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ABSTRACT
The study interpreted depositlonal environments from sedimentological data present 

in metasedimentaiy rocks of the Neoarchean Shebandowan Group of the Wawa 
Suprovince. Outcrops in the study area contained sedimentary structures and bed 
sequences consistent with shallow water, coastal sedimentation, and represents an 
Important record of Archean depostional processes. Three depositlonal environments 
are represented In the rock record; tidal strandllne, the shoreface, and the offshore. The 
tidal strandllne was further divided Into the tidal flat and tidal channel sub-environments. 
The presence of these three environments provides unequivocal evidence for the 
existence of shallow-water shelves In the Archean; a period during which sedimentation 
was dominated by deposition in alluvial fan, fluvial environments and deep water settings.

The three environments and associated sub-environments record processes reflective 
of differing current activity which controlled and Influenced deposition. The tidal 
environment was dominated by bidirectional tidal currents. Deposition In the shoreface 
was predominated by unidirectional wave-produced currents which overprinted prevailing 
tidal current activity, in the distal portions of the shoreface environment though, 
deposition was once again controlled by tidal currents. In the offshore, deposition was 
controlled by storm currents which generated distinctive beds of hummocky cross- 
stratification.

The tidal environment Is composed of many sedimentary structures similar to those 
present In Phanerozolc and present-day tidal sequences. In the tidal flat sub- 
environment, vertical sequences of flaser, lenticular, wavy and coarsely Interlayered 
bedding reflect current velocity fluctuations Intimately tied to spring - neap tidal cycles. 
The tidal channel sub-environment lacks many of the features characteristic of tidal 
channels described In the literature; such as extensive point bar development. Instead 
the tidal channels of the study area appear to represent sequences deposited In relatively 
straight channels.

Migration of sandwaves and dune fields deposited the cross-stratified llthofecles of 
the shoreface environment. Similar to a high-energy non-barred coastline, the proximal 
portion of the shoreface lacks any evidence of beach development. Instead, the 
shoreface records a rapid and discontinuous transition from the tidal strandllne 
environment.

Hummocky cross-stratification (HCS), parallel laminated and massive sandstone beds 
as well as slltstone and mudstone beds typify the offehore environment. The HCS differs 
greatly In thickness and Intemal structure from HCS described In the literature. The HCS 
In the study area reflects restricted and/or variable sediment supply and flow conditions.

A paleotidal range was determined from the sediments of the tidal environment. The 
range Indicated a mesotldal environment and Is comparable to Precambrian tidal ranges 
reported In the literature. Tidal rhythmltes, present on the tidal flats, suggest a length of 
26 days for the NeoArchean lunar month. Currents which deposited the tidal rhythmltes 
produced both semldlumal and diumal sediment sequences.
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CHAPTER ONE -  INTRODUCTION

Shallow/marginal marine facies are present in the Archean shield areas o f Australia 

and South Africa, yet their presence is notably under-represented in the Canadian 

Shield (Eriksson, 1979; Ojakangas, 1985). Instead, sedimentation in the Canadian 

Shield appears to be dominated by two distinctive facies associations. The most 

common is the Resedimented (Turbidite) Facies Association; the second is the Alluvial 

Fan - Fluvial Facies Association (Eriksson, 1979; Ojakangas, 1985).

It is apparent, that the most proximal and distal clastic depositional environments 

are abundantly developed in the Archean, but w ith no evidence of intermediate or 

marginal (shallow) marine settings (Eriksson, 1979). Ojakangas (1985) states that the 

interpreted lateral gradations of alluvial fan - fluvial sequences to turbidite sequences 

emphasizes the notable lack of shelf deposits, and there is apparently a direct 

transition from subaerial to slope environments. Studies by Parker (1980) and Rezka 

(1987) though have established the presence of shallow/marginal marine or shelf 

facies in the Archean of the Canadian Shield. These obsèrvations, in addition to those 

by Dimroth et. aL (1982) of a microtidal deposit; and Archer at. ah (1982) of storm 

dominated shelf deposition indicates the presence of shelf deposits in the Canadian 

Shield. Ojakangas (1985) interprets these deposits as local short-lived areas of 

temporary stability on volcanic terranes.

The present study looks at an example of a shallow/marginal marine setting in the 

Archean of the Canadian Shield. It follows the transition from a foreshore area

I
i
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dominated by intertidal flats cut by tidal channels into the shoreface, and eventually 

storm-dominated offshore environments. The absence of bioturbation and the lack of 

extreme deformation provides a clear picture of the depositional processes that were 

in action at the time.

Bioturbation has destroyed many of the depositional features present in 

Phanerozoic examples of coastal environments. Thus, looking at a Archean example 

allows a glimpse into an unseen world. The undisturbed nature of the rocks permits 

a few fundamental questions to be addressed. Do the depositional processes 

resemble those of the Phanerozoic and present-day? W hat do the sediments tell us 

about the earth - moon system, and the length of a lunar month during the Archean? 

What is the nature of the transitions between the various depositional environments? 

And finally, was there frequent storm activity during the Archean? This study will 

look at these questions, and try to find answers for all o f them.

LOCATION ^

The outcrops that comprise the study area are located along a five kilometre 

stretch of Highway 11/17 approximately 55 kilometres northwest of Thunder Bay, 

near Finmark Ontario (Figure 1-1). The majority of outcrops are well exposed, and 

vary between ten to a hundred metres in length. Highway 11/17 provides excellent 

access to all outcrops in the study area.
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FIGURE 1-1 Map showing location o f study area.
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GEOLOGY OF THE FINMARK AREA

The Study area is located within the Shebandowan greenstone belt. This belt 

forms a portion of the western Wawa Subprovince of the Canadian Shield (Figure 1 -2). 

Within this greenstone belt, the supracrustal rocks are divisible into tw o  main groups; 

an older metavolcanic sequence, and younger metasedimentary and metavolcanic 

successions which comprise the Shebandowan Group. The Shebandowan Group 

occurs as lenticular pods of rock scattered throughout the older metavolcanic 

sequence (Williams et. a/., 1991).

Older Metavolcanics

In earlier literature, the older metavolcanic sequence was referred to as Keewatin- 

type metavolcanics (Shegelski, 1980; Carter, 1984; Brown, 1985a; Carter, 1985; 

Borradaile and Brown, 1987; Rezka, 1987). Recently though, these metavolcanic 

rocks have been subdivided into two separate assemblages; the Burchell assemblage, 

and the Greenwater assemblage (Williams at. a/., 1991). The tw o  assemblages are 

composed of a series of volcanic cycles which young inapposite directions (Williams 

at. aL, 1991).

The cycles, whose presence has also been noted by Carter (1984,1985), consist 

of massive and pillowed mafic, intermediate, and felsic flow rocks. Williams at. a/. 

(1991 ) state that typically the lower part o f the cycle is comprised o f tholeiitic basalts, 

while the upper part consists of calc-alkalic andésite, dacite, and rhyolite. In many 

areas, the older metavolcanic rocks have been intruded by gabbroic bodies and

i 5
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FIGURE 1-2 Geology of the region surrounding Finmark.

(ù
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



«  y » VN̂
^Shebandowan
V V    V ' '

V y Lakes

10 km

V V "  V V ''

V / ^ o .
+

V  g  ^  V  w  s , V  c

^  o o PROTEROZOIC
GUNFUNT&ROVE 
FORMATIONS%

X X 
X X

HIGH GRADE 
METASEDIMENTARY I
ROCKS i
GRANITIC ROCKS j

_ _ _ _ _ _ _ _ L

+ + GFKNITE Him+ -f- I::.:'.-: SHEBANDOWAN GROUP

V V 
V V

BURCHELL & GREENWATER 
ASSEMBLAGES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



porphyritic dikes and sills (Corfu and Stott, 1986).

Interlayered w ith the older metavolcanic assemblages are thin layers of 

metasedimentary rocks. The metasedimentary rocks include both clastic and chemical 

sediments represented by sandstones to mudstones and iron formation and chert, 

respectively (Carter, 1985).

Shebandowan Group

Regional mapping projects by Tanton (1938), and Pye and Fenwick (1965) 

recognized the rocks of the Shebandowan Group as distinct volcanic and sedimentary 

rock units. These rock units are located as pod-like bodies within east-west trending 

exposures of the Shebandowan greenstone belt. The units were first termed the 

Shebandowan Group by Borradaile and Brown (1987), but have also been referred to 

as the Shebandowan assemblage (Williams et. a!., 1991). In this paper the term 

Shebandowan Group will be utilized. A U-Pb zircon age of approximately 2692 million 

years (Corfu & Stott, 1986) was determined for an alkalic volcanic rock belonging to 

the Shebandowan Group. Rocks of the Group unconformably overlie the older 

Burchell and Greenwater assemblages (Williams et. aL, 1991). Brown (1985a) 

supports the view that the Group is younger in age, and unconformably overlies the 

older metavolcanic assemblages. The Shebandowan Group consists of laterally 

interfingering volcanic and sedimentary rocks. Noting the interfingering of the 

volcanics and the sediments, Corfu and Stott (1986) have concluded that volcanism 

and sedimentation were concurrent; and as a result the age of 2692 Ma reflects the

I ^
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timing of sedimentation, as well as active volcanism. An identical U-Pb age of 

2692 million years was obtained from a breccia in the vicinity of the study area (Corfu 

and Stott, 1995). Recently a U-Pb age of 2692 million years (Corfu, pers. comm.) 

was determined from a sandstone sample containing sphene, taken directly from the 

study area.

In much of the older literature, the rocks of the Shebandowan Group have been 

referred to as Timiskaming-type metasediments and metavolcanics (Shegelski, 1980; 

Carter, 1984, 1985, 1988; Corfu and Stott, 1986; ) due to their similarity to the 

Timiskaming assemblage described by Cooke and Moorhouse (1969). The 

Shebandowan Group metavolcanics closely resemble, both chemically and physically, 

the Timiskaming metavolcanics. The metasediments of the Shebandowan Group also 

resemble the sediments found in the Timiskaming assemblage.

The volcanic portion of the Shebandowan Group is composed of interlayered calc- 

alkalic to shoshonitic volcanic rocks (Shegelski, 1980; Carter, 1988; Williams et. aL, 

1991). Both Shegelski (1980) and Carter (1988) have suggested that the calc-alkalic 

and shoshonitic rocks represent material shed from proximal volcanic centres. Further 

evidence for proximal volcanism lies in the abundance of pyroclastic debris flows and 

the presence of subangular fragments found in flow  breccia in the Shebandowan 

metavolcanics.

The material that was shed from these proximal volcanic centres is the source for
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the Shebandowan metasediments that comprise the rocks of the study area (Rezka, 

1987; Eriksson et. aL, 1994). In essence, the metasediments o f the study area 

represent volcaniclastic debris which was reworked in a number of sedimentary 

depositional environments, two of which are the topic of this study.

A variety of clastic sedimentary rocks comprise the sedimentary portion of the 

Shebandowan Group. Rock types include; conglomerates, sandstones, and lesser 

amounts of siltstones and mudstones. Carter (1985) describes the presence of 

wackes, siltstones and gritty siltstones along Highway 11-17, in the vicinity of the 

study area. Iron formation units which include magnetite-jasper and graphite-hematite- 

black chert (Williams et. a/., 1991) are also present at some locations, and are found 

interlayered w ith the clastic sediments. Carter (1985) describes the iron formation 

units as an early sequence of chemical metasediments comprising magnetite-jasper 

and magnetite-chert ironstone units.

Shegelski (1980) who also recognized the existence of distinctive volcanic and 

sedimentary units in the Shebandowan Group, studied them in detail in the Lake 

Shebandowan region. Within the sedimentary units, Shegelski (1980) observed the 

presence of mudcracks, debris flows, sheet flood and traction deposits. Shegelski 

(1980) has also described the presence of primary sedimentary structures such as 

cross-stratification, ripple cross-lamination, and planar lamination in this area and has 

commented on the presence of these sedimentary structures in other sections of the 

Shebandowan Group. In the Lake Shebandowan area Shegelski (1980) interpreted the

I 16
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sediments as having been deposited in an alluvial-fluvial environment following 

regional emergence and subsequent erosion.

To the east of the Lake Shebandowan region near Finmark, Parker (1980) studied 

an interlayered sandstone-siltstone-mudstone sequence which alternates w ith a cross

stratified sandstone sequence. Parker (1980) stated that the interlayered sandstone- 

siltstone-mudstone sequence represents deposition in a tidal flat environment, and the 

cross-stratified sandstone sequence represents deposition in the tidal channels that 

were draining the tidal flats. Parker's (1980) observations and conclusions are 

important as they represent the first description of a tidally-influenced environment in 

Neoarchean rocks of the Canadian Shield.

Rezka (1987) described the presence of small-scale hummocky cross-stratification 

in the Shebandowan Group. The hummocky cross-stratification was interpreted by 

Rezka (1987) to represent deposition on a shallow marine, storm dominated shelf. 

This observation, in conjunction with the presence of the nearby tidally-influenced 

environment described by Parker (1980) provides evidence for the development and 

existence of shallow water shelves in the Archean of the Canadian Shield.

Mapping projects by Carter (1984, 1985, 1990) have focussed on the 

Shebandowan greenstone belt, and the Shebandowan Group in particular. These 

mapping projects have looked at the mineralogy, petrology, and distribution of rock 

types; as well as structural geology. Carter (1988) has also studied the calc-alkalic

II
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and shoshonitic rocks of the Shebandowan Group. Regional investigations (Chorlton 

and Brown, 1984; Brown 1985b) have centred on mineralization within the 

Shebandowan greenstone belt, especially in the region containing the study area. 

More recently, mapping projects in townships immediately east o f the study area have 

been carried out by Brown (1992) and Brown and Fogal (1993).

Structural Geology of the Shebandowan Group

Although it is believed that the Shebandowan Group has experienced at least one 

episode of deformation (Brown, 1985a; Corfu and Stott, 1986; and Borradaile and 

Brown, 1987), viewpoints vary on the number of deformational events that have 

affected the Shebandowan greenstone belt. Stott and Schnieders (1983) and Corfu 

and Stott (1986) identify two separate phases of deformation present within this 

greenstone belt. The first phase records a regional D1 deformation, attributable to a 

period of vertical tectonism (Stott and Schnieders, 1983? Corfu and Stott, 1986). The 

second phase, D2 which dominates in the northern half of the greenstone belt is the 

result of shortening and shearing. Corfu and Stott (1986) state tha t the Shebandowan 

Group was deposited after the initial regional D1 deformational event and therefore 

was unaffected by 01 deformation, but was then subsequently deformed by a later 

02 deformational event. The volcanic and sedimentary rocks of the  Shebandowan 

Group have undergone greenschist facies regional metamorphism.

12.
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Brown (1985a), and Borradaile and Brown (1987) have shown that only one 

episode of deformation has affected the Shebandowan greenstone belt. In a study by 

Borradaile and Brown (1987) of structural elements w ith in  the Shebandowan Group, 

they concluded that it had been folded in a single tectonic episode. Their w ork  has 

also unequivocally indicated that an unconformity does exist between the older 

Burchell and Green water assemblages, and the overlying Shebandowan Group.

Tectonic Setting

The calc-alkalic - shoshonitic suite of rocks is very similar both chemically and 

petrographically to Timiskaming volcanic rocks examined by Corfu et. a/. (1991 ). The 

Timiskaming volcanic rocks have been interpreted as representing the products of 

magmatism and tectonism related to the final stages of subduction during and 

following collision and amalgamation of arcs (Corfu et. a!., 1991). Chemical and 

pétrographie similarities between the tw o groups of volcanic rocks, and lithological 

similarities between associated sedimentary rocks indicate that the rocks of the 

Shebandowan Group are also products related to arc magmatism and tectonism in the 

final stages of subduction. Eriksson et. a!. (1994, in press) favour this tectonic 

environment for the Shebandowan Group. Their paper states that the sediments of 

the Shebandowan Group were deposited in a forearc or rifted interarc basin of a 

mature volcanic arc immediately prior to a major collisional event (Eriksson at. a/., 

1994).

‘3
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METHODOLOGY

Detailed logging of all outcrops containing facies associations formed in shallow 

water environments was carried out in the fall of 1994 and the summer of 1995. 

Logging involved measuring and describing all beds on a centimetre to decimetre 

scale, and construction of stratigraphie sections. During the mapping process samples 

were taken from numerous locations in the outcrop, and their exact positions 

recorded. These samples were subsequently slabbed, and further logging was done 

on a millimetre and centimetre scale w ith the aid of a binocular microscope. 

Stratigraphie sections were constructed from these slabbed samples which provide 

further insight into the minute variations and transitions found both in and between 

individual beds and laminae. Both the outcrops present in the study area and the 

slabbed samples were examined for the existence of tidal bundles or rhythmites.

All outcrops in the study area were logged and sampled. Photographs o f 

sedimentary structures were also taken. Locations of all outcrops are shown on 

Figure 1-3. The only outcrop not extensively logged was behind Fourway School, as 

it was heavily covered w ith lichens, and no sedimentary structures were discernable.
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FIGURE 1-3 Location of outcrops within the study grea.

i5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CM

tie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER TWO -  TIDAL ENVIRONMENT

Work by Parker (1980) has identified the existence of a t least one main 

depositional environment w ithin the current study area. This environment, which he 

interprets to be tidally-influenced (Parker, 1980), was broken down into the tidal fla t 

and tidal channel sub-environments. Since environmental interpretations have already 

been made, the terms tidal fla t and tidal channel sub-environments w ill be used to  aid 

in the description of the sedimentary structures and features that are present in these 

two sub-environments.

Sedimentary structures and features that are characteristic of a tidal environment 

are present in all outcrops o f the study area. The tidal environment can be subdivided 

into the tidal flat and tidal channel sub-environments; both of these sub-environments 

are strongly represented. Within the outcrops a lack o f bioturbation has allowed the 

superb preservation o f sedimentary structures and features. Many of the observed 

physical features closely resemble those that are present in Phanerozoic and present- 

day tidal environments.

Both upward-fining and coarsening trends are present in the outcrops. On a large 

scale, the outcrops exhibit overall coarsening trends toward the offshore environment, 

or towards the centre o f a tidal channel. Occasionally, a fining trend exists 

superimposed on the overall coarsening trend, such as when moving out of the tidal 

channel sub-environment, and back into the tidal fla t sub-environment.

IT
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A wide range o f sedimentary structures are present in all o f the outcrops (see 

Figures 2-1 & 2-2). These structures have been divided into a number of different bed 

types. The characteristics of all bed types present in the tidal environment are 

discussed in the following sections. An additional section discusses those features 

that do not easily fall under one of the various bed types.

WAVY - LENTICULAR - FLASER BEDDED LITHOFACIES

Reineck and Wunderlich (1968) present both a classification scheme and define 

wavy, lenticular and flaser bedding. The classification scheme, which is illustrated in 

Figure 2-3 is divided into three main bedding types, as well as a number of 

subdivisions. The nature of the.subdivisions is determined by the nature of either the 

sand lenses, or the mud flasers. This classification scheme was utilized in the 

following descriptions of wavy, lenticular and flaser bedding.

Flaser, and especially lenticular bedding is ubiquitous throughout the outcrops of 

the study area and in addition to wavy bedding, are characteristic of the tidal 

environment (Figures 2-1 &  2-2). A variety of grainsizes are represented in the wavy, 

lenticular and flaser beds. These grainsizes range from  coarse-grained sandstones to 

fine-grained siltstones and mudstones.

Lenticular and Flaser Bedding

Lenticular and flaser bedding are very common in the study area. Both types of

r
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FIGURES 2-1 &2-2 Sedimentary structures typical o f the tidal
environment. Wavy, lenticular, flaser and 
coarsely interlayered bedding are all present 
in the photograph. Parallel laminated and 
massive beds can also be seen.
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FIGURE 2-3 Scheme from Reineck and Wunderlich (1968) 
for the classification of flaser, lenticular, and 
wavy bedding.
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bedding are closely spatially associated with each other. Beds range in maximum 

thickness from 2.3 to 80.0 centimetres, w ith an average bed thickness of 14.0 

centimetres. The characteristics of each bedding type will be discussed separately, 

but they will be treated together in discussions of the other types of bedding that they 

are commonly associated with.

Lenticular bedding refers to the presence of isolated or connected sand lenses in 

a series of muddy layers {after Reineck and Wunderlich, 1969). This type of bedding 

is common in many of the outcrops in the study area (Figures 2-4 and 2-5). The 

lenses are usually composed of fine-, medium- or coarse-grained sand. They appear 

to be suspended in layers of very fine-grained siltstone to mudstone. Based on the 

nature of the sand lenses (see Figure 2-3), lenticular bedding can be subdivided into 

two different types (Reineck and Wunderlich, 1969). The firs t type is lenticular 

bedding in which the lenses are connected. The second type is lenticular bedding with 

single lenses.

The majority of the lenticular bedding in the study area contains connected lenses. 

Laterally, in many of the beds, the connected lenses will pass into isolated lenses and 

then back into a series of connected lenses. In other beds, the layer of connected 

lenses can be traced out for the entire length of the bed. Many o f the lenses are thick 

compared to their length, (2 - 3 cm in length: 1.5 - 4  cm in thickness) although others 

appear somewhat elongated and flattened ( 6 - 8  cm in length; 1 - 2  cm in thickness).
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FIGURE 2-4 Lenticular bedding w ith both connected 
and single lenses. Wavy bedding and 
parallel lamination is also present in the 
top part of the picture.

FIGURE 2-5 Lenticular bedding.
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Lenticular bedding w ith isolated or single lenses is much rarer. In this type, 

theisolated lenses appear to float in the very fine-grained siltstone or mudstone layer. 

These lenses are isolated in both the horizontal and vertical directions. The lenses 

may be thick or flattened in appearance.

In flaser bedding, mud flasers are present in layers of fine- to coarse-grained 

sandstone. Flasers are simply incomplete mud laminae. Flaser bedding can be divided 

into a number of different types (Figure 2-3), based on the nature of the mud flasers. 

The different types of flaser bedding that are present in the outcrops o f the study area 

include; simple flaser bedding, wavy flaser bedding, and bifurcated w avy flaser 

bedding.

Simple flaser bedding contains isolated mud flasers that have no contact between 

each other in both horizontal or vertical directions. The ends of the individual flaser 

curve upwards, resulting in a concave appearance to the flasers.

Wavy flaser bedding is common throughout the study area. As the name implies, 

the flasers are wavy in appearance, and show both concavity and convexity. It often 

appears as if a number of flasers are connected in a horizontal direction (Figure 2-6). 

This apparent layer of mud flasers though, is laterally discontinuous and represents 

overlapping flasers.

Bifurcated wavy flaser bedding is also present in a number of the outcrops.

26
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FIGURE 2-6 Laterally discontinuous layer o f wavy flaser 
bedding.
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especially outcrops 1 and 2 {Figure 1-3). In this type of flaser bedding, the wavy mud 

flasers are bifurcated. In other words, the flasers divide into two separate parts. 

Once again, although a number of flasers may appear to be joined together in a single 

layer, these apparent layers are laterally discontinuous.

Lenticular and flaser beds are commonly overlain and underlain by either massive 

or parallel laminated sandstone beds (Figure 2-7). Very often, there are no sharp and 

distinct boundaries between these different bed types. Many of the sandstone beds 

gradationally pass upwards into overlying lenticular and flaser beds. Sometimes, there 

is load casting of the overlying sandstone beds into the top layers of lenticular and 

flaser bedding. On one occasion, the top layer of lenticular and flaser bedding which 

underlies a parallel laminated sandstone bed, is erosively cut by ripple laminated 

sandstones.

Wavy bedding is closely associated w ith flaser and lenticular bedding (see Figure 

2-4). Contacts between the wavy beds, and the lenticular and flaser beds can be 

sharp or gradational and irregular or flat. The base of a wavy bed will often load down 

into underlying lenticular bedding. Coarsely interlayered bedding (described in a later 

section) is also found in association with flaser and lenticular bedding. Wherever a 

coarsely interlayered bed underlies flaser and lenticular bedding, the boundary between 

the two bed types is irregular and gradational. When a coarsely interlayered bed 

overlies lenticular and flaser bedding, the boundary is sharp and distinct.

2?
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FIGURE 2-7 Interbedded flaser, lenticular, wavy, parallel 
laminated sandstone beds, and massive 
siltstone beds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Two of the flaser beds are cut by sandstone lenses. The top of one 25.0 cm bed 

is cut by a sandstone lens, 30.0 x 5.0 centimetres in size. The lens is filled w ith 

coarse-grained sand-sized material which fines up into a fine-grained sandstone. The 

other bed contains a sandstone lens similar in size, which shows no grading within the 

lens.

Wavy Bedding

Throughout outcrops 1 and 2, there are beds w ith a fine- to medium-grained 

sandstone base which fines upwards into a fine-grained siltstone or mudstone top. 

The transition from the medium-grained base into the fine-grained top is marked by the 

presence of a single layer composed of a horizontal series of asymmetrical ripples 

(Figure 2-8). The ripples have heights of 2 .0  centimetres or less, and wavelengths of

5.0 centimetres or less. The overlying silts and muds completely fill the ripple troughs 

and thinly cover the ripple crests. The medium-grained basal portion o f the bed is 

always considerably thicker than the fine-grained top. The layer of silt and mud which 

comprises the top is generally 1.0 centimetre or less in thickness.

These beds range from 1.0 to 25.0 centimetres in thickness. The average 

thickness of a wavy bed is approximately 7 .5  centimetres. Individual beds of this type 

tend to vertically stack in sequences 2 or 3 beds thick. The beds in a stacked 

sequence average 6.0 to 7.0 centimetres in thickness. All beds appear to be laterally 

extensive, although they do occasionally exhibit a slight pinching and swelling.
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Figure 2-8 Wavy bedding - note the asymmetical ripples.
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The fine- to medium-grained sandstone that comprise the basal portion of a wavy 

bed are typically parallel laminated (67 percent of the beds). The remaining 33 

percent of the beds consist o f a massive fine- to medium-grained base, which fines 

upwards. Within this parallel laminated basal portion, laminae thickness varies from 

0.1 to 0.5 centimetres. The laminae are usually composed of fine-grained silt or mud. 

The silty and muddy tops are never parallel laminated.

In one section of outcrop 1, wavy bedding is present in a transition zone between 

a tidal channel sub-environment and an overlying tidal flat sub-environment. Two 

beds, with no parallel lamination overlie an infilled channel scour. The bed which 

immediately overlies the channel scour contains randomly oriented elongate mud 

chips. These chips are typically 1.0 x 0.5 centimetres in size. Mud chips are also 

found in the second bed, where they are concentrated in the first 1.5 centimetres of 

the bed. Mud chips, of comparable size, are located sporadically throughout similar 

beds in all outcrops examined. As w ith the second bed, the chips are typically 

concentrated in the bottom two centimetres of beds.

A wide variety o f other types of beds overlie and underlie the wavy bedding. 

These beds vary from massive and parallel laminated sandstone, siltstone and 

mudstone to wavy, lenticular and flaser bedding. Convolute beds and coarsely 

interlayered bedding are also associated w ith wavy bedding. While many of the 

boundaries between the beds and the overlying or underlying beds are sharp, some 

gradational boundaries are present.
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There are two siltstone beds that are the fine-grained equivalents of wavy bedding. 

The bases of these beds are composed of medium- to coarse-grained silt which is 

topped by a single layer o f asymmetrical ripples. These ripples are the same size as 

those in the coarse-grained wavy beds. The ripple troughs are filled with mud and 

fine-grained silt, the ripple crests are thinly covered by the same material. These beds 

are also comparable in thickness, 6.5 and 9.0 centimetres, to the coarse-grained beds. 

Neither of the two beds are parallel laminated. One of the beds is overlain by a 

massive sandstone bed, the other grades into a parallel laminated sandstone bed.

MASSIVE AND PARALLEL LAMINATED SANDSTONE LITHOFACIES

Massive Sandstone Beds

A number of the fine- to coarse-grained sandstone beds in the tidal environment 

are massive (Figure 2-9). Many of these beds exhibit normal grading, with grainsize 

decreasing towards the top of the bed. The normally graded massive beds are topped 

by layers of massive, very fine-grained siltstone or mudstone which range in thickness 

from 0.2 to 0.5 centimetres. Two millimetre white feldspar grains are present in the 

coarse-grained base of a number of beds.

Ten percent of the massive beds show no internal grading. Less then two percent 

of these beds are topped by a very thin layer (0.1 - 0.2 mm) of fine-grained silt. 

Below this layer of fine-grained silt grainsize remains uniform.
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FIGURE 2-9 Massive, non-graded fine-grained
sandstone bed, overlain by a massive 
fine-grained siltstone bed.
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Bed thicknesses range from 2.0 centimetres to 1.0 metre, w ith  an average 

thickness of 14.0 centimetres. A large percentage of beds occur as solitary units 

within sequences o f other bed types. In at least six instances though, two to four 

massive beds are vertically stacked. Boundaries between the vertically stacked beds 

are sharp and distinct.

In the tidal fla t environment, many of the massive, medium-grained beds remain 

fairly uniform laterally for the width of the outcrop (2 metres); w ith very little variation 

in bed thickness or internal structures. Although the medium-grained portion of a bed 

remains laterally uniform, the thin silty or muddy tops commonly thin and thicken 

laterally. Very rarely, the medium-grained portion of the bed w ill also thin and thicken 

laterally.

Lenses are also present within the graded and non-graded massive beds. Typically 

the lenses are composed of fine- to coarse-grained sandstone. One bed contains 

lenses of very coarse-grained sandstone. In the graded beds, the grainsize of the 

sandstone within the lenses is usually coarser than the sand which comprises the 

portion of the bed containing the lenses. In the non-graded beds, the sandstone. in 

the lenses is coarser then the sandstone which makes up the entire bed. Many of 

theses lenses appear slightly flattened and elongated. Muddy lenses are also present. 

The only massive bed which dies out laterally contains numerous mud lenses.

Thin discontinuous laminae and wisps of mudstone can be found in two of the
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Figure 2-10 Discontinous mudstone wisps and laminae in a 
massive very fine-grained sandstone bed.

Figure 2-11 Mud chips in a medium-grained massive sandstone bed.
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massive, graded beds (Figure 2-10). In outcrop 2, the top of a 6.0 centimetre thick 

graded bed contains vertically stacked, isolated and discontinuous laminae of 

mudstone. The mud laminae are slightly wavy and appear to be mudstone drapes 

over a series of vertically stacked ripples. Mudstone drapes are also present in the 

uppermost 3.0 centimetres of a 9.0 centimetre thick bed, where they partially drape 

ripples. Once again, the mud drapes are vertically stacked on top of one another. In 

the middle of the 3.0 centimetres containing the mud drapes a 5.0 x 1.0 cm lens is 

present. This lens is filled with medium-grained sandstone. The beds which contain 

mud drapes are overlain by massive, graded beds.

Mud rip-ups and chips are present in the massive, sandstone beds (Figure 2-11). 

In one example, a bed which overlies lenticular bedding contains mud rip-ups. The rip- 

ups occur in the lowest tw o centimetres of the bed. Half-way up the bed, an isolated 

mud lens is present. Another bed contains mud chips which are 0.5 to 1.0 

centimetres in diameter. These chips are found in the uppermost, fine-grained portion 

of the bed. In this case, the bed containing the chips is part of a series of vertically 

stacked massive beds, and immediately underlies a similar massive bed. Mud clasts 

typically range in size from 0.5 x 2.0 cm to 0.7 x 2.0 cm. Isolated larger sand grains 

are also present in a small number of beds. In one bed, the top 8.0 centimetres 

contains small pebbles which average 1.0 x 2.0 centimetres in size. The largest clast 

is 2.0 X 3.0 centimetres.

In outcrop 1, a 7.0 centimetre thick laterally discontinuous bed fills a channel

4%
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scour. This scour is 80.0 centimetres wide, and overlies a bed o f parallel laminated 

medium- to coarse-grained sandstone, and underlies a wavy bed. The sand which 

comprises the channel fill becomes slightly finer grained towards the centre of the 

channel. Small drapes of mud over the top o f coarse-grained sand laminae are found 

in the upper one centimetre of the bed.

Both the graded and non-graded massive beds are overlain and underlain by a wide 

range of bed types. These include massive and parallel laminated siltstone/mudstone 

beds, as well as parallel-laminated sandstone beds. Lenticular, wavy, and flaser 

bedding are also underlain or overlain by massive sandstone beds. Generally, 

transisitions and boundaries between all beds are sharp and distinct. A number of the 

massive beds though, are gradational into overlying beds.

Gradual vertical transitions from massive, sandstone beds into overlying lenticular 

to flaser bedding are common. These vertical transitions are present in both the 

graded and non-graded beds. Transitions between these beds are not sharp, but 

instead, are irregular and indistinguishable. Typically there is a slight decrease in 

grainsize from the massive bed into the wavy, lenticular or flaser bedding. The 4.5 

centimetre bed which is cut by thin layers of siltstone is one of the beds which passes 

upwards into flaser and lenticular bedding. In a number of beds though the opposite 

occurs; lenticular and flaser beds are found to gradually pass upwards into the 

massive, sandstone beds. In two o f these cases, the flaser and lenticular beds were 

convolute laminated. In another case, there was load casting of an overlying massive
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bed into the top 2.5 centimetres of an underlying layer o f lenticular bedding.

Both graded and non-graded massive beds are overlain and underlain by coarsely 

interlayered bedding. Load casting o f an overlying massive bed into a fine-grained layer 

of tidal bedding is quite common. In this case, the load casting is restricted to the 

uppermost fine-grained layer in the coarsely interlayered beds.

A non-graded massive bed overlies a light coloured, parallel laminated, graded 

sandstone bed. The basal portion of the non-graded bed sinks slightly into this 

underlying sandstone bed, forming a shallow concave load cast. This bed is overlain 

by an infilled channel scour, which slightly cuts down into the underlying bed. A t 

another location a similar light coloured sandstone bed is overlain by a graded massive 

bed. As with the non-graded bed, the graded bed sinks slightly down into the top 2.0 

centimetres of the sandstone bed.

A number of massive beds are also found in association w ith other bed types. A

2.0 centimetre thick non-graded bed separates two units of coarsely interlayered 

bedding. Boundaries between all the beds are sharp. Two non-graded beds occur 

within a sequence of interbedded massive siltstone and mudstones beds and coarsely 

interlayered bedding. Once again, boundaries between all the beds are sharp and 

distinct. Finally, a 2.5 centimetre thick bed separates tw o units of lenticular bedding.

In the tidal channel sub-environment, non-graded massive beds are commonly
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associated w ith beds of small-scale cross-stratification. In Outcrop 2, the massive 

beds appear to separate cross-stratified beds. Boundaries between the beds are sharp 

and distinct. In one example, a 37.0 centimetre thick bed separates cross-stratified 

beds. Small mud chips are concentrated near the boundary between the two different 

beds, and fo r the most part, the boundary separating the tw o beds is clear and 

distinguishable.

Many of the thicker beds are interbedded with thin, laterally extensive beds of 

siltstone. One 73.0 centimetre th ick sequence contains sandstone beds interbedded 

with beds of fine-grained silt which are between 0.5 to 4.0 centimetres in thickness. 

Another 32.0 centimetre thick interbedded sequence contains thin (1.0 cm thick) beds 

of siltstone and thicker beds of sandstone. Finally, a 4.5 centimetre thick sequence 

contain thin sandstone and siltstone beds, averaging 0.75 centimetres in thickness.

Parallel Laminated Sandstone Beds

Beds o f parallel laminated, very fine- to medium-grained sandstone are also present 

in the tidal environment (Figures 2-12, 2-13, and 2-14). Approximately half of these 

beds are internally graded, while the remainder exhibit no form of internal grading. 

The majority of the beds are laterally extensive, and remain fairly uniform laterally over 

the width of the outcrop.

The vast majority o f the massive or parallel laminated sandstone beds present in 

the outcrops of the study area are composed of sand which is medium to dark gray
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FIGURE 2-12 A graded, parallel laminated sandstone bed.
Note the presence of two massive sandstone 
beds at the top of the photograph.

j '  4 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i 
i 
I 

I 
! 

. I 
i 

I 
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



FIGURE 2-13 Parallel laminated sandstone bed in
association with other lithofacies present 
in the tidal environment.

FIGURE 2-14 Close-up of the parallel laminated
sandstone bed shown in Figure 2-13
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or light black in colour. In marked contrast to these darker coloured beds, are light 

coloured beds. These beds usually appear to be a light tan or brown in colour. They 

average between 10 to 20 centimetres in thickness, and occur sporadically throughout 

the tidal environment. All beds are laterally continuous, and remain uniform in a lateral 

direction.

The internally graded beds increase in abundance towards the transition zone 

between the tidal and offshore environments. The thickest of these beds is 67 

centimetres in w idth, the thinnest bed is 3.0 cm, with an average bed thickness of 

13.2 centimetres. Beds which exhibit no internal grading are thicker. Nongraded 

beds range from 2.0 to 97.0 centimetres, w ith  an average bed thickness of 28.3 

centimetres.

The internally graded, parallel laminated beds display a vertical transition from a 

fine- to medium-grained sandy base, upwards into a fine-grained silty or muddy top. 

Moving upward through an outcrop, the base of beds becomes slightly finer grained. 

In rare cases ( <  three percent of the beds) there is a coarse- to very coarse-grained 

sandstone base. The non-graded parallel laminated beds range in grainsize from fihe- 

grained to coarse-grained sandstone. One bed is composed o f very coarse-grained 

sand. Once again, moving up the outcrop, grainsize decreases, and the majority of 

the beds are composed of non-graded very fine- to fine-grained sandstone.

Like many of the other coarse-grained beds, both the parallel laminated graded and
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non-graded beds often occur as a series o f vertically stacked beds. Typically such a 

series is comprised o f tw o to four beds, all o f similar thickness. In outcrop 1, a 2.5 

metre portion is composed of numerous small parallel laminated graded beds. These 

beds range in thickness from 2.0 to 16.0 centimetres. Boundaries between all beds 

in the vertically stacked series are usually sharp, and it is very rare to see gradations 

from one bed into the other. In outcrop 1 though, one series o f beds do grade into 

one another. A t the point where one bed grades into the other, tw o  layers of 

vertically stacked ripples are present.

Laminae thickness of the parallel laminated beds varies from 0.05 to 0.2 

centimetres. Although the majority of beds contain laminae which are parallel and 

straight (Figure 2-14), some beds contain laminae which are slightly wavy. 

Occasionally very thin, discontinuous, isolated wisps or laminae of fine-grained silt or 

mud occur between individual laminae.

Isolated mud drapes (Figure 2-12) are common in both the graded and non-graded 

beds. Mud lenses are also prevalent. The mud lenses are abundant in the non-graded 

beds, but are rare in the graded beds. Isolated mud lenses are present in only one of 

the graded beds. The mud lenses are typically 8.0 centimetres in length, and 0.3 

centimetres in height. In the non-graded beds, the mud lenses are also isolated. 

These lenses are usually 0.1 to 0.5 centimetres in length, and 0.2 centimetres in 

height.
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Beds that are close to the top of the tidally-lnfluenced environment are punctuated 

by thin layers o f very fine-grained sandstone to medium-grained siltstone. These 

layers are 0.5 to 1.0 centimetres in thickness, and are laterally continuous. For 

example, a non-graded 16.0 centimetre thick bed, is broken up by 0.5 to 0.75 thick 

layers of medium-grained silt. A 67.0 centimetre thick graded bed is cut by a total of 

thirteen, approximately 1.0 centimetre thick, layers of fine-grained siltstone.

Boundaries between the graded parallel laminated beds and those which overlie or 

underlie them can be either sharp or gradational (Figure 2-13). Many beds will grade 

upwards into lenticular and wavy bedding, and occasionally flaser bedding. Gradational 

and sharp boundaries are also associated with the non-graded, parallel laminated beds. 

Sharp boundaries can be seen between these beds and the fine-grained beds which 

typically underlie them. Alternatively, the non-graded, parallel laminated beds will 

often show a slight gradation into overlying graded, parallel laminated beds. In 

outcrop 1, one bed cuts downwards and terminates a layer of parallel laminated silt.

Customarily, non-graded, parallel laminated beds and cross-stratified beds occur 

in association with one another. This association is very apparent in outcrops 1 and 

2 and will be discussed in Chapter 3. Usually, the non-graded beds grade vertically 

into the cross-stratified beds, and then the cross-stratified beds gradually pass back 

into another non-graded, parallel laminated bed. In one non-graded bed, at the 

transition between the bed, and the overlying cross-stratified bed, isolated mud clasts 

are found at the top o f the non-graded bed. These mud clasts appear to follow  the

j 6 2
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FIGURE 2-15 Massive fine-grained siltstone to mudstone
beds at the bottom of the picture. A graded, 
parallel laminated, medium-grained siltstone 
bed is present in the middle o f the picture.
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trend of the overlying cross-stratification.

SILTSTONE AND MUDSTONE LITHOFACIES

Massive Siltstone and Mudstone Beds

Approximately sixty percent of all siltstone and mudstone beds present in the tidal 

environment are massive (Figure 2-15). Bed thicknesses range from 0.5 to 50.0 

centimetres, w ith an average thickness of 9.0 centimetres. Grainsize varies from 

coarse-grained silt to mud. Normal grading is present in the vast majority o f beds. 

Typically a bed will grade from a medium- or coarse-grained siltstone base into a 

mudstone top. Rarely, non-graded massive beds of very fine-grained siltstone or 

mudstone are present.

Many of the massive siltstone and mudstone beds persist laterally; in fact only 

three of the beds present in the tidal environment terminate laterally. Two of these 

beds are less then five centimetres in thickness. A t the point where the beds pinch 

out, they are overlain and underlain by massive medium- to coarse-grained sandstone 

beds.

The third laterally terminating bed is fifteen centimetres thick, and is composed of 

coarse-grained silt. The bed extends laterally for 65 centimetres where it pinches out. 

It is overlain by a bed o f parallel laminated, medium-grained sandstone which cuts 

downwards into the siltstone.

S5r
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Lenses of medium- to coarse-grained sand occur sporadically in a number of the 

massive beds. The lenses vary in size up to 15.0 x 4.0 centimetres. Lenses infilled 

with mud are also quite common, and are randomly distributed throughout the fine

grained beds of the tidal environment. The mud lenses tend to be smaller in size than 

their coarse-grained equivalents.

Very thin (1.0 to 3.0 mm) laterally discontinuous wisps of very fine-grained silt or 

mud are also present within individual beds. The wisps tend to occur as isolated 

entities among the fine-grained beds that they are found in. The grainsize of the 

material supporting the wisps is slightly coarser grained than that of the wisp. In one 

or two areas, the wisps have a drape-like or amputated ripple-like appearance.

A wide range of beds both overlie and underlie the massive siltstone and mudstone 

beds, including both massive and parallel laminated sandstone beds, coarsely 

interlayered bedding, lenticular, wavy and flaser bedding. Boundaries between beds 

can be either sharp or irregular. Very often, an overlying coarse-grained bed loads into 

the top portion of the siltstone or mudstone bed.

Boundaries are almost always gradational between the massive siltstone and 

mudstone beds and overlying or underlying lenticular, flaser or wavy bedding. 

Gradational boundaries also mark the passage of a massive siltstone and mudstone 

bed into an overlying parallel laminated siltstone and mudstone bed. This phenomena 

is also observable in the beds of the massive and parallel laminated sandstone facies.

SUt
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Very rarely, sharp and irregular boundaries are present.

Siltstone and mudstone beds are present in combination w ith  convolute lenticular 

bedding. The siltstone and mudstone beds are typically 2.0 centimetres in thickness, 

and pinch and swell laterally, extending slightly upwards into the overlying beds of 

convolute lenticular bedding. Massive siltstone and mudstone beds also occur in 

association w ith coarsely interlayered bedding. Boundaries between the beds are very 

sharp and distinct. The massive beds average two centimetres in thickness. This 

association is discussed fully in the section on coarsely interlayered bedding.

Reverselv Graded Siltstone and Mudstone Beds

Although normal grading is common in the majority of the fine-grained beds in the 

tidal environment, seventeen percent of fine-grained beds exhibit reverse grading. 

These beds have a medium- to coarse-grained silty base, and coarsen upwards into 

a fine-to medium-grained sandy top. All of these beds are massive. The thickest bed 

{54.0 cm) of the reversely graded fine-grained sediments is present in the transition 

zone from a tidal channel into a tidal flatl. In other words, the bed coarsens upwards 

in the direction of the tidal flat. All o f the reversely graded beds are overlain by either 

a bed of massive, medium-grained sandstone, or coarsely interlayered bedding. 

Boundaries between all the beds are gradual.

One of the coarsening upwards beds occurs in a small channel incised in the top 

of a bed of herringbone cross-stratification. This channel is 15.0 centimetres in width.
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and 5.0 centimetres in depth. Long and narrow chips of mud are also present within 

this bed. A bed of massive, medium-grained sandstone overlies the reversely graded 

siltstone.

Parallel Laminated Siltstone and Mudstone Beds

Twenty-three percent of the siltstone and mudstone beds are parallel laminated. 

Grainsize in the parallel laminated beds ranges from coarse-grained silt to  mud. The 

beds vary from 3.0 to 60.0 centimetres in thickness. The average bed thickness is 

17.0 centimetres. Normal grading is common in these beds; as w ith the massive 

siltstone and mudstone beds, these grade from a medium- or coarse-grained silty base 

up into a very fine-grained silty or muddy top (Figure 2-15). All of the parallel 

laminated beds are laterally continuous for at least the width of the outcrop (2.0 

metres)..

Laminae in the beds w ill sometimes have a slightly wavy appearance, but overall, 

the beds are horizontally, parallel laminated. Laminae are typically 0.1 to .05 

centimetres in thickness and are laterally continuous. The laminae are composed of 

sediment ranging in size from fine-grained silt to  mud.

Many of the features observed in the massive siltstone and mudstone beds are 

also present in the parallel laminated siltstone and mudstone beds. Lenses filled with 

fine- to coarse-grained sand or mud which are present in the massive siltstone and 

mudstone beds are also common in the parallel laminated siltstone and mudstone
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beds. Sand lenses average 0.5 centimetres in height, and 4 .0  centimetres in width. 

Thin, isolated, laterally discontinuous wisps of very fine-grained silt and mud are 

present as well.

As with the massive sandstone beds, the parallel laminated siltstone and mudstone 

beds are also overlain and underlain by massive and parallel laminated sandstone beds, 

coarsely interlayered bedding, and lenticular to flaser bedding. The parallel laminated 

siltstone and mudstone beds are also underlain by beds of the massive siltstone and 

mudstone facies. As described in the previous section on massive siltstone and 

mudstone beds, the massive beds will gradually pass up into an overlying parallel 

laminated bed of siltstone or mudstone. Gradational boundaries such as this are also 

common between lenticular, wavy, and flaser bedding and the parallel laminated 

siltstone and mudstone beds.

COARSELY INTERLAYERED BEDDING LITHOFACIES

Sequences consisting of alternating layers composed of fine- and coarse-grained

sediments are present (Figures 2-1, 2-2, &  2-16). The coarse-grained layers are

sandstones and the fine-grained layers consist of either siltstone or mudstone. These

interlayered sequences are commonly referred to as tidal bedding, but this term is

ambiguous and non-descriptive. A more useful term is coarsely interlayered bedding

(Reineck and Singh, 1973). The coarsely interlayered bedding found within the study

area contains alternating layers of fine- to coarse-grained sandstone and coarse-
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FIGURE 2-16 Coarsely interlayered bedding is present in the 
lower portion of the photograph. Note the 
alternation of the thin, very dark siltstone 
layers with the slightly lighter and thicker 
sandstone layers.
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grained siltstone to mudstone.

Sequences of coarsely interlayered bedding range in thickness from 1.0 cm to 57.0 

cm. In the thinner sequences, thickness of the individual layers varies from 0.1 to 0.4 

centimetres. In the thicker sequences, individual layers up to 4.0 cm thick are 

present, though it is rare to find individual units of this thickness, typically individual 

layers are less than 2.0 centimetres thick. The thicker layers represent less then 5 

percent of the total layers present in coarsely interlayered bedding. More commonly, 

individual layers have thicknesses between 0.1 to 2.0 centimetres.

In outcrop 1, which contains the entire succession through tidal fla t and channel 

sub-environments, a trend can be observed within sequences of coarsely interlayered 

bedding. As one moves up towards the top of the outcrop, the thickness of the 

individual fine-grained layers within the bedding increases. Overall, the amount of 

individual fine-grained silt and mud layers also increase in number. A similar trend is 

also present within individual coarsely interlayered beds. Within many of the 

interlayered beds, there is also an increase in the thickness and abundance of 

individual fine-grained layers towards the top o f the bed.

Transitions between the alternating fine- and coarse-grained layers are usually 

sharp. Rarely load casting of one of the individual coarse-grained layers into the 

underlying fine-grained layer is present. Typically the coarsely interlayered beds are 

topped by a final layer of s ilt or mud, so load casting of coarse-grained material in an
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overlying bed into this final fine-grained layer of a coarsely interlayered bed is 

common.

Some of the coarsely interlayered beds are topped by a layer of parallel laminated 

silts and muds. These uppermost layers are generally 0.5 to 2.0 centimetres in 

thickness. In one coarsely interlayered bed in outcrop 2, there is a coarse-grained 

layer which pinches and swells laterally at the transition between the lower portion of 

the bed and the fine-grained layer which tops it..

Though beds pinch and swell laterally the coarsely interlayered beds are laterally 

continuous. Many of the individual fine- and coarse-grained layers which comprise 

the coarsely interlayered bedding are laterally continuous within the beds. A few 

layers though, do terminate laterally, and grade horizontally into either the overlying 

fine- or coarse-grained layer.

Occasionally, the coarsely interlayered beds will have a slightly wavy appearance, 

similar to an interlayered sequence of wavy beds. The wavy appearance dies out 

laterally, and the layers once again appear straight and parallel. In some locations, the 

coarsely interlayered beds are convolute.

Many of the individual layers within coarsely interlayered beds appear to be parallel 

laminated. Laminae consist of very fine-grained silt and mud within the medium- to 

coarse-grained sand layers, and the inverse in the silt and mud layers. Laminae are
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less then 0.5 millimetres in thickness and persist laterally throughout the individual 

layers.

Internally, some o f the thicker medium- to coarse-grained sandy layers exhibit 

normal grading. These individual layers fine upwards from a medium- to coarse

grained sandy base into a fine-grained sandy top. Fining trends were not presente in 

the thinner, silty or muddy layers.

Rarely, lenses of coarse-grained sand are present within the coarsely interlayered 

beds. These lenses range from 1 to 5 centimetres in length, and 0.5 to 1.5 

centimetres in thickness. The lenses occur randomly throughout the coarsely 

interlayered beds.

The majority of coarsely interlayered beds are overlain by fining upwards massive 

and parallel laminated sandstone beds. Transitions between the overlying massive and 

parallel laminated beds and the coarsely interlayered beds are usually gradual. 

Massive medium to coarse-grained sandstones beds also underlie the interlayered 

bedding. Once again, transitions between the beds are gradual.

Wavy, flaser and lenticular bedding also underlie coarsely interlayered beds. 

Where the coarsely interlayered beds are underlain by flaser and lenticular or wavy 

bedding, there is a gradual transition from this bedding type upwards into the coarsely 

interlayered bed.
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At one location in outcrop 2, a 8.5 centimetre th ick section occurs in which 

coarsely interlayered beds alternate w ith laterally continuous beds o f massive 

siltstone. The coarsely interlayered and massive beds average one centimetre in 

thickness. Transitions between the massive siltstone and mudstone beds and the 

coarsely interlayered bedding are sharp. This association is discussed in Chapter 3.

Finely Rhvthmicallv Laminated Bedding

There are also rare occurrences of finely rhythmically laminated bedding. This 

: bedding also consists o f alternating layers of fine- and coarse-grained sediment, but 

i on a much smaller scale than the coarsely interlayered bedding. In this case, the
I

i individual fine- and coarse-grained layers within a bed are only a few  millimetres in 

thickness. The layers appear to rhythmically repeat, and it is this repetition tha t has 

resulted in the term tidal rhythmites being assigned to this type of bedding.

CROSS-STRATIFIED LITHOFACIES

Herringbone Cross-Stratification

Herringbone cross-stratification is a term applied to cross-stratified beds showing 

opposite dip directions of foreset laminae in adjacent layers (Reineck and Singh, 

1975). This form of cross-stratification is characteristic of the tidal channel sub

environment where typically tw o opposite-dipping cross-stratified units are separated 

by a thin layer of mud. Herringbone cross-stratified beds occur w ith regularity 

throughout the tidal channel sub-environment. Usually the presence of herringbone
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cross-stratification is accentuated by carbon staining o f the rocks (Figures 2-17 and 

2-18).

Thicknesses of herringbone cross-stratified beds range from 2.0 to 53.0 

centimetres. The majority of these beds are laterally continuous. Within the 

herringbone cross-stratified beds, thin (0.1 - 0.3 cm) laminae of silt and mud are 

present. Grain size within the herringbone cross-stratified units varies from fine

grained silts to coarse-grained sands. Rarely there is a slight decrease in grainsize from 

the base of the bed to the top.

Herringbone cross-stratification will rarely occur in association with the parallel 

laminated and massive sandstone, siltstone and mudstone beds. In one portion of the 

outcrop, a very thin lens (2.0 cm), occurs within a thick bed (48.0 cm) of massive, 

very fine-grained sandstone containing isolated lenses of coarse-grained sand. The 

boundaries between these beds are sharp. Parallel laminated siltstone beds underlie 

thick sequences of herringbone cross-stratified beds.

In another instance, a 7.5 cm thick bed of herringbone cross-stratification is 

erosively cut by numerous small, vertically stacked channels. These small channels 

have been infilled w ith  fine-grained silt, and contain very thin, long slivers of mud. 

Upwards from the infilled channels, grainsize increases until eventually small grains 

of feldspar become visible to the naked eye.
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FIGURE 2-17 Herringbone cross-stratification accentuated by 
carbon staining.

FIGURE 2-18 Close-up of Figure 2-17.
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The majority of herringbone cross-stratified beds occur in association w ith beds 

of trough and epsilon cross-stratification. In the lower portions of the tidal channels, 

interbedded units of trough and herringbone cross-stratification are common. Usually, 

the trough cross-stratification passes upwards into herringbone cross-stratification.

Small-Scale and Large-Scale Planar Cross-Stratification

Sequences of small-scale and large-scale planar cross-stratification are common. 

The large-scale cross-stratified beds are found at the base o f these sequences, while 

the small-scale cross-stratification dominates at the top of a sequence (Figure 2-19). 

Typically, the majority o f the beds exhibiting cross-stratification are composed of fine- 

to coarse-grained sand. Occasionally, the beds will exhibit internal grading, fining up 

the dip of the laminae into a coarse-grained silt. These beds may also be overlain by 

a very thin (< 0 .5 cm) layer o f massive fine-grained silt or mud. Bed thicknesses 

range from 3.5 to 21.0 centimetres.

Within the beds, foreset laminae average 0.2 centimetres in thickness. The 

laminae are usually at angles o f 15 - 30° to the base. In many of the beds, small 

mud flakes are present in the basal portion of the bed. These small mud flakes parallel 

the laminae, and are orientated at a similar angle to the base of the bed as the 

laminae.

I .  Cfl
!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 2-19 Planar cross-stratification - note the slight 
decrease in bed thickness towards the top 
of the photograph.
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The majority o f the cross-stratified beds are laterally extensive. Though one 10 

centimetre th ick bed exhibits both lateral and vertical variations. In both the lateral 

and vertical directions, the bed changes from a cross-stratified sandy bed into a 

massive, graded sandy bed.

Trough Cross-Stratification

Beds of trough cross-stratified sandstone are found in both the tidal fla t and tidal 

channel sub-environments. They are composed of fine- to coarse-grained sand. Beds 

range from 3.0 to  23.5 centimetres in thickness. Randomly scattered, rare, isolated 

mud chips are present in some of the beds.

When trough cross-stratification is present in the tidal channel sub-environment, 

it is always found in association with beds of herringbone cross-stratification. In the 

tidal flat sub-environment, it is usually interbedded with either massive or parallel 

laminated sandstone beds. Boundaries between the interbedded sandstone and cross

stratified beds are typically sharp and distinct.

Eosilon Cross-Stratification

The only beds w ith  epsilon cross-stratification surfaces present in the study area, 

occur in the tidal channel sub-environment. These beds range in size from  4.0 to 36.0 

centimetres. Internally, the beds are composed of small-scale planar cross

stratification. Occasionally, small pebbles of mud are randomly scattered throughout 

the beds. Transitions between beds w ith  epsilon cross-stratification surfaces and
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herringbone cross-stratified beds are fairly sharp. Typically these beds separate 

thicker beds of herringbone cross-stratification.

OTHER SEDIMENTARY FEATURES

Ripples

Evidence of combined current/wave ripples is present throughout many of the 

outcrops in the study area. Ripplemarks are occasionally found on the surface of the 

outcrop. The ripples are typically composed of fine- to medium-grained sandstone, 

and are present as undulations on the tops o f siltstone and sandstone beds. Most of 

the ripples are small in scale, with ripple wavelengths of 2.0 to 5.0 centimetres, and 

heights of 0.5 to 3 .0  centimetres. Many of the ripples exhibit some degree of 

asymmetry. Both rounded and flat-topped ripples are present in the siltstone and 

sandstone beds.

The majority of the combined current/wave ripples are present as reworked and 

erosive forms. These tw o forms belong to a subgroup of form-discordant ripples that 

Reineck and Singh (1975) have termed as secondarily form-discordant ripples. In 

form-discordant ripples, the outer shape of the ripple does not correspond to the 

internal structure, and the outer form of the ripple is not genetically related to the 

internal structure o f the ripple (after Reineck and Singh, 1975).

At one location (outcrop 1), the presence of ladderback ripples (Figure 2-20) has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



been observed. The occurrence of ladderback ripples occurs in close proximity to a 

bed of herringbone cross-stratification. These ripples have very little preservation 

potential, therefore the presence o f ladderback ripples in rocks of the study area, 

represents a rare occurrence.

Deformation Structures

Although only 3 to 4  percent of all beds are convolute in appearance, these beds 

occur indiscriminantly scattered throughout the outcrops of tidal fla t sediments. The 

convolute beds range from 2.0 to 20.0 centimetres in thickness. Many of the 

convolute beds consist of interlayered fine- to medium-grained sand, silt and mud 

(Figure 2-21). Towards the tops and bottoms of the convoluted beds, the layers 

become parallel laminated. Laterally, the convolute portions of the layers are 

commonly discontinuous, and pass into parallel laminated sand, silt, and mud. 

Although the majority of the convolute layers are associated w ith parallel laminated 

sandstones and siltstones, layers of wavy bedding also occasionally exhibit a 

convolute appearance.

Convolute interlayered sequences of sandstones, siltstones, and mudstones are 

also present. In this case, a series of alternating individual, thin beds of sand, silt, and 

mud are highly deformed. These interlayered sequences appear to represent 

convoluted coarsely interlayered bedding. Units of lenticular and flaser bedding are 

also convolute in some sections of the outcrop. Typically the flaser and lenticular 

beds gradually become convolute fo r a couple of centimetres, and then pass back into
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FIGURE 2-20 Ladderback ripples.
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FIGURE 2-21 Convolute bedding, near top of sequence.

FIGURE 2-22 Convolute bedding near the middle o f a
sequence of lenticular, flaser and coarsely 
interlayered bedding.
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the flaser and lenticular bedding (Figure 2-22).

Load structures (or load casting) is present in many areas of the outcrops. These 

structures are produced by the sinking of a layer o f more dense sediment into a layer 

of less dense sediment (Blatt et. a!., 1980) The load structures are usually present at 

the boundary between an overlying coarse-grained layer and an underlying layer of 

fine-grained sand, silt, or mud. The coarse-grained material has sunk down into the 

underlying fine-grained sediments in a series o f bulbous or pillow-like protrusions. This 

gives many of the load structures an ellipsoidal appearance.

There is a large degree of variety in the size of the load structures, the majority are 

two to five centimetres in depth.. Load casts vary in size from 0.5 to 15.0 centimetres 

in width. In the transition zone between the tidal environment and the offshore 

environment, a number of load casts are as large as 25 centimetres in w idth and five 

centimetres in depth, forming long sand protrusions .

In many of the examples of load structures the coarser material which has 

protruded into the upper fine-grained portion of an underlying bed, has remained 

connected with the coarse-grained basal portion of the overlying bed. A t times, the 

load structures have become cut off from the overlying coarse-grained layer. As a 

result, the ellipsoidal masses of coarser material appear to float freely in the fine

grained top of the underlying layer. These isolated ellipsoidal portions of the coarse

grained material show a wide size range.

i
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Underlying beds of fine- and coarse-grained sediment w ill also extend upwards 

into an overlying bed as tongue-like forms. These tongue-like forms, or flames will 

often extend up to five centimetres into the overlying bed.

Climbing Rioole Lamination

At one location in outcrop 1, climbing ripple lamination is present (Figure 2-23), 

but it is poorly exposed. This lamination has formed in a medium-grained sandstone 

and is topped by a thin layer of mud. Using the work o f McKee (1965), the lamination 

has been tentatively classified as ripple laminae in-drift.

8 0
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FIGURE 2-23 Climbing ripple-lamination.
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CHAPTER 3 -  TIDAL ENVIRONMENT - LITHOFACIES ASSOCIATIONS

Work by Parker (1980) has identified the existence o f at least one main 

depositional environment w ith in the current study area. He divided this environment, 

which he interpreted as tidally-influenced (Parker, 1980), into tidal flat and tidal 

channel sub-environments. The presence of the third sub-environment, a shoreface 

tidal sand sheet has been recorded by Fralick and Barrett (1991) and Eriksson et. a!. 

(1994). Between the three sub-environments are a series of transition zones tha t 

mark the passage from one sub-environment to the next. Lithofacies associations 

within these sub-environments and transition zones will be discussed in this chapter, 

with the aid of stratigraphie sections.

The generalized stratigraphie section (Figure 3-1 ) depicts the relative positions o f 

the tidal flat, tidal channel, and offshore tidal sand sheet sub-environments. More 

detailed stratigraphie sections are presented throughout this chapter. The sections are 

of sequences contained w ith in the three sub-environments, and depict the lithofacies 

associations present in these sub-environments. The locations of the sequences 

described and discussed in this chapter are indicated on the generalized section.
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FIGURE 3-1 Generalized stratigraphie section depicting the 
relative positions and average grain size o f the 
tidal, shoreface, and offshore environments and 
associated sub-environments (tidal channel and 
flat). Positions o f detailed stratigraphie sections 
(Figures 3-2 - 3-16) are indicated. The majority 
of sections are from outcrop 1. Sections depicted 
in Figures 3-5 and 3-7 are located in outcrop 2. 
Meterage indicated in the two figures corresponds 
to their positions in outcrop 2. The sections have 
been placed in approximate positions w ith in the 
generalized stratigraphie section.
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TIDAL FLAT SUB-ENVIRONMENT

The tidal fla t sub-environment is composed o f a wide variety o f lithofacies. 

Dominating the collection o f lithofacies present are those characteristic o f tidal flats; 

flaser and lenticular bedding, wavy bedding, and coarsely interlayered bedding. Also 

present are massive and parallel laminated mudstone, siltstone and sandstone beds, 

which are either graded or non-graded. More rarely, convolute beds appear w ith in the 

sub-environment.

Figures 3-2 to 3-4 show typical arrangements and associations of lithofacies in the 

tidal flat sub-environment. These sequences are dominated by flaser, lenticular and 

wavy bedding, as well as units of coarsely interlayered bedding. Minor amounts of 

parallel laminated and massive mudstone, siltstone and sandstone beds are also 

present.

Figure 3-2 depicts a 2.35 metre sequence through a portion of a tidal fla t. All of 

the various lithofacies common to this sub-environment are present in this sequence. 

These lithofacies Include: lenticular and flaser bedding; wavy bedding; coarsely 

interlayered bedding; massive mudstone and siltstone beds; massive sandstone; and 

parallel laminated sandstone beds. This sequence is dominated by units o f flaser and 

lenticular bedding, although sandstone beds and wavy bedding are also strongly 

represented. The wavy bedding is present in a series of vertically stacked beds. One 

such series is present towards the top of the sequence (17.6 m to 17.8 m). Many of 

the boundaries between the beds are sharp and distinct, but gradational boundaries

i
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FIGURE 3-2 Tidal flat sub-environment
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are also present. Typically these gradations are present when moving into or out of 

units of lenticular and flaser bedding.

With the exception o f the vertically stacked series of wavy bedding, all o f the other 

lithofacies present are randomly interbedded w ith each other. There is a slight 

decrease in grainsize when moving towards the top of the sequence. This particular 

sequence occurs close to the transition zone from the tidal flat into the tidal channel 

sub-environment.

Another typical sequence through a portion of a tidal flat is depicted in Figure 3-3. 

The following lithofacies are present in this sequence: lenticular and flaser bedding; 

coarsely interlayered bedding; and both parallel laminated and massive siltstone and 

sandstone beds. As w ith  the sequence shown in Figure 3-2, this one is dominated by 

units of flaser and lenticular bedding randomly interbedded with the siltstone and 

sandstone beds. Gradational boundaries are present between a small number of beds, 

but commonly, boundaries between beds are sharp and regular. There is also a series 

of vertically stacked, parallel laminated sandstone beds present in the first 0.8 metres 

of the sequence.

The 0.55 metre sequence in Figure 3-4 provides a closer view of the lithofacies 

that dominate and characterize the tidal fla t sub-environment. This small sequence 

contains coarsely interlayered bedding, wavy bedding, flaser and lenticular bedding, 

and massive sandstone beds. Convolute bedding is also present. This sequence is

8 i
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FIGURES 3-3 & 3-4 Tidal flat sub-environment.
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located in close proximity to the transition zone from a tidal flat to a tidal channel sub

environment and has a slight overall fining upwards trend.

Figures 3-5 to 3-7 illustrate other arrangements or associations of lithofacies that 

can be found in the tidal flat sub-environment. These sequences contain none of the 

units of flaser and lenticular bedding that characterize the tidal flat, but are still 

commonly found in this sub-environment. Figure 3-5 depicts an interbedded sequence 

of massive and parallel laminated sandstone beds and coarsely interlayered bedding. 

This sequence also contains a thin (0.5 cm) siltstone bed. All boundaries between the 

beds are sharp and distinct.

Another bedding sequence is illustrated in Figure 3-6. It contains interbedded 

massive siltstone and sandstone beds. As with the sequence shown in Figure 3-5, all 

of the boundaries between the siltstone and sandstone beds are sharp. This particular 

sequence is located closer to the shoreface tidal sand sheet then any of the other tidal 

flat sequences discussed in this chapter. Grainsize increases slightly towards the top 

of the sequence.

The sequence depicted in Figure 3-7 contains: coarsely interlayered bedding, 

massive mudstone and siltstone beds and sandstone beds. The sequence is 

dominated by the mudstone and siltstone beds and coarsely interlayered bedding. The 

two massive sandstone beds, are found between thinner beds of siltstone. As with 

the previous two sequences, all of the boundaries between the various lithofacies are
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FIGURES 3-5, 3-6 and 3-7 Tidal flat sub-environment.
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Sharp and distinct.

The next two sequences (Figures 3-8 and 3-9), include two parallel laminated 

sandstone beds which differ slightly in colour and grainsize from the majority o f the 

sandstone beds present in the tidal fla t sub-environment. These beds have been 

described in the previous chapter. The sequence in Figure 3-8 contains wavy bedding, 

massive mudstone and siltstone beds, massive sandstone beds, lenticular and flaser 

bedding, and convolute bedding. Near the top of the sequence is the light coloured, 

parallel laminated sandstone bed. This layer sharply overlies a unit of flaser and 

lenticular bedding. Similar to Figures 3-2 to 3-4, the different lithofacies are randomly 

interbedded w ith each other. Figure 3-9 is located near the tidal channel to tidal flat 

transition zone and will be described in the next section.

INTERTIDAL TRANSITION ZONE

The first two sequences (Figures 3-9 and 3-10) are characteristic of the upwards 

transition between the tidal channel and tidal flat sub-environment. The last sequence 

(Figure 3-11) presented in this section depicts the transition from the tidal fla t sub

environment upwards into the tidal channel sub-environment.

Tidal Channel to Tidal Flat Transition

The sequence shown in Figure 3-9 is located near the top of a transition zone out 

of a tidal channel into the tidal fla t sub-environment. This sequence contains coarsely

95
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FIGURES 3-8 and 3-9 Tidal flat sub-environment.
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interlayered bedding, wavy bedding, massive sandstone beds, a parallel laminated 

siltstone bed, and a light coloured, parallel laminated sandstone bed. The light 

coloured sandstone bed is found near the base of the sequence, where it overlies the 

solitary siltstone bed present in the sequence. The top of the massive sandstone bed 

overlying the parallel laminated sandstone bed is incised by a small channel. This 

channel is filled with a fining upwards, massive sandstone. The entire sequence 

exhibits a moderate fining-upwards trend.

Figure 3-11 contains a sequence depicting the upwards transition into the tidal fla t 

sub-environment. The dominant lithofacies in this sequence is herringbone cross

stratified beds. Lithofacies present as minor components in this sequence include: 

massive sandstone beds; parallel laminated mudstone and siltstone beds; and small- 

scale planar cross-stratified beds. The middle of the sequence is dominated by th ick 

beds of herringbone cross-stratification interbedded with very thin beds of small-scale 

planar cross-stratification. A t the base and near the top o f the sequence, the 

herringbone cross-stratified beds are interbedded with thin, parallel laminated siltstone 

beds. A bed near the top of the sequence has been incised by a channel which is 

infilled with a fining-upward sequence. An interbedded sequence of sandstone and 

siltstone and mudstone beds is present at the very top of the sequence.

Tidal Flat to Tidal Channel Transition

As already stated. Figure 3-10 depicts the transition from a tidal flat into a tidal 

channel. This sequence consists primarily of interbedded siltstone and sandstone

9 8
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FIGURE 3-10 Tidal flat to tidal channel transition.
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FIGURE 3-11 Tidal channel to tidal flat transition.
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beds, with massive siltstone beds dominating. The following lithofacies: massive and 

parallel laminated sandstone beds; parallel laminated mudstone and siltstone beds; 

herringbone cross-stratified beds; and a planar cross-stratified bed are present in lesser 

amounts. There are also tw o beds o f massive, reversely graded siltstone present in 

the sequence. These siltstone beds are sharply overlain by sandstone beds. The 

sandstone beds are concentrated in the lower part of the sequence, and decrease in 

number and thickness towards the top of the sequence.

TIDAL CHANNEL SUB-ENVIRONMENT

A limited number of lithofacies are present in the tidal channel sub-environment; 

this differs greatly from what is observed in the tidal flat sub-environment where there 

is a wide range of lithofacies. Channel sequences are dominated by herringbone 

cross-stratification; a bedding type which is common in tidal channel sub

environments.

The sequence in Figure 3-12 passes through the tidal channel sub-environment into 

the extreme lower portion of the next tidal flat. The sequence is dominated by 

Interbedded herringbone cross-stratified units and small-scale planar cross-stratified 

beds. Parallel laminated siltstone beds are present at the base and near the top of the 

sequence. The final bed of herringbone cross-stratification near the top of the 

sequence is cut by a channel. This channel is infilled w ith a reversely graded siltstone 

bed.

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 3-12 Tidal channel sub-environment
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FIGURE 3-13 Shoreface transition zone.
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SHOREFACE TRANSITION ZONE

Figure 3-13 depicts a monotonous, 12.0 metre thick sequence, which is part o f the

shoreface transition zone. This sequence is composed entirely of massive and parallel 

laminated fine- to coarse-grained sandstone beds. A number of the beds grade 

upwards into a fine- to medium-grained siltstone tops, but the majority of beds are 

non-graded. From 36,0 to 45.8 metres, the sequence consists of a series o f massive 

and parallel laminated sandstone horizons. The massive and parallel laminated 

horizons appear to gradually grade into one another. This 9.8 metre portion becomes 

finer-grained toward the centre, but then coarsens again at the top of the sequence.
i

SHOREFACE TIDAL SAND SHEET SUB-ENVIRONMENT

The shoreface tidal sand sheet is dominated by monotonous sequences of massive 

and parallel laminated fine- to coarse-grained sandstone beds, and trough cross

stratified, herringbone cross-stratified, and planar cross-stratified siltstones to coarse

grained sandstones. The following three sequences contain all o f the dominant 

lithofacies.

The sequence depicted in Figure 3-14 is dominated by beds containing planar 

cross-stratification. Massive and parallel laminated mudstone/siltstone and sandstone 

beds, and wavy bedding are also present. Two very coarse-grained, laterally 

discontinuous lenses occur in the first 1.0 metre o f the sequence. The majority of the 

sequence is composed o f planar cross-stratified beds interlayered w ith thin beds of 

massive and parallel laminated fine- to coarse-grained siltstone. This association is 

particularly noticeable between 52.9 and 54.3 metres. The massive and parallel

105
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FIGURE 3-14 Shoreface tidal sand sheet
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laminated sandstone beds are found at the top and near the base of the sequence. 

Once again, boundaries between all beds are sharp and distinct.

In contrast to the sequence depicted in Figure 3-14, the sequence in Figure 3-15 

is dominated by trough cross-stratified beds. Other lithofacies present in this 

sequence in minor amounts include coarsely interlayered bedding, wavy bedding, 

massive and parallel laminated sandstone beds, and planar cross-stratified beds. With 

the exception of the mudstone and siltstone layers in the coarsely interlayered 

bedding, no mudstone and siltstone lithofacies are present. Many o f the trough cross

stratified units are present as series of vertically stacked beds. Boundaries between 

all beds within this sequence are sharp and distinct, no gradations exist between 

overlying and underlying beds. Overall, there is a fining upwards trend throughout the 

sequence.

Figure 3-16 depicts a sequence dominated by herringbone cross-stratification. This 

sequence is located towards the top of the shoreface tidal sand sheet. Other 

lithofacies present in this association include: parallel laminated and massive 

sandstone beds; massive siltstone and mudstone beds; wavy bedding; and coarsely 

interlayered bedding. All of these lithofacies appear to be randomly interbedded with 

one another. The number of herringbone cross-stratified beds increases when moving 

up through the sequence. There is also a slight decrease in grainsize towards the top 

of the sequence.

I l l
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FIGURE 3-15 Shoreface tidal sand sheet
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FIGURE 3-16 Shoreface tidal sand sheet
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CHAPTER FOUR -  OFFSHORE ENVIRONMENT

This chapter concentrates on the sedimentary units present in the upper portion 

of outcrop 1. In contrast to  the many different lithofacies in the lower portion of this 

outcrop, only a small number of lithofacies occur in the upper part. These lithofacies 

are the sandstone and siltstone and mudstone lithofacies. Hummocky cross

stratification is found in the sandstone lithofacies.

Two major trends are discernable moving upwards through the top portion of 

outcrop 1. First, there is an overall fining-upwards trend, and secondly there exists 

a change in the degree o f lateral continuity w ithin individual layers. Near the bottom 

of the upper portion there is very little lateral continuity. Towards the top, there is 

little change in lateral directions, w ith individual beds remaining fairly uniform in both 

thickness and sedimentary structures present.

SANDSTONE LITHOFACIES

The presence of sandstone beds becomes exceedingly rarer upwards through the 

section. There is a huge degree of heterogeneity between many of these beds; some 

are massive, and others are parallel laminated or hummocky cross-stratified. Graded 

and nongraded beds occur.

■Parallel Laminated Sandstone Beds

Both graded and nongraded parallel laminated sandstone beds are present (Figure

I
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 4-1 Graded, parallel laminated sandstone 
beds. The most distinctive laminated 
bed is overlain by a massive sandstone 
bed.

FIGURE 4-2 Parallel laminated sandstone bed 
in centre of photograph.
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4-1). Grainsize varies from medium- to fine-grained sand. Rarely, coarse-grained 

sandstone beds are also present. The coarse-grained sand tends to form thin basal 

layers to many of the medium- to fine-grained beds. The graded beds usually undergo 

a size reduction from a medium- to coarse-grained sandstone base upwards into either 

a fine- to very fine-grained siltstone or mudstone top. Occasionally, the siltstone or 

mudstone tops are massive, others are parallel laminated. Individual bed thicknesses 

range from 1.0 to 26.5 centimetres, the averaging 7.5 centimetres.

Individual laminae in all beds are composed of very fine-grained sandstone, and 

can range in thickness from 0.05 to 0.5 centimetres (Figure 4-2). In places the 

parallel lamination is very fa in t and somewhat indistinguishable. This is partly due to 

the thin and faint nature o f the laminae in many sections of the sequence. Within 

individual beds, a change from thick, distinctive laminae upwards into thin, faint 

laminae commonly occurs. In many of the beds, especially higher in the section, the 

laminae have a wavy or undulating appearance. This type of parallel laminated 

sandstone bed is similar to quasi-planar laminated sandstone beds described by Arnott 

(1993), from the Lower Cretaceous Bootlegger Member of Montana.

Lateral variations exist in some of the parallel laminated sandstone beds. Many of 

the beds thin and thicken laterally, others exhibit greater variations. For example, a 

bed consisting of parallel laminated medium-grained sands laterally becomes more 

wavy, or hummocky-like in appearance. The wavy, or hummocky-like, laminated 

portion subsequently is laterally truncated from above, the cut filled with a massive

I
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siltstone layer. Many of the beds, laterally pass from parallel lamination into 

lamination which is slightly wavy.

Within many non-graded and graded very fine- to fine-grained sandstone beds, 

laterally discontinuous layers (0.5 cm wide) of very fine-grained silt are present. 

These layers are somewhat contorted in appearance. Other beds also contain isolated, 

discontinuous layers of siltstone or mudstone. Sporadic, rare, isolated lenses are also 

present in a small number o f beds. Lenses filled w ith very coarse-grained sandstone 

are rarely present at the base of sandstone beds. One bed contains mud drapes over 

ripples in its upper 2.0 centimetres.

Many boundaries between beds are erosive and irregular. Scours into the tops of 

beds are usually filled with material from the overlying bed. A t some contacts the 

material infilling the scours is massive, at others it appears parallel laminated. Load 

casting is also very common, especially when a medium - to coarse-grained basal 

portion of a bed is involved.

One of the non-graded parallel laminated sandstone beds passes upwards intb an 

interlayered sequence of coarse-grained and fine-grained layers. The coarser-grained 

layers dominated, and average 0.5 centimetres in thickness. Another bed is topped 

by a series o f vertically stacked troughs, infilled with medium-grained sandstone. The 

transition from the parallel laminated fine-grained sandstone base of the bed to the top 

dominated by troughs is erosively scoured. A 8.5 centimetre thick very fine-grained

120
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sandstone bed grades upwards into a thin, massive siltstone top. The transition from 

the parallel laminated portion of the bed into the massive top is marked by a number 

of small scours, infilled by the massive siltstone. The presence of internal scours 

between the parallel laminated sandstone base and siltstone top is present in a small 

number of beds.

A 15.0 centimetre thick bed is composed of a massive medium-grained sandstone 

base, which passes upwards into a portion which is parallel laminated. The 

abundance and thickness of individual laminae increase upwards w ith in the parallel 

laminated portion. A t the transition between the massive and parallel laminated 

portions, small isolate mud flasers are present. The entire bed is* topped by a 1.5 

centimetre thick massive siltstone layer, containing discontinuous coarse-grained sand 

laminae. This is repeated in two other beds, 10.5 and 14.0 centimetres in thickness. 

The 10.5 centimetre thick bed also contains isolated lenses filled w ith coarse-grained 

sand at its top. Lateral transitions are present in the 14.0 centimetre th ick bed. In 

this bed, there is a lateral change from a massive base into a parallel laminated base.

Massive Sandstone Beds

Massive graded and nongraded sandstone beds vary in thickness from 1.5 to 15.5 

centimetres, with an average of 6.0 centimetres (Figures 4-1 &  4-3). As w ith the 

parallel laminated sandstone beds, grainsize ranges from coarse- to very fine-grained 

sand. Medium-grained sandstone appears to dominate. The graded beds fine

I ' l l
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FIGURE 4-3 Massive, nongraded sandstone bed, 
overlain by a faintly parallel laminated 
sandstone bed - lower portion of 
photograph.
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upwards from a coarse-grained base into a very thin, massive fine-grained siltstone or 

mudstone top. One bed contains mud rip-ups in its bottom two centimetres. In some 

of the beds, the coarse-grained base was observed to thin and thicken laterally. 

Rarely beds have a very coarse-grained base.

Similar to the parallel laminated beds, the massive sandstone beds exhibit lateral 

variations. Some beds thicken or thin laterally, but others exhibit more complex lateral 

changes. Two very fine-grained sandstone beds widen laterally into thicker lenticular 

bedded units overlain by massive siltstones. The lenticular bedding then passes 

laterally into a ripple laminated sandstone overlain by siltstone. Occasionally, other 

beds will laterally pass into a finer-grained, thinly parallel laminated portion. Near the 

base of the sequence, there are two massive fine-grained sandstone beds tha t show 

lateral transitions into lenticular bedding.

Irregular contacts between massive sandstone beds and adjacent beds are 

common. Usually the irregular contacts simply consist of load casting. In the 

remaining beds which show no irregular contacts, there are sharp and distinctive 

contacts between beds.

Isolated lens are also commonly present in the massive sandstone beds. Lenses 

are typically filled w ith  coarse-grained sand. Discontinuous layers of fine-grained 

siltstone or mudstone are common. These layers average 0.3 to 0.5 centimetres in 

thickness. Rarely, the thicker non-graded beds will be cut by numerous laterally

I
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discontinuous layers of fine-grained to medium-grained siltstone, averaging 0.5 

centimetres in thickness. Internal scours infilled with parallel laminated fine- to 

medium-grained sandstone are rarely present.

Hummockv Cross-Stratified Sandstone Beds

The upper portions o f the offshore sequence are characterized by the presence of 

hummocky cross-stratification within individual beds (Figures 4-4 & 4-5). Hummocky 

cross-stratification (HCS) was first named and described by Harms et. a/. (1975) and 

consists of antiformal hummocks and synformal swales defined by randomly oriented, 

even lamination w ith dip angles and truncation angles of < 15° (Dott and Bourgeois, 

1982).

An idealized hummocky sequence (Figure 4-6) has been proposed by Dott and 

Bourgeois (1982), and includes the following zones; a hummocky zone, flat laminae 

zone, cross laminae zone, and mudstone zone. A number of deviations from this 

idealized sequence have also been described by Dott and Bourgeois (1982), and are 

illustrated in Figure 4-6. Less common variations include units that commence vyith 

flat-lamination (Dott and Bourgeois, 1982).

Walker at. a!., (1983) have presented a modified idealized hummocky cross

stratified sequence (Figure 4-7). This sequence contains the following divisions: B -

I <25
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FIGURE 4-4 Hummocky cross-stratification interbedded with 
massive, siltstone layers.

FIGURE 4-5 Close-up view of hummocky cross-stratification 
from the study area.
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FIGURE 4-6 Idealized sequence o f hummocky stratification 
from Dott and Bourgeois (1982), w ith common 
variations.
H - hummocky zone 
F - fla t laminae zone 
X - cross laminae zone 
M- mudstone zone.
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FIGURE 4-7 Modrfied hummocky cross-stratified sequence 
from Walker ef. aL (1983).
M - mudstone 
X - ripple cross lamination 
F - 'f la t ' lamination 
H - hummocky cross-stratification 
P - planar parallel lamination 
B - basal division
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basal division, P - planar parallel lamination, H - hummocky cross-stratification, F - 

'fla t' lamination, X - ripple cross lamination, and M - mudstone. As w ith  Dott and 

Bourgeois' (1982) sequence, the modified sequence of Walker et. aL, (1983) 

commonly has missing divisions, such as the absence of the fla t laminated (F) and 

ripple cross laminated (X) divisions. The hummocky cross-stratified sequences in the 

current study w ill be compared to the idealized and modified sequences of Dott and 

Bourgeois (1982) and Walker at. aL, (1983).

Thicknesses of hummocky cross-stratified beds ranges from 3.5 to 22.0 

centimetre, w ith an average of 8.5 centimetres (Figure 4-8). The beds present in the 

study area consists o f packages of thin layers of HCS interlayered w ith  massive and 

parallel laminated siltstone and sandstone layers (Figure 4-9). Grainsize within the 

hummocky cross-stratified layers varies from very fine- to fine-grained sandstones. 

Individual laminae w ith in the hummocky cross-stratified layers are thin, becoming even 

thinner over hummocks and thicker within the swales. Beds containing hummocky 

cross-stratification are laterally persistent for the width of the outcrop (2 metres).

The interlayered packages of layers of hummocky cross-stratification w ith  layers of

siltstone and sandstone, forms the following three sequences;

top: massive siltstones and mudstones 
middle: hummocky cross stratification 
bottom: parallel laminated sandstones

top: massive siltstones and mudstones 
bottom: hummocky cross stratification

j *32
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FIGURE 4-8 Hummocky cross-stratification

FIGURE 4-9 Interlayered association of very thin 
hummocky cross-stratified units with 
massive and parallel laminated 
sandstone and siltstone layers.
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FIGURE 4-10 Generalized depiction o f the three interlayered 
sequences of hummocky cross-stratification 
typically found in the study area.
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top: hummocky cross stratification 
bottom: parallel laminated sandstones

Almost all hummocky cross-stratified beds in the study area are composed o f one of 

these three sequences. Figure 4-1 Oa,b,c illustrates the three sequences. The parallel 

laminated layers contain laminae that are between 0.1 - 0.4 centimetres in thickness. 

Laminae tend to become thinner and fainter when moving up through the bed. The 

massive layers are typically graded. A t times, the massive layers also appear very 

faintly and thinly laminated. The lamination in the massive layer tends to be 

discontinuous and isolated. An overall fining upwards trend is usually present in the 

hummocky cross-stratified beds.

The three sequences resemble those described by Dott and Bourgeois (1982) and 

Walker et. a!., (1983). The sequence shown in Figure 4-1 Ob, is somewhat similar to 

Dott's and Bourgeois' (1982) sequence (Figure 4-6) w ith the X zone missing. The 

other two sequences w ith parallel lamination at the base resemble variations of the 

modified idealized sequence of Walker a t a!., (1983) (Figure 4-7).

Many of the transitions between the underlying layers o f parallel laminated 

sandstones and the layers of hummocky cross-stratification, and overlying layers of 

massive siltstone are smooth and gradual. In one bed, the layer of hummocky cross

stratification is abruptly truncated and overlain by a draping, discontinuous layer of 

mudstone. In two beds, at the transition between the hummocky cross-stratified layer 

and the overlying massive layer, small scours are present. The scours are infilled by

I3T
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thinly laminated medium- to coarse-grained siltstone.

The basal portion of the hummocky cross-stratified beds are typically composed 

of very fine- to fine-grained sandstone. This portion may be parallel laminated. There 

is generally a decrease in grainsize upwards, especially when the layer o f hummocky 

cross-stratification is topped by a layer of massive fine-grained siltstone or mudstone.

One of the stratigraphically lower hummocky cross-stratified beds contains mud 

rip-up clasts in its basal 2 .0  centimetres. An 8.0 centimetre thick bed contains mud 

rip-ups at its top which are overlain by a very thin layer of massive fine-grained 

siltstone.

The hummocky cross-stratified beds are usually interbedded with massive and 

parallel laminated siltstone and mudstone and sandstone beds. Boundaries between 

hummocky cross-stratified beds and other beds are typically sharp and distinct. 

Occasionally, load casting can be found at both the top and bottom of hummocky 

cross-stratified beds.

A small number (2) of hummocky cross-stratified beds do not exhibit the three 

previously described sequences. These beds appear to be entirely hummocky cross

stratified. There are no massive siltstone layers overlying the hummocky cross

stratified layer within the bed. Parallel laminated fine-grained sandstone layers that 

compose the base are also not present. The two beds average 2.0 centimetres in

I5Ô
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thickness. One bed immediately overlies the other bed. The contact between the two 

beds is sharp.

SILTSTONE AND MUDSTONE LITHOFACIES

Parallel Laminated Siltstone and Mudstone Beds

Parallel laminated siltstone and mudstone beds appear to increase in abundance 

towards the top of the section (Figure 4-11). Bed thickness vary from 2.0 to 19.0 

centimetres, w ith an average thickness of 6.0 centimetres. Grainsizes range from 

coarse-grained siltstone to mudstone and beds may be either graded or non-graded. 

Many of the graded beds fine upwards from a coarse- or medium-grained siltstone 

base into a mudstone top. In a small number of beds there is a thin fine-grained 

sandstone base which may thin and thicken laterally. The mudstone top is generally 

massive.

As w ith the parallel laminated sandstone beds, in places the laminae are very faint 

and thin. Laminae are 0.1 to 0.2 centimetres thick. In many o f the beds, the laminae 

will appear somewhat wavy, again similar to some parallel laminated sandstone beds. 

Rarely, laminae will increase in abundance towards the top of the bed, or become 

discontinuous and localized.

I5R
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FIGURE 4-11 Interbedded association of massive and 
parallel laminated siltstone and mudstone 
beds.
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Small scours are found at the top of a small percentage o f beds. These scours 

are filled with a fine-grained sandstone at their base, which fines upwards into a 

mudstone. Isolated lenses filled with fine- to coarse-grained sandstone are found in 

many of the beds. Load casting is also found along the top and the bottom of a 

single bed.

Lateral and vertical transitions within individual beds are uncommon. Vertically, a 

bedmay pass from a thin, massive, coarse-grained siltstone base into a parallel 

laminated siltstone middle, and back into a massive fine-grained siltstone top. A few 

beds show an upwards transition into a small series of interlayered fine- and coarse

grained layers near their top. There is also very little lateral variation, w ith in beds. The 

beds that do show lateral variations only thicken and thin laterally.

Massive Siltstone and Mudstone Beds

The massive siltstone and mudstone beds are dominated by fine- to coarse-grained 

siltstone (Figure 4-12). Bed thicknesses range from 1.5 to 22.0 centimetres. The 

average thickness is 5.8 centimetres. The vast majority of beds are non-graded, with 

only twelve of the beds exhibit grading. The graded beds fine upwards from a coarse

grained siltstone base into a mudstone top.

Lateral variations within beds exist. One bed passes laterally into a series of small, 

vertically stacked troughs. The troughs are filled w ith a massive, non-graded, fine-

I
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Figure 4-12 Massive very-fine grained siltstone beds
interbedded with hummocky cross-stratification.
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grained sandstone. In another example, the coarse-grained base of a bed pinches out 

laterally and is replaced by the finer-grained top portion of the bed. The top 2.0 

centimetres of another bed passes laterally into parallel laminated fine-grained 

siltstone.

Many of the beds contain isolated lenses of fine-grained sandstone to coarse

grained siltstone. The lenses are concentrated in either the top or bottom portion of 

beds and are commonly parallel laminated. Rarely, lenses will be found scattered 

randomlythroughout an entire bed. One bed contains a string of elongate lenses near 

its base. These lenses are internally parallel laminated. Laterally, the lenses 

consolidate, forming a continuous parallel laminated layer. In a 6.0 centimetre non- 

graded bed, a string of cross-laminated lenses along the base of the bed resembles 

asymmetrical ripples. Laterally discontinuous layers of very fine- to fine-grained 

sandstone are also common. One bed contains small internal scours filled with 

medium-grained sandstone. The scours are truncated laterally and the cut filled by 

massive mudstone. Internal scours infilled w ith very fine-grained sandstone are rarely 

present.

Boundaries between the massive siltstone beds and sandstone beds are usually 

sharp and distinct. Occasionally though, load casting into the uppermost portion of 

the siltstone bed will occur. Infilled scours are also present at the top of individual 

beds.
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Thin beds of massive mudstone are also present, interbedded with the slightly 

coarser-grained massive siltstone beds. The mudstone beds average 1.75 centimetres 

in thickness.

\

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER FIVE -  OFFSHORE ENVIRONMENT - LITHOFACIES ASSOCIATIONS

The presence of an offshore depositional environment within the Shebandowan 

Group was discussed by Rezka (1987), Fralick and Barrett (1991 ), and Eriksson et. aL 

{1994). Lithofacies associations within the offshore environment are simple. The vast 

majority of the environment consists of interbedded hummocky cross-stratified, 

parallel laminated and massive sandstone, and parallel laminated and massive 

siltstone. The succession exhibits a fining upwards trend from abundant parallel 

laminated and massive sandstone beds in the lower portion of the sequence compared 

w ith the dominance of siltstone beds in higher portions.

Figure 5-1 shows the relative positions of the sections illustratéd in Figures 5-2, 

5-3, and 5-4. The transition from predominantly sandstone beds in the proximal 

portion to siltstone beds in the distal portion is also discernable in Figure 5-1.

The transition into the offshore sequence and approximately the firs t 3.0 metres 

of this sequence is shown in Figure 5-2. This represents a portion of the transition 

zone from the shoreface to the offshore environment and is dominated by parallel 

laminated, wavy laminated and massive sandstone beds. Wavy laminated beds 

increase in abundance upsection and medium-grained sandstone beds present in the 

lower portion of the section become finer-grained towards the top of the section. The 

massive and parallel laminated sandstone beds are randomly interbedded w ith  each 

other. The transition out of the shoreface sequence is marked by interbedded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 5-1 Generalized stratigraphie section depicting the 
relative positions and average grain size of the 
offshore, tidal, and shoreface depositional 
environments. Positions of detailed stratigraphie 
sections (Figures 5-2 - 5-4) from the offshore 
environment are indicated. All sections are from 
outcrop 1.
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FIGURE 5-2 Shoreface to offshore transition zone and 
proximal offshore environment
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herringbone cross-stratified and parallel laminated sandstone beds. The number of 

parallel laminated beds increases when moving upwards through this transition. 

Immediately above this transition, is a small number of massive siltstone and 

mudstone beds interbedded w ith  the sandstone beds. This association dominates the 

lower 0.5 metres of the offshore sequence.

Figure 5-3 is a continuation of Figure 5-2, and is higher up in the offshore 

succession. This 5.3 metre section depicts the transition from a sequence dominated 

by fine-grained sandstone beds, into one that is dominated by massive and parallel 

laminated siltstone and mudstone beds. As with the 3.5 metres depicted in Figure 5- 

2, there is an overall fining upwards trend. The amount and grainsize of sandstone 

beds decreases upwards through the section. Inversely, the amount of 

siltstone/mudstone beds increases upwards. Again, the parallel laminated and massive 

sandstone beds and the siltstone/mudstone beds are randomly interbedded.

The 7.0 metre section shown in Figure 5-4 contains the majority of the hummocky 

cross-stratified beds that are present in the offshore environment. These beds are 

randomly interbedded with the siltstone and sandstone beds that comprise the 

remainder of the section. The majority of hummocky cross-stratified beds are present 

between 83.0 to 84.0 metres. In this small interval, there is very little interbedding 

of the HCS beds and the sandstone and siltstone beds. Instead, beds containing 

hummocky cross-stratification are vertically stacked on top of one another. Following 

the 84.0 metre mark, only one more hummocky cross-stratified bed is present w ithin

I . isz
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FIGURE 5-3 Offshore environment
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FIGURE 5-4 Distal offshore environment
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FIGURE 5-4
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the section (Figure 5-4).

Massive and parallel laminated mudstone, siltstone and sandstone beds are, 

interbedded with the hummocky cross-stratified beds. The siltstone beds dominate 

over the rarer sandstone beds. A decrease in the grainsize of the siltstone beds 

occurs from the bottom of the section to the top. Coarse-grained siltstone beds 

dominate in the bottom portion o f the section and are transitional upwards into 

medium- to fine-grained siltstone beds near the top.

1ST-
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CHAPTER SIX -  DISCUSSION

INTRODUCTION

The study area represents an unique opportunity to reconstruct the processes 

active on a Neoarchean tidal flat and its adjacent storm-dominated, offshore area. It 

also facilitates investigation of a shoreline under both a strong tidal and storm-wave 

influence. Similar changes in influences affecting depositional conditions have been 

described by Soegaard and Eriksson (1985), Simpson and Eriksson (1990), and 

Colquhuon (1995), while other authors have documented the transition from the tidal 

to offshore environment (Simpson, 1991; Hein, 1987).

Figure 6-1 represents a typical cross-section of the environments under 

consideration. The following discussion of depositional controls and processes will 

involve all of the environments present in a transect from the tidal environment to the 

storm-dominated offshore environment.

TIDAL ENVIRONMENT

The nature of deposition in the tidal environment is intimately related to the activity 

and processes o f tides and tidal currents. Tides are periodic and predictable 

fluctuations in water level along a coastline. They are generated by the gravitational 

attraction between the earth, the moon and the sun. This section will briefly discuss 

the generation of tides and tidal currents, but detailed and excellent discussions can 

be found in: Komar (1976), Open University Course Team (1989), Nio and Yang 

(1991), Dalrymple (1992), and Friedman e t aL (1992).

I
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FIGURE 6-1 Cross-section illustrating the positions of
the three depositional environments present 
in the current study. The three environments 
are; tidal,

shoreface, and 
offshore.

The locations of Figures 6-4, and 6-5 are also 
indicated.

is R
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On the earth, water bulges form as a result of the gravitational attraction between 

the earth, the moon, and the sun. Since the moon is considerably closer to the earth 

than the sun it exerts the greater gravitational influence even though its mass is less. 

Two water bulges are present, on opposite sides of the earth. As the earth rotates, 

the bulges appear to travel around the earth as two distinct 'tida l waves', which cause 

water levels to rise and fall regularly. The rising of water levels is known as the flood 

tide, the falling of water level is the ebb tide. Between episodes o f flood and ebb tides 

are periods of water stand-still, known respectively as the flood (high-water) and ebb 

(low-water) stand-stills. This cycle o f rising and falling water gives rise to the tidal 

currents responsible for sediment transport and generation o f sedimentary structures 

commonly associated w ith a tidally-influenced coastline. The difference between 

mean low water and mean high water is known as the tidal range.

The relative positions o f the sun, the moon, and the earth during the lunar cycle 

produce predictable differences in the range of tidal fluctuations w ith the periodicity 

of a lunar month (Davis, 1992). A t the new and full moon, the three celestial bodies 

are in syzygy, and tidal ranges are at their greatest, this is a spring tide. When the 

moon is at right angles to the sun and earth, the tidal range is at its lowest, and is a 

neap tide. The period from a neap to spring tide is known as the neap - spring tidal 

cycle. There are fluctuations in tidal current velocities that are associated with the 

neap - spring tidal cycle.
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Storm Tides (Storm Surge)

Occasionally water levels will fluctuate from predicted levels. These fluctuations 

are generally related to weather events causing higher, and rarely lower, than normal 

water levels. If a storm surge, storm tide comes during the high-tide portion of the 

tidal cycle, especially during a spring tide, considerable sediment movement can occur 

as velocities are abnormally high. This results in a change in the nature of depositional 

features already present in the environment.

In general, many o f the bedforms that are produced by tidal activity are similar to 

those that are produced by unidirectional flows. A key difference though is the 

reversing nature of tidal currents, and the alternating periods of strong current activity 

and slack water which w ill result in the production of bedforms and structures that are 

not typical of other depositional environments. This is observed in the sedimentary 

structures and features that are present in the study area resulting in the interpretation 

that the shoreline was dominated by tidal current activity. This activity, coupled with 

the storm activity which was also prevalent in the area, has resulted in the formation 

of distinctive lithofacies.

Tidal Flat Sub-Environment

Sedimentation in the tidal flat sub-environment is governed by changes in both 

current velocity strength and direction during a single, tide and neap - spring tidal 

cycles. Over a single tidal cycle, there are tw o stages of high current velocities

IÜ2
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associated with the incoming flood and outgoing ebb tides, with subsequent episodes 

of water stand-still. Changes in current direction and strength are responsible for the 

deposition of lithofacies considered characteristic of the tidal fla t sub-environment. 

These lithofacies are; flaser, wavy, and lenticular bedding, as well as coarsely 

interlayered bedding. All lithofacies are interbedded w ith each other within the tidal 

flats. The origin of these lithofacies can be related to variations in current velocity 

strength, such as conditions of tidal current activity depositing sand-rich lithofacies 

(high-energy), alternating w ith slack water (low energy/quiescence) conditions when 

mud-rich lithofacies are deposited (Reineck and Singh, 1975). The sequence in which 

lithofacies are deposited can also reflect changing current velocities associated with 

the neap - spring tidal cycle. Availability of sediment also plays an important role in 

the origin of these lithofacies. Deposition in the tidal fla t sub-environment will be 

discussed in relation to these changes in velocity strength. A continuum of lithofacies 

from high to low velocity conditions would be as follows: massive and parallel 

laminated sandstones -* flaser bedding -*■ wavy bedding -* lenticular bedding -*> 

coarsely interlayered bedding -*■ parallel laminated and massive siltstones -* 

mudstones. All of the listed lithofacies will be discussed, but not necessarily in this 

order.

The conditions required for the genesis of flaser, wavy, and lenticular bedding are 

adequately described and illustrated by Reineck and Singh (1975). Generation of 

these lithofacies can be treated as a continuum from flaser to wavy to lenticular

I
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bedding; dependant upon the availability of either sand or mud, and current velocities. 

Flaser bedding forms when conditions are more favourable for the deposition and 

preservation of sand than mud, and current velocities are high. The genesis of wavy 

bedding requires conditions where the deposition and preservation o f both sand and 

mud are possible (Reineck and Singh, 1975). Lenticular bedding is produced under 

conditions more favourable for the deposition and preservation of mud than for sand 

and when current velocities are low.

Statistical analyses of transitions in vertical sequences (explained, in Appendix 1 ) 

were performed on stratigraphie sections from the three tidal flat sub-environments. 

This method of statistical analysis is similar to Markovian-chain analysis and is 

discussed by Schenk (1975). The end result o f this statisitcal analysis was the 

determination of high positive values for transitions between lenticular, flaser, and 

wavy bedded units (values are shown in the random and non-random transition 

matrix). These values indicate that transitions between the three bed types are not 

random, but in fact are related to changing current velocities, as well as the availability 

of either sand or mud. Figure 6-2 depicts a vertical sequence in one of the tidal flats. 

Statistical analysis of this vertical sequence is also shown. In Figure 6-2, a nunriber 

of transitions between flaser, wavy, and lenticular bedding are shown. Transitions 

from lenticular into wavy bedding were brought on by increasing current velocity 

related to either the flood or ebb tidal currents. Associated w ith the increasing current 

velocity was the ability of the current to transport sand, resulting in the formation of 

wavy bedding instead of lenticular bedding. Likewise, a change from wavy bedding

j (0,4
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FIGURE 6-2 Vertical sequence through a portion of the 
tidal flat sub-environment. The lithofacies 
are;

1 a) massive sandstone,
1 b) parallel laminated sandstone,
2) flaser bedding,
3) wavy bedding,
4) lenticular bedding,
5) coarsely interlayered bedding,

6a) massive siltstone,
6b) parallel laminated siltstone,
7) mudstone.

Statistical analyses of transitions between the 
lithofacies are also shown. The three matrices 
are;

1) upward transition matrix,
2) predicted random transition matrix,
3) matrix showing transitions which occur 

more or less commonly then if random;
positive value - common, non-random 
negative value - random.
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t
into flaser bedding Is generated by a similar situation. In th is case, the current 

velocities were sufficient to transport large amounts of sand, erode away the majority 

of mud and deposit a predominantly sand-rich layer.

Transitions between beds brought on by a decrease in tidal current velocities are 

also present in the sequence depicted in Figure 6-2. Flaser bedding passing upwards 

into lenticular bedding is a reflection o f waning current velocities. Associated with 

diminishing tidal current velocities is the ability of the current to  transport sand. As 

a result, there is also a decrease in supply of sand to the system resulting in the 

formation of sand-poor lithofacies such as lenticular bedding.

As depicted in Figure 6-2, as well as in many figures in Chapter 3, transitions 

between flaser and lenticular bedding are abundant. These transitions can either be 

from flaser Into lenticular bedding or inversely, lenticular into flaser bedding. In the 

statistical analysis, these transitions consistently had the highest positive values in all 

three tidal flats, indicating that transitions between the two types of bedding are non- 

random and very common. This reflects that velocity changes in the tidal flat sub

environments of the study area most likely result in the formation o f lenticular bedding 

if flaser bedding has formed and current velocity and sediment supply has decreased. 

Similarly, the odds are greater for flaser bedding to form if lenticular bedding has been 

deposited and velocity and sediment supply is increasing.

Occasionally there will be a series o f vertically stacked beds all consisting of the

1 IteZ
I
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same bed type. Such a series occurs near the top of Figure 6-2, where three wavy 

bedded units are vertically stacked. In cases such as this, there has been no or very 

limited changes in either sediment supply and maximum current velocities have 

remained consistent during deposition of these beds.

Interbedded with the flaser, wavy, and lenticular beds are units of coarsely 

interlayered bedding. This type of bedding is formed by the alternation of tidal current 

bedload transport with suspension settling during slack water periods. The sand 

layers were deposited during periods of either flood and ebb current activity. The mud 

was deposited during stand-still phases of the flood and ebb tides. As w ith wavy 

bedding, coarsely interlayered bedding requires conditions in which the deposition and 

preservation of both sand and mud are possible. In the case of coarsely interlayered 

bedding though, flow conditions are not sufficient for the formation of ripples. 

Dalrymple (1992) has stated that tidal currents which are too slow to produce ripples 

may still deposit thin sand layers from suspension that alternate w ith mud laminae. 

In Figure 6-2, an upward passage from flaser bedding into coarsely interlayered 

bedding reflects this decrease in current velocity. Statistical analysis has also shown 

that transitions between lenticular, flaser, and wavy bedding and coarsely interlayered 

bedding are non-random events.

Also present in the tidal environment are numerous massive and parallel laminated 

mudstone, siltstone and sandstone beds. These lithofacies are interbedded w ith the 

flaser, wavy, lenticular, and coarsely interlayered bedding. The presence of thin fine

I
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grained siltstone to mudstone layers overlying many of these lithofacies represents 

periods of quiescence and low current energy, when the fine-grained material held in 

suspension settled out.

The presence o f sandstone and siltstone beds interbedded w ith  other lithofacies 

has been observed by other authors {Klein, 1975; Driese et. a!., 1981; Terwindt, 

1988) in a number of tidal environments, but especially the mixed fla t or intertidal 

zone. Although interbedded sandstone and siltstone sequences have been observed 

by numerous authors, there is still no definitive answer concerning their genesis in the 

tidal environment. A few  suggestions may be made regarding their formation: 1 ) they 

represent end-members in the depositional continuum from flaser to coarsely 

interlayered bedding. The parallel laminated and massive sandstone beds are the next 

stage of deposition w ith increasing current velocity after flaser bedding; in this case, 

presence of a mud layer is eroded out by either the flood or ebb tide, so that not even 

small mud flasers are le ft as evidence of deposition from suspension processes. The 

opposite occurs in the formation of the parallel laminated or massive mudstone and 

siltstone beds, which represent the lowest velocity stage after the formation of 

coarsely interlayered bedding. It could also be postulated that the presence of either 

the mudstone and siltstone beds, or the sandstone beds represents periods of limited 

sand or silt supply to the overall depositional system. This possibility also explains the 

presence o f gradational boundaries between flaser, lenticular, w avy and coarsely 

interlayered bedding, and the mudstone, siltstone and sandstone beds; 2) individual 

beds represent storm deposits, this possibility will be discussed in the section on

1
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storm processes; 3) the beds formed as levee-like deposits.

The parallel laminated and massive sandstones represent the highest velocity 

conditions on the tidal flat. Stronger current strengths were required to move the very 

fine- to medium-grained sands that comprise these beds. Statistical analysis has 

shown that beds are usually randomly interbedded with flaser, wavy, lenticular, and 

coarsely interlayered bedding. This is highly suggestive of chaotic emplacement of 

these beds, probably related to radical environmental changes such as storm activity, 

although there appears to be no cyclicity to the occurrence of storm-emplaced 

sandstone beds. The parallel lamination and grading reflects deposition in the upper 

flow regime and during waning flow  respectively. Other beds, as described in the 

previous paragraph probably were deposited as a result of increasing current velocities 

with the flood or ebb tides.

Parallel laminated and massive siltstone beds were generally deposited under 

conditions when current velocities of the ebb and flood phases of the tidal cycle were 

almost at their lowest. In fact, only lower flow  velocity conditions are represented by 

the presence of sporadic massive mudstone beds. The deposition of these beds 

represents periods o f high- and low-water stand-stills associated with both the ebb 

and flood tides.

Interbedded massive beds may be the result of liquefaction brought on by rapid 

deposition. Liquefaction of deposited sediment is also responsible for the formation

I
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of the sporadic convolute beds. During subaerial exposure of the sediment surface at 

low tide, compaction of sediment from the expulsion of water produces local 

liquefaction of sediment, which results in the development of convolutions (Reineck 

and Singh, 1975). Convolute beds formed by liquefaction have been observed on the 

steeper slopes of sand bars in tidal environments (Wunderlich, 1970). Liquefaction 

has also probably resulted in the formation of convolute bedding in the tidal 

environment of the study area.

Although many of the boundaries between beds are sharp and distinct, there are 

also gradational boundaries present. Gradual passages between lithofacies are another 

indicator of the importance that varying flow  conditions play in the development of the 

tidal flat sub-environment. The gradual transitions are indicative o f changes in flow  

velocities and availability of either sand or mud during deposition o f individual beds. 

For example, the gradual transition from coarsely interlayered bedding into flaser 

bedding may indicate an increase in availability of sand within the environment and 

higher current velocities. Similarly, the gradual transition from flaser to lenticular 

bedding signifies that the amount of available sand and current velocities have 

decreased.

Klein (1975) has noted that different associations of bedforms and lithofacies 

occur, depending on the relative concentration of sand or mud and the relative 

duration of the bedload or suspension style of deposition. These differing lithofacies

i
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associations can be clearly seen in Figures 3-2 to 3-8 Chapter 3, which are 

representative o f tidal flat sequences. In these associations, flaser, lenticular and 

wavy bedding are interbedded and interlayered, demonstrating variability in the 

concentrations of sand and mud in the environment; as well as degrees o f current 

activity. The presence of the interbedded and interlayered sequences of lenticular, 

flaser, wavy, and coarsely interlayered bedding indicates that deposition occurred in 

the intertidal zone of the tidal flat, otherwise referred to as the mixed tidal fla t (Davis, 

1992) or the mid-tidal flat of Klein (1975). Klein (1975) described the mid-tidal fla t 

as an area containing coarser sediment w ith careful segregation of nearly equal 

volumes of mud and sand arranged into lenticular, flaser, wavy, and tidal bedding, and 

goes on to state that there is an equal amount of bedload and suspension deposition. 

These associations record quickly changing depositional conditions.

Most importantly, the interbedding of lithofacies reflects that deposition in the tidal 

flat sub-environment was dominated by tidal current activity with fluctuating velocities 

throughout the neap-spring tidal cycle, giving rise to the myriad of sedimentary 

structures and features present. Velocities changed rapidly over a short period of time 

on the tidal flat, and these rapid changes are reflected in the distribution of lithofacies 

present in the tidal flat sub-environment.

As stated, the effects of fluctuating current velocities during an Individual neap- 

spring tidal cycle are reflected in the vertical distribution of lithofacies on the tidal fla t 

as it grows. Changing current velocities result in a somewhat predictable vertical

i? 2
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sequence of lithofacies deposited on the tidal flat. As the current increased in velocity 

during the neap - spring cycle towards the spring tide, lithofacies that reflected 

increasing current velocities were deposited. One example of this is the progression 

from lenticular to wavy to flaser bedding at the base of the sequence mimicking a 

similar increase in current velocity. Then as the cycle progressed towards the neap 

tide, a decrease in current velocities occurred, which was matched by deposition of 

lithofacies associated w ith progressively decreasing velocities. This is shown at the 

top of the sequence, where there is an orderly progression from flaser to wavy into 

lenticular bedding. The cyclical nature present in the vertical sequence of lithofacies 

from the tidal fla t sub-environment can be expected of and is characteristic of 

deposition in the tidal environment.

Changes in the vertical distribution o f lithofacies are also related to sediment 

supply. The amount o f sediment supplied to the system may reflect seasonal changes 

which result in either a decreased or increased sediment supply to the depositional 

environment. Sediment supply may possibly have also been associated with volcanic 

activity in the area. During periods of active volcanism, sediment supply ware greater, 

while during inactive periods there was a decreased amount of sediment present irvthe 

system. Further w ork is needed to study these possibilities.

Tidal Flat and Tidal Channel Sub-Environment Transitions

Transitions into and out of the two tidal channels are marked by sequences of 

interbedded massive and parallel laminated mudstone, siltstone and sandstone. Many

1
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of the sandstone beds exhibit normal grading, indicative of the effects of waning 

current activity. The interbedded sequences represent possible levee-like deposits, 

with the sandstone beds transported as bedload material and deposited during 

episodes of high current activity, and the siltstone beds deposited during periods of 

quiescence from fine-grained material held in suspension. Interbedded sequences 

similar to those from the study area have been described by a number of authors. 

George (1994) has reported the presence of parallel laminated sandstone beds in 

channel-margin deposits o f tidal channels. Driese et. al. (1981) recorded the presence 

of horizontally laminated sandstone, siltstone, and shale, and stated that this 

represented deposition on tidal flats adjacent to tidal channels. Klein (1975) has also 

stated that interbedding o f sandstones and mudstones is a common feature of tidal 

flat environments, particularly where intertidal fill consists of sands. In the study area 

it is also possible that the interbedded sequences adjacent to the tidal channels 

represents infilling of an abandoned channel, but this is speculative. A third possibility 

is that the interbedded sequences of sandstone and siltstone beds reflect deposition 

in small depressions adjacent to the tidal channels during high water episodes.

Tidal Channel Sub-Environment

Deposition in the tidal channel sub-environment is predominantly controlled by the 

tidal cycle and the variable flow  conditions associated w ith this cycle. With the 

incoming flood tide dunes or sandwaves on the channel floor migrate in the same 

direction, depositing flood-oriented foreset laminae. With the outgoing ebb tide, dune 

migration occurs in the ebb direction, and foreset laminae are now oriented in this
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direction. The bimodai nature of the tidal cycle results in the generation of 

herringbone cross-stratification, and is reflected in the tidal channel sub-environment 

of the study area.

The two tidal channels present in the study area exhibit an overall fining-upwards 

trend and are dominated by herringbone cross-stratified sandstones. The channels will 

be specifically referred to as the lower and upper tidal channels. The abundance of 

herringbone cross-stratification indicates that the depositional system was governed 

by an apparent lack of tidal asymmetry. Occasionally, the herringbone cross- 

stratification is interbedded with beds of planar cross-stratified sandstone. This 

interbedded association indicates periods of bimodai tidal current activity alternating 

with rarer episodes of unimodal tidal current activity which is dominant in either the 

flood or ebb current directions. Such an association most likely formed as the result 

of episodic storm activity in the area. The herringbone cross-stratified beds formed 

during normal fairweather conditions. The beds of planar cross-stratification formed 

from onshore-directed flows associated w ith storm activity. These flows would have 

moved water through the tidal channels. The presence of mud rip-ups at the base of 

some of the planar cross-stratified beds further indicates that these beds were 

emplaced by storm processes. A cessation of storm activity, and a resumption of 

normal fairweather processes saw the formation and deposition of herringbone cross

stratified beds once again.

Moving towards the top of the tidal channels, there is an increase in the number

I
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of beds of massive and parallel laminated siltstone. This overall fining-upwards trend

in the channels is the result o f channel abandonment and coincident infilling. The

fining-upwards trend is caused by waning and restricted current flows which result in

the settling of mud and silt out of suspension. The infilling of the channels indicates
*

that the channel mouths have become partially or completely blocked. As a result, 

water is restricted in its flow , or is no longer able to actively flow  into the channels, 

transporting and depositing sediment. Massive amounts of sediment moved by storm 

activity is most likely responsible for the blocking of tidal channel mouths.

Small erosive scours are found at the top o f both fining-upwards tidal channel 

sequences. These scours are filled with massive sandstone and siltstone. Both 

scours provide evidence for the reactivation o f infilled channels follow ing channel 

abandonment. The channels did not fill w ith sediment to the same level as the 

surrounding tidal flats, leaving small depressions on top of the channels. During 

periods of high-water, rivulets formed in these depressions. These small channels or 

depressions that the rivulets of water flowed in were eventually cut o ff from  water 

brought by the incoming tide and filled with sediment. One scour contains mud rip- 

ups and chips at its base. The mud chips were transported by tidal currents during 

the Inundation of tidal flats by high water and were redeposited in the tidal channel 

in a manner similar to tha t described by von Brunn and Hobday (1976) in the Early 

Precambrian Pongola Supergroup of South Africa.

Both channels lack many of the features o f the classical meandering and braided
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stream models. Most notably is the almost complete absence of point bar sequences 

found in meandering streams. Traditionally, tidal channels described in the literature 

for the Recent, Phanerozoic and Precambrian are meandering in nature. With the 

exception of one small, limited sequence of epsilon cross-bedding in one of the tidal 

channels, there is no evidence of point bar development in the tidal channels of the 

study area.

This small sequence of point bar development is found in the upper tidal channel 

(see Figure 3-11, Chapter 3). In this channel, planar cross-stratified beds are bounded 

by epsilon cross-bedded surfaces. This is evidence of limited point bar development 

on a curved reach of the tidal channel, and illustrates that there was slight meandering 

in one of the tidal channels.

As already pointed out though, the presence of point bar sequences is not the 

norm in the tw o tidal channels of the study area. In fact it is the lack of point bars; 

or the abrupt vertical changes typical of braided streams, that characterize the two 

tidal channels. The lack of point bar development, or any evidence o f lateral accretion 

indicates that the tidal channels were relatively straight. In many respects the 

sedimentary structures of the tidal channels resemble those o f the Nubia strata in 

southwestern Egypt. These strata also contain' sequences which cannot be easily 

interpreted in terms of the classical meandering or braided stream models (Klitzsch et. 

a!., 1979). The lower parts o f the sequences are composed of medium- to coarse

grained sandstone w ith planar cross-stratification which has been interpreted as fluvial

I
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in origin (Klitzsch et. a/., 1979). Although the sequences in the Nubia strata record 

unidirectional current flows, comparisons made w ith the tidal channel sediments of 

this study are valid. In both the Nubia strata and the current study, one is still looking 

at flow in channels which lack features of meandering or braided streams. Klitzsch 

at. al. (1979) have interpreted the channel fill deposits in the Nubia strata as having 

formed when sandwaves deposited planar cross-stratified sets in a channel w ith low 

sinuosity. Similarly, tidal channels In the study area represent bedform migration in 

both the ebb and flood directions along the floors of relatively straight tidal channels. 

Unidirectional fluvial sequences described by Fralick and Miall (1989) also have similar 

characteristics. The point bar sequence observed in the upper tidal channel represents 

a curved reach in that tidal channel.

It is also possible that the tidal channels represent portions of tidal inlet sequences. 

One problem though is the lack o f sedimentary structures and textures that would 

have been created by the lateral migration of a tidal inlet. There is also no evidence 

of any development of spit and spit-platform sequences that are commonly found in 

tidal inlet sedimentary deposits.

There is some similarity between units described by Kumar and Sanders (1974) for 

the Fire Island Inlet, and the channels in the current study. Structures described for 

the deep and shallow channels o f the Fire Island Inlet consisted of cross-stratification 

and parallel lamination respectively. The channelized portion of the inlet sequence is 

referred to as the inlet proper by Kumar and Sanders (1974) This sequence of

i? e
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structures is observed in both tidal channels of the study area, where herringbone 

cross-stratified sandstones pass upwards into parallel laminated, and massive, 

siltstones and sandstones. It is possible that the two tidal channels represent the inlet 

proper of a tidal inlet, and exhibit no development of spits and spit-platforms in the 

upper reaches of the inlet.

Two possible depositional situations are indicated by the tidal channels of the 

study area. Firstly, the tidal channels could represent deposition in the inlet proper of 

tidal inlet sequences. This possibility does not seem very likely though, when one 

considers the almost total absence of lateral accretion deposits in both of the tidal 

channels. Secondly, the two tidal channels simply represent relatively straight 

channels similar to those in the Nubia strata of Egypt, w ith the occasional curved 

reach. This second possibility is the most likely.

PALEOTIDAL RANGE

The excellent preservation of sedimentary structures allowed for the determination 

of a minimal paleotidal range. To do this, methods outline by Klein (1971), and 

Terwindt (1988) were utilized. Klein (1971) suggests to measure the distance from 

the base of herringbone cross-stratification, up through tidal bedding (interlayered 

sands and muds) to a muddy top (supratidal). In this case, since the supratidal is not 

well developed in the study area, a measurement from the base of herringbone cross

stratification filling a tidal channel to the boundary between the fine-grained top of a 

tidal flat and the coarse-grained base of the overlying tidal channel was made. This
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gave minimal tidal ranges of 3.5 and 3.3 metres for each tidal channel - tidal fla t 

sequence. The average minimal tidal range was 3.4  metres, which indicates a 

mesotidal environment. Mesotidal environments include those w ith  tidal ranges that 

vary between two and four metres.

SHOREFACE TIDAL SAND BODY

Bedload transport processes dominate in the shoreface tidal sand body which is

depicted in Figure 6-3. This area is analogous to the subtidal zone. The presence of

planar and trough cross-stratification in the shoreface zone has been noted by several

authors {Driese et. a!., 1981 ; Hein, 1987; Soegaard and Eriksson, 1985; Simpson and

Eriksson, 1990; Simpson, 1991; and Colquhuon, 1995). The formation of these

depositional features has been attributed to the migration of dunes and sandwaves in

the subtidal zone (Driese et. at., 1981). Simpson (1991) stated tha t the bedforms are

generated by relatively high current velocities during onshore-directed flow  produced

during initial coastal setup, or after cessation of storm conditions by the fair-weather

wave spectrum. The bedforms and depositional processes responsible for their

formation are similar to those described by Hein (1987) fo r the Gog Group o f the

southern Rocky Mountains; and Colquhuon (1995) for the Early Devonian Roxburgh

Formation of southeastern Australia.

I& 0
I
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FIGURE 6-3 Cross-section of the shoreface tidal sand body
showing the distribution of bedforms. References 
are also given for similar bedforms and facies in 
the shoreface environment described in the 
literature. Note that while unidirectional wave 
orbitals affect the bottom close to shore, in deeper 
water the orbitals no longer touch the bottom, 
allowing bidirectional tidal currents to dominate.
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The parallel laminated, fine- to medium-grained sandstone beds in the proximal 

portion of the sand body (Figure 6-3) are similar to the parallel laminated sandstone 

facies (Facies H) o f Colquhuon (1995) who interpreted it as representing wave swash 

in a relatively flat beach foreshore zone. However, the parallel laminated sandstones 

of the shoreface environment in the study area lack many of the features typical of 

beach sedimentation such as heavy mineral enriched laminae and truncated parallel 

lamination which dips seaward. Instead, the parallel laminated sandstones were 

deposited by high energy shoaling waves in the outer surf and breaker zones during 

fairweather conditions. This corresponds to the outer planar facies of Clifton et. a/., 

(1971), and are similar to laminated sandstones described by Hein (1987) who 

interpreted them as forming in the surf zone from shoaling waves. The parallel 

laminated beds in the shoreface, especially if they are graded, may also be the 

products of high-energy storm activity. Storm-generated parallel laminated sandstones 

have been found in a number of shoreface environments described in the literature 

(see Elliott, 1986).

The massive, structureless sandstones interlayered with the parallel laminated 

sandstones possibly formed as the result o f bedload transport by high-energy shoaling 

waves, or the reworking of parallel laminated sandstones into massive sandstones by 

storm activity. Post-depositional fluid escape or liquefaction from rapidly deposited 

sediments probably have obliterated any original sedimentary structures present in the 

sandstone beds.
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The lower portions if the shoreface sequence records the movement of tidal sand 

bodies in this environment, as well as the upper offshore. The sequence o f planar 

cross-stratified beds (Figure 6-3) interbedded with siltstone to fine-grained sandstone 

beds chronicles the migration of sandwaves across the bottom. Hein (1987) felt that 

the planar cross-stratified sandstones may represent deposits of larger-scale bedforms, 

such as sandwave complexes. This process occurs slightly above the fairweather 

base, w ith the presence of the massive and parallel laminated siltstone beds indicating 

suspension deposition. Parallel laminated sandstone beds were most likely deposited 

as the result of storm activity. The formation of the migrating sandwaves is not 

influenced by the prevailing tidal currents in the area, but instead is affected by wave- 

induced currents, and the interaction o f the bases of wave orbitals w ith the bottom 

(see Figure 6-3). Another possibility is that the sandwaves formed and migrated as 

the result of storm activity . This probability will be discussed in the section on storm 

processes.

The presence of trough cross-bedding on top of the interbedded cross-stratified and 

siltstone beds may represent migration of smaller dune fields on top of the larger 

sandwaves that make up the planar cross-stratified zone (Figure 6-3). Similar trough 

cross-bedding has been described by: 1) Hein (1987) who observed the presence of 

trough cross-stratification in the shoreface zone, and has attributed vertical stacking 

of these beds to a field of migrating ripples or dunes, and 2) Colquhuon (1995) who 

describes the presence of trough cross-bedded sandstones (Facies F) in the Roxburgh 

Fm., and attributed their formation to the migration of numerous small- to medium-

f
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scale lunate megarlpples in onshore and lesser longshore and oblique offshore 

directions. The trough cross-stratified beds observed in the shoreface environment of 

the present study are analogous to Clifton et. at. (1971) outer rough facies, which 

they interpret as forming from the migration of lunate megaripples.

Evidence of prevailing bidirectional tidal current activity is overprinted by 

asymmetrical wave activity in this zone. The wave orbitals are able to touch and 

interact with the bottom surface, transporting sediment and resulting in an 

unidirectional component to the generated sedimentary structures. Soegaard and 

Eriksson (1985) have commented on the presence of dunes superimposed on larger 

sandwaves in the inner shelf facies of the Ortega Gp. of New Mexico. Here, they 

attributed the generation of the superimposed dune structures to offshore-directed 

storm currents (Soegaard and Eriksson, 1985). Considering the high-energy stormy 

conditions common in rocks of the study area, this is also a plausible scenario for the 

formation of trough cross-stratified beds.

The herringbone trough cross-stratified sandstone beds higher in the shoreface 

zone formed in deeper water then the trough cross-stratified beds (Figure 6-3). When 

moving into deeper water, sedimentation and deposition is once again affected by 

prevailing tidal currents in the area. A t this point, the asymmetrical fairweather wave 

orbitals have lost contact w ith the bottom. Sediment is no longer moved by wave 

activity, but instead is transported by bidirectional tidal currents. Migration of 

sandwaves or dunes now occurs in both the ebb and flood current directions. The

•8S
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presence of rare wavy and coarsely interlayered bedding interbedded w ith the units 

of herringbone cross-stratification is also indicative o f a tidal influence. Soegaard and 

Eriksson (1985) have also observed the presence of herringbone cross-stratification 

which formed as the result of symmetrical tidal flow .

STORM PROCESSES

There has been modification of sedimentary structures and features in the tidal 

environment and the shoreface tidal sand body by storm activity. The effects of 

storms are especially noticeable in the tidal fla t sub-environment; where numerous 

beds of massive and parallel laminated graded sandstone are present. As stated 

previously, many of the sandstone beds formed as the result of bedload and 

suspension tidal depositional processes, but others are representative of storm 

activity. This is especially apparent in the beds which contain numerous mud rip-ups 

at their base. A t the base of two of the storm-generated beds, scours have been cut 

into the top of the underlying bed. Driese et. a!. (1981) have reported the presence 

of scours exhibiting channel-like morphology and states that they indicate erosion due 

to storm-generated currents. George (1994) has also noted the presence of granular 

layers which attest to sporadic conditions of higher energy induced by storms, floods, 

or spring tides; and later state that the presence of coarser-grained sandstone beds, 

which are either massive or parallel laminated, interbedded with other features is most 

likely the result of storm activity. The presence of the massive coarse-grained sands 

are probably the result of liquefaction.

i
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Swift et. al. (1979) have reported the migration of ripples, megaripples, and 

sandwaves along the Atlantic shelf as a result of storm activ ity. Along the Atlantic 

shelf, there are rippled zones which are present from the shoreline to the shelf edge. 

The ripples have formed from current activity during peak storm flows. In slightly 

deeper water, megaripples and sandwaves form during the w inter storm months. It 

is possible that the shoreface sequence of the study area records the activity o f 

seasonal storms interspersed w ith everyday fairweather conditions resulting in the 

movement o f smaller ripples over the top of the main sand body.

OFFSHORE ENVIRONMENT

The sedimentary structures and features present in the offshore environment 

reflect short-lived, episodic, high-energy conditions, storms, which alternated w ith 

longer periods of lower energy, fairweather, conditions. These conditions are 

responsible for the generation and deposition of the sandstone, siltstone, and 

hummocky cross-stratified beds.

Figure 6-4 illustrates the distribution of sandstone, siltstone and mudstone and 

hummocky cross-stratified beds within the offshore environment. The majority o f 

parallel laminated and massive sandstone beds are deposited shore - proximal to  the 

zone of hummocky deposition, marking the transition zone from the shoreface into the 

offshore. The bulk of the hummocky cross-stratified beds are deposited w ithin this 

zone, where potential for the preservation of these beds is the greatest (Dott and

18?
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FIGURE 6-4 Cross-section of the offshore environment 
showing the distribution of the sandstone 
and siltstone and mudstone lithofacies. 
Deposition of the majority o f massive and 
parallel laminated sandstone beds occurs 
at X, while the bulk of massive and parallel 
laminated siltstone and mudstone beds are 
deposited at Y. The zone of hummocky 
deposition is also shown. References to 
similar offshore environments are also given.

S =  sandstone 
Si =  siltstone
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Bourgeois, 1982). Finally, the majority of parallel laminated and massive siltstone and 

mudstone beds are deposited shore - distal to the zone of hummocky deposition.

Zone above hummocky deoosition/Transition Zone

The individual parallel laminated and massive sandstone beds above the zone of 

hummocky deposition (Figure 6-4) were deposited rapidly, possibly over periods o f a 

few hours to several days. The sandstone beds and rare interbedded siltstone beds 

represent the transition from the shoreface into the storm-dominated offshore 

environment. The presence of parallel laminated and massive sandstone beds in 

shallower water depths than the zone of hummocky cross-stratification have been 

reported by Reineck and Singh (1972), Kumar and Sanders (1976), Simpson and 

Eriksson (1990), Arnott (1993), and Colquhuon (1995), among others.

The parallel laminated and massive sandstone beds that comprise the transition 

zone from the shoreface to offshore environments of the study area are similar to 

those belonging to the proximal inner shelf facies of Simpson and Eriksson (1990). 

Simpson and Eriksson (1990) state that the sandstone beds which form the bulk of 

this facies are the result of rapid sedimentation from suspension. Similar beds have 

been described by Kumar and Sanders (1976) who attribute their production to the 

interaction o f rapid suspension fallout and tractional processes as a result of storm

190
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events. Colquhuon (1995) has also reported on the presence of sandstone beds with 

parallel lamination or gently undulating lamination, similar to the wavy-like lamination 

present in the sandstone beds of the study area. These beds, as previously stated, 

resemble the quasi-planar laminated sandstone beds described by Arnott (1993) which 

are present in lower shoreface to shallow-shelf deposits. Colquhuon (1995) attributed 

the presence of the sandstone beds to the same formational processes as described 

by Arnott (1993).

Arnott and Southard (1990) showed that in a combined flow  characterized by a 

long-period, moderate to strong oscillatory component, addition of a unidirectional 

component causes topographically positive bed forms to develop a strong downstream 

asymmetry and eventually to be washed out to a quasi-planar bed surface. This bed 

configuration is stable w ith  increasing unidirectional speed and over a wide range of 

high-energy, combined flo w  conditions. Further offshore the unidirectional component 

is lessened, reducing substantially the upper limit of flow  strength for the existence 

of large-amplitude bed forms needed for hummocky cross-stratification (Arnott and 

Southard, 1990). Duke (1985) stated that these unidirectional currents overwhelm 

wave-generated oscillatory or multidirectional flows and inhibit formation of 

hummocky cross-stratification.

When the above is considered, it is possible to hypothesize that the following 

processes are occurring in the transition zone. In association w ith  onshore storm 

surges, there is a return flow  (sometimes referred to as the storm surge ebb current).

19(
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out towards the offshore environment. This seaward flow , which was firs t suggested 

by Hayes (1967), creates a bottom current capable o f transporting sand below 

fairweather wave base. The bottom current has a strong unidirectional component. 

This unidirectional current dominates over the oscillatory or multidirectional flow s 

responsible for the formation of hummocky cross-stratification, and as a result there 

is very little formation o f hummocky cross-stratification w ithin the transition zone. 

Eventually, the strength of the unidirectional current wanes, and hummocky cross

stratification forms.

Another possibility is that hummocky cross-stratification has formed in the 

transition zone. Any evidence of hummocky cross-stratification though, is wiped out 

by the next high-energy (storm) event, leaving only the bottom parallel laminated 

division of Walker et. a l's ., (1983) idealized sequence. In this case, the strong 

returning flow  is responsible for the erasure of hummocky cross-stratification.

The parallel laminated, graded sandstone beds are also similar to laminated sand 

and graded rhythmites described by Reineck and Singh (1972) and may have formed 

by a similar process. The genesis of these beds, also called storm-sand layers by 

Reineck and Singh (1972), begins with an increase in water turbulence associated 

with storm activity. The water is so turbulent that sand is able to be kept in 

suspension, and is transported from the coastline to the offshore environment by the 

turbulent water flowing away from the coast. As the storm wanes, and energy 

decreases, the material (such as the sand) which was carried in suspension by the

I
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turbulent water begins to settle out. Initially, only sand in the form of parallel laminae 

is deposited, producing laminated sand. With subsequent decreases in wave energy, 

fine-grained sediments (silts) are deposited. The sand laminae become thinner 

upwards, whereas mud laminae becomes thicker, producing a graded rhythmite 

(Reineck and Singh, 1972). This decrease in the thickness of laminae has been 

observed in the parallel laminated sandstone beds of the offshore environment of the 

study area. The processes and mechanisms that Reineck and Singh (1972) invoke for 

the formation o f the storm-sand layers are similar to the storm surge ebb currents firs t 

described by Hayes (1967). The interbedded massive siltstone beds were deposited 

from suspension during fairweather conditions.

Zone of Hummockv Deposition

The presence of interbedded sandstone and hummocky cross-stratified beds w ith 

siltstone and mudstone beds (Figure 6-4) in the shallower, proximal portion of the 

offshore environment has been reported by many authors including; Hamblin and 

Walker (1979), Duke (1985), McCroy and Walker (1986), Duke et. a!.. (1991), and 

Colquhuon (1995). This association reflects the alternation o f slow fairweather 

sedimentation processes depositing mudstone and siltstone beds, w ith storm-induced 

or enhanced processes depositing hummocky cross-stratified beds between the 

fairweather and storm-wave base. Rezka (1987) has previously reported on the 

presence of hummocky cross-stratification in sediments of the Shebandowan Group. 

The hummocky cross-stratification described by Rezka (1987) Is very similar to that 

present in the current study area.
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FIGURE 6-5 Idealized sequences of hummocky cross
stratification from Dott and Bourgeois (1982), 
and Walker et. a/., (1983).

a) H - hummocky zone 
F - fla t laminae zone
X - cross laminae zone 
M- mudstone zone.

b) M - mudstone
X - ripple cross lamination 
F - 'f la t ' lamination 
H - hummocky cross-stratification 
P - planar parallel lamination .
B - basal division.
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Hummocky cross-stratification has been interpreted as a wave induced bedform 

which is produced in the offshore environment by intense wave activity during storm 

events; formation by strong surges that are generated by the action of relatively large 

storm waves. Although there has been some debate over the origin and formation of 

hummocky cross-stratification; most authors and workers now infer an origin due to 

powerful oscillatory-dominant or multidirectional flows (from Duke, 1985). Dott and 

Bourgeois (1982) describe hummocky cross-stratification as forming most commonly 

by redeposition below normal fair-weather wave base with the deposition involving 

both fallout from suspension and lateral tractive flow  due to wave oscillation.

To discuss the formation of the hummocky cross-stratified beds, one will have to 

again consider the idealized hummocky sequence of Dott and Bourgeois (1982) and 

the modified sequence of Walker et. a/., (1983). These sequences (from Chapter 4), 

which reflect waning of storm waves followed by fairweather deposition, are once 

again shown in Figures 6-5 a,b. Variations in the ideal sequence can indicate 

coincident variations in flow  conditions (Dott and Bourgeois, 1982). This means that 

at certain times, wave oscillation is operating while at other times unidirectional flow  

Is dominant, resulting in the deposition of certain subdivisions of the idealized 

hummocky cross-stratified sequences. Variability of flow  conditions is reflected in the 

three sequences (Figure 6-6a,b,c) of hummocky cross-stratification present in the 

current study area. These three sequences exhibit none of the common variations 

described by Dott and Bourgeois (1982).
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FIGURE 6-6 Generalized depiction of the three interlayered 
sequences of hummocky cross-stratification 
typically found in the study area.
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The cross-laminated (X) and fiat-laminated (R divisions are missing in all 

hummocky cross-stratified sequences of the study area (Figure 6-6). The F division 

is produced by thickness changes in laminae over hummocks and swales, resulting in 

a flattening upwards of the laminae. The X division is produced by a temporary 

reworking at low flo w  intensity of the top o f a bed by wave oscillation as a storm 

waned (Dott and Bourgeois, 1982). The absence of the F and X divisions in the study 

area provides evidence of flow conditions during deposition o f the various hummocky 

cross-stratified beds. Flow conditions at the time of formation of the hummocky 

cross-stratified beds did not allow for the formation of these tw o  divisions during 

deposition. The cross-laminated (X) division will not always form if there is a rapid 

and abrupt cessation of storm conditions. The absence of the X division also indicates 

that storm activity in the area ceased abruptly.

The formation o f the parallel laminated divisions present at the base of two of the 

hummocky cross-stratified sequences (Figure 6-6a,c) in the study area have been 

discussed by Walker et. a!., (1983), who state that this division has formed as the 

result o f two processes. The first process is deposition from powerful unidirectional 

flows. The second process is deposition from powerful oscillatory flows. Walker et. 

aL (1983) state tha t the two processes leave Indistinguishable types of parallel 

lamination, therefore it is impossible to determine which process is responsible for the 

formation of parallel lamination at the base o f hummocky cross-stratified beds. They 

also cite a third process, during which deposition from unidirectional flows grades into 

deposition from oscillatory flow; the rate of deposition from the unidirectional flow
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decreases as oscillatory wave motion become more important (Walker et. a!., 1983). 

The third process seems the most likely for the formation o f parallel laminated 

divisions which form the base to hummocky cross-stratified beds o f the study area. 

Initial deposition o f the sequences in the study area begins with a powerful 

unidirectional current depositing the P division; w ith slowing of the unidirectional 

current, the H division is formed by oscillatory dominant flow . The parallel laminated 

basal division is absent in one of the hummocky cross-stratified sequences of the 

study area (Figure 6-6b). The absence of this division indicates complete reworking 

of the parallel laminated division by the oscillatory wave motion during the formation 

of hummocky cross-stratification.

The massive mudstone or siltstone layer at the top of all of the hummocky cross

stratified sequences in the study area (Figure 6-6) allows for the differentiation of 

major depositional events. Dott and Bourgeois (1982) feel that these layers are 

representative of both waning-storm and normal fairweather sedimentation. The 

massive fine-grained siltstone to mudstone layers that are present at the top of 

hummocky cross-stratified sequences were deposited from waning storm activity. 

Individual siltstone beds that are interbedded with the hummocky cross-stratified beds, 

and sometimes overly the hummocky beds in the study area, reflect normal 

fairweather sedimentary processes. In both cases, the layers are deposited as a result 

of material (mud to  fine-grained silt) settling out o f suspension.

The hummocky cross-stratified beds in the study area have a range of thicknesses

2£X>
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I that extends from 3.5 to 22.0 centimetres. This range contains thicknesses that are 

I considerably less then those commonly reported in the literature, where a range of 20 

to 80 centimetres (Dott and Bourgeois, 1982) in thickness is common. This 

difference in thickness ranges also provides evidence of flow  conditions in operation 

at the time of deposition of hummocky cross-stratification in the study area. The 

thickness of hummocky cross-stratification In the study area indicates a limited 

sediment supply to the offshore environment. The sediment supply is controlled by 

the bottom return flow  (unidirectional current). The return flow  may only be of limited 

strength or duration and is only able to transport a restricted supply o f sediment to the 

offshore. This indicates that storm conditions in the study area were of limited 

strength and duration.

The trends in the distribution of hummocky cross-stratified beds in Chapter 5, can 

be explained w ith the aid of Figure 6-4. The rare hummocky cross-stratified beds that 

are present in the lower portions of the transgressive offshore sequence of outcrop 1 

were deposited above the zone of hummocky deposition. The concentration of 

hummocky cross-stratified beds between 83.0 - 85.0 metres (Figure 5-4, Chapter 5) 

represents the generation and formation of these beds within the zone of hummocky 

deposition. Finally, the small number o f hummocky cross-stratified beds towards the 

top of the sequence were deposited slightly deeper than the main zone of hummocky 

deposition.

2 o (
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Below the Zone of Hummockv Deposition

The upper portion of Figure 5-4 in Chapter 5 shows the interbedded association 

of parallel laminated and massive siltstone and mudstone and rare sandstone beds. 

This interbedded association which is present in the uppermost part of the 

transgressive sequence of outcrop 1 is similar to Facies A of Colquhuon (1995), and 

Facies 1 of Duke et. aL (1991). Facies A of Colquhuon (1995) consists of mudstone 

to very fine silty sandstone with rare interbeds of fine- to medium-grained sandstone; 

while Facies 1 of Duke et. al. (1991) is composed of intervals dominated by siltstone 

and mudstone locally interbedded with very thin beds of coarse-grained siltstone to 

fine-grained sandstone. The interbedded association, Colquhuon's (1995) Facies A 

and Duke et. a /.'s  (1991) Facies 1, are all indicative of low-energy suspension 

sedimentation on a shelf that was generally below storm wave base. This 

corresponds to the area below the zone of hummocky deposition in Figure 6-4, and 

indicates that the majority of massive siltstone and mudstone beds of the offshore 

environment in the study area were deposited under similar conditions. The rare 

sandstone beds present in the distal offshore environment are similar to the laminated 

sandstone beds of Reineck and Singh (1972) and formed in the same manner.

Colquhuon (1995) has also reported on the presence of th in ly interbedded 

sandstone and siltstone/mudstone beds (Facies A and B) in the storm-dominated 

offshore environment. The sandstone beds have sharp scoured bases, normal grading 

and parallel lamination (Colquhuon, 1995). A similar association o f siltstone and 

sandstone beds is also present in the offshore environment of the current study area.

202
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Colquhuon (1995) attributes their formation to deposition of thin, graded sandstone 

beds from waning storm-generated suspension currents, interbedded with fairweather 

suspension deposited mudstones, and it is these formational processes that also 

resulted in the presence of sandstone beds in the current study. Similar interbedded 

associations in other ancient storm-dominated shelves have been recorded by Hamblin 

and Walker (1979), Walker (1984) and Sw ift et. aL (1987). Once again, this 

association represents sedimentation below the zone of hummocky deposition in the 

study area (Figure 6-4).

2 0 3
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CHAPTER SEVEN -  TIDAL RHYTHMITES

Sedimentary rocks can record the activity of tides, providing a picture of 

depositional, environmental, and astronomical conditions at the time o f sedimentation. 

The current study provides a rare window onto such conditions during the Neoarchean 

of the Canadian Shield. A close examination of tidally-deposited sediments in the 

study area yields limited information concerning the nature of tidal activity at the time 

of deposition.

Rare occurrences o f finely rhythmically parallel laminated beds are present in the 

Shebandowan Group. This type of bedding consists of alternating laminae, ranging 

from 0.1 to 6.5 centimetres in thickness, of fine- and coarse-grained sediments which 

are rhythmically repetitive. The fine-grained sediments are composed o f mudstone and 

appear to cap the coarser-grained sediments. The coarse-grained sediments consists 

of very fine-grained sandstone which fine upwards into a coarse-grained siltstone. The 

laminae appear to thin and thicken systematically through a vertical sequence. The 

repetitive nature of the laminae has resulted in the term tidal rhythmites being 

assigned to this type of bedding (Reineck and Singh, 1975). Such rhythmicity can be 

related to neap-spring tidal cycles and current velocity fluctuations that are associated 

with such a cycle. An individual sandstone laminae overlain by a mudstone laminae 

is similar to sand-mud couplets described by Dalrymple et. aL, (1991) on mud flats in 

the Cobequid Bay - Salmon River estuary of the Bay of Fundy.

The presence of individual laminae can be interpreted as the products of diurnal.
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mixed or semidiurnal tidal activity. Varying laminae thicknesses reflect semimonthly 

(neap to spring) fluctuations in tidal current activity. Lunar months are defined by tw o 

peaks (spring deposits) and tw o  troughs (neap deposits) (Brown et. aL, 1990). This 

means that a two week period is represented by the laminae between tw o peaks or 

two troughs. Interpretation is based on methods outlined by Kvale et. aL (1989), 

Brown et. a!. (1990), and Kvale and Archer (1991 ), in which sequential sandstone (or 

mudstone) laminae are numbered and plotted against their thickness on a histogram. 

The number of sandstone or mudstone laminae per cycle can then be counted 

between laminae maxima or minima. In the present case, the number of sandstone 

laminae between zones of laminae maxima were counted. Using methods from 

Archer et. aL (1995), successive laminae thicknesses are plotted against each other 

(n vs. n + 1) was plotted on a scattergram to determine if the laminae were deposited 

in a semidiurnal or diurnal setting. The following tw o sections describe and discuss 

the results of the histogram and scattergram plots.

Rhyth m ic  u nit  a

When sequential sandstone laminae from rhythmic unit A (Figure 7-1) are plotted 

against their thickness, the result is two sinusoidal curves exhibiting periodicities of 

22 and 28 laminae (Figure 7-2). Similar, but more extensive curves have been 

generated by Kvale et. aL, (1989), and Kvale and Archer (1991) for the Hindostan 

Whetstone beds and Abbott sandstone in the Illinois Basin, and by Brown et. aL 

(1990) for the Salem Limestone,. These curves have been interpreted as representing 

a semidiurnal to rhixed tidal cycle of a half-lunar month (Kvale et. aL, 1989; Brown

2Lo6
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FIGURE 7-1 Photomicrograph of Rhythmic Unit A
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FIGURE 7-2 Plot of sequential sandstone laminae 
against laminae thickness in Rhythmic 
Unit A.

FIGURE 7-3 Plot of successive laminae thicknesses 
(n vs. n + 1) fo r sandstone laminae in 
Rhythmic Unit A.
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et. a!., 1990; Kvale and Archer, 1991). This is reflective of two flood-ebb events per 

day during tw o fourteen day periods between successive spring tides, depositing a 

series of 22 and 28 sandstone laminae respectively.

Further confirmation that the laminae were deposited in a semidiurnal tidal setting 

are present in a plot o f successive laminae thicknesses (n vs. n +  1), for the 

sandstone laminae (Figure 7-3). In this plot, the wide scatter of data points is 

probably indicative o f a semidiurnal setting. This plot is similar to  scattergrams of 

successive-laminae thicknesses for Carboniferous rhythmites and modern-day 

semidiurnal systems generated by Archer et. aL (1995).

The first curve of 22 laminae, also contains an anomalously th ick laminae ( I  in 

Figure 7-2), equal in thickness to one generated by the possible spring tide. When one 

considers both the low number of laminae (22) and the presence o f the anomalously 

thick sandstone laminae, it is evident that non-astronomical controls have played a role 

in the deposition o f the laminae. It is possible that the first curve reflects the effects 

of storm activity during the time of deposition replacing tidal processes as the 

dominant control over deposition. The anomalous laminae may represent sediment 

deposited during the storm.

DISCUSSION

The number o f laminae present in both curves of Unit A yield a minimal value of

SllO
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22 days for the length o f a lunar month, and a maximum value of 28 days; values 

which are less then that o f 29.6 days for the present-day lunar month associated with 

semidiurnal tidal systems. The length of a possible lunar month determined for Unit 

A ( 2692 Ma) is considerably less then the value of 30.5 (±1 .5 ) days determined by 

Williams (1989, 1991) fo r the late Precambrian (650 Ma) Elatina formation of 

Australia; although there is some question concerning the validity of this value. 

Comparing the determined lengths for the late Precambrian (30.5 ± 1 .5  days), and the 

modern-day synodical (29.6 days) month it is apparent that a complete record of tidal 

activity has probably not been preserved in Unit A.

There are two possible reasons for the Incomplete tidal record of Unit A. As 

previously discussed, the semidiurnal tidal cycles of Unit A may have been overprinted 

as the result of episodic storm activity. Archer (1995) and Kvale et. aL (1995) have 

discussed how wave and storm influences can create random components that 

significantly overprint astronomically generated tidal periodicities. Williams (1989, 

1991) has also stated tha t the record of tidal rhythms might be overprinted by 

episodic or seasonal patterns caused by storminess or changes in the rate of sediment 

supply. This possibility is strengthened by the observed presence of parallel laminated 

sandstone beds deposited by storm activity and hummocky cross-stratification at other 

locations in the study area.

Storm activity though, cannot solely explain the absence of laminae within the 

generated cycle for Unit A. In the current study, it was determined that tidal

All
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deposition occurred predominantly in the intertidal zone. Dalrymple et. al., (1991 ) has 

observed that sand-mud couplets deposited on the intertidal zone do not always 

produce curves with obvious tidal periodicities. The intertidal zone is periodically 

inundated by water during the flood - ebb tidal cycle. It is possible that at certain 

times, especially during periods of low neap tide, the water did not reach high enough 

up on the intertidal flat to deposit any material, therefore leaving no laminae behind 

as a record of that particular tide.

As previously stated, the non-deposition of laminae on the intertidal flat can be 

related to periods of low neap tides. DeBoer et. a/. (1989) have suggested tha t a 

cessation of sand transport around the time of a neap tide will result in a less than 

'ideal' number of neap laminae being deposited. Williams (1989, 1991) has also 

written that laminae can be missing from laminae cycles through non-deposition at 

times of low tidal ranges. Laminae in the cycle of Unit A may be absent as a result 

of non-deposition during periods of low neap tides. Non-depositional events are also 

related to periods during which the current velocity of either the flood or ebb tide was 

not high enough to transport sediment to be deposited. Truncation of the tidal cycles 

may have occurred in a manner similar to that discussed by Tessier (1993),

It is probable that tidal periodicities are preserved in the rocks of the Neoarchean 

Shebandowan Group. The information obtained in this study provides a very brief and 

limited glimpse of conditions in operation during this time. Only limited interpretations 

concerning the nature of the tidal system and the length of the lunar month can be

a>2.
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made from the data obtained in the this study. Further investigation of the sediments 

of the Shebandowan Group may lead to increased knowledge of the dynamics o f the 

earth-moon system, and astronomical 'conditions' during the Neoarchean.

I
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CHAPTER EIGHT -  CONCLUSIONS

INTRODUCTION

The present study of the Shebandowan Group has looked at a rare example of 

three shallow-water environments from the Neoarchean o f the Canadian Shield. They 

are the tidal, shoreface, and offshore environments, and depositional processes in the 

three environments were under the influence o f tidal, wave, and storm processes. The 

excellent preservation of sedimentary structures and depositional features w ithin the 

sedimentary rocks of the Shebandowan Group has allowed for a detailed examination 

of depositional processes active in the three environments.

The environments formed part of a larger depositional system described by Rezka 

(1987); Fralick and Barrett (1991); and Eriksson et. a!. (1994). This depositional 

system is shown in Figure 8-1; and contains the entire transition between the two 

depositional facies that typ ify the depositional history o f the Archean Canadian Shield. 

The presence of the tidal to offshore depositional environments, which typ ify  shallow- 

water shelf settings demonstrates that there was development of shelves in the 

Archean, contrary to the popular and widely held belief that there was very little, if 

any shallow shelf development. Further, the environments indicate the presence of 

a stable area around a small oceanic island on which extensive reworking of the tidal 

to offshore sandstones and siltstones could occur (Figure 8-2).
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FIGURE 8-1 The larger depositional system described by 
Rezka (1987); Fralick and Barrett (1991); and 
Eriksson et. al. (1994) present in the Wawa 
subprovince. The current study is located 
on the storm - tide dominated shelf.
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FIGURE 8-2 Block diagram summarizing the depositional 
environments and processes present in the 
Shebandowan Group. All three environments 
described in this study are present, and 
represent coastal sedimentation along the 
shorelines of active volcanic islands. Small 
sections along the base o f the block diagram 
depict beds and lithofacies common in the 
three environments.
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TIDAL ENVIRONMENT

Observations of the tidal environment in the current study area have revealed that 

the physical depositional processes in operation during the Archean were remarkably 

similar to those operating in the Phanerozoic and present-day environments. The only 

notable difference in the lack of bioturbation. Depositional processes in both the tidal 

flat and tidal channel sub-environments were controlled by the bidirectional nature of 

tidal currents (Figure 8-2) and fluctuating current velocities related to both the daily 

tidal cycle and the biweekly neap - spring cycles. The amount of sediment supplied 

to the depositional setting also played a role in the generation and formation of 

lithofacies in both sub-environments, especially the tidal flat.

The fluctuations in tidal current velocity during the daily tidal cycle resulted in the 

formation of lithofacies considered characteristic of the tidal environment. These 

lithofacies include flaser, lenticular, and wavy bedding, as well as coarsely interlayered 

bedding. Transitions between these lithofacies within vertical sequences throughout 

the tidal flats reflect changing current velocities associated w ith  the neap - spring tidal 

cycles. Statistical analysis similar to Markov chain analysis performed on tidal fla t 

sequences has shown that transitions between these four types of bedding are non- 

random occurrences. This further illustrates that the deposition of different lithofacies 

on the tidal flats were controlled by processes such as changing current velocities. 

Another control on the type of bedding generated during a tidal cycle; either daily or 

neap - spring, is the amount of sediment available. Sediment supply may be controlled 

by seasonal variations or associated with volcanic activity present in the area.
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The tidal channel sub-environment represents an unique situation. The vast 

majority of tidal channels described in the literature are meandering in nature, with 

extensive point bar development. The tidal channels of the current study though lack 

many of the attributes of meandering stream or even of braided stream models. In this 

respect, the tidal channels of the study area are similar to channel sequences found 

in the Nubia strata of southwestern Egypt (Klitzsch et. a!., 1979), which exhibit low 

sinuosity.

It is fairly obvious that tidally-influenced processes dominated in this environment, 

transporting and depositing sediment in both the tidal flats and channels. Occasionally 

tidal processes were superseded by episodic, high-energy storm activ ity. The storm 

activity overprinted evidence of tidal processes, and usually resulted in the deposition 

of numerous, graded and parallel laminated sandstone beds.

A minimal, average tidal range of 3.4 metres was calculated fo r the tidal 

environment present in the study area. This is indicative of a mesotidal environment. 

In comparison to tidal ranges determined for many other Precambrian tidal 

environments, this value is slightly less (Figure 8-3). Many of the Precambrian tidal 

ranges reported in the literature, and shown in Figure 8-3 are meso- to macrotidal. 

The differences in tidal ranges could be attributed to such factors as variable shelf 

widths and coastline morphology.

22.0
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FIGURE 8-3 Bar graph depicting paleo-tidal ranges 
from a number of Precambrian tidal 
environments described in the literature. 
The tidal range for the current study 
is shown on the far left fo r comparison.

' Eriksson, 1977 
 ̂Beukes, 1977 
 ̂ Button and Vos, 1977 

* Klein, 1977
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SHOREFACE BIVIRGNMENT

The shoreface environment exhibits many of the features of a high-energy, non

barred shoreline, although there is no evidence of the presence of beach deposits (see 

Clifton et. a!., 1971). Deposition in this environment predominantly shows an 

influence from unidirectional wave-induced current activity, which overprints 

bidirectional tidal current activity (Figure 8-2). The deposition of sediments is 

controlled by unidirectional processes such as the migration of dunes and ripples along 

the bottom surface o f the shoreface environment. Throughout much of the shoreface 

environment, the depth from sea level to the bottom is shallow enough that 

fairweather wave orbitals affect the substrate, transporting and depositing sediment. 

The action of the wave orbitals associated w ith  unidirectional wave current activity 

overprints or masks a tidal influence on deposition. Towards the distal edge of the 

sand body, there is a resumption of tidally-influenced depositional processes (Figure 

8-2). This represents the point at which fairweather wave orbitals are no longer 

affecting the bottom, and bidirectional tidal currents dominate.

The migration o f dunes and ripples in the shoreface environment may also possibly 

be the result of asymmetrical tidal currents, w ith either the flood or ebb current 

directions dominating. This is unlikely when considering the presence of herringbone 

cross-stratification in both the tidal channels and shoreface. The presence o f this type 

of cross-stratification indicates that the ebb and flood tidal currents were nearly equal 

in strength the m ajority of the time. Storm activ ity also influenced sedimentation in 

the shoreface environment. Unidirectional offshore flows caused by storm activity

2 2 3
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resulted in the formation of some of the sandstone beds.

OFFSHORE ENVIRONMENT

Deposition in the offshore environment was dominated by alternating periods of

storm activity and fairweather suspensional processes (Figure 8-2), There is no longer 

any evidence o f the tidal processes that operated in the foreshore and shoreface 

environments. Periods of storm activity resulted in the formation of distinctive beds 

of hummocky cross-stratification. The transition into this environment is marked by 

a change from dominantly unidirectional flows depositing parallel and 'w avy ' laminated 

sandstones into multidirectional or oscillatory flows responsible for the generation of 

hummocky cross-stratification.

Although the distribution of the sandstone and siltstone lithofacies in the 

offshore environment are similar to distributions described in the literature, there are 

several differences with regard to the hummocky cross-stratified units. First, the 

average thickness of hummocky cross-stratification in the study area is considerably 

less then those commonly reported in the literature (Dott and Bourgeois, 1982). This 

difference in thickness indicates a sediment supply controlled by the bottom return 

flow  (unidirectional current) to the offshore environment and the lack of biota capable 

of disrupting the thin storm layers. Second, the hummocky cross-stratified units in the 

study area do not contain a number of division that are present in idealized hummocky 

cross-stratified sequences. The absence of these divisions is also related to low flow
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velocities during storm activity, and short duration o f storms.

The presence of hummocky cross-stratification in the study area in addition to 

Rezka's (1987) observations also provides unrefutable evidence for the development 

of shallow-water shelves in the Archean. The mere existence of hummocky cross

stratified beds within the Shebandowan Group allows an interesting observation to be 

made concerning paleo-environmental conditions prevalent during the deposition and 

formation of these beds. It is widely recognized that hummocky cross-stratification 

forms as a result of intense storm activity; usually attributed to hurricanes or intense 

winter storms. Duke (1985) has found in a study of 107 known examples of 

hummocky cross-stratification that 75% of these examples formed as a result of 

tropical hurricane activity. It could be hypothesized, that the hummocky cross- 

stratified beds were probably deposited in a paleo-environment w ith climatic 

conditions similar to those found in present day tropical environments.

The hypothesis that the hummocky cross-stratified beds were deposited in an 

environment similar to the present-day tropics allows inferences regarding paleo- 

latitude to be made. Hurricanes are latitudinally restricted in the modern world (Duke, 

1985), and it stands to reason that this would be true of the Archean. Hayes (1967) 

has also suggested that hurricane deposits may be useful as paleo-latitude indicators. 

Duke (1985) has determined that hurricane deposits such as hummocky cross

stratification can be expected from paleo-latitudes of about 10° to 45°. Using this 

determination, a broad generalization can be made about the position of the land mass

2 2 5
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along which the tidal to  storm-dominated offshore Lithofacies were deposited. 

Basically, the land mass was located between 10° to 4 5 ° latitude either north or 

south of the equator. Further study may lead to more accurate determinations being 

made concerning the position of the land mass, although the fact that the atmosphere 

was probably denser during the Archean may have serious implications fo r this 

hypothesis.

Attention should be briefly turned to the transition zones between the three major 

environments present in the study area. These transitions all appear to be very 

gradational, and probably indicate a slow and gradual rise in sea level in the area. The 

transition zones are marked most notably by the follow ing features: vertical changes 

in overall grain size and changes in depositional processes which produce changes 

(laterally and vertically) in both lithofacies and lithofacies associations.

The current study has shown that deposition in the three environments was 

affected by d iffe rent current processes (Figure 8-4). When moving offshore through 

the three environments, there is a progression from an environment controlled by 

bidirectional currents into one that is dominated by unidirectional and multidirectional 

currents (see Figure 8-2). The tidal environment,' which contains both the tidal fla t 

and tidal channel sub-environments was dominated by tidal currents (Figure 8-4), w ith  

minor input from  storm activity. Bidirectional tidal currents were also present in the 

shoreface environment, but many of the effects of this activ ity was overprinted by the
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FIGURE 8-4 The three depositional environments 
present in the current study area are 
represented by one of the three triangles. 
The x'ed area in each triangle indicates 
which currents dominated and controlled 
deposition in that particular environment.
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action of unidirectional wave-induced currents (Figure 8-4). There is also evidence of 

deposition from storm currents in this environment. Finally, deposition in the offshore 

environment was controlled by storm current activ ity (Figure 8-4).

EARTH - MOON SYSTEM

The development and presence of tida lly deposited sediments offers evidence for 

the existance of the earth-moon system. Tidal deposits from older rocks have already 

indicated the existence of such a system, but this is the firs t time tha t Archean rocks 

in Canada have provided such evidence. The presence of a sequence of tidal 

rhythmites in the study area has provided possible evidence o f semidiurnal tidal 

system. From this sequence, it was possible to determine a minimal duration of the 

lunar month during the Archean. From Rhthymic Unit A, an approximate duration of 

28 days was determined. This value is only slightly less then that fo r the present day 

synodical lunar month (29.6 days), as well as those determined fo r Phanerozoic 

examples (see Chapter 7).
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APPENDIX ONE

Statistical Analyses of Vertical Sequences

Statistical analysis of vertical sequences was conducted to determine if vertical 
changes in bed type or lithofecies reflect transitions that are random or non-random in 
nature. This in tum can indicate if vertical changes in lithofacies can be attributed to 
cyclical and/or predictable changes in the depositional environment.

UPWARD TRANSITION MATRIX

This matrix is a record of the number of times a bed or lithofacies in a vertical 
sequence is succeeded by another. This is done by counting the number of times there 
is a bed or lithofacies change. In the matrix the values in the columns give the number 
of times the beds/lithofacies in the row changes upwards to the bed/lithofeicies itemized 
in the column.

PREDICTED RANDOM TRANSITION MATRIX

The values in this matrix are based on the assumption that there is a randomness to 
bed or lithofecies changes. This predicts the number of transitions from one 
bed/Iithofacies to another.

E =  n, X Hg /  n where:

E = expected number of transitions
Hg = number of times 2  passes up into all other beds (row total)
1I3 = number of times 3 passes down into all other beds (column total) 
n =  total number of transitions

MATRIX SHOWING RANDOM AND NON-RANDOM TRANSITIONS

Values in this matrix are determined by subtracting the values in the upwards 
transition matrix from the predicted random transition matrix. Positive values show that 
the transitions occur more frequently and are probably non-random. Values near zero 
indicate that the transition occur with less frequency and are representative of random 
events.
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In the following matrices, the labels la  to 7 represent

la  - massive sandstone beds
1b - parallel laminated sandstone beds
2 - flaser bedding
3 - wavy bedding
4 - lenticular bedding
5 - coarsely interiayered bedding 
6a - massive siltstone beds
6b - parallel laminated siltstone beds 
7 - mudstone

!
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TIDAL FLAT ONE

la 1b 2 3 4 5 6a 6b 7

la 5 0 X •a. s> 1 X o o IS

1b 1 0 0 o 0 0 o o 0 1

2 4 o I 0 4 0 o 0 0 4
3 0 o z 0 1 1 0 0 0 4

4 X o 4 z o 1 o O 0 9
5 3 0 o 0 1 0 o o 0 4

6a 0 1 o 0 0 1 I o 0 3
-6 b 0 0 o o o 0 o 0 0 o
7 Û o o 0 o 0 o o 0 o

i5 1 4 4 4 4 3 o 0 95
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Predicted Random Transition Matrix

iG 1b 2 3 4 5 6 g 6b 7 4

la 5.0 0.33 3.0 133 3.0 1.33 1.0 0 0 15

1b 033 0.0%o.% 0.0^ o.% 0.0? 0.0? 0 0 1

2 3.0 1-8 0.8 (.5 o-S 0.0 0 0 9

3 L33O.OS 0.5 0.36 as 0.36 0-a^ 0 0 4

4 3.0 1-5 O.B 1.8 0.8 0.(9 0 0 q

5 (.S3 O.OR 0-8 0-3(90.8 036 0.3? 0 0 4

6 g i.O 0.0? Ô.Ü? 0-3? Û.G» 0.3? 0.-2. 0 0 3

<6b O O O 0 0 0 0 0 0 0

7 0 O O 0 0 0 0 0 0 0

IS 1 q 4 q 4 s 0 0 45
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tfeitrix showing Random and Non-Random Transitions

la 1b 2 3 4 5 6 a 6 b 7

1a 0 -0-33 -1.0 0.(p9 0 -O.S3 1 0 0

1b 0 (4 -Û .oZ- O Z . 'O.oq -0.2 -o.oq —O.Ci4 0 0

2 1 -O.Z 'O - S - 0 . 5 2.2 -o.S -O .L 0 c> 0

3 - l.B S “X>.o9 1.2 -0.5G 0 2 0 .6 4 0 Ô

4 -1-0 -0-2. 2.2 1.2 - 1 . 6 0.2 -0.6 0 0

5 1.69 -0.09 -o -B -0 .36 0.2 -0 .3 6 -o .a T 0 0

Ga -1 .0 0 .9 3 —O. (p -c-a? " 0 .6 0 .9 3 o . s 0 0

6b 0 0 0 0 0 0 0 0 0

7 0 0 o 0 0 0 0 0 0
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TTDM. FLAT TWO
Upward Transition Matrix

la 1b 2 3 4 5 6 g 6 b 7

la 8 4 s o 0 z 3 o o 22

1b 3 3 4 2 1 I z o o i(b

2 5 % \ 5 11 0 1 0 0 25

3 0 1 Z 8 3 O. 1 0 0 15

4 I 0 12 0 0 1 3 \ 0 18

5 z 2 0 0 0 o 0 0 0 4

6 a 3 2 1 0 3 o 0 1 0 lo

|6 b 0 Z Z 0 0 0 0 o 0 2

7 0 0 o o 0 o O o o O

22 \(o zs 15 18 4 10 2 o 112
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Predicted Random Transition Matrix

la 1b 2 3 4 5 6 a 6 b 7 4

1a 4.3%. 3 .1 9 4.41 2 .45 3 .5 4 0 .9 9 1.9(5 0.34 0 %

1b 3.14 2.19 as? Z.IM 2.S? 0 .5 9 1.43 0.19 0 16

2 4 .q i 3.59 s. 58 3 .55 4.01 o.g) 223 0 4 5 0 2 5

3 2.95 2.19 S 3S g.oi 2:41 0 .5 9 1.34 0.29 0 15

4 3.64 2 6 4 4.Ô! 2.41 2.8? oM 1.61 0 .3 2 0 1 8

5 0 .4 9 0-59 0 .8 ? 0 .5 ? 0 .4 4 0.14 0 .5 6 Û.Û9 o 4

Ga 1.90 1 4 3 223 IS ? 1.61 0 .3 6 0 .8 4 0.18 o 10

G b 0.39 o.%9 0 .4 5 0.2? 0 .3 2 Û.Ô9 O.I& <5.04 o 2

7 O O O O O O O o o 0

22. l6 2 S 15 18 4 10 % o 112
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tfatcix showing Random and Non-Random Transitions

la 1b 2 3 4 5 6 a 6 b 7

la 0 .86?0.0? -2.% -3.6? i .n 1.04 -o3fi[ 0

1b "O.f?o.?l o.?i -0.14 -1 .5 ? 0.45 0.5? "0-1.? 0

2 Û.0? -1.5? -4.561.6)5 -0.3c -(.22 -0.45 0

3 -2.95 -/.I? -1.35 5.?? 0 .5 R "0.54 'O.34 "O.̂ 0

4 -25? "2.5? ?■.?? -2.91 -2.8? 03Ü 1.59 0.68 0

5 i n 143 -0.54 -0/4 "0.(4 "0.% “0.04 0

6a 1.0? 0.54 -(.23 “ 1.34 t).30 "o4f 0.82 0

6  b -0.3̂ 1.41 1.55 -Ô.SZ -OCR-o .iS "0.0? 0

7 0 O O 0 0 0 0 0 0

2 4 5
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TFTnW. Fins 'IWFE

Upward T ra n sitio n  M atrix

la 1b 2 3 4 5 6a 6b 7

la 11 z 0 1 O 1 0 0 0 15

1b z 8 0 0 1 0 O 0 2 13

2 0 0 o 0 3 0 O 0 0 3

3 1 0 2 0 . 0 0 0 0 0 3

4 0 0 1 2 0 o o 0 4

5 1 0 0 0 0 o ' o o o 1

Ga 0 I o 0 0 0 o o 0 1

6 b 0 0 0 0 o 0 o o o 0

7 0 Z o o o o o o o 2

15 13 3 3 A \ I o 2 42

L
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Predicted Random Transition Matrix

1G 1 b 2 3 4 5 6 g 6 b 7 4

la 4.64 1.04 1.0? 1.43 Q 56 0 3 6 0 0 .4  ( 15

1 b 4.64 4 .0 1 0-43 0 .4 3 l.ZH OSI O.Bl o 0 6 2 13

2 1.0? 0 4 3 o.ai O .zl 0 2 4 0 .0 4 0 .0 4 o O.iy 3

3 lO"?' 0 4 3 021 021 0.2? 0 0 4 0 .0 4 0 0.14 3

4 \.14 0.24 0.2? 0.3& 0.1 O.i o 0-1? 4

5 0.31 0 .0 ? 0-04 0 .1 0 .0 2 0.02 0 0 .0 5 1

6 g >36 OS 0 .0 4 OC4 0-1 0.O 2 O-02 o 0-c5 1

6  b o O O O 0 O 0 0 Û 0

7 0-? l OUI 0 1 4 0.14 0.1? O 05 0.05 o 0 .1 Z

15 IS 3 3 4 1 1 o 2 ^ 2

2 4 :}
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Matrix showing Random and Non-Random Transitions

la 1 b 2 3 4 5 6 a 6 b 7

1a 6.6,4 -|.0=f —.04 -1.43 0.64 "0.% o "0.41

1 b -XXsH 3% -0.4S '0.92 -0.24 -0.31 -0.31 o 1 %

2 "0.42 -0.11 "CyZ( 2.11 -O.CA -0.09 o "044

3 "0.93 1.34 -0.21 "OZq -O.CA "04 o "0.14

4 -1.88-(.24 0.41 l.?l -o.% "0.1 o.q o ■0.19

5 3.(jH"0.3 1"Ô .ÛR -Ô04 "0.1 "0.OZ"0X52 o "005

Ga -0.360-64 “O.CST-O.C4 "O ' / -0x52 —O.C2. c> "OoE

6b O o 0 O O o O o o
7 -0-91 1.38 "0.1? '0.14 -o.iq -0.05 "006 o -o.(
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