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Abstract

Measurement of hemodialysis treatment adequacy is essential to monitor quality 

assurance for today’s growing dialysis population. The universally accepted measure of 

hemodialysis dose is Kt/V. Kt/V above 1.2 has been shown to reduce patient morbidity and 

mortality. Currently, Kt/V is calculated from urea kinetic modelling using predialysis and 

postdialysis blood samples. This blood-based approach, as well as being costly and invasive, is 

typically performed once a month providing only periodic snapshots o f dialysis adequacy. 

Methods to provide more frequent feedback to attending doctors have been developed based on 

urea concentration sensors in the spent diaiysate stream. More recently, monitoring of diaiysate 

conductivity in the spent diaiysate stream has been proposed as an alternative to urea monitoring 

— ionic dialysance has been found to be highly correlated to urea clearance. The subject o f this 

thesis is the kinetic modelling of spent diaiysate conductivity.

The following single pool equation was developed to describe the kinetics of the spent 

diaiysate conductivity during periods of constant inlet diaiysate conductivity;

In -C ,. =ln C“ -  C' d i  do

D
- v ‘

where Q ; and Qo are the inlet and outlet diaiysate conductivities (mS/cm),

D is the ionic dialysance (ml/min),

V is the patient’s effective distribution volume (ml), and 

t is the session time (min)

This equation suggests a linear relationship between In iQ; - and dialysis time with slope
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equal to -DA/. Evaluation o f this slope permits direct calculation o f DtA/, an equivalent of urea 

KtA .̂

A clinical study to test this model was conducted with 14 patients treated by maintenance 

dialysis in the renal unit at Thunder Bay Regional Hospital, McKellar site. Diaiysate conductivity 

data were collected from 85 dialysis sessions on an Integra hemodialysis machine (Hospal- 

Gambro Canada) equipped with conductivity sensors in both the inlet and outlet diaiysate 

streams. When In jCj; - Cjol was plotted versus dialysis time for each session, the data typically 

fell along a series of straight lines. However, the slope o f the linear segments, rather than being 

relatively constant (= -DA^ according to the proposed model), varied significantly with the 

inlet diaiysate conductivity setting. The rate o f ultrafiltration also influenced the In [C* - 

slopes. This was thought to be largely due to the convective component being improperly 

accounted for in the equation describing ionic mass transfer across the dialyzer. The impact of 

ultrafiltration rate on the patient’s circulating blood volume may also have an effect on ionic 

mass transfer. Additional confounding factors were the periodic flow checks and the diaiysate 

conductivity excursions associated with ionic dialysance measurements programmed into the 

Integra machine.

It was concluded that the currently proposed model was an oversimplification of 

intradialytic ionic mass transfer kinetics but that further studies with more sophisticated models, 

better accounting for the important role o f convective mass transfer, were warranted. In this 

regard, a series of in vitro and in vivo studies have been suggested.

11
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Chapter 1. Introduction

The ability to instantaneously quantify a hemodialysis dose will have many benefits to 

patient care. Session to session quality assurance will be enhanced and patient lifestyles would 

more closely mimic quality o f life with functioning kidneys. This study endeavours to verify the 

validity o f a model by Dr. L.J. Garred (1998) to instantaneous measure Kt/V. Kt/V is the widely 

accepted measure o f delivered dialysis dose (Garred, 1998; Depner, 1991).

More than 40,000 people nationally have end stage renal disease (ESRD) which has 

necessitated some form o f renal replacement therapy (Prichard, 1997). The leading causes of 

ESRD in Canada are diabetes mellitus (25%), glomerulonephritis (21%) and vascular disease 

including hypertension (16%) (Prichard, 1997). The patient population requiring renal 

replacement therapy is increasing by 7.4 % per year (Prichard, 1997 & Schaudel et al, 1999). 

The leading form o f renal replacement therapy is hemodialysis (Prichard, 1997). Currently, 

30,000 people in Canada receive dialysis three times per week for 3-4 hours each session 

(Prichard, 1997). This places a high demand on resources in the renal unit, with costs of $30,000 

per patient per year (Prichard, 1997). Goree et al (1995) cite costs o f $88,585 for hospital 

hemodialysis.

The text o f this study has been organized to give the reader a general overview o f the 

motivation to complete the study in the introduction. The introduction is followed by a more 

detailed explanation o f the relevant theory and background material needed to hilly understand 

the calculated data resulting from this study and their importance for patients receiving 

hemodialysis.

Researchers have determined through the use o f longitudinal and comparative studies

1
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that small solutes resulting from normal body metabolism have a highly toxic effect on the body 

(Depner, 1991). There is some debate over the toxicity effects o f large molecules but as yet the 

evidence does not fully support or dismiss large molecule toxicity (Depner, 1991). These small 

solutes are normally removed by the kidneys. Urea is produced in the body by the urea krebs 

cycle during protein catabolism. Urea is a small solute that is infinitely soluble in water (Depner, 

1991). Urea is generally accepted as the characteristic solute to monitor when determining 

protein catabolism and monitoring renal replacement therapy (Garred, 1997; Depner, 1991). The 

Kt/V measure o f delivered dialysis dose is a dimensionless number quantifying the amount of 

blood volume cleared o f urea during the dialysis session (Garred, 1997; Depner, 1991). 

Therefore, Kt/V characterizes the amount o f toxic small solutes cleared from the blood. Kt/V 

values o f less than 0.8 cause a precipitous rise in patient deaths (Depner, 1991). Prichard (1997) 

has published figures which summarize Kt/V values o f 1.2-1.4 in 64% o f renal units in Canada.

Currently the most common method of Kt/V calculation is to determine pre&post-dialysis 

blood urea concentrations and apply an equation as published in Depner ( 1991 ) or Garred (1997). 

Most renal units routinely monitor Kt/V once per month (Prichard, 1997). This practice only 

effectively quantifies 1 in 12 dialysis sessions. The proposed method o f calculating Kt/V will 

calculate Kt/V values every dialysis session improving quality assurance practices. 

Instantaneous measures o f calculating Kt/V will allow future development of control system 

models that will enable the nephrologist to obtain repeatable Kt/V values. This is very important 

as there is some clinical data that suggests any exposure to toxic concentrations o f small solutes 

have a chronic effect on patient health (Depner, 1991)

A previous study by Garred, Bottos & McCready (Hospal-Gambro internal report) had 

the unexpected finding that outlet diaiysate conductivity and patient conductivity approach the
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inlet diaiysate conductivity in an exponential fashion. Dr. Garred has applied information from 

his hemodialysis kinetic modeling research (1997) to hypothesize that Kt/V can be calculated 

from the decay curve o f outlet diaiysate conductivity. This study will use clinical data obtained 

from current hemodialysis patients at Thunder Bay Regional Hospital (TBRH), McKellar site 

under the direction of the head nephrologist Dr. W. McCready.
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Chapter 2. Section 1 Background Physiology

1.1 Introduction

In this study an investigation o f instantaneous dialysis prescription dose is tendered. The 

following sections present some background information concerning the physiology o f the 

kidney, physiology o f water/waste movement in the body and the kinetics o f dialysis. This 

generalized overview is presented to provide the reader with enough knowledge to grasp the 

complexities o f the dialysis session.

1.1.1 Kidney Function

The human body carries two symmetrically placed kidneys located in the retroperitoneal 

space. The kidneys provide homeostasis (maintenance o f metabolic equilbrium) of body 

composition. Proper functioning o f  the body systems depend on this maintenance. For example, 

fluid intake changes o f plasma volume must be corrected to maintain optimum cardiac output 

and blood pressure. Most enzymes (controlling body metabolism) function best over rather 

narrow ranges o f pH and/or ion concentration (Briggs & Schnermaim, 1994). Thus, the kidneys 

recognize and adjust disturbances to homeostasis that occur as a consequence o f food and fluid 

intake, body metabolism and exercise (sweating). The kidneys’ urinary excretion o f water and 

solutes regulate body fluid volume, osmolarity, electrolyte concentration (N a\ K”, Cl', Ca^ Mg^" 

and PO4) and acidity. O f the number o f products o f metabolism excreted by the kidneys, urea 

is o f prime interest in this study. As a note, the kidneys produce enzymes and hormones, notably 

renin, erythropoietin, and 1,25-dihydroxyvitamin D3 (Greenberg, 1994).
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1.1.2 End Stage Renal Disease (ESRD)

The human body can adapt to the loss o f one kidney by increasing the size of the 

remaining kidney. Loss o f functional kidney capacity (defined as ability to make corrections to 

body homeostasis) will result in the manifestation o f symptomatic disorders (a disease state). 

End stage renal, disease can be defined as any disorder that causes a reduction o f functional 

capacity in the kidneys resulting in the need for replacement treatment. This functional capacity 

is typically measured by following the glomerular filtration rate (GFR). The formation o f urinary 

excretion in the kidneys begins with a filtration process in the glomerulus. This filtration process 

is influenced by the pressure driving force across the capillary bed in the glomerulus and the 

permeability o f the capillary bed. The filtrate continues to change composition through the 

remainder o f the kidney before being excreted as urine. The GFR is expressed as a function of 

body surface area (normal values are approx. 125 ml/min/1.73m-). For those solutes which are 

entirely eliminated by the kidneys, the rate o f appearance in the urine is equal to the generation 

rate in the body. The concentration of these solutes is inversely related to GFR, and conversely 

GFR, can be assessed firom these concentrations. In clinical terms GFR is usually estimated fi-om 

urea and creatinine concentrations in urine over a specified collection period, typically 24 hrs. 

The creatinine clearance rate is used to indicate intervention o f replacement treatment. Once this 

rate falls below 10 ml/minute/1 .73 m^, intervention is required to prevent death (Greenberg, 

1994).
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1.1.3 Water/Na Physiology

The kidneys function to excrete urinary water to maintain body fluid volume and 

electrolyte balance such as Na (solute) concentration (expressed as osmolarity).

Water as fluid volume constitutes approximately 60% of body mass. Roughly two thirds 

o f that water is contained in the cells as intercellular fluid (ICF) and the remaining one third 

outside of the cells as extracellular fluid (ECF). The following table illustrates the body 

composition for a typical 70 kg person.

Water Protein Na"
(L) (kg) (mmol)

ECF 15 0.3 2250
ICF 30 5.7 300
Total Body 45 6 . 0 2550

Table 1.1 Body Composition. (Halperin and Goldstein, 1999)

In calculating body water an assumption is made o f the relative proportion o f fat to lean body 

tissue. Females tend to have a lower body composition o f  water, 50% o f body weight vs 60% 

for males due to the ratio of lean body tissue to fat content. Older people tend to have a lower 

water content due to their low lean body tissue (Halperin and Goldstien, 1999).

The ECF is made up o f plasma water (20% o f ECF), interstitial fluid (80% of ECF), and 

lymph circulation, which makes a negligible contribution (Halperin and Goldstien, 1999). Water 

is freely permeable across cell membranes. Changes in the extracellular sodium concentration 

result in shifts of water between the ECF and ICF compartments. For example, a decrease in 

the sodium concentration of the extracellular compartment results in a shift o f water into the 

cells, increasing cell volume. Alternatively, an increase in extracellular sodium concentration
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produces a shift o f water from the intracellular to the extracellular compartment and decreasing 

cell volume (Sherwood, 1993). O f note, when there is an intake of electrolyte free water, this 

water distributes proportionately in the ICF and ECF compartments. This water expands both 

compartments. Conversely when there is an intake o f isotonic saline only the ECF volume 

expands, there is no change in the ICF volume and sodium concentration (Halperin and 

Goldstein, 1999). Water movement between interstitial and intracellular spaces is governed 

primarily by osmotic concentration gradient. Under special circumstances water movement is 

governed by Starling’s law. Starling’s law o f capillaries are governed by two factors: (i) 

hydrostatic pressure (blood pressure) and (ii) oncotic pressure. When blood pressure rises, water 

moves out o f  the blood vessels. Oncotic pressure, which is related to the concentration of the 

protein albumin, draws water through the capillary membrane against osmotic pressure(Halperin 

and Goldstien, 1999; Sherwood, 1993).

The body is provided with a thirst response which is governed by two mechanisms, the 

baroreceptors and the osmoreceptors. The baroreceptors respond to changes in blood pressure 

(which can manifest as changes in plasma volume for dialysis patients between sessions) and the 

osmoreceptors respond to plasma sodium concentration (osmolarity)(Rodriguez et al, 1981). 

Both systems are connected to the thalamus which controls the level o f  antidiuretic hormone 

(ADH). ADH levels in the kidneys have a water conserving role since water is freely permeable 

and will quickly cross into the urine if  not checked by the ADH mechanisms(Briggs and 

Schnjermann, 1994). Reduction in blood volume reduces blood pressure creating an increase 

in the levels o f ADH, similarly, an increase in sodium concentration (osmolarity) in the ECF 

increases ADH(Halpeiin and Goldstien,1999; Briggs and Schnjermann, 1994; Sherwood, 1993). 

Normal sodium concentrations(natremia)in the body are 140 mEq/L. Excursions from the norm
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can be defined as hypo/hypematremia. Hyponatremia is defined as serum (plasma) sodium 

concentrations o f less than 135 mEq/L. Hyponatremia induces symptoms o f  nausea, vomiting, 

muscle cramps, malaise, headache, confusion and lethargy; seizures occur at sodium 

concentrations 120-125 mEq/L. Hypernatremia is defined as serum sodium concentrations 

greater than 146 mEq/L. Hypernatremia symptoms can manifest as dry mucous membranes, 

intense thirst, flushed skin, fever and oliguria (Sherwood, 1993). The kidneys control the 

concentration o f electrolyte sodium. During incidents o f  hypo/hypematremia, correction of 

adverse serum sodium concentration must be done slowly. If  the correction is performed rapidly 

cerebral damage due to shrinkage or edema can result (Sherwood, 1993). There is some 

discussion whether this condition can occur during the short time o f the dialysis session 

(McCready, 1998). The cerebral has mechanisms to control osmolarity which should be 

protective over the dialysis session. The brain barrier should protect the brain cells during 

hemodialysis (Ganong, 1987).

1.1.4 Protein Metabolism

The process o f living for organisms such as humans can be called metabolism. 

Metabolism is the conversion, in a broad sense, of food stuffs into materials and energy that 

function to sustain life. Metabolism creates life-giving metabolites as well as waste metabolites 

(Sherwood, 1993). The end product o f protein catabolism is urea produced through the Krebs 

omithine-urea cycle. This pathway is illustrated in Figure 1.1 (Depner, 1991). Urea 

concentration is commonly expressed as mg urea nitrogen per decilitre o f blood. The plasma 

concentration o f urea nitrogen is termed blood urea nitrogen (BUN). Normal values for BUN 

are 8-12 mg/dl (Levey, 1994; Depner, 1991). The BUN is markedly elevated in ESRD patients.

8
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In the dialysis patient BUN is directly related to dietary protein intake. The resulting 

accumulation o f waste products normally secreted by the kidneys, is termed uremia (elevated 

urea levels). Although urea is not considered a toxic waste product, its presence is directly 

quantifiable to uremic waste products o f protein metabolism through the Krebs omithine-urea 

cycle (Figure l.l)(Levey, 1994; Depnerl991). Urea kinetics have been studied thoroughly and 

urea is the generally accepted solute used to monitor renal disease and dialysis treatment 

(Garred, 1998).

1.2 Choices of Therapy for End Stage Renal Disease

Patients with end stage renal disease require some form o f renal replacement therapy to 

supplement or totally replace kidney function. The treatment is chosen by the 

nephrologist(kidney specialist) and the patient. The most common replacement therapies are 

discussed in the following section.

1.2.1 Transplant

The preferred treatment modality for end stage renal failure is kidney transplant. 

Although this treatment is limited primarily by the number o f donors available(reference). As 

such, alternate renal replacement therapies are necessary both to make up the shortfall in 

transplantable kidneys and to provide care until a donor kidney is available.

1.2.2 Extracorporeal Therapies

Extracorporeal therapies use an artificial kidney placed outside the body. The artificial 

kidney is called a dialyzer. The typical dialyzer is a hollow fibre membrane filter. The
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membrane is semipermeable, conceptually a thin sheet perforated by holes. There are 

approximately 10,000 hollow fibers, 2-3 km in total length providing 1-2 square metres o f total 

surface area in the typical dialyzer (Garred, 1998; Daugirdas & Ing, 1994; Cheung, 1994). Blood 

is placed in intimate contact with dialysis solution (diaiysate) during extracorporeal therapy. 

Blood pumped firom an access site surgically placed in the patient, flows through the fibres of 

the artificial kidney with the diaiysate passing around the outside o f the fibres in counter-current 

fashion. The diaiysate is a saline solution o f similar composition to plasma water. The 

membrane’s holes are o f a small size that allow small solutes and molecules like water to freely 

pass through the membrane but larger molecules such as proteins cannot cross the 

membrane(Garred, 1998; Daugirdas & Ing, 1994; Cheung, 1994).

Extracorporeal therapies make use o f counter-current mass transfer kinetics. The 

mechanisms for mass or solute transfer between the blood side and the diaiysate side are 

convection and diffusion. Convective transfer occurs with solutes that are swept through the 

membrane with water. Diffusive transfer is the result of osmotic concentration gradients across 

the membrane. Figures 1.1 to 1.3 demonstrate how convection and diffusion methods are 

combined to give distinct advantages and disadvantages for the various forms of extracorporeal 

therapies (Garred, 1998).

The most common form o f extracorporeal therapy is hemodialysis (Figure 2.1.1). 

Hemodialysis uses diffusion as the primary means o f mass transfer. Convective transport occurs 

as a result o f ultrafiltration but the volumes are small, 10-30 ml/min.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Blood flow from patient
350 ml/min

515 ml/min

Diaiysate Flow 
500ml/min

Diffrisive mass transfer 
& obligatory UF to remove 
excess fliud (rate =15 ml/min)

335 ml/min
Blood flow return to patient

Figure 2.1.1 Hemodialysis Schematic. (Garred, 1998)

In hémofiltration all mass transfer is by convection. Hémofiltration is illustrated in Figure 2.1.2.
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Blood flow from patient
3S0ml/mln

650 ml/min

Dialysate Flow 
SOOml/min

V

< -
— >

Diffusive and convective mass transfer

Sterile replacement fluid 135 ml/min 200 ml/min

335 ml/min
Blood flow return to patient

Figure 2.1.2 Hémofiltration Schematic. (Garred, 1998)

Hémodiafiltration combines both convective and diffusive mass transfer pathways (Figure 2.1.3).

Blood flow from patient 
350 ml/min

ISO ml/min

Sterile replacement fluid 135 ml/min

< Totally convective flow

yf 200 ml/min

335 ml/min
Blood flow return to patient

Figure 2.1.3 Hémodiafiltration Schematic. (Garred, 1998)
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1.23  Peritoneal dialysis

Peritoneal dialysis can be thought o f as analogous to hemodialysis. The peritoneal 

membrane is analogous to the membrane in the dialyzer providing a barrier to the large protein 

molecules while allowing the waste products and excess fluids to pass. “The peritoneal 

membrane is actually layering o f tissue barriers beginning at the capillary endothelium through 

the capillary basement membrane to the mésothélial cell surface” (Daugirdas & Ing, 1994). An 

access (silastic catheter) is inserted into the abdominal cavity by either a surgeon or a 

nephrologist. A dialysate solution to restore acid/base and electrolyte balance and to remove the 

metabolic wastes and excess fluids is introduced into the peritoneal cavity. The effectiveness 

o f the treatment depends on maintaining integrity of the peritoneal membrane.

The following table summarizes modes of peritoneal dialysis.

Manual procedures
CAPD, continuous ambulatory peritoneal dialysis three to four hour daytime dwells plus a

long bedtime exchange
DPD, daytime peritoneal dialysis four short day dwells, no night dwell

Automated procedures
CCPD, continuous cycling peritoneal dialysis long day dwell, multiple short night time

exchanges
NIPD, nocturnal intermittent peritoneal dialysis no day dwell, multiple short night time

exchanges
TPD, tidal peritoneal dialysis similar to NIPD, except abdomen not

completely drained with each exchange
IPD, intermittent peritoneal dialysis rapid cycling on an intermittent basis

(usually three to four times per week), no 
dialysis between treatments___________

Table 1.2: Forms of Peritoneal Dialysis. (Piraino, 1994)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Section 2 Hemodialysis

The most prevalent renal replacement therapy in use currently is hemodialysis. Unit costs 

for hemodialysis range from $28,000 to $30,000 per patient depending on whether the dialysis 

is delivered in the home or in a renal unit at the hospital (Prichard, 1997).

2.1 Prescription

When hemodialysis is chosen as the treatment modality most appropriate for the 

circumstances o f the ESRD patient, the optimum prescription is required. According to 

statistics provided by Prichard (1997) 74% of renal units use a 3hr treatment session with the 

maximum treatment time being 4hr in 52% of the units and 5hr in 41 % o f the units. This can 

be simplified to say that the majority of renal units use a 3 to 5hr treatment. KtW is used as 

prescription control in 60% o f the renal units. Kt/V targets o f 1.2-1.4 are achieved in 56% of 

the units, 1-1.2 in21%  and greater than 1.4 in 21% (Prichard, 1997)

2.1.1 Overview

The majority o f  end stage renal disease patients receive hemodialysis three times weekly 

for 3-5hrs. The goal o f the dialysis session is to regain homeostasis for the patient. Therefore, 

many variables are monitored and many methods used to achieve adequate dialysis for the 

patients. The ESRD patient population is increasing at a rate o f 7.4% per year (Prichard, 1997). 

The increased load on renal units has necessitated a shortening o f the dialysis session. Ten years 

ago the three weekly sessions would typically be 8 - 1 0  hrs in length to ensure adequate delivered 

dialysis. The use o f new high flow dialyzers with high mass transfer coefficients has increased 

waste removal rates (Daugirdas & Ing, 1994). As such the session times have been shortened
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to 3-4 hours in a typical modem renal unit with 3 shifts per day (Garred, 1998;Daugirdas & Ing, 

1994).

2.1.2 Goals of Hemodialysis

Dialysis efficiency must be high to meet the stringent time windows and the narrow 

window o f delivered dialysis dose targets. Quahty assurance must be maintained using timely, 

cost effective, standardized methods. This backdrop creates the desire to increase efficiency and 

lower costs while trying to improve dialysis dose. This is a competing process which will 

require closely monitered and controlled prescription results.

2.1.3 Hemodialysis Prescription

The hemodialysis prescription is designed to return the patient to homeostasis by 

removing water, waste metabolites, excess electrolytes and re-establishing the acid/base balance. 

The nephrologist approximates the patient’s ideal weight and body water volume. From these 

calculations and typical blood flows a dialyzer can be chosen to give an appropriate dialysis dose. 

Kt/V, BUN, clearance, dialysance, plasma natremia and ideal weight figures are some o f the 

current measures used for determining adequacy assurance(Daugirdas & Ing, 1994; Depner, 

1991). For this study only Kt/V and natremia levels will be considered.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 Dialysis Machine

The dialysis procedure can be separated into two parts for this discussion, the blood side 

and the dialysate side. Patient access to an artery and vein is typically in the lower arm or 

subclavian. Blood is pumped from the patient through the dialyzer and returned to the patient. 

The blood lines on the dialysis machine are provided with air detector and clamp to prevent air 

from being introduced into the blood. Highly purified water is supplied to the dialysis from a 

treatment plant. This water is heated to body temperature and run through a degassing chamber 

to remove air. The water is mixed with equal portions o f concentrated bicarbonate and acid 

dialysate solutions and pumped through the dialyzer in counter-current fashion to the blood flow. 

The dialysate line is provided with a leak detector that will stop dialysis should a leak develop 

in the dialyzer. The dialysate line contains two pumps, one pump controls the dialysate flow rate 

and the other controls the ultrafiltration rate or water removal (patient weight loss). All flow 

rates are carefully monitered through redundant control systems. These safety features allow 

control of the dialysate solution sodium concentration, the dialysate flow rates, the blood flow 

rates and ultrafiltration (weight removal rate) rates (Daugirdas & Ing, 1994; Cheung, 1994).
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Section 3 Urea Kinetics

Mass transfer relationships describe the movement o f mass. These relationships are 

applied to hemodialysis to measure dialysis dose.

3.1 Quantification based on Urea Kinetics

This section outlines the most recent development o f models to quantify delivered 

dialysis dose. This delivered dose can be thought o f as the volume o f  blood cleared of waste. 

Urea has been selected as the marker used in the mass transfer relationships o f kinetic modeling 

during dialysis (Garred, 1998; Daugirdas & Ing, 1994 Cheung, 1994).

3.1.1 Introduction to Urea Kinetics Modeling (UKM) in Dialysis

The discussion o f urea kinetics is started with the assumption o f single pool dynamics. 

The body water is considered to be a single well mixed volume due to the relatively quick 

transport mechanisms between compartments (Garred, 1998; Daugirdas & Ing, 1994; Depner, 

1991). The mass balance characterizing urea concentration during dialysis is as follows (Garred, 

1998):

dCV
dt

= G -  KC (1)

where C is urea concentration
V is body water volume 
G is urea generation rate 
K is urea clearance rate
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3.1.2 Dialysis Prescription and KtiV

Dialysis prescription by the nephrologist involves water removal and waste removal. 

This study is concerned with waste removal prescription. Time on the dialysis machine, blood 

flow rate, dialysate flow rate and dialyzer membrane area and mass transfer characteristics are 

used to determine the delivered dialysis dose. A parameter called Kt/V is used to quantify 

dialysis dose and prescription. K is the dialyzer urea clearance rate and t is the time spent on 

dialysis. V is the body water volume o f  the patient (Garred, 1998; Daugirdas & Ing, 1994; 

Depner, 1991). For a complete description o f the development o f Kt/V refer to the reference 

Garred, 1998. Illustrated in equation 2 is the Garred formula for Kt/V (Garred, 1998).

Kt
^ /D B W ^p re

JC p o s t
+ 3

V BW y
V l-0 .0178t

where are the blood creatinine concentrations
BW is body weight

Results fl-om the U.S. National Cooperative Dialysis Study (Gotch, 1985) and subsequent studies 

(Hakim et al, 1994 & P ^ker et al, 1994) have demonstrated a link between Kt/V and patient 

mortality and morbidity. These same studies have lead to the guideline values o f a Kt/V 

prescription o f 1.2 - 1.4 to minimize patient morality and morbidity rates. Ongoing studies 

funded by the National Institutes of Health will present whether this minimum should be changed 

to 1.6 - 1.7 (Petitclerc, 1999)

3.13  Limitations

Kt/V dialysis prescription and the use of Kt/V as a quality assurance monitor carries some
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limitatioiis. K.t/V numbers used for prescription are based on dialyzer clearance values 

determined from in vitro studies and estimates of the patient’s body water volume. Both the 

dialyzer clearance and volume values are only an estimate o f the values actually realized during 

the dialysis session. These values can vary significantly among individuals and sessions. From 

equation (2) to calculate Kt/V to validate the prescription, a pre dialysis blood sample and a post 

dialysis sample (preferably 30 mins after dialysis to correct for rebound') are analyzed for urea 

concentration. As a result the session can only be assessed at some time after the patient has left 

the dialysis unit. Operationally, this means Kt/V monitoring is a periodic quahty check. Blood 

sampling increases the risks o f infection and contamination.

Currently urea monitors are in development to analyze the dialysate urea levels. These 

monitors will provide periodic measures o f urea and calculate Kt/V, eliminating some o f the 

current delay with blood samples. Although these monitors will only provide periodic measures.

The next section will present an alternate model of urea kinetics based on conductivity 

measured in the dialysate entering and leaving the dialyzer.

1. Rebound is an effect that describes how urea levels in the blood increase immediately after 

dialysis as urea from the body diffuses into the blood space. Typically after 30 minutes most of 

this re-adjustment has occurred.
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Section 4 Quantification based on Conductivity Kinetics

An instantaneous measurement o f metabolic waste transfer during dialysis would allow 

for improved quality assurance and enable automated control systems to be integrated with the 

dialysis machine. Conductivity technology is currently used to control the conductivity levels 

o f the dialysate solution before entering the dialyzer. The conductivity o f the dialysate solution 

is usually held constant for the dialysis session. There is some clinical experience with varied 

conductivity during the dialysate session from a high value (15.0 mS/cm) at the start to a low 

value (13.5-14 mS/cm) at the end o f the session. This section details the development o f a model 

to capitalize on this technology and directly calculate an instantaneous Kt/V.

4.1 Overview

Some studies have suggested that small uremic solutes contained in the blood contribute 

to toxic effects to a much larger extent than the larger solutes and waste metabolites (reference 

this). Therefore, a solute or molecule o f similar properties or kinetics to urea will have the 

potential o f obtaining the same results developed for urea (Depner, 1991). The following section 

will examine the use o f conductivity to follow the ion behaviour o f the dialysis solution as an 

indicator dialysis dose (Locatelli et al, 1995; Petitclerc et al; Steil et al, 1993).

4.2 Mixed Ion Dialysis Behaviour

There have been studies that have demonstrated the validity o f sodium models to predict 

clearance values in dialyzers from sodium kinetics (Locatelli et al, 1995; Petitclerc et al; Steil 

et al, 1993). Along with this research there have been studies predicting sodium kinetics during 

a dialysis session (DiFilippo, 1997; Petitclerc, 1992, Locatelli, 1995 ). These studies provide
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validity to the claim that sodium behaves like urea during a dialysis session and that conductivity 

values o f  dialysate can be used as direct measures o f sodium concentration. Conductivity has 

been in use for quite some time to adjust and control dialysate in the dialysis machine (Bonomini 

et al, 1997; Ursino et al, 1996).

4 3  Machine Technology

In an earlier section (section 2.2) the dialysis machine was introduced. The latest release 

o f  dialysis machines by Hospal-Gambro (the Integra figure 4.1) contain conductivity meters that 

measure dialysate inlet and outlet conductivity. The Diascan feature o f the Integra is used to 

make periodic estimates o f  Kt/V.

Figure 4.1 Hospal-Gambro Dialysis Machine.

43.1  Diascan

The Hospal-Gambro Integra dialysis machine has incorporated a dialysate out 

conductivity meter in the dialysate outlet line after the dialyzer. The placements of the 

conductivity meters are shown in figure 4.2.
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1
Blood in

m r
Dialysate out

I
Dialysate in

Blood out

ConducdviQr
Sensor

Conductivity
Sensors

Control Redundant
 Ol-O _____

Figure 4.2 Placetnent of Conductivity Meters in Integra.

This dialysate out conductivity meter in the Integra is referred to by its ’ trade name Diascan. The 

Diascan feature is more than just the conductivity meter. Every 30 minutes the Diascan 

introduces a step change o f dialysate inlet conductivity figure 4.3.

Diascan Measurement 6 minutes every 30 minutes

Inlet
Conductivity 15.5 mS/cm

Outlet Conductivitv

AV
14.5 mS/cm

3 min

Figure 4.3 Diascan Measurement - Introduction o f Step Change to Inlet Conductivity.
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This is a step o f 1.0 mS/cm up or down from the current inlet dialysate conductivity values. 

Measures o f  the outlet conductivity responses during the three minute step and step back to 

normal conductivity values allows the use o f  two sets o f equations to be solved for Kt/V, 

clearance, ionic dialysance, ionic mass balance and patient plasma conductivity (Hospal-Gambro 

operating manual).

4.3.2 Diascan Kinetic modeling

The conductivity o f the dialysate can be related to the total ion concentration o f the 

solutions (Sancipriano et al, 1996; Locatelli et al, 1995). During a step change as shown in 

figure 4.3 the response of the outlet conductivity will provide a measure o f concentration and 

mass transfer rates. Diascan relates this to an ionic dialysance by the following equation 

(Hospal-Gambro):

^  DC.
K . . - 1 - D C ,  (D

where K is the ionic dialysance
aCq, is the conductivity change of the inlet(i) and outlet(o)

Ionic Dialysance is a measure of the rate o f clearance of ions from the blood and can be used as

K for the Kt/V calculation (Petitclerc et al, 1993; Stiel et al, 1993). These results assume a

patient volume based on Watson’s formula (Depner, 1991) and only occur every 30 minutes.

This measure improves the availability of Kt/V information in comparison to conventional blood

sampling. Although, the Kt/V at the end o f the session is not calculated unless the measure

coincides with the end of the dialysis session. Therefore, the Kt/V measures are only periodic

estimations o f the delivered dialysis dose, an instantaneous measure would be preferable.
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Section 5 Quantification based on Continuous Conductivity

This section presents the development o f the instantaneous model o f Kt/V using the 

continuous conductivity measures o f both inlet and outlet dialysate. Modeling o f sodium 

kinetics for the determination o f sodium transfer between the dialysate and patient plasma has 

been used to control hemodynamic stability and patient natremia. The models use conductivity 

to follow sodium levels o f the patient during the dialysis session (Petitcleric etal, 1993 & Ursino 

et al, 1996).

5.1 Sodium Kinetics (Garred, 1998)

The development o f this model is the work o f Dr. L.J. Garred, Chemical Engineering 

Department, Lakehead University, 1998.

5.1.1 Primary Model

For the development of the model the assumption is that patient conductivity(CpJ will 

follow a single pool model

where J is the rate o f conductivity mass transfer from dialysate to patient 

J can be expressed in terms o f the diffusive dialysance and ultrafiltration rate.

J  =  D ( C d i  — C p t )  —  K u f C p t  ( 2 )

where D is diffusive di^ysance
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K„f is the mass transfer rate contributed by ultra filtration.

Cji is the inlet conductivity o f the dialysate.

This expression while commonly used overestimates the contribution o f convective mass 

transfer. However, key simplifications arise from using this expression and the error is not great 

at modest rates o f ultrafiltration. The left hand side o f equation (1 ) can be broken into parts.

d(CptV) VdCpt ^ CptdV

dt dt dt

dV
But —  = -Kuf 

dt

if  fluid removal by ultrafiltration comes entirely from the effective distribution for conductivity, 

is zero. Combining these two relationships with equations (1) and (2) gives:

dCpt
V  =  D(Cdi — Cpt) (3)

at

Since Cpt cannot be directly measured equation (3) must be rewritten in terms o f other variables. 

J can also be expressed in terms o f conductivity disappearance from the dialysate stream.

J  =  Q d i C d i —  Q d o C d o  (4)

Combining equations (2) and (4):

Q d i  C d i  —  Q d o  C d o  —  D ( C d i  —  C p t )  —  I C u f  C p t  ( 5 )
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or

(  D  +  K u f  )  C p t  — Q d o  C d o  ( Q d i  — D )  C d i  

Taking the derivative assuming constant Qdi, Qdo, D and Kuf:

dCpt dCdo dCdi
( D  +  K u f )  =  Q d o - ^  -  ( Q d i  -  D )  ( 6 )

From (5)

dCpt dCZdo dCdi
(D  +  K u f ) - ^  =  Q d o - ^  -  ( Q d i - D ) - ^  (7)

—  Q d o  (  C d i  —  C d o  )

Substituting (6 ) and (7) into (3) in order to eliminate Cpt:

V  ^  =  D ( a -  G o )  +  ( 8 )
dt  ̂  ̂ Q d o  dt

Re-arranging (8 ) to remove V from the Left hand side o f the equation

d(Cdi —Cdo) —D  (D  + K u f) dCdi
— ^  =  - ( G - G o )  +  ( , )

The situation to be analyzed is where dialysate conductivity (C^) is constant or a series of
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constant steps.

When Cdi is constant over a portion o f the dialysis, the last term in equation (8 ) is zero. 

Both D and V likely vary as dialysis precedes generally decreasing in each case; consequently, 

the ratio, D/V, will be nearly constant. Equation (8 ) can be integrated for D/V constant to show:

In  (Cdi — Cdo) t ( 1 0 )

is a straight line with slope = -D/V. D/V is equivalent to K/V as both D and K are mass transfer 

clearance rates.

5.1.2 Potential Use in Dialysis

With validation o f the model, instantaneous estimations o f Kt/V will be provided during 

the dialysis session. This approach will allow comparisons o f  delivered dialysis dose for each 

session. Separate calculation of D/V will provide a direct indication of V (body water volume) 

as the clearance rates D or K are known for the dialyzers. V being the body water volume or the 

single pool area from which metabolic waste is removed. Instantaneous values o f Kt/V being 

obtained, with ability to direct values for each dialysis session. Since conductivity values are 

followed closely and predictive, body response constants to sodium will be identified.
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Chapter 3. Methodology

3.1 Study Variables

All data gathering o f hemodialysis sessions for this study was performed on the Hospal- 

Gambro Integra model dialysis machine labeled H4, the first machine at the TBRH to be 

equipped with the Diascan option providing conductivity meters on both the fresh and spent 

dialysate streams. The entire set o f Integra machine parameters available for capture is listed 

in tables A1-A3, Appendix A. A subset o f  31 variables was chosen for capture in this study. 

These are listed in table 3.1.

3.2 Data Acquisition System

An ACER Extensa 368D laptop computer was used to capture relevant data from the 

Integra via its RS232 serial port. The commercial data acquisition software, ACQ, was used for 

data capture. The ACQ program listing developed for this study is provided in Appendix B. The 

ACQ program captures the 31 Integra study variable set (table 3.1) at a specified time interval 

throughout the dialysis session. In addition, at each data capture iteration, ACQ generates an 

additional parameter corresponding to the time, in minutes, since the start o f data capture. The 

set o f 32 values is written to an ASCII file. In a pilot study it was determined that the shortest 

possible interval between consecutive sets o f data capture was approximately nine seconds. For 

convenience, the ACQ data capture interval was set at 10 seconds.
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P aram eter# Integra Code Integra Param eter Name Study Name Units

1 8 9 ,3 4 Session Time Prescribed Time min

2 39 15 Dialysis Time Dialysis Time sec

3 8 9 ,3 5 Inlet Conductivity Setting Sodium Profile Setting mS/cm

4 39 18 Inlet Conductivity Sodium Profile Control mS/cm

5 89, 1 42 Inlet Conductivity Protective Inlet Conductivity Protective mS/cm

6 89 ,3 48 Inlet Conductivity Inlet Conductivity Control mS/cm

7 108,4 34 Outlet Conductivity 3 Uncorrected Outlet Conductivity mS/cm

8 89 ,3 46 Outlet Conductivity 3 Corrected Outlet Conductivity mS/cm

9 8 9 ,3 47 Plasma Conductivity 3 Plasma Conductivity mS/cm

10 89,3 40 Gain Diascan Gain

11 89 ,3 41 Offset Diascan Offset uS/cm

12 89, 1 52 P2 Dialysate &  Ultrafiltrate Flow ml/min

13 89, 1 7 Dialysate Flow Dialysate Flow ml/min

14 39 22 Dialysate Flow Dialysate Flow Setting ml/min

15 89, 1 12 Temperature Temperature C

16 89, 1 25 Blood Flow Blood Flow ml/min

17 89 ,3 6 Weight Loss W eight Loss g
18 89, 1 11 Weight Loss W eight Loss kg
19 89, I 10 Weight Loss Rate Weight Loss Rate kg/h

20 89 ,3 7 Weight Loss Rate Weight Loss Rate g/h

21 39 30 Kt Kt

22 39 50 Hemoglobin Hemoglobin Filtered g/dl

23 89 ,3 28 Hemoglobin Hemoglobin Unfiltered g/dl

24 89 ,3 29 Hemoglobin TO Hemoglobin BY Initial Value g/dl

25 39 51 Blood Volume Blood Volume %

26 39 53 Ionic Mass Balance Ionic Mass Balance

27 39 54 Dialysance Dialysance

28 39 59 KtAV Kt/V

29 89 ,3 35 Rising Hydraulic Delay Time Delay sec

30 39 44 Diastolic Pressure Diastolic Pressure mmHg

31 39 45 Systolic Pressure Systolic Pressure mmHg

Table 3.1 Integra Dialysis Machine Variables Captured by the Data Acquisition System.
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3.3 Data Acquisition for a Dialysis Session

The laptop was connected to the Integra via the RS232 port 15-30 minutes before the 

patient to be studied was cormected to the machine. The data acquisition program was started 

immediately and ACQ sample time (parameter 32) began at this point. Data acquisition was 

terminated approximately 15-30 minutes following patient disconnection from the Integra. The 

data captured by the ACQ program are written to an ASCII file during the dialysis session. 

Following the dialysis session the data were saved to an EXCEL file in which the data captured 

before and after the actual period of dialysis were removed and headers added to label the data 

columns. Data removal was facilitated by inspection o f the Integra dialysis time (parameter 2). 

This parameter is set to the prescribed dialysis time in seconds at the start o f dialysis (the 

moment when the start button on the Integra is pressed) and counts down to zero corresponding 

to the end o f dialysis. The data for each study session were stored in the original ASCII format 

on a single floppy disk. The EXCEL files generated for all study sessions were stored on a single 

zip disk. A copy o f this zip disk may be found in the back cover of this report

3.4 Study Patients

Only stable patients with a lower arm AV fistula capable of blood flow rates o f300-400 

ml/min were considered for this study. Patients participating in the study were informed o f the 

nature o f the study and the computer data acquisition system to be attached to the RS232 port 

o f the dialysis machine. The patients were assured that the computer could in no way affect the 

operation o f the dialysis machine. The study patients were then asked to sign a consent form. 

During this study no changes were made to the patients’ dialysis treatment.
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A total o f 14 patients, 7 females and 7 males, participated in the study. Patient 

parameters are listed in table 3.2. Patients ranged in age from 13 to 8 8  and weighed between

44.3 kg and 159.2 kg. Patients had undergone an average o f 331 dialyses or about 2.1 years o f 

hemodialysis before entering the study. The number o f study dialysis sessions per patient ranged 

from 1 to 23. Complete data were acquired for 85 dialysis sessions with these patients over the 

study period o f October to December 1998.

Patient Sex Age
(years)

Ideal
Weight

(kg)

Dialyzer # of Dialyses 
prier to study

# of Study 
Sessions

CL F 13 44.3 B31.6 92 23

MJ F 57 46 B31.6 94 8

WP M 52 94.5 F80A 300 1

HF M 49 159.2 F80A 360 7

DS M 37 69.5 F80A 796 9

SM M 2 2 74.5 F60A 297 9

MA F 78 83.5 BK1.6 223 5

JB M 44 91.5 F80A 370 5

BG M 52 64 F8 249 5

KS M 62 89 BK1.6 690 8

NF F 52 85 F80A 780 2

DC F 54 70.5 F60A 2 0 1

IK F 78 80 F80A 140 1

LA F 8 8 47.3 B31.6 230 1

Mean 52.7=b20.5 78.5±28.7 331±252 6.5±5.8

Range 13-88 44.3-159.2 92-796 36547
Table 3.2. Patient Statistics and Treatment Summary.
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3.5 Study Dialysis Sessions

The dialysate flow rate was 500 ml/min for all 85 dialysis sessions o f the study. Blood 

flow rates between 300 and 400 ml/min were required for the study. Blood flow rate was 

maintained at 400 ml/min for 70 %, at 350 ml/min for 20% and at 300 ml/min for 10% o f the 

sessions. Study dialysis sessions were between 3.5 and 4 hours in length. Eight o f the study 

patients had a treatment length o f four hours and the remainder o f  the patients were dialyzed for

3.5 hours. Normal treatment prescription for all study patients included inlet dialysate 

conductivity profiling and ultrafiltration profiling. Profiling o f the inlet dialysate consisted of 

a descending series o f constant conductivity steps. A typical profile is shown in the upper fi’ame 

o f figure 3.1. For the session illustrated the inlet dialysate conductivity is fixed at 15.0 mS/cm 

for the first hour o f dialysis, at 14.5 mS/cm for the following 2 hours and reduced to 14.0 mS/cm 

for the final treatment hour. As a result o f this descending step profile the direction of sodium 

transfer is from the dialysate to the patient early in the treatment and firom the patient into the 

dialysate towards the end o f the treatment. The purpose o f the high sodium in the early stages 

o f the session is to diminish extracellular to intracellular fluid movement. The ultrafiltration 

profile typically employed a descending series o f constant ultrafiltration rate steps of varying 

lengths separated by 10 minute rest periods. During the rest period ultrafiltration was reduced 

to the minimum value o f 0.1 kg/h to facilitate vascular space refilling. A typical ultrafiltration 

profile is shown in the lower firame o f figure 3.1.
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Chapter 4. Results

4.1 Treatment of Study Data

A total o f 85 dialysis sessions were studied between October and December, 1998. 

There were 13 patients in the study group, 6  females and 7 males, ranging in age from 13 to 8 8 . 

The data acquisition system, ACQ, captured 32 parameters at 10 second intervals for each o f the 

dialysis sessions studied. The complete data set is stored on the zip disk attached to the back 

cover.

The most relevant parameters to this study are fresh or inlet dialysate conductivity 

and spent or outlet dialysate conductivity (CjJ. The data acquisition program captured four 

different inlet conductivity values (parameters 3 -6 ). Sodium Profile Setting (parameter 3) is the 

dialysate conductivity profile prescribed for the dialysis session and entered into the Integra by 

the nephrologist or renal nurse prior to the start o f  the treatment. Sodium Profile Control 

(parameter 4) is the set value for the inlet dialysate conductivity control system o f the Integra. 

The Sodium Profile Setting and the Sodium Profile Control conductivity values are identical 

except the control value generates a brief ramp signal when the Sodium Profile Setting has 

prescribed a step change in inlet dialysate conductivity. There are two conductivity meters in the 

inlet dialysate line o f the Integra dialysis machine; they are identified as 41 and 42 on the Integra 

flow sheet, figure 4.1. The redundant meters are a necessary safety feature to guard against an 

inappropriate inlet dialysate conductivity being generated by the dialysis machine. Inlet 

Conductivity Control (parameter 6 ) corresponds to the dialysate conductivity measured by the 

first meter (labelled as 41 on figure 4.1). This is the sensor feedback value used for inlet 

dialysate conductivity control. Inlet Conductivity Protective (parameter 5), the conductivity
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measured by the second meter (42 on figure 4.1), provides a redundant measure o f inlet dialysate 

conductivity. When the two values differ by more than 0.1 mS/cm, an alarm sounds on the 

dialysis machine. Sodium Profile Setting (parameter 3) and Inlet Conductivity Control 

(parameter 6 ) have been plotted on figure 4.2 for the first 120 minutes o f dialysis session 

CL051198. This figure illustrates the noise in the Inlet Conductivity Control (parameter 6 ) 

measurement (green triangles in figure 4.2) relative to the constant Sodium Profile Setting (black 

line in figure 4.2) o f 15.5 mS/cm. Given the fluctuations in the conductivity meter values, it was 

decided to use the Sodium Profile Setting (parameter 3) as the Cj; value for validating the 

mathematical model. The downward steps in conductivity o f 1 raS/cm noted at 10 minutes and 

each 30 minutes thereafter correspond to Diascan measurements o f ionic dialysance and patient 

conductivity.

Two different outlet conductivity values (parameters 7 & 8 ) were captured by the data 

acquisition system. The Uncorrected Outlet Conductivity (parameter 7) is the conductivity 

measured by the spent dialysate conductivity meter (labelled 84 on figure 4.1). For a period 

during the start-up procedure, fi-esh dialysate is shunted to the spent dialysate conductivity meter 

bypassing the dialyzer. The outputs o f the control inlet conductivity meter (parameter 6 ) and 

spent dialysate conductivity meter (parameter 7) are compared and the offset used to generate 

a Corrected Outlet Conductivity (parameter 8 ). The offset between the Uncorrected Outlet 

Conductivity (parameter 7) and Corrected Outlet Conductivity (parameter 8 ) is illustrated in 

figure 4.3, for the first 120 minutes o f dialysis session CL051198. The downward spikes at 

approximately 10,40, 70 and 100 minutes reflect the outlet dialysate conductivity response to 

the step change in inlet conductivity during Diascan measurements. The upward and downward 

spikes between Diascan readings (indicated by the upper arrows in figure 4.1) occur every 15
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Figure 4.3. Outlet dialysate conductivity sensor readings without offset 
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shown as black line. Study session CLL051198.
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minutes when the Integra performs a calibration o f the inlet and outlet dialysate flow meters (52 

and 82 on figure 4.1). During the one minute dialyzer bypass, the outlet conductivity rises to 

equal the inlet value. The abrupt fall after this rise is due to the lower conductivity o f the 

dialysate trapped in the dialyzer during the bypass period. For study model validation, it was 

necessary to remove both o f these excursions firom the outlet conductivity data set. Further 

reduction in signal noise was obtained by using a centrally located seven point moving average. 

In this data smoothing technique, the conductivity value at each time point was averaged with 

the three proceeding and the three following conductivity values. The filtered, smoothed outlet 

conductivity data (green circles on figure 4.5) were the values o f used for study model 

validation.

A further problem arose firom the physical placement o f the inlet conductivity sensor (41 

on figure 4.1) and the outlet conductivity sensor (84 on figure 4.1) in the Integra machine. The 

location o f the two sensors results in an appreciable time lag beti^'een the moment dialysate 

passes by the inlet conductivity sensor and when the same dialysate reaches the outlet 

conductivity sensor. This hydraulic delay is illustrated in figure 4.4 which shows the delay in 

the outlet dialysate conductivity sensor response to the step change in conductivity registered at 

the inlet sensor when a Diascan measurement is initiated. The hydraulic delay is inversely 

proportional to dialysate flow rate and varies with dialyzer size. This hydraulic time lag, termed 

Rising Hydraulic Delay (parameter 29), is captured by the Integra machine for each Diascan 

measurement performed. The Rising Hydraulic Delay (RHD) values provided a means o f 

compensating the data set samplings for the hydraulic time delay between the two sensors. For 

use in the study, the average Rising Hydraulic Delay was rounded to the nearest 10 seconds. For
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a Diascan step.

the study session illustrated in figure 4.4, the RHD is 60 seconds and the data set sampling 

interval is 1 0  seconds; therefore, the outlet dialysate conductivity recorded with a particular data 

set corresponds to the inlet conductivity value recorded 6  data sets (or 60 seconds) earlier. 

Figure 4.5 shows the filtered Outlet Conductivity data (green circles) where the spikes associated 

with flow bypass and Diascan procedures have been removed and the data sets have been time- 

shifted to compensate for the hydrauhc time delay between the inlet and outlet conductivity 

sensors. The red diamonds in figure 4.5 correspond to the patient conductivity determined from 

each Diascan measurement.

4.2 Model Study Validation

According to the model developed in Chapter 2 Section 5.1 the outlet dialysate 

conductivity change with time during a period o f constant inlet dialysate conductivity is expected
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to obey the following equation.

'd i do

D
In C ,j - C ^  = ln  C l - C l  t (10)

V

where Ĉ i", Ĉ o° represent the inlet and outlet dialysate conductivities at the start o f the period o f 

constant Ĉ j and t represents the time elapsed in this period.

Therefore, a plot o f InlCj, - Cjol versus time is expected to exhibit straight line behaviour. 

Figure 4.6 is such a plot for the Cj;, data shown in figure 4.5. Linear regression analysis was 

used to appraise the hypothesis o f straight line behaviour during each period o f constant Q , . 

The In I Cjii - | data for the first 120 minutes o f session CL051198 (figure 4.6) appear to follow

a straight line for the first 70 minutes, followed by a transition period between 70 and 80 minutes 

to a second straight line firom 80 to 120 minutes. Linear regression was performed on each 

straight line segment and the corresponding linear equations and values are shown on figure 

4.6. Both R- values exceed 0.9 indicating strong linear fit o f the ln|Cj^ - C<jo| data for each 

period; however, the slope o f the line segments between 0 and 70 (-0.00899 min’') is 

significantly different firom the best fit line slope between 80 and 120 minutes (-0.00687 min '). 

While the close to linear fit over an extended time period is an encouraging finding, the 

significant difference in slope between the two straight line segments was not anticipated and 

would appear to invalidate the proposed model. Change in linear regression line slopes are 

thought to be related to changes in ultrafiltration and vascular refilling rates. This will be 

considered further in the Discussion section.

For most study sessions dialysate conductivity profiling resulted in three periods of 

constant Cj; and therefore, three opportunities to test the linear relationship between In | C<ii - 0 ^̂  | 

and session time. Figure 4.7 shows the recorded inlet and outlet conductivity data for the entire
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240 minutes o f  study session CL051198 and figure 4.8 shows the corresponding ln| C* - C^| 

versus time plot. For the session depicted, sodium is transferring to the patient for the first 120 

minutes (C ĵ exceeds C jJ and from the patient to the dialysate for the last 1 2 0  minutes (C^ 

exceeds C*-). As a consequence, the Diascan measure o f patient conductivity (red diamonds on 

figure 4.7) is seen to rise for the first 2 hours of the dialysis session and to fall during the final 

2 hours. The ln| Cj, - Qo | data o f figure 4.8 are seen to follow straight line behaviour for the 

period of constant Q  = 14.1 mS/cm(120-180 minutes) as well as for Q =  13.4 mS/cm (180-240 

minutes). The linear regression coefficient is 0.98 for both periods o f constant Q;. However, 

once again the regression line slope differs significantly between the two line segments (-0.0148 

min ' versus -0.0129 min ') and from the regression line slopes found in the first 120 minutes o f 

the study session. Plots similar to figures 4.7 and 4.8 (Q;, and Cp, versus session time and 

In I Q  - Qol versus session time) may be found for all 84 sessions in Appendix C. For most 

sessions, the l n |Q  - Qg | data were found to fall along one or more straight line segments for 

each period o f constant Q ,. A notable exception occurred when the inlet conductivity was set 

very close to the patient conductivity as in the example of the 65-130 minute period o f study 

session NF231298 shown in figure 4.9. This results in little difference between the inlet and 

outlet dialysate conductivities and therefore too much scatter to establish straight line behaviour 

when the l n |Q  - Q^j data are plotted versus time (figure 4.10). There was typically 

considerable variability among slopes o f the regression line segments for each session, similar 

to the variability noted for the study session CL051198, shown in figure 4.8. This variability in 

straight line segment slopes was not expected from the proposed mathematical model which 

predicted a constant slope equal to -DA^, independent of Q .  The factors related to this 

variability in segment slope will be explored further in the Discussion section o f this report.
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As noted above, the ln |Q ; - Q^l versus time plot for an individual test session was 

typically characterized by a series o f straight line segments with each segment having a different 

slope. There was no identifiable trend in the sequence o f straight line segment slopes for a 

session (such as for example, the series o f slopes rising or falling); however, the pattern o f 

straight line segments for an individual patient appeared to be repeated in subsequent sessions 

with the same treatment prescription. This is illustrated in figures 4.11- 4.13 for three 

consecutive dialysis sessions for patient CL. A break in the line segment is evident in each of 

the three consecutive sessions at approximately 70 minutes of the first constant step. The ratio 

o f the slopes before and after this break is similar in each of the three sessions. Similar trends 

are evident through the final 2 hours o f each session. The linear segments for the second and 

third C(jj steps are similar in slope and significantly steeper than the line segments for the first 

Q . step.

4.3 Treatment Dose Quantification

According to the proposed model. In | Ĉ ; - Cjq | plotted versus dialysis time was expected 

to yield a single straight line for each period o f constant C ;̂, with the line slope being equal to 

-D/V and independent o f C ;̂. This would then allow direct calculation o f Dt/V by multiplication 

o f this slope by the dialysis session time. As described above the measured ln|Cj; - data 

generally fell along a sequence o f straight line segments o f varying slope. The proposed model 

and its use to obtain Dt/V as a direct quantification o f dialysis dose was therefore not validated 

by the study results. Nevertheless, it was thought worthwhile to attempt a determination o f Dt/V 

based on the slopes o f the piecewise linear fit o f the In jC ĵ - | versus dialysis time data. The

technique for this is illustrated in Figure 4.14. The linear regression line for each period in which
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the In 1 Cji - Cjo | versus time data fell along as straight line was extended to obtain a sequence of 

straight lines that covered the entire session time. The Dt/V contribution for each o f  these 

periods was calculated as the product o f the line slope (taken as a positive) and the dialysis time 

associated with this line segment. For the session illustrated in Figure 4.14, the first line segment 

spans the first 81.3 minutes o f this dialysis session and has a slope o f -8.99 x 10*̂  m in '. The 

Dt/V for the first 81.3 min o f this dialysis session is therefore 0.71. The Dt/V contributions of 

the subsequent 3 periods o f linearity are 0.27,0.86 and 0.75, respectively, for a total Dt/V = 2.59. 

The Dt/V calculated by the Integra machine based on periodic measurements of conductivity 

dialysance and an assumed distribution volume of 25.3 L, was 2.17. Pre and postdialysis values 

of blood urea concentration were available for this session permitting calculation o f a urea Kt/V 

using equation 2. The urea Kt/V was 2.23. The three Kt/V values are in modest agreement; 

however, Dt/V is approximately 18% greater than the other two Kt/V values.

Dt/V values calculated as described above together with the corresponding Diascan Dt/V 

are listed in Table 4.1 for 65 study sessions. Urea Kt/V values are also listed in this table for the 

1 0  sessions which coincided with monthly blood work.

The study values o f Dt/V are plotted against the Diascan calculated Dt/V in Figure 4.15. 

Not surprisingly, the correlation is poor (R^ = 0.20), with considerable scatter about the line of 

identity (broken line). The study Dt/V values tend to somewhat lower (mean = 1.39) than the 

Diascan calculated values (mean = 1.48). The study Dt/V values are plotted against urea Kt/V 

for the 10 sessions where it could be calculated in Figure 4.16. The correlation between the two 

values is unexpectedly close (R^ = 0.78). The good agreement between Kt/V urea and Dt/V 

calculated firom the In | Cjj - | versus time data is encouraging but may only be fortuitous.
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study
Session

Dt/V
study

Dt/V
Diascan

Kt/V
urea

CL241298 1-9] 207
CL^izée 0.91 "1.55'
CL191298 3.34 1.91
CL17129e 2.56 1.93 204
CL08129B 1.41 202
CLoSi^éè t.w 3.10
CL031298 't.7ô 201 11
CL0112éô "■2.4S"' 202 211
CL281198 2 i4
CL2ël19ë t.73 ------ 2.55"
CL241196 2.25 2 i 3 211
CLèfliSë 2.14 209
CLièiige 3.20 217
CL14119ë 2.27 " n . w  ■“
t u  21198 U S 1.46
CL071198 283 1.5T
CLOèligè 259 217 123
CL29109B 213 221
CL271098 2.13 i.s5 23
N0161298 1.09 123
MA181298 1.63 1?6
MA141298 1.35 f-s/
MA041298 1.55 1.55
MA061196 i.i3 1.43
MA021196 191 1.50
K s^tàëë 0.78 1.03
ksi81296 i.i7 0.92
KSlël29è 6.87 0.92
KS141298 1.26 6.98
KS0èl29ë 1.06 T.6<r ■ - 1.16
KS021296 1.11 0.94
IR151298 1.11 1.56
LI09129é 1.03 6.69
jsàéi;^9à f.4ô 1.12 1.31
JB16119B 1.27 1.86
JB131198 0.95 1.15 ■
JB1lfl9Ô 1.12 1.11
JB09119B 1.01 1.39
MA07i 298 1.09 0.73
MA111198 1.14 0.91
MA091198 5.74 '1.23
6s6?ii9ë 0.92 1.13

---------- C5g57îW 0.86 1.18
□ siéii9è 0.80 1.12
bS231198 1.14 1.22
DS2Ôl19é 0.93 1-18
DS0il19é ”  1.35 1.36 1.22
SM041298 1.25 0.97
SM301198 1.19 6.89
SMi/l198 1.15 0.74
SM2S1198 1.58 1.02
SM201198 1.16 0.98
SM041198 1.43 0.94 1.48
SM181098 1.30 3i24
bS041298 1.40 0.98
§6251198 0.64 1i2
BG2il19è Q .Sf 1.58
§0201198 1.39 1.62
BG1Ô119è 1.44 1.54
ë tlë 'i'isô 0.53 1.59
HW131198 1.55 166
HW111198 6.45 f 70
HW0àl19è 0.97 1.S6
HW061198 6.56 1.80
HW141098 0.90 1.48

Mean | 1.4 1.48 1 1.84
standard Deviation | 0.59 ------ 045------ 1 0.45

Table 4.1 Treatment dose for study dialysis sessions.
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Chapter 5. Discussion

5.1 Study Model and Its Validation

A key element o f a quality assurance program for hemodialysis adequacy in the treatment 

o f end stage renal failure is a convenient and accurate measurement o f delivered dose. The 

current standard for treatment dose assessment is K.t/V based on urea concentration in predialysis 

and postdialysis blood samples; however, this blood based approach has many shortcomings. 

There has, therefore, been considerable interest in finding an alternate method o f dialysis dose 

determination which is accurate and capable of automation, such that it can be performed 

routinely at minimal cost and without the need for blood sampling. The central objective o f the 

study reported here is the evaluation of an alternate method of quantifying dialysis dose meeting 

these criteria and based on measurement of ionic conductivity in the dialysate streams entering 

and leaving the dialyzer.

A single body pool model governing the kinetics of ionic conductivity was developed. 

This model gave rise to equation (10) for periods when the conductivity o f dialysate entering the 

dialyzer is constant:

In C ^ - C ^ | = l n | c «  - C S . 1- ^  t (11)

The implication of this simple algebraic equation is that the natural logarithm o f the absolute 

value difference between the inlet and outlet dialysate conductivities should fall linearly with 

dialysis treatment time. The slope of this line should equal -D/V fi-om which Dt/V, an equivalent 

to Kt/V urea, may be calculated.
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This proposed approach to quantifying dialysis treatment adequacy was evaluated in a 

clinical study in which inlet and outlet dialysate conductivities were monitored at 1 0  second 

intervals for 85 dialysis sessions in 14 patients treated on the Integra dialysis machine. The 

collected data, which are presented graphically in Appendix C, were analyzed in the context o f 

the proposed model in the Results chapter. According to the model equation, the ln| Ĉ j - 

data were expected to fall along a series o f straight lines, one for each period o f constant Ĉ j, with 

a common slope equal to -D/V. The data did generally fall along a series o f straight line 

segments as predicted by the study model equation. However, it was commonly found that the 

slopes o f the line segments for different periods o f constant varied significantly. 

Furthermore, it was often the case that the InlC^j - Qo| data, for a period o f constant Ĉ ;, fit a 

sequence o f two or more line segments o f different slope. These trends suggest that, in 

contradiction to the study model, the Inj Q ; - | versus session time slope may depend on

and other factors. Some o f the possible confounding factors include ultrafiltration rate, changes 

in circulation blood volume, and programmed interventions o f the Integra dialysis machine, such 

as periodic flow meter checks and Diascan measurements. The impact o f these factors will be 

discussed in this chapter.

5.2 Diascan and Flow Meter Disturbances

In the Results chapter, spikes were noted at regular intervals in the data (see Figure 

4.3). These spikes were caused by the flow meter check performed by the Integra machine every 

15 minutes and by the step change in inlet dialysate conductivity at 30 minute intervals that is 

part o f the Diascan test when that option is active. The data spikes were removed firom the 

data used to test the study model (see Figures 4.5 and 4.6); however, the impact o f these Qg
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excursions appears to extend beyond the short “spike” period. The upper panel o f Figure 5.1 

shows the Qo data for the first 60 minutes o f session CLIOI198 during which Q  was fixed at 

15.5 mS/cm. Diascan was disabled for this dialysis, so only Qo disturbances due to the 60 

second flow meter checks performed every 15 minutes are present. The corresponding spikes 

are shown as open gold circles. These data were removed for the model validation, leaving the 

gaps observed in the lower panel o f Figure 5.1. The In j Q ; - Qo | data between the flow checks 

appear to follow a linear decline except for a 1 - 2  minute period following each Qo spike 

(denoted by blue arrows) that is characterized by a transient o f  the ln |Q ; - Qo| curve towards 

the line o f linear fall. The result, when the transients are ignored, is a sequence o f straight lines 

of similar slope but with a sUght upward displacement o f each line relative to the previous one. 

This is equivalent to a decreased rate o f clearance associated with each flow check period. The 

net effect o f this phenomenon is that a single linear regression line fitted to the In | Q  - Ĉ o I for 

the entire 60 minute period of constant Q  has a less steep slope (smaller D/V) than the slope o f 

the regression lines fitted to the data sets between pairs o f flow checks.

The step in Q ; o f a Diascan measurement provokes a similar yet more pronounced 

transient. This is illustrated for study session CL051198 in Figure 5.2. The blue arrows indicate 

the 15 minute flow meter check. The red arrows indicate the Diascan measurements at 10,40, 

70 and 100 minutes; the red diamonds in the upper frame indicate the Diascan calculated patient 

blood conductivity. Immediately following each o f the Diascan gaps, where Q^ data have been 

removed, there is a clear 1-2 minute transient in the l n |Q  - Q^] curve. This transient disrupts 

the nearly linear fall o f ln| Q  - Q ,̂ | between flow checks. The transients following the Diascan 

measurements at 10, 40 and 100 minutes have very similar shapes; however the ln| Q ; - Q^j 

transient at 70 minutes is much more pronounced, suggesting that some other factor must have
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also impacted at this time. In this instance, it is the change in the ultrafiltration rate at 70 

minutes which has caused much o f the shift of the profile.

5.3 Ultrafiltration and Vascular Refilling Effects

Ultrafiltration profiling was employed in almost all o f  the study dialysis sessions. 

Typically, the ultrafiltration profiles were comprised o f periods o f constant ultrafiltration rate 

separated by short periods o f minimal ultrafiltration (0.1 L/h, the minimal rate permitted by the 

Integra machine). The purpose o f these “rest periods” was to allow for refilling o f the patients’ 

vascular compartment from the interstitial space. This profiling approach was illustrated in 

Figures.1.

Step changes in ultrafiltration rate were observed to have a significant impact on the Qo 

profile. This is illustrated in Figure 5.3 for session CL051198. The solid green line in the lower 

panel o f Figure 5.3 shows the ultrafiltration profile programmed for the first 2 hours of this 

session. After an initial 15 minutes o f minimal ultrafiltration, the rate was set to 1.4 L/h for the 

following 55 minutes. Ultrafiltration was then turned down for a 13 minute refilling period, after 

which ultrafiltration was reset to 1.33 L/h. During the first period o f constant ultrafiltration, the 

ln |Q i - Qg| data follow a linear decline except for the periodic offsets associated with flow 

meter checks and the Diascan measurement at 40 minutes. At the 70 minute point, the 

ultrafiltration rate was abruptly decreased to 0.1 L/h; a Diascan measurement occurred at about 

the same time. These events coincide with a marked alteration in the Q^, profile. Prior to the 

70 minute ultrafiltration step, Q^ rises progressively towards Q .  Between 70 and 80 minutes 

there is an abrupt downturn in Q^. When the ultrafiltration was reset to 1.33 L/h at about the 83 

minute mark, the profile is observed to again rise in a steady fashion towards Q .  Ln|Q ; -
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Cjo I once again falls linearly; however, the line is displaced upwards from the previous line and 

is less steep.

There are two ways in which ultrafiltration may impact on the profile. Firstly, there 

is the direct effect o f ultrafiltration on dialysis clearance. Mass transfer of NaCl in conventional 

hemodialysis is predominately by convection. Diffusive mass transfer is only significant when 

dialysate conductivity differs significantly from effective patient conductivity; this generally only 

occurs when dialysate conductivity profiling is employed. Therefore, significant changes in 

ultrafiltration rate should have a dramatic impact on dialysance which will be reflected in the 

and InjCjj - Qo| profiles. It is, therefore, important in any effort to model the kinetics of 

dialysate conductivity that the influence o f ultrafiltration be accurately accounted for in the mass 

transfer equation used. This may not be the case in the model developed here, wherein 

conductivity mass transfer was expressed as a simple sum of convective and diffusive 

components. In reality, there is a complex interaction between diffusive and convective mass 

transfer and thus a more sophisticated mass transfer model may be required than the one tested 

in this study.

An additional indirect effect o f ultrafiltration on solute mass transfer occurs through its 

impact on the circulating vascular volume o f the patient. During dialysis, fluid is ultrafiltered 

from blood as it passes through the extracorporeal circuit. Unless this fluid is replaced at an 

equivalent rate from the interstitial space, blood volume falls. This commonly occurs when the 

ultrafiltration rate is high. This is illustrated in Figure 5.3.

The red triangles in Figure 5.3 show the changes that occur in this patient’s blood volume 

(expressed as a percent change from the start o f the session) over the first 1 2 0  minutes of 

dialysis. Relative blood volume is computed by the Integra machine from the reciprocal o f the
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relative change in hemoglobin concentration detected by an infrared sensor (Hemoscan option) 

located in the arterial blood line o f the machine. In the dialysis session shown in Figure 5.3, the 

patient’s blood volume falls steadily over most o f the first period o f  high ultrafiltration (about 

a 15 % decrease between 22 and 69 minutes). A 7% expansion ofblood volume occurs over the 

13 minute period o f minimal ultrafiltration (70-83 minutes). The vascular volume remains fairly 

stable for the first 15 minutes o f the second high ultrafiltration period and then mostly declines 

over the final 2 0  minutes shown.

Variations in circulating blood volume and vascular refilling may impact diaiysate 

conductivity kinetics in two ways. The increase in concentration o f plasma protein and formed 

cells when blood volume contracts results in a decreased blood water flow to the dialyzer (for 

the same blood pump flow) which in turn can lead to a decrease in dialysance. Increased 

concentration polarization o f plasma protein adjacent to the dialyzer membrane may also cause 

a decrease in dialysance as well as reduced convective mass transfer.

In addition, if  the electrolytic composition o f the refilling fluid entering the vascular 

compartment from the interstitial space is different from the plasma electrolyte composition, this 

would result in a transient shift o f the latter the magnitude of which would depend on the rate 

o f refilling relative to the current plasma volume.

These are complex phenomena and it is difficult to predict their impact on the and 

In I Cji - Cjio I profiles. It may be possible to gain some insight from an examination o f study data. 

In study session CL051198 (Figure 5.3), ultrafiltration was held constant at 1.4 L/h between the 

15'*' and 70* minute o f dialysis. For the first few minutes of this period, the rate o f refilling 

exceeds ultrafiltration and the patient’s blood volume is expanding. At about the 22 minute 

point, there is an abrupt drop in refilling rate and blood volume begins to contract. This sudden
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change in refilling rate does not appear to have an impact on the and In | | profiles at

the 22 minute mark. The patient’s blood volume continues to contract during the rest o f this 

ultrafiltration period with a total decrease in blood volume o f about 15%. There is no apparent 

change in the In | C* - Q q | slope over this interval. Thus significant changes in both refilling rate 

and patient blood volume appear to have had negligible impact on diaiysate conductivity kinetics 

in this instance.

On the other hand the data collected in study session MA061198 may indicate an impact 

o f vascular refilling on diaiysate conductivity kinetics (see Figure 5.4). During the second period 

o f constant ultrafiltration (0.81 L/h between 65 and 105 minutes) Qo is seen to fall until about 

the 90 minute mark and then rise towards the Cjj value o f  14.5 mS/cm. This would suggest a 

parallel fall and rise in the effective blood conductivity o f  the patient. This Qo trend appears to 

parallel an inverse trend of the patient’s relative blood volume. That is, the patient’s blood 

volume was mostly rising to the 90 minute point, indicating that the rate o f vascular refilling 

exceeded ultrafiltration during this period. There was then an abrupt decrease in vascular 

refilling leading to a contracting blood volume until the ultrafiltration rate was turned down at 

105 minutes. These observations could be explained by a difference in the sodium content of 

plasma and the vascular refilling fluid crossing firom the interstitial space. If  the interstitial fluid 

has a lower sodium content, plasma sodium could fall when the refilling rate is high. When the 

refilling rate is low and both ultrafiltration rate and are high, the plasma sodium would be 

expected to rise. Further studies will be needed to clarify the impact o f vascular refilling on 

diaiysate conductivity kinetics.

Blood volume monitoring with the Integra’s Hemoscan option was conducted in almost 

all study sessions. The relative blood volume was commonly found to fall in a linear fashion
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during periods o f constant ultrafiltration. The slope (S) o f  the linearly decreasing relative blood 

volume is directly related to the difference between ultrafiltration rate (Quf) and vascular refilling 

rate (QJ:

Q «f - Q r  =  - s * v ^  ( 12)

where is the (unknown) patient’s blood volume at the start o f the dialysis session. A 

correlation was noted in many sessions between the slope o f these lines o f linearly falling blood 

volume and the slope o f  the In | Q , - Q q | data for the same period of constant and Q^. This 

is illustrated for session M A I31198 in Figure 5.5.

During the first period (15-32 minutes) o f constant Cj; (15.0 mS/cm) and constant Q„f 

(0.989 L/h), the InjCj, - QoJ slope (-0.0101 min'*) and relative blood volume slope (-0.00252 

min"') are in a ratio o f 4.02:1. During the second period o f constant Q , (14.4 mS/cm) and 

constant (0.989 L/h), between 75 and 108 minutes, both slopes are considerably smaller (- 

0.00441 and -0.0011 min'', respectively) however the ratio is unchanged, 4.00:1. The final 

period o f constant Q , (13.9 mS/cm) and constant Q„f (0.839 L/h) occurs between 135 and 180 

minutes. The slopes of ln|Cd, - Qol and relative blood volume during this period are -0.00367 

and -0.00094 min ', respectively, for a ratio o f 3.89:1. Thus, for this study session, there is a 

close relationship between the In | Q j - Cy,, | slope and the difference between ultrafiltration and 

vascular refilling rates as characterized by the slope o f the relative blood volume curve, despite 

a large variation in the slopes o f both curves. The implication o f this relationship is imclear; 

however, it may be another indication that the rate o f vascular refilling firom the interstitial space 

has a direct impact on diaiysate conductivity kinetics. Once again, further study to clarify these 

relationships is indicated.
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Chapter 6. Conclusions and Recommendations

6.1 Conclusions

In this study, a simple model o f diaiysate conductivity kinetics was developed and 

expressed as equation 11. It was proposed that this model might allow direct assessment o f 

dialysis dose, Kt/V, from the outlet diaiysate conductivity - time profile during a period of 

constant inlet diaiysate conductivity. The model predicted that plotting InjCy  ̂- Ĉ oi against 

dialysis time would yield a series o f straight lines, each corresponding to a period o f constant Ĉ j, 

with a common slope equal to -D/V from which Dt/V, an equivalent o f Kt/V, could be 

calculated. This proposition was not confirmed by the results o f  the clinical validation study. 

Several extraneous factors impacted upon or caused deviations to the outlet diaiysate 

conductivity - time curve. These include: changes in ultrafiltration rate, varying circulating 

blood volume and vascular refilling rate and the periodic flow checks and Diascan interventions 

programmed into the Integra dialysis machine. In particular, it was concluded that a more 

sophisticated model to describe diaiysate kinetics is needed, more specifically, one that 

accurately reflects the interactions between diffusive and convective mass transfer. Future 

efforts, therefore, should be directed towards this end. In this regard, the following in vitro and 

in vivo studies are recommended.

6.2 Recommendations for Future Studies

An in vitro single pool study is proposed in which a tank would be filled with either a 

high conductivity (16.5 mS/cm) or a low conductivity (13.0 mS/cm) diaiysate. The tank volume 

would be dialyzed against a constant conductivity diaiysate o f  sufficiently different conductivity
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to provide a large gradient for diffusive mass transfer. Flow-through conductivity cells would 

monitor the conductivity in all streams, permitting mass balance closure and accurate 

determination o f  conductivity dialysance throughout the mock dialysis session duration. Runs 

would be conducted at various constant rates of ultrafiltration, including no ultrafiltration. These 

controlled studies should permit development of a more precise equation o f coupled convective 

and diffusive mass transfer for incorporation in a model o f diaiysate conductivity kinetics. The 

proposed study would be complemented by the steady state in vitro experiments currently being 

conducted to examine the impact o f ultrafiltration rate on dialyzer clearance.

Additional clinical studies should be conducted with more fi-equent data sampling o f the 

parameters most relevant to diaiysate conductivity kinetic modelling. In particular, the 

conductivity levels in the inlet and outlet diaiysate streams should be captured approximately 

once per second in order to provide a richer data base for evaluating proposed models.

A clinical study is currently being organized in which a second dialyzer will be inserted 

into the extracorporeal blood circuit upstream to the principal dialyzer. The dialysate-side fluid 

in the added dialyzer will be pumped in a closed loop and therefore should be in near diffusive 

equilibrium with the arterial blood. A flow-through electrode in the re-cycle loop will provide 

a continuous measure o f this equilibrated plasma conductivity. This additional parameter will 

permit a more direct evaluation o f diaiysate conductivity kinetic models.

It is hoped that the work reported here and the additional studies described above will 

lead to a better understanding o f the kinetics of electrolyte mass transfer in dialysis and that the 

gained knowledge will lead to new automated methods to accurately measure the dialysis dose 

delivered during a treatment session.
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Appendix A. Integra Data Configuration

A.1 Integra Machine Variables

The data acquisition cards installed in the Integra dialysis machine are configured for 

availability to a serial port. The variables available for capture by data acquisition software from 

the Integra machine are listed in Tables A.1-A.3.

A1
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CHANNEL. PARAM ETER Units MAX MIN d ec Notes
I Digital CTtmmel I Digital
2 Kgital Channel 2 Digital
3 Digital Q uonei 3 Digital
4 Alami I A lsm
5 Alarm 2 Alarm
6 A lans3 Alarm
7 Alarm4 Alarm
8 Operating Phase'Acq. Status Analog
9 Macfaxne Configundon Analog
10 Integra Internal Phase Analog 3 0 0
11 Dialysis Mode (Blood Module) Analog 2 0 0
12 Reserved Analog
13 Reserved Analog
14 Reserved Analog
15 AcnialTtme Analog hanin 600 10 0
16 Actual Total Weight Loss Analog kg 3000 100 3
17 Actual Weight Loss Rate Analog kg'h 3000 100 3
18 Fmal Conductivity Analog mScm 170 130 I
19 BIG 84% Cooductivity Analog mScm 35 27 1
20 Blood Flow Analog mlMtm 700 0 0
21 Diaiysate Temperature Analog G 395 360 I
22 Diaiysate Flow Rate # Analog ml/mm 4 1 0
23 Infusion Pump Setting Analog kh 2000 0 3
24 Heparin Pump Rate Analog mlfh 99 5 1
25 Total Blood Analog I 995 5 1
26 TM Pression Analog mmHg 350 0 0
27 Venous Pressarc(VPS) Analog m tn% 300 50 0 -
28 Arterial Pressure sensor (APS) Analog mmHg 150 -350 0
29 PH Analog 900 300 1
30 Depurated Blood Volume (KT) Analog 1 995 0 I
31 Single Needle Max Press Anabg mmHg 300 0 0
32 Single Needle Mm Press Analog mmHg 300 0 0
33 Sasmplo’ Partial CoUection Analog ml 2000 0 0
34 Samfder Effective Tune Analog am 600 0 0
35 Dioascan Effective QB Analog ml/Twm 300 0 0
36 Effective Dialysis Time Analog min 600 0 0
37 Total Heparin Infused Analog ml 300 50 1
38 BIG 66% Gon&ictivity Analog mS/cm 60 46 I
39 Total Infused Quantity (BIO) Analog 1 10000 100 3
40 APS Analog 100 0 0
41 Arterial Pump Setting Analog mlônxn 700 0 0
42 Venous Pump Setting Analog mimin 700 0 0
43 Stroke Volume Analog ml 100 5 0
44 Diastolic Pressure Analog mmHg 235 30 0
45 Systolic Pressure Analog mmHg 255 50 0
46 Heart Rate Atialog 175 40 0
47 Scale Analog kg 5000 0 3
48 Bed Scale Analog kg 150 0 0 0-0kg/l000-l50fcg
49 Ultrafiltration Pressure Analog mmHg 500 0 0
50 Hemoglobin Analog S fà l 180 40 I
51 Actual Blood Volume Analog % 400 -400 1
52 Outlet Gooducdvity Analog mS/cm 1300 1700 2
53 Inoic Mass Balance Analog mMrl 800 -500 0
54 Ionic E lective Dialysance Analog ml^nin 300 0 0
55 Urea Gonceniration Analog mg/dl 1000 0 1
56 Plasma Gooductivity Analog mS/an 1700 1300 2
57 Pressione Uscita Emodial Analog mmHg
58 Total Urea Removed Analog 8 5000 0 2
59 Kt/V Analog 300 0 2
60 Urea Reduction Ratio Analog % 1000 0 I

Table A .I. Parameter Page 39 Access Code for Data Acquisition
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C H A N N E L P A R A M E T E R U d M M A X M IN d ec . N o tes

I Digml

2 Dwdol

3 Digital

4 Session I m e  Settmc SET ram 600 10 0

5 ACE Conductivitv Settine SET mS/dn 170 130 I

6 Total Weiehr Loss Scnine SET g 8000 100 0

7 Weight Loss Rate Setting SET g/h 3000 100 0

8 Final Blood Volume Setting SET % 0 -400 I

9 Final Conductivitv Setting SET mS/cm 170 130 !

10

11 TWL ToL Setting BVT 8 1000 -1000 0

13 BV Toi. Setting BVT % 10 -10 0

13 CD Toi. Setting BVT m^era 10 -10 1
14 WLR MAX INI Sctlinp BVT 8 3000 100

15 CD MAX INI Setting BVT 170 130 I

16 CD MIN FIN Setting BVT m K /rm 170 130 I

17 BV Desired BVT % 400 -400 1

18 TWL Desired BVT g 8000 0 0

19 CD Desired BVT mSfcm 1700 1300 2

20 BV &Tor ^  BVT % 400 -400 1

31 TWL Error BVT 8 2000 -2000 0

22 CD Error BVT 100 -100 1

23 WLR MIN BVT 8 3000 100 0
24 WLR MAX BVT 8 3000 100 0

25 CD MIN BVT 170 130 1

26 CD MAX BVT 170 130 1
27 EQUIVALENT CD BVT mSfcm 1700 1300 2

28 HGB Unfil'cied MEMO g'dl
29 TOHGB HEMO imn 30 0
30

31 ^ascan  Meas. H m e DIAS mm 600 0 0
32 Diascan CPYl DIAS uS/cm 17000 12000 0
33 Diascan CPY2 DIAS ttS/cm 17000 12000 0
34 Diascan CPY3 DIAS tiS/cm 17000 12000 0
35 Rising Hvdr. Delay DIAS 150 0 0
36 Falling Hydr. Delay DIAS 150 0 0
37 Rising Time Constant DIAS 150 0 0
38 Falling Time Contant DIAS 150 0 0
39 Diascan Calb DIAS
40 Diascan Gain DIAS
41 Diascan OfBet DIAS
42 Diascan Phase DIAS
45 Diascan CP_DY_DATA_FLAG DIAS
44 CAUB and MEAS AVAILABLE FLAG DIAS
45 Diascan Effective QB DIAS ml/mm 700 0 0
46 Outlet Conductivity DIAS mS^cm 13000 17000 3
47 Plasma Conductivitv DIAS mScm 17000 13000 3
48 Inlet Cooductivitv DIAS mS/cm 1700 1300 2
49

50 Actual Diaiysate Flow Rate ACT ml/mm

51 Actual S/N Pressure ACT mmHg
4? Actual PI Pressure

Table A 3. Parameter Page 89, 3 Access Code for Data Acquisition
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Appendix B. Dats Acquisition Program

B .l Data Acquisition Study Configuration Program

The 31 variables chosen for capture are listed in Table 3.1 in Chapter 3. The ACQ 

program written to capture these variables during the dialysis session at 1 0  second intervals is 

listed in figure A.I.

B1
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Figure B .l ACQ Program. Study Parameter Capture Variables

# file Canada.inî date 01/12/98
#

# BEFORE TO START:
# 1 ) you have to set the right serial port connenct to your Integra;
#  - set SerialPort parameter in the [Custom] paragraph
# - change the name of the paragraph related to the configuration
#  o f the port (now [coml ])
#  2 ) than you have to set the right machine identifier that you have
#  on Integra; change the Machineld parameter in the [Custom] paragraph
# 3) to use the data acquisition board you have to put the PCLDRV.SYS
# in your CONFIG.SYS and restart the computer
#
# Note on actual setup:
# 1 ) the acquisition program save data in directory named DATA (parameter
# Directory in the [Main] paragraph)
# 2) the filename is made with 4 digit firom data and 4 fi-om the patient name
# 3) the maximum duration o f the acquisition is 10 h (parameter MinDurata
# in the [Main] paragraph)
# 4) the sampling rate is 10 sec (parameter SecAcq in the [Main] paragraph) 
#_-----------------------------------------------------------------------------------

[Custom]
SerialPort = 0 # 0 for com l, 1 for com2,...
Machineld = 2 # identification number set on the integra

[Coml]
Presente? = Si 
BaudRate = 9600 
NumBit = 8  

NumBitStop = 1 
Parita' = N

[Main]
Nome = Hospal - Plasma Conductivity Measurement
SecAcq = 10
MinDurata = 300
MinSvuota = 0.0
Directory = DATA
Prefisso = Date
Bell =  0

B2
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WhatSave = VJstantaneo 
WhatGraf =  VJstantaneo
ShortSignal=Time, Time2, ICndlnS, ICndln, ICndlnP, ICndS, ICndOutS, ICndOutS A, ICndP13, 
Gain, Offset, IQdl, IQd2, IQd3, Temp, IQb, TotWtLl, TotWtL2, WtRatel, WtRate2, KT, HG, 
HG2, HG3, BV, Ionic, Dial, KT/V, RDel, DP, SP

[Color]
TextColor = 14 
RectColor =11 
ChartColor = 4 
DataCoIor = 0

# -
# Signal
 #------------

[Time]
Nome = Time 
ValoreMin =10 
ValoreMax = 600 
ParConversione = 1, 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 4

[Time2]
Nome = Time
ValoreMin =10 
ValoreMax = 600 
ParConversione = 1 ,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address =15

B3
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[ICndlnS]
Nome = Inlet Conductivity Setting
ValoreMin =13 
ValoreMax = 17  
ParConversione = 0 .1 ,0
# Procedura ReadCCMcnd 
Tipo =  Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort&
CCMid = &Custom.MachineId&
Message = 89, 3 
Address = 5

[ICndln]
Nome = Inlet Conductivity
ValoreMin =13 
ValoreMax =17 
ParConversione = 0.1, 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom. SerialPort&
CCMid = &Custom.MachineId&
Message = 39 
Address =18

[ICndlnP]
Nome = Inlet Conductivity Protective Value
ValoreMin =13 
ValoreMax =17 
ParConversione = 0 .01 ,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort&
CCMid = &Custom.MachineId&
Message = 89, 1 
Address = 42

B4
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[ICndS]
Nome = Inlet Conductivity 
ValoreMin =13 
ValoreMax = 17  
ParConversione = 0 .01 ,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 48

[ICndOut3]
Nome = Outlet Conductivity 3
ValoreMin =13 
ValoreMax =17 
ParConversione = 0 .001,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 108, 4 
Offset =15 
Address = 34

pCndOut3A]
Nome = Outlet Conductivity 3 
ValoreMin =13 
ValoreMax =17 
ParConversione = 0.001, 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 46

B5
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pCndP13]
Nome = PI Cond Thr
ValoreMin =13 
ValoreMax = 17  
ParConversione = 0 .001 ,0
# Procedura ReadCCM 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 47

[Gain]
Nome = Gain 
ValoreMin =13 
ValoreMax = 17  
ParConversione = 0 .1 ,0
# Procedura ReadCCM 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 40

[Offset]
Nome = Offset 
ValoreMin =13 
ValoreMax =17  
ParConversione = 0.1, 0
# Procedura ReadCCM 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 41
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[IQdl]
Nome = Diaiysate Flow rate
ValoreMin = 1
ValoreMax =  4
ParConversione = 1, 0
# Procedura ReadCCM 
Tipo =  Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid =  &Custom.MachineId& 
Message = 89, 1 
Address = 52

[IQd2]
Nome = Dial Flow
ValoreMin = 1
ValoreMax = 4
ParConversione = 1 , 0
# Procedura ReadCCM 
Tipo =  Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta =  &Custom.SerialPort& 
CCMid = &Custom.MacbineId& 
Message = 89, 1 
Address = 7

[IQd3]
Nome = Dial Flow
ValoreMin = 1
ValoreMax = 4
ParConversione = 1 , 0
# Procedura ReadCCM 
Tipo =  Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta =  &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address =  22
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[Temp]
Nome =  Temp
ValoreMin = 36
ValoreMax = 39.5
ParConversione = 0.1, 0
#  Procedura ReadCCM 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 89, 1 
Address = 12

[IQb]
Nome = Blood Flow 
ValoreMin = 0
ValoreMax = 700
ParConversione = 1 , 0
# Procedura ReadCCM 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 89, 1 
Address = 25

[TotWtLl]
Nome = Wt Loss 
ValoreMin =100 
ValoreMax = 8000 
ParConversione = 1 , 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MacbineId& 
Message = 89, 3 
Address = 6

B8
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[TotWtLl]
Nome = Wt Loss
ValoreMin =0.1 
ValoreMax = 8.000 
ParConversione = 0.001, 0
# Procedura ReadCCMcnd 
Tipo =  Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89,1 
Address =11

[WtRatel]
Nome = Wt Loss Rate
ValoreMin =0.1 
ValoreMax = 3 
ParConversione =0.001,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom. SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 1 
Address = 10

[WtRatel]
Nome = Wt Loss Rate 
ValoreMin =100 
ValoreMax = 3000 
ParConversione = 1, 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 7
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[KT]
Nome = KT 
ValoreMin = 0
ValoreMax = 99.5
ParConversione =0 .1 ,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 30

[HG]
Nome = HG 
ValoreMin = 4.0 
ValoreMax = 18.0 
ParConversione = 0.1, 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 50

[HG2]
Nome = HG2 
ValoreMin = 4.0 
ValoreMax = 18.0 
ParConversione =0.01,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 28

BIO
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[HG3]
Nome = HG2 
ValoreMin = 0
ValoreMax = 30
ParConversione = 1 , 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 29

[BV]
Nome = BV 
ValoreMin = -40.0
ValoreMax = 40.0
ParConversione =0 .1 ,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 51

[Ionic]
Nome = Ionic 
ValoreMin = -500
ValoreMax = 800
ParConversione = 1 , 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 53

B l l
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[Dial]
Nome = Dialysance 
ValoreMin = 0
ValoreMax = 300
ParConversione = 1 , 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta =  &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 54

[KT/V]
Nome = KT/V
ValoreMin = 0
ValoreMax = 3.00
ParConversione =0.01,0
# Procedura ReadCCMcnd 
Tipo = Seriale 
AnalogicDigital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address =  59

[RDel]
Nome = RDel 
ValoreMin = 0 
ValoreMax =150 
ParConversione = 1 , 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
AnalogicDigital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 89, 3 
Address = 35
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[DP]
Nome = Dia Pres
ValoreMin = 30 
ValoreMax =235 
ParConversione = 1 , 0
# Procedura ReadCCMcnd 
Tipo = Seriale 
Analogie/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SeriaIPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 44

[SP]
Nome = Sys Près 
ValoreMin = 50
ValoreMax = 255
ParConversione = 1, 0
#  Procedura ReadCCMcnd 
Tipo = Seriale 
Analogic/Digital? = CCM 
Input/Output? = Input
Porta = &Custom.SerialPort& 
CCMid = &Custom.MachineId& 
Message = 39 
Address = 45

# End o f File

B13
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Appendix C. Study Validation Data

C .l Study session dialysate conductivity data

In this appendix, the data for each of the 85 study sessions performed in the 14 patients 

are graphically displayed in chronological order. Each page corresponds to one study session and 

contains two frames. The upper frame shows the dialysate conductivity values measured by the 

Integra dialysis machine. The black line represents the inlet dialysate conductivity (C ĵ) profile 

programmed by the renal unit staff. The open gold circles and solid green circles are the outlet 

dialysate conductivity (Cjq) values measured by the Diascan outlet conductivity meter. The solid 

green circles represent the subset of outlet conductivity values used for the study model 

validation; the open gold circles are outlet conductivities corresponding to calibration procedures 

o f the Integra machine. The red diamonds represent the patient plasma conductivity calculated 

by the Integra machine at 30 minute intervals when the Diascan option is active.

In the lower frame. In | Cjj - | (based on the solid black Une Cj,- values and solid green

circle Cjq values in the upper frame) is plotted versus dialysis time. Linear regression lines and 

equations are displayed, as appropriate, for each period o f constant Cj,.

The study sessions in this appendix are presented in chronological order.

Cl
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