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Abstract

The Paleoproterozoic Rove and Virginia Formations are lithostratigraphicaliy and 
chronostratigraphically correlative units which comprise the upper sedimentary strata in 
the Animikie basin. They sharply overlie an intensely altered zone within the upper 
Gunflint and Biwabik iron formations which was subaerially exposed by compressional 
forces during the Penokean Orogeny. Dating of volcaniclastic zircons from the upper 
Gunflint yielded a pre-Penokean age of 1878 Ma. Tuffaceous layers very near the base 
of the Rove and Virginia Formations provided U-Pb zircon ages of approximately 1835 
Ma placing commencement of sedimentation into the newly resubmerged basin during 
the final stages o f Penokean igneous activity.

This study involved examination of 3200 m of drill core from eleven continuously 
drilled holes and one twiced drilled hole extending over 424 km from south of Duluth to 
south of Thunder Bay. Observation of the lithofacies present and their stratigraphie 
relationships provided insight into the depositional environment as well as the tectonic 
regime operating at the time.

The basal Rove and Virginia Formations were deposited as transgression 
progressed across the depressed basinal area. They consist of black, carbonaceous shale 
with thin interbeds of siltstone, very-fine grained sandstone and friable green tuffaceous 
layers, possibly contributed by volcanic activity within the Penokean terrain. From 
approximately 5 m above the base, siltstone and sandstone layers gradually diminish in 
frequency upward, until the succession is almost completely dominated by 
approximately 100 to 150 m of fissile black shale. Microscopic examination of thin 
sections of this unit revealed the presence of very thin shale laminae and other laminae 
composed of angular silt grains or microlayers consisting of carbon. This sediment- 
starved, condensed sequence developed with increasing water depth, and with anoxic 
conditions probably caused by high organic loading in the bottom sediments. A siltstone 
and very-fine grained sandstone-rich unit traceable across the basin occurs midway 
through the shale-dominated succession. This coarser unit thickens near both the northern 
and southern margins of the basin. Above it another coarser-grained interval within the 
shale-dominated succession is observed in the southern third of the basin, probably 
representing sediment contributed by Penokean sources to the south. A gradational 
transition between the shale and an overlying sandstone-shale unit occurs over 80 m in 
the north, thinning to the south. The upper sandstone-shale unit varies in thickness, with a 
maximum of 350 m, and consists of over one hundred individual coarsening upwards 
parasequences. The individual packages are composed of graded, commonly massive, 
fine-grained sandstones separated by shale layers millimetres to centimetres thick. Shale 
units separating the parasequences are decimeters to one or two meters in thickness. The 
sandstone-shale assemblage fines to the south. Approximately 500 m above the base of 
the section the uppermost unit is dominated by lenticular bedding of fine-grained 
sandstones in the black shale, with both current and wave ripples present. The entire 
succession represents the transition from a sediment-starved basin, with exceedingly slow 
deposition rates, to active deltaic progradation with sediment probably derived from the 
Trans-Hudson orogenic zone to the north.

V
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CHAPTER 1: INTRODUCTION

1.1 Introduction

The Paleoproterozoic Rove and Virginia Formations comprise the upper 

units of a series of chemical and clastic sediments which were deposited 

approximately 1.8 billion years ago in a shelf-slope setting within the Animikie 

basin. The elongate Animikie basin covers the southern margin of Superior 

Province in east-central and northern Minnesota, adjacent parts of Ontario, 

northern Wisconsin and the northern peninsula of Michigan (Morey, 1983)(Fig.1). 

Exposures occur within an east-trending oval-shaped area of approximately 700 

km by 400 km. The original size of the basin is indeterminate due to partial 

removal by erosion, with other portions covered by younger Proterozoic and 

Phanerozoic strata.

Subsidence, due to extensional forces along the southern margin of the 

Superior Province allowed the Animikie Sea to spread slowly across the low-lying 

land mass, initiating sedimentation in a back-arc basin environment (Hemming, 

1994; Kissin and Fralick, 1994; Hemming et al., 1995; Pufahl and Fralick, 1995; 

Pufahl, 1996). Deposition of a basal sequence of shallow-water clastic 

sediments comprising the Kakabeka Formation on the Gunflint range, Pokegama 

Quartzite on the Mesabi range and Mahnoman Formation on the Cuyuna range 

followed. The argillite, quartzite and conglomerate developed as a southward 

thickening wedge of shallow marine, fine-grained elastics fringed by a thin strand-
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line deposit of sandstone and conglomerate. Evidence of tidal activity is 

ubiquitous in the nearshore deposits (Ojakangas, 1983).

A fairly abrupt change to a chemical depositional regime produced the 

Gunflint, Biwabik, and Trommald iron formations on the Gunflint, Mesabi, and 

Cuyuna ranges respectively (Fig. 2). Several horizons of volcanic material 

within the iron formation indicate the region was volcanically active at the time 

(Goodwin, 1956, Hassler and Simonson, 1989; Kissin and Fralick, 1994). Uplift 

of the basin with subaerial exposure (Addison et al., 2005) was followed by 

resubmergence and a transition to a clastic depositional regime in a foreland 

basin (Hemming et al.,1995).

The Rove Formation on the Gunflint range, Virginia Formation on the 

Mesabi range. Rabbit Lake Formation on the Cuyuna range, and Thomson 

Formation in east-central Minnesota comprise a succession of intercalated black 

to dark gray mudstone, siltstone and graywacke, with lesser amounts of 

quartzite, limestone, and several types of iron formation that record deposition 

during the foreland stage of the basin (Fig. 2). The units form a gently dipping 

homocline striking east-northeast and dipping 5° to 15° to the south. The 

homoclinal structure is locally interrupted by faults and southwest plunging folds 

(Lucente and Morey, 1983). Penokean deformation caused intense folding in the 

south. The Virginia Formation forms the majority of the upper Mesabi range and 

is inferred to extend southward beneath a thick mantle of drift to east-central 

Minnesota where it reappears as the Thomson Formation. Rocks of the 

Thomson Formation extend westward to the Cuyuna range where they are called
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the Rabbit Lake Formation. The Rove Formation, as exposed along the 

international boundary in Minnesota, is separated from the other middle 

Precambrian rocks by approximately 75 km of Middle Keweenawan gabbroic 

intrusives. The Rove is calculated to be at least 975 m thick in Minnesota 

(Morey, 1967). Actual thickness cannot be determined accurately as the top of 

the Rove-Virginia-Thompson-Rabbit Lake assemblage has been erosively 

removed.

O n t a r i o
Closely Spaced Drillholes

GUNFLINT

U.S.A.

MESABI
\ MARQUETTE

T hunder B ay

r. GOGEBIC
CUYUN

N

A
T .F .n F .N n

rocks younger than 
early Proterozoic 
Penokean plutonics 
and volcanics
early Proterozoic 
rocks, BIF in black

A rchean greenstone 
granite terrane

Archcan gneiss tcrranc

Fig. 1. Regional Geology of the study area (Gunflint and Mesabi ranges) 
and related rocks to the south-east. Sedimentary Rocks deposited in the 
Animikie basin are represented by the early Proterozoic rocks, BIF 
(Banded Iron Formation) in black (Pufahl and Fralick, 2004).
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Fig. 2. Cross section from the Archean Gneiss through the Gunflint Formation and up to 
and including the lower argillaceous and transitional zone of the Rove Formation (Poulton 
eta l., 2004)
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1.2 Regional Geologic Setting

The Animikie basin was one of several basins that formed over and 

approximately parallel to the Great Lakes tectonic zone (Morey, 1983) which 

extends eastward more than 1200 km from central south Dakota to the Grenville 

Front in eastern Ontario. The northern part of the basin is underlain by Archean 

greenstone-granite terrane (2.75 -2.6 Ga) while the southern part is underlain by 

migmatitic gneiss and amphibolite (3.6 Ga). These two terranes were juxtaposed 

along the Great Lakes tectonic zone during the Neoarchean (Sims et al., 1989). 

The southern boundary of the basin consists of a mostly coeval assemblage of 

dominantly mafic to felsic volcanics and intrusives which form an east-trending 

belt across much of north-central Wisconsin (Sims et al., 1989).

During the Paleoproterozoic (2.5-1.8 Ga) as the Superior Province moved 

toward the hinge of a northward-dipping subduction zone (Van Wyck and 

Johnson, 1997), extensional forces thinned the crust along its southern margin 

producing a shallow back-arc basin (Hemming et al., 1995; Pufahl and Fralick, 

1995). A thin discontinuous basal conglomerate facies 0-15 m thick is thought to 

have formed prior to transgression of the Animikie Sea (Ojakangas, 1983). The 

clasts consist of subrounded to rounded cobbles of underlying Archean bedrock 

and vein quartz, and were produced by residual in-situ weathering coupled with 

minor fluvial activity (Ojakangas, 1983). They occur in small low-relief 

depressions on a peneplaned surface. Thicker accumulations may have been 

deposited by fluvial action. Some reworking of the conglomerate occurred as
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transgression progressed. Deposition of finer grained sediment of the Pokegama 

and Palms Formations succeeded the basal conglomerate. Tidal influence is 

evidenced by bimodal-bipolar paleocurrent directions, sedimentary structures, 

facies relationships, and mineralogical maturity of the sediment (Ojakangas, 

1983). Ojakangas (1983) also showed that coastal, tidal and shallow marine 

facies were deposited side by side on the broad, shallow, slowly subsiding shelf 

rimming the basin, and stacked vertically with progressive transgression. Muds 

deposited from suspension form shales of the upper tidal flat, the most proximal 

marine facies. These were succeeded by associated interbeds of mud, silt, and 

sand, products of deposition from alternating bed load and suspension 

processes. Wavy, lenticular, flaser, and parallel laminated beds are common in 

these intertidal flats. The lower tidal flat and subtidal facies are composed 

primarily of parallel laminated or planar cross-stratified sandstone beds. The 

sands probably accumulated as lower tidal sand flats or as subtidal sand shoals 

in water above wave base, for symmetrical ripple marks are abundant 

(Ojakangas, 1983). While the Pokegama and Palms quartzites accumulated in 

tidally influenced nearshore settings, the Mahnomen Formation developed 

simultaneously in more distal shelf settings by pelagic settling and waning 

turbidity currents. A general coarsening upwards trend is displayed in most of the 

clastic shallow marine assemblage, with a few fining upwards successions 

indicating minor transgressions. The thin (0-150 m) basal elastics grade fairly 

sharply into the overlying iron formations which exceed 200 m in thickness. 

Deposition of iron formation occurred seaward of the subtidal sandstone facies
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accumulating in the nearshore. Two major facies formed: a shallow-water, 

coarser grained, clastic, reworked and cross-bedded oxide-silicate “cherty” facies 

and in adjacent but somewhat deeper water, a finer-grained silicate-carbonate 

“slaty” facies (Ojakangas, 1983). The cherty facies includes successions of 

strand-proximal stromatolites, flaser and wavy bedded chert-carbonate 

grainstones and parallel bedded and hummocky cross-stratified hematite-rich 

cherty grainstones deposited on a non-barred microtidal, storm enhanced 

shoreline with little clastic influx (Fralick, 1988; Pufahl, 1996; Pufahl and Fralick, 

2000). The inner shelf accumulated coarse-grained shoaling upwards, chert- 

carbonate grainstone successions, possible associated with offshore bar 

development (Pufahl and Fralick, 2000). The tidal aspect is consistent with a 

geochemical model of iron formation deposition on continental margins near 

upwelling silica and iron-rich bottom water (Cloud, 1973; Drever, 1974). Current 

activity is evidenced by redistributed rip-up grains of the chemical precipitates. 

Paleocurrent data suggests the deposition occurred on a southward facing 

paleoslope (Pufahl and Fralick, 2000). Storm generated turbidity currents 

originating on the inner shelf where grain production occurred may have been 

instrumental for transferring sediment to the distal shelf (Pufahl and Fralick,

2004). With erosion of the source terrain to near base level and reduced clastic 

supply, iron formation was able to accumulate in the nearshore and directly onlap 

the Superior Province (Pufahl and Fralick, 2000). Volcanic activity is evidenced 

by the presence of tuffaceous and volcaniclastic horizons within the iron 

formation (Hassler and Simonson, 1989).
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Dating of zircons from tuffaceous layers near the top of the Gunflint has 

yielded a pre-Penokean age of 1878 ±1 Ma (Fralick et al., 2002). Euhedral 

zircons were extracted from rainout and storm-reworked volcanoclastic beds in 

the upper Gunflint Formation near Kakabeka Falls, Ontario (Fralick et al., 2002). 

The average Pb/ Pb age determination of 1878.3 ± 1.3 Ma places the 

Gunflint Formation sedimentation prior to the Penokean orogeny, supporting a 

back-arc extensional setting for deposition (Fralick et al., 2002). During the 

Penokean Orogeny, collision of -  1860 to 1889 Ma volcanics of the Wisconsin 

magmatic terrane with the southern edge of the Superior craton at ~ 1860 Ma 

(Sims et al., 1989) exposed the basin subaerially (Addison et al., 2005). This 

age is based on U-Pb geochronology of zircons from tuffaceous layers in the 

basal Rove and Virginia Formation (Fig. 3). Continued orogenic loading caused 

resubmergence due to subsequent isostatic depression of the basinal area. A 

transition to a clastic depositional regime with sediment influx from both northerly 

and southerly directions (Sims and Peterman, 1983) ensued at 1835 Ma 

(Addison et al., 2005). Thrusting and development of basement gneiss domes 

during the Penokean caused deformation and metamorphism of the sedimentary 

rocks in the southern portion of the basin (Southwick et al., 1988). Syn and post- 

orogenic calc-alkaline plutonic intrusions into the sedimentary and volcanic rocks 

were accompanied by a collision of a southern assemblage of arc-related 

volcanics (Marshfield terrane, Sims et al., 1989). Penokean deformation is 

intense in the iron formations located in the southern-most portion of the basin
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and minor thrusting has recently been recognized in even the northern-most 

Gunflint iron formation (Hill and Smyk, 2005).

As noted above, at approximately 1835 Ma (Addison et al., 2005), during 

the final phase of Penokean felsic volcanism to the south, the basin was again 

flooded by the ocean. The clastic sediments which were deposited during this 

phase form the research focus of this thesis and are described in more detail in 

the next section.

At 1.1 Ga a north-northeast trending branch of the mid-continent rift 

system separated the Animikie basin into two segments. A second, generally 

north-northwest trending branch of this rift system also truncated what is now the 

eastern end of the basin (Morey, 1983). Much of the region was then covered by 

an extremely thick succession of volcanic and sedimentary, rift related rocks.

The Animikie rocks are locally folded where intruded by Keweenawan 

gabbros of the Logan dikes and sills, and the Duluth complex (Morey, 1983). The 

sedimentary rocks and intrusives were both affected by later folding and faulting 

that appear to have been the result of movement along older structures (Morey, 

1983). Steeply dipping gravity faults probably of Keweenawan age are common, 

some with vertical displacements of as much as 100 m (Morey, 1972). The 

clastic rocks were transformed by contact metamorphic effects to pyroxene- 

hornfels facies adjacent to thick sills and the Duluth complex and to hornblende- 

hornfels facies adjacent to thinner sills (Morey, 1972). Some southward tilting 

appears to have occurred prior to Keweenawan time as evidenced by a
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northward overstep of lower Keweenawan strata (the Sibley Group) over the 

older Precambrian rocks in the Thunder Bay area.

Age of Tuffaceous Zone Horizons

0.35
C. PR98-1, Rove tuffA. PR98-1, Rove tuff 1. VHB-001 .Virginia tuff

0 .33 -

a  0.34- a  0.33-

a  0 .32 -

0.31
1832 «Ma

95% confidence level 
n = 2 3  

MSWD==0.98

182748 Ma
95% confidence level 

n = 15 
MSWD = 0.82

0.30
0 .31 -

1836 4 5 Ma
0.28

0.30

Fig.3. Age of Tuffaceous Zone at the base of the Rove and Virginia Formation (Addison 
et al., 2005).
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1.3 Previous Work:

1.3.1 Rove Formation

Morey (1965, 1967) described the stratigraphy and sedimentology of the 

Rove Formation, identifying three lithologie units from the study of 120 

incomplete sections. They are:

1. a lower argillite unit 120 to 150 m thick.

2. a transition zone of interbedded graywacke and silty argillite, 20 to 30 m 

thick.

3. an upper unit of graywacke and argillaceous siltstone 823 m thick with thin 

quartzitic beds within the upper 214 m.

Morey (1965, 1967) described the base of the lower argillite unit as gradational 

with the underlying iron formation, though more recent work (Addison et al.,

2005) reports a disconformity here. Three principal rock types occur within the 

lower argillitic unit. Thin to thick bedded light gray argillaceous siltstone with 

sporadic grading and cross-lamination commonly forms the coarsest grained 

lithofacies. Thinly-bedded dark gray silty argillite and black fissile carbonaceous 

argillite with laminae generally less than 1.5 mm also occur. These three rock 

types generally exhibit a stacking from a basal siltstone bed grading to a silty 

argillite and finally to a carbonaceous argillite (Morey, 1967). The lower portion 

of the unit is composed mostly of alternating beds of dark gray silty argillite and 

black carbonaceous argillite. Silt-size material is more abundant in 

stratigraphically higher beds of the unit (Morey, 1967). Several coarse-grained 

sandstone beds and many lenses and irregular beds of limestone and dolomite
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occur near the base of the unit. Calcite and dolomite concretions are also 

common within the lower 100 m.

The transitional succession consists of a series of interbedded argillites 

and sandstones, the sandstone beds increasing in abundance and grain size 

upward (Morey, 1967). The sandstone beds range in thickness from less than 15 

cm to 30 cm. Generally much coarser grained than associated argillites, they are 

mostly medium dark to dark gray, poorly sorted, and composed of angular grains 

of quartz and feldspar in a matrix of muscovite and chlorite (Morey, 1967). The 

felsic grains fine upward within the beds. Thin lag deposits of feldspathic 

quartzite of varying thicknesses overlie many of the graywacke beds. Contacts 

between the two are gradational. The upper surfaces of the quartzite beds are 

irregular and may be rippled, with sharp contacts with overlying argillite beds. 

Argillite layers varying from less than 25 cm to 3 m thick are interbedded with the 

sandstones and have a higher silt content than in the lower unit (Morey, 1967).

The uppermost unit composed of interbedded light to dark gray graywacke 

and argillaceous siltstone constitutes the major part of the Rove Formation 

(Morey, 1967). It varies in thickness from about 30 m in western Cook County 

(immediately south of the U.S. border) to about 820 m eastward, though this is a 

result of the level of erosion. Sandstone beds of less than 30 cm to greater than 

1 m in thickness are interbedded with 15 cm to 1 m thick beds of silty argillite and 

argillaceous siltstone. Gray, white or pinkish-gray feldspathic quartzite beds of 

varying thicknesses occur within the upper 210 m. Most are graded with sharp 

upper and lower contacts. These are coarser grained, better sorted and lighter in
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colour than those in the transition sequence. They also occur in thicker, more 

regular beds (Morey, 1967).

A variety of sedimentary structures and bedding types occur within the 

Rove Formation. The most distinctive feature of the middle and upper units is 

the remarkably uniform thickness of the individual argillite and sandstone beds 

(Morey, 1967). Uniform thicknesses were present in the majority of beds 

observed for extents of at least 900 m along outcrops, although some pinchouts 

are present. Structures within sandstone beds can include a variety of bedding 

types including massive, cross-bedding, parallel lamination and convolute 

bedding. The occurrence of all types within an individual bed is rare, however 

most beds show several types, which always occur in the same order. The 

general sequence of structures from the bottom upwards in graded beds is: 

massive, with or without intraformational clasts; parallel lamination; cross 

bedding; and parallel lamination which may or may not be convoluted. The 

consistency of the sequences implies that each of the sandstone beds is most 

likely the product of a single depositional event (Morey, 1967). Intraformational 

conglomerates occur at or near the base of some of the sandstone beds.

Graded bedding with a fining upward trend is common, as are horizontal laminae 

with average thicknesses of less than 1 mm. Planar cross-bedding is rare while 

festoon (trough) cross-bedding occurs commonly (Morey, 1967). Convoluted 

laminae are rare, occurring near the top of approximately 2% of siltstone beds. 

Current ripple marks are preserved on the tops of several beds, particularly in the 

upper unit.

13
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Soft sediment deformation structures are common and include contorted 

bedding, bed pull-aparts, overfolds and micro-faults. Load casts, clastic dikes 

and flame structures also occur commonly. Some groove casts of varying size 

are present and flutes and flute casts are relatively rare (Morey, 1967).

Paleocurrent data indicate tfiat sediments were introduced primarily by 

currents flowing in a southeasterly direction perpendicular to the basin axis. 

(Morey, 1967). Morey (1965, 1967) used the orientation of directional 

sedimentary structures (sole marks, cross bedding, ripples) to determine 

paleocurrent directions. Each recognized directional structure was measured at 

each exposure for general orientation by taking at least three readings on three 

different individuals in each bed (Morey, 1967). Greatest consistency was 

obtained from flutes and grooves (60 measurements) which indicated a 

predominantly south-south-easterly flow direction (170°) with a spread of only 

70°. Greater scatter of 135° was obtained from cross bedding (50 

measurements) with variability from south-west to south-east (180°-170°). A 

limited number of ripple marks (40 measurements) indicated southwesterly- 

flowing (260°) bottom currents approximately parallel to the axis of the basin 

(Morey, 1967). Flow directions of ripple marks found on tops of beds containing 

sole marks conflicted nearly perpendicularly with flow directions of the sole marks 

indicating reworking of some of the previously deposited sediments (Morey, 

1967).

The nature of the sediments indicates a primary source area to the north 

consisting of early Precambrian granite, gneiss, and metamorphosed
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sedimentary and volcanic rocks (Morey, 1967). The beginning of Rove 

deposition was initiated by uplift of the source area, resulting in an influx of fine­

grained clastic material which accumulated in a shallow, though quiet anoxic 

environment. Basin subsidence exceeding fill rate produced a bottom slope 

allowing the progression of coarser silt and sand size material to greater depths 

(Morey 1967).

A 25 to 70 cm thick laterally correlative layer within a recrystallized 

silicified carbonate unit immediately below the base of the Rove and Virginia 

Formations contains evidence of meteorite impact ejecta (Addison et al., 2005). 

Zircon geochronologic data from tuffaceous horizons bracketing the layer reveal 

it formed between 1878 Ma and 1835 Ma, indicating the Sudbury impact event as 

the probable source (Addison et al., 2005). Zircons extracted from tuffaceous 

layers near the base of the Rove and Virginia Formations were dated by 

sensitive high-resolution ion microprobe (SHRIMP) (Addison et al., 2005). U-Pb 

ages of 1827 ± 8 Ma and 1832 ± 3 Ma were derived from the Rove and Virginia 

Formations respectively (Fig.3). Rove zircons were also analyzed by isotope- 

dilution thermal ionization mass spectrometer (ID-TIMS), yielding an age of 1836 

± 5 Ma (Addison et al, 2005) (Fig. 3). This evidence strongly supports the 

correlation of the Rove and Virginia Formations, and the underlying Gunflint and 

Biwabik Formations. It also indicates a major hiatal surface between the 1878 

Ma upper iron formation and 1835 Ma lower clastic succession. Detrital zircons in 

sandstone from the upper Rove Formation approximately 400 m above the base 

yielded a U-Pb minimum detrital zircon age of 1780 Ma (L. Heaman, personal
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communication, University of Alberta) (Fig. 4). Subaerial exposure of ttie iron 

formation concurrent with the Penokean Orogenic activity to the south was 

followed by resubmergence of the basin probably caused by isostatic 

readjustment following continued orogenic loading. Transgression initiated 

deposition of siliciclastic sediments. The age determinations (above) place 

sedimentation commencing during the final stages of Penokean igneous activity 

and continuing over an extended period of at least 60 Ma.

Poulton et al. (2004) have postulated that a change from oxic to sulphidic 

conditions in the oceans influenced the end of deposition of banded iron 

formation. They suggest that increasing atmospheric oxygen levels enhanced 

sulphide weathering on land resulting in an influx of sulphate to the oceans.

Rove Formation sediment geochemistry indicates increasingly sulphidic 

conditions upward through the successions (Poulton et al., 2004).
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Fig.4. U-Pb, ICP-MS age determinations of detrital zircons in a sample from ttie upper Rove Formation. Tfie 
sample was collected by M. Easton (Ontario Geological Survey) and analyzed by L. Heaman personal 
communication (University of Alberta). Tfie 1630 Ma age fias a 100 m.y. error bar and ttie 1660Ma is 
negatively discordant. Ttius, tfie analyses indicate an age of 1780 Ma or younger for tfie upper Rove.
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1.3.2 Virginia Formation

Through examination of approximately 1060 m of drill core (Fig. 5) of 

unmetamorphosed Virginia Formation from 4 sites, Lucente and Morey (1983) 

identified two distinct members, a lower argillaceous lithosome and an upper silty 

and sandy lithosome (Fig. 6).

The lower argillaceous unit thickens westward varying from approximately 

125 m at the eastern end of the Mesabi range to approximately 300 m south of 

Calumet, both upper and lower contacts being gradational (Lucente and Morey, 

1983). Lucente and Morey (1983) further believed that interbedded limestone, 

argillite, chert, slaty silicate-carbonate facies iron formation and ash-fall tuff 

forming the lower transition zone from Biwabik iron formation, indicate that clastic 

and chemical sedimentation and volcanism operated contemporaneously during 

this interval. The unit is dominated by an abundance of dark-coloured, fissile 

carbonaceous argillite. Very thin beds and laminae of dark argillaceous siltstone, 

lighter silty argillite and bluish-gray to white chert occur locally toward the eastern 

drill hole. South of Calumet the unit is characterized by scattered centimeter thick 

beds of arkose and by approximately 27 m of interbedded iron-poor argillite and 

cherty sideritic iron formation at its base (Lucente and Morey, 1983).

The transition from the lower argillaceous lithosome to the overlying upper 

silty and sandy lithosome is gradational. The upper unit is characterized by 

approximately 30% fine grained siltstone interbedded with 5% fine-grained
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sandstone in 1 to 5 m thick packages separated by 6 to 30 m thick intervals of 

argillite. Individual beds of the siltstone and sandstone range in thickness from 

several mm to approximately a meter (Lucente and Morey, 1983).

Carbonate concretions occur throughout the Virginia Formation. Most lie 

within argillaceous intervals and are lenticular or elliptical in shape (Lucente and 

Morey, 1983).

Lucente and Morey (1983) considered four different depositional 

processes to be operative at various times:

1. The deposition of mudstone by pelagic processes involving the slow 

accumulation of fine-grained sediments from dilute suspension, or by 

hemipelagic processes involving the action of slowly flowing diffuse turbidity 

currents.

2. The deposition of poorly sorted sandy and silty beds, including allochemical 

limestone units, by the action of sediment-laden turbidity currents.

3. The deposition of well-sorted sandy beds by the action of nonturbidity 

currents that reworked previously deposited sediments.

4. The deposition of chert and iron-rich beds by chemical processes during 

periods of reduced clastic influx.

The formation’s early history was characterized by the slow deposition of 

black mud, now argillite, in quiet water below wave base. The presence of locally 

abundant carbonaceous material implied deposition under anoxygenic 

conditions, possibly in deep water (Lucente and Morey, 1983). Periods of
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reduced clastic supply resulted in the dominance of episodic chemical 

depositional processes.

Subsidence of the basin and uplift of the bordering craton likely resulted in

the change from a chemical to a clastic depositional regime at the Biwabik- 

Gunflint / Rove-Virginia-Thompson contact (Lucente and Morey, 1983). The 

added presence of minor amounts of fine-grained pyroclastic material during the 

transition indicates volcanism was contemporaneous, with the source area 

somewhat distant from the basin. Continued subsidence exceeding fill rate 

produced a bottom slope, with the introduction of silt and sand by turbidity 

currents. Lucente and Morey (1983) considered the abundance of thin-bedded 

turbidites to indicate deposition from a number of partially overlapping submarine 

fan lobes. Minor thick-bedded turbidite occurrences are considered to have 

originated proximal to the edge of the basin near or within feeder channels. 

Hemipelagic or pelagic mud interbedded with the turbidites indicate diversion or 

extinction of a feeder system for a submarine fan lobe. The presence of 

scattered sandstone lenses 1-3 cm thick within the upper part of the lower 

argillaceous unit south of Calumet is attributed to the operation of bottom 

hugging currents in this area (Lucente and Morey, 1983).
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MGS-7(K), MGS-6(Bu), and MGS-2(B) holes (Lucente and Morey, 1983).
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1.3.3 Thomson Formation

An investigation of the sedimentology of the Thomson Formation of east- 

central Minnesota by Morey and Ojakangas (1970) discovered numerous 

similarities with the Rove Formation. Comparison of lithology and stratigraphy 

indicates derivation of the sediments from a similar source terrain and deposition 

by similar mechanisms. The interbedded metagraywackes, metasiltstones, and 

slates of the Thomson Formation have similar bedforms, sedimentary structures, 

and carbonate concretions as the Rove. The Thomson Formation differs in 

containing beds of limestone, graphitic black slate and sulphide or carbonate 

facies iron formation in its lowermost portion.

Thickness has been estimated at greater than 6000 m but is difficult to 

discern accurately due to lack of continuous exposures, absence of recognizable 

marker beds and because neither the top nor bottom of the formation is exposed 

(Morey and Ojakangas, 1970). Metamorphism during the Penokean Orogeny 

produced greenschist facies metamorphism which increases in grade to the 

south.

Paleogeographic, stratigraphie mineralogical and geochronologic 

considerations indicate that the Thomson Formation, the Virginia Formation and 

the Rove Formation are probably correlative representing deposition in different 

parts of the basin (Morey and Ojakangas, 1970). The Virginia and Rove
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Formations are located just south of the apparent north shore of the basin, while 

the Thomson Formation is considered to have been deposited at least 100 km 

farther from the shoreline. The original muds settled slowly from suspension, with 

the silt and sand probably deposited by turbidity currents down a southward 

dipping paleoslope (Morey and Ojakangas, 1970).

1.4 Purpose of the Study

Previous studies of these formations have mainly been concerned with 

stratigraphy and sedimentology. Many of the factors influencing sedimentary 

deposition such as eustacy, subsidence, sediment supply, climate and basin 

configuration have not previously been dealt with in depth. The intent of this 

study is to incorporate recent techniques such as sequence stratigraphy along 

with detailed logging of the core to determine stratigraphy and correlation of the 

facies. This will include consideration of the tectonic regime operating at the time 

and its effect on the sedimentary processes which produced these formations. 

Quantitative studies were also conducted using ICP-AES (see section, 2.2.2.1) to 

ascertain the geochemistry of tuffaceous zones. As well some microscopic 

examinations of siltstone horizons within shale were undertaken.
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CHAPTER 2: LITHOFACIES DESCRIPTIONS

2.1 Logging techniques

A total of 3200 m of core from eleven continuously drilled holes (89-MC-1, 

PR-99-4, PR-98-1, PR-98-2, PR-98-3, MGS-2, LWD-99-1, MGS-5, MGS-7, 

MGS-8, 18290) and one twice drilled hole (GF-3) extending from southwest of 

Duluth to northeast of Thunder Bay were examined and logged in detail. 

Locations of core sites in Canada and the USA are given in Figures 7 and 8. 

Graphic logs averaging approximately 5 m in length were drawn for each of the 

logged holes.

Three basic sedimentary lithologies are present, (shale, siltstone, and 

sandstone) as well as tuffaceous units. Only sharp contacts were noted. Load 

structures such as flames, load-casted ripples, and ball-and-pillow structures 

were noted when encountered. Features such as current ripples, climbing 

ripples, cross-stratification, flaser, lenticular and wavy bedding were recorded. 

Bedding planes in the same lithofacies were noted and marked as shorter 

horizontal lines on the graphic logs. A typical example of a section of a graphic 

log derived from these data is given in Figure 9.

Shale and siltstone in some cases were difficult to log, mixing of the two 

occurred and the two lithologies were commonly finely interbedded. Where shale 

and siltstone formed thicker distinct layers they were graphed as such. A scale
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of 1/100 was used, and bedding thicknesses were drawn to scale. Tuffaceous 

zones were marked off to the left and veins and diabase were noted. Figure 9 

depicts a typical log graph of units which were clearly defined while Figure 10 

represents lithologies which were finely interbedded making distinction between 

them more difficult. Diabase sheets were labeled but not drawn to scale.

All drill-holes were used for correlating across the basin, except core 

#18290, which was highly modified due to folding. Features of lithofaces, 

coarsening upwards trends, areas dominated by shale, diabase, and tuffaceous 

zones were all used systemically in correlating. The northeast section of core 

presented little difficulty, due to the presence of concordant diabase horizons and 

similarities in lithofacies.

Iron formation was present and used as a base line for correlation in all 

cores with the exception of PR-99-4, PR-98-2, and PR-98-3. In cores PR-99-4 

and PR-98-3 diabase horizons were used in conjunction with diabase at similar 

stratigraphie levels in cores 89-MC-1 and PR-98-1 respectively. A diabase 

horizon approximately 200 m above the baseline correlates across cores 89-MC- 

1 and PR-99-4, and PR-98-1. Another diabase horizon at approximately 340 m 

correlates across cores PR-99-4, PR-98-1, and PR-98-2. Three distinctive 

sandstone beds at approximate elevations of 485, 520, and 530 m were used for 

correlation between cores PR-98-2 and PR-98-3. Correlating on the basis 

described above provided a starting point from which more detailed correlation 

sedimentary lithologies could be made.
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Fig. 7. Location of cores in Canada near Thunder Bay which is in the upper right corner. USA 
(white area) is to the south of Thunder Bay (Ministry of Northern Development and Mines).
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Fig. 9. An example of section of a cored drill-hole logged and drawn according to 
thickness and type of sediment.
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Fig. 10. Logging technique estimating percentage of shale to siltstone.
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2.2 Units Present:

Seven different units were identified and correlated according to common 

attributes and location of tuffaceous horizons (Fig. 11). The lowest unit, the 

basal siltstone and shale was deposited on the subaerially weathered (Addison 

et al., 2005) Gunflint surface during initial flooding of the basin. Approximately 15 

m in thickness, it correlates across the entire basin with the exception of core 

MGS-5 in which it is absent. The second unit is finer grained, carbon rich and 

dominated by shale. This starved succession is correlative across the basin and 

has two coarser grained units sandwiched within it. A siltstone and shale 

succession up to approximately 30 m thick is present within the lower half of the 

shale unit and, like the other two units outlined above is traceable across the 

basin. A coarser grained clastic wedge occurs within the upper half of the shale 

unit. It thins to the north and does not extend into the Rove Formation north of 

the Duluth intrusive complex. The combined thickness of this sandwich of units 

averages approximately 100 m. Tuffaceous layers occur in the lower units. The 

shale unit is succeeded by two coarsening and thickening upwards successions 

of graded beds which represent the first sizable influx of sand into the basin. 

Reaching a maximum thickness of approximately 80 m, these thin slightly toward 

the north and south, and are composed of shale, siltstone, and sandstone. The 

next unit is approximately 400 m thick. It is sand dominated and composed 

mostly of coarsening upwards cycles of graded beds each separated by a few 

tens of centimetres to metres of black shale. Sediment influx was from the north
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and west (Morey, 1967). The uppermost unit is present only in core PR 98-3. It 

is approximately 150 m thick and composed of shale, siltstone and sandstone. 

Sandstone with ripple laminations dominates the upper portion.

2.2.1 Basal Siltstone and Shale

The underlying iron formation is present at the base of cores, 89-MC-l, 

PR-99-4, GF-3, MGS-2, LWD-99-1, MGS-5, MGS-7, and MGS-8. The basal 

RoveA/irginia Formation is composed of a tuffaceous zone, shale, siltstone, and 

sandstone. The siltstone and sandstone layers fine upwards in core 89-MC-l 

and coarsen upwards in cores PR-98-1, GF-3, MGS-2, LWD-99-1, and MGS-8. 

Several tuffaceous ash layers are interbedded in this assemblage. Finer black 

shale is present in cores 89-MC-l, PP-99-4 and MGS-2, and silty-shale in cores 

GF-3, LWD-99-1, MGS-5, MGS-7, and MGS-8. Further southwest, sandstone 

layers occur with less frequency than in more northeasterly cores, but are 

present in all cores except MGS-5.

The assemblage of shale, siltstone, and sandstone, and tuffaceous zones 

thins from the northeast to the southwest and is virtually absent in core MGS-5. 

Siltstone dominates this section.

Tuffaceous layers: Highly fissile light green layers with sharp bottom and top 

contacts with the less fissile siltstones are common in this assemblage. The tuff 

is very fine grained with only small amounts of silt-sized material (Figs. 12 and 

13). Layers average 3cm thick with the thickest layer 12 cm. The thinner layers 

commonly are the same colour from bottom to top and very sharp sided. The
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thicker layers commonly become greyer in their upper 1 to 4 cm denoting a 

greater presence of detrital clay and silt mixed with the volcanogenic material in 

this zone (Figs. 14 and 15).

The tuffaceous layers are also present in overlying units, though a trend 

towards an increase in the amount of intermixed siliciclastic material appears to 

occur upwards. This results in uncertainty as to whether some layers contain 

tuffaceous material. Geochemistry was used to further identify tuffaceous 

intervals as the geochemistry of the tuffaceous zones is quite distinct from the 

siliciclastic sediment.
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CENTIMETRE

Fig. 12. Basal Siltstone and Shale unit, highly fissile tuffaceous 
layers between coherent siltstones with sharp top and bottom 
contacts. Up is to the left Core MC-89-1

CENTIMETRE

Fig. 13. Basal Siltstone and Shale unit, fine grained sandstone just 
below the tuffaceous layer. Up is to the left. Core MC-89-1
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CENTIMETRE

Fig. 14. Basal Siltstone and Shale unit, highly fissile tuffaceous 
layers which vary in colour from light to darker green. Up is to the 
left. Core MC-89-1.

11111 HI l l l l l l l l l

CENTIMETRE
Fig. 15. Basal Siltstone and Shale unit, less fissile tuffaceous layer. 
Up is to the left. Core MC-89-1.
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2.2.2.1 Geochemistry of Tuffaceous Zones

Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was 

used to determine elemental abundances present in some of the tuffaceous 

zones.

Twenty samples were selected from what appeared to be tuffaceous 

intervals in logged cores. In addition to the distinctly coloured, fissile tuffaceous 

horizons, tuffaceous material also occurs in other beds where its appearance 

may be masked by abundant detritus derived by erosional processes. Samples 

were crushed to approximately 75 microns in size using a tungsten ball mill. 

Dissolution of samples was carried out as follows: 0.5 grams were weighed out 

and placed in Teflon crucibles, then 10 ml of double distilled de-ionized water 

and 5ml of nitric acid was added to each sample and left at 90 C for 12 hours. 

Crucibles were then filled with 10 ml nitric acid and 5 ml hydrofluoric acid and left 

at low heat for 12 hours (this addition of nitric and hydrofluoric acid was repeated 

three times). On the last cycle temperature was increased to 150° C and 

samples evaporated to dryness. The temperature was then turned down to 90°

C, 5 ml of hydrochloric acid was added and simmered for 10 minutes. Solutions 

were transferred to a 100 ml volumetric flask and made up to 100ml by addition 

of double distilled de-ionized water upon cooling. For each run three blanks were 

prepared and one internal standard (Tables 1 and 2).
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Table 1,
Geochemistry data results, major and minor elements

Sample Core Depth A1203 CaO MgO Na20 K20 Fe203 MnO T102 P205
1 PR-88-

1
627.90 15.86 0.95 1.19 0.91 4.70 2A3 0.027 0.27 0.068

2 PR-98-
1

621.25 8.89 0.44 0.55 3.20 1.24 0.013 0.27 0.098

3 GF-3 834.46 7.20 11.30 2.11 0.76 0.13 13.72 0J23 0.20 0.081
4 GF-3 813.35 15.48 5.83 3.95 3.37 3.12 5.50 0.350 1.01 0.23
5 MGS-2 474.22 24.34 0.35 1.60 1.03 7J9 2.75 0.015 0.70 0.089
6 MGS-2 474.95 20.09 0.18 1.30 0.39 6.65 1.56 0.011 0.40 0.38
7 MGS-2 479.60 2243 0.44 1.53 1.22 6.75 2^9 0.016 0.90 0.15
8 MGS-2 476.45 23.75 0.25 1.55 0.46 7.85 1.81 0.014 0.57 0.024
9 MGS-2 444.25 24.27 2.20 1.44 1.04 7.40 2.18 0.036 1.21 0.13
10 MGS-2 480.15 24.17 0.33 1.66 0.60 8.14 2.21 0.010 0.57 0.055
11 MGS-5 151.50 8.35 11.47 3.39 0.62 2.40 9.38 1.55 0.27 0.071
12 MGS-5 149.01 21.98 0.80 1.74 0.40 9,04 2.55 0.40 1.23 0.15
13 MGS-5 150.01 17.70 0.25 1.63 0.38 7J2 4.12 0.037 0.56 0.12
14 MGS-5 144.40 21.34 0.67 1.53 0.35 8.27 3.13 0.037 1.36 0.34
15 MGS-7 207.01 22.06 0.45 2.87 0.53 7.38 2.68 0.057 0.60 0.16
16 MGS-7 207.25 24.66 0.55 2.05 0.61 8.42 1.62 0.036 1.50 0.19
17 MGS-7 216.01 23.06 3.42 2.09 0.53 8.00 3.20 0.56 0.53 0.10
18 MGS-7 216.55 22.48 2^3 1.96 0.43 7.80 3.01 0.49 0.50 0.092
19 MGS-7 102.90 24.43 0.48 1.63 0.80 7^2 3.02 0.024 1.36 0.16
20 MGS-8 304.50 25.80 0.08 1.60 0.37 8.87 2.14 0.021 0.62 0.036
Rove T u f f  X , n=3 25^7 0.43 3.51 0.13 8.03 1.48 0.010 0.53 0.013
Rove Sandstone x,
n=7

12.95 1.22 2.61 1.08 3^8 4.30 0.030 0.53 0.11
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Table 2.
Geochemistry data results, trace elements

Sample Ba Ce Cr Li Nb Ni Sr V Y Zr
1 591 93 32 26 12 18 96 22 14 202
2 340 227 31 18 17 17 31 77 37 193
3 24 59 38 19 3 83 73 56 38 82
4 922 103 184 61 13 73 192 136 47 226
5 892 28 47 41 24 25 54 52 65 581
6 554 190 8 27 21 8 33 36 103 820
7 792 100 126 49 21 24 60 385 59 498
8 711 40 12 44 29 9 41 42 123 976
9 904 47 15 23 20 24 90 72 71 532
10 568 199 13 45 28 12 46 48 120 772
11 241 48 59 56 1 64 127 191 20 93
12 626 39 23 48 22 17 53 193 45 460
13 771 154 77 92 12 42 41 183 32 261
14 1130 103 40 25 17 30 56 146 65 440
15 489 36 30 110 10 16 45 107 32 350
16 453 140 21 62 30 8 54 160 47 785
17 557 324 24 37 30 26 59 17 92 564
18 539 270 7 36 29 18 55 16 85 523
19 856 64 18 26 24 18 73 75 77 567
20 1400 133 8 57 42 11 36 21 147 1043
Tuff 206 227 7 59 22 5 54 5 119 1150
Sandstone 472 44 90 46 5 43 64 81 13 134
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The extreme high field strength element (HFSE) enrichment in the felsic 

tuffs (Hemming et al., 1995) enable the identification of this detritus even when 

mixed with large quantities of low HFSE bearing erosional detritus. Tables 1 and 

2, and Figure 16, clearly demonstrate that these samples contain varying 

mixtures of volcanogenic and clastic detritus. Samples 3 and 4 from core GF-3 

and samples 11 and 13 from core MGS-5 fall on the averages of pure Rove 

Sandstone and therefore can be eliminated as containing tuffaceous material.

Tuffaceous zones in the drill core, delineated in Figure 11, are outlined 

below. All depth measurements are taken upwards from the base of the 

formation to the base of each tuffaceous zone, their thickness extending upward.

Core 89MC-1 contains three zones, one in each of the lower units. A 10 m 

thick zone occurs at the base of the formation, and two others at 50 m and 80 m 

with thicknesses of 8 m and 10 m, respectively. Similarly, core PR-98-1 also 

contains three zones, one in each of the lower units. A 5 m thick zone occurs at 

the base. The others at 35 m and 55 m are both 6 m thick. Core MGS-2 

contains a 15 m thick zone at the base of the formation and a 2 m thick zone at 

25 m within the Siltstone and Shale Unit. Two zones occur in core LWD-99-1. 

The first at 20 m in the Siltstone and Shale Unit has a thickness of 1 m and the 

second at 70 m within the Northward Prograding Clastic Wedge Section is 2 m 

thick. Core MGS-5 contains three zones, each 3 m thick, one at the base and 

the others at 8 m in the Basal Siltstone and Shale Unit, and at 50 m in the 

Siltstone and Shale Unit. Core MGS-7 contains three zones, an 8 m thick one 10 

m above the base within the Siltstone and Shale Unit, a im  thick one at 100 m
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within the Shale Unit, and a 1 cm thick band at the 140 m level within the 

Coarsening and Thickening Upward Succession. Core MGS-8 contains two 

zones, each 2 m thick. One occurs at 20 m near the top of the Siltstone and 

Shale Unit and the other at 89 m in the upper part of the Northward Prograding 

Clastic Wedge Section. Core 18290 contains a single 1 m thick zone at its base, 

depth unknown.

The northeast part of the basin contains a significantly greater number of 

more distinct tuffaceous layers than farther to the southwest. In the southwest 

part of the basin the tuffaceous zones extend into the Northward Thinning Clastic 

Wedge, whereas in the northeast part the upper limit of the volcanogenic 

sediment is the Siltstone and Shale lithofacies (see Fig. 11; red bars on drill 

logs).

Shales: The very finest black shales are a few millimetres to 5 cm thick. Lighter 

coloured (dark grey) silty shale layers are up to 25cm thick. The black shales 

average 0.5 cm in thickness and the dark grey silty shales average 1.0 cm. The 

black shales are massive with very sharp contacts. The dark grey silty shales 

are similar but commonly have more silt-rich layers averaging a few millimetres 

thick within them. Thicker silt layers split the silty shale areas into separate 

layers. The thin silty layers are internally parallel laminated at the millimetre- 

scale. The dark grey shale rarely forms the tops of thin graded layers from 

coarse silt to silty shale averaging about 1cm thick. Most shale-rich units sit on 

sharp bottom contacts. Approximately 4 m above the basal contact the black 

shales gradually become more dominant grading into the overlying shale unit.
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Siltstones: These form the most abundant layer type dominating areas up to 

35cm thick. They are parallel laminated on the millimetres to 1cm scale. The 

laminations are composed of coarser silt layers and more clay-rich layers. The 

laminations can be either sharp sided or have diffuse gradational boundaries. 

Graded layers are rare. Some coarse siltstones up to 5 mm thick are lenticular 

but do not appear to be internally ripple laminated. There are some irregular 

erosive scours but these are not very distinct and may be overlain by any of the 

lithologies.

Sandstones: The uncommon sand dominated intervals are up to 28 cm thick 

and clay-rich with very fine-grained sand uncommon. Lamination characteristics 

are similar to those described for the siltstone. Some laminations are composed 

of fine-grained sand. Small, sand sized mud rip-ups are commonly mixed with 

the sand. No graded bedding was observed. The grain size of individual, 

laminations within a bed do not follow any coarsening or fining upward pattern.
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2.2.2 Shale

The carbon-rich shales are black to grey in colour and generally 

featureless. Some tuffaceous zones are present near the bottom of the Shale 

Dominated Succession in cores 89-MC-1 and MGS-2. The carbon-rich shales 

prevail in the north east part of the basin with silty-shale more common towards 

the south west.

Shale dominates this unit with siltstone subordinate and sandstone 

uncommon. Some tuffaceous layers are present.

Shale: Carbon-rich black to dark grey shale dominates this succession. These 

shale intervals are meters thick and separated by siltstone-dominated intervals 

centimetres to 1 m thick (Figs. 18, 19 and 20). The black shales have 

discontinuous 1 to 2 mm thick fine siltstone layers spaced an average of 1 cm 

apart throughout the succession (Fig. 21). The shales are characterized by 

consistently high carbon content throughout. Small masses of pyrite are also 

common.

Siltstone: The siltstone dominated areas are similar to those in the lowest unit. 

Some of the coarser silt laminations contain fine sand grains (Figs. 22 and 23). 

Sandstone: Sandstones are very rare with commonly only one or two layers a 

few centimetres thick per cored interval through the unit. Core 89-MC-1, for 

example has one 2 cm thick, very fine-grained sandstone layer. These sands 

have a distinctive green colour possibly indicative of the presence of 

volcanogenic sediment.
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Tuff: Tuffaceous layers are much less common than in the lowest unit. They 

are sharp-sided, occurring in layers up to 12 cm thick. Slightly darker in colour 

than the tuffaceous intervals lower in this succession, they appear to contain a 

small amount of carbonaceous mud. The zone 1 cm below the basal contact of 

one tuffaceous layer contained submillimeter, interlayered tuff and 

carbonaceous black shale. The tuffaceous layers higher in the succession are 

medium grey in colour rather than green, probably reflecting a further increase in 

erosional detritus mixed with the volcanogenic sediment.
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CENTIMETRE
Fig. 17. Carbon-rich shale, note the fine layers of evenly distributed 
parallel laminae of siltstone. Up is to the left. Core MC-89-1.

F N T i V  P

Fig. 18. High carbon shale with silty-shale sections. Up is to the left. 
Core MC-89-1.
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Fig. 19. Photomicrograph from the Shale unit. Shaiy siltstone with black carbonaceous 
shale above and below. Shale rip-ups in the silty mid section. Very fine grained sand to 
silt grains throughout the slide. Photomicrograph-plane polarized light. Core MC-89-1.

I I I I II I

CENTIMETRE
Fig.20. Silty-shale with evenly distributed parallel beds of siltstone. 
Up is to the left. Core MC-89-1.
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mam . "
Fig.21. Fining up silty-shale, inter-bedded units of various 
thicknesss, note rip-ups in the siltstone. Up is to the left. 
Core MC-89-1.

Fig.22. Photomicrograph from the Shale unit Lower section composed of silty shale with 
black carbonaceous shale and rip-ups. The top section is mainly black carbonaceous 
shale with very fine-grained sand to silt grains throughout the slide. Photomicrograph- 
plane polarized light. Core MC-89-1.
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2.2.3 Siltstone and Shale

Sandstone dominates the lower portion of this section. The basal 

sandstone-rich assemblage fines up to siltstone and shale. The unit extends 

across the basin in cores 89-MC-1, PR-98-4, CF-3, MGS-2, LWD-99-1, MGS-5, 

MGS-7, and MGS-8. Tuffaceous zones are present, with the exception of core 

GF-3. Carbon-rich shale with distinct silt and sand layers dominates the 

northeast of the basin with silty-shale more common in the southwest. Thickness 

of the unit is fairly constant throughout most of the basin, with some variation 

occurring in the southwest.

Shale; This is the typical back shale which dominates through this section. It is 

composed of 1 mm thick black shale layers alternating with 1 mm thick or less 

silty shale layers. These parallel laminations are sharp-sided with no evidence 

of erosive scouring or grading. The black shale dominated areas average 10cm 

thick and are separated by siltstone layers (Figs. 24, 25 and 26).

Siltstone; These are sharp-sided coarse siltstone layers. They are either 

massive or parallel laminated, and generally ungraded. No ripples or lenticular 

shaped layers are present. The layers are up to 5 cm thick averaging 1cm in 

thickness. Siltstone is more common in this unit than in the shaley units above 

and below (Figs. 27, 28, 29 and 30).

Sandstone: The tuffaceous layers are a greenish grey colour, intermediate in 

colour between the greener layers below this interval and the greyer layers 

above it. They are up to 6 cm thick, averaging 1 cm in thickness (Fig. 31).
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I I  CENTIMETRE
Fig.23. Siltstone and Shale units. Bands of silty-shale, with small 
rip-ups. Up is to the left. Core MC-89-1.

.600 pm

Fig.24 Photomicrograph from the Siltstone and Shale unit. Two layers of shale to siltstone 
coarsening up, note sand grains sprinkled throughout. Rip-ups of carbon-rich shale in the 
silty section as well as silty rip-ups in the carbon-rich layers. Photomicrograph-plane 
polarized light. Core MC-89-1.
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Fig.25. Photomicrograph from the Siltstone and Shale unit. Sand grain within highly 
carbonaceous shale. Angular very-fine sand to coarse silt grains are randomly oriented 
throughout. Photomicrograph-plane polarized light. Core MC-89-1.

CENTIMETRE

Fig.26. Siltstone and Shale unit. Very fine grained sandstone very 
slightly fining upwards. Up is to the left. Core MC-89-1.
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Siltstone and Shale unit.Fig.27. Siltstone and Shale unit. Varying thicknesses of shale to silty- 
shale with very fine-grained sandstone layers composed of parallel 
laminae of clay-rich and clay-poor sand. Up is to the left. Core MC-89- 
1

2.0 mm

Fig.28. Photomicrograph from the Siltstone and Shale unit. Laminated fine grained 
sediment with two distinct layers. Lower section is composed of siltstones w ith b lack 
carbonaceous shale grains. It is comprised o f several lam inae. Top section is 
m ainly black carbonaceous shale with sand and s ilt grains sprinkled throughout. 
It contains a very carbonaceous shale-rich layer. Photom icrograph- plane 
polarized light. Core MC-89-1.
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Fig.29. Photomicrograph from the Siltstone and Shale unit. Fine banding of silty-shale 
and highly carbonaceous shale, with sand grains throughout the four fining up laminae. 
Photomicrograph-plane polarized light. Core MC-89-1.

CENTIMETRE
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INCH

Fig.30. Siltstone and Shale unit. Highly fissile light greerT 
tuffaceous layers with sharp bottom and top contacts with sandstone, 
siltstone, and shale. Up is to the left. Core MC-89-1
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2.2.4 Northward Prograding Clastic Wedge

Sandstone, siltstone, shale, and silty-shale, bounded by tuffaceous zones, 

are present in this unit. Sandstone with silty-shales dominates the southwest 

part of the basin and thins out to the northeast, petering out in core GF-3. The 

unit coarsens upwards from silty-shale to sandstone and silty-sandstone. Cores 

MGS-8, MGS-7, MGS-5, LWD-99-1, MGS-2, and CF-3 all display this trend. The 

unit thins from approximately 55 m in the southwest to 300 km to the northeast. 

Shales: Generally a mixture of black shales a few millimetres to 20 cm thick with 

alternating silty shales. Lighter coloured silty shales are generally thicker 

ranging up to 30 cm. Rip-ups and ripple marks are present in the lighter silty 

shale (Fig. 32).

Siltstone: The siltstone beds range from millimetres to metres in thickness and 

are graded with sharp contacts (Fig. 33).

Sandstone: The very fine-grained sandstone beds are graded. Contacts are 

sharp and distinct. Some features present are cross bedding, load-casted ripples, 

and slump structures. Beds occur in thicknesses from 0.5 cm to a few 

centimetres. They alternate with shale and siltstones in coarsening upwards 

sequences (Figs. 34 and 35).
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Fig.31. Northward Prograding Clastic wedge. Fining upwards 
sandstone beds. Up is to the left. Core MGS-7.

CENTIMETRE

'  o /
Fig.32. Northward Prograding Clastic wedge. A typical upward 
fining sandstone to siltstone bed. Up is to the left. Core MGS-7.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C E N T I M E T R E

Fig.33 Northward Prograding Clastic Wedge. Graded sandstone 
beds with some partial Bouma sequences. Note abundant parallel 
laminated and cross laminated (ripples) sands (in the top right 
corner). Up is to the left. Core MGS-7.

CENTIMETRE

INCH

Fig.34. Northward Prograding Clastic wedge. A typical parallel 
laminated and graded sandstone bed. Up is to the left. Core MGS- 
7
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2.2.5 Coarsening and Thickening Upward Succession

Alternating sandstone, shale, and siltstone dominate this section. Sharp­

sided, thin (average 5 mm ) siltstone layers increase upward through the black 

shale, inter-layering with sandstones which begin to appear approximately 10 m 

above the beginning of this transition. The frequency of sandstone layers 

increases upward and the sandstones also coarsen upwards in cores 89-MC-1 

and PR-98-1. Sandstone thins out farther into the basin towards the southwest, 

grading to siltstone in core MGS-7 with thin strands of siltstone appearing in core 

MGS-8. The facies represents graded beds which increase in frequency and in 

thickness upwards. In the northeast, distinct coarsening upwards units of 

siltstone to sandstone occur, thinning to the southwest and alternating with silty- 

shale units.

Black Shale; These are similar to the black shale in the shale-rich zone but with 

more medium grey siltstone layers. The shales become slightly lighter in colour 

and more silt-rich upward through the lower 10 m of the coarsening upward 

succession (Figs. 36, 37 and 38).

Siltstone: Siltstones are very abundant in this unit. They are medium grey, 

and up to 5 cm thick averaging 5 mm thick. This average does not take into 

account copious laminae that are less than 1 mm thick. Layers over a few 

millimetres thick are internally parallel laminated with the silt size and clay 

content varying from one laminae to another (Fig. 39). The layers and laminae 

are both mostly sharp-sided. Some layers less than a centimetre thick have 

diffuse bottom contacts and very sharp top contacts. Some layers which appear
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to be graded may just be alternations of layers with varying clay content. One 

anomalously thick graded siltstone bed 25 cm thick contains abundant feather­

like dewatering structures where underlying clay has injected into it. The other 

siltstone layers are surprisingly free of dewatering or load structures (Fig. 40). 

Sandstone: Medium-grained and fine-grained sandstones begin to appear in 

the lower portion of this unit and become more common upwards. They average 

about 5 cm in thickness and are up to 20 cm thick in the lower portion of the 

coarsening upwards succession. The thicker ones are composed of multistory, 

stacked sandstone layers with sand sizes and clay contents varying between 

different layers in the stacked assemblage. Grading is common though not all 

layers are graded. Some graded layers coarsen again at their tops (this appears 

to represent reworking of the tops of graded layers). Most are parallel laminated 

with laminations less than 1- 3 mm thick. Less commonly graded layers are 

cross- stratified throughout. Load structures are common along the bottoms of 

some sandstone layers overlying black shale, and ball-and-pillow structures of 

sand also occur in the shales. As well ball-and-pillow structures of clay-poor 

sand occur in clay-rich sand. Non-graded, medium grained, sharp-sided cross- 

stratified sand layers also exist. Approximately 35 m above the point where the 

coarsening upward trend begins thicker, graded sandstone begin to appear. The 

graded sandstones average 20 cm in thickness with a typical 23 cm thick 

sandstone composed of a graded medium-grained sand lower section, about 2 

cm thick when present, parallel laminated medium sand averaging 6 cm thick, 

cross-stratified medium to fine sand averaging 3 cm thick when present, and 12
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cm of parallel laminated fine sand grading to silt ( the upper 2 cm of this is 

parallel laminated silt and clay with laminae less than 1 mm to 2 mm thick). This 

is overlain by variable thicknesses (up to 30 cm) of black shale. The base of 

these layers is commonly sharp and non-loaded, with the exception of some of 

the thinner layers which do load at their bases (Fig. 41).
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Fig.35. Coarsening and Thickening Upward Succession. A carbon- 
rich shale and siltstone interval (upper two rows). Up is to the left. 
Core MC-89-1.

Fig.36. Photomicrograph from the Coarsening and Thickening Upward Succession. 
Carbonaceous black shale with platy rip-ups, Note the erosive truncation of the 
underlying layer, left center portion of the photomicrograph.
Photomicrograph-plane light. Core MC-89-1.
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Fig.37. Photomicrograph from the Coarsening and Thickening Upward Succession. 
Carbonaceous black shale containing abundant rip-ups of silty gains. 
Photomicrograph-plane light. Core 89-1.

CENTIMETRE

Fig.38. Coarsening and Thickening Upward Succession. Seven 
stacked, thin graded beds. Up is to the left. Core MC-89-1.
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CENTIMETRE

Fig.39. Coarsening and Thickening Upward Succession. A graded 
bed with Bouma A, B and D divisions. Up is to the left. Core MC- 
89-1

CENTIMETRE
Fig.40. Coarsening and Thickening Upward Succession. Very-fine 
grained sandstone fining up. Up is to the left. Core MC-89-1.
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2.2.6 Massflow Prodelta Deposits

Sandstone and siltstone dominate this area in cores 89-MC-1, PR-99-4, 

PR-98-1, PR-98-2, and PR-98-3. Shale, silty-shale, siltstone, and sandstone are 

present in cores GF-3, and MGS-2. Core MGS-2 contains shale, silty-shale, and 

siltstone. All cores display a coarsening upward trend to primarily sandstone 

near the top of the unit. Graded bedding and cross-stratification features are 

present throughout the core. Sandstone increases upwards and dominates this 

section. Shale separates sandstone successions, with siltstone less common. 

Distinct coarsening upwards units of shale to siltstone to sandstone occur in the 

northeast, thinning out to the southwest in core MGS-8. Thickness varies from 

approximately 380 m in the NE to approximately 100 m in core MGS-8.

Shale: Thin shale layers (a few millimetres to several centimetres thick) 

commonly separate the sandstone layers except where the sandstone layers cut 

down into one another. These shales are black to dark grey, the colour varying 

depending on silt content. The graded silty shales of underlying graded beds 

grade up into the purer shales capping the beds. These are the E division (Fig. 

42) rainout clays which separate the graded beds. Thicker shale dominated 

areas (average 1.5 m thick) separate the sandstones into separate packages. 

These black shales have golden brown zones, very organic-rich in appearance, 

averaging 2 cm thick and up to 8 cm thick. Both the black shales and golden 

brown shales are parallel laminated with 1mm thick silty shale layers. These 

successions contain one or two graded sand layers averaging 5 cm thick per 1.5 

m shaley succession (Figs. 42).
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Siltstones: Siltstones are uncommon except in the upper portions of some 

graded beds. Some siltstone beds averaging 5 cm in thickness are present in 

the shale intervals. Their upper and lower contacts are somewhat diffuse rather 

than sharp and flat.

Sandstones Graded, fine-grained sandstones dominate most of this section.

The lowest portions of some of these layers consist of medium-grained graded 

sand (Figs. 43, 44 and 45). Most of these layers are dominated by parallel 

lamination, with laminae of 1 to 10 mm thickness. Massive areas are also 

common. Ripples and cross-stratification are uncommon though they increase in 

abundance upward through the succession (Fig. 43). A few graded sand layers 

have cross-stratified fine sand at their base but these are rare. The graded sand 

layers which commonly occur stacked one on top of another are similar to those 

in the transition zone which constitute regularly isolated occurrences in the 

shaley succession. Ripples and cross-stratification are uncommon in the graded 

layers in the lower portion of this unit. The bases of some of these layers are 

extensively loaded whereas others are sharp and flat. Small clastic dykes, which 

may represent water escape structures, are also present, intruding upward from 

sandy areas into the fine-grained upper portions of graded layers.
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Fig.41. Massflow Prodelta Deposits. Very fine grained sandstone 
with sharp contact with carbon-rich shale. Up is to the left. Core 
PR-98-1.

Fig.42. Massflow Prodelta Deposits. Cross bedding. Up is to the 
left. Core PR-98-1

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CENTIMETRE

Fig. 43. Massflow Prodelta Deposits. Sandstone thickening 
upwards with silty-shale and shale separating the sandstone 
packages. Up is to the left. Core PR-98-1.

Fig.44. Massflow Prodelta Deposits. Sandstone thickening
upwards with carbon-rich shale separating
the sandstone-rich areas. Up is to the left. Core PR-98-1.
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2.2.7 Distal Bar

Alternating layers of shale, siltstone and sandstone occur throughout core 

PR-98-3. Varying thicknesses of sandstone dominate the top part. Features 

present include flaser, lenticular and wavy bedding with both current and wave 

ripples.

Shale: The shales form layers of alternating black shales to grey silty shales with 

laminae less than a millimeter to a few millimeters in thickness. Contacts are 

sharp between beds which are interlayered with ripple marks (Figs. 46 and 47). 

Siltstone: The siltstone generally alternates with the shale and is also 

associated with thin sandstone beds.

Sandstone: Alternating from discontinuous to even parallel bedding up to 15 cm 

in thickness. Grain size is very fine, sedimentary structures present include 

cross-bedding, piled load-casted ripples, slump structures, flaser, lenticular, and 

wavy bedding. The rippled sandstones are commonly 8 cm or less in thickness. 

The massive sandstones are generally 8 to 15 cm in thickness (Figs. 48, 49, 50 

and 51). Draped foresets and bundled up-building were used to identify wave 

ripples, which are common.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig.45. Distal Bar. Flaser wavy and small scale lenticular bedding 
are all present in this interlayered sandstone. Shale assemblage 
typical of this unit. Up is to the left. Core PR-98-3

\ \ 0 '  14 ' I k '  l|3  ' 1|4 '

Fig.46. Distal Bar. Sandstone laminae varying in thickness 
alternating with black shale throughout the unit. Up is to the left. 
Core PR-98-3.
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Fig.47. Distal Bar. Sandstone layers, Including a thicker (15cm) 
parallel laminated bed. Up is to the left. Core PR-98-3.

CENTIMETRE
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Fig.48. Distal Bar. Trough cross stratification, (top right). Up is to 
the left. Core PR-98-3.
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Fig.49 Distal Bar. Dewatering feature. Clay injections in the base of 
a sandstone layer probably formed during dewatering of the 
underlying flaser bedded sandstone to shale. Ripple laminated 
unit. Up is to the left. Core PR-98-3.
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Fig.50. Distal Bar. Lenticular wavy and flaser bedded wave ripples. 
Up is to the left. Core PR-98-3.
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CHAPTER 3: DEPOSITIONAL ENVIRONMENT

The basal RoveA/irglnia slltstone and shale succession was 

deposited during the initial flooding of the basin. It correlates across the entire 

basin with the exception of core MGS-5 in which it is absent (Fig. 11). No coarser 

shoreline deposits are associated with this fairly fine-grained facies. Deposition 

was probably initiated in the south, nearest the open ocean, and migrated 

northward with progressive flooding as inferred from thinning of sediments 

northward. Felsic volcanism, occurring at 1835 Ma during the waning stages of 

the Penokean Orogeny to the immediate south (Sims et al., 1989), contributed 

volcanogenic ash layers. Some errosive scouring and abundant mud rip-ups in 

the siltstone indicate reworking by current activity. With increasing water depth 

this unit grades upward into the shale dominated succession. This facies formed 

in a quiet basinal environment by deposition of fine-grained sediment from 

suspension. Limited siliciclastic supply allowed proliferation of organic material, 

producing a condensed succession in an anoxic environment as attested to by 

the very fine grain size and abundant carbon. An 1835 Ma U-Pb age from 

tuffaceous layers at the base of this unit and a 1780 Ma youngest zircon age 

from detrital zircons in a sandstone overlying this unit indicates this condensed 

succession required at least 55 My to be deposited. Ash layers are less common 

in this carbon-rich shale unit. Some scattered oversized fine sand grains 

observed in thin sections may indicate aeolian delivery. Paleoflow directions are 

inferred from Morey’s (1965, 1967) data for the Rove Formation as well as from
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sedimentation types and patterns across the basin, e.g. thickening and 

coarsening upwards trends, fining and thinning basinward of the clastic wedge.

Deposition of a coarser siltstone-rich unit traceable across the basin and 

sandwiched within the lower half of the shale succession may indicate a 

temporary inflection in water level, or increase in sediment supply. No evidence 

of emergence is present in any of the drill holes. The siltstone layers are 

ungraded, parallel laminated, and sharp-sided with no evidence of erosive 

scouring. Tuffaceous layers are also present.

The fine-grained Northward Prograding Clastic Wedge (Fig. 11), within the 

upper half of the shale unit, thickens to the south. Coarser sediment in the most 

southerly drill hole (18290) indicates some sediment was being supplied from the 

Penokean Orogen, which is located approximately 80 km south of this hole and 

was active from approximately 1860 Ma to 1830 Ma (Sims et al., 1989).

The coarsening and thickening upwards successions consist of shale with 

siltstone content increasing upward. Graded sandstones, with reworking of some 

of the tops of layers, also become more abundant and thicker upwards. Internal 

structures and textures in the sandstone layers are typical of deposition by 

turbidity currents (Lucente and Morey, 1983). The sandstone beds increase in 

frequency and thickness upwards and the succession thins to the south probably 

representing a submarine fan (or ramp) complex prograding from the north 

(Lucente and Morey, 1983).

The Massflow Prodelta Deposit unit (Fig. 11), a thick sandstone- 

dominated succession, commonly exhibits massive or parallel laminated sand
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beds that are graded, with ripples and cross stratification appearing at higher 

levels in the succession. Some bases are loaded while others are sharp and flat. 

Sedimentary structures are more prevalent in the north, becoming more diffuse 

to the south. The sandstones are separated by shales, mainly in thin layers, 

some of which are parallel laminated with silt. The shales also contain organic- 

appearing golden brown zones. A coarsening upward trend is apparent 

throughout the 400 meters of section containing this assemblage with sandstone 

dominating the top of the unit. Deposition of sandstones was by turbidity 

currents whereas the shales represent periods when rainout of fines dominated. 

The progradation represented by the general coarsening upward trend is a 

continuation of the trend established in the underlying unit though not as marked. 

Internally the general coarsening upward trend is composed of approximately 75 

coarsening and thickening upward asymmetric cycles, each averaging 5 m thick. 

The cycles are separated by thicker black shales representing intervals of 

sediment starvation. The approximately 400 m thick unit is dominated by 

paleocurrents showing detritus was derived from the north (Morey, 1967) most 

likely indicating a massive influx of sediment from the Trans-Hudson Orogen 

occurring to the north and west.

The Distal Bar unit consisting of alternating shales, siltstones, and 

sandstones displays flaser, lenticular, and wavy bedding with current and wave 

ripples indicative of a shallower water depth. A coarsening upwards trend is also 

evident. These features are characteristic of distal bar portions of distributary 

mouth bar deposits. While tidal flats can contain similar features, ripples in tidal
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flats commonly display bi-directional flow patterns which are not evident within 

these deposits.

The successions of the RoveA/irginia Formations represent subaqueous 

facies in which the fine-grained sediment starved basin deposits are succeeded 

by turbidites forming submarine fan or ramp deposits. These grade vertically and 

to the north (landward) into the overlying rippled unit which may represent the 

distal bar deposits of an advancing delta front.

In the classic deltaic sedimentation model based on the Mississippi, low 

density turbid fresh river water enters denser saline water of a basin (see Bates, 

1953; Wright and Coleman, 1974). This water may contain only a small 

percentage of sand with high concentrations of silt and clay. As an effluent 

plume leaves its river mouth and expands, velocity decelerates and hence the 

coarser sediments, the sands, settle rapidly from suspension, and almost all of 

the sand is deposited near the vicinity of the river mouth in distributary mouth bar 

assemblages (Morgan, 1970; Wright, 1977; Coleman and Prior, 1980).

Variations in turbulence and flow rates can cause deposition of silts and clays in 

this environment also, which tend to be reworked, cleaned and sorted by marine 

wave processes leaving clean, well-sorted sands (Wright, 1977).

Constantly waning velocity seaward, with expansion of the effluent plume, 

widely distributes the remaining fine-grained sediment load, with the rate of 

clastic deposition gradually decreasing seaward. Deposition of rippled very fine­

grained sands to coarse silts and some of the clays results in creation of a month 

bar. The finest grained silts and clays are carried beyond, eventually settling
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from suspension to form prodelta facies. Prodelta deposits represent the basal 

portion of an actively prograding delta. Deposition occurs entirely from 

suspension, commonly creating parallel laminae of alternations of fine graded silt 

layers within anotherwise fine-grained clay. The shallower water portions of the 

prodelta deposits tend to show laminae that are thicker and grain size that is 

normally coarser (Coleman and Prior, 1980), with parallel and lenticular silt 

laminae more common. Clays predominate in more distal portions. During the 

most dynamic flood events, silt laminations may form thin graded beds. With dip 

angles usually averaging < 0.2° - 0.3°, prodelta deposits can attain considerable 

thicknesses and lateral extents. In the Mississippi delta they range from 20 to 

100 m thick with a lateral spread of 200 to 250 km (Coleman and Prior, 1980). 

The fine-grained pro-delta sediments can move seaward great distances, and it 

is not uncommon to find clays beyond the shelf edge, deposited from suspension 

in the upper slope environment (Coleman and Prior, 1980). Sands found in the 

outer shelf and upper slope result from mass-movement processes by which 

large parts of the river mouth bar deposits are moved en masse seaward and 

incorporated into the shelf-edge and upper slope deposits (Coleman and Prior, 

1980).

These mechanisms are considered responsible for deposition of the 

RoveA/irginia turbidite deposits forming a prodelta facies which appears to 

conform to a delta-fed submarine ramp model, as described by Heller and 

Dickinson (1985). Submarine ramps occur at basinal depths where sandy deltas 

prograde to the shelf-slope break or beyond and deliver coarse sediment directly
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down the basin slope from multiple points along the delta front. These turbidite 

flows form relatively monotonous and laterally continuous sheets of sandstone of 

random thicknesses which thin downramp with decreasing sandstone/shale 

ratios. They are characterized by overall thickening, coarsening upward 

progradational successions and by a reduction in thickness of slope-shale facies 

between the ramp sandstones and overlying delta-front sandstones. Typical 

submarine fans, which form by deposition from point sources of sediment such 

as from submarine canyons, display distinct facies segregation into channel and 

overbank or interchannel deposits. A submarine ramp, however, builds out into a 

basin along a broad front, displaying little or no differentiation of the facies typical 

of most submarine fan deposits. Turbidites can be commonly generated off 

frontal slopes of deltas that have built out into deep water. The two main ramp 

subfacies are better termed as distal and proximal ramp facies, which are 

respectively sand-poor and sand-rich with a gradual transition zone. Distal ramp 

deposits form by lower energy, lower density turbidite sheet flows which merge 

with the basin plain. Overlying proximal ramp deposits form by higher density 

turbidite sheet flows that spread out onto the ramp surface and bank up against 

the prograding delta slope. The prodelta slope lacks a dominant feeder channel 

or canyon and is traversed by multiple shallow gullies or delta slope troughs. The 

overlying delta platform consists of a subaerial delta plain and narrow marine 

shelf along the submerged delta front. Heller and Dickinson (1985) infer this type 

of sediment delivery to be enhanced on narrow shelves where deltaic 

progradation is rapid, and the system contains coarse sediment. In the
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RoveA/irginia depositional units, the coarsening upwards successions probably 

represent distal ramp deposits, with the overlying sand-dominated unit analogous 

to proximal ramp deposits, the two combined units forming a deltaic prodelta 

ramp facies.

Turbidite flows can be generated off a delta front by a number of 

mechanisms, including storm events, river flooding, high rates of sedimentation 

or seismic activity (Pattison, 2005). They may also occur simply due to instability 

of a saturated sediment pile on a gentle slope. The sediments form a broad 

apron of stacked successions at the base of the delta front, eventually becoming 

overlain by distal bar and shallower water facies with delta progradation. 

Modification by wave and/or tidal effects can occur, producing variations in bed 

type, ripples and cross stratification. Wave modified turbidites commonly display 

criteria such as well graded beds, Bouma beds, flute marks, thick packages of 

climbing ripples, assymmetrical folds in abundant convolute bedding, hummocky 

cross stratification and rare small two-dimensional ripples (Myrow et al., 2002). 

Tides produce cycles of erosion and deposition and fluctuations in tidal range 

can enhance either process. Tidal effects may be more commonly observed in 

shallower water facies, producing interbedded sands and muds on the seabed, 

which are influenced by both fluvial and tidal activity (Jaeger and Nittrouer, 

1995). Energy of the system and amount of sediment supply will influence 

bedding types and sedimentary structures formed. Periods of large tidal range 

produce thick sand interbeds sand and thin mud interbeds while periods of small 

tidal range produce thin sand interbeds sand and thick mud interbeds (Jaeger
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and Nittrouer, 1995). Flaser bedding, with mud filling the troughs and draping 

partially over the crests of rippled sand beds, or lenticular bedding consisting of 

sand lenses preserved within muddy beds can be produced by higher or lower 

energy tidal ranges respectively. Tidal deposits commonly display bi-directional 

paleocurrent indicators in close stratigraphie proximity such as herringbone cross 

lamination and superposition of ripples with opposite facing directions (Darymple 

et al., 2003). These types of structures were not observed in the RoveA/irginia 

Formation.

Overlying the prodelta facies, distal bar deposits (Wright, 1985), also 

known as the distal delta front or platform (Allen, 1970) are a basinward 

continuation of distributary mouth bars and are characterized by a decrease in 

both sedimentation rates and coarseness as compared to the proximal 

distributary mouth bar. Deposited along the seaward-sloping margin, dip angles 

are slightly higher, rarely exceeding 0.5° and assemblages have lower lateral 

continuity than the prodelta clays. Lithologically these deposits can be 

characterized as parallel laminated clays with rippled silts and silty sands 

(Coleman and Prior, 1980). Most dynamic flood events can produce a variety of 

sedimentary structures including small-scale cross-laminae, current ripples, and 

scour-and-fill structures as well as erosional truncations (Coleman and Prior, 

1980). Successions of graded beds that coarsen upwards are a common feature 

(Coleman and Prior, 1980). The uppermost unit of the Rove/Virginia successions 

displays features indicative of shallower water depth, including flaser, lenticular 

and wavy bedding, wave ripples and discontinuity of some of the beds. These
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attributes are characteristic of distal bar deposits. Tidal flats may also display the 

same features, however ripples will display bi-directional current patterns which 

are not evident in the deposits studied.

Deltas are sensitive to subsidence trends, sea-level fluctuations and basin 

tectonics (Elliot, 1986). Delta-front regimes are used to define delta types, and 

may be dominated by fluvial or wave or tidal processes or combinations of each. 

Distal deltaic deposits among the different types are generally quite similar in 

character. Prodelta shales and siltstones grade upward into coarser distal bar 

deposits, which consist of alternating sandstone, siltstone and shale. The delta 

type represented by the RoveA/irginia successions is indeterminate due to the 

erosional removal of the shallowest water and subaerial facies, however the 

presence of wave ripples indicates the probable influence of wave activity. 

Consideration of the basin’s earlier history, which displayed influences of tidal 

activity (Ojakangas, 1983), indicates the possible involvement of tidal influences, 

though apparent evidence wasn’t observed.

Many similar sedimentary successions have been recognized in other 

ancient deltaic systems in comparable tectonic settings and include the following 

examples.

The Eocene-Oligocene An not sandstones in Southeast France display a 

similar depositional trend as the RoveA/irginia Formations. They accumulated 

within 2 sub-basins as delta-fed submarine ramps in an Alpine foreland basin. 

Both sub-basins derived sediment from the uplifted Alpine mountain belt to the 

east. The southern sub-basin was fed additionally from the southern Provençale
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and Corsican/Sardinian massifs. Sedimentation in the northern sub-basin 

developed as at least two sand-rich delta-fed submarine ramps/aprons, with 

turbidite filled channels cut into the prodelta foresets (Sinclair, 2000). The 

successions consist of 300 m of alternating sandstone and mudstone overlain by 

480 m of cross-bedded and planar laminated fine sandstone (Sinclair, 2000). 

Channel fill conglomerates are locally present interbedded with planar-laminated 

sandstones. The successions are interpreted as the accumulation of sheeted 

sand bodies associated with numerous shallow, broad channels deposited off a 

delta front by low and high concentration turbidity currents in a basin floor to base 

of slope setting (Sinclair, 2000). Sedimentation in the southern sub-basin 

developed similarly, initially with a steeper and coarser delta front characterized 

by more mass flows (Sinclair, 2000). As the smaller, confined southern sub­

basin filled, sediment was tunneled to the northern sub-basin via the Coyer 

Trough linking them.

Similar successions occur in the Upper Cretaceous Book Cliffs in eastern 

Utah and western Colorado. The Cretaceous Western Interior Seaway, which 

covered the eastern half of Utah, accumulated siliciclastic sediment shed from 

the Sevier Highlands to the west as a series of marine shale-encased isolated 

sandstone bodies (Pattison, 2005). One of the westernmost units, the Hatch 

Mesa succession has been interpreted as a storm-influenced, prodelta turbidite 

complex deposited on the shallow inner shelf between fair weather and storm 

wave base (Pattison, 2005). Thin bedded siltstones and mudstones are 

combined with sandstones to form a stack of three or four coarsening-upwards
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cycles each 3 to 8 m thick (Pattison, 2005). The sediments display similar 

structures and bed types to the RoveA/irginia successions. Turbidity currents 

generated by delta front instabilities and storm waves are considered responsible 

for transporting and depositing sand in the prodelta region (Pattison, 2005). 

Modification by wave activity is apparent. The depositional model includes a 

delta front and prodelta turbidite complex linked by a subaqueous channel 

network.

The Cambrian Starshot Formation within the Ross Orogen in the central 

Transantarctic Mountains is dominated by wave modified turbidites deposited in 

a shoreline to shelf-slope setting. Sedimentation was initiated by uplift 

associated with active tectonism. The succession grades upward from shale to 

thin to medium bedded shale and sandstone to proximal sandstone and 

conglomerate facies.

In northern England, the Namurian Kinderscout Grit delta system grades 

upwards from basinal muds into a distal turbidite apron and submarine fan 

complex, (Reading, 1964). The overlying delta front slope consists of a 100 m 

thick coarsening upwards succession dominated by mudstones and siltstones 

that are cut by turbidity channels and slump scars. Topped by the delta plain 

facies, the entire system is 700 m thick (Reading, 1964). Within the same basin, 

the Roaches Grit delta differs in that the delta front is dominated by ripple, 

laminated turbidites rather than mudstones and siltstones. The turbidity currents 

are attributed to synsedimentary faulting in the upper delta front (Jones, 1980). 

Deposition was dominated by sand-rich turbidity currents.
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A similar, ancient system, the Eocene Tyee Formation of Oregon (Chan 

and Dott, 1983; Heller and Dickinson, 1985), consists primarily of deltaic 

sediments and turbidites deposited northward into the southern part of the 

Oregon Coast Range Basin from the region of the Klamath Mountains (Chan and 

Dott, 1983; Heller and Dickinson, 1985).

The Paleogene Matilija Formation in the Western Transverse Ranges of 

southern California formed by similar processes (Link and Welton, 1982). 

Deposition of Eocene turbidites is attributed to the progradation of a major delta 

front (Link and Welton, 1982).

Similar systems also occur in volcanic terrains. The Archean Beardmore- 

Geraldton Basin contains a series of fans that were fed from a shelf by multiple 

canyons, the sediment transported across braidplains from an active volcanic 

terrain (Barrett and Fralick, 1989).

Later systems formed by similar processes include the Claymore-Galley 

systems of the North Sea (Boote and Gustav, 1987; O’Driscoll, Hindle, and Long, 

1990) and the Campos Basin of Brazil (Guardado, Gamboa, and Lucchesi,

1989).
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Fig. 51. Correlation of Rove and Virginia Formations and the Gunflint and 
Biwabik Formations. The Gunflint and Biwabik iron formation represent a stable 
shelf phase. They are capped by a 40 My hiatus spanning the Penokean 
Orogeny to the immediate south. The lower black shale dominated portions of 
the Rove and Virginia Formations represent the sediment starved initial foredeep 
development of the foreland basin with limited clastic influx from the Penokean 
Orogenic zone to the south. The overlying coarsening upwards turbidite to delta 
front assemblage represents progradation of sediment derived from the Trans- 
Hudson Orogeny which underwent final closure at a slightly younger age than the 
Penokean Orogeny.
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CHAPTER 4; SEQUENCE STRATIGRAPHY

Sequence stratigraphy, a relatively recent concept employed in 

interpretation of sedimentary systems, considers individual packages of strata 

deposited during cycles of relative sea-level change and/or changing sediment 

supply (Vail et al., 1977). The stratigraphie packages are bounded by 

chronostratigraphical surfaces which include unconformities formed during 

relative sea-level fall and flooding surfaces formed during relative sea-level rise 

(Vail et al., 1977; Parkinson and Summerhayes, 1985; Coe and Church, 2003). 

This information provides insight into environmental changes through time as 

well as allowing correlation of a range of depositional environments at various 

locations.

Sedimentary systems strive to achieve and preserve an equilibrium (or 

depositional) profile where available accommodation space for sediment 

deposition is balanced by the amount of sediment supplied (Coe and Church, 

2003). Disruption of the equilibrium by alteration of the rate of sediment supply 

or rate of change of accommodation space will cause regression (seaward shift 

of the shoreline) or transgression (landward shift of the shoreline), and changes 

to areas of erosion and deposition on land. In alluvial systems, the level along 

the equilibrium profile below which sediment will be deposited and above which 

sediment will be eroded is referred to as base level. Shallow marine 

environments incorporate several base levels, including fair weather and storm 

wave-bases. Sea-level position is particularly important in affecting deposition
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and erosion along both non-marine and marine equilibrium profiles (Coe and 

Church, 2003).

In siliciclastic environments much of the sediment which is eroded and 

transported from non-marine systems is deposited in shallow marine 

environments. Sediment erosion, transport, and deposition is affected by several 

factors. Climate largely controls rates of erosion and transportation. Tectonics 

affect sediment supply and accommodation space by altering the positions of the 

sea bed and land surface. Both factors are important in affecting relative sea- 

level change. Compaction of sediments provides increased accommodation 

space independent of sea-level and sediment supply rates.

Packages of sediment which represent small-scale successions of 

relatively conformable beds or bed sets bounded by flooding surfaces are termed 

parasequences (Coe and Church, 2003). Each parasequence is deposited 

during a short time interval reflecting relatively constant conditions, though on the 

larger scale sea-level, accommodation space and sediment supply vary through 

time. Their thickness can vary from less than a meter to a few tens of meters 

and their lateral extent from tens to thousands of square km (Coe and Church, 

2003). Sequence stratigraphy considers how these parasequences stack 

together to form sequences due to changes in accommodation space and/or 

sediment supply over longer periods of time (Coe and Church, 2003). While 

most parasequences coarsen upwards, a few fine upwards, such as in estuarine 

or muddy tidal flats to subtidal environments. A shallowing upwards trend is 

commonly represented regardless. As the smallest bed-scale cycle observed.
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parasequences are the smallest unit usually considered in sequence 

stratigraphy. Successions of parasequences which form distinctive stacking 

patterns are termed parasequence sets (Coe and Church, 2003) which may be 

progradational, retrogradational or aggradational.

A retrogradational pattern occurs with a landward shift of the shoreline 

causing the parasequences to backstop or retrograde. This reflects an increase 

in accommodation space which exceeds the rate of sediment supply.

Aggradation occurs when the increase in accommodation space keeps 

pace with the rate of sediment supply, the shoreline remaining in the same 

position. The parasequence sets stack vertically on top of each other.

With progradation the constant rate of sediment supply exceeds the 

increase in accommodation space with a basinward shift of the shoreline and of 

successive parasequence sets. Exposure may cause subaerial erosion of more 

proximal areas. A relative sea-level fall resulting in reduced accommodation 

space also results in progradation. This is termed a forced regression and is 

independent of fluctuations in sediment supply. A normal or depositional 

regression occurs when the rate of sediment supply exceeds the rate of increase 

in accommodation space through either a relative sea-level rise or a stillstand 

(Coe and Church, 2003).

A succession of parasequence sets comprises a depositional sequence. 

These can vary in thickness from a few meters to tens or hundreds of meters. A 

sequence represents one cycle of change in the balance between 

accommodation space and sediment supply (Coe and Church, 2003). Specific
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sections of this cycle within each sequence may be represented by up to four 

“systems tracts”, with each tract made up of at least one parasequence set. Not 

all systems tracts may develop or be preserved depending on conditions.

Absolute highs and lows in relative sea-level are considered along with 

rates of relative sea-level change. Fluctuations in the rate of change of 

accommodation space are controlled by the rate of sea-level change. Maximum 

rates of sea-level rise and fall generally occur approximately midway through 

each rise-and-fall cycle with corresponding changes in accommodation space 

(Coe and Church, 2003).

Systems tracts which can occur within sequences include the highstand 

systems tract (HST), the falling stage systems tract (FSST), the lowstand 

systems tract (LST), and the transgressive systems tract (TST). Successive 

sequences are terminated by maximum flooding surfaces (MFS) and separated 

by sequence boundaries (SB).

Accommodation space is created most rapidly during the period of 

maximum rate of sea-level rise. Sediments deposited during the time interval 

between the maximum rate of sea-level rise and maximum sea-level from the 

Highstand Systems Tract (HST), and consist of aggradational to progradational 

parasequence sets (Coe and Church, 2003).

With a fall in sea-level, rivers will incise and erode the exposed sediment 

creating an unconformity. Sediments will be transported further into the basin 

with a corresponding shift of the shoreline basinward. The unconformity formed 

during this sea-level fall is termed the Sequence Boundary (SB). Farther
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offshore this erosional unconformity is transitional to a non-erosional surface of 

correlative conformity which is overlain by sediments deposited during the 

interval of falling sea-level. Representative of the time at which sea-level began 

to fall, correlative conformities can be difficult to identify as they often exhibit no 

distinct change in facies.

Sediment deposited during falling sea-level between maximum and 

minimum relative sea-levels forms the Falling Stage Systems Tract (FSST). A 

FSST occurs only with forced regression resulting in progressive downstepping 

of parasequences as the shoreline moves basinward. Preservation of the FSST 

can be variable to nil depending on sediment supply and rate of sea-level fall with 

consequent erosion.

Sediment deposited between the minimum relative sea-level and a more 

pronounced increase in sea-level and accommodation space forms the Lowstand 

Systems Tract (LST) (Coe and Church, 2003). This consists of progradational to 

aggradational parasequence sets as the shoreline begins a landward migration.

A progressive rise in sea-level will produce a transgression when 

accommodation space exceeds sediment supply. The Transgressive Surface 

(TS) which occurs forms the base of a set of retrogradational parasequence sets 

termed the Transgressive Systems Tract (TST). These are deposited during the 

interval when rate of increase of accommodation space exceeds the rate of 

sediment supply until maximum sea level is reached. Low sediment supply will 

produce a thin or non-existent TST.
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Sediment starvation in distal parts of the depositional profile can occur 

with increasing sea-level rise. This starvation reaches its most landward position 

between the maximum rate of relative sea-level rise and the maximum sea-level 

(Coe and Church, 2003). This results in the formation of a condensed bed, the 

top of which is termed the Maximum Flooding Surface (MFS), and is associated 

with the most landward position of the shoreline. Condensed beds may be highly 

fossiliferous due to lack of siliciclastic sediments. Marine sediments are often 

deposited in proximal areas which were previously entirely non-marine. With the 

achievement of a balance between the rate of increase of accommodation space 

and sediment supply, deposition of the next HST will occur between the 

maximum rate of relative sea-level rise and maximum relative sea-level. 

Repetition of the cycle will produce another depositional sequence.

The development of system tracts is usually ascribed to changes in 

relative sea-level. However, a supply of coarser sediment is also necessary or 

relative sea-level change will have no effect on sediment accumulating in the 

offshore. Commonly, systems tracts are described over small lateral distances of 

less than 100 km where lateral transport of coarse sediment is only rarely 

incapable of producing traceable sequence tracts. In this study the 425 km of 

lateral distance separating the northernmost and southernmost sections leads to 

the complication that sediment delivery to one side of the basin may lead to the 

recording of sequence tracts there, but in the distal areas all the tracts are 

represented by the accumulation of organic-rich muds. In the basin studied this 

general problem is further complicated by sediment first being delivered from the
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south and later from the north. Thus, the systems tracts are discussed in two 

sections; the first dealing with those developed during northern sediment delivery 

and the second on southern sediment delivery systems tracts.

Systems Tracts dominated by sediment Input from the northeast beginning 

from core 89-MC-1 :

Core PR-98-1 is used to graphically demonstrate the vertical sequence 

and stratigraphie framework of the units studied (Fig. 52). Lateral variation 

across the basin is outlined in Figure 53. Four system tracts are present, FSST, 

LST, TST, and HST, as well as three boundaries, SB, TS, and MFS (Figs. 56 and 

57).

The SB marks the beginning of relative sea level fall. During this event 

deposition does not occur in the proximal part of the depositional profile (alluvial, 

coastal plain and near shore). Instead, erosion occurs with continual sea level 

drop, producing an unconformity. Sediment is transported further into the basin 

producing a depositional systems tract consisting of a coarsening upward trend. 

The SB is placed at the base of the Coarsening and Thickening Upward 

Succession where a definite coarsening upward trend is initially noted (Fig. 53). 

The shale unit below the SB represents a quiet offshore environment and is 

observed from core 89-MC-1 in the northeast along the basin to the southwest in 

cores PR-98-1, GF-3 and MGS-2 (Fig. 53). No correlative conformity is 

apparent, considering the location of the SB within the basin.

Continual sea level fall and consequent erosion of previously deposited 

sediment produces a supply of reworked siliciclastics which are deposited in
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progradational parasequence sets. Variations in rate of sea-level fall and 

sediment supply may produce different types of depositional profiles. Stranded 

or detached parasequences are separated from each other, while attached and 

stepped down parasequences form a lateral succession.

A set of progradational parasequence sets comprise the FSST which 

extends upward from the SB ending with the beginning of sea level rise. The 

FSST is 20 m thick in core 89-MC-1, increasing to 64 m thick in PR-98-1. It thins 

to 25m and 30 m respectively in cores GF-3 and MGS-2, possibly due to the 

slope gradient and/or greater distance from the sediment input source. The 

FSST in all of the above cores initially develops as detached parasequences, 

ending with stepped-down parasequences. The siltstone/sandstone layers vary 

in thickness from 1 cm near the base up to 30 cm near the top of the FSST. 

Frequency of siltstone/sandstone packages increases upwards and shaley 

intervals between them thin from 1-2 m thick to 1-2 cm thick near the top of the 

FSST. The FSST in core PR-98-1 consists of 31 coarsening up parasequences 

of shale, siltstone and sandstone and 6 similar parasequences in core 89-MC-1. 

In core GF-3 the FSST is represented by 5 siltstone-shale parasequences and 3 

of shaley-siltstone. Two parasequences of shale, siltstone, and sandstone occur 

in core MGS-2 with stringers of sandstone between shale units. Eight shaley- 

siltstone parasequences comprise the FSST in core LWD-99-1. The FSST is not 

apparent in cores MGS-5 and 7 however the boundaries were extended through 

them to core MGS-8 where the FSST, while indistinct, is arbitrarily placed where 

sand stringers occur in the shale.
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The FSST is followed by the LST as sea level falls to a minimum and 

begins to rise. Accommodation space begins to increase and the shoreline 

begins a landward migration. Progradational to aggradational parasequence 

sets are produced. Progradational parasequences occur in cores 89-MC-1, PR- 

98-1, GF-3, and MGS-2 which all exhibit a coarsening upward trend. The 

thickness of the LST varies from 14 m in 89-MC-1 and PR-98-1 to 70 m in GF-3 

and MGS-2. LST parasequences are composed of shale, siltstone, and 

sandstone. Toward the southwest the packages become less distinct, as 

increasing distance from the sediment source leads to a reduction in grain size. 

The LST and FSST form a portion of the shelf-slope ramp deposits. In core 89- 

MC-1, the LST consists of a set of 6 shale-siltstone-sandstone parasequences. 

In core GF-3, 1 parasequence of silty sandstone interlayered with sandstone 

forms the LST up to the shale unit. In core MGS-2, 3 parasequences of shale- 

siltstone-sandstone occur, as well as shale horizons with stringers of sand. The 

LST is not apparent in cores LWD-99-1 or MGS-7. In MGS-8 the LST is 

represented by sand stringers in shale. Frequency of individual parasequences 

decreases with increasing distance from the sediment source.

With transgression a significant sea level rise occurs and creation of 

accommodation space exceeds the rate of sediment supply. Retrogradational 

parasequence sets are produced, the base of which forms the TS. In coastal 

environments of the shoreface and foreshore, a minor unconformity is produced 

during sea-level rise by erosion and reworking of sediments by increased wave, 

tide and storm activity. In proximal areas in modern environments the TS may
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have marine sediments overlying non-marine sediments. In cores 89-MC-1, PR- 

98-1, GF-3 and MGS-2, the TS is sharply defined at 185 m above the Iron 

Formation. In cores MGS-7 and 8 the TS is placed at the top of the sand units 

which appear to be the best fit correlative with core MGS-2

The TST occurs when sediment supply does not keep pace with the rate 

of sea-level rise resulting in retrogradational parasequences. A low sediment 

supply will produce a thin or absent TST. Maximum rate of relative sea level rise 

marks the end of the TST. In core 89-MC-1, the TST is represented by a 

retrogradational parasequence which thins upward. It forms a thin shaley interval 

in cores PR-98-1 and MGS-2. A 50 m thick retrogradational succession 

culminating in shale forms the TST in GF-3.

The MFS occurs with maximum sea level rise and distal parts of the 

depositional profile may be completely sediment starved. Absence of siliciclastic 

sediments and proliferation of marine organsims will produce a submarine 

unconformity with a fossiliferous condensed bed assemblage. TST’s and MFS’s 

developed in Precambrian strata will have similar grain size responses to their 

Phanerozoic analogs. However, due to the lack of carbonate, phosphate and 

silica secreting organisms the sediment supply to Precambrian condensed 

intervals will be reduced even over their Phanerozoic relatives. Ample evidence 

of the delivery of organic remains to the bottom does occur in the shaley 

condensed sequence examined. But, instead of fossil material, abundant 

disseminated carbon and carbonaceous layers in the black shales bear witness 

to the organic-rich nature of the sediment. The MFS is located in cores 89-MC-1,
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PR-98-1, GF-3 and MGS-8 in black shales below the beginning of the sandstone 

successions (Fig.53). Coarsening upward sequences in sandstones are 

representative of proximal coastal environments, which are evident in cores 89- 

MC-1 and PR-98-1.

The HST occurs where the rate of increase of accommodation space is 

balanced or exceeded by the rate of sediment supply producing aggradational or 

progradational parasequences, respectively. The HST begins at the base of the 

sandstone, and above this an extended coarsening upward trend is apparent in 

all cores. The HST in core 89-MC-1 is composed of approximately 5 shale- 

siltstone-sandstone parasequences and approximately 7 siltstone-sandstone 

parasequences as well as individual units of siltstone and sandstone, with shale 

units less common. In core PR-99-4, parasequences present include 15 shale- 

siltstone-sandstone, 4 shale-siltstone, 8 siltstone-sandstone, and individual units 

of sandstone. In core PR-98-1, the HST comprises 25 shale-siltstone-sandstone, 

2 shale-siltstone, and 50 siltstone-sandstone parasequences. Sandstone-rich 

intervals in cores 89-MC-1 and PR-98-1 vary from a few meters to 5 m in 

thickness, the variability possibly due to differing stepped changes in water level. 

HST parasequences in core PR-98-2 include units of sandstone ranging in 

thickness from 1 to 5 m and 35 siltstone-sandstone packages and 3 of shale- 

siltstone-sandstone. Three parasequences of shale-siltstone-sandstone near the 

top of the core appear to represent an event which resulted in the development 

of several systems tracts (Fig. 53), above which the HST is continual to the top of 

core PR-98-3. This core is composed of siltstone-sandstone parasequences of
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varying thicknesses. The thickest, at 60 m marks the beginning of the distal bar 

deposits. In core GF-3, the HST is composed of 8 silty shale-sandstone 

parasequences and individual units of silty shale located between two coarsening 

up sequences. In core MGS-2, the HST is represented by 25 shale-siltstone- 

sandstone parasequences. The coarsening upwards sequences of shale, 

siltstone and sandstone thin from the northeast to the southwest further 

indicating that sediment input is from the northeast.

Systems tracts dominated by sediment input from the southwest :

The bulk of the sediment input occurred from the northeast. The generally 

quiet basinal environment dominated by shale to the southwest was intermixed 

with coarser sediment from a lesser input source to the southwest. Systems 

tracts may still be distinguished and minimally modified from those defined in the 

northeast.

The SB was placed at the top of sandstone units in cores MGS-7, MGS-5, 

LWD-99-1, MGS-2 and GF-3 and traced across the basin using the tuffaceous 

layers as a guide where possible. The FSST and LST are most evident in core 

MGS-8. Both tracts are progradational and extend up the core approximately 25 

m in each core. Both system tracts thin toward the northeast. Coarsening up 

parasequences constituting the FSST and LST are apparent in both MGS-8 and 

7. Individual parasequences are not clearly apparent in cores MGS-5, which 

contains sand stringers within shale, and LWD-99-1 in which shaley-siltstone 

dominates. A coarsening upward shale-siltstone parasequence in core LWD-99- 

1 thins in core MGS-2, pinching out in core GF-3.
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Fig. 52. System Tracts, applied from the Coarsening and Thickening Upward Successions to the top of the 
drill hole. Red bars are tuffaceous intervals.
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CHAPTER 5: Summary and Conclusions

The Animikie basin initially developed as a back-arc rift related basin 

(Hemming, 1994; Kissin and Fralick, 1994; Hemming et al., 1995; Pufahl and 

Fralick, 1995; Pufahl, 1996). A succession of basal clastic sediments was 

followed by deposition of iron formation in the north represented by the Biwabik 

and Gunflint Formations. Uplift and subaerial exposure occurred during the 

Penokean Orogeny at ~ 1.870 - 1.835 Ga (Sims et al., 1989). Increased loading 

during the orogeny with resulting isostatic readjustment caused resubmergence 

of the basin, with initiation of a clastic depositional regime represented in the 

northern portion of the basin by the Virginia and Rove Formations. As flooding 

progressed from the south, a basal succession of shale and siltstone was 

deposited. Increased subsidence and greater water depths produced a 

condensed shale-dominated unit within a quiet, anoxic, sediment starved 

environment probably with high organic loading in the bottom sediments leading 

to abundant carbon in the shales. Tuffaceous layers are present in both of these 

lower units and were probably contributed by Penokean related volcanism to the 

south where 1.83 Ga felsic volcanism has been recorded (Sims et al., 1989).

Two coarser units are sandwiched within the shale. A siltstone-shale unit present 

in the lower half of the shale is traceable across the basin and may be attributed 

to a fluctuation in water depth or increase in sediment supply. It thickens toward 

both the northern and southern basin margins with a greater frequency of coarser 

beds in general occurring in the southern third of the basin. A northward 

prograding clastic wedge present within the upper half of the shale unit may be
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the product of sediment shed from the Penokean Orogen. The coarsening, 

thickening upwards successions overlying the shale extend across the basin, 

thinning towards the north and south. Paleocurrents (Morey, 1967) and grain 

size trends (Figs. 52 and 53) indicate that the thick sandstone dominated unit is 

the product of a massive influx of sediment supplied by the Trans-Fludson 

Orogeny which had just previously occurred to the north and west. The 

succession fines to the south. The uppermost unit of alternating shale, siltstone, 

and sandstone displays attributes of current activity and shallower water depth.

Morey (1965, 1967) identified two major lithosomes in the Rove 

Formation, a lower argillaceous unit and an upper silty and sandy unit (Fig. 6). 

Lucente and Morey (1983) identified the same two major lithosomes within the 

Virginia Formation. They also identified a gradational boundary between the two 

units which correlates loosely with the location of the boundary between the 

Shale Unit and the Coarsening and Thickening Upward Unit defined in this study. 

Detailed logging and correlative efforts identified additional units which clarified 

the interpretation of the depositional environment and tectonics involved.

Morey (1965, 1967), and Lucente and Morey (1983) attributed the Rove 

and Virginia Formations to deposition by turbidites occurring on lower and mid­

fan portions of a submarine fan complex. Pelagic and hemipelagic muds 

deposited on a basin plain grade upwards to thin-bedded turbidite deposits which 

increase in frequency from the lower fan to the outer part of the mid-fan area 

(Morey, 1965, 1967; Lucente and Morey, 1983). The thickening and coarsening
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Table 3.

General correlation between units of the Rove/Virginia Formation

Morey (67-83) Marie

-Lower argillite -Basal Siltstone and Shale 
-Shale
-Siltstone and Shale 
-Northward Pro grading Clastic 
Wedge

-Transition zone -Coarsening and Thickening Upward 
Succession

-Upper unit o f greywacke and 
argillaceous siltstone

-Massflow Prodelta Deposits 
-Distal Bar

upwards successions present are characteristic of submarine fan complexes, 

however they are not exclusive to this type of depositional regime.

Observations made during this study indicate that the turbiditic deposits 

represented by the coarsening and thickening upwards unit and sand-dominated 

units, grade upward into progressively shallower water facies. The turbiditic units 

together are considered to represent prodelta facies deposited in a slope-ramp 

setting by sheet flows originating off a delta front. The silt-rich coarsening and 

thickening upwards unit forms the distal ramp portion deposited by lower energy, 

gradually waning turbiditic sheet flows. The overlying sand-dominated unit 

deposited by higher density turbidity currents forms the proximal ramp portion. 

The lateral continuity of individual beds and absence of major flow channels 

favors this setting rather than that of a submarine fan complex. The uppermost
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unit which displays features indicative of shallower water depth including wave 

ripples, and flaser, lenticular, and wavy bedding, is thought to constitute the distal 

bar section of a prograding delta. This progradation drives the overall coarsening 

upwards trend.

Deltas are significant sediment depositories and commonly play an 

important role in the filling of subsiding basins (Frazier, 1967), preserving the 

underlying facies as they advance. The facies relationships observed in this 

study of the Rove and Virginia Formations present convincing evidence that the 

thick assemblages overlying the lower shale-dominated unit form a delta-fed 

turbiditic submarine ramp system overlain by delta-front deposits represented by 

distal bar facies.
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