
UNDERSTORY INGROWTH MORTALITY MODEL FOR BLACK SPRUCE [Picea
mariana (Mill.) B.S.P.] IN MIXED SPECIES STANDS OF BOREAL ONTARIO

by

W. R. Andrew Innerd

A Graduate Thesis Submitted 

in Partial Fulfillment o f the Requirements for 

the Degree of Master of Science in Forestry

Faculty o f Forestry and the Forest Environment 

Lakehead University 

August 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-31195-0 
Our file Notre reference 
ISBN: 978-0-494-31195-0

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UNDERSTORY INGROWTH MORTALITY MODEL FOR BLACK SPRUCE [Picea
mariana (Mill.) B.S.P.] IN MIXED SPECIES STANDS OF BOREAL ONTARIO

W. R. ANDREW INNERD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A CAUTION TO THE READER

This M.Sc.F. thesis has been through a formal process of review and comment 
by three faculty members and an external examiner. It is made available for loan by the 
Faculty o f Forestry and Forest Environment for the purpose of advancing the practice of 
professional and scientific forestry.

The reader should be aware that opinions and conclusions expressed in this 
document are those o f the student and do not necessarily reflect the opinions o f either 
the thesis supervisor, the faculty or Lakehead University.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iv

ABSTRACT

Innerd, W.R.A. 2006. Understory ingrowth mortality model for black spruce [Picea 
mariana (Mill.) B.S.P.] in mixed species stands of boreal Ontario. M. Sc. Forestry 
Thesis, Lakehead University, Thunder Bay. 98 pp.

An individual tree mortality model was developed for understory ingrowth mixed 
species stands of boreal Central Ontario. Data for the model came from long-term 
permanent sample plots initiated by the AmericanCan and Kimberly Clark Corporations 
and now maintained by the Ontario Ministry o f Natural Resources. The model took the 
form o f a logistic regression equation. Tree size, stand density and basal area were 
found to be variables of particular importance, perhaps because they most directly reflect 
the situation of the tree within its particular system. Also significant was average stand 
dbh and ingrowth density. The model correctly predicted 45% of the observed mortality 
and 70% of the observed survival in the data set used to develop the model. For the 
independent data set the model was able to correctly classify 30% of the observed 
mortality and 66% of the observed survival. Future research efforts into mortality 
should include data collection on the causes of mortality and the interaction of a 
particular tree with its environment.

Key Words: mixed species, boreal, Ontario, mortality, logistic, understory, ingrowth, 
black spruce
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1 INTRODUCTION

1.1 STUDY PROBLEM

There are at least two reasons for modelling mortality o f understory ingrowth 

individuals. First, behaviour o f trees in a sub-canopy position is not well understood; 

there is a scientific knowledge gap. As such, there is a limited understanding of how 

mixedwood stands develop and the succession that might take place. Second, a better 

understanding of understory stand dynamics can lead to better growth and yield models. 

As dynamic, complex entities, forests o f today are not forests o f tomorrow. An 

increased knowledge o f understory ingrowth dynamics can lead to improved decision 

support tools.

A growth and yield model is used to predict volume, annual allowable harvest, 

future stand composition, tree sizes and more. Better models lead to a better 

understanding of how stands and forests behave, greater accuracy of prediction, and 

increase the confidence of model users. An increase in scientific knowledge o f forest 

stand dynamics leads to better growth and yield models that incorporate those dynamics. 

As decision support tools, such models are well suited to providing information on 

future stand conditions. If mortality were ignored in a growth and yield simulator, 

unreasonable and unworkable assumptions of constant stocking, unchanging structure 

and constant composition would be made. Accounting for mortality leads to better 

models because stocking, structure and composition are allowed to vary.
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As forest stands undergo succession their properties change. The properties of 

interest might include, for example: species composition, net merchantable volume 

(NMV) and habitat suitability. If NMV is the property o f interest then a growth and 

yield model capable of accurately predicting a stand’s NMV for an extended period of 

time is a valuable tool to resource managers because stand volume is not constant and 

changes over time. For example, when canopy trees die and are replaced by individuals 

from the understory, stand volume changes. A mortality model o f understory ingrowth 

is thus an important component of a growth and yield model because over time, 

understory trees grow and replace canopy trees.

When an individual-tree mortality model is developed for a single species the 

expectation is that the species behaves in a uniform manner, regardless of origin or age, 

and, therefore, acts as a ‘block’ or platform from which an investigation of mortality can 

develop, however, for a given species, the understory and the overstory will behave 

differently. Many mortality modelling efforts deal with even-aged, single species stands 

and definitions of regular and irregular mortality (Lee 1971) are for such stands. It is, 

therefore, necessary to examine mixed species, multi-aged stands. Is it possible to 

model understory mortality in a distinct fashion from overstory, and if so, what are the 

tree, species, and stand characteristics, indicative o f mortality for individual-trees? 

Presumably, conditions created by a canopy cause sub-canopy individuals to incur 

unique adaptations to the conditions, and thus survival pathways are different relative to 

pathways of canopy individuals.

Presented within this thesis is an individual-tree mortality model for black spruce 

[Picea mariana (Mill.) B.S.P.] species in Northern Ontario. The model is for ingrowth 

trees, located in the understory o f mixed-species, multi-aged stands. The model takes
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the form of a logistic regression equation. The intent is to model a specific component 

o f stand structure and show that stand structure is inherently important to, survival and 

mortality, o f black spruce. As such, stand structure must be accounted for when 

modelling black spruce mortality. In turn, this has potential to lead to better growth and 

yield models.

1.2 STUDY OBJECTIVES, OUTLINE AND LIMITATIONS

The primary objective o f this thesis is to develop a mortality model capable of 

predicting black spruce understory ingrowth mortality. The second objective is to 

develop a better understanding of forest stand dynamics. These two objectives are to be 

met by development of a mortality model incorporating tree, species and stand attributes 

into a single model.

The Literature Review and Theoretical Background provides introductory 

material on mortality and mortality modelling, including previous mortality modelling 

efforts found in the literature. The Methods and Materials section provides information 

on the actual procedure used to develop the model presented in this thesis, as well as 

information on the two data sets used. The Results and Discussion section outlines in 

detail the developed model and the major findings, along with significance o f the 

findings. Finally, in the Conclusion pertinent results are highlighted.

This study was undertaken with the use of long-term historical data sets. Such 

data sets cannot be collected during the course of a Master’s degree due to time and 

money constraints. As a result, when using such data sets, the contents are received in 

an “as is” condition, and neither lack of data nor quality of data is reproachable.

permission of the copyright owner. Further reproduction prohibited without permission.



A further limitation of the thesis as regards the data sets is that it was not 

possible to determine if  the stands in which the sample plots were located were 

mixedwood stands, as defined by the OMNR (2000), or otherwise. It was only possible 

to determine that plots were located in mixed species stands (see sections 2.1.2 and

2.2.5.3 for more information).
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2 LITERATURE REVIEW AND THEORETICAL BACKGROUND

2.1 BLACK SPRUCE AND MIXEDWOOD ECOLOGY

2.1.1 Black Spruce

In Canada black spruce [Picea mariana (Mill.) B.S.P.] is one of the most 

common tree species in the Boreal forest. Black spruce grows in a cold climate with a 

humid to subhumid moisture regime (Viereck and Johnston 1990). It is found on a 

variety o f soils including wet organic, deep humus, clays, loams, sands, coarse till, 

boulder pavement, shallow soil mantles over bedrock, peat bogs and swamps (Viereck 

and Johnston 1990).

On organic soils, black spruce is most commonly found in pure stands, while on 

mineral soils it is most commonly found in mixed stands commonly associating with 

white birch [Betulapapyrifera Marsh.], trembling aspen [Populus tremuloides Michx.], 

jack pine [Pinus banksiana Lamb.], white spruce [Picea glauca (Moench) Voss], 

tamarack [Larix laricina (Du Roi) K. Koch], and balsam fir [Abies balsamea (L.) Mill.] 

(Viereck and Johnston 1990). Black spruce is found on lower quality sites with lower 

soil fertility than white spruce, which is generally more site demanding, although white 

spruce also grows on extremely diverse sites (Nienstaedt and Zasada 1990).

Underneath a canopy, black spruce develops in as little as 10% lull sunlight 

intensity (Viereck and Johnston 1990). Suppressed black spruce has limited ability to 

respond to release because it develops a limited crown (Viereck and Johnston 1990).
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Over time black spruce replaces trembling aspen, white birch and jack pine (Viereck and 

Johnston 1990).

The known prevalence of widespread and reoccurring events such as eastern 

spruce budworm (Choristoneura fumiferana (Clem.)) in the data makes modelling black 

spruce mortality difficult. This is because an event such as a spruce budworm outbreak 

may not be terminal to black spruce. It may, however, affect characteristics of trees and 

stands. This is important to recognize because cause of death from such events is not 

related to competition or suppression, and, as such, cause of mortality within a data set is 

confounded (see section 2.2.2 for more information).

2.1.2 Boreal Mixedwoods and Mixed Species Boreal Forests

It is important here to make a distinction between a boreal mixedwood stand as

defined by the OMNR (2000) and a mixed species boreal stand as defined within this

thesis. A boreal mixedwood site (OMNR 2000) is:

“an area with climatic, topographic and edaphic conditions that favour the 
production of closed canopies dominated by the five boreal mixedwood site 
defining tree species, which are trembling aspen or white birch in early 
successional stages, black spruce or white spruce in mid-successional stages and 
balsam fir in late successional stages.”

Typically boreal mixedwood sites have soils that are deep, well-drained and fertile with

medium to fine texture on mid-slope positions, and exclude wet lowlands, dry sand

plains and shallow soils on bedrock outcrops (McClain 1981, OMNR 2000).

A boreal mixedwood stand (OMNR 2000) is: “a tree community on a boreal

mixedwood site in which no species exceeds 80% of the basal area.” Species normally

found in boreal mixedwood stands include jack pine, white pine [Pinus strobus L.], red

pine [Pinus resinosa Ait.], eastern white cedar [Thuja occidentalis L.], tamarack,
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largetooth aspen [Populus grandidentata Michx.], balsam poplar [Populus balsamifera 

L.], white elm [Ulmus americana L.], black ash [Fraxinus nigra Marsh.] and black 

willow \Salix nigra Marsh.] (OMNR 2000).

In this thesis, which examines mortality in mixed species boreal stands, the 

precise definitions o f site type and stand composition are less important. It was not 

possible to define stands in which plots were located as being boreal mixedwoods. As a 

result, it is only possible to say within this thesis that mixed species stands were 

examined.

Stand structural diversity occurs when trees o f distinctly different heights, o f any 

species, exist within a stand in direct proximity to each other. At least one layer o f trees 

exists underneath the canopy. An understory individual occurs in a structurally complex 

stand and such an individual exists below the canopy. For the purpose of this thesis, an 

ingrowth individual is defined as a tree not present as a member of a permanent sample 

plot in a previous measurement period. Thus, an ingrowth individual does not exist until 

at least the second plot measurement. An individual tree present below the canopy and 

that meets the requirements o f the ingrowth definition is an understory ingrowth tree.

Behaviour o f understory ingrowth individuals is distinct from individuals which 

are not understory or ingrowth. As such, their development is distinct and it is worth 

examining their functioning in an explicit manner. Within this thesis, understory 

ingrowth trees in structurally complex mixed species boreal stands are examined.
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2.2 INDIVIDUAL TREE MORTALITY

2.2.1 Mortality in Empirical Data Sets

The ability to view individual tree mortality is limited. Inconveniently, tree 

mortality is rarely observed in any direct manner. Causes of tree mortality are rarely 

included in empirical survey data that mortality modellers almost universally rely on. 

This reduces observation of mortality to presence or absence of life after a set period of 

time. A first step in modelling mortality is to clearly define tree mortality.

A general definition of tree mortality would be to regard it as the absence of life 

processes for an individual tree with preclusion of life processes taking place in the 

future. A dead tree does not conduct, and is not capable of conducting, processes 

normally associated with a living tree, including, but not limited to, photosynthesis and 

respiration. In most studies when tree mortality is detected via survey data, it is only the 

observed absence of life that is recorded; cause of mortality is distinctly absent in any 

explicit manner. In consequence, only implicit mortality is modelled and modellers are 

propelled to examine the implicit explanation of mortality. The implicit implication 

assumed o f the data is nearly always that death was induced by competition or 

suppression.

2.2.2 Causal Agents o f Tree Mortality

A tree dies from any of a variety of biotic or abiotic factors, which may be 

termed causal agents, and these agents occur during one or more events and act 

individually or conjointly to induce death. Causal agents of mortality need not be 

external to the tree; they may be an inherent component of the tree, as a function of the
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tree or as properties o f the tree species. This is related to fitness, genetic makeup, or 

suitability of a particular tree or species to a specific micro-site. A mortality event is a 

period during which one or more causal agents act upon a tree to induce death. It may 

be discrete (occurring in a single instance) or continuous (occurring over a period of 

time) and for a particular tree there may be more than one such event.

The susceptibility of a tree in conjunction with the duration and intensity o f 

actions on a tree in the form of causal agents determines when a tree dies (Waring 1987). 

In general, a tree dies when it cannot acquire or mobilize sufficient resources to heal 

injuries or otherwise sustain life (Waring 1987).

Growth and yield data sets generally do not contain explicit causes o f an 

individual tree’s death, however, cause or causes of death may be implicitly contained in 

the data. That is to say, a dead tree may have died from causes that were captured as 

expressed characteristics of the tree and/or the stand in which it existed, and are thus 

implicitly contained within the data. Attempting to model death o f a tree based on 

implicit characteristics of death is an effort based on tree, tree species and stand 

behaviour.

As states, life and death are absolute. There is no ambiguity; either a tree is alive 

or it is dead. Transition from a living state to a dead state is unidirectional and discrete. 

A living tree may be dying while it is alive but a dead tree is simply dead. Alive and 

dead are states; they are mutually exclusive. It is not possible for a tree to be alive and 

dead at the same time because for an individual tree, life and death are mutually 

exclusive.

In modelling forest progression through time, an error in favour of tree survival 

can be corrected at a later stage of modelling. This is because survival as a state is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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transient, and, therefore, does not suffer from Markovian termination, which is the 

situation whereby an individual within a system being iteratively modelled is not 

considered, for any reason, after an increment of the model. Conversely, a mortality 

error cannot be corrected at a later stage of simulation, because mortality as a state is 

absorptive; death is absolute.

2.2.3 Variables

Many variables have been used to model the mortality of individual trees. They 

include (e.g., Lee 1971, Hamilton and Edwards 1976, Monserud 1976, Buchman et al. 

1983, Hamilton 1986, Monserud and Sterba 1999, Hawkes 2000, Eid and Tuhus 2001, 

Fridman and Stahl 2001, Hann and Hanus 2001, Yao et al. 2001, Bigler and Bugmann 

2003, Jutras et al. 2003, Yang et al. 2003):

• tree size (dbh, dbh , dbh' , height),

• stand density,

• individual tree competition,

• stand composition,

• tree growth (e.g. vigour expressed as diameter increment or height change),

• crown size,

• ratio of crown height to tree height,

•  clear bole length,

• age,

• social position,

• stand basal area,
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• percent defect,

•  length o f growing period,

• site conditions and productivity (site indices),

• competition indices,

• geographical location,

• mean stand dbh,

• basal area of large or larger trees,

• individual tree proportion of basal area,

• basal area o f larger broadleaf trees,

•  basal area o f taller trees, and

• stochastic events such as hail, fire and wind.

Factors found important in predicting mortality appear to be largely 

circumstantial. Data availability, time and experience have all played a role in model 

development. Burkhart (2003) states that the pattern in a dataset is often described with 

a relatively simple model, and that patterns usually depend on a few main causal factors 

that are summarized readily. Predictive ability of a model tends to peak rather quickly 

(‘Ockham’s Hill’) and then decrease with increasingly complex models (Gauch 1993).

2.2.4 Mortality

Mortality as a component o f growth and yield is key to accurate predictions of 

stand composition, growth, structure, and volume (Lee 1971, Hamilton and Edwards

1976, Monserud 1976, Hamilton 1986, Yang and Titus 2002). It is also an important

component of forest stand dynamics (Bigler and Bugmann 2003, Jutras et al. 2003, and
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Yang et al. 2003). Whether the perspective is growth and yield, stand dynamics or 

succession, an examination of tree mortality enables a better understanding o f past, 

present, and future stand compositions (Buchman et al. 1983).

While some models examine individual tree mortality in mature, even-aged 

stands (e.g., Hamilton and Edwards 1976, Monserud and Sterba 1999, Yao et al. 2001, 

Yang et al. 2003), few examine juvenile mortality (e.g., Kobe and Coates 1996), or 

looked directly at understory ingrowth mortality in structurally and compositionally 

complex stands. Lundqvist (1995) simulated sapling population dynamics in uneven- 

aged, single species forests but did not examine mixed-species stands or explain possible 

causes of mortality. Boreal mixedwood stands are more complex and dynamic than 

other boreal forest types (Chen and Popadiouk 2002). Because of this mixedwood 

forests need to be examined separately from even-aged and single species stands.

Mortality and survival predictions in a growth and yield simulator control stand 

density estimates, and, therefore, volume prediction because in individual tree simulators 

stand volume estimation is an aggregation of individuals (Leary 1980). Knowing which 

trees survive or die not only allows better management decisions (Yang and Titus 2002) 

but also permits a better understanding of tree, stand, and forest behaviour both with and 

without anthropogenic influences. It also helps predict future stand composition, 

however, predicting mortality of an overstory individual indicates what will not be 

present in the future canopy. A mortality prediction on its own does not predict future 

composition. An understory ingrowth mortality model has an additional advantage in 

that it also acts as a defacto recruitment model. As understory individuals grow, they 

become components o f the canopy, and, because o f this they are an important 

component in the prediction of future stand composition. The ability to predict change
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is essential to forest planning so that species composition, stand structure and volume of 

forest stands are accurately assessed (Hamilton and Edwards 1976, Teck et al. 1996).

An examination o f mortality is one means of examining stand dynamics. Change 

in forest composition is viewed as being governed by a set of inter-species rules that 

direct the progress o f a forest through time (Harry and Smith 1980). As a means to an 

end, mortality modelling leads to rules that result in better growth and yield models, and 

a better understanding of the behaviour of the ecological system in question.

A predictive or explanatory mortality model must include elements of the system 

it represents (Burkhart 2003). A model that does not contain elements responsible for 

mortality will not model mortality with any degree o f accuracy (Hawkes 2000). It is, 

therefore, o f the utmost importance to accurately assess mortality in a data set, and 

identify variables associated with mortality and the potential application of the model as 

a component of a system. A basic assumption of mortality modelling is that live trees 

and dead trees have observable characteristics that make them separable (Monserud 

1976).

Hawkes (2000) provides explanations for mortality of woody plants in the form 

of seven categories o f mortality agents stemming from a review of literature concerning 

mortality. The seven categories are age, size, competition, carbon balance/growth, 

random, abiotic and multiple factors.

According to Hawkes (2000), age is used to explain mortality by assuming that a 

woody plant senesces and becomes less vigorous as it ages, with the result being a 

greater susceptibility to environmental stresses. In the second category, size is used to 

explain mortality because o f interactions with age, competition, and the carbon balance 

of the woody plant. As Hawkes (2000) points out, size is a state, not a process, and,
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therefore, limits the utility of size as a predictor over time. The problem with age and 

size as predictors of, or as explanations o f mortality, is that neither age nor size is 

actually responsible for death, rather they are factors associated with the observation and 

rate of mortality.

The third proposed explanation o f mortality is competition, whereby mortality is 

incurred because neighbouring trees or vegetation deprive an individual of resources 

necessary for life. Size is related to competition (Chen 2006), so tree size and 

competition experienced by an individual tree are important to examining mortality 

within a system.

The fourth category used to explain mortality is carbon balance and carbon 

growth. The category explains mortality by stipulating that once a plant can no longer 

synthesize carbon (for whatever reason) it will die; it is said to be a highly integrated 

predictor because age, size, abiotic factors, and competition all affect it. It is similar in 

perspective to competition-based mortality in that competition results in a lower or 

negative carbon balance. Carbon balance and carbon growth mortality requires an 

examination of a tree with more detailed information than is commonly found in growth 

and yield data sets.

The fifth category o f mortality is random factors, which are used when cause of 

mortality is not known or is too complex to simulate. The problem with this as a factor 

or category of mortality is that most causal agents are unknown. In a growth and yield 

simulator this category could be used to reduce stand density without attributing a cause 

to the death.

The sixth category is abiotic and is used when an environmental abiotic factor, 

external to the plant, is assumed or observed to cause mortality (e.g., hail, drought, fire,
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etc.). In this thesis, abiotic factors are further classified into irregular and catastrophic 

mortality, neither o f which is further considered because they are either not observable 

with the available data or are confounded with the available data. Such a category is 

used to predict mortality for regular events such as spruce budworm attack when the 

regularity of attack is known with some level o f certainty.

The seventh and final category explaining death, as proposed by Hawkes (2000) 

is multiple factors, which use two or more predictors to explain death. It is used when 

regular and irregular factors affect death. This approach is the obvious one to take when 

examining highly variable systems that may have multiple causal agents acting singly or 

in unison within the system and upon a tree.

Even with these seven categories it is difficult to explain mortality and predict its 

occurrence. Part o f the problem is that little forensic mortality work has been conducted 

for tree mortality, and as previously discussed, direct and accurate information 

concerning precise cause of tree death is largely unavailable. Monserud and Sterba 

(1999) point out that a mortality modeller working with empirical data mostly hopes to 

capture average rate o f mortality, and relate it to a few reliable and measurable size or 

site characteristics. For instance, Yang et al. (2003) noted that rate of mortality for 

juvenile trees is high, decreases with increasing size and then starts to increase again 

with a further increase in tree size. In order to model this observation they used diameter 

and diameter squared.

The problem with the use of size as a predictor variable is that it is not 

responsible for mortality (Vanclay 1994); it is merely associated with it. Tree size can 

be viewed as an integrated response of a tree to site quality and age, and, as such, tree 

size implicitly contains such site and age effects (Monserud and Sterba 1999). For a
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particular site, two trees of the same age, species and genetic makeup should be the same 

size, ceteris paribus. Because of this, the usefulness of tree size as a variable is in 

relating the individual tree to its surroundings.

In order for a variable to have explanatory power it must in some way be 

associated with mortality (Hawkes 2000). For example, diameter increment is a 

commonly used variable to represent vigour (e.g., Yang et al. 2003). Diameter 

increment is important because within the postulated hierarchy of carbon allocation 

within a tree, a tree will allocate photosynthate to height growth and root development 

prior to diameter growth or to production of defensive compounds (Waring 1987). 

During a period of stress, such as drought or insect attack, a decrease in diameter 

increment is more immediately observable, whereas other tree variables such as height 

are less influenced (Waring 1987). Diameter increment is a highly responsive indicator 

of vigour or stress o f a particular tree. A lack of diameter increment for a particular tree 

is expressive of a problem such as insufficient carbon accumulation, an imbalance 

between respiration and photosynthesis, environmental conditions unsuitable for growth, 

an inadequate root system and so on. A tree is stressed when it has trouble acquiring or 

mobilizing the necessary photosynthate for life. Although in an observational dataset 

cause of stress may be unknown it may be indirectly measurable as a function of stem 

diameter growth.

Environmental stress (i.e., lack o f water, light deficiency, etc.) may affect sub

canopy trees differently than canopy trees. If an understory tree has a well-developed 

root system it may be less susceptible to drought than an overstory tree because it has 

lower requirements. Similarly, larger understory trees may be less likely to survive
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during periods of stress than smaller understory trees because a smaller tree will have 

lower maintenance costs.

2.2.5 Defining Mortality

When modelling and classifying mortality, it is necessary to determine to what 

extent causality and regularities are taken into account, and what phenomena are 

regarded as stochastic (Alenius et al. 2003). Because of the numerous causes of 

mortality and the complexity of determining causal agents, mortality is generally 

regarded as being regular or irregular (Lee 1971). Lee (1971) describes regular 

mortality as mortality that occurs when trees grow so close together that they compete 

for survival and irregular mortality as being tree death caused by insect attack, disease, 

windfall, fire or snow damage. More generally, regular mortality according to Lee 

(1971) is competition induced and irregular mortality is otherwise incurred.

In order to understand tree mortality within the context of an empirical modelling 

effort based on a long-term remeasured data set, definitions of the types o f mortality 

inherent to such a system need to be more clearly defined than originally proposed by 

Lee (1971). This is especially the case in this thesis, since Lee (1971) was largely 

dealing with even-aged single species stands and this thesis deals with mixed species, 

multi-aged stands. Failure to adequately define mortality could lead to a who’s on first, 

who’s on second scenario (Abbot and Costello, 1939)

2.2.5.1 Regular Mortality

Within this thesis, the term regular mortality refers to the death of a tree captured 

by the expressed characteristics o f the tree in conjunction with the characteristics o f the
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system in which the tree exists. Regular mortality is deterministic in nature (and is 

sometimes called deterministic mortality) and is exclusive of stochastic death, that is to 

say death can be foreseen or predicted.

Regular or deterministic (Oxford 1995) mortality is described as an inevitable 

consequence of an occurrence(s), cause(s) or event(s) that is the generating force for 

mortality. The current, or observed, state of a tree (alive or dead) is explainable, 

logically and rationally, by its known previous state and the actions on it within a 

discrete and definable system o f which survival and death are components. It is possible 

to say that a tree is dead or alive within a system because of the antecedent state of the 

tree and the system. The terms regular mortality and deterministic mortality are then 

well applied to mortality resulting from competition or suppression because it suitably 

describes occurrences, events, or causes of mortality as being antecedents of the current, 

observable condition or state o f a tree.

For practical purposes the observation of, and the ability to detect or observe 

mortality from a survey data set, are the primary considerations in modelling mortality 

from a system observed in such a manner. Expressed tree and stand characteristics 

combine to explain mortality due to competition or suppression for the resources 

necessary to sustain life. So the causal agent or agents of regular mortality are assumed 

to be competition or suppression.

2.2.S.2 Irregular Mortality

Irregular mortality, as applied in this thesis, is when the death of a tree is not 

captured by expressed tree characteristics. Irregular mortality occurs when the 

expressed characteristics o f a tree and stand do not indicate death or impending death of
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a tree and the tree is nevertheless, dead. Neither the tree nor the system of which it is a 

component provide any details as to the demise or impending demise o f the tree; the 

death lacks antecedents. Since mortality of the tree is not due to suppression or 

competition, irregular mortality is regarded as stochastic. Irregular mortality of an 

individual tree is induced from a function o f the system in which the tree is a component 

and is particular to the tree but not the system; this is the primary distinguishing feature 

from catastrophic mortality (section 2.2.5.6). That is to say the scale of the event, and 

the resulting mortality plays a role in defining irregular mortality. Events associated 

with irregular mortality include, for example: fire, windstorms, lightning, snow, ice, 

insect attacks and other herbivorous activity.

2.2.5.3 Regular and Irregular Mortality in an Empirical Data Set

Regular and irregular mortality are the two types of mortality examined within 

this thesis. There are limitations to detecting both types of mortality that must be 

considered. One of which is mingling of regular and irregular mortality in the data. If 

the causal agent or agents of irregular mortality acted upon a tree during an event near 

the end of a measurement interval, the expressed characteristics of a tree will be unable 

to indicate its demise. Likewise, if the causal agents of irregular mortality acted upon a 

tree during an event near the start of a measurement interval, the expressed 

characteristics o f a tree will indicate that the tree died from causal agents o f regular 

mortality. Furthermore, if  the system indicates that conditions were suitable for survival 

then the death o f a tree from irregular causes is confounded with trees that died from 

regular causes. A tree or system in which it exists may have characteristics that indicate 

a tree should be alive although the observed condition of the tree is dead. The reverse
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condition is also true. This confounding of mortality detection and explanation is 

largely attributed to the presence of irregularly dead trees in the data.

Because time elapses between measurements such that a tree is alive at the first 

measurement and dead at the second measurement, and because the cause of death is 

unknown, there will be error present in the data set if  all mortality is assumed to be 

regular. The expressed characteristics of a tree must be measured over a sufficiently 

short interval that the nature of the mortality is adequately characterized by the 

expressed characteristics. The longer the interval between measurements the greater 

will be the error o f misclassification. If the measurement interval is too short the 

expressed characteristics will not change and if  it is too long the expressed 

characteristics may be masked or worse confounded. Decline as a state o f affairs for a 

tree is a prerequisite for modelling of regular mortality.

A basic distinction to be recognized is that regular mortality is predictable and 

irregular mortality is unpredictable. This is a problem in an empirical growth and yield 

data set because cause of death is not recorded and stochastic mortality is not clearly 

related to specific stand or site conditions (Jutras et al. 2003).

2.2.5.4 Stochastic Mortality

Stochastic (Oxford 1995) mortality includes a random component(s), as a feature 

of mortality within the system. The random component(s) exist(s) across both time and 

space. It includes chance or probability as a variable within the system. The 

occurrence(s), cause(s) or event(s) preceding the death of a tree are without antecedent, 

or at least in the situation of survey data, without observable antecedents.
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2.2.5.5 Catastrophic Mortality

Catastrophic mortality is distinct from regular and irregular mortality in that the 

causal agents of death are not particular to a tree. The entire system under examination 

is affected and the causal agents render the system temporarily unsuitable for tree life. 

Agents responsible for catastrophic mortality include fires, mudslides, windthrow, snow, 

ice storms and/or insect attack.

An important distinction should be made to help separate and clarify irregular 

and catastrophic mortality because the causal agents (e.g., fire, mudslides, windthrow, 

insects, etc.) can be the same. The separating factors are intensity and extent o f the 

actions and classification of actions or events as epidemic and endemic. In the case of 

irregular mortality intensity of causal agents is low within stands, affects only a portion 

of a stand, or a single tree, and is endemic or periodically endemic to a stand. For 

catastrophic mortality causal agents are intense, epidemic and affect entire stands.

2 3  STATISTICAL METHODS IN MORTALITY MODELLING

2.3.1 Introduction

The mathematical method chosen to model mortality in this thesis is logistic 

regression. Other methods such as artificial neural networks, simple and multiple linear 

regression are also available for modelling mortality. However, logistic regression is 

constrained to the interval [0,1] and is therefore consistent with the objective of 

determining the binary state of trees of interest. In order for the reader to understand 

logistic regression and the methods associated with it, a brief review and explanation is 

presented.
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2.3.2 Logistic Regression

The majority of individual-tree mortality models in the literature use logistic 

regression (e.g., Hamilton 1974,1980 and 1986, Hamilton and Edwards 1976, Monserud 

1976, Vanclay 1994, Eid and Tuhus 2001, Fridman and Stahl 2001, Hann and Hanus 

2001, Bigler and Bugmann 2003, Hely et al. 2003, Jutras et al. 2003, Monserud and 

Sterba 1999, Yao et al. 2001, Alenius et al. 2003, Yang et al. 2003, Bigler et al. 2004).

Logistic regression is a form of nonlinear regression where outcomes are 

discrete, and error terms are not normally distributed (Chatteijee et al. 2000, Kutner et 

al. 2005). Circumstances exist in which a response, observation, choice or indicator of 

interest is present within a system in a dichotomous fashion. The binary response is 

considered nominal and represents data such as yes or no, up or down, and dead or alive. 

There is no magnitude or rank between responses and responses can be coded as 0 or 1 

for no-response and response (i.e., alive or dead). Mortality as a response in an 

observational experiment involving repeated, discrete measures is dichotomous. In such 

cases a dichotomous, logistic regression model may be suitable for representing the 

phenomenon (Chatteijee et al. 2000, Kutner et al. 2005, StatSoft 2004).

The response predicted by the logistic model is a probability value that for 

discrete outcomes is coded as 0 or 1. For responses less than 0.5 a value of 0 is assigned 

as a response and for response values greater than or equal to 0.5 a value of 1 is 

assigned, although other cut-off values are also possible. This is useful when a discrete 

state is o f interest. It can also be the case that the probability o f mortality for a particular 

tree is the response of interest.

A logistic regression is preferred over a linear or non-linear regression in part 

because linear or non-linear regressions constrained to the response interval [0, 1] would
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only be applicable to the data which gave rise to the model in the first place (Kutner et 

al. 2005). The logistic regression is optimal for binary data because it is sigmoidal (it 

has an S-shape), and approaches 0 and 1 asymptotically (the condition whereby the 

regression line approaches the curve limit arbitrarily closely (Weisstein 2004).

There are several problems that arise when a response variable is dichotomous. 

The first problem is that the error terms are not normally distributed (Kutner et al. 2005). 

This is obviously the case as error terms can only be one of two possible values (Kutner 

et al. 2005). Secondly, error variance is non-constant (Hamilton 1974, Kutner et al. 

2005). Because of this, ordinary least squares is no longer optimal because error 

variance differs at different levels of X (the set of independent variables) (Kutner et al. 

2005). Finally, the response function is constrained to being between 0 and 1 and is 

therefore not normally distributed (Kutner et al. 2005).

At this stage it is appropriate to introduce the symbol 7t which is used to denote 

the probability that Y = 1 when X = x (Chatteijee et al. 2000). Since 7t is a probability it 

must lie between 0 and 1. It is also appropriate at this point to note that the normal 

distribution for the Y (dependent) observations is no longer used, instead the Bernoulli 

distribution for a binary random variable is used (Kutner et al. 2005). Since the 

distribution of error terms e, depends on the Bernoulli distribution of the response Yi, the 

multiple logistic regression is stated in the following fashion (Chatteijee et al. 2000, 

Kutner et al. 2005):
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e x p ( f l+ f l -T .+ f lX ,)
' l + exp(A+A-f,+A^) U

where:
E(7i) -  is the Expected value of 7;
Yx -  is the ith observation
n\ -  is the probability o f the i* observation
fio -  is the constant for the model
P\- f t  -  are the coefficients for theXj variable, and
Xi-Xj — represent variables o f the model

In order to deal with problems associated with logistic regression special 

methods are required. Maximum likelihood methods are commonly used to 

parameterize variables in a logistic regression, and special model and variable testing 

procedures are used. Once the fitted logistic response function is obtained, the usual 

next steps are to examine appropriateness of fitted response functions and, if  the fit is 

good, to make a variety of inferences and predictions (Kutner et al. 2005). Other 

parameterization methods such as the Quasi-Maximum Likelihood Method (discussed 

below) are also available. Models parameterized in such a fashion also require special 

tests for validation. As such, brief reviews of the Likelihood-Ratio and Wald Tests are 

presented along with short reviews o f Deciles o f Risk and Prediction Success Tables.

2.3.3 Maximum Likelihood Method

The maximum likelihood method is commonly used to estimate parameter values 

in logistic regression models and many individual-tree mortality models have been fitted 

using this method (e.g., Monserud and Sterba 1999, Hann and Hanus 2001, Yao et al. 

2001, and Yang et al. 2003). Also, it is the method recommended by Vanclay (1994). 

Weighted and non-weighted nonlinear regressions are also been used (e.g., Hamilton 

and Edwards 1976, Buchmann et al. 1983) to estimate parameters, but the maximum
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likelihood method is more commonly used because it is more straightforward than other 

methods (Monserud and Sterba 1999). Other methods of estimating parameter values 

for logistic regression equations include marginal quasi-likelihood and penalized quasi

likelihood (Alenius et al. 2003).

Maximum likelihood parameter estimates are those values of the parameter (P) 

that maximize the log-likelihood function of the model (Kutner et al. 2005). The reason 

that the maximum likelihood method is used to estimate parameters of logistic 

regression models, is because unknown parameters are non-linearly related to n(x) 

(Alenius et al. 2003). Essentially, the method of maximum likelihood chooses as 

estimates those values o f parameters most consistent with the sample data (Kutner et al. 

2005).

The maximum likelihood method is well suited to dealing with problems 

associated with responses (7;) being binary (Kutner et al. 2005). It is known that when a 

response function is binary, assumptions of normality are no longer met. The Bernoulli 

distribution for a binary random variable is therefore used for the Y observations instead 

o f the normal distribution (Kutner et al. 2005).

Model development was conducted using both Maximum Likelihood and Quasi- 

Maximum Likelihood although final model parameterization was completed using 

Quasi-Maximum Likelihood.

2.3.4 Quasi-Maximum Likelihood

In their work on evaluating estimation methods for logistic regression in 

modelling individual-tree mortality Alenius et al. (2003) investigated several methods of 

parameter estimation, including marginal quasi-likelihood and penalized quasi-
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likelihood methods. They state that the maximum-likelihood and the marginal quasi

likelihood methods resulted in models with high sensitivity, a high-rate of correct 

classification and low bias. They also suggest that with relatively balanced data the 

marginal quasi-likelihood (MQL) method produces consistent model estimates for 

multilevel binary mortality models, and that logistic regression models with random 

effects, need special quasi-likelihood estimation methods.

When a model to be estimated by maximum likelihood is misspecified, standard 

errors and all hypothesis tests are unreliable (Steinberg and Colla 2005). This could be a 

serious problem since misspecification could be common rather than uncommon. The 

procedure of estimating a misspecified model is called the quasi-maximum likelihood 

(QML) estimation (Steinberg and Colla 2005). For a misspecified model, the 

likelihood-ratio test is not asymptotically chi-squared, and the Wald and Likelihood- 

Ratio tests are not asymptotically equivalent, even when the QML matrix is used for 

Wald tests (Steinberg and Colla 2005). Because of potential for misspecification and 

therefore incorrect interpretation of model results both the Likelihood-Ratio Test and the 

Wald Test are presented within this thesis. This approach permits the experimenter to 

make better decisions as regards model robustness.

2.3.5 Model and Variable Evaluation

A determination needs to be made when building a logistic regression model, 

such as the one in this thesis, as to which variables are worth keeping and which model 

is best, appropriate or suitable for the purpose of the modelling effort. Questions that are 

appropriate to ask include: “How well does this particular model fit the data” (Kutner et 

al. 2005, Steinberg and Colla 2005); and, “Are the results unduly influenced by a
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handful o f unusual observations” (Steinberg and Colla 2005)? In particular, for logistic 

regression models, it is necessary to examine the response function to see if it is 

monotonic and sigmoidal in shape (Kutner et al. 2005). To answer these questions, 

model assessment tools as provided by a software package such as DataDesk 6 and/or 

Systat 11 are used. The tools available include: prediction success table, log-likelihood, 

likelihood-ratio tests, McFadden’s Rho-Squared, odds ratios, Chi-square and Hosmer- 

Lemeshow statistics, as well as graphical analysis of residuals. Caution must be 

exercised when using goodness-of-fit tests since they are usually not sensitive when the 

fit is poor for just a few cases (Kutner et al. 2005).

A brief review of coefficients, likelihood, Likelihood Ratio Test, Wald Test, 

McFadden’s Rho-Squared, Odds Ratio, Deciles of Risk, Hosmer-Lemeshow Goodness- 

of-Fit Statistic and the Prediction Success Table is presented so that the reader will 

understand each feature and the function it performs in evaluating the model developed 

in this thesis.

2.3.5.1 Coefficients

Coefficients in a logistic regression model are evaluated similar to those in a 

linear regression (Steinberg and Colla 2005). When a coefficient of a variable is large 

relative to its standard error (t-ratio) then the variable potentially is an important 

predictor (Steinberg and Colla 2005), however, interpretation o f a coefficient in logistic 

regression is different from ordinary regression. In logistic regression the coefficient 

tells how much the logit increases for a unit increase in the independent variable, but the 

probability of a 0 or 1 outcome is a nonlinear function of the logit (Steinberg and Colla 

2005).
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2.3.5.2 Likelihood

One measure of model fit to a set of data is the likelihood (Bergerud 1996). A 

likelihood is the hypothetical probability that an event that has already occurred would 

yield a specific outcome; it refers to past events with known outcomes (Kutner et al. 

2005). The likelihood is estimated using the method of maximum likelihood, which 

chooses as estimates those values o f the parameters most consistent with the sample data 

(Kutner et al. 2005). For discrete data, the maximum likelihood method is derived from 

a probability function, such as the binomial distribution, that predicts probability of 

obtaining specific data values given known values of parameters (Bergerud 1996).

Each logistic regression model, fitted to the same set of data, has a corresponding 

log-likelihood value calculated at the maximum likelihood estimates for that model. If a 

second model, in the form of a submodel, is fit to the same set of data, the log- 

likelihoods (LL) of the two models can be assessed relative to each other. The greater 

the likelihood, the better the fit (StatSoft 2004). The difference between the two models 

can be assessed for significance using the likelihood-ratio test. In general, suppose that 

model 1 has t parameters, while model 2 is a subset of model 1 with only r of the t 

parameters so that r < t. Model 1 will have a higher log-likelihood than model 2 (a 

submodel of a larger model will always have a smaller likelihood, so the models must be 

assessed using a test). For large sample sizes, the difference between these two 

likelihoods, multiplied by two, will behave like the chi-square distribution with t-r 

degrees o f freedom. This can be used to test the null hypothesis that the t-r (t minus r) 

parameters not in both models are collectively equal to zero (Bergerud 1996), that is, 

they have no effect on results.
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2.3.5.3 Likelihood-Ratio Test

The two types o f hypothesis test for the logistic regression model are the 

likelihood-ratio (LR) test and the Wald test (Steinberg and Colla 2005). The properties 

of the two tests are based on asymptotic theory and will yield identical results when 

sample size is very large (Steinberg and Colla 2005). Both tests attempt to determine if  

all coefficients in the model except the constant are equal to zero (Chatteijee et al. 2000, 

Steinberg and Colla 2005). If the null hypothesis is rejected in favour of the alternative 

hypothesis then the model has some explanatory power.

When constructing a model, it may be of interest to determine whether a subset 

of the X variables in a multiple logistic regression model can be dropped; i.e., testing 

whether associated regression coefficients equal zero (Kutner et al. 2005, Steinberg and 

Colla 2005). The likelihood-ratio test is conducted by fitting two nested models (the 

restricted and the unrestricted) and comparing the log-likelihood at convergence 

(Steinberg and Colla 2005). Typically, the unrestricted model contains a proposed set of 

variables, and the restricted model omits a selected subset, although other restrictions are 

possible (Steinberg and Colla 2005).

The Likelihood-ratio test is: [2*(LL(N)-LL(0))J, (where: LL is log-likelihood, N 

is the model of interest, and O is the null model). The test has degrees of freedom equal 

to the number of covariates in the model, not including the constant (Chatteijee et al. 

2000, StatSoft 2004, Steinberg and Colla 2005). Models can also be assessed relative to 

one another in an effort to determine which variables should be retained. The p-value 

for the likelihood-ratio test indicates that the null hypothesis will be rejected if  it is less 

than the accepted cut o ff (Steinberg and Colla 2005).
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2.3.5.4 The Wald Test

A test of whether a single parameter is zero is conducted as a Wald test by 

dividing the squared coefficient by its variance and referring the result to a chi-squared 

distribution with one degree of freedom. Each t-ratio is the square root o f a simple Wald 

test (Steinberg and Colla 2005).

The Wald Test, tests a specific parameter in a model. The null hypothesis o f the 

test is that the parameter in question is zero, while the alternative hypothesis is that the 

parameter in question is not zero. The test is conducted by squaring the t-value (the ratio 

of the parameter estimate divided by its estimated standard error) and outputting it as a 

chi-square value and referring it to a chi-squared distribution with one degree of freedom 

(Steinberg and Colla 2005). If the associated p-value is less than 0.05 then the null 

hypothesis is rejected in favour of the alternative hypothesis and the parameter is 

deemed to have some value to the model.

Wald tests are helpful for deciding if  a variable or term in a model should be 

dropped (Bergerud 1996). The decision to drop or retain a variable is specific to the 

regression equation in question. A variable might or might not be useful in another 

formulation of the logistic regression model. The Wald test is considered a "last-in" test; 

it tests whether the current term, if it was the last term added to the model, substantially 

reduces the log-likelihood (Bergerud 1996). Wald statistics are considered approximate 

and somewhat unreliable (Bergerud 1996), so marginally significant results should be 

confirmed by fitting models with and without the terms of interest, and then conducting 

the corresponding deviance test (Bergerud 1996).
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2.3.5.5 The Wald Test versus the Likelihood-Ratio Test

Steinberg and Colla (2005) state that the two tests will give identical results as 

the sample size nears infinity. Steinberg and Colla (2005) give three reasons for 

choosing the Likelihood-Ratio test over the Wald test:

1. The likelihood is the fundamental measure on which model fitting is based;

2. Monte Carlo studies suggest that the likelihood-ratio statistic is more reliable 

with small samples; and

3. A nonlinear constraint can be imposed on the parameter estimates and simply 

tested by estimating restricted and unrestricted models.

Since there is some doubt as to the reliability of the Likelihood-Ratio test when 

QML methods are used for parameter estimation and because the Wald Test may be 

unreliable, the results o f both tests are presented.

2.3.5.6 McFadden’s Rho-Squared

McFadden's Rho-squared is a transformation of the likelihood-ratio statistic 

intended to mimic an R-squared value (Steinberg and Colla 2005). It is a measure of the 

variance, and should not be interpreted as a goodness-of-fit statistic. It is always 

between 0 and 1, and a higher Rho-squared corresponds to a lower variance (Steinberg 

and Colla 2005). Rho-squared tends to be much lower than R-squared though, and a low 

number does not necessarily imply a poor fit. Values between 0.20 and 0.40 are 

considered very satisfactory (Hensher and Johnson 1981). McFadden’s Rho-Squared 

results for the final model and the tested sub-models are presented in tabular format in 

the Results section.
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2.3.5.7 Odds Ratio

The odds ratio is the multiplicative factor by which the odds change when the 

independent variable increases by one unit while the others are held constant (Chatteijee 

et al. 2000, Steinberg and Colla 2005). The odds of the response are given by 7t/(l- 7i), 

where ji is the probability of response and 1- 7t is the reference (Chatteijee et al. 2000, 

Steinberg and Colla 2005). If the confidence interval for the odds ratio does not contain 

the value 1 then the variable in question significantly affects the odds ratio (Chatteijee et 

al. 2000, Steinberg and Colla 2005). If the interval is below 1 the variable lowers 

significantly the relative odds, while if  the interval lies above 1 then the relative odds is 

significantly increased by the variable (Chatteijee et al. 2000, Steinberg and Colla 2005). 

A table o f Odds Ratios for the fitted model and sub-models used in testing the final 

model are presented in the Results section.

2.3.5.8 Deciles of Risk

Deciles of risk help to ensure that the model fits the data and that the results are 

not unduly influenced by a handful o f unusual observations (Steinberg and Colla 2005). 

The goodness-of-fit statistic associated with the deciles of risk will depend on the 

grouping rule specified (Steinberg and Colla 2005). Methods available in Systat to help 

ensure that the model fits the data include goodness-of-fit statistics, and a collection of 

residual, leverage and influence quantities (Steinberg and Colla 2005).

2.3.5.9 Hosmer-Lemeshow Goodness of Fit

Many of the logistic regression mortality models developed and presented in the 

literature have used the Hosmer-Lemeshow goodness-of-fit statistic to select final 

models and examine model fit (e.g. Yao et al. 2001, Yang et al. 2003). The Hosmer-
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Lemeshow goodness-of-fit test is useful for unreplicated data sets or for data sets 

containing just a few replicated observations (StatsDirect 2004, Kutner et al. 2005).

Caution should be employed when using the ordinary Hosmer-Lemeshow test 

because it may not be reliable since it assumes independence among observations 

(Alenius et al. 2003). Observations in a growth and yield data set are not independent 

since there is more than one tree in each stand and plot, and there may also be a lack of 

independence between plots (Alenius et al. 2003). Yao et al. (2001) stated that since 

data for their study included multiple measurements for the same trees, observations 

were not independent, and a serial correlation existed among the data. When a tree is 

measured twice at two different points in time the second measurement is dependent on 

the first. As such, the data are not independently distributed and, therefore, violate the 

assumption of independence among error terms. Growth and yield data sets have a high 

degree o f correlation among trees within the same plot and possibly between plots as 

well. As such, the use o f the Hosmer-Lemeshow test for growth and yield data sets is 

suspect.

Alenius et al. (2003) point out that a basic problem with goodness-of-fit 

measures in the case o f multi-level logistic regression is that all tests based on likelihood 

are approximations, because the likelihood is also an approximation. Caution must 

therefore be used when testing a model using the Hosmer-Lemeshow goodness-of-fit 

test. When examining model fit it is important to remember that prediction may be as 

important if  not more important than a high numerical value of model fitness. A 

selection o f predictions based on the selected model and several additional models is 

presented.
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2.3.5.10 Prediction Success Table

When generating a logistic regression, Systat produces a prediction success table.

The interpretation of the table proceeds as follows (Steinberg and Colla 2005):

“The correct row is the proportion of records that were successfully predicted 
according to the estimated model. Correct is also known as sensitivity for the 
response group and specificity for the reference group. The false reference rate 
is the proportion o f those predicted to respond that did not and the false response 
rate is the proportion of those predicted to not respond that actually did respond. 
The total correct is the proportion of correctly predicted references and 
responses. Success Index is the gain that the model shows over a purely random 
model that assigned the same probability to the dependent variable to every 
observation in the model.”

The prediction success table is very useful for examining model functioning and 

is used to examine behaviour o f a multitude of predictor variables. When the number of 

variables in question is reduced to a manageable size, variables can be entered or 

removed from the model singly or in combinations to assess their effect of on the model. 

Various Prediction Success Tables are presented to allow a more thorough evaluation of 

the final model.

2.3.5.11 Correlation

Yang et al. (2003) point out that from the statistical perspective, some predictor 

variables are correlated with each other, and, when this occurs, a change in one variable 

will lead to a change in correlated variables. In their logistic regression mortality model 

they do not give a quantitative interpretation of estimated coefficients due to presence of 

multicollinearity within the model.

Borders et al. (1987) found that for permanent sample plot data with more than 

three measurements, temporal correlation did not occur for non-overlapping growth 

intervals. Gertner (1987) noted that as measurement interval length increased, temporal
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correlation decreased. In the literature, the problem of spatial correlation has generally 

been dealt with by ignoring correlation and assuming that each tree is an independent 

observation. Hamilton and Edwards (1976) in fitting their model assume that each tree 

is an independent observation and ignore the fact that there is some clustering in the 

selection of sample trees. This is similar to Yao et al. (2001) who state that, since they 

were developing a distance-independent mortality model, spatial correlation among trees 

was not considered and observations were assumed to be spatially independent even 

though there is likely spatial dependence. Yang et al. (2003) argue that since there are 

fewer mortality trees within each plot, within-plot spatial correlation should be trivial.

2.3.6 Data Splitting and Model Validation

Data splitting was considered in this thesis for model validation. However, as a 

means of validating the model, data splitting was not used. One reason was that there 

was only a small amount of data available, and removing some data for testing at a later 

time had the potential to make model development difficult. Another reason was that it 

has been indicated in the literature that it may not be appropriate to test forest models 

with split data.

The practice of splitting the data set into two portions and using one for 

development of a model and the other for a so-called independent test data set is 

questionable. "The split data sets are not independent of each other, as a result the data- 

splitting scheme used in model validation is not validating a fitted model but rather the 

sampling technique used to partition the data (Huang et al. 2003)." A decision, 

therefore, was made to use an independent data set to examine the model.
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Model performance can be evaluated by considering how well a model fits the 

development data, how well the model fits an independent data set, and how well the 

models fits biological reality (Hamilton 1986). Because quality of fit does not 

necessarily reflect quality o f prediction, an assessment of a model’s validity on a 

separate data set is needed (Huang et al. 2003). In practice, if  there is no other data set 

available for testing, splitting the data set into two groups may be the only means 

available for testing the predictive ability of a model.

2.3.7 Methodological Summary

The above statistical review provides an understanding of material presented in 

both the Methods and Materials, and Results Sections. It is also intended to act as a 

platform for a common understanding of the Methods. Logistic regression models are 

common for mortality modelling but are not common in other areas of forest modelling. 

As such, a cogency of the topic cannot be assumed and it is hoped that the Methodology 

Review has to some extent corrected that problem.
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3 METHODS AND MATERIALS

3.1 MATERIALS

Two data sets were used in this thesis. The first data set, used for model 

development, was the AmericanCan data set (ACDS), also referred to in the thesis as the 

developmental data set. The second data set, used as an independent data set for model 

validation, was the Kimberly Clark data set (KCDS). It is also referred to as the 

alternative data set or the independent data set.

Both data sets commenced in the early 1950’s and have continued through to the 

present time for the ACDS and to the 1990’s for the KCDS. There are some 

interruptions in both data sets. The ACDS for instance, has few or no observations in 

the 1980’s with the exception of 1980. It is also inconsistent with respect to time 

intervals between plot measurement. The re-measurement interval should be five-years 

for all plots, however, intervals are 4, 5, 6, 8, and 10 years. Some plots appear to have 

been measured early and others late. Within this thesis only data observations with a 

five-year measurement interval were used and model prediction results are valid for such 

intervals.

The AmericanCan and Kimberly Clark data sets respectively contain over 

170,000 and 78,000 data records each. A total of 814 observations were available from 

the ACDS for model construction. Some plots and trees in the data sets had seven 

measurements. The ACDS had no height information available for the period of
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interest. Height information only became available after the 1980’s. Since there were 

too few observations available for that period that time interval and subsequently height 

were not used. Information that was available included tree diameter (cm), plot size 

(ha), tree number, plot number, and year of measurement.

Detection of understory ingrowth was determined with the use of record tagging 

and queries. Each plot and each tree was given a measurement number starting with the 

first time the plot or tree was recorded in the data set. By examining the two numbers it 

was possible to determine if a given tree was ingrowth or not. It was also possible to 

determine if  a tree was ingrowth by examining tree size in relation to all trees in a plot 

and all trees o f the same species in a plot. To be classified as ingrowth, a tree was 

required to grow into the plot by height increment and not grow into the plot by diameter 

increment. This simply means that if the comer to comer plot boundary was broken by 

virtue of a tree increasing in diameter it was not considered as an understory ingrowth 

observation.

The KCDS is similar to the ACDS, however, fewer suitable records were 

available from the KCDS. It was, nevertheless, deemed suitable as an alternative data 

set. Several modifications were necessary prior to its use and the modifications include 

using a modified ingrowth density variable and modified ingrowth variable. These are 

described in the Results and Discussion section.

The plots for both data sets are in North Central Ontario in the Longlac area.

The areas, which are covered by the data sets, do not overlap geographically. The plots 

for the ACDS plots are of three size 0.04 ha, 0.08 ha and 0.12 ha, while the KCDS plots 

are either 0.04 ha or 0.08 ha. Because of how the data were chosen, no 0.12 ha plots
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were included in the developmental data. That it to say, the exclusion of the 0.12 ha 

plots was not deliberate, rather it was a result of the process o f data selection.

To be classified as mixed species each plot was required to have at least two 

species. Although there was a lack of site information in the data set itself it is known 

that ACDS plots were generally established on sites with better than average conditions 

(Penner 2003). For more information on the two data sets, see Popadiouk et al. (2003). 

Both data sets were provided courtesy o f the Ontario Ministry of Natural Resources.

3.2 MODEL DEVELOPMENT

For the purposes of this thesis, a model in the form of a logistic regression 

equation was constructed using quasi-maximum likelihood methods. It was tested using 

Likelihood-Ratio and Wald Tests. The fit was determined to be acceptable with the use 

o f three goodness-of-fit statistics (Hosmer-Lemeshow, Pearson and Deviance). The 

residuals were examined graphically for outliers and model adequacy. Finally, the 

proposed model was analyzed using an independent data set.

Seven variables were developed from two primary pieces of information: (1) 

diameter at breast height (dbh) and (2) instance of existence. Variables used in the 

model, as well as those considered and rejected, were primarily calculated from those 

two pieces o f information. Plot size, plot identification number, measurement period, 

measurement interval, year of measurement, tree identification number and tree species 

were also available and were used to further develop and calculate variables. Plot size 

was used to calculate stand basal area in conjunction with diameter at breast height of 

each tree. Plot identification number and tree identification number were used to
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separate trees and plots. Year o f measurement and tree identification number were used 

to determine survival and mortality status for each measurement period. Plot and tree 

identification number and year of measurement were also used to determine plot density 

(stem count). Plot density was then converted to an estimate o f stems per hectare in 

conjunction with plot size.

There was some additional information available, however, it was not used 

largely because it was not applicable within the constraints of the analysis. For example, 

there was some height information available but only for the plots measured in the 

1990’s and later. Since, only plots between 1950 and 1981 were used, height 

information was not applicable. A similar problem existed for site index. The 

additional information available but not used included: stand age (stand establishment 

year), site index species, vegetation type, soil type, ecosite, latitude, longitude and some 

soils information.

The proposed seven-variable model was tested using the Likelihood-Ratio and 

Wald Tests. For the Likelihood-Ratio Test this included testing against the null model 

and then against each of the seven possible six-variable models. Each six-variable 

model consisted of the seven-variable model with a different variable dropped each time 

the test was run.

The Likelihood-Ratio and Wald Tests indicated that a single variable, diameter at 

breast height squared, was insignificant. It was therefore dropped. The new six-variable 

model was then estimated and the same Likelihood-Ratio and Wald Tests as above were 

conducted. Neither the Likelihood-Ratio Tests nor the Wald Tests rejected any o f the 

remaining six variables nor the model itself. Finally, a prediction success table, odds 

ratios, and goodness-of-fit statistics were calculated for the six-variable model.
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3.3 FINAL MODEL SELECTION

As already indicated, many variables were, or could be, calculated or derived 

from the available information, but development of the final model was done using 

seven variables. The seven-variables are discussed below and presented in Table 1.

The variable TROOT is used to detect mortality of trees with low relative vigour. 

To obtain a measure of a tree’s vigour for its size, its diameter at breast height (cm) is 

multiplied by its change in diameter at breast height (vigour). Further incorporating

•y
stand basal area (m /ha) into the variable allowed relative performance of a tree in 

relation to the stand in which it existed to be assessed. Because each plot was expected 

to have a different growing capacity (site quality), developmental stage, composition, 

stage of crown closure, and so on, it was important to minimize bias between sites by 

standardizing performance of a tree within its specific environment by using basal area.

The purpose of the TREE variable was to relate specific size of an individual 

understory ingrowth black spruce tree to other understory ingrowth black spruce trees in 

a stand. Understory individuals may commence shortly after stand initiation or at a later 

stand developmental stage. Regardless of the temporal point of initiation of any 

particular individual, all understory ingrowth black spruce individuals share a common 

trait, that is, they occupy a sub-canopy position in a stand. Because of this, size of each 

individual in relation to the size of other trees in a similar situation is important, because 

it is a relative assessment of a tree and of the stand in which it occurs. Several 

hypotheses have been made in the literature as regards tree size and its relationship to 

mortality. Waring (1987) has indicated that larger trees may by more susceptible to 

stress because of greater demands for water, respiration, and photosynthate.
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Table 1. Variables used in final model development.

Variable
Acronym

Variable
ID Variable Description*

TROOT

TREE

SQD2BA

DENBA

Idbh * din

VI
V ba

Third root of -  dbh multiplied by diameter increment -  and 
divided by stand basal area. Variable is intended to capture the
size and vigour of the tree within the stand._________________

dbh

V2
avsbingdbh

Individual tree dbh divided by average dbh of ingrowth black 
spruce for stand (avsbingdbh). Variable relates a particular tree 
to all the other understory ingrowth black spruce in the plot.

Idbh2

V3
ba

The square root o f -  individual tree dbh squared divided by basal 
area stand. Hypothesized to capture mortality of larger 
understory ingrowth individuals.____________________________

IngrowthDensity
BasalArea

OverstoryDensity
BasalArea

V4 Density of ingrowth divided by basal area of the stand, 
multiplied by density of overstory divided by stand basal area.

dbh2
DBHSQRD V5 Square of individual tree dbh. Variable proposed as being useful 

for detecting mortality of large trees.
dbh2

D2BA V6 ba
A modification of dbh2 incorporating stand basal area.

AVDBH V7
^  dbh 

h  n
Average dbh of all trees in the plot.

*dbh -  diameter at breast height (cm), din -  diameter increment measured at dbh (cm) for the 5-year period, ba — basal 
area (m2/ha), Ingrowth Density -stem  count of understory ingrowth individuals for the plot converted to a per ha 
value, Overstory Density -  stem count o f individuals in the plot that were not understory ingrowth individuals, 
converted to a per ha value, n -  the number of trees observed within the plot.

This is also likely the case for understory individuals. However, a larger understory 

individual may be better able to respond to a release opportunity than a smaller
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individual because of it physical properties (i.e. crown size and root capacity). So a 

smaller tree may have a higher survival probability under a dense canopy but be less 

favourably positioned to respond to a growth opportunity. Because of this, a tree in the 

understory must only be as big as necessary to survive in the understory. For smaller 

trees in an understory position it may be the case that they simply cannot acquire enough 

o f the necessities o f life to enable survival.

SQD2BA and D2BA are similar variables, differentiated by a simple square root 

transformation. In both cases the variables are intended to emphasize susceptibility of 

larger trees within their environment. A larger tree in a stand with a high basal area may 

face strong competition for light, nutrients, water and physical growing space, whereas a 

tree of the same size in a stand with a low (or lower) basal area faces reduced pressure 

for the same life sustaining variables. The intended effect of squaring the size of 

individual trees is to emphasize susceptibility of larger trees to competitive pressures. 

Standardizing the square of tree size with basal area allows competitive stress (stresses) 

induced by a stand upon a tree to be related to tree size. Since a stand with a lower basal 

area can be expected to have a reduced level o f competitive stresses, basal area is a good 

means o f incorporating stand pressures.

Both SQD2BA and D2BA are included in the model because they emphasize 

different tree patterns. As will be shown later, neither variable can be omitted without 

degrading the model.

AVDBH is intended to represent average diameter at breast height of all trees on 

a site, inclusive of stand density and basal area. A site may have trees with large or 

small diameters, but dense stands will have lower average tree diameters.
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A very basic problem with measuring total quantity of trees on a boreal mixed 

species site is the interaction between summation of the instance of existence for 

individual trees and summed planar area of all individuals considered at a standard 

height. An understory with a large number of individuals will not contribute 

significantly to total basal area. Both basal area and density fail to adequately convey 

stand conditions. They also both fail to convey a relationship between tree size and total 

number of trees present. Density may be high while basal area is low and vice versa. 

Additionally, neither measure considers structural complexity o f a stand, nor that 

different species do not contribute evenly (vis a vis stem diameter and crown 

diameter/length). In an attempt to partially rectify this problem, overstory and 

understory densities (stem counts per ha) are both divided by stand basal area to give 

stand level estimates of structural complexity, and tree size, for each stand structural 

component. The result was DENBA. The division o f density by basal area assigns each 

observed individual a portion of the planar area of the stand. The two are then 

multiplied together so that the difference between understory and overstory can be 

approximated as a single value. By accounting for two different structural components 

of the stand a better relationship between the understory and the overstory is developed.

DBHSQRD is a prevalent variable in the literature and is used to predict 

mortality o f larger individuals. Because the square o f size of individuals within a 

population is more emphatic of larger individuals (e.g., a non-linear increasing curve), 

the square o f size should allow a model to differentiate mortality for large individuals 

from small individuals. Since this is a possibility with the understory of complex stands 

as well as for the overstory, and as well as for simple stands, it is potentially a significant 

variable.
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Likelihood-Ratio and Wald Tests were used to determine which, if any, o f the 

final variables in the model were extraneous.

3.5 RESIDUAL ANALYSIS

Residuals of the selected model were examined graphically to determine if  there 

were any influential outliers and to see if  the model was adequate. Methods for 

detecting influential outliers in logistic regression are limited. Four types of residuals 

were calculated: Ordinary residuals, Pearson residuals, Studentized Pearson residuals 

and Deviance residuals.

The four types o f residuals were plotted against estimated probabilities o f the 

observations. Each type of residual was plotted against the estimated probability and a 

Lowess Smooth line was added. The purpose of a Lowess Smooth line in an 

examination o f residuals of a logistic regression model is to detect model inadequacy. If 

the line is approximately horizontal with zero intercept then the model is adequate. It is 

recognized that this is only one measure of model adequacy.

Next, changes in Pearson Chi-Square values were plotted against estimated 

probabilities. Outliers appear as high scores and are located high on the y-axis in 

comparison to the rest o f the data. Those data points thought to be outliers were 

eliminated and the model was re-estimated. In a similar technique the change in the 

deviance residuals were plotted against the estimated probabilities. The detection of 

outliers was similar and data points that were, potentially, outliers were eliminated in an 

iterative fashion starting with the highest score.
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As a last examination of the residuals, a graph of Hadi’s Influence Index was 

plotted against Studentized Pearson Residuals. Hadi’s Influence Index shows both 

potential o f a point to influence the regression (related to its leverage) and the 

studentized residual, which indicates whether a point exercises its potential (Velleman 

1988). Points found near either axis are not influential, while those found in the upper 

right quadrant of the display are considered to be strongly influential.

As a last step in graphically analysing the model, two final graphs were produced 

and are presented in the Results section. The first was of the estimated probabilities 

plotted against the expected value for a normal distribution, and the second was of the 

estimated probabilities plotted against the linear predictors.

3.6 MODEL USE WITH AN INDEPENDENT DATA SET

The next and final step in model testing was to use the model with an 

independent data set. Predictions of survival or mortality were made using the 

developed model and the independent data. The desired outcome was to demonstrate 

that the model is in fact robust and is capable of accurately predicting mortality of 

understory ingrowth black spruce individuals in boreal mixed species stands.
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4 RESULTS AND DISCUSSION

4.1 FINAL MODEL SELECTION

Table 2 contains p-values for each variable included in the seven-variable model, 

and each of the seven possible six-variable models. As a preliminary means of 

investigating performance of a variable within a model, the p-value is used to assess 

variable significance. Variable p-values of the seven-variable model indicate that 

DBHSQRD is potentially insignificant, however, it must be recognized that addition or 

subtraction of a variable has potential to affect the entire model, so each revised model 

must be considered separately.

Table 3, which lists score values for the Likelihood-Ratio and Wald Tests, 

indicates that the seven-variable model and each six-variable model are significantly 

different from a null model (a model with only a constant). This means that each model 

has some explanatory power. Both the Likelihood-Ratio Test (p=0.1571) and the Wald 

Test (p=0.1839) in Table 3 show that DBHSQRD is insignificant. Both test scores have 

p-values much greater than 0.05, indicating that the variable is insignificant.

Each of the seven possible six-variable models is compared to the seven-variable 

model under the null hypothesis that the six-variable model in question is not 

significantly different from the seven-variable model. For either the Likelihood-Ratio 

Test or the Wald Test if  the reported p-value is greater than 0.05 then the variable is 

potentially insignificant.
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Table 2. Coefficient p-values for seven-variable and six-variable models.

CONSTANT TROOT TREE SQD2BA DENBA DBHSQRD D2BA AVDBH
7 VM <0.0001 <0.0001 0.0016 <0.0001 <0.0001 0.1839 0.0102 0.0110
6 VM (TROOT) <0.0001 — 0.0065 <0.0001 <0.0001 0.2165 0.0000 0.0083
6 VM (TREE) <0.0001 <0.0001 0.0001 <0.0001 0.0005 0.2994 <0.0001
6 VM (SQD2BA) 0.0307 <0.0001 0.0572 <0.0001 0.0806 0.0433 0.0037
6 VM (DENBA) 0.0139 <0.0001 <0.0001 <0.0001 — 0.2516 0.3621 0.6959
6 VM (DBHSQRD) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 ------ <0.0001 0.0144
6 VM (D2BA) 0.0002 <0.0001 0.0041 0.0001 <0.0001 0.0047 ------ 0.0058
6 VM (AVDBH) 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.7388 0.0001 ------

♦The variable in brackets has been removed as a variable o f  the model.

Table 3. Likelihood-Ratio and Wald Test scores for seven-variable and six-variable models.
7 VM 6 VM* 6 VM 6 VM 6 VM 6 VM 6 VM 6 VM

(TROOT) (TREE) (SQD2BA) (DENBA) (DBHSQRD) (D2BA) (AVDBH)
LL(N) ■361.9746 -372.3811 -368.5518 -370.2289 -378.8681 -362.9747 -363.2740 -366.2965
LL(O) ■469.9469 -469.9469 -469.9469 -469.9469 -469.9469 -469.9469 -469.9469 -469.9469
LR Test (Null) 215.9446 195.1316 202.7901 199.4358 182.1574 213.9444 213.3456 207.3007
LR Test p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
LR (6v7) — 20.8130 13.1545 16.5088 33.7871 2.0002 2.5990 8.6439
LR (6v7) p-value — <0.0001 0.0003 <0.0001 <0.0001 0.1571 0.1069 0.0033
Wald — 18.1699 9.9459 22.2554 22.0739 1.7660 6.5955 6.4731
Wald p-value . . . <0.0001 0.0016 <0.0001 <0.0001 0.1839 0.0102 0.0110
Rho-Squared** 0.2298 0.2076 0.2158 0.2122 0.1938 0.2276 0.2270 0.2206
Correct Response 0.4479 0.4282 0.4352 0.4337 0.4294 0.4469 0.4456 0.4440
Correct Reference 0.8018 0.7948 0.7973 0.7968 0.7952 0.8015 0.8010 0.8004
Total Correct 0.7083 0.6979 0.7016 0.7009 0.6986 0.7078 0.7071 0.7063

♦The variable in brackets has been removed as a variable o f the model. 
♦♦McFadden’s Rho-Squared
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The Likelihood-Ratio Test rejects two of the six-variable models (6 VM 

(DBHSQRD) and 6 VM (D2BA)), while the Wald Test rejects one of the six-variable 

models (6 VM (DBHSQRD)). For the tested models and variables the removal o f any 

one of the variables TROOT, TREE, SQD2BA, DENBA or AVDBH affects the model 

significantly. The Likelihood-Ratio test thus indicates that the variables DBHSQRD and 

D2BA can be removed from the model without significantly affecting the model’s 

performance. The Wald Test does not reject the model with D2BA removed so further 

investigation is required. Also important to consider is that two variables should not be 

removed from contention simultaneously because each model is unique.

When DBHSQRD is removed as a variable of the model, the resultant six- 

variable model has all significant variable p-values as can be seen in the table row 

marked 6 VM (DBHSQRD) in Table 2. The Likelihood-Ratio and Wald Test scores for 

the six-variable model with DBHSQRD missing (Table 3) indicate that the model is not 

significantly different from the seven-variable model and as such DBHSQRD has no 

significant affect in the model.

This is a significant find because it may indicate that tree size does not have the 

same implications for understory trees as it does for overstory trees. Although tree size 

may still be an important predictor of mortality, larger understory ingrowth are not 

significantly more susceptible to mortality than smaller understory ingrowth, or at least 

not detectably so.

An additional observation about Table 2 is that both D2BA and AVDBH have p- 

values that fluctuate between significant and insignificant. Although, in the six-variable 

model where DBHSQRD is removed as a variable, both D2BA and AVDBH are 

significant variables. Referring again to the results of the Likelihood-Ratio and Wald
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Test scores (Table 3), it can be seen that the Likelihood-Ratio Test indicates no 

significant difference for the model when eliminating D2BA, while the Wald Test 

indicates that the elimination of D2BA produces significantly different results. Both the 

Likelihood-Ratio Test and the Wald Test indicate that the removal of AVDBH produces 

a model that is significantly different from the seven-variable model. For all other 

models, the Likelihood-Ratio Test and the Wald Test indicate that removal of the 

variable has a significant effect.

For the model where AVDBH is removed and DBHSQRD remains as a 

component of the model, it is noticeable that the p-value for DBHSQRD is large. A 

model was built with AVDBH and DBHSQRD as an interaction term (not presented 

here). The purpose of which was to see if the interaction between the two variables was 

significant. The p-values indicated that the interaction term was insignificant.

Consistent performers across the six-variable models were TROOT, TREE, 

SQD2BA and DENBA. There is some doubt cast as to the significance o f the variables 

DBHSQRD, D2BA and AVDBH. Other mortality modelling efforts have made use of 

DBHSQRD as a variable to predict mortality of larger individuals. The analysis has 

shown that the variable DBHSQRD appears to be a poor performer in general. A 

potential reason for this is that the system being examined is understory ingrowth and 

not whole stands. The value o f the variable is limited because the potential relationship 

between size and mortality has changed.

Based on the Wald Test and Likelihood-Ratio Test results, the variable 

DBHSQRD was dropped from further testing. The resulting six-variable model was 

then tested against each of the six possible five-variable models.
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The variable p-values for the six-variable model are presented in Table 4 along 

with the variable p-values for each possible five-variable model. The variable p-values 

remain significant with two-exceptions. In the first case, where SQD2BA is removed, 

both the constant and D2BA become insignificant variables. In the second case where 

DENBA is removed, AVDBH becomes an insignificant variable. This is the same effect 

that was seen when the six-variable models were being tested. A closer examination of 

the models using the Likelihood-Ratio and Wald Tests is required (Table 5).

One important piece o f information displayed by Table 4 is that all of the 

variables for the six-variable model have significant p-values. This is a first indication 

of a potentially significant model. Likelihood-Ratio Test scores for the six-variable 

model against the null model and each possible five-variable model against the six- 

variable model are displayed in Table 5. The Wald Test Scores for each five-variable 

model also indicate a rejection of the null hypothesis. According to both the Likelihood- 

Ratio Test and the Wald Test the omission of any one of the six remaining variables 

results in a model that performs significantly poorer than the six-variable model. This 

includes the five-variable models with D2BA and AVDBH removed.

It is important to note that the McFadden’s Rho-Squared value for the D2BA 

omitted model and the AVDBH omitted models, are the two highest scores of the six 

five-variable models presented. This does not mean that these two models provided 

better predictions but it does indicate that the fit of the curve to the data is superior when 

those two variables are included as variables. McFadden’s Rho-Squared for the six- 

variable model is the largest score indicating a better fit than any of the five-variable 

models.
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Since the six-variable model has significant variables (according to the p-values) 

and because the Likelihood-Ratio and Wald Tests indicate that eliminating a variable 

results in a degradation of the model, the six-variable model is selected as being 

acceptable. The model in the form already described (logistic) is presented in Table 6. 

The estimated coefficients for the selected model are presented in Table 7. Table 8 is 

the prediction success table for the selected six-variable model. The model has a correct 

prediction rate of 45%, a correct response rate o f 80% and a total correct prediction rate 

of 70%. The false reference rate (incorrectly classified as dead by the model) is 55.3% 

and the false response rate (incorrectly classified as alive by the model) is 20%. Success 

Index, as previously discussed, is the gain of the selected model over a purely random 

model (one in which the same probability of response is assigned to every observation). 

The selected model, as such, has an 18% gain for selecting mortality and a 6% gain for 

predicting survival. Although Table 8 lists prediction success, it does so using data from 

which the model was developed. While this is adequate for an initial examination of the 

model and is in itself informative, a similar prediction effort is necessary with an 

independent data set for an independent verification of the model.

As will be seen in section 4.3 many probabilities generated by the model are in 

the middle range (e.g., 0.40 to 0.60). This is an indication that the model was unable to 

differentiate status of a particular observation as being dead or alive. In future 

modelling efforts it may be appropriate to have a lower and an upper cut-off such that 

ambiguous trees and predictions are not included as components of the prediction 

success table. It may also be appropriate to further investigate those trees which have 

ambiguous probability values.
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Table 4. Coefficient p-values for six-variable and five-variable models.

CONSTANT TROOT TREE SQD2BA DENBA D2BA AVDBH
6 VM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0144
5 VM (TROOT) 0.0000 — 0.0002 0.0000 0.0000 0.0000 0.0108
5 VM (TREE) 0.0000 0.0001 — 0.0013 0.0000 0.0006 0.0001
5 VM (SQD2BA) 0.0598 0.0000 0.0088 — 0.0000 0.1297 0.0060
5 VM (DENBA) 0.0024 0.0000 0.0000 0.0000 — 0.0000 0.0980
5 VM (D2BA) 0.0023 0.0000 0.0003 0.0021 0.0000 — 0.0164
5 VM (AVDBH) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 —

Table 5. Likelihood-Ratio Test and Wald Test scores for six-variable and five-variable 
models.

6 VM 6 VM 6 VM 6 VM 6 VM 6 VM 6 VM
(TROOT) (TREE) (SQD2BA) (DENBA) (D2BA) (AVDBH)

LL(N) -362.9747 -373.2817 -373.8965 -372.4245 -380.3584 -367.0950 -366.3463
LL(O) -469.9469 -469.9469 -469.9469 -469.9469 -469.9469 -469.9469 -469.9469
LR Test Null 213.9444 193.3303 192.1008 195.0448 179.1770 205.7037 207.2010
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LR Test (5v6) — 20.6141 21.8436 18.8996 34.7674 8.2407 6.7433
p-value — 0.0000 0.0000 0.0000 0.0000 0.0041 0.0094
Wald Test — 17.2436 18.3493 22.3193 24.3344 22.8239 5.9872
Wald prob. — 0.0000 0.0000 0.0000 0.0000 0.0000 0.0144
Rho-Squared* 0.2276 0.2057 0.2044 0.2075 0.1906 0.2189 0.2205
Correct Response 0.4469 0.4275 0.4266 0.4295 0.4282 0.4392 0.4440
Correct Reference 0.8015 0.7945 0.7942 0.7952 0.7948 0.7987 0.8004
Total Correct 0.7078 0.6976 0.6971 0.6986 0.6979 0.7038 0.7063

♦McFadden’s Rho-Squared
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Table 6. Six-variable model.

exp A + A • 3idbh •din  
ba + A

dbh
msasbingdbh + A

I dbh2 
ba + A

inden Y  oden 
ba X  ba

+ A  + • SAdbh
ba

1 + exp A + A • 3
dbh * din

ba + A
dbh

msasbingdbh
|̂ bY

ba + A
inden

ba

V

A

oiien  ̂
ba + A ba

+ SAdbh

dbh is diameter at breast height; din is diameter increment measured at breast height; ba is stand basal area; inden is 
ingrowth density; oden is overstory density; SAdbh is stand average dbh -  See Table 1 for further information.

where
E(Yj) -  is the Expected Yj 
Y, -  is the binary response (0 = survival, 1 = dead) 
ji, -  is the probability associated with the expected response 
exp -  is the natural logarithm (2.728281...)
Po -  is the constant for the model 
P i ... P5 -  are the coefficients for each variable 
and the variables are as explained in Table 1.
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Table 7. Coefficient estimates for the six variables and the Constant of the six-variable 
model.

Variable Estimate
Constant 3.15309
TROOT -4.07188
TREE 2.68940

SQD2BA -12.37235
DENBA -0.000116
D2BA 5.57408

AVDBH -0.12754

In Table 8 Response refers to instances of mortality (1 ’s) and Reference refers to 

instances of survival (0’s).

Table 8. Prediction success table for the selected six-variable model.

Predicted Choice
Response Reference Actual Total

Actual Choice ^ onse Reference
96.08
118.92

118.92
480.08

215
599

Prediction Total 215 599 814
Correct 0.447 0.801
Total Correct 0.708
Sensitivity
Specificity

0.447
0.801

False Reference 0.553
False Response 0.199
Success Index 0.183 0.066

The odds ratios and the confidence interval for each variable in the six-variable 

model are presented in Table 9. The odds ratios indicate that each variable significantly 

affects the odds ratio within the model. The odds ratio for a variable is the

multiplicative factor by which the odds 

increases by one unit.

' _ s _ ' change when the independent variable
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Table 9. Odds Ratios.

95 % Bounds
Variable Odds Ratio Upper Lower
TROOT
TREE
SQD2BA
DENBA
D2BA
AVDBH

0.0170
14.7229

0.000001
0.9999

263.5073
0.8803

0.1165
50.3974
0.0007
0.9999

2593.7900
0.9749

0.0025
4.3011
0.0000
0.9998

26.7702
0.7948

The odds ratio for a variable is significant when the upper and lower confidence 

interval do not include the number 1.0. When the upper and lower bounds are lower 

than 1.0, the odds ratio significantly lowers the odds and when it is greater than 1.0, it 

significantly increases the odds. The odds ratio value for a particular value is partially 

dependent on the size and magnitude of the variable in question, and a very small or 

very large odds ratio value does not indicate better or worse performance. For example, 

the variable SQD2BA has a very small odds ratio value while DENBA has a value very 

close to 1.0. The smallest value of SQD2BA in the data set (not shown) is 0.1744 while 

the largest value for SQD2BA in the data set is 1.8462. The spread is not large and the 

numbers are not large, so a unit change of 1.0 will produce a larger change in the odds 

than a variable with a larger spread of values. This is reflected in the odds ratio which 

has a very small number that will result in substantial change in the odds for even a 

small increase in the odds ratio. DENBA, conversely has a data spread in the data set of 

15.7 to 36249.1 (not shown), so both the spread of the data and the size of the numbers 

is large. A unit change of 1.0 for DENBA will produce a smaller multiplicative change 

for the odds. This is o f course reflected in the odds ratio value of 0.9999 which will
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produce only small changes in the odds with a unit change of 1.0 in the independent 

variable.

Deciles of Risk (goodness-of-fit statistics) are used to make sure that the model 

fits the data and that the results are not unduly influenced by a few observations. In this 

procedure 10 categories (bins) from 0 to 1 are developed and the estimated probability 

for each record is allocated to one of the 10 categories. The size of the categories and 

the allocation procedure can be determined by the modeller. Two different categories 

were used in two different deciles of risk analyses. One involved even separation o f the 

categories, which ignored the spread of the data, while the second allocated 

approximately equal numbers of observations to each category and from this determined 

the spread size of the category.

For the first deciles of risk table presented in Table 10 the category separation 

values are equal intervals from 0 to 1 in increments o f 0.1. For each category the 

responses observed and responses expected are listed along with references observed 

and references expected. The average probability o f the predicted probabilities for each 

observation is included for each bin. Also included as a component o f Table 10 are the 

results of the goodness-of-fit statistics.

Although the Hosmer-Lemeshow Test is the generally preferred test in mortality 

studies, three goodness-of-fit statistics are provided here for the interested reader. The 

Hosmer-Lemeshow Test indicates that there are no serious deviations between observed 

and expected values for the 10 categories. The Pearson, and Deviance goodness-of-fit 

statistics confirm this. The alternative hypothesis that there are significant differences 

between observed and expected values for each category is rejected in favour o f the null
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Table 10. Deciles of Risk with category separations based on equal intervals.

Statistic p-value df
H - L * 10.22 0.25 8
Pearson 765.55 0.85 807
Deviance 725.95 0.98 807

Category 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resp Obs 14 18 27 29 44 30 14 20 18 1
Resp Exp 8.45 24.39 29.58 30.27 41.22 27.8 13.43 23.03 15.92 0.93
Ref Obs 212 147 94 57 49 21 7 11 1 0
Ref Exp 217.55 140.61 91.42 55.73 51.78 23.2 7.57 7.97 3.08 0.07
Avg Prob 0.04 0.15 0.24 0.35 0.44 0.55 0.64 0.74 0.84 0.93
Total O/E 226 165 121 86 93 51 21 31 19 1

*Hosmer-Lemeshow
Resp Obs -  Responses Observed (1 ’s = mortality)
Resp Exp -  Responses Expected (according to the model)
Ref Obs — Reference Observations (0’s = survival)
Ref Exp -  References Expected (according to the model)
Avg Prob -  Average Probability (The average probability o f the observed values in the category)
Total O/E -  The total number o f  values in the category (either observed or expected)

hypothesis for all three tests. The p-value for each test is greater than or equal to 0.25, 

which is much larger than the cut-off o f 0.05.

Table 10 is heavily skewed in favour of the lower decile categories. Almost 28% 

of the predictions fall in the first category interval (0 -  0.1) and only one prediction falls 

in the final category interval (0.9 -  1.0). The declining trend from zero to one would 

tend to indicate that trees are either obvious survival trees, or they are closer to the 

middle o f the zero-one probability interval. A further consideration in future research 

could be given to whether or not the cut- off value of 0.5 is the suitable value or if  there 

is a better ‘optimal’ value.
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Table 11. Deciles o f Risk based on equal counts per category.

Statistic p-value df
H - L *
Pearson
Deviance

8.58
765.55
725.95

0.38
0.85
0.98

8
807
807

Category 0.013 0.058 0.112 0.155 0.213 0.275 0.368 0.442 0.577 1
Resp Obs 0 5 10 10 15 12 28 31 45 59
Resp Exp 0.64 2.67 6.6 11.11 14.91 19.23 26.37 30.55 43.74 59.18
Ref Obs 79 78 68 74 67 69 54 44 43 23
Ref Exp 78.36 80.33 71.4 72.89 67.09 61.77 55.63 44.45 44.26 22.82
Avg Prob 0.01 0.03 0.08 0.13 0.18 0.24 0.32 0.41 0.5 0.72
Total O/E 79 83 78 84 82 81 82 75 88 82

♦Hosmer-Lemeshow

The second deciles of risk table (Table 11) uses equal counts (observations) per 

bin, although the count is an approximation. The category separator values are 

determined from the observations. This second deciles of risk table is presented to see if 

the equal interval method of the previous tables has produced erroneous results. The 

advantage to assigning an approximately equal number of observations to each bin is 

that it allows the variability inherent to the data to be expressed within the test. As seen 

in Table 11 the probability values for each observation are closer to 0 than to 1 

(obviously there are many more observations o f survival than of mortality). The ninth 

category contains response values whose probability is greater than 0.442 and less than 

or equal to 0.577, while the tenth category contains variables between 0.577 and 1.0. 

Since each bin contains roughly an equal number of observations, it is possible to see in 

Table 11 that the data are not uniformly distributed between 0 and 1.0. For this reason 

including the second deciles of risk table is warranted to ensure that no one table is 

chosen to mask significant test results and to ensure that the variability of the data does
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not preclude observations of poor fit. The goodness-of-fit statistics (Tables 10 and 11) 

fail to reject the null hypothesis and it is concluded that there are no significant 

differences between the observed and the expected values.

4.2 GRAPHICAL EXAMINATION OF THE RESIDUALS

In this section, residuals of the developed model are examined to determine if  

there are any influential outliers, and to determine if  the model is adequate. Four types 

of residuals are calculated and examined for such purposes (Ordinary residuals, Pearson 

residuals, Studentized Pearson residuals (also called Standardized Pearson residuals), 

and Deviance residuals. Because residuals can take on only one of two values, those 

predictions that are mortality observations are positive numbers and survival 

observations are negative numbers.

Four graphs of residuals plotted against estimated probabilities are presented 

with Lowess Smooth Lines added (Figures 1, 2, 3 and 4) to examine the residuals for 

outliers. A Lowess smooth line uses a weighted average for a span of data to indicate 

potential trends in the data.

As is evident in Figure 1, showing ordinary residuals plotted against estimated 

probability, there are two linear trends o f residuals with each line of residuals having a 

slope o f —1. For logistic regression, as already discussed, the residuals can take on only 

one of two values at any given point, either 1 -  n i or 0 -  Ki (Steinberg and Colla 2005). 

Similar patterns are seen in Figures 2, 3 and 4. The residuals seen in those figures are 

calculated in a different manner than ordinary residuals (see Kutner et al. 2005, 

Steinberg and Colla 2005). One obvious deviation for the Studentized Pearson
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Figure 1. Ordinary residuals against estimated probabilities with Lowess Smooth (cut
off value of 0.5).
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Figure 2. Pearson residuals against estimated probabilities with Lowess Smooth (cut-off 
value of 0.5).
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Figure 3. Studentized Pearson residuals against estimated probabilities with Lowess 
Smooth (cut-off value of 0.5).

Mortality

Lowess Smooth

Survival

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

Mortality

Lowess Smooth

Survival

3  I I 1________ 1________ I________ !________ 1________ !________ 1________

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Estimated Probability

Figure 4. Deviance residuals against estimated probabilities with Lowess Smooth (cut
off value of 0.5).

Residuals versus the Pearson Residuals (Figure 2 versus Figure 3) occurs in the 

incorrect survival area with an estimated probability of about 0.725 and a Studentized 

Pearson Residual of about -1.75. It appears as a deviation from the observed trend. The 

reason for the deviation is unknown as is the importance of the deviation.

In ordinary regression, residual plots are useful for diagnosing model 

inadequacy, non-constant variance, and the presence of outliers. However, in logistic 

regression, in general, only detection of model inadequacy is pursued (Steinberg and 

Colla 2005). Thus, detection of outliers is a difficult task in logistic regression.
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A Lowess smooth of the plot o f the residuals against the estimated probability (or 

against the linear predictor) should result in an approximately horizontal line with zero 

intercept, with any significant departure suggesting an inadequate model (Steinberg and 

Colla 2005). In each of the four graphs the upper linear trend is the mortality residual 

trend and the lower linear trend is the survival residual trend and the nearly horizontal 

line is the Lowess Smooth Line.

Also appropriate is to plot the same four types of residuals against the linear 

predictor. For graphs of residuals against the linear predictor see Appendices I, II, III

and IV. The linear predictor is simply H\ where n  = loge Although not1 A\ - n\ y

discussed further, the four graphs of residuals against the linear predictor produce mildly 

convex curves, which are similar to the graphs plotted against the estimated probability. 

They too do not warrant a conclusion of model inadequacy.

The graphs presented in Figures 1,2,3 and 4 do not provide any conclusive 

reasons for eliminating an observation. That is to say there are no observations that can 

conclusively be declared outliers. Each Lowess Smooth line is approximately 

horizontal. Deviation from horizontality occurs where there are fewer observations, 

likely permitting the line curve. Figures 1 through 4 indicate that the model is adequate 

and that there are no outliers.

In order to further examine the possibility of problematic outliers, two graphs are 

presented (Figures 5 and 6). The first is change in Pearson Chi-Square values (called 

DELPSTAT in Systat). These are plotted against estimated probabilities and are shown 

in Figure 5. The linear trend that begins high on the y-axis and decreases as it progress 

along the x-axis are mortality predictions. The other linear trend is survival predictions.
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It can be seen from this graph that there are potentially some outliers as seen by the very 

large deviation values given by the Pearson Chi-Square value on the left side o f the 

graph in the range of very small probability values. There is also, potentially, an outlier 

on the right hand side of the graph with an estimated probability value a little smaller 

than 0.9. To see if  the residuals with a large y-axis value are in fact outliers the model 

input data is modified by first eliminating the largest DELPSTAT value in the input data 

set and then by eliminating all DELPSTAT values greater than 10. This procedure was 

followed by re-estimating the DELPSTAT values and re-graphing residuals at each 

iterative stage of observation elimination. At each successive iteration of residual 

removal, model fit improved and in some cases dramatically. Also, the log-likelihood 

value increased substantially which is commensurate with expectations for an increasing 

fit statistic, however, the prediction success table did not indicate more correct 

predictions were made. The prediction success table indicated that the proportion of
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Figure 5. Change in Pearson Chi-Square plotted against the estimated probability.

correct predictions increased but the absolute number of correct predictions remained

unchanged. The explanation for this is that elimination of observations led to a model

that was over-parameterized (Penner 2006 pers. comm.). To further examine data for

outliers a second graph was produced to examine residuals. Figure 6 is change in

deviance residual values plotted against estimated probability. Figure 6 has two trend

lines, each line increases at a steady rate towards the extreme end values of the

probability distribution (0 and 1). Figure 6 does not show any particular necessity for

eliminating observations as the residuals are evenly distributed.

%

Mortality

Survival

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

0
Oc
CD
>
0

O

0
O)c
0

_c
O

7

6

5
Mortality

4

3
Survival

2

1

 I l I I i i i i 1J 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Estimated Probability

Figure 6. Change in Deviation plotted against the estimated probability.

As a last examination of residuals, a graph of Hadi’s Influence Index plotted 

against Studentized Pearson Residuals, with which the Index was constructed, was 

developed as shown in Figure 7. This graph shows both the potential of a point to 

influence the regression (related to its leverage) and a studentized residual, which 

indicates whether the point exercises its potential (Velleman 1988). Points found near 

either axis are not influential, while those found in the upper right quadrant of the 

display are considered to be strongly influential.
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Figure 7. Hadi's Potential Residual Plot for Studentized Pearson residuals.

Hadi’s Influence Index was calculated using the leverage equations found in 

Hosmer and Lemeshow (2000) and the Studentized Pearson Residuals. No points 

appear to be highly influential. The observation located at approximately x = 1.75 and y 

= 0.16 when removed as an observation from the data set had no effect on the model 

residuals, and was, therefore, retained as a component of the model. Because three 

separate graphs indicated no outliers, no further examination of residuals for outliers was 

conducted, and the data set was left intact with no observations removed.
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As a final step in graphically analysing the data, two final graphs are produced. 

The first is estimated probabilities plotted against expected value for a normal 

distribution (Figure 8), and the second is estimated probabilities plotted against linear 

predictors (Figure 9). As can be seen for both Figures 8 and 9, estimated probabilities 

are both sigmoidal and monotonic.

Figure 9 is similar to Figure 8. The upper and lower tails, of Figure 9 are 

perhaps more representative of the actual distribution of observations. Figure 8 shows
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Figure 8. Estimate Probabilities against expected values for the Normal Distribution.
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Figure 9 Estimated Probability against Linear Predictor.

that there is a long tail in the lower probability range that almost touches zero. In the 

upper probability range the tail becomes separated, and fails to reach the upper limit of 

one. This is potentially a result of fewer observations of mortality and some mild 

disparity surrounding the calculation of parameters based on the available data. No 

problems are perceived from the shape of Figure 8. Finally in regard to Figure 8, it 

should be noted that it is almost linear between the tails as it is predicted to be.
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4 3  RESULTS OF MODEL USE WITH AN INDEPENDENT DATA SET

An independent data set was used with the developed model to see how the 

model performs with data other than the developmental data. Because the independent 

data set did not contain identical information a direct test of the model was not possible. 

Instead, several modifications to the independent data set were made and are described 

below.

The independent data set (see Methods and Materials) used to examine the 

developed model had two deficiencies. First was an inability to extract ingrowth data 

from the data set. A second problem was an inability to calculate the necessary 

variables. The data shortcomings affected two variables (TREE and DENBA) in 

particular. The variable TREE (see Table 1) requires average black spruce understory 

ingrowth diameter at breast height (avsbingdbh), and DENBA (see Table 1) requires 

understory ingrowth density of black spruce.

In the first instance, a decision was made to use all black spruce classifiable as 

understory, but not necessarily ingrowth understory. This was done by examining 

average diameter at breast height for all trees in a stand and average diameter at breast 

height for all black spruce trees in a plot. If average tree size was small (e.g., < 10  cm) 

the entire stand was eliminated from consideration under the contention that it was a 

juvenile stand. The primary potential shortcoming, and, therefore, risk to the test, was 

that it might be possible for highly suppressed individuals to be a component o f the test 

data, because trees did not have to grow into the plot, they merely had to be smaller 

individuals. In the developmental data set the trees had to grow into the plot and were 

therefore unlikely to be suppressed individuals of the original stand.
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Second, input variables were changed to provide approximate, albeit relative, 

relations between data. The TREE variable was modified in two ways. The first was by 

using average black spruce dbh for the stand in place o f average understory ingrowth 

dbh (avsbingdbh) and then by using the square root of average black spruce dbh for the 

stand. Since avsbingdbh can be difficult to calculate it does not seem unreasonable to 

use a whole stand measurement instead of a structural component of a stand as a means 

of testing the model or indeed as a component o f a model.

The variable DENBA was also modified. The initial modification involved 

using black spruce density for the whole stand instead of understory ingrowth density. It 

was also modified by dropping the component involving understory ingrowth density 

divided by basal area and only retaining that portion of the variable using total stand 

density divided by basal area.

The primary argument regarding validity of modifying the input data and 

variables, as a suitable method, is that it does not drastically alter the model being tested 

and the data are similar in scope to the developmental data. It also approximates a data 

selection procedure that might be taken for validating a model developed based on broad 

diameter classes (e.g. 5 cm or 10 cm classes), or a model developed based on below 

average tree size for either the stand or the species. Pursuant to the above process, data 

used in the test was also limited to the same size range (dbh) as the model development 

data (in this case only trees less than or equal to 8.3 cm in diameter at breast height were 

eligible because 8.3 cm was the largest tree in the development data). All other 

variables such as diameter increment, basal area, average dbh and density remained 

unrestricted in their range even if  it exceeded that of the development data set. Stands 

used in testing were still required to be mixed species stands.
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A direct test of the model with an independent data set was not possible, as 

stipulated above. The alternative as presented here is a modified data set used as a proxy 

to the data. The result of the above modifications was four variants of the independent 

data set. Varl uses proxies o f the missing data for TREE and DENBA. In the case of 

the TREE variable, average black spruce dbh was used instead of average black spruce 

understory ingrowth dbh. For the DENBA variable, total black spruce density was used 

in place of ingrowth black spruce density. Var2 uses a TREE variable with the square 

root of average black spruce dbh in the denominator. The DENBA variable remained as 

in V arl. Var3 used the TREE variable outlined in Varl while DENBA used total stand 

density divided by total stand basal area. Var4 used the modified TREE variable as 

described in Var2 and the modified DENBA variable as described in Var3.

The next step was to take the four data variants and make predictions about 

mortality or survival using the initially developed model and the estimated coefficients. 

The results are shown in Table 12, which provides information on how well or how 

poorly the developed model works on an independent data set.

The first four rows in Table 15 list the number of correct and incorrect mortality 

and survival predictions. The fifth row labelled total correct is a count of correct 

mortality and survival predictions, while the sixth row labelled total incorrect is a count 

of incorrect mortality and survival predictions. The eighth row labelled correct mortality 

percentage is the percentage o f correct mortality predictions. Likewise, the ninth row 

labelled correct survival percentage is the percentage of correct survival predictions.

The final row (Total Correct %) lists the percentage of total correct predictions for both 

survival and mortality.
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Table 12. Prediction results made using developed model for four data variants.

Varl Var2 Var3 Var4
Correct Mortality Count 2 217 5 279
Correct Survival Count 1201 859 1200 796

Incorrect Mortality Count 953 0 0 0
Incorrect Survival Count 1 1081 952 1082

Total Correct 1203 1076 1205 1075
Total Incorrect 954 1081 952 1082

Total Predictions 2157 2157 2157 2157
Correct Mortality % 0.21 22.7 0.5 29.2
Correct Survival % 99.9 71.5 99.8 66.2

Incorrect Mortality % 99.8 0.0 0.0 0.0
Incorrect Survival % 0.08 89.9 79.2 90.0

Total Correct % 55.8 50.0 55.9 49.8

Varl and Var3 have a low number of correct mortality predictions. Both Varl 

and Var3 have the highest correct survival predictions possibly because they fail to 

predict mortality. Var2 and Var4 have the highest correct mortality predictions with 

22.7% and 29.2% respectively. Those two variants also have the lowest correct survival 

predictions with 71.5% (Var2) and 66.2% (Var4). What can be seen from these results 

is that the model form is capable o f being transferred to a different data set.

The developed model had a correct mortality prediction rate of 45%, while the 

best variant has a correct mortality rate of 29.2%. Var2, Var3 and Var4, have zero 

instances of incorrect mortality predictions. All of the variants except Varl have a high 

percentage of incorrect survival predictions. It is obvious from this that fiirther testing 

of the model needs to take place in order to determine how to improve its predictive 

ability.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

This thesis focused on modelling mortality o f understory ingrowth black spruce 

trees in mixed species stands of Boreal Northern Ontario. Objectives were to develop a 

mortality model capable of predicting mortality o f understory ingrowth black spruce 

trees in mixed species stands of the boreal forest and to improve understanding of forest 

stand dynamics in mixed species stands.

The mortality results obtained in this thesis are comparable to other mortality 

studies in the literature. This study had 45% correct mortality and 71% correct survival 

predictions for the development data, and 23% and 30% correct mortality predictions 

and 72% and 66% correct survival predictions for the independent data set (Var2 and 

Var4). Bigler and Bugmann (2003) achieved 80% total correct classification and 71- 

81% correct mortality classification for a Norway spruce (Picea abies (L.) Karst) 

mortality model. In a study by Dobbertin and Brang (2001) 33% of the dead trees were 

correctly predicted to die in the calibration data set and 57% in the validation data set. 

Monserud (1976) developed a mortality model that was able to correctly classify 88% of 

the live trees and 35% of the dead trees. Dobbertin and Biging (1998) used a 

classification and regression tree (CART) to model mortality. They achieved 28-36% 

mortality prediction accuracy for ponderosa pine (Pinus ponderosa Dougl. ex Laws.) 

and 11-17% mortality predication accuracy for white fir (Abies doncolor (Gord &
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Glend.) Lindl. ex Hildebr.). Although, the predictive results of this particular modelling 

effort have produced results as good or better then those found in the literature, more 

work is needed. An extension of this thesis could include the development of better 

variables, the acquisition of more data, and more rigorous testing of the developed 

model.

Two variables were used in an attempt to explicitly model stand structure as a 

component of a mortality model. One variable in particular, TREE, which relates tree 

size to the average size of other trees in a similar structural location, was found to be 

important to predicting mortality. A second variable, DENBA, which relates overstory 

and understory density and basal area, was found to have some influence on the 

prediction of mortality. From the model results and the two variables mentioned above 

it can be seen that further examination of stand structure as a component of predicting 

and explaining black spruce mortality is warranted.

5.2 RECOMMENDATIONS

A question which is suitable for further research, is whether or not the 

measurements of life and life processes are the most suitable for predicting mortality, or 

are there better measures o f death? Is it possible to directly measure regular and 

irregular mortality?

As an aid to viewing and detecting mortality, delineation of stand structures, 

such as understory and ingrowth, or saplings and poles, within a complex stand can lead 

to a greater ability to model mortality. Are multiple models for a single species 

necessary for complex stands?
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Modelling mortality o f individuals where cause o f mortality is implicit and not 

explicit, results in development of variables that detect mortality as observable 

characteristics of individual trees and the system within which they reside. A 

recommendation for further research efforts is to incorporate the collection of the cause 

of death in a permanent sample plot system.

The results obtained in this study suggest that the primary problem with 

detecting mortality is an insufficient quantity of mortality data. This is not to be 

confused with an insufficient amount of growth and yield data. Rather it refers to a lack 

of data about causal agents and the point in time at which a tree can be declared dead.

For future work the collection of better mortality indicators is recommended as well as 

the collection and utilization of variables that are more readily available. For example 

using whole stand average black spruce dbh instead of understory ingrowth average 

black spruce dbh could improve the ease of model use.

Perhaps the most important recommendation to stem from this thesis would be to 

improve the model testing stage. A lot can be gained from such an effort. In particular a 

better understanding variables, their interactions and deficiencies could be achieved. 

However, the modelling effort, was itself, one of the most important components of the 

thesis.
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Figure 10. Ordinary Residuals Against Linear Predictor with Lowess Smooth Line
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APPENDIX II
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Figure 11. Pearson Residuals Against Linear Predictor with Lowess Smooth Line
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APPENDIX III
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Figure 12. Studentized Pearson Residuals Against Linear Predictor with Lowess 
Smooth Line
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APPENDIX IV
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Figure 13. Deviance Residuals Against Linear Predictor with Lowess Smooth Line
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