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A b stract

A typical example of an axially moving cantilever beam  is flexible robotic m anipulators with 

prism atic joints. The model governing lateral vibration of such system is time-varying. Time- 

varying systems pose significant challenges in modelling and control. The objective of this 

research is to control the lateral vibration of an axially moving cantilever beam.

In this research, first an analytical model of an axially moving cantilever beam is developed. 

Second, the effect of an end mass is investigated. Third, piezoelectric actuators (PZT) are 

considered to design a direct velocity feedback controller to  suppress the lateral vibration of 

the system. The presence of higher modes in the system and the spillover instability are 

investigated. Fourth, an active control design based on the gradient algorithm is developed. 

The controllability, observability and the stability of the system are investigated.
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C hapter 1 

In troduction

A typical example of an axially moving cantilever beam  is flexible robotic m anipulators with 

prismatic joints. The model governing lateral vibration of the  beam is time-varying. Time- 

varying systems pose significant challenges in modelling and control. This research is m oti

vated to  develop an analytical model of an axially moving cantilever beam  system, and to  use 

piezoelectric actuators to  suppress the lateral vibration of an axially moving cantilever beam.

1.1 Overview of th e Previous Studies on A xially  M oving  
Cantilever Beam s

Studies dealing with m athem atical modelling of axially moving cantilever beams are reported 

in [1-7]. The models are derived by the energy m ethod th a t employs Lagrangian formulation 

based on the assum ption th a t the deflection gradients of the beam  are small and the beam  is 

axially rigid. The axial motion influences the dynamics of the axially moving cantilever beam. 

The extending and retracting motions of the beam have destabilizing and stabilizing effects on 

the lateral vibration based on the fact th a t the deflection at the tip of the beam  becomes large 

during the axial extension and small during the axial retraction. The axial extension increases 

the amplitude of the deflection due to a reduced stiffness while the axial retraction reduces 

the deflection of the beam  due to  an increased stiffness. Also the axial extension decreases 

the amplitude of the lateral velocity because of dissipation of vibration energy while the axial 

retraction increases the amplitude of the lateral velocity because of absorption of vibration

1
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energy [3],

In the previous studies, little effort has been made in analyzing the contribution of general

ized coordinates, generalized velocities and vibratory modes to the transient responses including 

strain, displacement, velocity and acceleration in the axially moving cantilever beam  system.

1.2 Overview of the Previous Studies o f C ontrol A pp li
cations on Linear T im e-V arying System s (LTV)

To design a high performance active control system, an accurate system model is a prerequisite. 

It is difficult to obtain an accurate m athem atical model due to  the fact th a t irregularities, 

including physical damping effect and nonlinear factors, exist in the system.

Many control designs for linear time-varying systems are reported in [8 - 28]. The devel

opment of modal control algorithms for axially moving systems were pioneered in [8]. In the 

study, the  control design was based on a discretized model of the infinite dimensional axially 

moving system and spillover instabilities were dem onstrated. To avoid spillover instabilities, 

the study reported in [9] used transfer function approaches to  develop a class of asym ptotically 

stabilizing controllers for distributed param eter models of axially moving strings and beams. 

A pointwise controller was designed to  ensure th a t all the eigenvalues of the  controlled system 

remain strictly in the left-half plane. The stability margin of the controlled translating string 

and beam was subsequently investigated in [10 - 11], The optimal control location leading 

to the maximum stability margin for all the modes of vibration, was determ ined for the  con

trolled translation beam through a combined numerical analysis for eigenvalues of low modes 

and analytical prediction of them  for all the high modes [10].

The active vibration control of systems with periodic param etric excitations also has been 

studied by several researchers. The most conventional approach is to use the optim al control 

theory, where the system is stabilized by sta te  feedback control with periodically time-varying 

state  feedback gain [12], For linear systems with non-stationary param etric excitations, the

2
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controllability-grammian based control [13] can suppress the sta te  oscillation effectively. Un

fortunately this control design imposes a strict assum ption th a t one must be able to predict 

how the non-stationary excitation varies in future in order to  calculate the desired control input 

[12]. To control the vibration of an axially moving cantilever beam, one of the  methods applied 

in this study is the new approach given in [12] to  the active control design for param etrically 

excited systems. The approach is based on the gradient algorithm in adaptive identification

[14]-

1.3 A pplication of P iezoelectric A ctuators

The principles of piezoelectric actuators and their applications to  control vibration on beams 

are reported in [29-36]. There are many piezoelectric m aterials th a t are currently being used. 

One of them  is poly-vinylidene fluoride (PVDF), which is a semicrystalline polymer film and 

lead zinconate titana te  (PZT), which is a piezoelectric ceramic m aterial. These m aterials stra in  

when exposed to  a voltage and, conversely, produce a voltage when strained. This is due to  the 

perm anent dipole nature of these m aterials [31], A single piezoceramic element bonded to  the 

base of the beam functioned both as d istributed moment actuator and strain  sensor [36], In the 

past applications of these piezoelectric actuators are commonly done on stationary  structures. 

In this research the piezoelectric actuators are applied on an axially moving beam.

1.4 O bjectives of the R esearch

1. The first objective of the research is to  develop an analytical model and conduct a  com

puter simulation in order to  understand the dynamics of the system.

2. The second objective of the research is to  use piezoelectric actuators to  control the lateral 

vibration of the axially moving cantilever beam.

3. The th ird  objective of the research is to apply different control algorithms to  suppress the 

lateral vibration of the axially moving cantilever beam system and to  analyze the stability

3
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of the system.

1.5 Outline of the Thesis

The following chapters of the thesis are organized as follows: C hapter 2 describes the dynamics 

of an axially moving cantilever beam, develops an analytical model for the system and presents 

some computer simulation results. C hapter 3 gives the design of the direct velocity feedback 

control of the system and the  computer simulations results. C hapter 4 gives an active control 

design for the system based on the gradient algorithm and the  computer simulation results. 

Chapter 5 draws the conclusion of the study and gives recommendations for the future work.

4
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C hapter 2 

D ynam ics o f an A xia lly  M oving  
C antilever B eam

The objective of this chapter is to derive the equation of motion of an axially moving cantilever 

beam and to perform the sim ulation to  study the dynamics of the system.

This chapter is organized as follows: Section 2.1 describes the modelling and develops a 

dynamic model of an axially moving cantilever beam. Section 2.2 includes an end mass in  the 

model. Section 2.3 shows the state-space representation of the system. Section 2.4 presents the 

derivations for the vibration energy of the system. Section 2.5 conducts the stability analysis 

of the system. Section 2.6 shows the computer sim ulation and the observations. Section 2.7 is 

a brief summary and conclusion of the chapter.

2.1 D ynam ic M odel

Figure 2.1 shows the model of an axially moving cantilever beam, where s and t  represent the 

axial location or the location of an output sensor and time, respectively, L{t) represents the 

length of the beam, w(s, t ) represents the lateral deflection of the beam, and m e denotes the 

end mass attached to  the tip of the beam.

The following assumptions are made:

1. The beam is Euler-Bernoulli beam.

• The beam is uniform along its longitudinal direction, both in mass distribution and

5
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Output Sensor

Figure 2.1: Axially moving cantilever beam  system

elastic properties.

• Rotary inertia and shear deformation can be neglected.

•  The beam is composed of a linear, homogeneous, isotropic, elastic m aterial w ithout 

axial load such th a t cross sections remain plane and the plane of symm etry of the 

beam is the plane of vibration.

2. The lateral deflection gradients are small.

3. The axial motion is a function of tim e only.

4. Elastic modulus E,  moment of inertia I  for the cross sectional area A  are constants along 

the beam length.

5. No physical damping is considered.

Equation of motion of the system is derived by the energy method: Lagrangian function. 

The lateral velocity of a particle fixed on the beam  and at position s at tim e t  is given as

D w (s A)  dw(s , t )  - d w ( s , t )
+  L-

Dt dt ds
(2 .1)
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where is the m aterial tim e derivative and L  is the axial velocity of the beam. The lateral 

deflection of the beam  w(s, t) can be expressed as a series of prescribed functions of space with 

undetermined tim e dependent terms.

( 2 .2 )

where q(t) ?i(t) q2 (t) ... qn(t) is a column vector of generalized coordinates, n  is the

4>i(s,L) (f>2 { s ,L ) ... <f>n(s,L) is anumber of the v ibratory modes considered, <J>(s,L) =  

row vector, cf>j(s, L)  is the j t h  eigenfunction or mode shape of the ’’stationary” cantilever beam , 

which is

<f>(s,L) =
v m

T ( a )

1

V W )

VW) ipi(a) ip2 (a)  ... V’n(a)

(2.3)

(2.4)

where a  =  j- and the mode shape function for the cantilever beam  is given by

'ipj(a) = cosh((3jLa) — cos ((3jLa) — aj{smh(f3jLa)  — sin {(3-jLa)} (2.5)

where (3jL and a , are constants and the values of the first three modes are listed in Table 2.1.

Mode Number 1 2 3

PjL 1.8751 4.69409 7.8547

a3 0.7341 1.0185 0.9992

Table 2.1: (33L  and cr, of the  first three modes of a cantilever beam

To expand the lateral velocity function (2.1) in term s of q(t) and $ (s) , the following relations 

are used,

dw(s,t)
ds — w ' ( s , t ) =

d2w(s,t) 
ds2 — w"(s ,t )  = ^ " { a ) q { t ) (2.6)

dw(s,t)
dt =  w(s , t )  = ^ ( a ) q { t )  - \ ± ^ { a ) q { t )  -  j -4?(a)q(t )
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where

ijj'j(a) = (3jL [sinh(/?jLa) +  sin (f3jLa) — <7, {cosh(/3,, L a) — cos(/3,-La)}]

^ j ( a ) = - I 7 ^ j ( a )

By substituting Equations (2.6) and (2.7) in (2.1), the lateral velocity becomes

=  <h(s, L)q(t)  +  [ - | i $ ( S, L)  +  i (1 -  i W ( s ,  L)] q(t)

The kinetic energy of the beam  is given by

Dt

where /i is the length density of the beam. Substituting Equation (2.8) in (2.9) gives

— ^qTA\q  +  ^ j q T A 2q +  f  j 2 qT A 3q

where 

Ai  =

A 2  — 

A 3 =

[  <f>T $ d s  = f  \I/T(a)\k(a)da 
Jo Jo

i $ Td> +  ( l - y ) d > T<h'
Z Lj

ds  =

(2.7)

(2 .8)

(2.9)

(2 .10)

--TT(a)T(a) + (1 -  a)tfr (a)tf'(a) d a

-4>T4> -  (1 -  y)<hT$ ' +  (1 -  y ) 2^ '  
4 Lj L

ds

-'I' (a)T(a) — (1 — a)'!' (a)'I'/(a) + (1 — a)2'!' (a)T'(a) d a

and note th a t A 2 is a skew symmetric m atrix. The m atrix A\  is an identity m atrix according 

to  the orthogonality of the mode shape functions. If three modes are considered, A 2  and A 3 

can be numerically found to be

0 -0 .6684 -0.2243 0.4889 0.539 -0.5616

0.6684 0 -1.6365 A 3 — 0.539 4.0883 3.4414

0.2243 1.6365 0 -0.5616 3.4414 13.935
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The potential energy of the beam due to the flexural deformation is given by

Substituting Equation (2.6) in (2.11) gives

T T  E I  T a

b =  2L49 4q

where

A a —

(/?! L )4 0 0

0 (&  L f  0

0 0 (& L )4

The Lagrangian equation is given by

d dTb dTb dUb

from Equations (2.10) and (2.12),

m
dq 

d dTb

dt dq dq dq

A/J-Axq +  - j - A 2 q

u,L2 A
d t a ,  =  >l A ' q  + TT-42"+ T M q  -  T j T a m

m
dq

dUb
dq

L 2
E I
l A q

Substituting the above equations into Equation (2.13) results in

fJ,Aiq +  tj fA 2 q  +  ij ^ A 2q — yjjr A 2q — ^ A ^ q  — lj r A 3q +  | j q  

fiAiq +  ‘̂ ±A2q + ^^2 ~~ ^r{A2 + A$) + j^A^

Note th a t A 2  — A  J  =  2A2, as A 2  is a skew symmetric m atrix.

2.2 The Effect of an End M ass on th e M odel

(2 .11 )

(2 .12 )

(2.13)

(2.14)

If a concentrated mass m e is attached to  the end of the axially moving cantilever beam, it is 

needed to  consider the kinetic energy Te of the end mass and the strain  energy Upa created by

9
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the axial force Fa due to the axial acceleration L. The kinetic energy of the end mass is given

by

T r = m e (  Dw(L,t)  
2 \  D t

Z ( L ) q - & ( L ) q
(2.15)

where

=  ^ U TA , q - ^ ^ q TA , q + r f \ ^ A , q

a 5 = tfT( l) tf ( l)

For the first three modes, A 5 is found to  be

A ,  = 4

1  - 1 1  

- 1  1 - 1

1 - 1  1

W hen the beam is accelerating, the axial force acting at location s is given by the inertial 

force

Fa =  -  [me +  fx(L -  s)] L  (2.16)

The strain  energy caused by Fa is given by

where

A q

a 7

u fa = l f 0L - [ m e + n { L -  s ) } ’L { ^ A f d s

-vf j ^ q TA &q -  qTA 7q

[  $ , T $ ' d s =  [  14?,T( a ) ' b ' ( a ) d a  
J o  J o

[ L { l - j ) & T & d s =  [  (1 -  a ) ^ , T ( a ) T ' ( a ) d a  
J o  L J  o

(2.17)

For the first three modes, As and A 7  are numerically found to  be

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6477 -7.3846 4.0273 1.5709 -0.4223 -1.0712

-7.3846 32.4446 -22.6413 A 7 — -0.4223 8.6471 1.8901

4.0273 -22.6413 78.0453 -1.0712 1.8901 24.952

To include Te and Upa into the Lagrangian equation, the following operations are conducted.

m . LdTe m e ,.„e „  ,
~ d ^ = ~L 5<7 - T l 2 5<?

d dTe 
dt dq = - ^ L A 5q + ^ A hq - ^ ^ A s q  + ^ A 5q - ? f ± A 5 q  

= ^ A q - ^ ^ A 5q + m e( ^ - ~ l ± ) A 5q

dTe _ 
dq

dUFa m eL

m e L m e L 2

T l ? A5q + T I ? A5q

dq 1 2  A&q ^ L Aiq

(2.18)

(2.19)

(2 .20) 

(2 .21 )

Combining Equations (2.19), (2.20), and (2.21) w ith Equation (2.14), the equation of m otion 

for the beam  with the  end mass is given by

M(t)ij  +  D(t)q + K( t )q  =  0 (2 .22)

where

M(t )

D(t)

m

fj.A\ +  -j^Ax,

2j£ a 2 m e^ A 5 (2.23)

lY A 2  ~  v j jr iM  +  A 3) +  f r A 4 +  ^ ^ j A 5 —

2.3 State-Space R epresentation

By introducing a state  vector x — [qT(t) qT (t)]T , the state-space representation is given by

x  — A( t)x( t )  (2.24)

where the time-varying state  m atrix A(t)  is dehned as:

11
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A(t)  =
Onxn I

where 0 ixj is used to  represent an i x j  null m atrix. 

The response or output of the system is given by

y(t) = C(t)x( t ) (2.25)

where the output m atrix C(t)  is time-varying and is dependent on the sensor type and location. 

For example, if the lateral displacement is observed by a sensor located at si =  L  — rq (note 

th a t 7~i is constant and measured from the tip  of the beam ), then  the ou tpu t m atrix is defined

by

C(t) = (2.26)

where =  1 —

If the lateral velocity is observed by a sensor located at s3 =  L  — 7q the output m atrix  is 

given by

C(t) = (2.27)

2.4 V ibration Energy of th e System

The to ta l energy of vibration is given by,

E v — Tb +  Uf, +  Te +  Up

Substituting Equations (2.10), (2.12), (2.15) and (2.17) in Equation (2.28) yields

Ey ^qT A\q  +  ^ ^ - q T A 2 q +  f  j 2 qT A^q +  ^ f jq TA<±q +  - j - i ^ A s q2 L2

2 4 L 3
m e L 
2 L2 qTM q

2LA

W  qTA 7q

or

E v — - x t H x  
2

(2.28)

(2.29)

(2.30)

12
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where

H

# 1 1

# 1 2

#21

#22

#11 #12 

#21 #22

2 ^ 2

— jlA\  +  ^ A 5

(2.31)

2.5 Stability o f a LTV System

The state-space equation of a LTV system is given by

x(t )  = A ( t ) x ( t ) (2.32)

T h e o re m  1: According to  Lyapunov stability  [39], if the Lyapanov function is chosen as

therefore,

V  (t) — x T (t)x(t)

V(t)  = x T (t) [A(f) +  A T (t)] x(t)

(2.33)

(2.34)

the LTV system is asymptotically stable if the eigenvalues of the symmetric m atrix [A(t)+AT (t)] 

remain strictly in the left-half of the complex plane or the m atrix [A(t) +  A T(t)} is negative 

definite such th a t

[A(t) + A T(t)] < 0 (2.35)

The proof of this Theorem is given in Appendix A.I.

Equation (2.35) is a restrictive sufficient condition, not a necessary condition. T hat is, some 

asymptotically stable systems may not satisfy the condition of Equation (2.35). If the negative 

definiteness of the m atrix [A{t) +  Ar (t)] does not asymptotically vanish, th a t  is, if there is a 

constant v  >  0 such th a t [A(t) +  A T (t)] < —v l  for all t, then  the Lyapunov function goes to

13
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zero as t increases [13]. For this reason, more general Lyapunov function can be chosen instead 

of the Lyapunov function in Theorem 1.

T h e o re m  2: If the Lyapunov function is given by

(2.36)

where Q(t)  is a 2nx  2 n  symmetric m atrix  and continuously differentiable for all t . The derivative 

of the function (2.36), is given by

V(t)  = x T{t) A T (t)Q(t)  +  Q(t)A(t)  + Q(t) x(t)

According to  [13], if the following conditions are satisfied

(2.37)

r)I <  Q(t)  <  ( I

A T(t)Q(t) + Q(t)A(t)  + Q( t ) <  - u l

(2.38)

(2.39)

where rj, £ and v  are finite positive constants, and the system of (2.32) is uniformly exponentially 

stable. If Equations (2.38) and (2.39) are satisfied and v =  0, system of (2.32) is uniformly 

stable. The proof of this Theorem is given in Appendix A.2.

S ta b il ity  A n a ly s is  o f  M u lti-M o d e  M o d e l

W hen two or more modes are present in the axially moving cantilever beam, the stability of 

the system can be analyzed according to  [17].

a . Extension L(t) > 0

Let Q(t)
K s 0 

0 M

14
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where K . k + k t  
2 ’ and the following can be derived as

A T (t)Q{t) +  Q{t)A(t)  +  Q(t) =

b. Retraction L(t)  <  0

k s  K s -  K T

K s - K  M - D t - D
(2.40)

Let Q(t) =
M ~ l 0 

0 K ~ l

where K s — K+̂ T and

M - 1 -  K TM - xK k

M ~ l -  K - XM ~ XK  - K j l K sK ~ l -  DTM ~ 1 K ~ 1 -  K ~ ^ M ~ XD

(2.41)

Stab ility  A n alysis o f  O ne-M ode M od el

W hen only one mode is considered in the axially moving cantilever beam, the stability of the 

system can be analyzed according to  [17].

a. Extension L(t) > 0

The system is uniformly exponentially stable if the following conditions are satisfied.

d(t) >  e

Lit) >  o (2.42)

k( t ) <  - e

where e is a positive constant. Let

Q(t) =
k(t) 0 

0 m(t)
(2.43)

15
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where d, k and m  are the first diagonal elements of D , K ,  and M  matrices respectively. 

77 and £ such that,

77 =  m i n { k mm, n A i  + J-'max J

c =  m a x { k max,fj,A1 + f ^ A 5}

Also

A T (t)Q(t)  +  Q (t)A (t) +  Q(t ) —
k(t)  0

0  771(f) — 2 d(t)

Rearranging Equations (2.42) and (2.45) results in
1

?r
-

e-+
-

0

1 I
Ovu1

1
<

0 771(f) — 2 d(t)

1
CM1O

1

Choose v  =  m a i{ -£ ,  —2e} to  satisfy Equation (2.39). 

b. Retraction L(t)  < 0

The system is uniformly exponentially stable if the following conditions are satisfied.

d(t) > 0

L(t)  <  —e

k(t) > e

where e is a positive constant. Let

77Z_ 1 ( t )  0

0 ^ -1 (£)
Q(t) =

Choose 77 and (  such that,

77 =  min{k. -1
'max f M i -Ae. }

C  =  m a x { k j n , +  }

Also

2(t) 0

0 — k(t)k~ 2 (t) — 2 d ( t)m ~ 1 ( t)k~l (t)

16

Choose

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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Rearranging Equations (2.47) and (2.50) results in

!
1 < 0

<

m eeA$

Lmax [ M l  +  J T ^ - A sVt ^mtn J
0

1

0 1 “h
e

'c+

1

 ̂
ft-

1

0 e
£•2max

Choose v  =  m a x { — meeA5

M i+ r - A S
to  satisfy Equation (2.39).

(2.51)

2.6 Com puter Sim ulation

This simulation is performed to  study the influence of the axial m otion on the  lateral vibration 

of the axially moving cantilever beam  and the influence of the end mass on the lateral vibration. 

In the simulation, the specifications of the  cantilever beam  are: the density p =  2800 k g /m 3, 

modulus of elasticity E  — 70.9 GPa, thickness b =  3.175 mm, height h — 50.8 mm.

The trapezoidal velocity profile shown in Figure 2.2, is used and two scenarios are considered. 

Scenario A: axial extension in which the beam  length varies from Lmm — 0.66 m to  L max =

S cen ario  A  -  Axial Extension S cen ario  B — A xia l Retraction

0 .9

0 .7

O 1 2 3 4

0 .9
(a) 0.8

0 .7

O 1 2 3 4

0.2
0 .1 5

0.1
0 .0 5

OO 1 2 3 4

- 0 .0 5

(b ) -0 .1

- 0 .1 5

-0.2

tim e (s)

(c)

tim e (s)

Figure 2.2: Axial motion profiles of Scenario A and Scenario B. (a) Axial displacement, (b) 
Axial velocity, (c) Axial acceleration.
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1.09 m; Scenario B: axial retraction in which the beam  length varies from L max = 1.09 m to 

L'min 0.66 m.

The first three natural frequencies of the shortest beam  and the longest beam  are given on 

Table 2.2. The highest frequency is 103.97 Hz. Therefore the tim e step A t for the numerical

L —0 .6 6  m L=1.09 m
h  (Hz) 5.92 2.17
h  (Hz) 37.13 13.61
h  (Hz) 103.97 38.12

Table 2.2: N atural frequencies of the  beam  with the shortest length and longest length

integration is chosen to  be 0.0005 sec. The fourth order R unge-K utta m ethod is used to  solve 

the equation numerically. In this simulation, the first three vibratory modes are considered. 

Thus the system order n x =  6 .

Simulations are performed with the end mass (me — 0.4 Kg) and w ithout the end mass 

(me =  0 Kg). The axial force is also considered in the simulation. Initial conditions [91 (0) 

92(0) 9 3(0 )] are determined according to  a prescribed deflection curve w ith w(L,  0 ) =  0 .0 1  m 

to be, [—394.29e-5 10.26e~5 — 3.95e-5] for extension and [— 506.71e-5 13.19e-5 — 5.08e~5] 

for retraction. This procedure is explained in Appendix A.3. Initial velocities are considered 

to be, <?i(0 ) =  9 2 (0 ) =  9 3(0 ) =  0  for extension and retraction.

18
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Figure 2.3: State response for axial extension without the end mass (me — 0). (a),(b),(c) 
generalized coordinates. (d),(e),(f) generalized velocities.
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Figure 2.4: S tate response for axial retraction without the end mass (me — 0). (a),(b),(c) 
generalized coordinates. (d),(e),(f) generalized velocities.
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Figure 2.5: State response for axial extension w ith the end mass (me =  0.4 Kg). (a),(b),(c) 
generalized coordinates. (d),(e),(f) generalized velocities.
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Figure 2.6: State response for axial retraction w ith the end mass (me =  0.4 Kg). (a),(b),(c) 
generalized coordinates. (d),(e),(f) generalized velocities.
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From the state  response in Figures 2.3 to 2.6, the following observations are drawn:

• The generalized coordinates and velocities in axial retraction is larger th an  those in axial 

extension. This is because, the initial stiffness of the beam  in retraction is smaller th an  

it is for extension.

•  The magnitude of the generalized coordinates in axial extension shows increasing results, 

and the m agnitude of the generalized velocities show decreasing results. For the retraction, 

the magnitude of the generalized coordinates is decreasing and the m agnitude of the 

generalized velocities is increasing. This is because of the variation of the beam stiffness. 

The axial extension reduces the stiffness of the beam, which makes the beam  more flexible. 

The axial retraction increases the stiffness of the beam, which makes the beam ’s flexing 

more difficult.

•  The magnitude of the first mode is much greater than  the m agnitude of the second and 

th ird  modes in the generalized coordinates. The m agnitude of the th ird  mode is smaller 

than  the m agnitude of the first and the second modes in the generalized velocities.

• The presence of the end mass reduces the frequency of oscillation.
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Figure 2.7: Displacement responses without the end mass, (a) O utpu t at r\ — 0 m, (b) O u tpu t 
at r ! =  0.3 m, (c) O utput a t r j  =  0.6 m.

S cenario  A S cen ario  B
0.02

0.01

-0.01

-0.020 2 3 41
T im e  (sec)

0.02

0.01

-0.01

- 0.02

T im e  (sec)
0.02

0.01

- 0.01

- 0.02

T im e  (sec)

0.02

0.01

(a)

- 0.01

- 0.02

T im e  (sec)
0.02

0.01

(b)

- 0.01

- 0.02

T im e  (sec)
0.02

0.01

(c)

- 0.01

- 0.02

T im e  (sec)

Figure 2.8: Displacement output responses with the end mass (me = 0.4 Kg), (a) O u tpu t at 
ri =  0 m, (b) O utpu t a t r x =  0.3 m, (c) O utpu t a t r 1 =  0.6 m.
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The beam displacement and velocity responses are observed at different locations. Three 

different location responses at rq = 0 m, ry =  0.3 m and rq =  0.6 m are presented in Figures 

2.7 to  2.10. From them , the following observations are drawn:

• The m agnitude of the first mode is much greater than  the m agnitude of the second and 

th ird  modes in the deflection and velocity responses.

• The deflection and the velocity responses are larger in magnitude, as well as the rates of 

change in the m agnitudes are smaller when they are observed at the tip  of the beam.

• The deflection response shows th a t the end mass introduces destabilizing effect during ex

tension and stabilizing effect during retraction. During extension the end mass introduces 

negative stiffness and negative damping effect, therefore the deflection is larger in mag

nitude. For retraction, the end mass introduces positive stiffness and positive damping 

effect, therefore the deflection is smaller.

• The presence of the end mass reduces the frequency of oscillation.

The vibration energy for axial extension and axial retraction are given on Figure 2.11 

for m e =  0 and m e =  0.4. The individual energies TJ,, Ui, and Te are given on Figure 2.12. In 

Figure 2.12 (a), the kinetic energy Te caused by the end mass is zero and the strain  energy Upa 

caused by the Fa is very small compared to all the other energies. Similarly, in Figure 2.12 (b), 

Upa is very small compared to  all the other energies.
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From Figures 2.11 and 2.12 the following observations are drawn:

• The vibration energy of the beam  decreases and increases monotonically during extension 

and retraction respectively.

•  As the end mass increases, the  vibration energy of the system  increases for axial extension 

and decreases for axial retraction.

• The strain energy Upa caused by Fa is very small compared to  all the other energies.
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Figure 2.13: Lyapunov function V  = x TQx.  (a) Axial extension, (b) Axial retraction. D otted  
line represents the energy without the end mass. Solid line represents the energy with the  end 
mass.
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Figure 2.14: Eigenvalues of the Lyapunov stability condition A T (t)Q(t)  +  Q(t)A(t)  + Q(t).  (a) 
Axial extension, (b) Axial retraction.

From Figures 2.13 and 2.14 the following observations are drawn:

•  Lyapunov function in Figure 2.13 shows decaying results in bo th  extension and retraction.

• The eigenvalues of the m atrix  A T(t)Q( t)+Q(t)A( t)+Q(t)  from Equation (2.39) show th a t, 

for extension, the eigenvalues are either negative or zero, thus the system is stable. For 

retraction, some of the eigenvalues are positive, therefore the Lyapunov stability  condition 

of (2.39) is not satisfied. The system is not uniformly exponentially stable.
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2.7 Sum m ary

• The m athem atical model of the lateral vibration of the axially moving cantilever beam  is 

presented. The model is a linear time-varying system.

• The model further includes the effect of an end mass attached to  the tip  of the beam.

•  A computer simulation is conducted. The beam  axial motion is assumed to  have a trape

zoidal velocity profile.

• The deflection and the velocity output responses are sensed at the tip, middle and base 

locations.

• The difference between the system ’s vibration energy with and without an end mass is 

discussed.

•  The stability of the system is analyzed using the Lyapunov function.
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C hapter 3

D irect V elocity  Feedback C ontrol o f  
Lateral V ibration  o f an A xia lly  M oving  
C antilever B eam

This chapter is organized as follows: Section 3.1 describes the use of piezoelectric actuators and 

their control actions through velocity feedback on the axially moving cantilever beam. Section 

3.2 describes the systems with constant gain feedback control. Section 3.3 explains the main 

challenge in this research, which is the spillover instability problem. Section 3.4 shows the 

stability analysis of a slowly-varying linear system. Section 3.5 explains the frozen system and 

its eigenvalues. Section 3.6 gives the proposed control strategies to control the vibration w ith 

two-output and three-output feedback system. Section 3.7 shows the computer simulations of 

the closed-loop responses and the observations. Section 3.8 is a brief summ ary of the chapter.

3.1 V elocity Feedback Control

Figure 3.1 shows the model of the axially moving cantilever beam, attached w ith two piezo

electric (PZT) actuators. The PZT actuators are located over the region of sini(t) and sin2 (t). 

The polarity of the voltage applied to  the PZT plates is chosen in such a way th a t  the PZT 

plate on one side expands while the PZT plate on the other side contracts and vice versa. Such 

an action results in a pair of concentrated bending moments exerted at locations sini(t)  and 

Sin2 {t) respectively [29], The output sensor is located at Si(t).
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Output Sensor

PZT Upper plate

PZT Lower plate

Figure 3.1: Axially moving cantilever beam  system w ith PZT  actuators

The Lagrangian equation for the beam  is given as

± 9 T _ d T  9 U _  
dt dq dq ^  dq F

(3.1)

where the term s on the left-hand side of the equation have been obtained in the previous chapter 

and Qp  is the generalized force vector caused by the PZT actuating moments. To find Qp,  the 

virtual work produced by the PZT actuating moments is given by [6].

5W  = M ”5wds (3.2)

and the moment M p is given by

Mp = gpV(t)[H(s  -  smi) -  H (s  -  sin2)] (3.3)

where gp is a constant related to the properties of the PZT m aterial, V(t)  is the voltage applied 

to the PZT  layers and H(.)  is the Heaviside step function.

Substituting Equation (3.3) in Equation (3.2) gives

5 W  = gpV(t)  J0L ^ { H ( s  -  sml) -  H(s  -  sm2 )]5wds

9 p V (0  Jo ̂ mi) d( ŝ s~in2 ^)\Swds
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(3.5)

where 5(s — smi) and <5(s — sin2) are Direc Delta  functions. Solving Equation (3.4) using 

integration by parts, results in

§ W  = gpV ( t ) 5w [5(s -  sOTi) -  S(s -  sin2)] -  J0L [<5(s -  sm i) -  S(s -  sin2)] Sw'ds 

=  gpV(t)  [8 w'(s in2 , t ) -  5w'(sinl,t)}

Note th a t according to  the properties of Direc Del ta  function, S(s — sml) = 0 and S(s 

sm2) =  0. Also f 0L [5(s -  sml)] Sw'ds =  Sw'(sm l ,t)  and f QL [5(s -  sin2)] Sw'ds =  Sw'(sin2 ,t).

The derivative of the deflection w ith respect to  the axial position is given by

5w'(sin,t) = (ain)8 q(t) (3.6)

therefore, Equation (3.5) becomes

where

and

S W  = Y J QF,SqA t) (3-7)
3 -1

Q f 3 = 9 p V 2) -  ^ ( a „ i ) ]  (3.8)

Q f — gPA 8V  (t) (3.9)

where

A8 =  [V (ain2) -  V { a %nl)}T (3.10)

The equation of motion (3.1) becomes

M(t)q  +  D(t)q  +  K ( t )q  = B x{t)V(t)  (3.11)

where M(t) ,  D ( t ) and K ( t ) are given in Equation (2.23) and

B 1 {t) = gpA 8  (3.12)

The state-space representation is given by

x  =  A(t)x(t )  + B ( t )V ( t )  (3.13)
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For a direct velocity feedback, the voltage V (t ) applied to  the PZT actuators is taken to  be 

proportional to the velocity output,

(3.14)

where gvl is the feedback gain. If the velocity of lateral motion at si — L — r 1 is measured, the 

output is given by

y(t) ~  C( t)x( t )  (3.15)

where

C(t) =

with a\  — W ith such a feedback scheme, the sta te  equation becomes

x(t) — A{t)x( t)  — B{t)gv\C{t)x(t )  =  A(t)x( t )  

where A(t)  is the closed-loop system m atrix given as

11/, v r, I
A(t)  =

-K ( t ) - D ( t )

where

K(t )  = M - 1( t ) ^ W  +  ^ - 1( * ) B iW S v i [ i7 E { - ^ ( « i )  +  ( l - « i ) ^ , ( a 1)}

D(t)  = M ~ l { t ) D { t ) A M ^ { t ) B

Onxl
B(t)  =

If V(t)  is taken to  be proportional to two velocity outputs,

2/i M
~  [ 9v 1 9 v 2 ]

2/2 00

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

where gvl and gv2 are two feedback gains corresponding to  the outputs a t locations sx =  L — rq 

and s2 =  L — r 2. The velocity outputs are given by

yi(*)

3/a(t)

(3.21)
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where

C(t) =
L ^ { _ ^ { a i H { 1 ^ a i W { a i ) }  ^ {ai)

T 7 z { - ^ ( . a 2 ) + (l - a 2 ) ^ ' ( a 2)} ^ { a 2)

W ith such feedback scheme, the sta te  equation becomes

(3.22)

x(t ) = A(t)x(t )  -  B{t)[ gvl gv 2  }C(t)x{t) = A(t)x{t) (3.23)

where

A(t) =
- K ( t ) - D ( t )

and

Z T z i - ^ i 0 1 1) +  (x “  a i W ( a i ) }  

+ (1 ~  a 2 W ( a 2)}

^ ( a i )

7 L * ( a 2 )
(3.24)

3.2 C onstant Gain Feedback

To study the response of the feedback system with constant gains, the following cases are 

considered.

• One output: collocated

• One output: noncollocated

• Two outputs: one collocated and one noncollocated

• Two outputs: bo th  noncollocated

If the system param eters are considered to  be frozen at the moment t, then the stability of 

the frozen system can be determined by the  eigenvalues of A.  Following this idea, the constant
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gains can be chosen such th a t the eigenvalues of A  are complex and expressed as

\  = - t i V i + j u i y J  1 - C ? (3-25)

where uy and Q are referred to as i th  na tu ra l frequency and damping ratio respectively, and 

j  = yf—\. To ensure the stability, all the dam ping ratios must be greater than  or equal to  zero. 

An index can be defined to  measure the  system stability such th a t

Sf=iCi i f  a l 1  Q > 0;
J  =  I (3.26)

I sum o f  those ( ' s  that  are less than zero

Greater the index J ,  the more stable the feedback system or the faster the v ibration di

minishing. The gain is chosen such th a t the dam ping index J  to  be w ithin 5% - 20% design 

range.

In the following computer simulation, the PZT actuators are located from rinl =  0.655 m 

to r m2 =  0.619 m measured from the tip  of the beam. The beam is released from a deflection 

caused by a concentrated force applied a t the tip. The two motion scenarios used in the previous 

chapter are considered here again. The end mass is taken as zero.

Figures 3.2 to 3.6 show deflections, damping indexes J  and sta te  responses of feedback 

system with one output. Three different sensor locations rq =  0 m, rq =  0.3 m and collocated 

sensor rq =  0.66 m are used. The constant gain is gvl = 1.

Figures 3.7 to 3.11 show deflections, damping indexes J  and sta te  responses of feedback 

system w ith two outputs. Responses with two noncollocated sensors (rq =  0 m and r 2 =  0.3 

m) and w ith one noncollocated and one collocated sensors (rq — 0.3 m and r 2 =  0.66 m) are 

shown. The constant gains are gv\ =  1 and gv 2  = 1.
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From Figures 3.2 to  3.11, the following observations can be drawn:

• Most of the deflection responses are either diverging or tem porarily diverging. It should 

be noted th a t the diverging responses are dom inated by higher modes.

• The damping ratio and the damping index indicate th a t it is not possible to  m aintain the 

damping index always positive.

• The damping ratio  of the first mode is always positive while the damping ratio of the 

second mode or th ird  mode may become negative when the  beam  assumes a certain 

length.

• The damping ratio  and the damping index of Scenario A show a m irror image of the 

damping ratio and the damping index of Scenario B.

• The responses of the generalized coordinates further confirm th a t  the instability is caused 

by the  higher modes. This phenomenon is referred to  as spillover instability.
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Figure 3.2: Deflection responses for Scenario A and Scenario B with one output feedback, (a) 
noncollocated r\ =  0 m, (b) noncollocated ri — 0.3 m, (c) collocated r 1 — 0.66 m.
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Figure 3.3: Damping ratios Q and damping index J  of one output feedback system for Scenario 
A and Scenario B. (a) noncollocated n  =  0 m, (b) noncollocated 7*i =  0.3 m, (c) collocated 
ry =  0.66 m.
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Figure 3.4: State responses of one output feedback system  for Scenario A and Scenario B when 
r i  =  0 m. (a) qx, (b) q2, (c) q3.
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Figure 3.5: State responses of one output feedback system for Scenario A and Scenario B when 
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Figure 3.6: State responses of one output feedback system for Scenario A and Scenario B when 
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Figure 3.7: Deflection responses for Scenario A and Scenario B with two noncollocated outputs 
feedback, (a) r 3 =  0 m, (b) r 2 =  0.3 m.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Scenario  A S cenario  B
0.01

0 .0 0 5

-0 .0 0 5

-0.01

0.01

0 .0 0 5

(a) 0

-0 .0 0 5

-0.01

0.01

0 .0 0 5

-0 .0 0 5

-0.01
2 3

T im e (sec)

0.01

0 .0 0 5

(b)

-0 .0 0 5

-0.01
2 3

T im e (sec)

Figure 3.8: Deflection responses for Scenario A and Scenario B w ith one collocated and the 
other noncollocated outputs feedback, (a) r x =  0.3 m. (b) collocated r 2 =  0.66 m.
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Figure 3.9: State responses of the two output feedback system for Scenario A and Scenario B 
when r i — 0 m and r 2 =  0.3 m. (a) c/i, (b) g2, (c) c/3 .

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S cenario  A

-2

0 1 2 3 4

x 10 S cen ario  B

x 10

T im e  (sec)

0 .5

c r

- 0 .5

-1
0 1 2 3 4

(a)

5

2 .5

0

- 2 .5

- 5 10 2 3 4

T im e  (sec)

Figure 3.10: State responses of the two output feedback system for Scenario A and Scenario B 
when r-i =  0.3 m and r 2 =  0.66 m. (a) qi, (b) q2, (c) <73.
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Figure 3.11: Damping ratios Q and dam ping index J  of two output feedback system for Scenario 
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3.3 Spillover Instability

The challenge in this research is to use a single actuator to  control the vibration of the  time- 

varying system in the presence of higher modes. In essence, a velocity feedback is used to 

enhance the damping of the closed-loop system. The measurement of the sensor contains all 

the modes. When such a signal is fedback to an actuator, it may not be possible to  ensure a 

positive damping effect for all the modes. W hen the  feedback introduces a negative dam ping 

effect to  a mode, the response of the mode will diverge instead of decaying. It is well known th a t 

a collocated control guarantees the stability of the first mode, not necessarily higher modes. 

Instability of higher modes due to a feedback is referred to as ou tput spillover instability. The 

spillover poses an even greater challenge for the present system because the outpu t m atrix  is 

time-varying.

3.4 Stability o f a Slowly-Varying System

For multi-mode models, the following m ethod can be used to  determine the stability  of the 

system if the system is slowly-varying. According to  [13] Theorem  8.7 says, for the open- 

loop linear state Equation (2.32) with continuously differentiable A(t)  there exist finite positive 

constants k and e such th a t, for all t,

II A(t)  ||<  k (3.27)

and every eigenvalue of A(t)  satisfies,

Re[X(t)} < s  (3.28)

then there exists a positive constant j3 such th a t if the time-derivative of A(t)  satisfies

II A(t)  ||<  (3 Vt (3.29)

and the open-loop linear state  Equation (2.32) is uniformly exponentially stable. The proof is 

summarized in Appendix A.4.
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Similarly, for the closed-loop linear state  Equation (3.17), Equation (3.27) becomes

II A(t)  ||<  « (3.30)

and every eigenvalue of A(t)  satisfies,

Re[X{t)} < - s  (3.31)

then there exists a positive constant /3 such th a t if the time-derivative of A(t)  satisfies

\ \A ( t ) \ \< j3  Vt (3.32)

and the closed-loop linear state  Equation (3.17) is uniformly exponentially stable. The proof is 

same as for the open-loop system given in Appendix A.4. The condition of (3.31) indicates th a t 

for a slowly-varying system, the stability can be determined by the eigenvalues of the m atrix  

A(t).

3.5 Eigenvalues o f the Frozen System

A “frozen” system is a stationary cantilever beam corresponding to any axial position at which

the beam may stop. At the stopped moment, the system is a tim e invariant system. The

equation of motion of the frozen system is given by

M q  + Dq + K q  = 0 (3.33)

where

M  = /M i (3.34)

EI_
U
F  T

K  = — A 4 (3.35)

' V L

The state-space representation is given by

x — A x ( t ) (3.37)
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where

A
On xn I

( 3 .38)

- M - l K  —M ~ l D

The stability of the frozen system can be defined by the eigenvalues of A  defined as

(3.39)

where a), and Q are the ith natural frequency and damping ratio of the frozen system, and

j  =  V=T.

The stability of the frozen system can also be determ ined by the properties of the m atrix  

D. According to  [30] to  find a stability condition, a Lyapunov function can be defined as

V = \ q Tq + \ q TK q

Note th a t K  is positive definite, and the derivative of V  is given by

(3.40)

V  — qTq + qTk q

= qT {~Dq  — K q ) +  qT K q  (3-41)

-  - qTDq

It shows th a t, if D  is positive definite, the frozen system  is stable. A asymmetric D  m atrix  can 

be separated into two matrices

D = ± (D  + D t ) + ± { D - D t ) (3.42)

where, (D  + D T) is a symmetric m atrix  and (D  — D T) is a skew symmetric m atrix  w ith zero 

diagonal elements, which gives

< D - D t

and

-q =  0

• T  D  +  D tV  =  —q -----  (

(3.43)

(3.44)

Therefore, as long as £)+2pT is positive definite, the frozen system is stable. One of the necessary 

conditions for the positive definiteness of a symmetric m atrix is th a t all its diagonal elements
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must be positive, or Da must be positive. W ith  the mode shape functions, D u  is always positive 

as ipi(a) increases monotomically. For the  higher modes, Dzi may become negative when the 

beam takes certain lengths.

Figures 3.12 and 3.13 show the diagonal elements Da  and the damping ratios Q of the 

’’frozen” system with collocated (rx =  0.66 m) and noncollocated ( r : =  0.17 m) outpu t sen

sors. Figures 3.14 and 3.15 show possible locations of sensors which would control the  ’’frozen” 

feedback system.
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Figure 3.12: Da and Q of the frozen system with r i  =  0.66 m a collocated output feedback.
(a),(d) i =  1. (b),(e) i =  2. (c),(f) i =  3.
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Figure 3.13: Du and Q of the frozen system with a non-collocated output feedback r x =  0.17 
m. (a),(d) i =  1. (b),(e) i — 2. (c),(f) i — 3.
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From Figures 3.12 and 3.15, the following observations can be drawn:

• The sign of Du and the sign of Q has a correlation.

• Negative Q indicates an unstable system.

• Du and Q are always positive for the  first mode. W hile for the second mode and the th ird  

mode they may become negative when the beam assumes a certain length. D 2 2  and (2 

are positive for 0.66 <  L  <  0.82 m, and negative for 0.82 <  L  <  1.09 m. Z) 33 and £ 3 are 

positive for 0.66 <  L < 0.73 m, and negative for 0.73 <  L < 1.09 m.

• W ith a non-collocated control, where r x =  0.17 m, D\\  and £1 are always positive, D22 and 

(2  are positive or very close to  zero. While Z) 33 and ( 3 are negative, for 0.66 <  L  <  0.73 

m and positive for 0.73 < L  < 1.09.

• If two sensors are used, the  frozen system can be stabilized by using one collocated sensor 

7-1 for 0.66 <  L <  0.73 m and one non-collocated sensor r2 =  0.17 m for 0.73 <  L  <  1.09. 

Another way to stabilize the frozen system is to place one sensor a t r x =  0.4 m for 

0.66 <  L <  0.73 and another sensor at r 2 — 0.17 m for 0.73 <  L  <  1.09.

3.6 Control Strategies

To control the vibration and to  overcome the spillover instability, three control strategies have 

been proposed.

(1) O n-off gain schedu ling  schem e: Gain-scheduling with two outputs. One sensor is

collocated and the other non-collocated. An on-off gain scheduling scheme is designed for 

each of the outputs such th a t the damping ratios of the frozen system are kept positive 

for all the beam lengths.

(2) T w o-ou tp u t feedback w ith  tim e-vary in g  gains: The previous study has shown th a t

the sign of Du is correlated with the  sign of Q. This m ethod intends to determine the
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feedback gains by prescribing Da to  be some positive values. A relationship between two 

feedback gains and Da  can be found. By prescribing a proper positive value to  each of 

Da, the variable gains can be found using a pseudo-inverse algorithm.

From Equation (3.24), it can be w ritten  as

D  =  M ~ XD  +  M ~ l D (3.45)

where

D =

B u

B U

B U

9v l  9v 2

T ^ i ( a i )  7 ^ ( < * i )  7 ^ 3  (a i)

7 j^ i ( a 2 )  - j z M a 2)

(3.46)

The diagonals of the D  m atrix  are given as

D u B i 1gvi ^ ' i p i { a 1) +  B u gv2-^Tpi(a2)

d 22 = B i 2gvi ^ /ip2(a i ) + B l2gv2^ i > 2(a2)

t

b* w W

1

B u 9 v i ^ ' i ’3(oii) + B i 3gv2-^il)3{a2)

9v i 

9v 2

(3.47)

B i i ^ z M a i)

B i 2^ M a  i) B l2^ t ip2(a2)

B l3^ 3(a1) B i3^ ^ ( a 2)

Equation (3.47) is an over-determined system, i.e, the number of equations is 

greater than  the number of unknowns. It can be solved by using a pseudo-inverse method. 

The gains gv\ and gv2 are estim ated such th a t

9v i

9v 2

B x ^ i p ^ a i) B i x -^ i j j i{a2)
+

D n

B l2^ 2(ai) B l3j=tl>2(a2) d 22

B i s ^ z M a i) B l3^ 3(a2) d 33

(3.48)

where “+ ” denotes the pseudo-inverse and D n , D 22 and D 33 are prescribed positive num

bers.
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(3) T h re e -o u tp u t  fee d b a c k  w ith  t im e -v a ry in g  ga ins: A relationship between the three 

feedback gains and Da is found and by prescribing a positive value for each Du,  the 

variable gains can be found using a direct m atrix  inverse method. The gains gvi, gv2 and 

gv3 can be found by

9v l # 1 1  ^ z M a s)

- 1

D u

9v 2 =
B i 2 - ^ M ^ ) ^ 2 (0 :3 ) # 2 2

9v 3 # 1 3 7 1 ^ 3 ( 0 4 ) # 1 3 7 1 ^ 3 ( 0 : 2 ) # 3 3
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3.7 C om puter Sim ulation

Figure 3.16 shows the displacement responses and the damping index of the  on-off gain schedul

ing method. W ith one collocated output and one non-collocated output. The feedback gains 

gvi for the output at ri =  0.66 m and gv2 for the output at r2 = 0.17 m are chosen such th a t

9 v i  =  1) 9 v 2 — 0 for 0.66 <  L  <  0.73 m and gvl — 0, gv2 =  1 for 0.73 <  L  <  1.09 m.

Figure 3.17 shows the results when two non-collocated outputs are used. The feedback gains 

gvi for the output at r\ = 0 .4 m  and gv2 for the output at r 2 =  0.17 m are chosen such th a t

gvi =  1, gv2 =  0 for 0.66 <  L  < 0.73 m and gvi — 0, gv2 — 1 for 0.73 <  L < 1.09 m.

The following observations are drawn from the figures:

•  Most of the deflection responses are decaying, while some deflection responses for exten

sion show tem porary diverging and then  overall decay.

•  Both the simulation cases indicate th a t  the damping index J  is always greater th an  zero.
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Figure 3.16: On-off gain scheduling scheme for the axially moving beam. Collocated r j =  0.66 
m and r 2 =  0.17 m. (a) Displacement response, (b) Damping index J.
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Figures 3.18 to 3.21 show the results of using the second control method. The values of 

D\\ ,  D 2 2 , D 3 3  are specified to  be D n — 1, Z) 22 =  2 and Z) 33 =  3. Two cases are considered, the 

first is a collocated output (r2 =  0.65 m) and a non-collocated output (r3 =  0.3 m) feedback 

system, the second is a two non-collocated (r3 =  0.2 m, r 2 =  0.4 m) outputs feedback system. 

The computed gains and the corresponding damping indices are also shown. The following 

observations are drawn from the  figures:

• For one collocated and one non-collocated feed back system, the deflection responses are 

diverging for extension and decaying for retraction.

• For two non-collocated feedback system, for extension the deflection responses s ta r t to  

diverge a t the beginning and decay at the end. For retraction, the responses are decaying.

• For ri = 0.3 m and r 2 =  0.65, the damping index J  indicates th a t for extension it becomes 

negative after 1.7 seconds th a t makes the responses diverge and for retraction J  becomes 

positive after 3 seconds and th a t makes the responses decay.

• For 7*1 =  0.2 m and r 2 =  0.4, the damping index J  indicates th a t for extension it be

comes positive after 2 seconds th a t makes the responses decay slowly and for retraction 

J  becomes positive after 3.1 seconds and th a t makes the responses decay slowly.

• The damping index J  and the deflection responses show th a t the system will s ta r t  to  

decay as long as the damping index is greater th an  zero.
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Figures 3.22 to  3.25 show the responses using the th ird  control m ethod. Deflection responses 

are given for three output feedback system. Two cases are considered, first with one collocated 

(r-3 =  0.65 m) and two non-collocated (ri =  0.2 m, r2 =  0.4 m) ou tpu t feedback system, second 

with all three non-collocated (ri =  0.1 m, r 2 =  0.3 m, r 3 =  0.5 m) ou tpu t feedback system. The 

varying gains and the corresponding dam ping indices are also shown. The following observations 

are drawn from the figures:

•  All the deflection responses are decaying or decaying after a tem porary diverging.

•  During extension, the  gains take a sudden change at 1.12 sec and 1.67 sec. During 

retraction, the sudden change is a t 2.52 sec and 3.07 sec. This change can be observed in 

the damping index J  as well. These sudden spikes takes place when the sign of the mode 

shapes T (n ) changes.

•  Any three output sensors can be located arbitrarily. This m ethod has the freedom of 

choosing the sensor location. It is clearly seen th a t for n  num ber of modes, n  number 

of output sensors will give a stable system through this inverse m ethod regardless of 

the sensor locations. This is because, with three outputs it can be guaranteed th a t the 

diagonal elements Du are always positive, which makes the system  stable.
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Figure 3.18: Deflection responses using the second control method. One collocated and one 
non-collocated feedback system, (a) Displacement response a t r x — 0.3 m. (b) Displacement 
response a t collocated sensor r2 =  0.65 m.
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Figure 3.19: Gains and damping using the second control method. One collocated and one 
non-collocated feedback system, (a) Gains gvi and gv2 for ri = 0.3 m and r2 =  0.65 m. (b) 
Damping ratios Q and damping index J
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Figure 3.20: As Figure 3.18. Two non-collocated outputs feedback system, (a) Displacement 
response a t ry =  0.2 m. (b) Displacement response a t collocated sensor r 2 — 0.4 m.
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Figure 3.21: As Figure 3.19. Two non-collocated outputs feedback system, (a) Gains gvl and 
gv 2 for r\ — 0.2 m and r2 =  0.4 m. (b) Damping ratios Q and damping index J
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Figure 3.22: Deflection responses using the  th ird  control method. Two non-collocated and one 
collocated outputs feedback system, (a) r\ =  0.2 m, (b) r2 =  0.4 m, (c) r 3 =  0.65 m.
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Figure 3.23: Gains and damping using the th ird  control method. Two non-collocated and one 
collocated outputs feedback system, (a) Gains gvl, gv2 and gv3 for r\ — 0.2 m, r 2 =  0.4 m and 
r3 =  0.65 m respectively, (b) Damping ratios Q and damping index J.
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Figure 3.24: As Figure 3.22. Three non-collocated outputs feedback system, (a) n  =  0.1 m,
(b) r 2 — 0.3 m, (c) r 3 =  0.5 m.
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Figure 3.25: As Figure 3.23. Three non-collocated outputs feedback system, (a) Gains gvi, gv2 
and gv3 for rx = 0.1 m, r 2 =  0.3 m and r 3 =  0.5 m respectively, (b) Damping ratios Q and 
damping index J.
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3.8 Conclusion

In this chapter, a model of an axially moving cantilever beam  with a pair of piezoelectric plates 

bonded on the beam is given. The control action is a pair of concentrated bending moments 

th a t counteract the beam ’s flexing. Velocity feedback controllers to introduce damping using 

one output, two outputs and three outputs are considered. The computer simulation indicates 

th a t the feedback system is always stable for a lower mode, and not necessarily for higher 

modes. This is referred to  as spillover instability.

It is shown th a t the one output feedback system with constant gain gives unstable system  due 

to  spillover instability. To overcome the spillover instability problem, three control strategies 

are proposed. 1. Gain scheduling with two outputs. An on-off gain scheduling is designed for 

each of the outputs such th a t the damping ratios of the  “frozen” system  are kept positive for 

all the beam  lengths. 2. Varying gains w ith two outputs. The variable gains can be found 

using a pseudo-inverse algorithm. 3. Varying gains w ith three outputs. W ith three outputs, 

the variable gains can be determined using a m atrix  inverse method.

The two output feedback system using the on-off gain scheduling m ethod does not have the 

freedom to choose an arbitrary output location. For the  two-output feedback with time-varying 

gains, it has the freedom of choosing the sensor locations but it cannot guarantee positive Du- 

The three-output feedback system with time-varying gains allows to  locate the three sensors 

arbitrarily.
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C hapter 4

A ctive  C ontrol D esign  for th e  A xia lly  
M oving C antilever B eam  B ased  on th e  
G radient A lgorith m

This chapter is organized as follows: Section 4.1 gives a brief introduction to the purpose of 

this chapter. Section 4.2 describes the transition  m atrix  and the stability analysis of the open- 

loop system. Section 4.3 gives the controllability gram m ian and the  uniform controllability 

condition of the time-varying system. Section 4.4 gives the observability grammian and the 

uniform observability condition of the time-varying system. Section 4.5 describes the gradient 

algorithm m ethod. Section 4.6 explains the  state  feedback controller design. Section 4.7 explains 

the observer based state feedback controller design. Section 4.8 is a brief summ ary of the 

chapter.

4.1 Introduction

The purpose of this chapter is to design a controller for a param etrically excited system using the 

gradient algorithm. A linear time-varying sta te  space model can be transform ed into a structure 

th a t matches the gradient algorithm for a tim e interval. From the design, a stabilizing state 

feedback control can be obtained.

Param etrically excited system is a time-varying system and it may become unstable due 

to  internal excitations. A typical example in mechanical system is, pendulum  with vertically
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vibrating support. Param etric excitation can be stationary or non-stationary. For stationary  

excitation, the amplitudes and the frequencies of the internal excitations are constant. For non- 

stationary excitation, the amplitudes and the  frequencies of the internal excitations are time- 

varying. The analysis of a param etrically excited system conventionally relies on the system ’s 

stability and the amplitude of the internal excitations. The stability analysis is available only 

if the system is linear and the excitation is periodical. Previous studies of linear time-varying 

systems require to  know how the non-stationary excitations vary in the  future in order to 

calculate the desired control input. In [12], an approach based on the gradient algorithm  is 

developed to  design the controller for a dynamic system subject to  stationary or non-stationary 

param etric excitation. W ith the  gradient m ethod, there is no need to  predict how the param etric 

excitations vary in the future as long as past and present information of the system is available. 

In this chapter, this design approach is applied to design the controllers for suppression of 

lateral vibration of the axially moving beam.

4.2 Transition M atrix and Stability of C losed-loop Sys
tem

A zero-input linear time-varying system is given as

x  =  A(t)x ,  x ( k T )  =  Xk, k = 0 ,1 ,2 , . . .  (4-1)

and its solution can be expressed by

x(t) — <P(t, k T ) x k (4.2)

where § ( t , k T )  is referred to  as the transition  matrix. The transition m atrix  satisfies the 

following equation,

$ ( t , k T )  = A ( t ) $ ( t , k T ) ,  $ ( k T , k T )  = I  (4.3)

According to  Rugh [13],
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T h e o re m : The linear sta te  Equation (4.1) is uniformly stable if and only if there exists a finite 

positive constant (i such th a t

||<  fi (4.4)

for all t ,  t  such th a t t > r .

To examine the stability of the axially moving cantilever beam, the transition  m atrix  is nu

merically found by a m ethod given in Appendix A.5. Then the singular values of the transition  

matrices are evaluated. Figure 4.1 shows the maximum and minimum singular values of the 

transition  matrices when the beam is engaged in the extension and in the  retraction. In this 

simulation, the tim e interval T  =  1 second and the step tim e A t  = 0.0005 second were used.

S cen ario  A S c e n a rio  B

(a ) 6 0 0

T im e  (sec)
2  3

T im e  (sec)
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S 0 .4s
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O 1 2
T im e  (sec)

3 4

(b)
0.8

S  06
©

Js 0 4ao
0.2

T im e  (sec)

Figure 4.1: (a) Maximum singular values, (b) minimum singular values of the transition matrices 
for Scenario A and Scenario B.

From Figures 4.1 and 4.2, the following observations can be drawn:

The maximum singular values of the transition matrices fluctuate. The overall trend
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Figure 4.2: Same as Figure 4.1 (b). amin[<fr(t,kT)\ axis is magnified.

of crmai[<h(t, kT)} for extension is reducing while the overall trend  of amax[$(t, kT)] for 

retraction is increasing. Thus the system under extension is stable as amax is bounded 

while the system under retraction is unstable as crmax is not bounded.

In every 1 second interval, <Jm a x  has a sudden drop for Scenario A and a sudden rise for 

Scenario B. This is due to  the resetting of Q>(kT,kT) — I  a t each time interval T  =  1 

second.

All amin[<fr(t,kT)] values lie between 0 <  C7min <  1. For Scenario A, the lowest is 0.0015 

and for Scenario B, the lowest is 0.0016.

W hen crmiri[<!?(£, kT)] gets close to  zero, kT)] is near singular. It should be noted th a t 

when the transition m atrix  becomes singular or uninvertible, the condition of Equation 

(4.4) is not satisfied and the system is unstable.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3 C ontrollability

A linear system

x  = A( t) x  +  B{ t)u  (4-5)

is controllable if, for all initial times and all initial states x ( t 0), there exist some input functions, 

th a t drive the state  vector to  any final state  x( t i )  a t some finite tim e t\ > t 0. Controllability 

of the system is determined by matrices A(t)  and B(t) .  The controllability grammian performs 

the test.

A(t)  and B(t)  are uniformly controllable if there exists A and constants /3\ and (32 such 

that,

P i l  < Pc(t) <  ( h i  Vt >  0 (4.6)

where, Pc(t) is the controllability grammian defined by,

Pc(t) = f  <F(£ — A, t )  B  ( t )  B T (t — A, r ) d r  (4-7)
J t -A

For the system under study, Pc(t) can be found numerically. Figure 4.3 shows the maximum 

and minimum singular values of Pc(t). From the figure, the following observations are drawn:

• The maximum and minimum singular values of Pc{t) takes zero at the beginning of each 

second. The system is not uniformly controllable if (3i are /32 are not positive constants. 

The rank of Pc(t) should be full rank for the system to  be controllable. Here the rank of 

Pc(t) takes less th an  full rank at the beginning of each interval.

• It is noted th a t the minimum singular values of Pc(t) are very small.
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Figure 4.3: Controllability testing using the  grammian for extension and retraction, (a) maxi
mum singular values of Pc(t), (b) minimum singular values of Pc(t).

(4.8)

4.4 O bservability

A linear system

x  — A( t) x  + B( t )u  

y =  C(t)x

is completely observable if, for all initial times, the sta te  vector x ( t0) can be determined from 

the output function y(t\),  defined over a finite time t\ >  to- Observability involves the matrices 

A(t)  and C(t).  The Observability-grammian performs the test.

A(t)  and C(t)  are uniformly observable if there exists A and constants 71 and y2 such th a t

h i  <  P0(t) < 7 2 1 V< > 0

where, P0(t) is the observability gram m ian defined by,

P0( t ) =  f  <f>T( r , t -  A)C'T( r ) C ( r ) $ ( r , t -  A ) d r  
J  t —A

(4.9)

(4.10)
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Figure 4.4: Observability testing using gram m ian for extension and retraction. The deflection 
output is observed at r 1 =  0.1 m. (a) maximum singular values of P0(t), (b) minimum singular 
values of P0(t).
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Figure 4.5: Observability testing using the grammian for extension and retraction. The deflec
tion output is observed at the collocated sensor location ri — 0.66 m. (a) maximum singular 
values of P 0(t), (b) minimum singular values of P0(t).
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Figure 4.6: Observability testing using the gram m ian for extension and retraction. The velocity 
output is observed at r\  =  0.1 m. (a) maximum singular values of Pa(t), (b) minimum singular 
values of PQ(t).
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of P0(f), (b) minimum singular values of P0(t).
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For the system under study, P0{t) can be found numerically. Figures 4.6 and 4.7 show the 

maximum and minimum singular values of P„(t), observed at 77 =  0.1 m and 77 =  0.66 m. 

From the figures the following observations are drawn:

• The maximum and minimum singular values of P0(t) takes zero a t the  beginning of each 

second. The system is not uniformly observable if and y2 are not positive constants. 

The rank of P0(t) should be full rank for the system to  be observable. Here the rank of 

P0(t) takes less than  full rank at the  beginning of each second.

• The minimum singular values of P0(t) are very small.

4.5 Gradient A lgorithm

The gradient algorithm was developed for the  param eter identification purpose. In [12], the 

gradient algorithm  was utilized for the controller and the observer designs for param etrically 

excited systems. A brief review of the gradient algorithm is given below.

Let Z(t)  represents the param eter error between the true param eter vector 9 and the  es

tim ated param eter vector 6. If 9 is updated based on the gradient algorithm, the governing 

equation of Z  (t) is given by

Z(t)  — — ' jw(t)wT (t) Z  (t) (4.11)

where 7  is any positive constant, and w(f) is called the “regressor vector”. A well-known 

sufficient condition on the exponential stability  of the system is th a t the regressor vector be 

“persistently exciting” as defined below.

The regressor vector w(t) is persistently exciting if there exists positive constants A, 0 7  and 

a 2 such th a t  [1 2 ]

0 7 /  <  f  w (r)w t < a 2I,  Vf >  0. (4-12)
Jt -A
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Under this persistent exciting condition, the param eter error Z(t)  converges to zero expo

nentially such th a t [41]

II Z ( k A )  ||<  p k || Z(0)  || (4.13)

where k =  1 ,2 ,... and

0 < , =  , 1 -  2101 < 1 ,  V7 >  0. (4.14)
(1 +  7 0 :2  V ™)2

W hen Z(t)  converges to  zero, the estim ated param eters converge to  the true param eters.

4.6 State Feedback Control

If the state  variables x(t)  are accessible for measurement, the state  feedback control is given by,

■u(f) =  —K{t)x( t )  (4-15)

where K ( t ) is the feedback gain vector which is derived by transform ing the system to  m atch 

the gradient algorithm in Equation (4.11). For this purpose, the coordinate transform ation is 

given by,

x(t )  =  $ ( t, k T ) Z k{t) t € [kT, (k +  1 )T) (4.16)

therefore, the derivative of xi t )  will become

i ( t ) =  d ®{tgtkTh k(t) + $ ( t, k T ) Z k{t). (4.17)

Substituting Equation (4.3) in Equation (4.17) gives

i ( t )  = A(t)<5>{t,kT)Zk{t) + <S>{t,kT)Zk(t). (4.18)

Substituting Equation (4.16) in Equation (4.5) gives

x(t)  =  k T ) Z k{t) +  B(t)u( t) .  (4-19)

Equating Equations (4.18) and (4.19) gives

Z k{t) = (k“ 1(t, kT)B(t )u{t)  = w c(t)u(t) (4.20)
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where wc(£) =  $  1(t, kT )B ( t ) .  If the control u(t)  is chosen to  be

u(t)  =  - 7 cw ^(f)Z fc(i) (4.21)

where 7 C is a positive constant controller gain, so th a t the transform ed closed-loop dynamics

Z k(t) =  - 7 cwc(£)wJZfc(£), t e  [kT, (k +  1)T) (4.22)

has exactly the same structure as the gradient algorithm  in Equation (4.11) on the tim e interval

[kT, (k +  1)T).

From Equation (4.16) Zk(t ) can be w ritten as

Z k(t) = $ ~ 1( t , kT )x ( t )  (4.23)

Substituting Equation (4.23) in (4.21) gives

u(t) = - j cB T (t)<5>~T (t, k T ) $ ~ l (t, kT)x( t ) .  (4.24)

The controller gain K (t ) can be expressed as

K ( t )  =  - 7 cB T (t)§~T {t, kT)<$>~\t, kT) .  (4.25)

If the system is uniformly controllable, the regressor vector wc(t) is persistently exciting 

over the tim e interval [kT, (k +  1 )T) in the sense th a t

Q!iI  < P*(t) = f  wc(r)w c ( T)dT < a 2I ,  t  € [kT, (k + 1 )T). (4.26)
J t -A

where =  £ 7  and a 2 =  £ | ,  in which Pi and p2 are as in Equation (4.6), m i  and m 2 are two 

positive constants satisfying

m i  < Oi[<b{t,kT)\ < m 2, t e  [kT, (k +  1)T), V/c. (4-27)

Figures 4.8 to  4.10 show the state feedback displacement responses a t 77 =  0.1 m w ithout 

controller and w ith control inputs u(t) when yc =  2, yc =  12 and yc =  16, respectively. Figure 

4.11 shows how to choose a suitable yc using umax for t  <  1 sec and umax for t > 1 sec for
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various 7 c’s. Since the control input before the first 1 sec period does not affect the outpu t 

response, and the control input after t > 1 sec does affect the output response, it is efficient if 

a 7 C is chosen such th a t the control input is smaller when t < 1 sec and larger when t >  1 sec. 

W hen the control input is large, it is im portant to  consider weather it is feasible and economic 

in practise. Figure 4.12 gives a measure of the output response y(t)  to  show the effect of each 

7 c on the output. The measure is defined by finding the Euclidian norm of the output response 

with control and by normalizing it using the  Euclidian norm of the output w ithout control. It 

can be w ritten as

II y i^ )con tro l 112R  =
y( t) no control \\2

(4.28)
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Figure 4.8: State feedback displacement responses a t ry =  0.1 m. (a) O u tpu t response with 
controller (yc =  2) and without controller (yc =  0). (b) Control input u (t) when yc =  2.
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Figure 4.9: State feedback displacement responses a t 77 =  0.1 m. (a) O utput response with 
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Figure 4.10: State feedback displacement responses a t 77 =  0.1 m. (a) O utput response with 
controller (7 C =  16) and w ithout controller (yc = 0). (b) Control input u(t) when y c = 16.
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From these figures, the following observations are drawn:

• Figures 4.8 to 4.10 show th a t the controller has little effect on the response during the 

first second period.

• W ith the controller, the deflection response in Scenario A decays slowly but in Scenario 

B, the response decays fast.

• For Scenario A, an increase of the gain makes the  response decay slightly fast while it 

results in a significant increase in the control effort a t the beginning. It is also noted th a t 

the control effort becomes very small for t  >  3 sec.

• Figure 4.11 compares the  maximum control input for t < 1 sec and th a t for t > 1 sec. 

It can be seen th a t for Scenario A when yc =  12, two curves intersect each other and 

maximum control input for t < 1 sec is smaller and maximum control input for t  >1  sec 

is larger when 7 C < 12. W hile for Scenario B, the maximum control input for t  <  1 sec is 

always smaller than  the maximum control input for t > 1 sec for all 7 c’s.

• The measure R  in Figure 4.12 shows th a t  the responses for both Scenario A and Scenario 

B decrease when the 7 C increases.
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4.7 Observer B ased S tate Feedback Control

W hen full states are not available, the sta te  observer is constructed to estim ate the system 

state  x(t)  from the system output y(t). The system is represented as

x(t) = A( t) x ( t )  +  B( t)u ( t )  (4.29)

where x(t)  is the system sta te  and the ou tpu t is given by

y(t)  =  C(t)x( t) .  (4.30)

From the basic Luenberger type observer based controller, the estim ated system can be 

represented as

x(t )  = A(t)x(t )  +  B(t)u( t )  +  L(t)(y( t )  -  y( t )) (4.31)

where x(t)  is the estim ated sta te  and y(t)  is the  estim ated output and given as

y(t)  =  C ( t )x ( t ) (4.32)

and u(t) is the observer-based state  feedback control given as

u(t)  =  K( t )x ( t )  (4.33)

where the controller gain K ( t )  is given in Equation (4.25). L(t)  is the observer-based feedback 

gain and it is designed so th a t x(t)  approaches x(t)  exponentially. Denote the state  estim ation 

error by x(t)  =  x(t) — x(t).  Subtracting Equation (4.31) from Equation (4.29) yields the  state  

estimation error dynamics

x(t) = [A(t) — L(t)C(t))x(t ).  (4-34)

The observer design also utilizes the gradient algorithm in Equation (4.11). For this purpose, 

the following coordinate transform ation is introduced for the state estim ation error:

x{t) = $ ( t, k T ) Z k(t) t € [kT, (k +  1)T) (4.35)
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therefore, the derivative of x(t )  will become

x{t) = dHtdtkT) - ^  +  *(*> k T )Zk(t).  (4.36)

Substituting Equation (4.3) in Equation (4.36) gives

i ( t )  -  kT)Zk{t)  +  $ ( t, feT)ifc(t). (4.37)

Substituting Equation (4.35) in Equation (4.34) gives

£(t) =  [A{t) -  L( t )C(t)}$(t ,  k T ) Z k(t). (4.38)

Equating Equations (4.37) and (4.38) gives

ifc(i)  =  —L(t)C(t)Zk(t) .  (4.39)

From the gradient algorithm (4.11) the transform ed state estim ation error dynamics becomes

Zk{t) =  - 7 owJ(t)w 0 (f)Zfc(f) (4.40)

where w„(i) =  <&T (t, k T ) C T (t) and 7 „ is a constant observer gain.

Equating Equations (4.40) and (4.39) gives the observer feedback gain L(t)

L ( t ) =  7 0$ ( t, k T ) $ T (t, k T ) C T(t). (4.41)

The estimation error of the state feedback control output response and the observer based

state feedback control output response is given by

y ( t ) = y ( t ) - y ( t ) .  (4.42)

If the system is uniformly observable, the  regressor vector wG(t) is persistently exciting over

the time interval [kT, (k +  1 )T) in the sense th a t

7 i m \ l  <  P z0 {t) =  /  w0 ( r )w ^ (r)d r  <  ^ m l l , t  e  [kT, (k +  1 )T) (4.43)
J t - A

where and 72  are as in Equation (4.9), m \  and m 2 are two positive constants satisfying as 

in Equation (4.27).
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Figure 4.13: Observer based feedback control responses a t r x =  0.1 m. yc =  5 and — 5. (a) 
True output y  and estim ated ou tpu t y, (b) Estim ation error y, (c) control output u .

Figure 4.13 shows the observer based sta te  feedback control deflection output y at 77 =  0.1 

m, estim ated output y, estim ation error y and the control input u. The observer gain constant 

7 o =  5 and the controller gain constant y c =  5 are used for this simulation. From the figure it 

is observed

• The estim ated output y(t)  is decaying and estimation error y(t)  converges to zero for 

Scenario A and Scenario B.

• The estim ation error is large until first 0.5 seconds and starts  to  converge to  zero after

wards.

• For Scenario A, the control input u is larger during the period of 1 sec <  t <  3 sec. For 

Scenario B, the control input is larger after 1 second and starts  to decay after 3 seconds.

•  Higher observer gain constant y 0 reduces the estim ation error.
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4.8 Sum mary

In this chapter, a controller design using the Gradient Algorithm was used to  suppress the 

vibration of an axially moving cantilever beam. An advantage of this m ethod over others is 

th a t only past and the present information of the time-varying param etric excitations is required 

to  find the control input. The transition  m atrix  was found using R unge-K utta method. A sta te  

feedback controller gain K  was designed assuming th a t all states are available. Also an observer 

was designed when the only accessible ou tpu t was the deflection response.

Different controller gain constants 7 c’s were investigated for different ou tpu t locations. Suit

able 7 C was found using the maximum values of the control inputs for the  chosen time slots. 

From the observer design, the  estim ated error becomes zero as the observer gain constant 

increases.

Stability of the  system was discussed using the maximum and minimum singular values 

of the transition matrix. The controllability and the observability grammians for uniform 

controllability and uniform observability of the  system were presented. The closed-loop stability 

and the convergence rate of the  system were also discussed.
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C hapter 5

Sum m ary and Future W ork

5.1 Sum mary

•  The m athem atical model of the lateral vibration of the axially moving cantilever beam  is 

presented. This model is a linear time-varying system. For the com puter simulation, the 

beam axial motion is assumed to  have a trapezoidal velocity profile. Deflection and the 

velocity output responses are sensed at the tip, middle and base locations for the study. 

Vibration energy is discussed for the beam  with and without an end mass. The stability 

of the system is analyzed using Lyapunov function.

•  The use of piezoelectric actuators and their control actions through velocity feedback on 

the axially moving cantilever beam  is presented. Velocity feedback controllers to  introduce 

damping using one output, two outputs and three outputs are considered. The com puter 

simulation indicates th a t the feedback system is always stable for a lower mode, and not 

necessarily for higher modes. This is referred to  as spillover instability.

• Since one output feedback system with constant gain gives unstable system due to  the 

spillover instability. To overcome the spillover instability problem, three control strategies 

are proposed. 1. Gain scheduling with two outputs. An on-off gain scheduling is designed
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for each of the outputs such th a t the damping ratios of the “frozen” system are kept 

positive for all the beam  lengths. 2. Varying gains with two outputs. The variable gains 

can be found using a pseudo-inverse algorithm. 3. Varying gains with three outputs. 

W ith three outputs, the variable gains can be determined using a m atrix  inverse m ethod.

•  Another controller design using the Gradient Algorithm is also presented. It is designed 

to stabilize the system when the open-loop system is neutrally stable or unstable due 

to param etric excitations, and to  speed up the sta te  convergence rate of the closed-loop 

system. A state  feedback controller gain K  is designed assuming th a t all sta tes are 

available. Also an observer is designed when the only accessible output is the deflection 

response. Stability of the system is discussed using the maximum and minimum singular 

values of the  transition m atrix.

5.2 Future Work

• To determine a proper stability analysis for the control application.

•  To apply and study the deflection and velocity feedback control together for the system.

•  To apply the control strategies on the experimental setup built in [7]:

Figure 5.1 shows the axially moving cantilever beam  and PZT actuator system. The 

system contains, an axially moving cantilever beam  apparatus, a m otor control and sensor 

conditioning circuitry board, and a com puter equipped with a da ta  acquisition board. The 

beam is driven by a gear head DC m otor via a set of belt and pulley and a set of pinion 

and rack. The DC motor, m anufactured by DUMORE Co., is 12 V perm anent m agnet 

DC motor. The motor gear ratio is 13:1 and rated to  run 180 RPM  at 1.5 amps w ith no 

load and 160 RPM  at 6.2 to 7.2 amps w ith a load of 2.712 Nm. The transmission ratio  

of the pulley set is 5.25:1. A potentio m eter is attached to  the pinion shaft. The beam
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Figure 5.1: Schematic diagram of the axially moving cantilever beam  and PZ T  actuator system

is made of 6061-T6 aluminum alloy. The cross-sectional dimension of the beam is 3.175 

mm (thickness) x 50.8 mm (width). The length of the beam  vary from 0.665 m to  1.095 

m. The guiding slot is m ade of Teflon. The clearance of the slot is properly chosen to 

have a close emulation of a fixed end. The lateral vibration is m easured by accelerometer 

(B & K 4393V). A 4-channel charge amplifier (B & K Nexus2692) is used to  condition 

accelerometer signal. Two axially polarized piezoelectric (PZT) ceramic plates (Sensor 

Tech) are bonded onto each side of the beam  to form a PZT actuator. A high voltage 

wide band amplifier (Krohn-Nite) is used to  drive the actuator. A personal com puter is 

used for control application and d a ta  acquisition (DAQ) board, PCI-M IO-16E-4 (National 

Instruments) are used. LabVIEW  is used to  interface with the DAQ board.
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A ppend ix  A

Proofs o f T heorem s and O ther 
C alculations

A .l  P roof of Theorem  1

Proof :

If the Lyapunov function is chosen as

V( t)  = x T (t)x( t ) (A-l)

where V(t)  > 0 and the derivative of the function A .l, is given by

V( t)  — x T (t)x(t)  + x T(t)x(t)
(A.2)

=  x T (t) [A(t) +  A T (t)] x(t )

where x(t)  is replaced by A(t)x( t )  from Equation (2.32). If V(t)  is negative, th a t is, if the  ma

trix  [A(t) +  AT(t)] is negative definite a t each i, then V(t)  decreases as t  increases. Therefore, 

x (t) decays exponentially.

End of Proof
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A .2 Uniform  E xponential Stability

Proof :

For any to, x0, and corresponding solution x(t )  of the state equation, the inequality (2.39) gives

x T(t) A T (t)Q(t) + Q ( t ) A ( t ) +  Q(t) x(t)  < - v  || x(t)

where x T(t)x(t)  = || x(t)  ||2. Also from (2.38)

(A.3)

x T (t)Q(t)x(t )  <  C || x(t)  ||5 (A.4)

so th a t

Therefore

x{t) ||2<  ~ x T(t)Q(t)x(t)

x T (t) A T (t)Q(t)  +  Q(t )A( t ) +  Q(t) x(t) < - ~ x T (t)Q(t)x(t )

(A.5)

(A.6)

After multiplying by the appropriate exponential integrating factor and integrating from t 0 to

1 ..............  (A.7)x T (t)Q(t)x(t ) < - e  c(t to)x l Q { t Q)xo{t)

Again from (2.38),

x{t)  ||2 <  ±xTQ(t)x(t)

which gives

<  t (! to)x l Q ( t 0)x0{t)

x(t )  ||2<  || x0 ||2
V

(A.8)

(A.9)

By taking positive square root of bo th  sides of Equation (A.9), uniform exponential stability  is 

achieved. End of Proof
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A .3 D eterm ining The In itial C onditions Through D e
flection Curve

Figure A .l: Deflection Curve

Deflection at location s is given by,

™ 0,0) = 6 m ( s 3 - 3 L s 2)

= w i L3U f - m ) 2} (A ' 10)

=  H f ( a 3 - 3« 2)

where F  is the applied tip force and a  — | |.  Deflection at location L  is given by,

F T 3
W(L ’0) =  3EI  (A -n )

from Equation (A.11),

F  = 3 (A .12)

From the application of mode shapes in Equations (2.2-2.5), the deflection can be w ritten

as

w{s , t) = 4>(s, L)q(t)  =  (A .13)

By choosing a deflection of the tip  to be w(L,  0) =  0.01 m at t = 0 sec, the  initial conditions 

are achieved by

qi{0) =  [  $i(s ,0)ds.  (A .14)
Jo
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A .4 Theorem: S tability  o f Slowly-Varying System

Proof :

The proof of theorem in section 3.4 (equations 3.27 to  3.29) is presented here.

For each t, let Q(t) n  x n  m atrix  and

A T(t)Q{t) + Q(t)A(t )  = - I  (A .15)

where Q(t) is chosen to be
r  co

Q(t)  =  /  eAT{t^ e A{t)ada (A.16)
Jo

If Q(t)  satisfies the Theorem, thereby can conclude uniform exponential stability of system  

(2.32). Detailed proof is given on [13] Theorem  8.7 and it shows, the choice of Q(t) is bounded, 

symmetric and continuously differentiable.

It can be shown th a t there exists a v >  0 such th a t

A T (t)Q{t) + Q ( t )A ( t ) +  Q(t) < - v l  (A .17)

using Equation (A. 15)

Q(t)  <  (1 -  v ) I  (A .18)

and the differentiation of Equation (A. 15) w ith respect to  t gives

A T (t)Q{t) +  Q(t)A(t)  = - A T (t)Q(t) -  Q(t)A{t) (A .19)

Also this Lyapunov equation has a unique solution

r°° r 1
Q(t)  =  / eAThP A T (t)Q(t) + Q{t)A{t) eA{t)°do  (A.20)

Jo  L -*

Since the eigenvalues of Aft)  have negative real parts a t each t. To derive the boundness of

|| Q(t)  ||, the boundness of || Q(t)  || can be considered. For any n x l  vector x  and any t,

x TeAT^ A T(t)Q{t) +  Q ( t ) i ( 0 j  eA{t)°x  I <  I! A T(t)Q(t) +  Q(t)A(t)  || x TeAT^ e A^ x

(A.21)
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so

| x TQ(t )x  | =  | J0°° x TeA'F('t'}a A r {t)Q(t) +  Q(t)A(t)  eA^ cxdcr |

<  || A T (t)Q(t)  +  Q(t)A(t)  || x TQ(t )x  (A.22)

<  2 || A (f)  mi Q(t) || x TQ(t)x

Now for all x, it is true th a t || Q(t)  || >  x TQ(t)x ,  This will maximize the right side of the

equation and gives

I x TQ{t)x  | <  2 || A(t)  mi Q{t) ||2 (A.23)

similarly by maximizing the left side of the Equation (A.23) knowing th a t || Q(t)  || >  |

x TQ(t)x  |, it can be w ritten as

Q ( i ) | |  <  2 || A(t)  HI! Q(t)  ||s (A.24)

Using the bound on || Q(t ) ||, the bound /? on || A(t)  || can be chosen. To show the  lower bound 

for Q(t), there exists a positive 77 such th a t Q(t) > rjl the T he ore m ! .8 in [13],

d
da XT eAT (i)a 6 ^ ) °  x =  x r eAT{-t> [AT (t) +  A(t)} eA^ ax  

>  — 2 k x t  eAT eA^ a x

Since goes to  zero exponentially as a  — > 0 0

(A.25)

T  -x x
da

Therefore,

W hich gives 77 =  A  _ 

End of  Proof

x TeAT^ aeA{t)ax

Qtf) > YJ

da >  —2KxTQ(t)x (A.26)

(A.27)
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A .5 First Order R unge-K utta M ethod

The transition m atrix  is found by a discrete first order Runge-K utta m ethod [38]

x n+i — x n + ——{kni +  2 /c„2 +  2 /c„3 +  kn 4 ) 
o

where, knl =  f ( x n , t n)

k n 2 —  f { x n  +  \ f k n i , t n  +  

k n 3 — f ( x n  +  ^ k n 2 , t n  +

k n 4 f  { x j i  T  t n  T  A t )
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