

are generally higher than those of caribou populations spacing out to calve on mountains, 

which in turn are higher than those spacing out in forests (Bergerud and Page 1987). 

Woodland caribou may spatially separate themselves from other ungulates that provide 

prey for wolves and bears {Ursus spp.) by using lakeshores and islands (Bergerud 1985, 

Gumming and Beange 1987) or bog complexes (Valkenburg et al. 1996, Stuart-Smith et 

al. 1997) in the spring. Sexual segregation alone cannot explain this behaviour since 

bulls are often found in the same area as cows, such as in the vicinity o f Lake Nipigon 

where male and female caribou live on islands from April to December and then move
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off islands when ice forms (Bergerud and Butler 1984, Gumming and Beange 1987, 

Bergerud et al. 1990). One possible explanation for this activity could be that the wolf 

population on the mainland is extremely high and male caribou give up more suitable 

foraging areas, along with the females, in order to occupy a safer habitat during summer.

Female caribou selection of lakeshores and islands for calving may be unique to the 

Gambrian Shield area, where lakes and associated islands are numerous (Ferguson and 

Elkie 2005). Galving sites in Manitoba (Shoesmith and Storey 1977) and Ontario 

(Bergerud 1985) often include shorelines and islands in large lakes, which are thought to 

reduce predation risk. Large lakes are not numerous in Alberta and Saskatchewan where 

woodland caribou select open fens for calving (Stuart-Smith et al. 1997). Darby and 

Pruitt (1984) found that woodland caribou in southeastern Manitoba used mature 

coniferous uplands more than any other habitat type, except during October, December, 

and January when semi-open and open bogs were used more frequently. Garibou calved 

in early May and surveillance of islands and lakeshores revealed that caribou did use 

lakes in the late spring and summer, but less than reported previously by Shoesmith and 

Storey (1977) in central Manitoba. Flillis et al. (1998) studied woodland caribou habitat 

utilization in northern Ontario using satellite telemetry and found that between June 1 and 

August 31 the common land classifications utilized were treed bogs (18.7%), mixed 

deciduous forest (16%), dense coniferous spruce forest (14.8%), shorelines (13.3%), and 

dense coniferous pine forest (10.2%). In Alberta and Saskatchewan, female woodland 

caribou selected both black spruce dominated stands and peatlands during calving and 

post-calving and throughout the rest of the year (Stuart-Smith et al. 1997). Bergerud 

(1974a) hypothesized that the calving distribution of sedentary caribou east of the Rocky 

Mountains is related to the presence of muskegs with open water at calving to reduce 

predation.

Studies have reported distinct summer and winter ranges (Edmonds 1988) and that 

female woodland caribou exhibit selectivity for specific calving and summer ranges 

(Brown et al. 1986). Nelson and Mech (1999) found that a single matriline of white

tailed deer repeatedly occupied the same summer range for over 20 years and suggested
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that matriarchal behaviour and philopatry are deep-seated genetic traits of ungulates; the 

long-term products of evolution.

This study examines the characteristics of the habitat used by caribou during the nursery 

season in 2 areas that are not directly disturbed by industrial activity. It is important to 

identify these nursery areas to ensure that adequate protection is given to these sites in 

order that they may be continually used. Disturbances caused by landscape exploitation 

surrounding Wabakimi and Woodland Caribou Provincial Parks and human 

encroachment, both outside and within the 2 study area boundaries, may prevent female 

caribou from returning to previously used calving sites on shorelines, forcing them to use 

less suitable habitats, which can lead to greater predation and reduced population 

viability. Protection of calving and nursery sites is critical for caribou due to their 

threatened status and low fecundity rate compared to other ungulate species. Caribou 

have a low reproductive potential compared to other ungulates, generally giving birth for 

the first time around 28 months of age and usually to only 1 calf a year (Bergerud 1980). 

Species at Risk (SAR) surveys in Wabakimi and Woodland Caribou Provincial Parks 

have focused on lakes because of their high recreational use by humans and their known 

importance to caribou cow-calf pairs. This thesis makes use of data obtained in 3 years 

of SAR surveys in both parks, to examine site fidelity and nursery site characteristics at 

both the fine-scale and at landscape levels. Site fidelity has been quantified as the 

percentage of animals returning to a specific range or site or the frequency distribution of 

between-year distances of animals returning to a given area (Brown and Theberge 1985). 

By identifying some of the important features of caribou nursery areas, higher protection 

can be considered in future management policies and legislation.

To address site fidelity of the threatened woodland caribou populations in both parks, I 

hypothesized that I would find traditional use of nursery areas by female caribou, not 

necessarily on the exact same nursery island but possibly on the same nursery lake, in at 

least 2 nursery seasons over the 3 years of study. Lent (1964) and Skoog (1968) were 

among the first to emphasize that annual use of calving grounds was one of the most 

consistent behavioural characteristics of caribou, and called this use “traditional”.
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Therefore, the first objeetive of this study was to determine if in fact the same female was 

using the same area for calving and nursery activity year after year. My second objective 

was to determine the characteristics o f  shoreline habitats used as calving and nursery 

areas by female woodland caribou in the 2 parks. Habitat characteristics selected at 

nursery sites have been hypothesized to reflect predator avoidance strategies (Bergerud 

1974a, 1985; Bergerud et al. 1990) and thus their protection in future management 

policies and legislation would have the greatest impact on population persistence. And 

finally, my third objective was to determine what physical characteristics caribou were 

using at a larger landscape scale (i.e., distance to closest land feature from nursery sites, 

distance to closest tly-in outpost from nursery sites). I hypothesized that caribou use 

landscapes consisting of particular interspersion of features with minimum escape 

distances in order to flee from predators.

To accomplish these objectives, 1: (1) tested site fidelity by collecting woodland caribou 

faecal samples in Wabakimi and Woodland Caribou Provincial Parks for DNA extraction 

and analysis; (2) measured detailed vegetation and other site characteristics at nursery 

sites used by cow-calf pairs in Wabakimi and Woodland Caribou Provincial Parks for 

comparison with shoreline sites that were not used, then developed and evaluated 

Resource Selection Functions (RSFs) for calving woodland caribou in each park; and (3)

1 examined differences in the interspersion of landscape features among used, unused, 

and available (random) caribou nursery sites on lakes in Woodland Caribou and 

Wabakimi Provincial Parks using a Geographic Information System (GIS).
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study Areas

Wabakimi Provincial Park

Wabakimi Provincial Park, located in northern Ontario, about 200km north of Thunder 

Bay (Figure 1) was established in 1983 at a size of 155,000ha and was expanded in 1997 

to roughly 892,000ha (Duinker et al. 1996). One of the main reasons that the park was 

expanded was to protect woodland caribou. Wabakimi Provincial Park extends from 50° 

OO’N to 51° 30’N, with the Albany River providing part of the northern boundary. From 

west to east, the Park extends fi'om 90° 30’W to 88° 30’W. The nearest community to 

the western boundary of the park is Savant Lake and the nearest community to the eastern 

boundary is Armstrong.

The Park is bounded to the east, west, and south by a number of forest management units 

(FMUs) including: Armstrong, Brightsand, Black Sturgeon (Caribou East block).

Caribou, and Ogoki. Moose guidelines for forest management (OMNR 1988) are applied 

to the Armstrong and Brightsand FMUs, while forestry guidelines for woodland caribou 

(Racey et al. 1999) are applied to the Armstrong, Caribou East, Brightsand, Caribou, and 

Ogoki FMUs.

The average July temperature in Wabakimi Provincial Park is 16°C, while the average 

January temperature is -17 to -20°C (Chapman and Thomas 1968). Total annual 

precipitation is approximately 750mm, which is considered moderate relative to other 

parts of the province, with approximately two-thirds falling from May to September 

(Chapman and Thomas 1968). Tree species include white spruce (Picea glauca), black 

spruce {Picea mariana), jack pine {Pinus banksiana), balsam fir {Abies balsamea), aspen 

{Populus tremuloides), white birch {Betula papyrifera), white pine {Pinus strobus), and 

red pine {Pinus resinosa) (Harris and Foster 2005). Mosses are a conspicuous cover over 

much of the forest floor, while patches of ground lichen {Cladina spp.) are common on 

jack pine-dominated sand flats and under open spruce stands on bedrock (Harris and 

Foster 2005). The fire regime of this ecoregion is characterized by numerous small fires 

(<l,040ha) and few large fires (>5,000ha), but most of the total area burned is in large.
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intense fires (Beverly 1998). Beverly (1998) found that the total area burned in the park 

decreased steadily from the 1930s to the 1960s, but increased in the 1990s. The 

estimated fire cycle range for Wabakimi Provincial Park ranges from 65-250 years (Ride 

et al. 2004).

The ecological site regions represented in the park are 2W-3, 3W-1, 3W-2, and 3S-4 

(Crins 2000). These ecological zones are classified according to natural features 

including landforms, soil, water, vegetation, and climate (Grins 2000).

The human activities in the park consist of 44 fly-in outposts, 4 private cottages, and 7 

private main base lodges. For backcountry camping in 2006 there were approximately 

650 visitors with a total camper night number of approximately 3,200 and half of these 

visitors went to the park in August.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9500"W 92'30’0"W Ô0-0’0"W 87=30t>"W

/ w o o d l a n d

' C A R I B O U  

I  P R O V I N C I A L  
I  PARK

a
W O O D L A N D  C A R IB O U  
C O N T IG U O U S  L IN E O F  
O C C U P A N C Y

W ABAKIM I
PR O V IN C IA L
PARK

Z

I
KENORA

SIOUX
LOOKOUT

DRYDE!

GR EENSTONE

I  FORT
FRANSES

CZr"'
THUNDER

STATE OF MINNESOTA

Figure 1. Locations of Wabakimi and Woodland Caribou Provincial Parks in relation to 
the southern limit of contiguous range occupancy of woodland caribou in northern 
Ontario (Ontario Woodland Caribou Recovery Team 2007).
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Woodland Caribou Provincial Park

Woodland Caribou Provincial Park is 450,000ha in size and is located between Red Lake 

and the Manitoba border in northwestern Ontario, about 500km northwest of Thunder 

Bay (Figure 1). The area to the north remains largely undeveloped with the exception of 

remote tourism development, although a new Forest Management Unit, the Whitefeather 

Forest, is being planned northeast of the park. The Red Lake, Whiskey Jack, and Kenora 

FMUs border it to the east and south. The moose guidelines (OMNR 1988) are applied 

to all of the Whiskey Jack and almost the entire Kenora Forests. Both the woodland 

caribou (Racey et al. 1999) and moose guidelines have been applied to the Red Lake 

Forest. Access in the Ontario portion of the study area is limited to floatplane and 3 areas 

of road access on the eastern boundary.

The average July temperature in Woodland Caribou Provincial Park is 18.4°C while the 

average January temperature is -20.4°C (OMNR 2004). Average annual precipitation is 

approximately 609mm, which is very low for Ontario (Brunton 1986). Vegetation of the 

area consists of typical boreal tree species such as jack pine, black spruce, balsam fir, and 

trembling aspen dominating upland sites, with black spruce and larch {Larix laricina) 

characterizing the wet, organic deposits commonly found in bedrock depressions (OMNR 

2004). The park is situated on a relatively flat plateau and soils are thin when present at 

all (1986). The slightly elevated position of the park has resulted in a greater than normal 

incidence of dry upland forest, so jack pine is more dominant than black spruce (Brunton 

1986). Ground lichen is dominant in older jack pine forests and a dense ground cover of 

feather moss is common in black spruce forests (Brunton 1986). This park is 

significantly affected by its proximity to the Prairie Provinces, resulting in a dry, hot 

growing season creating “boreal prairie” forests that experience a greater frequency of 

naturally occurring forest fires, in contrast with the more moist boreal forests further east 

(OMNR 2004). The wilderness landscapes of this park have been strongly influenced by 

wildfire (Harris et al. 2001). Brunton (1986) noted that most of the park had been burned 

between 1956 and 1986 and frequent and repeated bums appear to be representative of
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the area’s natural cycle of burning since deglaciation. The estimated fire cycle range for 

Woodland Caribou Provincial Park ranges from 40-110 years (Ride et al. 2004).

The human activities in the park consist of 15 fly-in outposts, 16 private cottages, and 4 

private main base lodges. For backcountry camping in 2006 there were approximately 

725 visitors with a total camper night number of approximately 4,700 with no pattern to 

the most camper nights in any particular summer month.
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Chapter 1. Nursery Site Fidelity of Woodland Caribou in Northern Ontario
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Introduction

Many species of birds and mammals are faithful to their natal and breeding sites 

(Greenwood 1980). Primates are often faithful to territories or home ranges and 

boundaries between adjacent individuals or groups can be stable for long periods 

(Greenwood 1980). The reuse of suitable habitat that has previously led to successful 

breeding can reduce the costs of searching and relocation (Greenwood 1980). Using a 

familiar site involves less risk than using an unknown site that may prove to be 

unfavourable (Welch 2000). The consequences may be particularly detrimental if 

specific features are needed to meet important life history requirements such as breeding 

and parturition (Welch 2000). Therefore, preservation of habitat used for parturition can 

have important conservation implications for the productivity of a population (Welch 

2000).

For caribou with limited suitable range, habitat displacement, or loss thereof, could result 

in higher mortality rates due to increased predation risk and poorer forage quality 

(Webster 1997). A study in West Greenland modelling critical caribou summer ranges 

illustrated that R. t. groenlandicus were much more selective in choosing their habitat in 

July than in late summer (Tamstorf et al. 2005). Long-term displacement from a home 

range over several years (especially during the calving period) may result in increased 

mortality, decreased reproductive success, increased predation, altered habitat use, and 

decreased caribou densities (Webster 1997).

Female caribou typically exhibit strong philopatry to a particular area for calving and 

nursery activities (Brown and Theberge 1985, Gunn and Miller 1986, Fancy and Whitten 

1991). Site fidelity has been quantified as the percentage of animals returning to a 

specific range or site or the frequency distribution of between-year distances of animals 

returning to a given area (Brown and Theberge 1985).

Bergerud (1974b) suggested 3 different hypotheses to explain caribou fidelity to calving 

grounds in open habitats;

12
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1) a homing of individuals with learning and traditions involved,

2) the “funneling” or directing of movements by topographic features with caribou 

recognizing the calving ground through phylogenetic imprinting, and

3) the movement of animals from a pre-calving range in a traditional direction 

(presumably determined by imprinting), which brings them to the same general 

area each year).

Fidelity occurs in many other ungulate species such as deer and moose. Welch et al. 

(2000) suggested that calving site fidelity in moose may be related to past reproductive 

success. Testa et al. (2000) found a high directional change in female moose movements 

prior to parturition, perhaps due to a predator avoidance strategy. Testa et al. (2000) also 

reported low fidelity in female moose and a high dispersion pattern in birthing sites for 

those females that had lost a calf in the previous calving season. Moose cows in Sweden 

were found to return to the same summer range each spring and were solitary during 

these months after they dispersed over the range (Cederlund et al. 1987). Welch et al. 

(2000) found calving fidelity in moose in northwestern Ontario, with distances ranging 

from 56m-12km between sites used for calving in consecutive years. Summer fidelity 

has also been described in female black-tailed deer (Odocoileus hemionus columbianus) 

(Weckerly 1993), white-tailed deer (Tierson et al. 1985), and mule deer (Odocoileus 

hemionus hemionus) (Garrott et al. 1987).

Many studies of barren ground caribou (R. t. groenlandicus) also demonstrate the use o f 

traditional calving sites (Pare and Huot 1985). Cameron et al. (1986) found that their 

study of summer fidelity in barren-ground caribou in Alaska supported Bergerud’s 

(1974b) hypothesis #1, through “homing”, without being influenced by topography or by 

a “traditional” orientation of movement. Heard et al. (1996) also found that migratory 

barren-ground caribou cows sacrificed foraging benefits, which would have been 

available to them if they migrated as the bulls did. Female barren-ground caribou 

migrate in the spring and return to specific calving grounds in the arctic (Bergerud 

1974b). Gunn and Miller (1986) found that barren-ground caribou in the Northwest 

Territories exhibited long-term fidelity to a specific calving area, but location changes did

13
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occur. They found that the calving experience of a female and environmental pressures 

may modify her use of a previous calving ground.

Site fidelity differs among individuals and habitat shifts are also known to occur in 

calving areas, as described by Valkenburg et al. (1988). Their study involved a habitat 

shift where all caribou (R. t. granti) gathered near a retreating snowline, minimizing 

predator contact. Cameron et al. (1986) also found over 80% of the female barren- 

ground caribou returned to the same calving grounds in Alaska for at least 3 or more 

summers over a 7-year span.

Schaefer et al. (2000) proposed that site fidelity may confer reduced predation risk to 

females and their calves, although the notion has not been tested. Their study 

demonstrated that migratory woodland caribou calving fidelity disappeared when viewed 

at a smaller scale, corroborating the findings of Fancy and Whitten (1991) and Bergerud 

(1996) that females are philopatric to their traditional calving grounds but not to precise 

locations on these grounds. In contrast, the philopatry pattern of sedentary woodland 

caribou persisted across all scales, indicating consistent site fidelity from calving to 

breeding periods (Schaefer et al. 2000). The sedentary woodland caribou distributed 

south of the tree line also make directional movements in the spring to return to specific 

calving locations (Brown and Theberge 1985, Edmonds 1988, Fuller and Keith 1981). 

Brown et al. (1986) found that individuals in 4 woodland caribou herds in Quebec 

showed site fidelity over a 3-year period and were widely dispersed at calving. Poole et 

al. (2000) found that 3 out of 9 caribou calved within 1.1km of their previous calving site; 

all the others were within 9km. Brown and Theberge (1985) found that woodland 

caribou in Central Labrador used the same calving area (within 10km of the previous 

calving area) 63 -  68% of the time in the course of 3 seasons.

Ferguson and Elkie (2004) found that there was a long distance movement spike by 

woodland caribou females a week prior to June 1, followed by 3 days of little movement, 

suggesting a mean calving date of June 1. The most dispersion of females occurred 

during calving, while the smallest seasonal range was occupied and a strong fidelity to
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calving areas occurred in contrast to the highly variable year-to-year location of winter 

ranges (Ferguson and Elkie 2004). Group size, movements, and spatial distribution 

suggested individual female caribou may be spreading out or distancing themselves from 

conspecifics in summer to reduce predation risk (Ferguson and Elkie 2004). Ferguson et 

al. (1998) found greater linearity of female caribou travel routes in early spring and 

autumn, suggesting more directed movements to particular habitats.

Conservation ecology is increasingly adapting genetic analysis to complement and 

enhance the knowledge of wildlife population dynamics (Hedrick and Miller 1992). This 

is critical to the study of endangered animal populations, which necessitate less invasive 

approaches to gather information. A non-invasive approach to study site fidelity is to 

examine animal movements through DNA analysis of faecal pellets. Faecal samples 

include cells that are shed from the intestinal lining and contain DNA that can be 

extracted (Flagstad et al. 1999). Both mitochondrial and nuclear DNA can be gathered 

from these samples (Ball 2002). Mitochondrial DNA is useful in determining direct 

genetic lineages, since it is maternally inherited and enables differentiation of populations 

based on maternal lineages, as well as determination of female movement among wildlife 

populations (Kocher et al. 1989). Nuclear DNA analysis using microsatellite markers 

enables researchers to obtain information on specific individual movements, sex, and 

parentage, as well as to assess genetic diversity through quantification of allele 

polymorphisms (the number of different alleles within a population) (Hedrick and Miller 

1992). Microsatellite DNA allows the measurement of variation within and among 

caribou populations and can be used to distinguish separate populations at the genetic 

level (Kushny et al. 1996, Zittlau et al. 2000).

This study used caribou faecal samples obtained from Wabakimi and Woodland Caribou 

Provincial Parks from 2001-2003 during site fidelity and metapopulation studies. I 

hypothesized that I would find traditional use of nursery areas by female caribou, not 

necessarily on the exact same nursery island, but possibly on the same nursery lake, in at 

least 2 nursery seasons over the 3 years of study.
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Methods

Field Collection Protocol

Faecal samples were collected in the freshest possible form, which was determined from 

the moistness of the mucosal coating of the pellets. These pellets were collected when 

they were encountered on transects that were walked in summer to identify nursery sign 

(Chapter 2). Samples were only collected from faecal piles and not collected if dispersed 

over a wide area, in order to not compromise the individuality of the sample through 

contamination. A different pair of latex gloves was used each time to collect each 

sample. Eight to 10 pellets were collected from each site and placed into plastic tubes. 

These tubes were immediately placed next to cold packs to prevent DNA degradation, but 

in high summer heat this storing method was not optimal. Samples were kept as cold as 

possible until they were returned from the field and frozen until shipping to the Natural 

Resources DNA Profiling and Forensic Centre (NRDPFC) at Trent University, 

Peterborough, Ontario.

Laboratory Protocol

DNA extraction from faecal pellets was performed utilizing a pellet wash modified from 

Flagstad et al. (1999). All eluted samples were stored frozen. To determine successful 

extraction of caribou DNA, the control region of the mitochondrial DNA (mtDNA) was 

amplified. MtDNA control region amplified product for each sample was loaded onto a 

1.5% agarose gel stained with ethidium bromide. Samples showing positive 

mitochondrial amplification were chosen for nuclear microsatellite amplification. All 

samples exhibiting successful microsatellite amplification through agarose 

electrophoresis were submitted for genotyping using an automated fluorescent unit. Once 

the individuality of each sample was confirmed through genotyping, those samples were 

selected for sequencing of the mtDNA control region. Each sample was then given a 

numerical haplotype designation according to the results and the frequencies of the 

different haplotypes were then derived within each region and compared. Detailed 

laboratory methodology is provided in Appendix 1.
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Results 

Field Results

A total of 137 faecal samples were collected tliroughout the 3 summers of study in both 

parks. In Wabakimi Provincial Park the numbers of samples collected were as follows 

for each study year: 9 (2001), 30 (2002), 28 (2003). In Woodland Caribou Provincial 

Park the numbers of samples collected were as follows for the study years: 5 (2001), 37 

(2002), 28 (2003).

Laboratory Results 

Microsatellite Analysis

Genotypes with at least 3 of 5 loci (Rt6, Rt9, Map2c, BM4513, and RT30) were chosen 

for this analysis. However, due to low sample sizes, additional optimization was required 

to provide sufficient amplification for complete individual identification. In the end, the 

total number of individuals used for microsatellite analysis was 29. Confirmed genotypes 

for each of the samples showed that all samples were from different individuals.

Mitochondrial DNA Control Region Analysis

The mitochondrial control region analysis for all 29 individuals produced only 21 

samples with high quality sequence DNA. Successful amplification was achieved for 

mitochondrial DNA in 11 samples from Woodland Caribou Provincial Park and 10 from 

Wabakimi Provincial Park. Analysis of the sequences derived from these samples 

showed that there were a total of 7 different haplotypes in the 2 parks. Sample sizes were 

low, but there were enough samples to provide sufficient data to examine structure and 

dispersal between these areas. Examination of haplotype occurrence in each of the 

regions showed that one haplotype was shared among individuals in Woodland Caribou 

and Wabakimi Provincial Parks. When the study lakes inside and outside of the parks 

were grouped into 6 broad regions, 2 haplotypes were shared between individuals in the 

Woodland Caribou Provincial Park region and the Wabakimi Provincial Park region.
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Discussion 

Technical Considerations

The quality of faecal samples is of critical importance to DNA profiling and the fresher 

the sample the better the DNA extraction (Ball and Wilson 2004). The DNA is from 

cells in the film of mucous covering the faecal sample and not within the faecal matter 

itself (Ball and Wilson 2004). The mucosal coating is vulnerable to many environmental 

variables such as rain, heat, and UV radiation, which can remove this layer or cause 

severe degradation of its DNA (Flagstad et al. 1999). Summer-collected samples are 

problematic due to environmental conditions that may rapidly degrade DNA on faecal 

pellets. Logistically, it is much more difficult to collect fresh faecal samples in the 

summer than in winter because of the need to keep the samples ice cold while sampling 

in remote areas. Furthermore, the summer diet of carihou also changes the consistency of 

faecal pellets, making them more likely to break during the DNA extraction process, 

compromising later procedures. Through the DNA collections in both protected areas 

and a collaborative project with Manitoba and the NRDPFC at Trent University, it has 

been determined that the optimal sampling time for faecal collections occurs during the 

mid-winter months (January-February) (Morrill et al. 2005). During this time, faeces 

quickly freeze on being deposited, thereby preserving the mucosal coat of the pellet and 

permitting high quality/quantity DNA extraction. Winter-collected faeces are superior to 

summer collections for successful amplification of mitochondrial and nuclear DNA 

(Morrill et al. 2005).

Since the dispersion of individual female caribou is greatest in the calving season 

(Ferguson and Elkie 2004), a study that concentrates on one lake at a time could include 

pellets from the same individual several times, thereby compromising the possibility of 

identifying the numbers of females using each lake and establishing the level of 

philopatry. Funding was the greatest constraint in this study and optimally one would 

randomly select areas throughout both parks to survey and then re-survey with a large 

buffer around first-collection sites. Brown and Theberge (1985) suggested that woodland 

caribou demonstrated site fidelity when calving 10km from the calving location the year
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before. Thus, one would have to re-survey with a buffer of at least 10km from the last 

calving location and systematically survey many sites within that buffer area.

The low success in amplifying nuclear DNA from summer-collected faecal samples 

places some limitations on our ability to individualize each sample (Morrill et al. 2005). 

Without this information, frequency data regarding mtDNA haplotypes risk becoming 

over-inflated due to multiple sampling from the same individual (Ball and Wilson 2004). 

However, the use of critical movement thresholds to determine sample individuality is 

currently being assessed (Ball and Wilson 2004). This premise would work under the 

assumption that females and their calves are not pre-disposed to move long distances 

post-calving and will remain in a relatively small area (Ball and Wilson 2004). If such is 

the case, then there is the potential to exclude samples of identical haplotype as being 

from the same individual if the spatial distance between collection sites exceeds a 

predetermined movement threshold (Ball and Wilson 2004). Using this premise, the 

mitochondrial sequence data could be utilized for site fidelity analysis, minimizing 

sampling bias for multiple sampling of an individual (Ball and Wilson 2004). An 

effective strategy to confidently determine confidence limits for this spatial threshold is 

being developed (Ball and Wilson 2004). More recent methodology (Ball et al. 2007) 

also has more DNA markers and may be used to successfully extract micro satellite DNA 

from summer collected samples, so the samples collected in this study should be re

analyzed in the near future.

Site Fidelity

The mitochondrial DNA (mtDNA) analyses suggest that there is genetic differentiation of 

caribou between Woodland Caribou and Wabakimi Provincial Parks (Ball and Wilson 

2004). These differences suggest that caribou within these areas are exhibiting female 

philopatry in the nursery period (Ball and Wilson 2004). The haplotype frequency data 

suggests that the study areas are exhibiting concentrations of maternal haplotypes that are 

not shared across the region. As mtDNA is maternally inherited in caribou (Avise 1995), 

these data indicate that females of specific mtDNA lineages are not exhibiting dispersal 

events between Wabakimi and Woodland Caribou Provincial Parks separated by
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approximately 300km. One common haplotyi^e was found in individual samples in 

Woodland Caribou and Wabakimi Provincial Parks (Ball and Wilson 2004). Males carry 

mtDNA haplotypes from their maternal lineage, but these are not inherited by their 

offspring (Avise 1995). Any sharing of haplotypes between the 2 parks is therefore 

likely due to male dispersal, as males have higher rates of movement from May to 

November compared to females (Ferguson and Elkie 2004); however, gender could not 

be determined from the summer-collected samples in my study so this hypothesis could 

not be confirmed. In any event, these findings suggest that there is a level of philopatry 

by females to the nursery-grounds, that these herds are not isolated, and that male 

dispersal events are taking place between the 2 parks (Ball and Wilson 2004). To 

confirm female philopatry within caribou populations, it is necessary to determine the 

gender of these samples (Ball and Wilson 2004). By determining the gender of samples, 

we would be better able to assess the structure and movement of caribou among regions 

(Ball and Wilson 2004). Currently, the only available method to determine the gender of 

DNA samples involves the use of a large sex chromosome marker (ZFX-ZFY, 

approximately 950 base pairs) (Shaw et al. 2003), which is unsuitable for samples with 

degraded DNA. In any case, due to limitations in response to the condition of DNA 

extracted from summer samples, we need to determine if genetic differences are due to 

population structuring or calving ground philopatric behaviour (Ball and Wilson 2004). 

For clarification it will be critical to obtain information from nuclear DNA markers in 

order to determine the frne-scale structure of caribou populations in northern Ontario, 

through analyses of microsatellite loci (Ball and Wilson 2004). Ball et al. (2007) 

document that winter-collected caribou faecal samples have the same quality of DNA as 

those collected using invasive methods such as blood, tissue, and bone samples. This 

method also allows a greater collection of samples as compared to commonly used 

methods such as radio collaring. Future studies could also examine reproductive 

hormones in faecal samples and attempt to relate pregnancy rates to rearing success of 

calves. Thus, I recommend future sampling should concentrate on winter collections 

from each of the caribou herds in northern Ontario (Ball and Wilson 2004). In response 

to the high success of genetic analyses from winter-collected faecal samples from 

elsewhere in Ontario and Manitoba (Morrill et al. 2005), it is hoped that extensive winter
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sampling in Ontario will provide enough genetic material to thoroughly investigate the 

population structure of woodland caribou at various scales using both mtDNA markers as 

well as numerous microsatellite loci (Ball and Wilson 2004). Furthermore, success in 

obtaining reliable microsatellite genotypes and gender identification from winter- 

collected samples indicates this approach could be used for monitoring genetic diversity, 

dispersal patterns, and population size estimates through mark-recapture surveys (Ball 

and Wilson 2004).

Since both parks have high recreational use in the summer months, it is important to 

manage these nursery areas appropriately. The DNA results did not prove that an exact 

lake was being used for 2 summers by the same female caribou; however, Wabakimi 

Provincial Park had an extremely high rate (95%) of nursery site re-use over 2 summers 

based on field observations (Morrill et al. 2005). Woodland Caribou Provincial Park 

only had a nursery site re-use percentage of 33% based on field observations (Morrill et 

al. 2005). Morrill et al. (2005) speculated that this difference may be attributed to 

nursery sites being more available in Woodland Caribou Provincial Park than Wabakimi 

Provincial Park and that a female has more options from year to year. This repeated 

nursery use in both parks suggests that these sites are providing important summer habitat 

during this critical calving and nursery period for this threatened species. These re-used 

nursery sites provide important information for park management and should be 

protected as sensitive values. If the re-used nursery sites have some similar features, 

potential calving and nursery areas in both parks can be identified and protected.
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Chapter 2. Habitat Characteristics of Woodland Caribou Nursery Sites in Northern

Ontario
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Introduction

Site-attribute studies differ from use-availability studies in that they measure a multitude 

of habitat-related variables at specific sites and attempt to identify the variables that best 

characterize sites that are used most often by a particular animal species for a specific 

activity (Garshelis 2000). According to Garshelis (2000), site-attribute studies may 

include evaluating breeding territories, drumming sites, roosting sites, feeding sites, 

calving and nursery sites, food storage sites, resting sites, wintering sites, recolonization 

sites, and shelters. The statistical approach most often used in these studies is 

Discriminant Function Analysis (DFA) with logistic regression as an alternative 

(Garshelis 2000). With this design, the dependent variable is not the amount of use but 

simply whether sites are used or unused (Garshelis 2000). Site attribute studies often 

focus on sites of biological importance and may provide more direct insights into habitat 

variables that affect fitness based on the assumption that used sites are in suitable habitats 

and that unused sites are in unsuitable habitats (Garshelis 2000).

McLellan (1986) argued that observed use is a better indicator of habitat selection than 

use relative to availability. He reasoned that an animal familiar with its home range 

knows the availability and location of resources, so an animal’s location at any given 

moment represents selection, which would improve fitness.

Fitness certainly was enhanced for a herd of caribou in Ontario that spent most of its time 

on an island (Ferguson et al. 1988). The nearby mainland had higher-quality forage, but 

also a high density of wolves. Ferguson et al. (1988) found that the island occupants 

sacrificed nutrition, which is reflected in smaller body and antler size as well as 

starvation of their calves, for overall higher survival, which enabled this population to 

persist while herds that remained on the mainland perished from predation.

Predation is the chief limiting factor in the survival of cervid neonates in systems that still 

have natural predators (Bergerud and Elliot 1986) and wild ungulates are most vulnerable 

to predation during their first few months of life (White et al. 1972, Tingle 2000). Thus,
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features of ungulate calving and nursery areas could play an important role in the 

continuance of a species.

Maternal cows should take actions to reduce the success rates of wolves and bears in 

encountering, detecting, and killing calves (Bergerud and Page 1987). The characteristics 

of being close to the water and dense vegetation could provide escape once a calf is 

spotted by a predator; the calf may drop down out of sight and take a hiding position, 

keeping the head low to the ground and remaining motionless (Fitzgibbon 1990).

Reduced movement would reduce encounters with mobile predators if an appropriate 

initial location was chosen that minimized encounters with predators (Bergerud and Page 

1987y

Moose calving site habitat selection studies have produced highly variable results 

(Addison et al. 1990, Welch et al. 2000). Leptich and Gilbert (1986) found that cow 

moose in northern Maine seeking secluded areas, selected peninsulas and islands close to 

the shoreline. Wilton and Gamer (1991) found that moose calving sites were not always 

situated on the highest point of an island or peninsula, but often on a knoll approaching 

the highest point, which provided easy escape in all directions and easy detection of 

predators. Wilton and Gamer’s (1991) study suggests islands were the preferred choice 

in comparison to peninsulas, if water is a deterrent to predators. Addison et al. (1990) 

surveyed islands and peninsulas for moose calving sites and found that all but 2 calving 

sites occurred on hills. In a mechanical manipulative habitat study, Bowyer et al. (2001) 

found that female moose in Alaska used fewer optimal foraging sites by choosing sites 

with more concealment cover. Protective cover inhibits prey detection, facilitates escape, 

and reduces the capture efficiency of visually oriented predators for matemal moose 

(White and Berger 2001). There are variations in these findings, however, and predators 

can use lateral cover to avoid being detected by prey (Moreno et al. 1996). This same 

lateral cover may also obstmct the flight escape of the prey (Lima 1992).

Mortality rates appear to be greater in areas where woodland caribou calve in forested 

habitats in close proximity to predators and moose (Seip 1992, Seip and Cichowski
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1996). Caribou populations with calving sites in alpine areas, islands, and rugged 

mountains experience lower mortality and are generally stable or increasing (Seip, 1992, 

Seip and Cichowski 1996). The density of caribou populations in British Columbia 

appears to be related to their ability to become spatially separated from predators during 

the summer months (Seip 1992, Seip and Cichowski 1996). Seip et al. (1996) found that 

it was common for about 40% of adult females that were pregnant to lose their calves by 

the end of the calving period.

Frid (1999) suggests that due to the risk of predation, Andean deer (Hippocamelus 

bisulcus) utilize higher rocky slopes instead of valley-bottom habitats. Similarly, 

woodland caribou in British Columbia go to higher elevations to avoid predators, 

increase predator-searching time, and increase distance from alternative prey (i.e., moose) 

(Bergerud and Page 1987, Poole et al. 2000). Ouellet et al. (1996) found that the 

woodland caribou of Gaspé also used higher elevations during calving and distanced 

themselves from alternative prey (moose and white-tailed deer) and reduced predation by 

coyotes and black bears. Bergerud and Butler (1984) found that caribou cow-calf pairs 

that moved to valley bottoms in June suffered greater mortality from wolf and bear 

predation than those that stayed at high elevations. Barten et al. (2001) found that only 

female caribou with a calf moved to higher elevations where there were fewer predators 

and forage quality was comparably lower; the use of this habitat was not for forage but 

probably to reduce the chance of an encounter with a predator. As well, higher elevation 

with analogous terrain and snow patches that is similar in colour to caribou may provide 

cryptic background, making it easier to escape detection by a predator (Barten et al.

2001). Barten et al. (2001) suggest that a female caribou that lost her calf would leave 

the higher elevation for a lower site.

Ferguson and Elkie (2005) found that previous research in Ontario has led resource 

managers there to assume that summer woodland caribou habitat use primarily consists of 

lakeshores and islands, and fens secondarily, during calving (parturition and early 

lactation). The use of shorelines in summer also appears to be an effective anti-predator 

calving strategy where animals can avoid predators by using islands and peninsulas, or
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seek water in escape flights (Bergerud 1985, Gumming and Beange 1987, Ferguson et al. 

1988). Bergerud (1985) and Ferguson et al. (1988) found that female woodland caribou 

at Pukaskwa National Park and Neys Provincial Park used islands during the calving 

season. Bergerud (1974a) hypothesized that a relic herd would survive in an area with 

moose and wolves only if there were escape features in the habitat to provide protection 

against wolves during calving time in the summer. Similarly, Ferguson et al. (1988) 

found that the remnant population of woodland caribou on Pic Island in Lake Superior 

persisted on this island due to reduced predation, at the cost of a reduced variety and 

phytomass of forage. Predator simulation studies using dog chases on Pic Island showed 

caribou generally followed the shoreline, running into the water or up a steep slope, 

suggesting that females with calves select safe habitats such as shorelines and hills on this 

island in the summer months (Ferguson et al. 1988).

The objective of this chapter is to describe fine-scale habitat characteristics of woodland 

caribou nursery sites on lake habitat used by cow-calf pairs in Wabakimi and Woodland 

Caribou Provincial Parks that might be useful in future studies to evaluate predictors of 

potential calving and/or nursery areas. Comparisons are made between the high use areas 

of nursery sites and “absence” sites. Absence sites in this study are defined as areas with 

no evidence of use by caribou. Habitat characteristics determined at nursery sites are 

theorized to reflect some of the predator avoidance strategies discussed above.
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Methods

Pre-stratification

Survey areas were first selected based on previous MNR summer caribou calving and 

nursery surveys. A range of additional data sources were also used to assist in the 

identification of sites including: (1) habitat that was recorded as having calving potential; 

(2) moose and caribou population survey information; and (3) previous caribou sighting 

reports from owners and guests of outpost cabins in the parks. All of the caribou 

information was recorded on maps and survey areas were selected in order of priority 

based on the total number of previous sightings. Lakes were further prioritized according 

to calving potential (where calving potential = total number of sightings of calves/total 

number of human visits to the site). The number of islands and peninsulas on each lake, 

the reliability of information, and access and development impacts were also taken into 

consideration.

Survey Methodology

Previous studies suggest calves are bom between the last week of May and first week of 

June (Bergemd 1975, Ferguson and Elkie 2004). To limit the potential effects of human 

disturbance on the behaviour of calving caribou or physical dismption of nursery sites 

(e.g., by walking systematic transects, using motorboats, canoeing), surveys started in the 

middle of June each year and most finished by the end of July. All surveys were a week 

long to allow for access time and bad weather. The survey methodology was consistent 

for each survey. Canoes were used on all surveys except when safety and time 

considerations were important, in which case motorboats were used. Each member of the 

crew was able to distinguish caribou tracks and pellet groups from those of other 

ungulates.

The methodology for this survey followed the “Identification of Woodland Caribou 

Calving and Nursery Sites” from MNR’s Selected Wildlife and Habitat Features: 

Inventory Manual (Timmermann 1998). Along the shorelines of lakes and islands larger 

than 500m in width or length, 100m-transects perpendicular to the shoreline were set
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every l-2km and surveyed for physical evidence of use (Timmermann 1998). Islands 

less than 500m in width or length were surveyed for nursery sites by walking transects, 

set perpendicular to the shoreline at Ikm-intervals, across the entire island. Island and 

mainland transects were re-surveyed in subsequent years to determine whether or not 

nursery sites were used in the second and third year of the study. Absence sites were then 

identified as transects that were surveyed in at least 2 consecutive years without finding 

any physical evidence of caribou activity. Caribou sign included adult/calf tracks, 

adult/calf beds, hair, pellets, shed antlers, and tree rubs. Any tracks (cow-calf), calf 

pellets, calf hair found in beds, or shed female antlers were classed as nursery habitat 

(areas being occupied by cow-calf pairs during the summer months). When tracks were 

found in moss or lichen, they were followed, noting any additional sign. Most sand 

beaches were surveyed due to the easy identification of tracks and freshness. Most 

beaches were submerged due to the high water level on all trips in 2002 in Wabakimi 

Provincial Park. All locations of caribou sign were recorded using a GPS unit (Garmin, 

eTrex, Olathe, Kansas, USA). Lichens were also noted, to establish the potential for 

winter use. Pellet counts (faecal droppings) can be used to determine preferred habitat 

types and seasonal use patterns (Neff 1968). Fresh pellets were collected along transects 

and immediately placed next to cold packs to prevent DNA degradation and to keep them 

as cold as possible until they were returned from the field and frozen up to 3 weeks until 

they were sent on dry ice in a cooler to the NRDPFC at Trent University (Peterborough, 

Ontario) for DNA analysis (Chapter 1).

Six lakes had nursery sign along island and mainland shorelines in 2001 and 2002 in 

Wabakimi Provincial Park while 16 lakes had nursery sign in these years in Woodland 

Caribou Provincial Park. Based on these previous observations of caribou cow-calf 

activity, lakes ranging in size from approximately 127ha to 1 l,050ha were selected for 

detailed plot study within each park; 4 lakes (approximate mean size 6,828ha) in 

Wabakimi Provincial Park and 10 lakes (approximate mean size l,193ha) in Woodland 

Caribou Provincial Park. The majority of lakes surveyed in both locations were in areas 

of high recreational use by lodges and outposts where caribou have been monitored in the 

past.
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A total of 15 previously identified nursery and 15 absence sites were surveyed for 

detailed habitat characteristies in Wabakimi Provincial Park and 15 nursery and 15 

absence sites in Woodland Caribou Provincial Park. Equal numbers of nursery sites and 

absence sites were assessed on each lake within each park; e.g., if a lake had 5 nursery 

sites then those areas were assessed along with 5 absence sites randomly chosen from 

among those identified in previous transect surveys on the same lake.

Site Measurements

Three lOm-radius vegetation plots were completed at each site (Figure 2.1). At absence 

sites, the centre of the plot began in the middle of the 100m transect that was surveyed in 

at least 2 consecutive years without finding any physical evidence of caribou activity.

The geographic coordinates and elevation of the centre point of the first plot were 

determined with a handheld GPS unit. The slope was recorded using a clinometer at plot 

eentre. The direction of “downhill” (i.e., aspect) was noted in 45-degree intervals (i.e., N, 

NE, etc.) relative to the evidence of cow-calf activity.

Each plot was divided into 4 quadrants to measure tree and shrub density and species 

composition (Figure 2.2). Table 1 (Results Seetion) provides a list of the interval-scale 

variables measured in each plot at the calving and absence sites (Leptich and Gilbert 

1986, Addison et al. 1990, Langley and Pletscher 1994, Welch 2000). The second and 

third plots were 30m from the centre point of the first plot (Figure 2.1), both at a random 

compass direction as long as there was no water and no overlap between plots. The 

centre point of the first plot was situated where the highest amount of calf sign was 

found. If no calf bed was found, then the next sign of calving activity (such as calf 

pellets or calf tracks) was used as the centre of the primary plot. The measurements from 

the 3 plots were averaged to obtain overall values for the site (Langley and Pletscher 

1994).
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Vegetation Measurements

Overstorey and understorey canopy cover were estimated oeeularly, using a 10cm x 4cm 

cardboard tube, at plot centre and at points 30m from plot centre in each of the 4 cardinal 

compass directions. These cover estimates were later averaged to obtain a single percent 

cover estimate for each plot (Welch 2002b).

w

10m

Nursery Area

30m

Figure 2.1. Schematic of the three lOm-radius sampling plots used to collect detailed 
vegetation data and other site characteristics at caribou nursery sites and randomly chosen 
absence sites on lakes in Wabakimi and Woodland Caribou Provincial Parks, northern 
Ontario.
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Figure 2.2. Schematic of detailed vegetation measurements made within lOm-radius 
sampling plots at caribou nursery sites and randomly chosen absence sites on lakes in 
Wabakimi and Woodland Caribou Provincial Parks, northern Ontario.

Ground detection distances were used as a means of quantifying the density of 

vegetation, viewed horizontally, surrounding the centre of each plot. The minimum 

distance at which an orange card measuring 0.5m wide and Im high was completely 

hidden from view to an observer moving away from plot centre along each of the 4 

cardinal compass directions was recorded at 2 heights. The observer used a Im-high pole 

to standardize the heights at which the card was viewed. This procedure was repeated 

with the bottom edge of the card on the ground, then with the card held on top of a Im- 

high pole. These measurements were used as an index of lateral detection distance at 0-
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Im and l-2m high views through the vegetation surrounding the nursery area (adapted 

from Addison et al. 1990). An average of the 4 measurements at each card height was 

used as an index of horizontal foliage density or “hiding cover”.

The total number of standing dead trees (>lm in height; >5cm dbh; and >30 degrees up 

from the plane of the ground) and the number of stumps (<lm in height) in each plot 

were recorded. Each plot was assigned a “V-type” and “S-Type” using the Forest 

Ecosystem Classification (EEC) for Northwestern Ontario (Sims et al. 1997), as well as 

an Ecosite type using Terrestrial and Wetland Eco sites of Northwestern Ontario (Racey et 

al. 1996).

The dominant species of overstorey (>5m in height and >5cm dbh) and understorey (>2m 

and <5m in height and <5cm dbh) woody vegetation (Rodgers et al. 1997) within each 

quadrant were recorded and a T-square nearest-neighbour sampling method (Hays et al. 

1981) was used to estimate density. Two plants in each category were selected for 

measurement. Using the centre point of each plot as a reference point, the distance to the 

base of the nearest woody stem or trunk was measured (Figure 2.2). The first overstorey 

or understorey plant selected was the plant nearest to plot center in each quadrant and the 

second plant was the nearest neighbour from the first plant within a 180° arc 

perpendicular to the line from plot center to the first plant. Distances from plot center to 

the base of the first plant and from the base of the first to the base of the second plant 

were used to estimate density of overstorey and understorey woody vegetation in each 

quadrant. Diameter at breast height (dbh) was recorded for overstorey trees used to 

estimate density of overstorey and understorey woody vegetation in each quadrant. 

Arboreal forage lichen was also measured on the overstorey trees by the T-square nearest 

neighbour sampling method. The amount of arboreal forage lichens on trees with a dbh 

of at least 5cm was indexed (0-5, 0 being the lowest) by estimating the amount available 

up to a height of 3m while, looking at the side o f the tree with the most lichen cover 

(adjusted from Stevenson et al. 1998 for Ontario tree species).
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The dominant species in all plots were also noted as “dominant tree species (>10m)”, 

“dominant tall shrubs/small trees (2-10m)", “dominant medium shrubs (0.5-2m)”, 

“dominant low shrubs (<0.5m)”, and “dominant herbs/graminoids”, to provide general 

cover characteristics and species composition at sites.

One 20m transect line, bisecting the centre of each plot (north-south), was used to record 

the number and species, consisting of woody vegetation >0.4m and <2m in height 

(Rodgers et al. 1997). A Im ruler was centred over the transect line (protruding 0.5m on 

each side) and the number of plants in the shrub category contacting the ruler (counting 

only the base, not the branches) by walking with it along the length of the line were 

recorded (Rodgers et al. 1997). Each species counted in this manner was recorded (some 

species such as willow, Salix spp., only to the genus level due to identification 

difficulties).

Line intercept methods (Hays et al. 1981) were also used to quantify downfalls and 

browse (herbaceous and woody shrubs). At 2m intervals along the intersecting 

(diameter) transect lines (Figure 2.2) the number of downfalls and stumps crossing the 

line were recorded, along with their height from the ground and their diameter.

Downfalls were distinguished as logs/trees >lm  in length and >5cm in diameter, lying 

horizontally along the ground or at an angle of 30 degrees or less up from the plane of the 

ground (Rodgers et al. 1997). The diameter of the log was determined at its maximum 

along its length. Total height from the ground was measured as the distance from the 

ground surface to the top of the fallen log or logs if there were several overlying layers, 

and the number of layers was recorded.

One 30 m transect was walked that started at the centre of a plot and ran in the direction 

that had the most uniform ground distribution of lichens in the area of the 3 plots. At 

every 1 m, at the tip of the right toe (2cm-spot), presence or absence of lichens was 

recorded and, if  present, the lichen species (Lance and Eastland 2000).
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Square-metre sub-plots

Four quadrats of 1-square-metre each were placed 2m from the central point along each 

of the 4 cardinal compass directions (Figure 2.2). A grid of 20cm x 20cm squares within 

the square meter plot was used to estimate percent cover (Rodgers et al. 1997). The 

dominant (most abundant) herbaceous species and woody plant species (<0.4m in height) 

were also recorded (Rodgers et al. 1997), along with an estimate of their percent cover in 

each of the square-metre plots. Percent ground cover, consisting of bare rock, gravel, 

soil/litter, wood, grass, rushes, sedges, herbs, shrubs, fems/allies, fungi, moss/liverworts, 

and lichen were estimated within each quadrat. The percent coverage data from the 

subplots were averaged for each of the 10m radius plots.

Statistical Analyses

All tests were completed using the Statistical Package for the Social Sciences (Version 

14.0, SPSS Inc., Chicago, Illinois).

Nominal Scale Data

Aspect, V-type, ES-type, S-type, dominant tree, dominant tall shrub, dominant medium 

shrub, dominant low shrub, dominant moss/lichen, dominant herbs/graminoids, dominant 

shrub from transects, arboreal lichen classes, dominant overstorey species, and dominant 

understorey species all produced nominal data that were compiled into frequency 

distributions. Species occurring with expected frequencies of <2 were combined into 

another category (Zar 1999). These frequency distributions were then compared using a 

chi-square test (Zar 1999) to examine possible differences between absence and nursery 

sites in both Wabakimi and Woodland Caribou Provincial Parks.
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Interval Scale Data

Prior to statistical analyses and model development, I examined the variance and 

normality of all interval scale variables. Log, square root, and arcsine transformations 

were performed when data were not normally distributed. I determined that the 

groundcover percent coverage variables were highly variant and could not be normalized, 

in spite of transformations. Since caribou eat opportunistically and quite broadly with 

regard to vegetation types in the summer months (Ahti and Hepburn 1967), groundcover 

variables were grouped into open (i.e., bare rock, gravel, soil/litter, wood) or vegetation 

(i.e., grass, rushes, sedges, herbs, shrubs, fems/allies, fungi, moss/liverworts, and lichen) 

groundcover categories, leaving a total of 18 interval scale variables for analysis (Table 

2 . 1).

Correlation matrices were examined to identify variables that were highly related. The 

variables for ground detection distance at the 0-lm  and l-2m level were highly 

correlated, as might be expected, but I conducted further preliminary analyses before 

deciding which of these to remove. To determine if the measured habitat variables 

differed between both study sites and if  habitat variables differed between caribou 

nursery and absence sites, I used 2-way multivariate analysis of variance (MANOVA) 

with “parks” as a blocking factor. To identify habitat variables important for 

differentiating between nursery and absence sites, a Discriminant Function Analysis 

(DFA) was used separately for each protected area after the MANOVA. A DFA was also 

used to determine if the park differences or the absence and nursery site differences 

explained most of the model variance and which habitat variables were most important in 

explaining park and absence and nursery site differences. An individual DFA for each 

park demonstrated the importance of the 0-lm  ground detection distance variable in 

Wabakimi Provincial Park to distinguish between nursery sites and unused absence sites, 

but not in Woodland Caribou Provincial Park. Thus, I removed the l-2m ground 

detection distance variable and used the remaining 17 variables in further DFA analyses.
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Principal Components Analysis was also explored as a method of interpreting the 

importance of combinations of variables at each type of site in each park. In general, 

these PCA results indicated that this data reduction technique was not useful for these 

data because the PCA did not reduce the number of variables in order to simplify further 

analysis. In the moose calving site study by Addison et al. (1990) the results were 

similar, where the PCA was found to be ineffective in reducing variables in the data set.

The results of both the MANOVA and DFA suggested there were greater differences 

between the 2 parks than between nursery and absence sites within each, so I developed 

separate Resource Selection Functions (RSFs; Boyce et al. 2002, Manly et al. 2002) for 

each park following the model selection procedure suggested by Shtatland et al. (2003). 

This procedure maximizes variable selection strengths of stepwise regression in 

predictive and exploratory studies (Menard 1995) while avoiding arbitrary alpha values 

by using an information-theoretic approach (Burnham and Anderson 1998, Vander Wal 

2004). Models were subsequently evaluated using a combination of Akaike Information 

Criteria (AIC; Bumham and Anderson 2002), Receiver Operating Characteristic curves 

(ROCs; Pearce and Ferrier 2000), and k-fold cross-validation (Fielding and Bell 1997).

Variable Reduction

Because of potential statistical biases caused by the large number of independent 

variables (18) measured relative to the sample sizes (15 nursery sites and 15 absence 

sites) in each park (Peduzzi et al. 1996), I sought to reduce the number of variables used 

for model development. Initially, data for all 18 variables were combined for nursery and 

absence sites within each park and included in multivariate linear regressions. I followed 

this with a series of steps to reduce the number of variables used in the final model 

selection procedure (Shtatland et al. 2003). This series of steps removes multicollinearity 

among independent predictors by examination of variance inflation factors (VIFs) in 

linear regression analysis, average linkages in hierarchical cluster analysis, and condition 

numbers in principal components analysis (PCA). I used 18 variables in the hierarchical 

cluster analysis to ensure that all variables were considered.
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VIFs were obtained from multivariate linear regressions of all 18 independent variables 

in each park that were subsequently related by dendrograms in hierarchical cluster 

analyses and subsequently in logistic regression models (Menard 1995, Allison 1999, 

Shtatland et al. 2003). Collinearity ean cause predietors to eompete and make the 

selection of “important” variables arbitrary. To remove potential multicollinearity, 

variables with VIFs > 2.5 that were strongly linked in dendrograms were removed from 

further analyses (Allison 1999).

To validate the non-multieollinearity assumption in the VIF approaeh, eondition numbers 

(k) were calculated using PC As (Belsley et al. 1980). The condition number is a 

measurement of the magnitude of collinearity among variables represented by the degree 

of separation between the largest and smallest eigenvalue (Williams 2005). When there 

is no collinearity, the eigenvalues, condition indices, and condition number will all equal 

1 (Williams 2005). As eollinearity among variables increases, eigenvalues and eondition 

indiees will both be greater and smaller than 1 (values elose to zero indieate 

multicollinearity) and the condition number will increase (Williams 2005). The condition 

number is equal to the square root of the largest eigenvalue (k^ax) divided by the smallest 

eigenvalue (kmm):

k = SQRT ( k m a x  /  k m in ) .

As a rule of thumb, if the condition number is less than 15 then multicollinearity among 

variables is not a concern (Williams 2005). Only subsets of variables with condition 

numbers less than 15 were used in subsequent analyses. The preceding process reduced 

the number of variables from 18 to 9. As all condition numbers for the 9 remaining 

variables in each park were less than 15, multicollinearity among variables was 

apparently removed by the VIF approach (Williams 2005) and no further variables were 

removed prior to model development and evaluation. The 9 different variables used for 

each park in model development are identified in Table 2.1.
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Automatic Model Selection Procedure

Akaike’s information criterion (AIC) is an automatic model selection procedure 

described by the equation:

AIC = -2(log-likelihood) +2K,

where K is the number of estimated parameters included in a model and the log- 

likelihood of the model reflects the overall fit of the model (Mazerolle 2004). Model 

selection using AIC essentially penalizes the addition of parameters (Mazerolle 2004). 

For small sample sizes (i.e., when n < 40), Hurvich and Tsai (1989, 1991), Burnham and 

Anderson (2002), and Shtatland et al. (2003) recommend using a corrected AIC (AICc):

AICc = -2 (log-likelihood) +2K + 2K (K+l)/(n-K-l),

where n is the sample size. Akaike’s information criterion for small sample size (AICc) 

was used to select the most parsimonious model from the subset of models with different 

combinations of predictor variables in each park. Forward stepwise selection produces a 

sequence of models beginning with the null m odel and culminating with a model that 

includes all predictor variables and maximizes the likelihood at each step (Shtatland et al. 

2003, Mazerolle 2004). AICc produces an evidence ratio identifying the most 

parsimonious of the logistic models. Evidence ratios were calculated by dividing a 

model’s Akaike weight by the largest Akaike weight in the set of possible models 

(Burnham and Anderson 1998).

Model Development and Evaluation

Predictive model development using forward conditional logistic regression and 

automatic selection procedures was applied following variable reduction (Menard 1995, 

Simonoff 2000, Shtatland et al. 2003). The data set was randomly subdivided into a 

model building subset and a model validation subset for Woodland Caribou and
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Wabakimi Provincial Parks. Two-thirds («=20) of the data from each park were 

dedicated to model development and the remaining one-third («=10) were used to 

evaluate the resulting models for each park.

Stepwise logistic regression of the 9 habitat variables associated with two-thirds of the 

caribou nursery and absence sites in each park was used to produce subsets of models 

with different combinations of predictor variables.

Akaike’s Information Criterion for small sample size (AICc) and associated evidence 

ratios were used to select the most parsimonious model from among the models with 

statistically significant coefficients produced by stepwise logistic regression (Burnham 

and Anderson 1998, 2002).

Candidate models were next evaluated using ROC curves. These curves allow evaluation 

of the predictive power of the logistic regression models and reflect how accurately and 

robustly models classify the data (Boyce et al. 2002) with k-fold cross validation 

(Fielding and Bell 1997). Before calculating the ROC curve, the discriminatory ability of 

each model was evaluated graphically by comparing the distributions of predicted 

probabilities of nursery and absence sites (Pearce and Ferrier 2000). A model with no 

discriminatory ability will produce a curve that follows a 45° line whereas ideal 

discrimination (i.e., perfect separation) is indicated by a line with a constant y value of 

1.0 (Swets 1988, Pearce and Ferrier 2000). Validation data, representing the remaining 

one-third of the caribou nursery and absence sites in each park, were substituted into their 

respective models and tested by examining the predictive probabilities of each model 

(i.e., proportions of sites correctly or incorrectly classified as nursery or absence sites).
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Results

Nominal Scale Data

Appendix 2 provides common and scientific names of all plant species recorded in the 

study. Appendix 3 provides tabular data of the frequencies and percentages of all 

nominal scale data recorded in each of the lOm-radius sample plots.

Each of the 3 sample plots at each site was classified using EEC V-types (Sims et al.

1989; Appendix 5). In comparing the V-type frequency distributions between nursery 

and absence sites within eaeh park, a chi-square test produeed a significant result for both 

Woodland Caribou Provincial Park (x ̂  -  11.193, 4 d .f, p=0.024) and for Wabakimi 

Provincial Park (%̂ =19.078, 8 d .f, p=0.014) (Figure 2.3). In Woodland Caribou 

Provincial Park the greatest differences occurred in the number of plots classified as V32 

(Jack pine -  Black spruce / Ericaceous shrub / Feathermoss) at nursery sites (46%) and 

absence site plots (13%). In Wabakimi Provincial Park the greatest differences occurred 

in the number of plots classified as V34 (Black spruce / Labrador tea / Feathermoss / 

Sphagnum) at nursery sites (27%) versus none classified as such in the absence site plots.
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Figure 2.3. Relative abundance of FEC V-types (%) in lOm-radius plots at (A) 
Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and (B) 
Wabakimi Provincial Park absence («=42) and nursery sites («=44).

The Ecosite (ES) type (Racey et al. 1996; Appendix 7) percentages recorded in each of 

the sample plots at nursery sites and absence sites are shown in Figure 2.4. In comparing 

ES-type frequency distributions between nursery and absence sites in each park, a chi- 

square test produced a non-significant result for both Woodland Caribou Provincial Park 

(%̂  = 0.51, 1 d.f., p=0.474) and for Wabakimi Provincial Park (%% = 0.462, 1 d.f., 

p=0.497).
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Figure 2.4. Relative abundance of FEC ES-types (%) in lOm-radius plots at (A) 
Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and (B) 
Wabakimi Provincial Park absence («=42) and nursery sites («=44).
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Each of the 3 sample plots at each site was classified using FEC S-types (Sims et al.

1989; Appendix 6) and the percentages are given in Figure 2.5. In comparing the 

frequency distributions of S-types between nursery and absence sites in each park, a chi- 

square test produced a significant result for Woodland Caribou Provincial Park (%% = 

7.222, 2 d.f., p=0.027) but was not significant for Wabakimi Provincial Park (%̂  = 0.484, 

2 d.f., p=0.785). In Woodland Caribou Provincial Park, the greatest difference occurred 

in the number of plots classified as SSI (discontinuous organic mat on bedrock) at 

nursery sites (21%) versus absence site plots (43%); another large difference occurred in 

the number of plots classified as SS2 (extremely shallow soil on bedrock) at nursery sites 

(61%) versus absence site plots (34%).
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Figure 2.5. Relative abundance of FEC S-types (%) in lOm-radius plots at (A) 
Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and (B) 
Wabakimi Provincial Park absence («=42) and nursery sites («=44).

Aspect was also recorded as nominal scale data (Appendix 3.4). Comparisons of the 

frequency distributions of aspects produced a non-significant chi-square result between 

nursery and absence sites in both Woodland Caribou Provincial Park (%% = 7.671, 4 d .f, 

p=0.104) and Wabakimi Provincial Park (%̂  = 5.717, 4 d .f, p = 0.221) (Figure 2.6).
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Figure 2.6. Aspect (%) of lOm-radius plots at (A) Woodland Caribou Provincial Park 
absence sites («=44) and nursery sites («=44) and (B) Wabakimi Provincial Park absence 
sites («=42) and nursery sites («=44).

A shrub transect was traversed through each plot and the percentage occurrence of each 

shrub species is shown in Figure 2.7 (and Appendix 3.7). In comparing the frequency 

distributions of shrub species between nursery sites and absence sites in each park, a chi- 

square test produced a significant result for both Woodland Caribou Provincial Park (% ^

= 203.16, 11 d.f., p<0.001) and Wabakimi Provincial Park (%%= 120.599, 10 d.f. 

p<0.001). In Woodland Caribou Provincial Park, one of the greatest differences occurred 

in the number of plots with beaked hazel at absence sites (21%) versus none in the 

nursery site plots. All shrub species were higher at absence sites, with some exceptions 

such as spruce, jack pine, and balsam fir in both parks. However, in Wabakimi 

Provincial Park, nursery sites also had slightly more white cedar/willow and green alder 

than absence sites.
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Figure 2.7. Relative abundance of shrub species (%) recorded on transects in each 10m- 
radius plot in (A) Woodland Caribou Provincial Park absence sites («=495) and nursery 
sites («=220) and (B) Wabakimi Provincial Park absence sites («=248) and nursery sites 
(«=205). The “other category” in Wabakimi Provincial Park represents saskatoon berry, 
alder-leaved buckthorn, narrow leaved meadowsweet, bog bilberry, and blueberry. « is 
the total number of individual shrubs recorded on all transects at absence or nursery sites 
in each park.
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In each plot, a nearest neighbour transect was completed for both the overstorey and 

understorey woody vegetation categories and the percentages are shown in Figure 2.8 

(and Appendices 3.8 and 3.9). In comparing the frequency distributions of overstorey 

species between nursery sites and absence sites in each park, a chi-square test produced a 

significant result for both Woodland Caribou Provincial Park (%% = 65.29, 3 d.f, 

p<0.001) and Wabakimi Provincial Park (%% = 93.62, 5 d .f, p<0.001). In Woodland 

Caribou Provincial Park, one of the greatest differences occurred in the number of plots 

with no species of woody vegetation present in the overstorey category at absence sites 

(20%) versus no species present at nursery site plots (5%). Balsam fir and black spruce 

were also the species most present in the overstorey at nursery sites (54%), but only 28% 

of absence sites. In Wabakimi Provincial Park, no species of woody vegetation were 

present in the overstorey category at 22% of absence sites and 2% of nursery sites. Black 

spruce was also the species most present in the overstorey category at nursery sites 

(81%), but only 62% of absence sites.
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Figure 2.8. Relative abundance of overstorey species recorded by nearest neighbour 
measurements (%) in each lOm-radius plot at (A) Woodland Caribou Provincial Park 
absence («=352) and nursery sites («=352) and (B) Wabakimi Provincial Park absence 
(«=336) and nursery sites («=352). « is the total number of individual overstorey trees 
recorded in all quadrants at absence or nursery sites in each park.
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In comparing the frequency distributions of understorey species between nursery sites 

and absence sites in each park, a chi-square test produced a significant result for both 

Woodland Caribou Provincial Park (%% = 95.03, 5 d.f., p<0.001) and Wabakimi 

Provincial Park (%  ̂= 77.92, 8 d .f, p<0.001) (Figure 2.9). In Woodland Caribou 

Provincial Park, one of the greatest differences occurred in the number of plots with 

spruce (white and black) in the understorey category at absence sites (39%) versus the 

nursery site plots (69%). Jack pine was also present in the understorey category density 

measurements; 1% of nursery sites and 18% of absence sites. In Wabakimi Provincial 

Park, there were also more nursery sites with spruce as the understorey species (59%) 

compared to 35% at absence sites. There were also more absence sites with no 

understorey species present (33%) compared to nursery sites (22%).
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Figure 2.9. Relative abundance of understorey species recorded by nearest neighbour 
measurements (%) in each lOm-radius plot at (A) Woodland Caribou Provincial Park 
absence («=352) and nursery sites («=352) and (B) Wabakimi Provincial Park absence 
(«=336) and nursery sites («=352). « is the total number of individual understorey trees 
recorded in all quadrants at absence or nursery sites in each park.

A chi-square test was also used to determine if there was a difference between dominant 

moss or lichen groundcover at absence sites and nursery sites within each park. Both chi- 

square tests showed results that were not significant for either Woodland Caribou 

Provincial Park (%% = 0.29, 1 d.f., p=0.5892) or Wabakimi Provincial Park (%% = 0.01, 1 

d.f., p=0.9412) (Figure 2.10). See Appendix 2 for species names of mosses and lichens 

that occurred at these sites.
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Figure 2.10. Dominant moss or lichen cover (%) in each 10-m radius plot at (A) 
Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and (B) 
Wabakimi Provincial Park absence («=42) and nursery sites («=44).

A chi-square test was used to determine if there was a difference in dominant herb- 

graminoid cover between nursery and absence sites within both parks (Appendix 3.9).

The chi-square test produced significant results for both Woodland Caribou Provincial 

Park (%2 = 22.069, 7 d.f. p=0.002) and Wabakimi Provincial Park (%%= 15.822, 5 d.f, 

p=0.007) (Figure 2.11). In Woodland Caribou Provincial Park, the greatest differences 

occurred where no herb-graminoid species were found at nursery sites (59%) compared 

to 27% of the absence sites. Mayflower was also dominant at absence sites (21%) but not 

at nursery sites. In Wabakimi Provincial Park, the greatest differences occurred where no 

herb-graminoid species were dominant at nursery sites (68%) compared to 43% of 

absence sites. Bunchberry was also present at absence sites (17%) but not at nursery 

sites.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A:

c

H
Q)

Q.

70 -1 

60 

50 

40

30

20

10

0

0W.C.P.P. absence sites 0 W.C.P.P. nursery sites

-------

1  .  , m  1 , a . .
o t h e r c l u b m o s s  c o r y d a l i s ,  f i r e w e e d  m a y f l o w e r  

s t a r f l o w e r ,  

b a n e b e t r y

g o l d t h r e a d  tw in f lo w e r

Species

B:

80 -r

70 -

60 -
4-1
Ï 50 -
o
0)0. 40 -

30 -

20 '

10 -

0 -

m W .P.P. absence sites ŒW.P.P. nursery sites

balsam  fir bunchberry c lubm oss o ther fireweed none

Species

Figure 2.11. Dominant herbs and graminoids (%) in each 10-m radius plot at (A) 
Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and (B) 
Wabakimi Provincial Park absence («=42) and nursery sites («=44). In Woodland 
Caribou Provincial Park the “other category” consisted of black fringed bindweed, 
cottongrass, bunchberry, sedges, sarsaparilla, and prince’s pine. In Wabakimi Provincial 
Park the “other category” consisted of cottongrass, cottontail, horsetail, Indian pipe, 
lady’s slipper, sarsaparilla, and northern starflower. Scientific names of plant species are 
given in Appendix 2.
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A chi-square test was used to see if there was a difference between dominant low shrub 

species at absence sites and nursery sites in each park (Appendix 3.10). Both chi-square 

tests showed results that were not significant for either Woodland Caribou Provincial 

Park (%2= 10.591, 6 d.f., p=0.102) or Wabakimi Provincial Park (%  ̂= 2.898, 3 d.f., 

p=0.408) (Figure 2.12).
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Figure 2.12. Dominant low shrubs and small trees (<0.5m) (%) in each 10-m radius plot 
at (A) Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and 
(B) Wabakimi Provincial Park absence («=42) and nursery sites («=44).

A chi-square test was used to determine if  there was a difference between dominant 

medium-sized shrub species at absence sites and nursery sites in each park (Figure 2.13; 

Appendix 3.11). The chi-square tests showed results that were significant for Woodland 

Caribou Provincial Park (%% = 24.519, 4 d.f., p<0.001) and not significant for Wabakimi 

Provincial Park (%% = 3.079, 2 d.f., p=0.215). In Woodland Caribou Provincial Park, one 

of the greatest differences between nursery and absence sites occurred in the spruce and 

jack pine category, with this grouping being present at 77% of nursery sites and 34% of 

the absence sites. The combined category, representing beaked hazel, pin cherry, prickly 

rose, blueberry, and meadowsweet, was present at 22% of absence sites but not nursery 

sites.
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Figure 2.13. Dominant medium shrubs and small trees (0.5-2m) (%) in each 10-m radius 
plot at (A) Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) 
and (B) Wabakimi Provincial Park absence («=42) and nursery sites («=44).
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A chi-square test was used to determine if there was a difference between dominant tall 

shrub species at absence sites and nursery sites in each park (Appendix 3.12). Both chi- 

square tests showed results that were significant for Woodland Caribou Provincial Park 

(%̂ = 43.869, 6 d.f., p<0.001) and Wabakimi Provincial Park (%%= 10.367, 4 d.f., 

p-0.035) (Figure 2.14). In Woodland Caribou Provincial Park one of the greatest 

differences between nursery and absence sites was the occurrence of spruce, which was 

dominant at 91% of the nursery sites but only 55% of absence sites. In Wabakimi 

Provincial Park, spruce was dominant at 86% of the nursery plots compared to 62% of 

the absence plots.
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Figure 2.14. Dominant tall shrubs and small trees (2-10m) (%) in each lOm-radius plot 
at (A) Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and 
(B) Wabakimi Provincial Park absence («=42) and nursery sites («=44). The “other 
category” in Woodland Caribou Provincial Park consisted of balsam fir, pin cherry, and 
white birch. Scientific names of plant species are given in Appendix 2.

A chi-square test was used to determine if there was a difference between dominant tree 

species at absence sites and nursery sites in each park (Appendix 3.13). Chi-square tests 

showed results that were significant for Woodland Caribou Provincial Park (x ̂  = 11.86, 3 

d .f, p=0.0079) but were not statistically significant for Wabakimi Provincial Park (%̂  = 

6.708, 3 d .f, p=0.082) (Figure 2.15). In Woodland Caribou Provincial Park, one of the 

greatest differences between nursery and absence sites occurred in the spruce and balsam 

fir grouping, which was dominant at 50% of nursery sites versus 25% of the absence
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sites. No dominant tree species were present at 14% of the absence plots but all of the 

nursery plots had some dominant tree species present.
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Figure 2.15. Dominant tree species (>10m) (%) in each lOm-radius plot at (A)
Woodland Caribou Provincial Park absence («=44) and nursery sites («=44) and (B) 
Wabakimi Provincial Park absence («=42) and nursery sites («=44).

A chi-square test was used to determine if  there was a difference between arboreal lichen 

class categories (Stevenson et al. 1998) at absence sites and nursery sites in each park 

(Appendix 3.14). Both chi-square tests showed results that were significant in Woodland 

Caribou Provincial Park (-f -  205.225, 6 d.f., p<0.001) and Wabakimi Provincial Park (%̂ 

= 97.875 6 d.f., p<0.001) (Figure 2.16). In Woodland Caribou Provineial Park, there was 

more arboreal lichen at absence sites and many nursery sites with no arboreal lichen 

present. In Wabakimi Provincial Park, there was more arboreal lichen at nursery sites 

and very few sites with no arboreal lichen present compared to absence sites.
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Figure 2.16. Relative abundance of arboreal lichen classes (%) in lOm-radius plots at
(A) Woodland Caribou Provincial Park absence (n=352) and nursery sites («=352) and
(B) Wabakimi Provincial Park absence («=336) and nursery sites («=352). « is the total 
number of individual trees sampled for arboreal lichens at absence or nursery sites in 
each park. “None” indicates there were no overstorey trees in the plot quadrant for 
measurement of arboreal lichens.

Interval Scale Data

MANOVA

The MANOVA indicated that there was a significant difference between study sites 

(F=14.23, d.f.=18, 39, p<0.001) in relation to the habitat variables eollected (Table 2.1) 

and between absence and nursery sites (F=2.04, d.f.=18, 39, p=0.031) for the 4 groups 

(i.e.. Woodland Caribou and Wabakimi nursery and absence sites). The significant 

differences between study areas indicated that nursery and absence sites should be 

analyzed separately for each park.
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Table 2.1. Means ± standard errors of interval scale variables measured in sample plots 
at caribou nursery sites and randomly chosen absence sites on lakes in Wabakimi (WPP) 
and Woodland Caribou Provincial Parks (WCPP), northern Ontario. Variables that 
showed significant differences in the MANOV A, individual park DFA results used to 
identify and determine variables most important in distinguishing nursery sites from 
absence sites, and variables used in the development and evaluation of Resource 
Selection Functions for calving caribou in each park are indicated by superscripts.

Measurement WCPP 
Absence 

sites (n=15)

WCPP Nursery 
sites (n=15)

WPP Absence 
sites (n=15)

WPP 
Nursery 

sites (n=15)
Slope^  ̂(degrees) 13.4 ±2.5 18.0 ± 1.2 6.4 ± 1.7 10.6 ±2.7
Elevation^ ^(m) 364.9 ± 94.2 364.8 ± 94.2 364.5 ± 94.1 360.9 ±93.2
# Standing Dead Trees^ 6.7 + 1.7 6.9 ± 1.8 4.5 ± 1.2 4.0 ± 1.0
# Stumps 3.1 ±0.8 3.6 ±0.9 3.0 ± 0.78 2.7 ±0.70
Ground Detection Distance^  ̂® ® 
(0-1 m)

19.5 ±5.0 21.7 ±5.6 28.0 ± 7.2 23.5 ±6.1

Ground Detection Distance 
(1-2m)

23.5 ±6.1 25.9 ±6.7 30.8 ±8.0 26.1 ±6.7

Shrub Density (stems/m^) 0.39 ±0.10 0.25 ± 0.07 0.39 ±0.10 0.22 ±0.06
Lichen Transect Occurrence^  ̂̂ 31.1 ±8.0 38.9 ± 10.0 9.6 ±2.5 20.0 ± 5.2

Open Groundcover (Rock, 
Wood, Soil/Litter) (%)

37 .0 1  ± 9 .6 18  + 4 .7 3 8 .9  ± 10 .0 2 2 .7  ± 5 .9

Vegetation Groundcover^ 
(Moss, Lichen, Herbs, Shrubs, 
Fungi, Ferns) (%)

75.5 ± 19.5 93.6 ± 24.2 77.9 ±20.1 83.0 ±21.4

# downed Irees^ 0.75 ±0.19 0.71 ±0.18 0.13 ±0.03 0.13 ±0.03
Maximum height of downfall 
(cm)

30.0 ± 7.8 27.8 ±7.18 34.2 ± 8.8 32.2 ± 8.3

Diameter of downfall (cm) 10.6 ±2.8 11.2±2.9 10.8 ±2.8 12.3 ±3.2
Overstorey Cover'  ̂(%) 19.9 ±5.1 24.9 ± 6.4 14.3 ±3.7 22.0 ± 5.7
Understorey Cover ' (%) 7.5 ± 1.9 5.1 ±1.3 3.0 ± 0.78 5.3 ± 1.4
Dbh (cm) 14.6 ±3.8 13.8 ±3.6 14.3 ±3.7 13.5 ±3,5
Overstorey Woody Vegetation 
Density' (stems/m^)

0.58 ±0.15 0.73 ±0.19 0.68 ±0.18 1.1 ±0.28

Understorey Woody Vegetation 
Density^ " ® (stems/m^)

0.87 ± 0.23 0.66 ±0.17 0.41 ±0.11 0.63 ±0.16

Variables included in Woodland Caribou Provincial Park models 
 ̂Variables included in Wabakimi Provincial Park models 
 ̂Variables that had significant differences between the two parks (M ANOVA)

* Variables that had significant differences between nursery and absence sites (M ANOVA)
 ̂Variables marked as important from DFA standardized canonical discriminant functions in Wabakimi 
Provincial Park

® Variables marked as important from D FA standardized canonical discriminant functions in Woodland 
Caribou Provincial Park
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Discriminant Function Analysis

The DFA results for all 4 groups indicated statistically significant classification of 87% 

of sites. Wilks Lambda indicated that group means differed for the first 2 discriminant 

functionsDFl (%:= 149.61, 51 d.f,p<0.001) andDF2 (%% = 52.19, 32 d.f, p=0.014). 

DFl explained 81.2 % of the total model variance for park differences and DF2 explained 

13.7 % of the total model variance in nursery and absence site differences (Figure 2.17). 

The habitat variables important in differentiating between parks were primarily the 

number of downed trees (standardized Canonical Discriminant Functions (CDF) 

coefficient = 0.952), followed by nearest neighbour measurements of understorey woody 

vegetation density (CDF = -0.855), 0-lm  ground detection distance (CDF = -0.820), and 

shrub density (CDF = 0.710) (Table 2.2). Woodland Caribou Provincial Park areas fell 

on the positive side of DFl in comparison to Wabakimi Provincial Park areas (Figure 

2.17). The habitat variables important in separating nursery areas from absence areas in 

both parks were open groundcover (CDF = 0.833), vegetation groundcover (CDF = 

0.793), 0-lm  ground detection distance (CDF = 0.779), understorey woody vegetation 

density (CDF = 0.683), and the diameter of downed trees (CDF = -0.679) (Table 2.2). 

Absence sites tended to be on the positive end of the DF2 axis in comparison to the 

nursery sites. The difference between nursery and absence sites in Wabakimi Provincial 

Park is more apparent than the differences between sites in Woodland Caribou Provincial 

Park (Figure 2.17).
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Figure 2.17. Canonical Discriminant Functions of 17 variables measured at 30 caribou 
nursery sites and 30 randomly chosen absence sites on lakes in Wabakimi and Woodland 
Caribou Provincial Parks, northern Ontario. The x-axis (DFl) indicates differences 
between the parks and the y-axis (DF2) indicates differences between caribou nursery 
and unused absence sites.
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Table 2.2. Standardized Canonical Discriminant Function Coefficients of all 4 groups 
(Woodland Caribou and Wabakimi Provincial Parks nursery and absence sites). The x- 
axis (Function 1) represents differences between the parks and the y-axis (Function 2) 
represents differences between caribou nursery and absence sites.

Measurements Function 1 Function 2
Shrub Density 0.710 -0.165
# Downed Trees 0.952 0.320
Maximum Height of Downfall -0.100 0.362
Diameter Downfall -0.080 -0,679
Overstorey Cover 0.402 -0.546
Understorey Cover -0.086 0.021
dbh -0.236 0.069
Overstorey Woody Vegetation Density -0.031 -0.377
Understorey Woody Vegetation Density -0.855 0.683
Elevation -0.087 0.155
Slope -0.068 0.226
Lichen Transect Occurrence 0.331 -0.095
# Standing Dead Trees 0.394 0.233
# Stumps -0.227 0.104
Ground Detection Distance -0.820 0.779
Vegetation Groundcover 0.119 0,793
Open Groundcover 0.132 0.833

A separate DFA for each study area was also completed. For Woodland Caribou 

Provincial Park, nursery and absence sites were classified correctly 100% of the time.

The model explained 100% of the variance with a significance value of p=0.036. Wilks 

Lambda indicated that group means differed for DFl (%% = 28.81, 17 d.f., p=0.036). The 

habitat variables that were most important in differentiating between nursery and absence 

sites were open groundcover (CDF = 1.29), the diameter of downfall (CDF = -0.975), 

lichen transect occurrence (CDF = -0.890), 0-lm  ground detection distance (CDF = 

-0.699), and overstorey woody vegetation density (CDF = -0.675) (Table 2.3). Absence 

sites fell on the positive end of the axis differentiating between absence and nursery sites.
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Table 2.3. Standardized Canonical Discriminant Function Coefficients of 17 habitat 
variables measured at nursery and absence sites on lakes in Wabakimi (WPP) and 
Woodland Caribou (WCPP) Provincial Parks.

M easurem ents W CPP W PP

Shrub Density 0.636 -1.021
#  Downed Trees 0.284 -0.449
Maximum Height o f Downfall 0.057 0.535
Diam eter Downfall -0.975 -0.956
O verstorey Cover 0.562 -0.710
Understorey Cover -0.294 0.118
dbh -0.017 0.213
O verstorey W oody Vegetation Density -0.675 -0.419
Understorey W oody Vegetation Density 0.419 1.435
Elevation 0.596 0.066
Slope -0.389 0.598
Lichen Transect Occurrence -0.890 -0.503
#  Standing Dead Trees 0.193 0.153
# Stumps -0.147 0.910
Ground Detection D istance -0.699 1.419
Vegetation G roundcover 0.031 0.800
Open G roundcover 1.292 0.663

For Wabakimi Provincial Park, nursery and absence sites were classified correctly 93% 

of the time. The model explained 100% of the variance with a significance value of 

p=0.037. Wilks Lambda indicated that group means differed for DFl (%% = 28.73, 17 

d.f., p=0.037). The habitat variables that were most important in differentiating between 

nursery and absence sites were the understorey woody vegetation density (CDF = 1.435),

0-lm  ground detection distance (CDF = 1.419), shrub density (CDF = -0.1.021), diameter 

of downfall (CDF = -0.956), and vegetation groundcover (CDF = 0.800) (Table 2.3). 

Absence sites fell on the negative end of the DFl axis in comparison to nursery sites.

Woodland Caribou Provincial Park Habitat Variable Reduction, Model Selection, 

Development, and Evaluation

The variables removed by examination of vari ance inflation factors (VIFs) in hierarchical 

cluster analysis and condition numbers from principal components analysis were the 

number of downed trees, height of downfall, dbh, understorey woody vegetation density,

1-2m ground detection distance, number o f stumps, vegetation groundcover, and number
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of standing dead trees. Lichen transect occurrence was retained because the DFA 

indicated that it was an important variable in the differentiation of absence and nursery 

sites in Woodland Caribou Provincial Park (Table 2.3). The slope category was strongly 

related to lichen transect occurrence, shrub density, and ground detection distance in the 

dendrogram, so it was not included. Ground detection distance at 0-lm and shrub 

density, as well as overstorey woody vegetation density and overstorey % cover, were 

kept in the analysis because they were important in differentiating between nursery and 

absence sites in the DFA.

Stepwise logistic regression of the remaining 9 habitat variables associated with two- 

thirds of the caribou nursery and absence sites in Woodland Caribou Provincial Park 

(Table 2.1) resulted in 3 candidate models with statistically significant coefficients 

(P<0.01) (Tables 2.4 and 2.5).

The 1-variable RSF model for calving caribou in Woodland Caribou Provincial Park, 

based on open groundcover, successfully classified caribou nursery and absence sites for 

80% of the test data (Table 2.5). The 2-variable RSF model for calving caribou in 

Woodland Caribou Provincial Park, based on open groundcover and shrub density, 

successfully classified caribou nursery and absence sites for 80% of the test data, while 

the 3-variable model, which also included overstorey canopy cover, had a 60% success 

rate. The 3-variable model for calving caribou in Woodland Caribou Provincial Park 

performed better than the 2-variable model based on the logistic regressions and ROC 

values using two-thirds (n=20) of the nursery and absence site data (Table 2.4), but the 2- 

variable model also provided good results; an R  ̂of 0.85, an 85% correct classification 

rate, and an area under the ROC curve of 0.98. The 2-variable model also performed 

exceptionally well in the preceding model development stage, with an area under the 

ROC curve of 0.98, p<0.001, 95% Cl (0.929-1.031), and by adding 1 additional variable 

the area under the curve only increased 2% to a ROC value of 1.0. In addition, given the 

small sample size relative to the number of variables in the models, the 3-variable model 

may overparameterize the data. Thus, I suggest the 2-variable model (Table 2.4) may 

best represent the RSF of calving caribou in Woodland Caribou Provincial Park.
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Table 2.4. Candidate Resource Selection Function (RSFs) models resulting from 
stepwise logistic regression of 9 variables associated with two-thirds (n=20) of the 
caribou nursery and randomly chosen absence sites sampled in Woodland Caribou 
Provincial Park and their evaluation by Akaike Information Criterion for small sample 
size (AICc) and Receiver Operating Characteristic curves (ROCs).

Model
Variables in 
Model

-2log
likelihood

Nagelkerke 
R Square

%
Correct AICc

AICc
Evidence
Ratio

Area Under 
ROC Curve

1 Open
Groundcover

16.878 0.56 65 41.256 >10 0.85

2 Open
Groundcover, 
Shrub Density

7.597 0.85 85 25.861 >10 0.98

3 Open
Groudcover, 
Shrub Density, 
Overstorey 
Cover

2.45E-06 1.00 100 14.286 1 1.00

Table 2.5. Predictive probabilities (i.e., proportions of sites correctly or incorrectly 
classified) of candidate Resource Selection Function (RSFs) models (Table 2.4) based on 
one-third (n=10) of the data from caribou nursery and randomly chosen absence sites 
sampled in Woodland Caribou Provincial Park.

Model
Variables in 
Model

Percent
Correctly
Predicted
Absence

Percent 
False Positives 
Absence

Percent
Correctly
Predicted
Presence

Percent 
False Positives 
Presence

1 Open
Groundcover

80 20 80 20

2 Open
Groundcover, 
Shrub Density

80 20 80 20

3 Open
Groundcover, 
Shrub Density, 
Overstorey 
Cover

60 40 60 40
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Wabakimi Provincial Park Habitat Variable Reduction, Model Selection, 

Development, and Evaluation

Following examination of VIFs, linkages, and condition numbers, the variables used to 

develop resource selection functions (RSFs) were lichen transect occurrence, vegetation 

groundcover, diameter of downfall, overstorey cover, understorey woody vegetation 

density, elevation, and slope. Shrub density and ground detection distance at 0-1 m were 

included in the model as well, because both were indicated as important in the DFA.

Stepwise logistic regression of the remaining 9 habitat variables associated with two- 

thirds of the caribou nursery and absence sites in Wabakimi Provincial Park (Table 2.1) 

resulted in 3 candidate models with statistically significant coefficients (P<0.01) (Tables 

2.6 and 2.7).

The 1-variable RSF model for calving caribou in Wabakimi Provincial Park, based on 

density of understorey woody vegetation, successfully classified caribou nursery and 

absence sites for 60% of the test data (Table 2.7). The 2-variable RSF model for calving 

caribou in Wabakimi Provincial Park, based on density of understorey woody vegetation 

and ground detection distance at 0-lm, successfully classified caribou nursery and 

absence sites for 80% of the test data, while the 3-variable model, which also included 

vegetation groundcover, had a 60% success rate. Although the 3-variable model 

performed better than the 2-variable model based on the logistic regressions and ROC 

values using two-thirds (n=20) of the nursery and absence site data (Table 2.6), the 2- 

variable model had an R  ̂of 0.74, a 90% correct classification rate, and an area under the 

ROC curve of 0.96. The 2-variable model also performed exceptionally well in the 

preceding model development stage, with an area under the ROC curve of 0.96, p=0.001, 

95 % Cl (0.883-1.037), and by adding 1 additional variable (groundcover vegetation) the 

area under the ROC curve increased by only 4% to a ROC value of 1.0 (Table 2.6). As 

with the Woodland Caribou Provincial Park models, given the small sample size relative 

to the number of variables in the models, the 3-variable model may overparameterize the
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data. Thus, I suggest the 2-variable model (Table 2.6) may best represent the RSF of 

calving caribou in Wabakimi Provincial Park.

Table 2.6. Candidate Resource Selection Function (RSFs) models resulting from 
stepwise logistic regression of 9 variables associated with two-thirds (n=20) of the 
caribou nursery and randomly chosen absence sites sampled in Wabakimi Provincial Park 
and their evaluation by Akaike Information Criterion for small sample size (AICc) and 
Receiver Operating Characteristic curves (ROCs).

Variables in 
Model Model

-2log Nagelkerke %
likelihood R Square Correct A ICc

Area 
AICc Under
Evidence ROC 
Ratio Curve

1 Understorey 
W oody 
Vegetation 
Density

2 Understorey 
W oody 
Vegetation 
Density,
Ground 
Detection 
D istance (0-1 m)

3 Understorey 
W oody 
Vegetation 
Density,
Ground 
Detection 
Distance (0-1 m). 
Vegetation 
Groundcover

20.777 0.39

11.389 0.74

75 49.055 >10

90 33.444 >10

0.80

0.96

1.52E-06 1.00 100 14.286 1 1.00
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Table 2.7. Predictive probabilities (i.e., proportions of sites correctly or incorrectly 
classified) of candidate Resource Selection Function (RSFs) models (Table 2.6) based on 
one-third (n=10) of the data from caribou nursery and randomly ehosen absenee sites 
sampled in Wabakimi Provincial Park.

Percent Correctly Percent Percent
Predicted False Correctly

Variables in Absence Positives Predicted
Model Absence Presence
Understorey
W oody
Vegetation
Density

60 40 60

Percent False
Positives
Presence

"40

Understorey 80
W oody 
Vegetation 
Density,
Ground 
Detection 
D istance (0-1 m)

Understorey 60
W oody 
Vegetation 
Density,
Ground 
Detection 
Distance (0- 
1m),
Vegetation
G roundcover

20 80 20

40 60 40
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Discussion

In Woodland Caribou Provincial Park the slope, lichen occurrence, and number of 

standing and downed trees were higher, while ground detection distances at 0-lm  were 

lower, than absence and nursery sites in Wabakimi Provincial Park (Table 2.1). These 

small-scale differences between the parks are likely the result of large-scale geographic 

variation in weather, topography, soil productivity, and dominant vegetation across the 2 

different ecoregions in which they are situated (Hills 1959, Crins and Uhlig 2000); 

Woodland Caribou Provincial Park falls in more of a “boreal prairie” area being on the 

east Manitoba border and Wabakimi Provincial Park falls in more of a “true boreal” 

region in north-central Ontario). Although not statistically different, the density of 

overstorey trees and canopy cover were higher at nursery sites than unused absence sites 

in both Woodland Caribou and Wabakimi Provincial Parks, suggesting selection of 

nursery sites in older-growth forests of both ecoregions.

Many of the characteristics associated with caribou nursery sites in Wabakimi and 

Woodland Caribou Provincial Parks, particularly those associated with older-growth 

forests and identified for inclusion in 2-variable RSFs, were related to forage abundance 

and possible predator avoidance strategies. In Wabakimi Provincial Park, density of 

understorey woody vegetation and ground detection distance at 0-lm  were the 2 most 

important variables differentiating between nursery sites and randomly chosen absence 

sites. The density of understorey woody vegetation was higher at nursery sites than 

absence sites (Table 2.1), although unused absence sites were generally in shrub rich 

areas while nursery sites were in old growth areas of spruce (Figures 2.7, 2.9, and 2.15). 

Due to differences in deciduous versus coniferous growth forms, particularly foliage 

density, ground detection distances at 0-lm  were higher at absence sites than nursery 

sites in Wabakimi Provincial Park. Nursery sites were predominantly in the V34 or V32 

FEC types, dominated by black spruce and jack pine, whereas absence sites were mainly 

found in the mixedwood categories in both parks, with the exception of V30 in Woodland 

Caribou Provincial Park (Figure 2.3). Deciduous tree species such as white birch and 

trembling aspen were noted more often at absence sites than nursery sites. In both parks,
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nursery sites had higher densities of mature trees and lower shrub densities than unused 

absence sites, providing potentially greater sensory detection of approaching predators.

As well, higher vegetative groundcover, including greater lichen abundance, was found at 

nursery sites compared to absence sites in the 2 parks. All of these characteristics suggest 

female caribou in both parks were selecting nursery sites that may reduce predation risk 

while providing abundant forage (Gustine et al. 2006). These results are consistent with 

Stuart-Smith et al. (1997) and Lantin et al. (2003) who found spruce dominated stands to 

be associated with caribou calf presence in Québec, Saskatchewan, and Alberta. Use of 

conifer forests for calving may provide reduced risk of predation due to lower moose and, 

hence, wolf densities (Ferguson and Elkie 2004).

Lent (1974) described the “hiding” and “following” responses of ungulate neonates as 

anti-predator strategies and Fitzgibbon (1990) described the tactics used by woodland 

caribou to be those of a “follower”. In dense vegetation, a caribou calf may drop down 

out of sight and take a prone position, keeping the head low to the ground and remaining 

motionless if  spotted by a predator (Fitzgibbon 1990). Upon closer approach by a 

predator, the caribou cow may take flight and the calf follows closely, rather than 

attempting to remain hidden in the vegetation as is the typical hiding behaviour of other 

ungulates such as white-tailed deer (Odocoileus virginianus) (Lesage et al. 2002).

Caribou nursery site selection and response to predators is thus more similar to that of 

moose (Alces alces). Bowyer et al. (1999) identified greater forage, a southeasterly 

aspect, and better visibility as being the key variables at Alaskan moose birth sites. 

Although I did not find any relationship between aspect and nursery site selection, greater 

forage availability and visibility were also important to caribou as previous studies have 

found for other ungulate calving sites (Bowyer et al. 2001). Food in the summer months 

for caribou often consists of forbs, shrubs, fungi, grasses, and sedges (Darby and Pruitt 

1984), but lichens, even though they have lower nutritional value, may also comprise a 

high proportion of their diet (Ahti and Hepburn 1967). As vegetative ground cover, 

including greater lichen abundance, was found at nursery sites compared to absence sites 

in the 2 parks, it does not appear that earibou necessarily trade off forage availability for

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



greater concealment cover, but they may be willing to accept lower forage quality (i.e., 

lichens rather than other summer foods) in exchange for a reduction in predation risk.

Bergerud (1985) and Ferguson et al. (1988) suggested woodland caribou maternal eows 

should take actions to reduce the success rates of wolves and bears in encountering, 

detecting, and capturing calves by reducing movement and using shorelines with slopes, 

especially on islands, such as those in Pukaskwa National Park and Neys Provincial Park. 

Although not statistically significant, the higher slopes at caribou nursery sites than 

absence sites in both Wabakimi and Woodland Caribou Provincial Parks are consistent 

with this strategy. The higher slope at nursery sites may help caribou detect oncoming 

predators more easily and facilitate escape. Similarly, Wilton and Gamer (1991) found 

that moose calving sites were most often situated at high points and on knolls, on islands, 

and Addison et al. (1990) determined these were usually within 200m of water. These 

locations may minimize encounters with mobile predators as they will require more 

energy to get to islands and slopes will further increase their searching time for females 

with calves (Bergerud 1985).

This study provides a preliminary basis for identifying caribou nursery sites both outside 

and within protected area boundaries across northern Ontario. A logical next step for this 

work is the development of a first generation spatial model from the predictors 

established in this study. This model can then be validated and field tested to determine 

the utility of the model as a management tool for further application in both parks and 

Forest Management Units north of the southern limit of contiguous range occupancy for 

woodland caribou in northern Ontario (Figure 1). Although logistically challenging, 

future studies should attempt to identify a larger number of nursery sites for assessment, 

but I do not suggest that all variables I initially collected be measured. Rather, the 12 

variables used for development of models in both parks (Table 2.1), particularly those 

related to overstorey and understorey cover and woody vegetation density, groundcover, 

especially lichen abundance, shrub density, slope, and ground detection distance at 0-lm, 

may provide a more suitable starting point. As remote sensing information improves, it 

may be possible to correlate these habitat variables with satellite spectral data to decrease
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the logistic/financial problems associated with the identification of caribou nursery sites 

in remote locations, thereby improving their protection in future management policies 

and legislation. Ultimately, future studies need to relate caribou fitness to nursery site 

selection at multiple spatial scales.
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Chapter 3. Landscape Characteristics of Woodland Caribou Nursery Sites in

Northern Ontario
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Introduction

Understanding space-use patterns of highly mobile animals relative to the hierarchy of 

limiting factors that affect individual fitness is required to conserve animals such as 

woodland caribou (Allen and Starr 1982, Ferguson and Elkie 2005). Habitat selection 

can be examined on both a coarse and fine scale (Holling 1992), and these scales of 

selection are important for wide-ranging animals such as woodland caribou that have 

evolved space-use strategies to minimize predation, as discussed in earlier chapters.

As discussed earlier in this thesis, calving sites often include shorelines and islands in 

large lakes, which are thought to reduce predation risk. Ferguson and Elkie (2005) found 

that females that were first radio-collared in either winter or summer were both as likely 

to be found on lakes or islands to calve in the following summer and that there was no 

difference in the probability of female caribou using shoreline sites on lakes or islands to 

calve relative to latitude. Ferguson and Elkie (2005) also found that male and female 

caribou used habitat differently in the summer. Females used habitat on medium-sized 

islands (10 -  lOOha) compared to male locations, which were less likely to be found on 

lakes and generally in areas with less water. The overall mean island size used by 

females was smaller than available (30ha versus 200ha). Ferguson and Elkie (2005) also 

found that female caribou secondarily used fens for calving and that there was no 

significant difference between the use of treed or open fens.

Wabakimi Provincial Park in northern Ontario has a concentration of large lakes with 

convoluted shorelines and numerous islands that may offer many actual and potential 

calving sites and summer habitat (Timmermann 1998). Bergerud (1989) reported that 

Gumming (1982) had found no summer use of islands less than 9.9ha in size on one 

particular lake but did find summer use on islands less than 9.9ha in size on 2 other lakes 

in Wabakimi Provincial Park. Gumming (1982) found that simply walking across islands 

provided a very good means of determining summer use by resident caribou. Gumming 

(unpublished report) found that woodland caribou in Wabakimi Provincial Park were
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widely dispersed in the summer, possibly as an anti-predator technique. Islands were 

used more than mainland shorelines for calving (Gumming, unpublished report).

Some studies have shown the use of islands by caribou to avoid bears and wolves 

(Bergerud and Butler 1984, Gumming and Beange 1987). Gumming and Beange (1987) 

reported use of beaches and conifer-covered islands on Lake Nipigon and on 1 lake in 

Wabakimi Provincial Park. They found that the islands in use were from 0.5 to l,550ha 

in size (from a total range of 0.3 to 7,190ha), although they did oversample islands 

between 10 and 25ha and undersample very small and very large islands. Both caribou 

and moose seemed to prefer islands 25-75ha in size and avoided those less than 5ha in 

size. Garibou sign showed more clumping of island use than would be expected by 

chance; however, measurements of all islands (those islands used and those not used) 

showed a more uniform spacing than that expected by chance. It appeared that the 

caribou chose islands clustered together but evenly spaced apart, which could be another 

escape strategy because caribou are good swimmers and could retreat to a neighbouring 

island fairly quickly if  a predator was encountered.

Human activities within caribou range, which do not necessarily destroy habitat, may still 

result in a functional loss of usable space because of disturbance and the resulting 

displacement of caribou (Webster 1997). Relatively isolated areas caribou live in, such 

as parks, may make them more responsive to human disturbance, eliciting a high stress 

response (Webster 1997). Ungulate response to human-related harassment may result in 

anything from a slight increase in vigilance to panicked flight, with equally variable 

consequences for the animal (Jakimchuk 1980, Schideler et al 1986). Garibou and other 

ungulates perceive humans as predators and because of this, pedestrian approaches elicit 

greater cardiac and behavioural responses than mechanical stimuli (Eckstein et al. 1979, 

MacArthur et al. 1982, Freddy et al. 1986, Simpson 1987, Anderson et al. 1996). 

Documented cases of ungulate response to humans on foot primarily concern active 

avoidance and a corresponding increase in energy expenditure (Richens and Lavigne 

1978, Eckstein et al. 1979, Ferguson and Keith 1982, Freddy et al. 1986). Freddy et al. 

(1986) found that deer ran longer and further when disturbed by people on foot in
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comparison to snowmobiles. Two possible reasons to explain this response are the 

relatively silent approach and sudden appearance of pedestrians (Webster 1997). The 

closer a stimulus is to an ungulate before triggering a flight response, the longer the flight 

distance and time for heart rate to return to normal (Anderson et al. 1996). Subtle noises 

that caribou are unable to pinpoint are more likely to be associated with predators than 

steady state noises from mechanical stimuli (Jakimchuk 1980). Kuck et al. (1985) 

concluded that elk responded more strongly to direct human harassment than to simulated 

mine noises (100 decibels). The disturbed cow-calf pairs tended to use random selections 

of habitats, used larger areas, moved greater distances, and more readily abandoned the 

calf rearing area. This abandonment of a calving ground is unusual for elk, as they show 

strong fidelity to calving grounds, similar to caribou.

A study by Nellemann et al. (2000) examined winter foraging behaviour and distances to 

one tourist resort of reindeer (R. t. tarandus) in Rondane National Park in Norway. 

Caribou cow-calf pairs, apparently sensitive to disturbance, located themselves 15-25km 

from the resort as compared to males and yearlings who were 5-10km from the resort. 

Avoidance in the 0-5km distances to a resort reflected an approximate critical tolerance 

distance to cabins, independent of human activity. This displacement most likely resulted 

in an underuse of areas close to resorts and an overuse of undisturbed areas. Vegetation 

data did suggest that overgrazing may be occurring as a result of redistribution of caribou 

away from the tourist resort (Nellemann et al. 2000), which could have long-term 

consequences for the population.

Disturbance from human activity in Woodland Caribou and Wabakimi Provincial Parks 

may occur in a number a ways; from campsites, shorelunch areas, motor boats, aircraft, 

and fishing outposts. Webster (1997) examined the effects of human-related harassment 

on woodland caribou in British Columbia and defined “harassment” as a specific human 

activity resulting in the altering of an animal’s behaviour that could potentially increase 

energy expenditure or risk of injury. Geist (1975) states that during harassment, 

regulatory systems require additional energy that would normally be allocated to growth, 

maintenance, or reproduction and the excitation temporally doubles the energy required
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for maintenance by increasing metabolism about 25%. Repeated harassment could 

therefore result in reduced growth rates, poor body condition, and decreased reproductive 

rates that may in turn increase caribou adult and calf mortality (Webster 1997). Caribou 

are most sensitive to harassment and additional stress during the calving period, and may 

suffer the most serious consequence if  displaced at that time (Webster 1997).

The objective of this chapter is to describe landscape scale characteristics of woodland 

caribou nursery sites on lake habitat used by cow-calf pairs in Wabakimi and Woodland 

Caribou Provincial Parks. Based on previous studies, I hypothesized that calving caribou 

in both parks would select nursery sites primarily on islands that consist of a cluster of 

land features within short distances in order to escape predators and human disturbance. 

Comparisons are made between nursery and absence sites and random points in each 

park. Landscape characteristics are theorized to reflect some of the predator avoidance 

strategies discussed earlier. These landscape characteristics may be helpful in future 

studies to evaluate predictors of potential calving and/or nursery areas.
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Methods

All absence and nursery sites identified over the 3 years of study in both parks were used 

in this investigation. There were a total of 870 absence sites and 94 nursery sites initially 

identified from surveys in Woodland Caribou Provincial Park and a total of 164 absence 

sites and 39 nursery sites initially identified from surveys in Wabakimi Provincial Park. 

See survey methodology in Chapter 2 for details of site identification.

GIS Analysis

Geographic co-ordinates of all sites were brought into the ArcMap 8.3 Geographic 

Information System (GIS) and assigned to landcover classes in Landcover 2000. 

Landcover 2000 (Spectranalysis 2004) is a remotely sensed coverage that was produced 

from satellite imagery collected during 1999-2002 to produce a data set composed of 

25m-grid cells, each classified into 1 of 27 different landcover classes consisting of 

vegetation types (such as forest, wetlands, and agricultural crops or pasture) and 

categories of non-vegetated surface areas (such as water bodies, bedrock outcrops, or 

settlements). To compare the availability of landcover classes in areas that were searched 

for evidence of caribou nursery activity to the availability of these classes at the 

landscape scale within each park, buffered areas were delineated along the shorelines of 

lakes and islands that were surveyed. The buffered areas included the first 100m of 

mainland shoreline, all islands less than 500m either in length or width, as well as the 

first 100m of shoreline on all islands over 500m in length or width. Random points were 

then created within the buffered areas of each park with a Random Point Generator 

(Version 13; Jenness 2005). Initially, the number of random points generated was equal 

to 5 times the number of absence and nursery sites identified in each park. For each park, 

I compared the frequency distributions of random points among Landcover 2000 

categories in buffered areas to the distribution of classified 25m-grid cells in buffered 

areas. If the random points in buffered areas did not represent the frequency distribution 

of available Landcover 2000 categories based on 25m-grid cells in the buffers, then more 

random points were added until there was no statistically significant difference (chi-
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square) between landcover classes represented by random points in buffered areas and 

25m-grid cells within buffered areas. In the end, there were 7,935 random points within 

buffered areas in Woodland Caribou Provincial Park and 3,886 random points within 

buffered areas in Wabakimi Provincial Park.

To determine the landscape feature types used by calving caribou in addition to islands 

and the mainland, I selected all peninsulas on the mainland and islands larger than lOha 

in size within the surveyed areas of each park. A peninsula was defined as a landmass 

that projected from the shore with > 1 length to 1 width of base ratio. The minimum 1:1 

ratio ensured that the landmass was a definite visual protrusion on the shorelines of the 

mainland and islands. Peninsulas were then subdivided into size categories. The “small” 

category for peninsulas included those peninsulas 0.1-5ha in size while the “large 

peninsula” category was anything larger than 5ha. Two scales were used to delineate the 

peninsulas in Woodland Caribou and Wabakimi Provincial Parks; T. 10,000 and 1:24,000, 

creating 2 datasets for peninsulas in both parks. Simply stated, the 1:10,000 scale had 

more detailed features and the 1:24,000 had less detailed features.

A Nearest Feature Tool (Jenness 2001) in Arc View 3.2 was used to examine minimum 

distances from initial points (nursery sites, absence sites, and random points within 

buffered areas) to the edge of the closest landscape feature (i.e., island, peninsula, or 

mainland) (Figure 3.1). If the distance was larger than 1km radius from an initial point, 

the distance was not used because I assumed that landscape features within a 1km radius 

of nursery sites are most important to cow-calf pairs during the nursery period and 

Ferguson and Elkie (2004) found that caribou did not move more than approximately 

1km a day during the summer season. The closest land edge feature had a unique ID in 

the GIS attribute table, so I was able to identify individual mainland peninsulas (small 

and large), island peninsulas (small and large), islands, and mainland as unique feature 

types. Minimum distances were measured 3 times from each initial point, whether it was 

a random point within the buffered areas, nursery, or absence site, to establish the first 3 

minimum escape distances and 3 closest feature types. The distance to the first feature 

and the average of the first 3 distances from each point or site were used in the analyses.
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Measurements and analyses were performed at both scales (1:10,000 and 1:24,000) of 

delineation in each park. However, I have reported only the “broad” scale (1:10,000) 

results since there were no significant differences in findings using the 2 scales.

To examine the potential effects of human activity on calving caribou, the closest 

distance, to a maximum of 35km, was measured from nursery, absence, and random 

points within the buffered areas to the closest fishing outpost in each park, regardless o f 

whether the outpost occurred on the same lake as the nursery and absence sites. The 

study lakes were much smaller in size in Woodland Caribou Provincial Park in 

comparison to Wabakimi Provincial Park, necessitating a maximum distance of 35km for 

comparing the closest fishing outpost between parks. This restriction left 7,907 random 

points within buffered areas, 93 nursery, and 870 absence measurements in Woodland 

Caribou Provincial Park and 3,880 random points within buffered areas, 39 nursery, and 

164 absence measurements in Wabakimi Provincial Park. I did not consider intensity o f 

use of each fly-in outpost in this study.

Lai^e Peninsula

Random Point

Main Land

Figure 3.1. Examples of minimum escape distance measurements from random points in 
buffered survey areas to closest land features using the Nearest Feature Tool (Jenness 
2001) in ArcView 3.2 GIS.
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Statistical Analysis 

Nominal Scale Data

All Landcover 2000 measurements produeed nominal data that were compiled into 

frequency distributions. I compared the frequency distributions among Landcover 2000 

categories of random points within buffered areas, absenee sites, and nursery sites using a 

chi-square statistical analysis. Points that fell in the water, cuts, regenerating depletion, 

clouds, and “other” (undefined) categories were not included. This removal left 6,002 

random, 24 nursery, and 189 absence sites in Woodland Caribou Provincial Park and 

2,650 random, 19 nursery, and 74 absence sites in Wabakimi Provincial Park. Nursery 

and absence sites were mostly reduced due to these sites falling on land but being 

misclassified as water due to their close proximity to water; each grid cell (i.e., pixel) was 

25m by 25m and a site that fell 15m from the water’s edge was most likely classified as 

water. Fen and bog categories were grouped together. According to Field (2005), all 

expected counts should be >1 and no more than 20% of the expected counts should be <5 

when dealing with larger chi-square tables. Bums, fens/bogs, and bedrock categories 

were used in the chi-square tests as long as they did not violate these restrictions.

Nominal data occurring with expected frequencies <2 were combined into a single 

category (Zar 1999).

A chi-square test was also used to compare the frequency of landscape feature types used 

by calving caribou at nursery sites with absence sites and random points within the 

buffered areas in each park. The same rule of thumb regarding expected eounts (Field 

2005) was used in these chi-square tests as for the preceding comparisons of landcover 

classes.

Interval Scale Data

I tested the assumption of normality of all interval scale data. Log, square root, and 

arcsine transformations were performed when these data were not normally distributed. 

All tests were completed using the Statistical Package for the Social Sciences (Version 

14.0, SPSS Inc., Chicago, Illinois).
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The average of the first 3 closest distances and the first closest feature distance alone 

were compared among absence, nursery, and random points within the buffered areas in 

separate t-tests; mean distances from nursery and absences sites were compared to the 

mean distance from random points in each park with 1-sample t-tests and comparisons 

between nursery and absence sites were made with 2-sample t-tests.

Distances from all nursery, absence, and random points within the buffered areas to fly-in 

outpost camps were examined using a non-parametric Kolmogorov-Smimov test of 

normality and Levene’s test for homogeneity of variance. The data violated both of these 

assumptions required for ANOVA, even after data transformation, so I chose a non- 

parametric Kruskal-Wallis test to analyze the untransformed fly-in outpost distance data, 

followed hy a Mann-Whitney U test to compare each pair of conditions in a non- 

parametric post hoc procedure: nursery versus random sites, nursery versus absence sites, 

and absence versus random sites, with the effect size for each comparison as outlined by 

Field (2005).
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Results

General Landscape Characteristics 

Wabakimi Provincial Park

In Wabakimi Provincial Park, the average size of lakes was 32.2ha (range ± s.d.; 0.01-

11.049.7 ± 357.4ha) with an average perimeter of 3,079.3m (8.1- 747,062.1 ±

21,742.1m). The average size of the 10 lakes used for analysis in Wabakimi Provincial 

Park was 4,822ha (188.1 -  11,049.7 ± 5,580.lha) with an average perimeter of 133,564m 

(17,356.8 -  747,062.1 ± 105,883.2m). The average island size in the entire park was 

4.0ha (0.01-7,518.5 ± 102.Oha) with an average perimeter of 392.9m (17.2 -  80,708.0± 

1,646.2m). The average size of islands on lakes with nursery activity was 8.2ha (0.01 -  

7,518.5 ± 167.5) with an average perimeter of 590.6m (33.8 -  80,708.0 ± 4,453.3). The 

average island size in the study lakes was 7.Oha (0.01-7,518.5 ± 147.8ha) with an average 

perimeter o f 561.2m (33.7 -  80,708.0 ± 3,962.3m). The average large peninsula size both 

on islands and the mainland in the 10 lakes used for analysis in Wabakimi Provincial 

Park was 21.5ha (5.3-158.4 ± 21.Oha), with an average perimeter of 2,334m (1,058.1-

8.732.7 ± 1,180.1m), while the average small peninsula size both on islands and the 

mainland was l.lh a  (0.1-14.9 ± 1.3ha), with an average perimeter of 457m (134.9-

2.583.8 ±261.7ha).

Woodland Caribou Provincial Park
In Woodland Caribou Provincial Park, the average size of lakes was 39.3ha (0.02 -

3.160.8 ± 198.2ha) with an average perimeter of 3,851.0m (82.5 -  231,537.0 ± 

10,683.4m). The average size of the 83 lakes used for analysis in Woodland Caribou 

Provincial Park was 487.6ha (3.4 -  3,160.8 ± 812.3ha), with an average perimeter of 

26,898.9m (1,054.9-231,537.0 ± 32,933.5m). The average island size in the entire 

Woodland Caribou Provincial Park was 2.2ha (0.01-219.0 ± 10.4ha) with an average 

perimeter of 445.9m (27.4-12,035.8 ± 792.0m). The average size of islands on lakes with 

nursery activity was 4.6ha (0.01 -  218.0 ± 16.0) with an average perimeter of 709.5m 

(31.8 -  8,076.2 ± 1,052.5). The average island size in the study lakes was 4.4ha (0.01 -  

218.0 ± 17.Oha) with an average perimeter of 670.2m (31.8 -  12,008.3 ± 1,121.4m). The
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average large peninsula size in the 83 lakes used for analysis in Woodland Caribou 

Provincial Park was 24.lha (5.2-225.6 ± 28.7ha) with an average perimeter of 2,496m 

(957.0-13,396.4 ± 1,673.4m), while the average small peninsula size was 1.2ha (0.1-4.9 ± 

l.lha) with an average perimeter of 478m (133.5-1,378.7 ± 219.5m).

Nominal Scale Data

Appendix 4 provides tabular data of the frequencies and percentages of all nominal scale 

data used in Chapter 3.

Landcover Classes 

Woodland Caribou Provincial Park
The random points generated in the buffered areas around islands and along shorelines of 

lakes studied in Woodland Caribou Provincial Park were a representative sample of the 

landcover classes available in the park (Figure 3.2A; x ̂  = 1.984, 6 d.f., p = 0.921). The 

random points in buffered areas were also distributed similarly to absence sites among 

landcover classes (Figure 3.2B; %̂  = 5.298,4 d.f., p = 0.258). Thus, the random points in 

buffered areas represented the availability of landcover types in both the park and at 

absence sites for comparisons with landcover types selected by caribou as nursery sites.

There was a significant difference in the distributions of random points and nursery sites 

among landcover classes (Figure 3.2C; %  ̂ 6.476, 2 d.f., p = 0.039). There were a

higher percentage of nursery sites (63%) than random points (42%) in the coniferous 

landcover category and a higher percentage of random points (16%) than nursery sites 

(0%) in the deciduous category. There were also more nursery sites (63%) in the 

coniferous landcover category than absence sites (35%), which were more common in the 

deciduous (18%) and sparse-mixed (48%) landcover classes than nursery sites (0% and 

38%, respectively) (Figure 3.2D; x^ = 8.991, 2 d.f., p = 0.01).
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Figure 3.2. Proportions of 25-m grid cells, random points, absence sites, and nursery sites 
classified by landcover types in Woodland Caribou Provincial Park: (A) random points within 
buffered areas («=6,002) vs. 25-m grid cells in buffered areas (« pixels =262,408); (B) random 
points («=5,783) vs. absence sites («=182); (C) random points («=5,706) vs. nursery sites («=24); 
and (D) absence sites («=179) vs. nursery sites («=24).
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Wabakimi Provincial Park

The random points generated in the buffered areas in Wabakimi Provincial Park were a 

representative sample of the landcover classes available in the park (Figure 3.3 A; =

6.179, 6 d.f., p = 0.289). Absence sites were distributed similarly to what was randomly 

found on the landscape among landcover classes (Figure 3.3B; = 3.521, 4 d.f., p =

0.475). Therefore, the random points in buffered areas represented the availability of 

landcover types in both the park and at absence sites for comparisons with landcover 

types at caribou nursery sites.

There was a not significant difference in the distributions of random points and nursery 

sites among landcover classes (Figure 3.3C; = 1.087, 2 d.f., p = 0.581) or nursery and

absence sites (Figure 3.3D; 1.540, 1 d.f, p = 0.163).
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Figure 3.3. Proportions of 25-m grid cells, random points, absence sites, and nursery 
sites classified by landcover types in Wabakimi Provincial Park: (A) random points 
within buffered areas (n==2,650) vs. 25-m grid cells in buffered areas (n pixels -167,491); 
(B) random points (n=2,518) vs. absence sites («=71); (C) random points («=2,469) vs. 
nursery sites («=19); and (D) absence sites («=68) vs. nursery sites («=19).
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Feature Analysis

Initial Point (Random points, Nursery, and Absence sites) Feature Type Analysis 

Woodland Caribou Provincial Park

The absence sites were not distributed among landscape feature types similarly to what 

was randomly found on the landscape (Figure 3.4A; = 793.596, 3 d.f., p < 0.001) in

Woodland Caribou Provincial Park. There were more absence sites on islands and less 

on the mainland in comparison to the random points. Therefore, the absence sites did not 

represent the availability of landscape feature types at random for comparison to nursery 

sites, although there was a significant difference between landscape feature types at 

absence and nursery sites (Figure 3.4C; = 22.420, 3 d.f., p < 0.001).

In Woodland Caribou Provincial Park, nursery sites were found more often on islands 

(77%) than expected from the random availability of islands on the landscape (11%) 

(Figure 3.4B; = 362.783, 2 d.f., p < 0.001). Nursery sites were also found more often

on small peninsulas on the mainland and islands (11%) relative to their availability on the 

landscape (3%). Nursery sites in this analysis occurred much less on the mainland (12%) 

than expected from the numbers of random points classified as mainland (86%).
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Figure 3.4. Proportions of random points, absence sites, and nursery sites classified by 
landscape feature types in Woodland Caribou Provincial Park: (A) random points 
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(n=81); and (C) absence sites (n=486) vs. nursery sites (n=81).
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Wabakimi Provincial Park

The absence sites were not distributed among landscape feature types similarly to what 

was randomly found on the landscape (Figure 3.5A; %  ̂= 16.763,2 d.f, p < 0.001). 

Therefore, the absence sites did not represent the availability of landscape feature types at 

random for comparison to nursery sites, although there was a significant difference 

between landscape feature types at absence and nursery sites (Figure 3.5C; % ̂  = 57.573,2 

d .f, p <  0.001).

In Wabakimi Provincial Park, nursery sites were also found more often on islands (59%) 

than expected from the random availability of islands on the landscape (23%) (Figure 

3.5B; = 57.573,2 d .f, p < 0.001). Nursery sites were again found more often on

small peninsulas on islands and the mainland (19%) relative to their availability on the 

landscape (4%). Similar to Woodland Caribou Provincial Park, nursery sites in 

Wabakimi Provincial Park occurred much less on the mainland (22%) than expected from 

the numbers of random points classified as mainland (73%).
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First Closest Feature from Initiai Points (Random Points, Nursery, and Absence 
Sites) Analysis

Woodland Caribou Provincial Park

The first closest features to absenee sites were not distributed among landscape feature 

types similarly to what was randomly found on the landscape (Figure 3.6 A; %̂  =

464.110, 3 d.f., p < 0.001). Therefore, the first closest features to absence sites did not 

represent the availability of landscape feature types at random for comparison to first 

closest features to nursery sites, although there was a significant difference between the 

first closest features to absenee and nursery sites (Figure 3.6C; (%%= 16.074, 3 d.f, p < 

0 .001).

In Woodland Caribou Provineial Park, nursery sites were often found near islands (48%) 

when examining the first feature from the initial nursery site as compared to the islands 

that were randomly available (37%) on the landseape (Figure 3.6B; %  ̂= 48.849, 2 d .f, p 

< 0.001). Nursery sites in this analysis also showed a high proportion near the mainland 

(36%) as eompared to 15% of random points near the mainland.
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Wabakimi Provincial Park

The first closest features to absence sites were not distributed among landscape feature 

types similarly to what was randomly found on the landscape (Figure 3.7A; = 96.912,

3 d.f., p < 0.001). Therefore, the first closest features to absence sites did not represent 

the availability of landscape feature types at random for comparison to first closest 

features to nursery sites. There was no significant difference between the first closest 

features to absence and nursery sites (Figure 3.7C; = 2.859, 3 d .f, p = 0.414). Sites

near peninsulas, as 1 have defined them, do not seem to be utilized in proportion to their 

availability in Wabakimi Provincial Park.

In Wabakimi Provincial Park, nursery sites were often found near islands (59%) when 

examining the first feature from the initial nursery site as compared to the islands that 

were randomly available (53%) on the landscape (Figure 3.7B; = 28.412, 2 d .f, p <

0.001). Nursery sites in this analysis also showed a high proportion near the mainland 

(21%) as compared to 4% of random points near the mainland.
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Figure 3.7. Proportions of random points, absence sites, and nursery sites classified by 
closest landscape feature types in Wabakimi Provincial Park: (A) random points 
(«=1,972) vs. absence sites («=158); (B) random points («=1,972) vs. nursery sites 
(«=39); and (C) absence sites («=158) vs. nursery sites («=39).
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Minimum Escape Distances 

Woodland Caribou Provincial Park

A 1-sample t-test showed there was a significantly smaller first minimum distance to a 

feature from absence sites in comparison to the mean distance from random points (t = - 

28.397, d.f. == 836, p < 0.001; Figure 3.8). A 1-sample t-test also showed a significantly 

smaller first minimum distance to a feature from nursery sites in comparison to the mean 

distance from random points (t = -10.120, d.f. = 93, p < 0.001). A 2-sample t-test showed 

there was no significant difference in the mean first minimum distances to a feature when 

comparing nursery and absence sites (t = -1.0, d.f. -  929, p = 0.319).
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SE = 0.03, Range = 0.0004- 
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Figure 3.8. Standard boxplots of the distance (km) to the first closest feature from 
absence sites, nursery sites, and random points in Woodland Caribou Provincial Park.
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A 1-sample t-test showed there was a significantly smaller average minimum distance to 

the first three nearest features from absence sites in comparison to the mean distance 

from random points (t = -9.018, d.f. =649, p < 0.001; Figure 3.9). A 1-sample t-test also 

showed a significantly smaller average minimum distance to the first 3 nearest features 

from nursery sites in comparison to the mean distance from random points (t = -4.867, 

d.f. =88, p < 0.001). A 2-sample t-test showed there was not a significantly smaller 

average minimum distance to the first 3 nearest features from nursery sites than absence 

sites (t = 1.82, d.f. = 737, p = 0.07).

I

3U,
0 
CL

1c
<0

Ë
JZt-
«

sc
Î
Q
0)

I

1.0

0.8

0.6

0.4

0.2

0.0

Random points (Mean = 0.47,Absence sites (Mean = Nursery sites (Mean = 0.26,
0.29, SE = 0.06,
Range = 0.02-0.9, n = 650)

SE = 0.02, Range = 0.02- 
0.9, n = 89)

SE = 0.03, Range = 0.05-1.0, 
n = 3,484)

Figure 3.9. Standard boxplots of the average distance (km) to the first 3 closest features 
fi-om absence sites, nursery sites, and random points in Woodland Caribou Provincial 
Park.
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Wabakimi Provincial Park

A  1-sample t-test showed there was a significantly smaller first minimum distance to a 

feature from absence sites in comparison to the mean distance from random points (t = - 

4.386, d.f. = 157, p < 0.001; Figure 3.10). A 1-sample t-test also showed a significantly 

smaller first minimum distance to a feature from nursery sites in comparison to the mean 

distance from random points (t = -3.140, d.f. == 38, p = 0.003). A  2-sample t-test showed 

there was no significant difference in the mean first minimum distances to a feature when 

comparing nursery and absence sites (t = - 0.27, d.f. = 92, p ^  0.79).
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Figure 3.10. Standard boxplots of the distance (km) to the first closest feature from 
absence sites, nursery sites, and random points in Wabakimi Provincial Park.
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A 1-sample t-test showed there was no significant average minimum distance to the first 

three nearest features from absence sites in comparison to the mean distance from 

random points (t == 0.905, d.f. = 126 , p = 0.367; Figure 3.11). Nor was there a significant 

average minimum distance to the first 3 nearest features from nursery sites in comparison 

to the mean distance from random points (t = -0.158, d.f. =38 , p = 0.875). A 2-sample t- 

test showed there was no significant difference in the average minimum distances to the 

first 3 nearest features when comparing nursery and absence sites (t = 0.57, d.f. = 164, p 

= 0.57).
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Figure 3.11. Standard boxplots of the average distance (km) to the first 3 closest features 
from absence sites, nursery sites, and random points in Wabakimi Provincial Park.
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Fly-in outpost Analysis

In W oodland Caribou Provincial Park, the distance from random points, absence sites, 

and nursery sites to the closest fly-in outpost were not significantly different (H (2) = 

4.38, p = 0.112) (Figure 3.12).

In Wabakimi Provincial Park, random points, absence sites, and nursery sites were 

significantly different distances from the closest fly-in outpost (Figure 3.13) (H (2) = 

10.99, p = 0.004). Maim-Whitney tests were used to follow up this finding. To ensure 

that Type 1 errors did not occur in this test, Bonferroni correction was used and resulted 

in a 0.0167 level of significance (i.e., 0.05 divided into the 3 tests: random versus 

nursery, nursery versus absence, and absence versus random). It appeared that nursery 

sites and random points (U = 53541, p = 0.002, r = - 0.050) and nursery and absence sites 

(U = 2190, p = 0.002, r = - 0.215) were significantly different distances from the closest 

fly-in outpost. According to Field’s (2005) definitions of effects in this test, the nursery 

and random site comparison represents a very small effect because r is close to 0. On the 

other hand, nursery and absence site comparisons represent a medium effect and a fairly 

substantive finding. The random and absence comparison did not show a significant 

difference in distance from the closest fly-in outpost (U = 303938, p = 0.332, r = -0.

0153). I concluded from these results that nursery sites (% = 9,059m) were further from 

the closest fly-in outpost than either random points ( v = 5,715m) or absence sites (x  = 

6,315m).
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Figure 3.12. Standard boxplots of the distance (km) to the closest fly-in outpost from 
absence sites, nursery sites, and random points in Woodland Caribou Provincial Park.
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Figure 3.13. Standard boxplots of the distance (km) to the closest fly-in outpost from 
absence sites, nursery sites, and random points in Wabakimi Provincial Park.
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Discussion

My study indicates that caribou in both Wabakimi and Woodland Caribou Provincial 

Parks use the larger of available islands for nursery activity (means of 8.2ha vs. 4.0ha and 

4.6ha vs. 2.2ha, respectively). These results are within the range reported by Camming 

and Beange (1987) who found female caribou used islands in the summer that were from 

0.5 to l,550ha in size on Lake Nipigon and on 1 lake in Wabakimi Provincial Park. 

However, their study found female caribou usually avoided islands less than 5ha in size 

whereas, in Woodland Caribou Provincial Park, I found that females used islands that had 

a mean of 4.6ha. My results are in better agreement with Ferguson and Elkie (2005) who 

found that females used medium-sized islands lO-lOOha (mean of 30ha to 200ha 

available on the landscape) compared to male locations.

In Woodland Caribou Provincial Park, it appears that nursery sites were in the coniferous 

landcover type when compared to landcover classes at absence sites and random points 

on the landscape. In Wabakimi Provincial Park, it appears that nursery sites were used in 

proportion to landcover classes available on the landscape. Ferguson and Elkie (2004) 

also found that their sample of caribou (consisting mostly of females) did not use more 

coniferous forest than available from May to July. In both parks, caribou selected 

nursery sites that minimized escape distances with islands as both the first choice for the 

actual nursery activity and islands or the mainland as an escape feature from predators.

In this study, I found that nursery sites were all significantly closer to land features as 

compared to the random points in buffered areas on the landscape in both parks. 

Generally, the closest feature from the nursery sites on islands was not another island but 

usually the mainland. In Woodland Caribou Provincial Park, nursery sites were on 

average 208m closer to the mainland and 201m closer to all land features than the 

average of the first 3 closest feature distances to random points on the landscape. In 

Wabakimi Provincial Park, nursery sites were 117m closer to the mainland and 118m 

closer to the nearest land features than the average of the first 3 closest feature distances 

to random points on the landscape.
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The fly-in outpost analysis had significant findings in Wabakimi Provincial Park, but not 

in Woodland Caribou Provincial Park. Wabakimi Provincial Park nursery sites (9,059m) 

were over 2,700m further from the closest fly-in outpost than the mean distance from the 

absence sites (6,315m) or random points (5,715m). The mean distance from the closest 

fly-in outpost to nursery sites in Woodland Caribou Provincial Park was about 10,000m. 

Although not statistically different from absenee sites or random points, the mean 

distance from the closest fly-in outpost to nursery sites in Woodland Caribou Provincial 

Park is thus remarkably similar to that in Wabakimi Provincial Park, but slightly less than 

found in the resort disturbance study by Vistnes (1999) in Norway (15-25km). This may 

suggest a critical threshold, although more research needs to be done to look at the effects 

of intensity of activity at particular fly-in outposts on caribou nursery site selection. The 

next logical step for this work would be the development of a spatial model for land 

managers to assist with Parks and Forest Management Unit planning.

In summary, calving caribou did select areas that were primarily on smaller islands that 

consist of a cluster of land features within a short distance. These clusters may facilitate 

escape from predators by acting as retreats surrounded by water. Islands also allow the 

calving caribou to detect approaching predators more readily and escape more easily than 

mainland sites.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



General Summary

Current laboratory methods were not successful in extracting DNA from summer- 

collected faeeal samples to examine site fidelity of calving female caribou. The same 

procedures, however, have proven to be successful when used with winter-collected  

faeces (Morrill et al. 2005). Nonetheless, nursery sites were used repeatedly throughout 

the study years based on cow-calf sign such as pellets, beds, and tracks (Morrill et al.

2005).

Vegetation characteristics that were important in the selection of caribou nursery sites in 

Woodland Caribou Provincial Park were groundcover vegetation and shrub density. In 

Wabakimi Provincial Park understorey vegetation density and horizontal sightability 

were critieal in distinguishing nursery from absence sites. Generally, female caribou in 

both parks selected nursery sites with greater slope, lower shrub density, but thicker 

groundcover vegetation, and higher overstorey cover than shoreline sites that were not 

used. Comparison of vegetation showed significant differences between nursery and 

absence sites for both parks in V-types, shrub and tree species, arboreal lichen classes, 

and herb/graminoid species. At the landscape scale, there were trends towards nursery 

sites with minimum escape distances of less than 220m occurring where landscape 

features were clustered and nursery sites were selected most often on islands and, 

secondarily, on both large and small peninsulas.

Further studies are required to examine the scale at which site fidelity is occurring in both 

parks. It is possible that caribou change calving sites each year to avoid predators that 

have become accustomed to their pattern of site selection (Welch et al. 2000). Mortality 

o f moose offspring was found to influence the repeated use of moose calving sites (Testa 

et al. 2000, Welch 2000). Bowyer et al. (1999) hypothesized that unpredictable 

behaviour by maternal female moose in Alaska was a key anti-predator strategy. The use 

o f coniferous classes for nursery sites in proportion to their availability in Wabakimi 

Provincial Park may indicate a trade-off between more suitable foraging and selection of 

a landscape with anti-predator features.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



One innovative way to monitor the health of caribou populations is by monitoring 

pregnancy hormone rates (Vors 2006). Studies should continue to collect genetic 

samples along with hormone analysis of female samples to detect any possible effects of 

disturbance on caribou fecundity in both of these parks. These types of analysis could 

also lead to critical, ecological threshold studies.

Further studies should also focus on ecological thresholds for both recreational and 

forestry activities within and outside park boundaries. Huggett (2005) stated that it is 

extremely difficult to identify an abrupt ecological threshold break point even with good 

quality data. He stated that there needs to be the development of statistically rigorous 

methods to identify thresholds (Huggett 2005). Huggett (2005) also suggests that there 

are potentially a wide range of different threshold responses to the same disturbance or 

land use changes that ecological processes can exhibit. Bennett and Radford (2003) 

suggest that the confounding effect of multiple variables interacting to produce a complex 

threshold response makes it difficult to identify a single casual factor. Nonetheless, given 

the threatened status of woodland caribou, these studies need to be attempted.

To avoid assumptions related to suitability in site attribute studies, such as used sites 

being suitable and unused sites being unsuitable. North and Reynolds (1996) proposed 

that instead of comparing used with unused sites, the used sites should be categorized by 

their intensity of use and compared this way with unused sites. Thus, further studies in 

these parks should attempt to also quantify intensity of use of caribou nursery sites.

The selection of caribou calving sites is most likely related to many factors such as past 

experiences, individual behaviour patterns, age, and predator avoidance strategies. At 

both the site-specific and landscape scales, it is clearly shown that caribou are seeking 

nursery areas with predator-avoidance features, such as islands. These islands act as 

landforms of seclusion, increased visibility, and reduce the risk of encountering a 

predator. Seclusion is an important predator-avoidance tactic that allows control of social 

interactions and the forming of strong bonds between cow and calf (Lent 1974).
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Seclusion provided by these islands is important in both parks during caribou calving and 

nursery periods and should be protected.

Female caribou behaved differently in each park, which is not surprising since the 2 

landscapes differ. As discussed earlier, these differences between parks are likely the 

result of large-scale geographic variation in weather, topography, soil productivity, and 

dominant vegetation across the 2 different ecoregions in which they are situated (Crins 

2000). Caribou movements and habitat selection must be well understood in each area 

and across the broader landscape with the appreciation that their behaviours and patterns 

will change or shift over time, and management must factor these differences 

appropriately.
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Management Implications

In Ontario, forest management guidelines for the conservation of woodland caribou give 

special consideration to calving areas by providing a 1,000m buffer around calving sites 

(Racey et al. 1999), when they can be identified. Given the potential for disturbance 

from attempting to directly observe parturition in calving caribou and the difficulties in 

distinguishing calving sites from postpartum nursery areas, protection should also be 

extended to nursery sites in general. Moreover, as industrial (i.e., forestry, mining, etc.) 

activities generally increase the number of roads around parks and protected areas, 

allowing easy access for predators, roads need to be limited in number and use. A 

comprehensive road development strategy adjacent to parks and protected areas would 

also mitigate further impacts of habitat fragmentation on woodland caribou. The impact 

of recreational use on calving caribou within parks and protected areas also needs to be 

minimized. Travel and recreational use of lakes or portions of lakes, particularly near 

nursery sites that are reused by female caribou, should be restricted at least during the 

calving period. Site fidelity is an important feature for gauging the effects of human 

activity on animal movement (White and Garrott 1990). If animals do retreat from safer 

island habitat to mainland habitat that lacks predator avoidance features, this could be 

problematic, especially if  female calves return there to calve when they reach adulthood 

(Webster 1997).

Calving and nursery sites in previously unstudied areas should be identified using some 

of the techniques discussed here, such as the habitat characteristics on the ground in 

Chapter 2 and GIS-based approaches in Chapter 3, as indicators of calving or nursery use. 

This research should be ongoing and use an adaptive management approach (Moiling 

1978, Nyberg 1998). First generation spatial models should be developed from the 

predictor variables established in this study. This would enable the broad identification 

of areas that are likely to provide forest-dwelling woodland caribou calving and nursery 

areas north of the southern limit of contiguous range occupancy for woodland caribou in 

Ontario (Figure 1). These first generation spatial models should be further tested and 

validated. Following testing, second generation models should be developed and applied
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to Parks and Forest Management Units and the implications to tourism and the forestry 

industry should be discussed as new policies are advanced.

Habitat shifts do occur with regard to caribou and continued monitoring will ensure that 

management can adapt to these changes. Large nature reserve zones should be 

considered in areas with high use by female caribou for calving and nursery activity and 

have sufficient buffers to protect these areas from recreational use and industrial activity. 

In areas with higher recreational use there should be a mandatory user number reporting 

system for all fly-in outposts and lodges. Motorboats should be limited and, i f  allowed, 

limited in noise and speed. Assigned shore-lunch areas should be given to each fly-in 

outpost. Assigned camping areas should also be considered, especially during the critical 

calving and nursery period from May to August. Travel on selected lakes or areas of 

lakes should be prohibited during this sensitive period. To minimize stress by human 

disturbance, users, while in the backcountry, should stay a distance from caribou that 

does not disturb or alarm them. Further facility development on or near earibou habitats 

designated as calving and/or nursery areas should be prevented. More studies should 

inventory and monitor fen habitat as well; Ontario Parks’ research has found high use in 

remote fens in Wabakimi Provincial Park (Morrill et al. 2005). Most importantly, 

education of park users must be enhanced with regard to caribou and their lifecycle.

Canada has only recently acquired (2002) national endangered species legislation (i.e.. 

Species at Risk Legislation). Soon after, Ontario proposed a new provincial Species at 

Risk Legislative Review in 2006, which included recommendations for a new 

Endangered Species Act for Ontario. The new Endangered Species Act (Bill 184) was 

passed in Ontario on May 16, 2007. In Ontario, this act includes threatened speeies such 

as woodland caribou. It is yet to be seen whether such legislation can be used to actively 

recover species in parks. Within national and provincial parks, a new emphasis on 

“ecological integrity” strives to put protection of flora and fauna ahead of human uses 

(Canada National Parks Act 2000, Provincial Parks and Conservation Reserves Act

2006). Possible caribou calving and nursery sites should be identified and adequate 

protection must be provided to ensure the persistence of the species.
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Appendix 1

Laboratory Methods for DNA extraction 
(Ball and Wilson 2004)

The pellets were received and stored on ice for genetic analysis.

DNA extraction from faecal pellets was preformed utilizing a pellet wash modified from 
Flagstad et al. (1999). This procedure isolates epithelial cells from the mucosal outer 
layer of the pellet, increasing the amount of DNA to be extracted while at the same time 
reducing the amount of inhibitor, which is released from digested plant material. All 
faecal samples were removed from the storage vials and washed in order to isolate 
mucosal cells, which cover the outside of the faecal pellet through intestinal sloughing. 
Pellets were washed in 1ml of 0.1 M Phosphate Buffered Solution (PBS) contained in a 
50ml falcon tube. No less than 4 pellets were washed at any given time, which was 
dependent on the pellet size. Pellets were gently swirled in the PBS for 5 minutes, with 
care taken not to break the pellet. After washing, the PBS buffer was removed and placed 
into a 1.5 ml eppendorf tube. An equal volume of Ix lysis buffer was added to the wash 
solution, which did not exceed 250 pi. 125 units of proteinase K was added to each 
sample and then all were incubated at 70 C for 2 hours. All samples were extracted using 
the DNeasy tissue extraction kit and protocol issued by Qiagen. However, in order to 
concentrate the DNA from each of the samples, elutions were formed using a volume of 
30 pi. All eluted samples were stored frozen.

MtDNA Control Region Amplification

To determine successful extraction of caribou DNA, the control region of the 
mitochondrial DNA (mtDNA) was amplified (460 bp). To assess the effect of inhibitors 
that may be present in the eluted samples, mtDNA amplification was also performed 
using a 1/10 dilution to reduce any inhibitory effect. PCR amplification of the mtDNA 
control region was done in a 25 pi volume containing the following components: Ix PCR 
buffer; 2.0mM MgCl; 0.4pg/ml of bovine serum albumen; 0.2pM of each mtDNA 
control region primer H00068 and LI 5693 (Hundertmark et al. 2002); 0.2pM of each 
dinucleotide triphosphate (A, T, C, G); 1 unit of Taq polymerase (Invitrogen) and 2 pi of 
DNA template. The thermocycling protocol consisted of 95°C for 10 min, then 35 cycles 
of 94°C for 30 sec, 50°C for 30 sec and 72°C for 30 sec, then a final extension time of 
65°C for 15 minutes.

M tDNA P roduct Screening

MtDNA control region amplified product for each sample was loaded onto a 1.5% 
agarose gel stained with ethidium bromide (EtBr). EtBr is a fluorescent stain that attaches 
to double stranded DNA, enabling a researcher to view amplification product under UV 
illumination. The amplified product was electrophoresed through the agarose gel at 150 
volts for 1 hour. Samples showing positive amplification were chosen for nuclear 
microsatellite amplification.
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Figure 1.1. Amplification of mtDNA control region using agarose gel stained with 
ethidium bromide for a subset of caribou faecal samples collected in the summer of 2004.

Microsatellite Amplification

All samples having positive mtDNA amplification were tested to determine if there was 
enough genomic DNA available to be amplified using nuclear microsatellite markers. In 
faecal samples, DNA degradation is a common occurrence, thus the microsatellite loci 
chosen for amplification were of small, less than 200 base pairs (bp) in length. By doing 
so, the effects of degradation may not be so apparent, as smaller fi-agments of DNA may 
still be intact for amplification (Taberlet et al. 1999).

Currently, 5 microsatellite markers have been optimized to amplify caribou DNA (RT9, 
RT6, BM4513, Map 2C, and RT30). To test successful amplification of nuclear DNA 
each of the samples collected was amplified separately in a 20 pi volume containing the 
following components: Ix PCR buffer; 2.0mM MgCl; 0.4pg/ml of bovine serum 
albumin; 0.3pM of each of both the forward and reverse primers (Wilson et al. 1997); 
0.2pM of each dinucleotide triphosphate; 1 unit of Taq polymerase (Invitrogen) and 2 pi 
of DNA template. The thermocycling protocol for this PCR reaction consisted of 94°C 
for 5 min, then 49 cycles of 94°C for 30 sec, 56°C for 30 sec and 72°C for 30 sec, then a 
final extension time of 60°C for 45 minutes.

M icrosatellite Genotyping U sing the A B 1377

All samples exhibiting successful microsatellite amplification through agarose 
electrophoresis were submitted for genotyping using an automated fluorescent unit, ABI 
377. Spectropherograms were produced for each of the samples showing the allelic 
pattern for each of the amplified loci. From these spectropherograms, alleles were 
defined based upon size (base pairs). These were recorded for each individual sample
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and from this information sample individuality could be determined through differences 
in the allele assignments among individuals.

Mitoehondrial DNA Control Region Sequencing and Analysis

Once the individuality of each sample was confirmed through genotyping, those samples 
were selected for sequencing of the mtDNA control region. All samples were cleaned 
using QiaQuick PCR cleanup kit (Qiagen) to remove bi-products from PCR, which may 
inhibit the sequencing reaction. All samples were sequenced and those having an overall 
score of at least 92 were then imported into sequence analyzing software (BlOedit) for 
alignments and comparison. Sequence haplotypes were derived for each sample using a 
neighbour joining analysis, which grouped samples according to sequence differences. 
Each sample was then given a numerical haplotype designation according to the results 
and the frequencies of the different haplotypes were then derived within each region and 
compared.
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Appendix 2

Glossary of vegetation species measures in sample plots.

Dominant Mosses and Lichens 
Common Name
Big Red Stem 
Electric Eels 
Girgensohn’s Peat Moss 
Green Reindeer Lichen 
Grey Reindeer Lichen 
Juniper Hair-cap 
Knight’s Plume 
Northern Reindeer Lichen 
Stair-step Moss 
Woolly Coral

Scientific Name
Pleurozium schreberi 
Dicranum polysetum 
Sphagnum girgensohnii 
Cladina mitis 
Cladina rangiferina 
Polytrichum juniperinum 
Ptilium crista-castrensis 
Cladina stellaris 
Hylocomium splendens 
Stereocaulon tomentosum

Dominant Herbaceous Vegetation 
Common Name
Baneberry 
Bunchberry 
Canada Mayflower 
Cottongrass*
Fireweed
Fringed Black Bindweed
Goldthread
Ground-Pine
Indian Pipe
Blueflag
Northern Starflower 
Pale Corydalis 
Pink Lady’s Slipper 
Pink Pyrola 
Prince’s Pine
Large Round-leaved Orchid
Sarsaparilla
Sedge*
Spreading Dogbane 
Stiff Clubmoss 
Swamp Horsetail 
Twinflower 
Woodland Horsetail

Scientific Name
Actaea rubra 
Cornus canadensis 
Maianthemum canadense 
Eriophorum spp.
Epilobium angustofolium 
Polygonum cilinode 
Coptis trifolia 
Lycopodium obscurum 
Monotropa uniflora 
Iris Versicolour 
Trientalis borealis 
Corydalis sempervirens 
Cypripedium acaule 
Pyrola asarifolia 
Chimaphila umbellata 
Platanthera orbiculata 

Aralia nudicaulis 
Car ex spp.
Apocynum androsaemifolium 
Lycopodium  annotinum  
Equisetum fluviatile 
Linnaea borealis 
Equisetum sylvaticum
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Woody Vegetation from Shrub 
Common Name
Alder-leaved Buckthorn 
Ash*
Balsam Fir
Beaked Hazel
Bearberry
Black Spruce
Bog Bilberry
Bush H oneysuckle
Common Juniper
Dwarf Birch
Dwarf Raspberry
Green Alder
Jack Pine
Labrador Tea
Low Sweet Blueberry
Narrow-leafed Meadow Sweet
Pin Cherry
Prickly Wild Rose
Red-oiser Dogwood
Saskatoon
Snowberry
Speckled Alder
Sweet Gale
Tamarack
Trembling Aspen
Velvet-Leaved Blueberry
White Birch
White Cedar
White Spruce
Wild Red Raspberry
Willow*

Transects and Dominant Species chi-square tests 
Scientific Name
Rhamnus alnifolia 
Fraxinus spp.
Abies balsamea 
Corylus cornuta 
Arctostaphylos uva-ursi 
Picea mariana 
Vaccinium uliginosum 
Diervilla lonicera 
Juniperus communis 
Betula pumila 
Rubus pubescens 
Alnus viridis (crispa)
Pinus banksiana 
Ledum groenlandicum 
Vaccinium angustifolium 
Spiraea alba 
Prunus pensylvanica 
Rosa acicularis 
Cornus stolonifera 

Amelanchier alnifolia 
Gaultheria hispidula 
Alnus rugosa 
Myrica gale 
Larix laricina 
Populus tremuloides 
Vaccinium myrtilloides 
Betula papyrifera 
Thuja occidentalis 
Picea glauca 
Rubus idaeus 
Salix spp

*Not identified to species
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Appendix 3

Tabular data of all frequency distributions of nominal data recorded in sample plots 
(Chapter 2).

3.1: Frequency Table of V-types (Sims et al. 1989; Appendix 5)

V-
Type

W CPP Absence Sites W CPP Nursery S ites W PP Absence Sites W PP N ursery Sites

Frequency Percent Frequency Percent Frequency Percent Frequency Percent
4 0 0.0 0 0.0 1 2.4 1 2.3
5 0 0.0 0 0.0 2 4.8 0 0.0
11 0 0.0 0 0.0 1 2.4 0 0.0
16 0 0.0 1 2.3 0 0.0 0 0.0
17 3 6.8 0 0.0 0 0.0 0 0.0
18 3 6.8 0 0.0 1 2.4 0 0.0
19 3 6.8 0 0.0 1 2.4 0 0.0
20 0 0.0 3 6.8 9 21.4 7 15.9
22 0 0.0 0 0.0 2 4.8 0 0.0
23 0 0.0 0 0.0 1 2.4 1 2.3
25 0 0.0 0 0.0 9 21.4 4 9.1
28 0 0.0 1 2.3 0 0.0 0 0.0
29 0 0.0 1 2.3 0 0.0 0 0.0
30 26 59.1 18 40.9 5 11.9 8 18.2
31 0 0.0 0 0.0 2 4.8 0 0.0
32 6 13.7 20 45.4 2 4.8 3 6.8
33 3 6.8 0 0.0 4 9.5 4 9.1
34 0 0.0 0 0.0 0 0.0 12 27.3
35 0 0.0 0 0.0 1 2.4 3 6.8
36 0 0.0 0 0.0 0 0.0 1 2.3
37 0 0.0 0 0.0 1 2.4 0 0.0

3.2: Frequency Table of Ecosite Types (Racey et al. 1996; Appendix 7)

ES-
Type

W CPP
Sites

Absence W CPP Nursery Sites W PP
Sites

Absence W PP Nursery Sites

Frequency Percent Frequency Percent Frequency Percent Frequency Percent
12 42 95.5 43 97.7 34 81.0 38 86.4
13 0 0.0 1 2.3 1 2.3 2 4.8
14 0 0.0 0 0.0 2 4.8 0 0.0
16 2 4.5 0 0.0 0 0.0 0 0.0
22 0 0.0 0 0.0 1 2.4 0 0.0
26 0 0.0 0 0.0 0 0.0 2 4.5
27 0 0.0 0 0.0 0 0.0 1 2.3
31 0 0.0 0 0.0 3 7.1 1 2.3
36 0 0.0 0 0.0 1 2.4 0 0.0
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3.3: Frequency Table for Soil Types (Sims et al. 1989; Appendix 6)

s-
Type

W CPP Absence 
Sites

WCPP
Sites

Nursery W PP Absence Sites W PP Nursery Sites

Frequency Percent Frequency Percent Frequency Percent Frequency Percent
S1 0 0.0 0 0.0 4 9.5 1 2.3
S4 0 0.0 0 0.0 0 0.0 1 2.3
S6 0 0.0 0 0.0 0 0.0 3 7.0
S10 0 0.0 0 0.0 1 2.4 1 2.3
S S I 19 43.2 9 20.5 2 4.8 0 0.0
8 8 2 15 34.1 27 61.4 6 14.3 8 18.2
8 8 3 8 18.2 5 11.4 24 57.1 28 65.1
885 2 4.5 1 2.3 3 7.1 2 4.6
887 0 0.0 2 4.5 0 0.0 0 0.0
8 8 8 0 0.0 0 0.0 1 2.4 0 0.0
S12S 0 0.0 0 0.0 1 2.4 0 0.0

3.4: Frequency Table of Aspect

W CPP Absence Sites W CPP Nursery Sites W PP
Sites

Absence W PP Nursery Sites

Aspect Frequency Percent Frequency Percent Frequency Percent Frequency Percent
None 4 9.1 10 22.7 19 45.1 17 38.6
N 5 11.3 2 4.6 6 14.3 4 9.1
E 7 15.9 3 6.8 2 4.8 0 0.0
8 3 6.8 0 0.0 1 2.4 5 11.4
W 2 4.6 6 13.6 2 4.8 0 0.0
NW 7 15.9 9 20.5 1 2.4 4 9.1
SE 9 20.5 4 9.1 0 0.0 1 2.3
8W 3 6.8 5 11.4 6 14.3 6 13.6
NE 4 9.1 5 11.4 5 11.9 7 15.9

3.5: Frequency Table of overstorey species (from nearest neighbour measurements)

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent

balsam fir 1 0.3 9 2.6 1 0.3 20 5.7
black spruce 99 28.1 180 51.1 208 61.9 277 78.7
jack pine 160 45.5 135 38.4 15 4.5 17 4.8
none 70 9.9 18 5.1 75 22.3 6 1.7
tam arack 0 0.0 0 0.0 3 0.9 2 0.6
trem bling aspen 14 4.0 5 1.4 3 0.9 0 0.0
white  birch 8 2.3 5 1.4 17 5.1 18 5.1
white  cedar 0 0.0 0 0.0 12 3.6 3 0.9

white  spruce 0 0.0 0 0.0 1 0.3 9 2.6

w illow  spp. 0 0.0 0 0.0 1 0.3 0 0.0
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3.6: Frequency Table o f understorey species (from nearest neighbour)

WCPP Absence Sites WCPP Nursery Sites WPP Absence Sites WPP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent

balsam fir 11 3.1 13 3.7 4 1.2 16 4.6
black spruce 132 37.5 242 68.8 118 35.1 196 55.7

green alder 6 1.7 0 0.0 9 2.7 22 6.3

jack pine 62 17.8 5 1.4 1 0.3 13 3.7
none 84 23.9 68 19.3 110 32.7 79 22.4

pin cherry 2 0.6 0 0.0 0 0.0 0 0.0
saskatoon berry 0 0.0 0 0.0 1 0.3 0 0.0

speckled alder 0 0.0 0 0.0 37 11.0 0 0.0
tamarack 0 0.0 0 0.0 3 0.9 0 0.0
trembling aspen 7 2.0 1 0.3 16 4.8 0 0.0
white birch 34 9.7 17 4.8 21 6.3 6 1.7
white cedar 0 0.0 0 0.0 10 3.0 4 1.1

white spruce 4 1.1 0 0.0 0 0.0 10 2.8
willow spp. 10 2.8 6 1.7 6 1.8 6 1.7
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3.7: Frequency Table o f Shrub Species (from shrub transect)

WCPP Absence Sites WCPP Nursery Sites W PP Absence Sites WPP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent

alder-leaved buckthorn 0 0.0 0 0.0 1 0.4 1 0.5
ash spp. 4 0.8 0 0.0 0 0.0 0 0.0
balsam fir 4 0.8 3 1.4 2 0.9 17 8.3
beaked hazel 103 20.8 0 0.0 0 0.0 0 0.0

bearberry 0 0.0 0 0.0 8 3.2 0 0.0

black spruce 103 20.8 147 66.8 51 20.6 98 47.8
bog bilberry 0 0.0 0 0.0 3 1.3 0 0.0
common juniper 73 14.8 15 6.8 0 0.0 0 0.0
dwarf birch 10 2.0 0 0.0 15 6.0 7 3.4
green alder 22 4.4 0 0.0 32 12.9 9 4.4

jack pine 5 1.0 10 4.6 6 2.4 0 0.0
labrador tea 0 0.0 2 0.9 0 0.0 0 0.0
low sw eet blueberry 1 0.2 2 0.9 0 0.0 0 0.0
narrow-leaved meadowsweet 0 0.0 0 0.0 1 0.4 0 0.0
pin cherry 39 7.9 6 2.7 0 0.0 0 0.0
prickly wild rose 11 2.2 0 0.0 0 0.0 0 0.0
red-osier dogwood 10 2.0 0 0.0 0 0.0 0 0.0
saskatoon berry 20 4.0 9 4.1 4 1.6 1 0.5

speckled alder 0 0.0 0 0.0 36 14.5 35 17.7
spreading dogbane 1 0.2 0 0.0 0 0.0 0 0.0
sw eet gale 0 0.0 0 0.0 31 12.5 12 6.1
trembling aspen 12 2.4 6 2.7 37 14.9 0 0.0
white birch 41 8.3 5 2.3 15 6.0 7 3.5
white cedar 0 0.0 0 0.0 1 0.4 8 4.0

white spruce 0 0.0 0 0.0 0 0.0 2 1.0
wild red raspberry 2 0.4 5 2.3 0 0.0 0 0.0
willow spp. 34 6.9 10 4.6 5 2.0 5 2.4
velvet-leaf blueberry 0 0.0 0 0.0 0 0.0 3 1.5

3.8: Frequency Table of Dominant Moss or Lichen Cover

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP Nursery Sites

G roundcover Frequency 
m oss 34 
lichen 10

Percent Frequency 
77.2 37 
22.8 7

Percent
84.1
15.9

Frequency Percent Frequency Percent 
36 90.5 39 88.6 
4 9.5 5 11.4
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3.9: Frequency Table o f Dominant Herbs and Graminoid Species

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent
balsam fir 0 0.0 0 0.0 1 2.4 2 4.5
baneberry 0 0.0 1 2.3 0 0.0 0 0.0
bindweed 0 0.0 2 4.5 0 0.0 0 0.0
bunchberry 2 4.5 1 2.3 7 16.6 0 0.0
clubmoss 4 9.1 1 2.3 5 11.8 3 6.8
cordydalis 1 2.3 1 2.3 0 0.0 0 0.0
cottongrass 0 0.0 0 0.0 1 2.4 0 0.0
cottontail 0 0.0 0 0.0 0 0.0 1 2.3
fireweed 4 9.1 5 11.4 4 9.5 0 0.0
goldthread 5 11.40 0.0 0 0.0 0 0.0
horsetail 0 0.0 0 0.0 1 2.4 0 0.0
Indian pipe 0 0.0 0 0.0 1 2.4 5 11.4
lady's slipper 0 0.0 0 0.0 1 2.4 2 4.5
northern starflower 0 0.0 1 2.3 1 2.4 1 2.3
none 12 27.3 26 59.1 18 42.9 30 68.2
mayflower 9 20.5 0 0.0 0 0.0 0 0.0
prince ’s pine 2 4.5 1 2.3 0 0.0 0 0.0
sedge spp. 0 0.0 2 4.5 0 0.0 0 0.0
sweet gale 0 0.0 0 0.0 1 2.4 0 0.0
tw inflower 3 6.8 3 6.7 0 0.0 0 0.0

3.10: Frequency Table of Dominant Low Shrub Species

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent
balsam fir 0 0.0 1 2.3 0 0.0 4 9.1
bearberry 0 0.0 2 4.5 4 9.5 3 6.8
black spruce 7 15.9 13 29.5 6 14.3 4 9.1
blueberry 17 38.6 12 27.3 6 14.3 12 27.3
comm on juniperO 13.6 2 4.5 0 0.0 0 0.0
honeysuckle 0 0.0 0 0.0 1 2.4 0 0.0
jack  pine 0 0.0 0 0.0 2 4.7 0 0.0
labrador tea 0 0.0 1 2.3 21 50.0 21 47.7
pin cherry 1 2.3 0 0.0 0 0.0 0 0.0
prickly rose 4 9.2 0 0.0 0 0.0 0 0.0
raspberry 3 6.8 5 11.4 0 0.0 0 0.0
snowberry 0 0.0 0 0.0 1 2.4 0 0.0
none 6 13.6 8 18.2 1 2.4 0 0.0
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3.11: Frequency Table o f Dominant Medium Shrub Species

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent

alder 3 6.8 0 0.0 9 21.4 9 20.4
balsam fir 4 9.1 2 4.5 0 0.0 1 2.3
beaked hazel 2 4.5 0 0.0 0 0.0 0 0.0
blueberry 2 4.5 0 0.0 0 0.0 0 0.0
common jun iper 14 31.8 6 13.6 0 0.0 0 0.0
jack  pine 0 0.0 1 2.3 1 2.4 0 0.0
meadowsweet 1 2.3 0 0.0 0 0.0 0 0.0
pin cherry 2 4.5 0 0.0 0 0.0 0 0.0
prickly rose 1 2.3 0 0.0 0 0.0 0 0.0
spruce 15 34.0 33 75.0 27 64.2 33 75.0
trem bling aspen 0 0.0 1 2.3 2 4.8 0 0.0
white birch 0 0.0 1 2.3 1 2.4 0 0.0
white  cedar 0 0.0 0 0.0 1 2.4 1 2.3
w illow  spp. 0 0.0 0 0.0 1 2.4 0 0.0

3.12: Frequency Table of Dominant Tall Shrub Species

W CPP Absence Sites W CPP Nursery Sites W PP Absence S ites W PP Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent
alder 4 9.0 1 2.3 2 4.8 2 4.5
balsam fir 2 4.6 1 2.3 0 0.0 2 4.5
jack pine 11 25.0 2 4.6 2 4.8 0 0.0
pin cherry 1 2.3 0 0.0 0 0.0 0 0.0
spruce 24 54.5 40 90.8 26 61.8 38 86.4
trem bling aspen 0 0.0 0 0.0 5 11.9 0 0.0
white  birch 2 4.6 0 0.0 5 11.9 1 2.3
white  cedar 0 0.0 0 0.0 2 4.8 1 2.3

3.13: Frequency Table of Dominant Tree Species

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP.Nursery Sites

Species Frequency Percent Frequency Percent Frequency Percent Frequency Percent

balsam fir 0 0.0 1 2.3 0 0.0 3 6.8
jack pine 25 56.8 22 50.0 3 7.1 1 2.3
none 6 13.6 0 0.0 5 11.9 0 0.0
spruce 11 25.0 21 47.7 30 71.4 38 86.3
tam arack 0 0.0 0 0.0 1 2.4 1 2.3
trem bling aspen 2 4.6 0 0.0 2 4.8 0 0.0
white  birch 0 0.0 0 0.0 1 2.4 1 2.3
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3.14: Frequency Table o f Lichen Classes

W CPP Absence Sites W CPP Nursery Sites W PP Absence Sites W PP Nursery Sites

Lictien C lasses Frequency Percent Frequency Percent Frequency Percent Frequency Percent
0 67 19.0 89 25.3 52 15.5 22 6.3
1 196 55.7 28 8.0 171 50.9 239 67.9
2 7 2.0 14 4.0 31 9.2 54 15.3
3 3 0.9 1 0.3 8 2.4 28 8.0

4 1 0.3 1 0.3 0 0.0 1 0.3
5 5 1.4 2 0.6 0 0.0 1 0.3

none 73 20.7 217 61.5 74 22.0 7 2.0
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Appendix 4

Tabular data of all frequency distributions of nominal data in landscape analyses 
(Chapter 3)

4.1: Frequency Table o f Landcover Classes in Woodland Caribou Provincial Park

WCPP Absence Sites W CPP Nursery Sites W CPP Random Sites W CPP Buffered Areas

Landcover C lasses Frequency Percent Frequency Percent Frequency Percent Frequency Percent
Bedrock NA NA 159 2.7 6842 2.6
Burns NA NA 60 0.9 3003 1.1
Coniferous Forest 62 34.0 15 62.5 2290 38.2 99292 37.8
Deciduous Forest 31 17.0 0 0.0 718 12.0 30951 11.8
F e n B o g  3 1.7 NA 77 1.3 3418 1.3
Mixed Forest 28 15.4 4 16.7 761 12.7 34193 13.0

Sparse Forest 58 31.9 5 20.8 1937 32.2 84709 32.3

4.2; Frequency Table of Landcover Classes in Wabakimi Provincial Park

__________________ W PP Absence Sites W PP Nursery Sites W PP Random Sites W PP Buffered Areas

Landcover C lasses Frequency Percent Frequency Percent Frequency Percent Frequency Percent

Bedrock NA NA NA NA
Burns NA NA 132 5.0 8028 4.8
C oniferous Forest 36 50.7 7 36.8 1043 39.4 64109 38.3

Deciduous Forest 1 1.4 0 0.0 88 3.3 5272 3.1

Fen_Bog 2 2.8 0 0.0 49 1.8 3981 2.4

Mixed Forest 12 16.9 1 5.3 462 17.4 28377 16.9

Sparse Forest 20 28.2 11 57.9 876 33.1 57724 34.5

4.3: Frequency Table of Initial Points in Woodland Caribou Provincial Park

W CPP
Absence
Sites W C PP Nursery Sites W CPP Random Sites

Feature Frequency Percent Frequency Percent Frequency Percent

Island 245 50.4 62 76.5 689 10.8
Mainland 172 35.4 10 12.4 5481 85.9
Small Peninsula 59 12.1 6 7.4 175 2.7

Island Small Peninsula 10 2.1 3 3.7 35 0.6
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4.4: Frequency Table o f Initial Points in Wabakimi Provincial Park

W PP Absence Sites W PP Nursery Sites W PP Random Sites

Feature Frequency Percent Frequency Percent Frequency Percent
Island 50 38.2 19 59.4 776 23.1
Mainland 75 57.3 6 18.8 2459 73.2
Small Peninsula 5 3.8 5 15.6 92 2.7

Island Small Peninsula 1 0.7 2 6.2 33 1.0

4.5: Frequency Table of First Closest Feature from Initial Points in Woodland Caribou 
Provincial Park

W CPP Absence Sites W CPP Nursery Sites W CPP Random Sites

Feature Frequency Percent Frequency Percent Frequency Percent
Island 254 30.3 45 47.9 1936 37.1
Mainland 383 45.8 34 36.2 780 15.0
Small Peninsula 190 22.7 12 12.7 2454 47.1

Island Small Peninsula 10 1.2 3 3.2 44 0.8

4.6: Frequency Table of First Closest Feature from Initial Points in Wabakimi Provincial 
Park

W PP Absence Sites W PP Nursery Sites W PP Random Sites

Feature Frequency Percent Frequency Percent Frequency Percent
Island 82 51.9 23 59.0 1047 53.1
Mainland 24 15.2 8 20.5 80 15.1
Small Peninsula 39 24.7 7 17.9 825 24.6

Island Small Peninsula 13 8.2 1 2.6 20 8.2
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Appendix 5

Vegetation type Classification Categories
(from Sims et al. 1989)

V I : Balsam poplar hardwood and mixedwood 
V2: Black ash hardwood and mixedwood 
V3: Other hardwoods and mixedwoods
V4: White birch hardwood and mixedwood 
V5: Aspen hardwood
V6: Trembling aspen (white birch) -  balsam fir/mountain maple 
V7: Trembling aspen -  balsam fir / balsam fir shrub 
VS: Trembling aspen (white birch) / mountain maple 
V9: Trembling aspen mixedwood
VIO: Trembling aspen -  black spruce -  jack pine / low shrub
V II ; Trembling aspen -  conifer / blueberry / feathermoss 
V I2: White pine mixedwood
V I3: Red pine mixedwood 
V I4: Balsam fir mixedwood 
V I5: White spruce mixedwood
V I6: Balsam fir -  white spruce mixedwood / feathermoss
V I7: Jack pine mixedwood / shrub rich
VIS: Jack pine mixedwood / feathermoss
V I9: Black spruce mixedwood / herb rich
V20: Black spruce mixedwood / feathermoss
V21: Cedar (inch mixedwood) / mountain maple
V22: Cedar (inch mixedwood) / speckled alder / sphagnum
V23: Tamarack (black spruce) / speckled alder / Labrador tea
V24: White spruce -  halsam fir / shrub rich
V25: White spruce -  balsam fir / feathermoss
V26: White pine conifer
V27: Red pine conifer
V28: Jack pine / low shrub
V29: Jack pine / ericaceous shrub / feathermoss
V30: Jack pine / black spruce / blueberry / lichen
V31 : Black spruce -  jack pine / tall shrub / feathermoss
V32: Jack pine -  black spruce / ericaceous shrub / feathermoss
V33: Black spruce / feathermoss
V34: Black spruce / labrador tea / feathermoss (sphagnum)
V35: Black spruce / speckled alder / sphagnum
V36: Black spruce / bunchberry / sphagnum (feathermoss)
V37: Black spruce / ericaceous shrub / sphagnum 
V38: Black spruce / leatherleaf / sphagnum
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A ppendix 6

Soil type Classification Categories
(from Sims et al. 1989)

S 1 : Dry / coarse sandy
S2: Fresh / fine sandy
S3: Fresh / coarse loamy
S4: Fresh / silty -  silt loamy
S5: Fresh / fine loamy
S6: Fresh / clayey
S7: Moist / sandy
S8: Moist / coarse loamy
S9: Moist / silty -  silt loamy
SIO: Moist / fine loamy - clayey
811: Moist / peaty phase
S12F: Wet / organic (feathermoss)
S12S: Wet / organic (sphagnum)
SSI: Discontinuous organic mat on bedrock
SS2: Extremely shallow soil on bedrock
SS3: Very shallow soil on bedrock
SS4: Very shallow soil on boulder pavement
SS5: Shallow -  moderately deep / sandy
SS6: Shallow -  moderately deep / coarse loamy
SS7: Shallow -  moderately deep / silty -  fine loamy - clayey
SS8: Shallow -  moderately deep / mottles-gley
SS9: Shallow-moderately deep / organic-peaty phase
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Appendix 7

Ecosite type Classification Categories
(from Racey et al. 1996)

ES 11 : Red pine -  white pine-jack pine: very shallow soil
ES 12: Black spruce -  jack pine: very shallow soil
ES 13: Jack pine -  conifer: dry-moderately fresh, sandy soil
ES 14: Pine -  spruce mixedwood: sandy soil
ES15: Red pine -  white pine: sandy soil
ES 16: Hardwood -fir-spruce mixedwood: sandy soil
ES 17: White cedar: fresh -moist, coarse-fine loamy soil
ES 18: Red pine-white pine: fresh, coarse loamy soil
ES 19: Hardwood-fir-spruce mixedwood: fresh, sandy-coarse loamy soil
ES20: Spruce-pine / feathermoss: fresh, sandy-coarse loamy soil
ES21: Fir-spruce mixedwood: fresh, coarse loamy soil
ES22: Spruce-pine / ledum / feathermoss: moist, sandy-coarse loamy soil
ES23: Hardwood-fir-spruce mixedwood: moist, sandy-coarse loamy soil
ES24: Red pine-white pine: fresh, fine loamy soil
ES25: Pine-spruce / feathermoss: fresh, silty soil
ES26: Spruce-pine / feathermoss: fresh, fine loamy-clayey soil
ES27: Fir-spruce mixedwood: fresh, silty-fine loamy soil
ES28: Hardwood-fir-spruce mixedwood: fresh, silty loamy
ES29: Hardwood-fir-spruce mixedwood: fresh, fine loamy-clayey soil
ES30: Black ash hardwood: fresh, silty-clayey soil
ES31: Spruce-pine / feathermoss: moist, silty-clayey soil
ES32: Fir-spruce mixedwood: moist, silty-clayey soil
ES33: Hardwood-fir-spruce mixedwood: moist, silty-clayey soil
ES34: Treed bog: black spruce / sphagnum: organic soil
ES35: Poor swamp: black spruce: organic soil
ES36: Intermediate swamp: black spruce (tamarack): organic soil
ES37: Rich swamp: cedar (other conifer): organic soil
ES38: Rich swamp: black ash (other hardwood): organic-mineral rich
ES39: Open bog: ericaceous shrub / sphagnum: organic soil
ES40: Treed fen: tamarack-black spruce / sphagnum:organic soil
ES41: Open poor fen: ericaceous shrub-sedge / sphagnum: organic soil
ES42: Open moderately rich fen: ericaceous shrub / sedge: organic soil
ES43: Open extremely rich fen: ericaceous shrub / brown moss: organic soil
ES44: Thicket swamp: organic-mineral soil
ES45 : Shore fen: organic soil
ES46: Meadow marsh: organic-mineral soil
ES47: Sheltered marsh: emergent: sedimentary peat substrate
ES48: Exposed marsh: emergent mineral substrate
ES49: Open water marsh:submergent / floating-leaved:sedimentary peat substrate 
ES50: Open water marsh: submergent: mineral substrate
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