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Abstract 

The recent developments in research pertaining to the field of Unmanned Aerial Vehicles (UAVs) is 

motivated by its technical challenges as well as its practical implications in areas where hinnaii presence 

is inefficient, redundant or dangerous. The absence of human interference requires more robust and 

precise control techniques. However, most modern attitude control techniques require the knowledge of 

the current orientation of the body. There is no sensor available that explicitly measures the attitude 

of a rigid body and hence, for small scale UAVs. it must be t^stimated using inertial vector mtjasure- 

ments from low-cost and low-weight Micro-Electro-hlechanical System (MEMS) sensors like gyroscopes, 

accelerometers and magnetometers. 

The predominant attitude representation formulations of a rigid body in three-dimensional space are 

recapitulated to elucidate the dynamical model of a quadrotor UAV. Low-cost MEMS are prone to 

significant noise effects from temperature change, vibrations, on-board magnetic fields generated by 

motors and currents. To improve the accuracy of the measurements sensor calibration techniques 

are explored. Primitive attitude estimation techniciues like TRIAD, Davenports q-method, QUEST. 

FOAM, SVD method, etc. (which were aimed to be static optimization solutions to Wahbas Problem) 

were reviewed. These algorithms were extended to incorporate filtering techniques like Kalmau-typc', 

to handle the measurement noise, and complementary filtering, where sensor measurements are fused 

to reconstruct the orientation of a rigid body. Tlie latest nonlinear observers are als(j discussed for 

implementation purposes. 

Practical implementation and performance comparison of various attitude estimation algorithms has 

been conducted on a small-scale quadrotor UAV, consisting of an inertial measurement unit (.‘3-axis 

gyroscope, accelerometer and magnetometer), microcontroller, brushless motors, electronic speefl con- 

trollers, on-board power supply and necessary frame constructs. 
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Chapter 1 

Introduction 

In the past, unmanned aerial vehicles (UAVs) have been primarily the subject of investment for 

different fields including military and rescue operations, reconnaissance, investigation, aeronau- 

tical, remote mapping, etc. However, this has changed in the past few years, as these vehicles 

have gained immense popularity among the researchers and hobbyists. 

In order to achieve autonomous stable flight, various configurations have evolved over the years. 

The rotary wing class of aircrafts has been a popular structure in this domain due to its ma- 

neuverability and the capability to land / take off vertically. In comparison to conventional 

helicopters, quadrotor aircraft possess some desirable attributes, making them ideal for research 

applications. The ciuadrotor model owing to its hxed-pitch rotors as well as the elimination of the 

tail rotor is a simpler and efficient design to control. In the past decade, academic research teams 

have particularly shown a rising interest in cpiadrotor UAV platforms majorly due to the birth 

of MEMS technology and consequently, the availability of miniature sized inertial sensors. From 

a theoretical perspective, many authors have investigated control strategies to maintain a stable 

hovering condition for UAVs. In practice, the noise and uncertainties due to inaccurate sensor 

measurements and the inherent instability of aerial robots make it an exciting and interesting 

field of research. 
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1.1 Problem Statement 

Attitude estimation and attitude stabilization are two main tasks associated with developing 

an autonomous quadrotor aerial robot. The lack of a human pilot complicates the problem of 

attitude stabilization and requires more sophisticated and advanced control algorithms, which 

should not only control the flight dynamics but also perform the desired task at hand. However, 

the main difficulty of the attitude stabilization problem is obtaining accurate estimates of the 

systems attitude. Most modern controllers presume that the precise attitude information is 

known. As a result of this, the key focus of this thesis is to explore, implement and compare the 

popular attitude estimation algorithms. 

The prenoniinal requirement to achieve attitude balance is an accurate estimation of the vehicle 

orientation. The theory of the kinematics of motion suggests that if the rigid body's exact angular 

velocity is known, its attitude can be calculated. However, in practice there are many flaws in 

the measurements by gyroscopic sensors used for angular velocity. Specifically, in long-term 

missions, gyros often drift and uncertainties over time cause errors to accumulate, making the 

integration of kinematic equations an impractical way to estimate the attitude. This fact reveals 

the challenging side of attitude estimation problem. Another problem is that the orientation 

must be efficientl}" and clearly parameterized. 

Various engineering disciplines, including aerial or under water robotics, aeronautics and space; 

engineering all experience a similar crucial problem of determining the orientation of a rigid body 

relative to an inertial frame of reference. This problem has been studied extensively over the past 

years. Euler angles, Rodriguez Parameterization, Rotation Matrix and Quaternion Formulation 

are among the common attitude representation methods used to represent the orientation of an 

object. A large number of publications have been found in the literature discussing attitude 

representation techniques and their advantages and drawbacks [1], [2], [3]. 

A common approach to obtain relatively accurate attitude estimation is using inertial sensors; 

accelerometers and magnetometers in addition to gyroscopes. Combination of inertial measure- 

ments from a multitude of sensors to develop attitude observers has been the sul)ject of many 
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valuable discussions in the literature [4], [5], [6]. 

Low cost inertial sensors measurements are contaminated with noise, biases and misalignments. 

Thus, reducing noise and compensating for measurement uncertainties are added tasks when 

dealing with the attitude estimation process. Low pass filtering method is a well-known solution 

to minimize the effect of measurement noise. However, since there is a compromise between 

measurement bandwidth and sensor response time, the limitation in bandwidth must be taken 

into account. 

1.2 Brief History of Quadrotors 

Quadrotor design histor\" can generally be defined in two main generations. The earlier gen- 

erations were developed majorly for military missions. The latest quadrotor design generation 

consists of model sized aircraft capable of autonomous flight possible due to existence of low 

cost and lightweight MEMS sensors. In the past decade, quadrotors have been used mainly as a 

popular test bed to design an unmanned aerial vehicle because of their small size, agile maneu- 

verability low cost, simple maintenance and the capability of flight indoor as well as outdoor. 

The history of quadrotor design dates back more than a century. Gyroplane, an X-shaped steel 

constructed quadrotor built by Louis and Jacques Breguet in association with Professor Charles 

Richet in summer of 1907, was introduced only four years after the Wright brothers recorded 

the first controllable flight by an airplane [7]. A four-blade rotor was mounted at the end of 

each arm. One pair of diagonally opposed rotors rotated in a clockwise direction while the other 

pair rotated counter-clockwise. All rotors were driven by a 40/45 hp Antoinette piston-c'ngine 

mounted in the rectangular central chassis which wars considered to protect pilot and (aigine. 

Pilot M. Volumard was chosen for flight tests in which the vehicle took off with success and 

could hover at low altitudes. The Breguet-Richet quadrotor aircraft was not the first free flight, 

as during experiments, each rotor was kept in a steady condition with assistance of a man. 

However, it was the first quadrotor aircraft to experiment a vertical take-off with the help of a 

pilot [7]. 
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The first distance flight by a ciuadrotor was recorded on April 14, 1924 in France for Etiene 

Oeinichens second helicopter. This qnadrotor was built in 1920, an X-shaped frame with one 

large propeller at the end of each arm. Five small horizontal propellers were added to achieve 

lateral stability as well as one mounted at the nose for steering and another couple of propellers 

for forward motion. All propellers were driven by a single 120hp Le Rhone rotary engine. This 

cpiadrotor showed a considerable degree of stability and controllability, considering thc' limited 

facilities available at the time. Ilowever, Oemichen was dissatisfied with thc limited altitude the 

aircraft could reach during several experiments, resulting in the abaiidonment of the multi rotor 

schemes to concentrate on single rotor layouts [8]. 

Around same time in 1922, the US army funded the experiments of Dr.George Do Botinvmt 

to build a four rotor aircraft powered by one main engine [9]. The frame was X-shaped with 

arms slightly indinod inward. The aircraft could rc'cord staljle flight of 90 seconds despite l)eing 

heavy weight (see for instance, [7] and [10]). Unfortunately, due to high cost and relatively 

insufficient performance, the US army gradually lost interest in the project, hindering any possible 

achievements. 

The ten years following World War II witnessed the start and stop of a large number of compa- 

nies attempting to manufacture and sell a variety of helicopter configurations. D. H. Kaplan’s 

qnadrotor project was sponsored by Convertawings Company in Amityville, New York [11]. This 

model was an H-shaped configuration with four rotors mounted at the ver}- end of arms. The 

system was designed such that almost all movements could be achieved using the four rotors. For 

instance, increasing the pitch of two rotors on one side while decreasing those of the two rotors 

on the other side would lead to roll inovement. For moving right or left, the four rotors would 

be inclined slightly inward from the vertical position. The designer and test pilot, D. H. Kaplaii 

successfnlly flew the cjuadrotor on Long Island in 1956. However, this project was terminated 

later as there were not sufficient orders made for commercial or military versions. 

As mentioned earlier, the recent interest in building small sized (piadrotors as unmanned aircraft 

has generated from thc availability of the lightweight miniature electronics. In 1996 Area Fifty 

One Technologies built the first modern qnadrotor. later improved and manufactured as the com- 
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rnercial radio controlled aerial robot called Draganflyer by the well-known Canadian compari}', 

RCToys [12], [13]. Since then, a large nuinber of groups and individuals have worked on the 

development of the quadrotor aerial robot. The qnadrotor makes the perfect choice as a test 

bed to validate different new flight control and stabilization algorithms developed b}^ academic 

research teams due to its low maintenance reciuirement and the symmetrical mechanical config- 

uration. For instance, in 2001, a very small-scaled quadrotor aerial robot was initially developed 

in the Mesicopter project [14] sponsored by Stanford University, investigating the challenging 

control and manufacture of this aircraft. A vision based control algorithm was used through this 

particular project leading to successful hovering. STAR- MAC project was another successor in 

the modern generation of cpiadrotor aerial robots widely known for aggressive maneuveral)ility 

and successful multi-agent flights [15]. 

For more than a decade now, the unmanned aerial vehicles have been the subject of research 

in the Automatic Control lab, at Lakehead University [16], [17], [18]. The objective of some 

previous projects was to investigate the challenging concept of design and implementation of a 

cpiadrotor aerial robot seeking the required attitude stabilization for a hovering flight. 

1.3 Motivation 

As discussed earlier, there are a large number of solutions to the attitude estimation problem. 

However, there has been very little focus on the comparison and evaluation of these algorithms 

under varying conditions. This issue was first addressed in 1999 by F. L. klarkley and D. 

Mortari [19]. It was a comparison of the static attitude estimation techniques prcwalent at 

that time and considered that the vector measurements were accurate and did not present any 

challenges in terms of noise and misalignments. The algorithms were simulated in MATLAB [20] 

and compared in terms of accuracy and speed of execution. Another survey of non-linear attitude 

estimation methods was conducted to explore the modern filtering methods available for attitude 

estimation under the assumption that vector measurements are affected by a considc'rable amount 

of noise [4]. While it was successful in enlisting and discussing the advantages and drawliacks of 

a large nuinber of dynamic attitude estimation technicpies, simulations or practical results winx' 
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not provided. 

In May 2013, through the thesis work of N. Madinehi [21], a wide variation of static as well 

as dynamic attitude estimation techniques were studied. Theoretical background, supported by 

simulations in MATLAB and SIMULINK provided a much clearer view of the limitations and 

convenience of the algorithms under review. 

With these precursors in view, there was a need to validate these results on a practical system. 

A large number of attitude estimation techniques have been tested and implemented on various 

models of flying and aquatic robots. However, these results cannot be used for the purpose 

of a comparative study as the parameters, environments and experimental setups used vary 

extensively. This thesis focuses on the implementation of a few prominent attitude estimation 

techniques on a common apparatus for the purpose of an unbiased and reasonable comparison. 

Attitude representations and model preliminaries are examined in Chapter 2. The choice and 

setup of the experimental apparatus is elucidated in Chapter 3 and the theoretical review with 

implementation and results are discussed in Chapters 4 and 5. 



Chapter 2 

Attitude Representations and Model 

Preliminaries 

Attitude parameterization is crucial to determine the motion of a rigid body in space with respect 

to an inertial frame of reference. This chapter aims to summarize the commonly used attitude 

representations and their relative advantages and disadvantages in section (2.1). It is a cornmon 

area of study and has been dealt with in a variety of texts (see for example [2], [22] and [23]). 

One of the primary aims of this research is to establish a comparison of attitude estimation 

algorithms on a quadrotor UAV. Therefore, the dynamical model of the quadrotor has been 

reviewed in brief. This helps us to understand the special groups that represent the rotational 

and dedicated to this aim. Since, the application is heavily reliant on inertial sensor measurements 

in attitude estimation problems, the sensors are reviewed from a theoretical perspective in section 

(2.3). 

2.1 Attitude Formalisms 

In order to describe a rotation, two frames of reference, namely the inertial and body-hxed frame 

of reference, are used. The inertial frame of reference is considered to be stationary and is rigidly 

attached to a certain location on earth, the sun or a star. For the purpose of our research, this 



CHAPTER 2. ATTITUDE REPRESENTATIONS AND MODEL PRELIMINARIES 8 

frame of reference was chosen to have its origin at latitude 48.42 North, longitude 89.26 West 

at an altitude of 211m from sea level. The second frame of reference, as the name suggests, is 

attached to the center of mass of the rigid body under consideration. 

Several existing methods are available to represent the orientation of a rigid body and relat- 

ing inertial and non-inertial coordinates. Each of these methods has a number of advantages 

and disadvantages, making them useful depending on the application they are used for. The 

rotation matrix and the unit-quaternion are constrained parameterizations with redundant ele- 

ments. Euler angles, Rodrigues parameters and modified Rodrigues parameters are examples of 

unconstrained minimal parameterizations. 

Eor the purpose of this thesis, we summarize the commonly used attitude representations: Direc- 

tion Cosine Matrix, Euler Angles and Unit Quaternions. The notations used in this thesis denote 

X as the inertial (fixed) frame and B as the body-attached frame. The orientation (attitude) of 

a rigid body is defined as the orientation of frame B with respect to frame X. 

2.1.1 Direction Cosine Matrix 

The Direction Cosine Matrix (DCM), also known as rotation matrix, is possibly the most natural 

way of describing the attitude of a body. It can be described as a matrix that must be multiplied 

to a vector in the inertial frame in order to convert it to the body frame. For example, let aj 

be a vector expressed in the inertial frame X and as be the vector projection of ax in the l)ody 

frame B. Then, 

as = a.x (2.1) 

where R is the rotation matrix describing the orientation of frame B with respect to frame X. 

Mathematically, DCM belongs to the Lie group SO{3), Special Orthogonal group of dimension 

3. 

SO{3) = {Re R^^^‘^\R:^R = RR^ = hx-i. det{R) = 1} (2.2) 

The product of two rotation matrices belonging to AO(3), is also a rotation matrix belonging 

to SO(3). A special case of this property is where the rotation matrix R is multiplied by its 

transpose R^ or inverse R~^ resulting in the identity matrix I. This identity matrix represents a 
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null rotation or a condition where the two frames of reference are coincident. Another dehnition 

of rotation matrix R, describing the orientation of frame X with respect to frame B, can also Ix' 

found in the literature. In this case one has 

ug = Rcix (2-3) 

Note that the rotation matrix is non-singular and unique representation of the orientation. 

2.1.2 Euler Angles 

The Euler angles were introduced by Leonhard Euler to describe the orientation of a rigid body. 

To describe such an orientation in 3-dimensional Euclidean space, three parameters were recpiired. 

Many such three-dimensional attitude parameterizations have been presented over the years (refer 

to [24] and [2]), but Euler angles have been the most popular. However, similar to the other 

parameterizations, it can be shown that it cannot be both non-singular and unique. 

In common terminology, the Euler angles [q>, 6*, E] are known as roll, pitch and yaw of the rigid 

body, where 0, 9 and R define a positive rotation about x, y and axes respectively. The rotation 

matrix can be defined in terms of three consecutive rotations about the given axes in the specific 

order of rotation. The order of rotations in this case is z —> y ^ x. 

R = R,(^)Ry{9)R,{(/)) 

cip -si) 0 c6> 0 sO 1 0 0 

s'0 cyi 0 0 1 0 0 c(j) ~s(f) 

0 0 1 —sO 0 c9 0 .50 c(f) 

cOciJj s6s0cX — S0C0 s6c(f)cX + .S'0S0 

cOs'iJj s9s(psyj 4- c0c0 sOcOs'i/j — eXsX 

— s9 c6s(p c6c0 

where s and c denote the sine and cosine of the respective angles. 

(2.4) 

The extraction of the Euler angles from the rotation matrix, results in a singularity at 9 = ±7T/2. 

There is no unique solution for }mw and roll at this singular configuration. Therefore, we can sa}' 

that Euler angles formalism is not a global parameterization of the attitude. However, it is easier 
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to imagine the orientation of a rigid body when the values of roll, pitch and yaw are provided. 

The DCM and quaternion representation fail to provide such insight to the actual orientation. 

2.1.3 Unit Quaternion 

Another globally non-singular representation of the attitude consists of using four-dimensional 

vectors Q, called unit-quaternion, evolving in the three-sphere embedded in = {Q G 

E" I Q^Q = 1}. 

A unit-quaternion Q = (go, is composed of a scalar component qo E and a vector com- 

ponent g e such that g^ + g^g = 1. A rotation matrix R describing a rotation by an angle 

6 about the unit-vector k G M'^, can be represented by the unit-quaternion Q or —Q such that 

go = cos(6^/2) and g = sin(t^/2)A’. Note that the mapping from SO{3) to is not a one-to-one 

mapping as there are two unit quaternion that represent the rotation matrix R. The rotation 

matrix can be constructed from the unit quaternion by using Rodrigues formula 

m) = 

where S (x) is the skew 

can be defined as 

I-s + 2S{qf - 2goA(g) 

2gog3 + 2gig2 

-2gog:3 + 2gig2 gg - q\ + g| - gf 

2go^2 + 2gig3 —2gogi + 2g2ga 

-symmetric matrix associated with x G 

-2gog2 + 2gig3 

2go^/i + 2g2g3 

(2.5: 

\ The skew-symmetric matrix 

A(.r) 

0 —X‘i X2 

X:i 0 —Xi 

— X‘2 Xi 0 

(2.6) 

with .T = [xi,X2,X‘iY E E'b Given a rotation matrix R and two vectors x, y G we have the 

following useful properties; S{x)y = —S(y)x = x x ;g, S{x)x = 0, S{x)S{;y) = yx^ — {x'^y)I:^ and 

S{Rx) = RS(x)R^, where x denotes the vector cross product [25]. 

If the unit quaternion is described by a rotation angle 0 and a rotation axis k, then the trans- 

formation to rotation matrix is given by 

R(6», ic) = h - ^m{0)S{k) + (1 - cos{e))S{kf (2.7) 
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To preserve the definition of a quaternion, quaternion multiplication is mucli different from linear 

algebra employed for rotation matrices. As with rotation matrices, quaternion multiplication 

can be used to combine two or more quaternions to describe the overall attitude of a moving 

body. It is also used to transform a vector from one frame to another. Let Qj. = (c/o..r-<?.r) i^nd 

Qy = {qo,y, Qy), be two unit quaternions. Then the quaternion product = (qo,z^ Qz) is given by 

Qz = 3 Qy = 
Qo,.TQo,y Qx Qy 

Qo.xQy + QOAJQX + Qx X Qy 
[2.S] 

where (G) denotes the quaternion multiplication and (x) denotes the cross product. Similar to 

the DCM, unit quaternion multiplication is non-commutative. 

The inverse of a unit quaternion Q = (QQ, q) is denoted by Q ^ = (go, ~q)^ where 

Q© = (1,0) (2.9) 

The quaternion representation Q = (1, 0) is equivalent to the null rotation observed in DCM. 

As discussed earlier, the unit cpiaternion multiplication can also be used to transform a vector 

from one frame of reference to another. Let ay be a vector expressed in the inertial frame I and 

as be the vector projection of a/ in the body frame B. Then, 

QQQIG^ Q~^ (2.10) 

where x = (0, x), x G 

The cpiaternion representation has some distinct advantages over other attitude formalisms. 

Its minimal representation makes it more suited for implementation on practical systems. As 

opposed to the rotation matrix, which has 9 elements, the quaternion works with 4 elements to 

reduce computational load. The Euler angles while computationally more efficient than the unit 

cpiaternion representation is ineffective as it is a non-global representation. 

The unit quaternion is a non-singular representation of attitude. However, despite its strong ad- 

vantages, there are certain drawbacks. The quaternion representation is an over-parameterization 

of the rotation space AO (3). As a result, both unit quaternions Q and —Q signify the same 

rotation matrix R{Q) = R(—Q). Therefore, the unit quaternion representation lacks uniqueness. 
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2.2 Quadrotor Mathematical Model 

The quadrotor UAV consists of a rigid frame of four arms joined at the center. At the ends of 

each arm is a rotor as shown in Figure 2.1. The motion of the quadrotor is a combination of 

variations in angular velocity of individual motors. Each rotor generates an upward thrust and a 

torque about its center of rotation. Each propeller produces a drag force opposite to the vehicle’s 

direction of flight. If individual rotor angular velocities arc the same, with left and right rotors 

rotating clockwise and front and rear rotors counterclockwise, the angular acceleration about the 

yaw axis is exactly zero.This implies that the yaw stabilizing rotor of conventional helicopters is 

not needed. 

Each pair of blades rotating in the same direction controls one axis for roll and pitch. Roll 

and pitch action is produced by changing the relative angular velocity of the rotors with the 
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same direction of rotation, without changing the overall thrust produced by the pair. Therefore, 

blades. This way. fixed pitch blades can maneuver the quadrotor in all dimensions. Translational 

acceleration is achieved by maintaining a non-zero pitch or roll angle. 

Let X = {e.x,ey,e,} denote an inertial frame, and B = {Ex, Ey, Ez} denote a frame rigidly 

attached to the aircraft as shown in Figure 2.1. Then the dynamical model of a quadrotor as 

described in [26] and [27] is given by 

individual angular accelerations about the pitch and roll axes can be achieved without disturbing 

the yaw axis. Yaw is induced by mismatching the cumulative angular velocities of two pairs of 

IrCoi = Ti — Qi, i G 1, 2, 3, 4 

Iji} = —X Iffl — Ga + Ta 

R = RS{n) 

p = V 

i) = gCz TRcz 
m 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
4 4 

i=l 

4 

(2.16) 

(2.17) 

Qi = kojf (2.18) 

The notations used in equations 2.11 to 2.18 are defined in Table 2.1. Equation (2.13) can be 

re-written in quaternion representation as, 

Q = G& (2.19) 

and as Euler angles representation, 

0 = oji A- CJ2 sin 0 tan 0 -\- uj3 cos 0 tan 0 

6 = LJ2 COS (p — (JJ3 sin 0 

0 = CJ2 sin 0 sec 6 + ^3 cos 0 sec 6 

(2.20) 
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Notation Represents 

m mass of airframe 

acceleration due to gravity 

(0, 0, 1)^ unit vector in I 

P position of the origin of the body fixed frame B with respect to / 

linear velocity vector of the origin of B 

T total thrust generated by tlie four motors 

R orientation of the airframe 

skew symmetric operator as given by Equation (2.6) 

angular velocity of the airframe in the body-fixed frame 

symmetric positive-definite constant inertia matrix of the airframe with 

respect to the frame B whose origin is at the center of mass 

vector cross product 

gyroscopic torques due to the combination of the rotation of the airframe and 

the four rotors 

airframe torques generated by the rotors 

CO.,; angular velocity of motor i (direction does not change) 

D torque produced by motor i 

reactive torque generated in free air by rotor i due to rotor drag 

positive proportionality constant that relates reactive torque its 

respective angular velocity 

positive proportionality constant that relates total thrust to the sum of 

angular velocity 

h lift generated by rotor i in free air 

Table 2.1: Notations used 
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2.3 Inertial Sensors and Measurements 

As mentioned in earlier sections, inertial sensors used individually are not reliable for attitude 

reconstruction. The three types of sensors commonly used for attitude estimation are gyroscopes, 

accelerometers and magnetometers. The accelerometers ideally provide the linear acceleration 

of the rigid bod}" in the body-fixed frame of reference B. The magnetometers measure the 

surrounding magnetic field in the body frame. The gyroscopes measure the angular velocity in 

the body frame. Tri-axial sensors are generally used for measurements on all the three orthogonal 

axes. 

This section discusses the characteristics of inertial sensors, considering possible sources of biases 

and uncertainties in measurements by these type of sensors. Due to the heavy reliance of attitude 

estimations techniques on inertial sensors, it is necessary to understand the theoretical aspect of 

the nature of operation of inertial sensors. These issues have been addressed in [28] and [29]. 

2.3.1 Gyroscope 

MEMS gyroscopes are based on the Coriolis effect. This can be observed as a deflection of 

moving objects when they are viewed with respect to a rotating frame of reference. In MEMS 

gyroscopes two vertically driven vibrating masses form the core for each axis of observation. 

When the sensor is rotated, the Coriolis phenomena triggers the masses in opposite directions. 

This leads to an orthogonal vibration that can be sensed by a capacitive pickoff. The resulting 

signal is then amplified, demodulated and filtered to produce a measurement that is proportional 

to the angular rate. 

The gyroscope output UJ„I. can be modeled as, 

<^in = UJ bg M TLi^ (2.21) 

where co is the exact system body-referenced angular velocity, affected by the constant sensor 

bias bg and white noise 7l^J. 

Apart from a constant sensor bias and white noise, the gyro readings are also containinated with 

bias drift, which takes effect at lower frequencies, and self heating of the device to produce faulty 
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readings. 

The gyroscope signals can be easily measured at rest to provide the constant bias. However, the 

bias drift and white noise cannot be known a prion. 

2.3.2 Accelerometer 

An accelerometer is a device that measures the apparent acceleration. The linear acceleration 

measured by an accelerometer is not necessarily the gravity vector measured in the body-frame 

of reference. If g = (0, 0, 9.8)^ m/s^ is the gravity vector and a £ is the acceleration of the 

rigid body due to translational motion in the inertial frame, then the accelerometer reading A,,,, 

in the body frame, is given by 

{o — g) A- ba + ria (2.22) 

where, R, ba and ria are the rotation matrix defining the orientation of the rigid body with respect 

to the inertial frame, constant bias and random noise respectively. For quasi-stationar}’ flights, 

the linear acceleration of the system can be assumed to be much smaller than the gravity vector 

and we can say that a ~ 0. 

The MEMS accelerometer is a polysilicon surface-micromachined structure built on top of a 

silicon wafer. The structure is suspended by polysilicon springs over the surface of the wafer and 

provide a resistance against acceleration forces. The measurement corresponds to a deflection 

of the surface using a differential capacitor that consists of independent fixed plates and plates 

attached to the moving mass. Out-of-phase (180°) scjuare waves drive the fixed plates. The 

moving mass is deflected by the acceleration that unbalances the differential capacitor resulting 

in a sensor output. The magnitude and direction of the acceleration are determined by phase- 

sensitive demodulation techniques. For more details about construction and operational theory 

of MEMS accelerometer refer to [28] and [30]. 

2.3.3 Magnetometer 

A magnetometer is an instrument to measure the strength and direction of the surrounding 

magnetic field. Magnetometers are widely used for measuring the Earth’s magnetic field and in 
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geophysical surveys to detect magnetic anomalies of various types. In aerospace applications, they 

are primarily used to compute the yaw or heading of the aircraft. However, due to the distortion 

D, the sensor bias bm s-nd the measurement white noise the magnetometer reading Mm , in 

the body frame, is given by 

Mm = DR^mj A-bmA- n.m (2.23) 

where R is the rotation matrix and mi is the earth’s magnetic field at the specified location. 

A typical MEMS magnetometer is a surface-mount multi-chip module designed for low-field 

magnetic sensing. The magnetoresistive circuit forms a trio of sensors to measure magnetic 

fields. The magnetoresistive sensors are made of a nickel-iron (Permalloy) thin-film and shaped 

to form a resistive bridge. Resistance of the bridge elements changes in the presence of a magnetic 

field and causes a corresponding change in voltage across the bridge outputs [31]. 



Chapter 3 

Experimental Apparatus and 

Calibration Techniques 

The development of MEMS inertial sensors led to mass production of low-cost research plat- 

forms and hobby-grade qiiadrotors. Various commercially available quadrotors and open source 

platforms were considered as a candidate for practical implementation. The criteria for selection 

were; 

1. On-l)oard inertial sensors consisting of 3-axis gyroscope, accelerometer and magnetometer. 

2. Suitable microcontroller. 

3. Open-source programs and product support. 

4. Reliability of the platform. 

5. Versatility in terms of use and performance. 

6. Cost. 

With the above criteria in mind, the following options were explored further: 
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1. Arducopter [32] is an open-source quadrotor autopilot project based on the Arduino 

framework. It has an onboard 3-axis magnetometer, accelerometer and gyroscope, and 

altimeter. It is easily programmable and configurable. The project is supported by a large 

community of researchers and hobbyists around the world. Many options for purchase of 

spare parts and upgradeable sensors like GPS, SONAR and optical flow are easily available. 

2. Pelican [33] from Ascending Technologies is one of the most popular quadrotor platforms 

used in the field of research. Its light weight tower structure helps to mount diverse payloads 

and easily access all electronics. It is programmable through their proprietary Software 

Development Kit (SDK) and AstTec Simulink toolkit. It is equipped with a powerful dual- 

core CPU. Due to price considerations, it was not considered for the current project. 

3. Phantom, Draganfiyer X4 and Parrot ARDrone [34-36] are popular commercially 

available quadrotors being manufactured and sold as standalone systems. They do not 

allow for any modification to the proprietary code and hence werenh considered as viable 

options to be used as a testbed. 

Arducopter platform proved to be the most suitable option in the list. A comparative study of 

some popular platforms is given in [37]. The quadrotor used as the experimental apparatus was 

purchased from 3DR-robotics. It includes the inertial sensors, micro-controllers, electronic speed 

controllers, actuators and necessary frame parts. 

3.1 APM 2.5 

The ArduPilotMega (APM) is the main controller board used in the Arducopter quadrotor. It 

uses an Atnrega2560 microcontroller as the primary controller for processing control and esti- 

mation algorithms. The secondary microcontroller is an Atniega 32U-2 used for the purpose 

of radio communication, telemetry and motor control. A tri-axial gyroscope and accelerometer 

(Invensense MPU-6000) and a 3-axis magnetometer (Honeywell HMC5883L) are embedded on- 

board. A barometer (Measurement Specialties MS5611) provides the temperature compensated 

altitude. These components are discussed briefly in the following sub-sections. 
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Figure 3.1: Arducopter platform 

3.1.1 Atmel Atmega2560 

Atmega2560 is a high-performance, low-power Atmel 8-bit AVR RISC-based microcontroller with 

256KB flash memory, 8KB SRAM and 4KB EEPROM to meet our processing recjuirements. It 

has 86 general purpose I/O lines, 4 USARTs, serial peripheral interface (SPI) and PC interface 

to communicate with the sensors and peripherals. Real time counters, six flexible tinier/counters 

with compare modes and hardware and software generated PWM for generating motor outputs 

and demodulating input radio signals. The device operates at 16 MHz between 4.5-5.5 volts input 

source voltage which is sufficient for the implementation of estimation and control algorithms as 

well as communication functions. For more details refer to [38]. 

3.1.2 Atmel Atmega32XJ2 

Atmega32U2 is a secondary microcontroller on-board the APM. Its primary functions are to 

offload the radio inputs and motor output generation from Atmega2560. Up to eight radio input 

channels can be fed to the general purpose pins of 32U2 and are converted to PPM signal to be 

decoded by Atmega2560. It also acts as the in-line programmer for the Atniega2560. The 32U2 
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Figure 3.2: ArduPilotMega controller (a) with enclosure and (b) without enclosure 

is connected to a USB header and can serves as a programmer via the UARTO pins of the 2560. 

It is the main source of communication between the base-station computer and the APM2.5. 

Further details are provided in [39]. 

3.1.3 Invensense MPU-6000 

MPU-6000 from Invense Inc. combines a 3-axis accelerometer and gyroscope, and a digital 

motion processor on a single chip. It is connected to the Atmega2560 through the SPI lines 

and is fully programmable. It is a highly versatile device offering a large variety of g\Toscope 

full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec (dps) and a user-programmable 

accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g [40]. 

The output of the accelerometer is sampled by a 16-bit ADC on each axis and conditioned by 

a low pass filter with variable configuration. Another set integrated 16-bit ADCs sample each 

gyroscope axis from 8000 to 1000 samples per second and a configurable low-pass filter can be 

set to a wide range of cut-off frequencies. Both the gyroscope and accelerometer readings are 

stored in data registers and can be retrieved by Atmega2560 via SPI protocol. 
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3.1.4 Honeywell HMC5883L 

The Honeywell HMC5883L magnetonieter is a niagnetoresistive sensor circuit forniing a triad 

of orthogonal axes to measure its surrounding magnetic field [41], The magnetoresistive sensors 

are essentially a nickel-iron thin-film patterned as a resistive strip element. In the presence of 

a magnetic field, the bridge elements produce a change in the voltage across the bridge corre- 

sponding to a change in the bridge resistive elements. Thus, the sensor produces a differential 

voltage output based on the incident magnetic field in the sensitive axis directions. This voltage 

is then amplified and sampled on-chip by a 12-bit ADC. The reading is stored in a data register 

and accessed by the Atmega2560 through CC protocol. 

These resistive elements are aligned together to have a common sensitive axis that will provide 

positive voltage change with magnetic fields increasing in the sensitive direction. Because the 

output is only proportional to the magnetic field component along its axis, additional sensor 

bridges arc placed at orthogonal directions to permit accurate measurement of magnetic field in 

any orientation. 

The HMC58831 has a full scale reading of ±8 gauss that is scalable through a 3-bit gain control 

ranging the output from ±1 gauss to ±8 gauss. Output rates can be varied from 0.75 Hz to 

75 Hz with the default being 15 Hz. However, the quadrotor platform is designed for agile 

performance and the objective is to test the performance of attitude estimation algorithms with 

noisy measurements. Therefore, the magnetometer is configured to run at maximum output rate 

of 75 Hz. 

3.2 Radio and Telemetry 

The transmitter and receiver set used for radio commnnication is a 2.4 GHz RF system with 8 

channels. Initially, a 72 AIHz 4 channel FM radio system was used to provide user input to the 

quadrotor aircraft. It was plagued with erroneous spikes, interference and sudden signal loss that 

couldriT be explained or corrected. The 2.4 GHz radio system exhibits much better performance 

and is immune to interference from its surroundings. Also, the added channels allow for more 
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versatility of input commands to the quadrotor. 

The telemetry unit comprises of a transreceiver at the base-station computer as well as one 

connected to the APM to relay information and send commands. It has an operating radio 

frequency of 915 MHz. Due to time limitations, implementation of the telemetry unit has not 

been conducted. 

3.3 Power Module and Actuators 

The entire platform is powered by a 2700 mAh 3-cell lithium polymer battery. Maximum con- 

tinuous current that can be drawn from the battery is 121.5 A, allowing up to 243 A of current 

in short bursts. The battery voltage when fully charged is 12.6 V, and 9.9 V when discharged. 

The brushless motor and electronic speed controller (ESC) pairs serve as actuators for the quadro- 

tor. The ECSs are driven by the PWM signal sent from the APM and convert the input DC 

voltage from the battery to 3-phase AC current to drive the motors at the desired speed. Since, 

the ESC controls the speed of the motor, a feedback from the motor is required. Earlier speed 

controllers employed Hall effect sensors but more recent ones measure the back-EMF generated 

in the un-driven coils. The motor A2830 is an outrunner brushless motor produced by 3DR- 

robotics. It’s specihcations as provided by the manufacturer are given in Tabic 3.1. 

Voltage KV(rpni/V) Max Pull Weight Max power ESC 

7.4-15 V 850 880g 200watt 20A 

Table 3.1: Alotor Specifications 

3.4 Microstrain Inc. 3DM-GX1 

Implementation and comparison of attitude estimation algorithms on a practical system is the 

main objective of this thesis work. However, the Arducopter platform did not include aiiy 

reference basis to compare various attitude estimation techniques. Hence, the basis of comparison 
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Figure 3.3: 3DM-GX1 Module 

needs to be defined clearly. The estimated attitude from various algorithms need to be objectively 

viewed with respect to a precise source. The most accurate systems employ an array of motion 

tracking cameras around the quadrotor, to produce reliable attitude information. However, these 

motion tracking systems are not cost effective for the task at hand. Another alternative is to use 

robust, high-performance IMUs for the purpose of generating reliable attitude information. The 

3DM-GX1 from Microstrain Inc. is used for this purpose [42]. 

The 3DM-GX1 contains three angular rate gyros with three orthogonal DG accelerometers and 

three orthogonal magnetometers. Gombined with a multiplexer, 16 bit A/D converter, and 

embedded microcontroller, it produces the dynamic and static orientation of the module. It can 

produce outputs in DCM, quaternion and Euler angles format in 360 degrees of angular motion 

on all three axes with a static accuracy of ±0.5 degrees and a dynamic accuracy of ±2 degrees. 

The digital serial output from an RS-232 connector can also provide temperature compensated, 

calibrated data from all nine orthogonal sensors at update rates of upto 350 Hz. 

The full scale range for angular rate is ±300 degrees/sec with a resolution of 0.01 degrees/sec. 

Accelerometer has a range of ±5 g with a resolution of 0.5 mg. The magnetometer output deflects 

to ±1.2 Gauss with a resolution of 0.2 rriGauss. Output modes and software filter parameters 
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are user programmable. Programmed parameters and calibration data are stored in nonvolatile 

memory. The 3DM-GX1 module is attached rigidly to the body frame, to provide attitude 

estimates of the quadrotor. 

3.5 Gyroscope and Accelerometer Calibration 

The accelerometer and gyroscope ranges were set to default operations as specihed in the 

datasheet of MPU6000 [40]. Gyroscope range is set to ±250 degrees per second with a reso- 

lution of 7.63x10“'^ degrees per second. The typical range for the accelerometer is given as ±2 

g. However, this seemed to be insufficient due to the fact that during take-off the linear acceler- 

ation of the quadrotor would be capped off by the accelerometer. Therefore, the range for the 

accelerometer was selected as ±4 g with a resolution of 1.22x10^'^ g. 

Both the accelerometer and the gyroscopes models (Equations (2.21) and (2.22)) possess a con- 

stant bias term that can be easily compensated. While the system is at rest on a leveled surface, 

the output data from accelerometer and gyroscope can be collected and averaged for each in- 

dividual axis to provide estimates of hg and ba- The corrected measurements cjf. and A^. can be 

written as 

(3.1) 

Af; Ajff b(] (3.2) 

The MPU6000 output is filtered by a digital filter. The cut-off frequency of the filter can be 

selected as per Table 3.2. 
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Table 3.2: Accelerometer and gyroscope cut-off frequencies and delay 

Since, response of the quadrotor to changes in attitude was of prime importance, delays over 10 

ms were unacceptable and only the first five filters were considered. The accelerometer is much 

more susceptible to vibrations from the motors. Figures 3.4 to 3.8 show the output of the three 

axes of the accelerometer under different filters. 

The filters progressively reduce the effect of vibrations on the accelerometer as the cut-off fre- 

quency is decreased. However, the objective of the thesis is to consider the performance of the 

attitude estimation algorithms under noisy sensor measurements. Therefore, to preserve the 

originality of sensor signals, cut-off frequency of the digital filter for the accelerometer is set to 

260 Hz. 

3.6 Magnetometer Calibration 

The magnetometer measures the magnetic field of its surrounding environment including distur- 

bances from structural steel, ferrous metal parts, electric motors and power lines. This leads to 

untrustworthy magnetometer readings attempting to read the earth’s magnetic field. As seen 

in Equation (2.23), disturbances can be categorized into sources that lead to an offset in the 

magnetometer readings and those that produce a distortion in the magnetic field measured. 

An offset or bias in readings is caused by zero bias shift, hard-iron effect and difference in 
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Figure 3.4: Accclcroiiictcr output at 260 Hz filtering 

Figure 3.5: Accelerometer output at 184 Hz filtering 
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Figure 3.6: Accelerometer output at 94 Hz filtering 
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Figure 3.7: Accelerometer output at 44 Hz filtering 
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Figure 3.8: Accelerometer output at 21 Hz filtering 

sensitivity of the three magnetometer axes. Theoretically, the magnetic field vector m is constant 

and the collected data points should map out a 3-D sphere centered at zero with radius |m|. The 

offset affects the center of the sphere and shifts it to a non-zero coordinate. A simple approach is 

to compute bm = mean {{M-m}) based on an appropriate magnetometer data set {I\Im} and use 

it to correct future measurements as Mm — bm- The advantage of this method is that it doesn't 

require any knowledge of the local magnetic field amplitude and involves simple calculations. 

Distortions in the measured magnetic field are caused by sensor scaling errors O-y, ocz)^ sensor 

misalignment angles {px-, l3y, Pz) and the sensor offsets oa the individual axes. These 

distortions require more rigorous calibration techniques like [43]. The magnetometer model as 

proposed in the paper is given as 

Mr^ = 

cvx 0 0 

Qy sin px Oiy cos px 0 

(\z sin py cos Pz Oiz sin Pz ctz cos py cos p^ 

niB + 

lx 

ly 

Iz 

— DniB + bm (3.3) 
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where is the earth’s magnetic field in the body frame of reference. Equation (3.3) is a 

simplification of Equation (2.23), where the effects of white noise are not considered. Equation 

(3.3) is rearranged to give 

rriB = D~^ - b„,) (3.4) 

and substituted in |m^|^ = + niy + rnl to result in 

CiAImxMrnx + 3 4n;r d/m?; 4“ CsM^xAI^ + CAAIuiijMjny + CriMmyAlrnz + CQMJ„:.MJ, 

+ CgMyny + CgAImz — CiQ (3.5) 

where the coefficients Ck {I < k < 10) are defined as functions of and |mn|. Assurniip 

that the data set {Aim} has N data points, Equation (3.5) can be re-written as 

ddj. TV AIm.x.N Alrn.y.N 

AL mz,l 

Alrn y rnz.N 

A'l/Cio 

CQ/Cio 

1 

(3.6) 

Note that for a = [1,1,1], /3 = [0, 0, 0] and 7 = [0, 0, 0], it can be shown that Aim — which is 

the ideal case. Considering this as the initial condition, a least-squares solution for the numerical 

values of Ci/Cio ... Cg/Cio is performed. This produces a system of nine nonlinear equations in 

nine unknowns 0, j3 and 7, which can be solved numerically. The calibrated measurements 34. 

can be corrected as 

M, = D-'{M,„ - b,„) (3.7) 

The earth’s magnetic held for the location specihed in Section 2.1 can be found on a particular 

date from the International Geomagnetic Reference Eield (IGRE) [44] or World Magnetic Model 

(WMM) [45]. Implementation of the above calibration technique resulted in the following values 

when the unit of readings is Gauss 

Q = 

0.8183 

0.8291 

0.7344 

0.0029 

0.0202 

-0.0618 

0.0210 

0.0576 

0.0014 
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Figure 3.9 shows the result of calibration. It can be clearly seen that the offset has been removed 

and the calibrated values form a circle in all three planes as opposed to ellipses formed by the 

raw, uncalibrated data set. 

■0.8 I ' ' ' ' 
-1 -0 5 0 0.5 1 

Magnetometer z-axis (gauss) 

Figure 3.9: Magnetometer calibration results 



Chapter 4 

Static Attitude Estimation 

Static attitude estimation originated in spacecraft attitude systems, where measurements of mag- 

netic fields, sun position and star constellations are accurately available as vector observations. 

This class of attitude estimation techniques takes advantage of tlie body vector observations to 

numerically determine the attitude without necessarily considering its kinematics. 

One of the earliest algorithms to be developed was TRIAD, by Harold D. Black in 1964 [46]. It 

was used in spacecraft attitude estimation for nearly two decades. With the advent of Wahba’s 

problem [47], it was supplanted by the QUEST algorithm [48]. These algorithms were early 

optimization methods, aimed to solve Wahba’s problem. It seeks to find a rotation matrix R 

between two coordinate systems from a set of weighted vector observations. The cost function 

that Wahba’s problem proposes to minimize is as follows: 

1 ^ 
J{R) = -Y,a,\\bi-Rri.f (4.1) 

i=l 

where is a set of vectors in the reference frame, is the corresponding set of vectors in the 

body frame and {a,;} is an optional set of weights for each observation. It can be conveniently 

shown that the cost function can be re-written as 

N 

J{R) = a,: - tr (RB'^) 
i = l 

(4.2) 
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where ti' denotes the trace operator and matrix B is defined as 

N 

B = (4.3) 
i = l 

A niimber of solutions to the problem have appeared in literature, notable amongst them are 

[49], [50], [51], and [52]. However, none of these were as widely applied as Paul Davenport's 

q-method [53]. 

4.1 TRIAD 

TRIAD or TRI-axial Attitude Determination played a key role in the development of the guid- 

ance, navigation and control of the U.S. Navy’s transit satellite system at Johns Hopkins Applied 

Physics Laboratories. As evident from the literature, TRIAD represents the state of practice in 

spacecraft attitude determination, well before the advent of the Wahba’s problem and its several 

optimal solutions. Given the knowledge of two vectors in the reference and body frames, the 

TRIAD algorithm obtains the direction cosine matrix relating both frames. Covariance analysis 

for Black’s classical solution was subsequently provided by Markley in [19]. 

We consider the linearly independent reference vectors b\ and 62 are measured vectors in the 

body frame, ri, V2 are the reference vectors in the inertial frame. Then they are related by the 

equations, 

hi — RTI (4-4) 

for i = 1,2 , where R. is a rotation matrix that transforms vectors in the inertial frame into 

vectors expressed in the body frame. 

TRIAD proposes an estimate of the direction cosine matrix as a solution to the linear system of 

equations given by 

hi 62 (^1 X 62) = R ri T2 (ri X ?'2) (4.5) 

The solution presented above works well in the noise-free case. However, in practice, the measure- 

ments are noisy and the orthogonality condition of the attitude matrix (or the direction cosine 

matrix) is not preserved by the above procedure. As proposed in [54], TRIAD incorporates the 
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following elegant procedure to redress this problem. To this end, we define unit vectors 

^ = 

M = 

ni = 

bi 

ri 

bi X 1)2 

||6i X 62 

X T2 

Ikl X ?’2 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Their cross product is used as the third column in the linear system of equations obtaining a 

proper orthogonal matrix for the spacecraft attitude given by 

[S M (S X M)] = R[s ni {s x m)] (4.10) 

Thus an estimate of the spacecraft attitude is given by the proper orthogonal matrix as 

R=[S M {S X d7)][s m {s x rh)]^ (4.11) 

Note that computational efficiency has been achieved in this procedure by replacing the matrix 

inverse with a transpose. This shows that the matrices used for computing attitude are each 

composed of an orthogonal triad of basis vectors. TRIAD derives its name from this observation. 

4.2 Q-Method 

Paul Davenport provided the real breakthrough in applying Wahbas problem to spacecraft atti- 

tude determination. He proposed that the solution to Wahba’s problem R can be parameterized 

by a unit quaternion Q = {qo, qi, Q2, ■ This is computationally more efficient as opposed to 

the numerical calculation for the solution of a 3 x 3 matrix R. Equation (2.5) suggests that the 

representation of the rotation matrix is a homogeneous quadratic function of Q. Hence, we have 

tr{RB^) - Q'^KQ (4.12) 
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where 

_ S-LstriB) Z 

Lr{B) 

S = B + B'^, 

(4.13) 

(4.14) 
N 

Z = aibj X Fj (4-15) 
i=l 

It is straight-forward to show from Equation (4.2) that the optimal unit quaternion is the nor- 

malized eigenvector of K with the largest eigenvalue. Mathematically, it is equivalent to finding 

the solution of 

BC^opi ^maxQopt (4.16) 

Solutions to the symmetric eigenvalue problem can be found in robust algorithms suggested 

in [55] and [56]. The main problem arises when there is no unique solution he., the two largest 

eigenvalues of K are equal. Thus, the focus of works such as ESOQ (Estimation of Optimal 

Quaternion) [57-59]. has been to find the optimal quaternion Qopt- 

4.3 QUEST 

Shuster’s QUEST (QUaternion ESTiniator) algorithm [48] was one of the most popular and 

widely used solutions to Wahba’s problem. It was developed as an algorithm to solve for the 

optimal quaternion given in Equation (4.16). Therefore, it does not require the minimization of 

the cost function given in Equation (4.1) and is considerably faster than the primitive algorithms 

attempting to solve for QOJA- 

The Cayley-Hamilton theorem [55] for a general 3x3 matrix G states that 

G'^ - {trG) G^ + [tr{adjG)] G - (detG)I = 0 (4.17) 

where adjG is the classical adjoint of G. This can be used to express the adjoint as 

adjG = GZ - {frG)G + [tr{adjG)]I (4.18) 

This can be used to express the matrix S as 

S'^ = tr {S) — [tr {adjS)]S + det{S)Ls (4.19) 
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Let X = {al + i3S + S‘^)Z, then the optimal quaternion Qopt as given by [48] is 

Qopt 
7 

X 

where 

7 = (^max H trS) a - detS 

« = >^max - {adjS) 

[3 — ^max tv B 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

It is visible that the above computations rely on the knowledge of X^ax- This can be obtained 

from the characteristic equation det{K — XmaxiA) = 0, which can be written as 

Kiax - (a + - C7 + (ah + ^-irS - d) (4.24) 

where 

a = —tr(adjS), (4-25) 

b = (ltr{S)\ +Z~^Z (4.26) 

c = detS + Z'^SZ, (4.27) 

d = Z'^S'^Z (4.28) 

Shuster analysed that X^r^ax is approximately equal to AQ = function J{R„pf) 

is small. Hence, Xmax can be obtained by Newton-Raphson iterations, starting with AQ as the 

initial estimate. However, it is well established that solving the characteristic equation to find 

eigenvalues is one of the least reliable methods. Thus, QUEST is believed to be less robust than 

other static attitude estimation techniques as has been conclusively proven in [19]. 

4.4 SVD 

Singular Value Decomposition (SVD) method is one of the most robust estimators for miniinizing 

Wahba’s cost function. It is based upon the algorithm proposed in [52] and was formally intro- 

duced by Markley in [60]. It presents that the matrix B given in Equation (4.3) has a singular 
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value decomposition given by 

B = UaV^ = Udiag{(Ji^ (4.29) 

where U and V are orthogonal matrices and is a singular value diagonal matrix constrained 

by the inequalities ui > CT2 > 0-3 > 0. In order to minimize the loss function in Equation (4.2), 

the trace must be maximized. This can be achieved when 

U^R„ptV = diag{l, 1, {detU){detV)) (4.30) 

where detU = ±1 and detV = ±1. Thus, the optimal rotation matrix proposed in [60] is given 

as 

Ropt = U diag{l, 1, {detU)(detV)) (4.31) 

4.5 FOAM 

The Fast Optimal Attitude Matrix (FOAM) algorithm was introduced in [61] as an alternative 

to the SVD method. They are intrinsically similar and using the properties of matrix B, Ropt in 

Equation (4.31) can be re-written as 

= [(K + l|B|t) B + \ad]B'^ - /^, (4.32) 

where adj is the adjoint of a matrix and a, A, ^ and ||B|| are dehned as 

^ = 0-2^3 + 0-30-2 + 0-1U2 (4.33) 

A = 0-1 + 0-2 + 0-3 (4.34) 

C = (CT-2 + 0-3)(CT3 + 0-i)(c7i + 02) (4.35) 

ll^ll^ = CTi + cr2 + *^3 (4.36) 

and 0-3.0-2 and 0-3 retain their dchnitiori from Equation (4.29). The coefficients in Equation 

(4.32) can be calculated without performing the singular value decomposition. This is the main 

advantage of the FOAM over the SVD method. It can be shown algebraically that 

K = i(A^-||B|H 

^ = aA — detB 

(4.37) 

(4.38) 
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We observe from Equations (4.32), (4.37) and (4.38) that Ropt can be expressed as a function of 

A and B. So A described by Equation (4.34) is given by 

A = tr(R„p,B'^) (4.39) 

and can be computed as a solution of the equation 

(A^ - \\Bff - 8\detB - 4\\adjBf = p{\) = 0 (4.40) 

It is evident that A has four real roots and they are the eigenvalues of the matrix K given 

in Q-method. The key innovation of this method is that it takes advantage of an iterative 

computational strategy to avoid hnding <7i, a2 and <73. This dehnes a sequence of estimates of A 

by 

Aj = A,;_1 - p(A,:_i)/p'(A.,:_i), i- = 1,2,... (4.41) 

where p'(A) is the derivative of p(A) with respect to A. 

4.6 Experimental Results 

The attitude estimation algorithms discussed in this chapter have been implemented on the 

experimental apparatus in Chapter 3. The quadrotor platform is configured and calibrated as 

discussed. Performance of static estimation algorithms under the effect of noisy sensor measure- 

ments is shown. The actuators were run at hfty per cent capacity with the propeller removed. 

This produced the necessary vibrations and magnetic disturbances to simulate an actual flight. 

The results are compared to the attitude provided by the 3DM-GX1 lAlU as discussed earlier. 

The results were visualized in SIMULINK by transmitting the data via UDP packets, in real- 

time. The estimated attitude is indicated in blue color and the attitude measurement from 

3DM-GX1 module is shown in red color. 

Figures 4.1 to 4.5 show the output yaw, pitch and roll of the attitude estimation algorithms as 

discussed in this chapter. The variation in steady state estimation error A of an angle a, in 

degrees, can be defined as 

A(a) = I max(a) — min(a) (4.42) 
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Figure 4.1: TRIAD result 1 
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Figure 4.2: Q-method result 1 
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,2Q I ! ! ! ! ! ! ! ! ! ! 
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Figure 4.3: QUEST result 1 
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Figure 4.4: SVD Method result 1 
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Figure 4.5: FOAM result 1 
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Figure 4.6: TRIAD result 2 
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Figure 4.7: Q-method result 2 
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Figure 4.8: QUEST result 2 
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Figure 4.9: SVD Method result 2 
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Figure 4.10: FOAM result 2 
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Figures 4.6 to 4.10 show the output of the attitude estimation algorithms when the orientation 

is changed. 

For the next set of results, the orientation is kept the same. However, the accelerometer output 

is filtered as discussed in Section 3.5. The digital filter is set to have a cut-off frequenc}’ of 20 Hz. 

This results in a delay of 8.5 ms. The magnetometer output is left unchanged as it is already 

filtered on-board the HMC5883L and the calibrated magnetometer output does not exhibit high 

frequency disturbances. The results are shown in Figures 4.11 to 4.15 and the variation in steady 

state estimation error of yaw, pitch and roll angles is given in Table 4.1. 

Table 4.1: Variation of Euler angles estimated for results with accelerometer measurements filtering 

Figures 4.16 to 4.20 show the result of the static attitude estimation techniques when the ac- 

celerometer output is filtered and the platform is rotated about all axes to simulate motion of 

the cpiadrotor in a flight. 

It is interesting to note that while these algorithms have been extensively used with accurate 

sensors, their implementation is impeded by their inability to deliver reliable attitude estimates 

under noisy measurements. Even the results from filtered accelerometer measurements present a 

considerable variance in the estimates of attitude from the implemented algorithms. The figures 

showing the simulated motion of the quadrotor clearly depict that the static attitude estimators 

are unsuitable for implementation with filtered measurements as well. 

The realization that static attitude estimation techniques arc inefficient in the presence of mea- 

surement noise led to the development of filtering techniciues incorporated into the estimation 

algorithms. These dynamic attitude estimation algorithms are discussed in the next chapter. 
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Figure 4.11: TRIAD result with accelerometer measurements filtering 
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Figure 4.12: Q-method result with accelerometer measurements filtering 
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Figure 4.13: QUEST result with accelerometer measurements filtering 
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Figure 4.14: SVD Method result with accelerometer measurements filtering 
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Figure 4.15: FOAM result with accelerometer measurements filtering 

Figure 4.16: TRIAD result with accelerometer measurements filtering and simulated motion 



R
ol

l 
in
 d

eg
re

es
 

P
it

ch
 i

n 
d

eg
re

es
 

Y
aw

 in
 d

eg
re

es
 

R
ol

l 
in

 d
eg

re
es
 

P
it

ch
 i

n 
d

eg
re

es
 

Y
aw

 in
 d

eg
re

es
 

CHAPTER 4. STATIC ATTITUDE ESTIMATION 48 

Time in seconds 

igure 4.17: Q-method result with accelerometer measurements filtering and simulated motion 

Time in seconds 

Figure 4.18: QUEST result with accelerometer measurements filtering and simulated motion 
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Figure 4.19: SVD Method result with accelerometer measurements filtering and simulated motion 

Figure 4.20: FOAM result with accelerometer measurements filtering and simulated motion 



Chapter 5 

Dynamic Attitude Estimation 

As we have seen in the previous chapter, the static attitude estimators are sensitive to measure- 

ment noise. Thus, there is a need for attitude estimation algorithms that incorporate filtering 

techniques and provide reliable results in the presence of measurements noise and biases. 

Theoretically, the static attitude estimation methods are aimed to be optimal solutions to 

WahbaT problem, which only consider the vector measurements and do not utilize the sys- 

tem dynamics. They are oblivious to the nonlinear structure of the system and hence, are very 

sensitive to disturbances. Thus, they perform admirably only when the sensor measurements are 

accurate. However, dynamic attitude estimation approaches rely on a process model considering 

motion dynamics and specific application properties to estimate attitude from noisy or disturbed 

sensor measurements. 

Due to these noticeable drawbacks of the static attitude estimation algorithms, recursive algo- 

rithms incorporating the dynamics of the system were employed. Kalman hltering techniques [62] 

and recursive QUEST algorithms [63], [64] were the first to address these issues and present a 

solution to the attitude estimation problem with noisy measurements. Recently, nonlinear es- 

timators involving complementary hlters have been developed [65]. These are proven in the 

literature to be almost globally asymptotically stable. The most recent globally exponentially 
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stable nonlinear observers presented in [66] and [67] are also discussed and implemented. 

5.1 Filter QUEST 

Shuster noted in [68] that the attitude profile matrix B defined by Equation (4.3) contains the 

complete information about the current attitude of the rigid body. Thus, he proposed the Filter 

QUEST algorithm [63], by sequentially propagating and updating B as 

Bk = + ABk (b-1) 

where B^-i is the previous iteration of Bk and can be initialized as a zero matrix. The forgetting 

factor 0 < rv < 1 is a measure of the impact that past measurements have on the current estimate 

of attitude. For a = 0 we recover the QUEST algorithm. The state transition m.atrix 

relates the previous attitude and current attitude as 

Bk = ^k,k~iBk-\ (5.2) 

The current measurements hi and their respective weights pi are incorporated as 

^ 1 

^Bk = ^ (5-3) 

The state transition matrix can be obtained by converting the dynamic equation of a rigid body 

as given in Equation (2.13) to discrete time 

(5.4) 

Thus, can be written as 

4>A:,A:-1 = c (-5(^'U) 

where ujk is the measured angular velocity provided by the gyroscope. 

(5.5) 

The updated matrix Bk is used in the original QUEST algorithm and the estimation technique 

continues as discussed earlier. Another similar algorithm called Recursive QUEST or REQUEST 

was proposed in [64]. However, it relies on propagating and updating the K matrix given in 

Davenport’s Q-method. It was mathematically proven that the algorithm was equivalent to the 
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filter QUEST because the updated K matrix can also be derived from substituting the updated 

matrix Bi, in Equation (4.13). Neither of these methods has been as popular as the Kalman 

filtering techniques, mainly because the unoptimized forgetting factor is constant as opposed to 

the Kalman gain. 

5.2 Kalman Filter 

The Kalman filter was formally introduced in [69] by Rudolf E. Kalman and it has gained immense 

popularity in the field of attitude estimation. Some note-worthy implementations include the 

guidance and navigation systems of NASA’s Apollo program and Space Shuttle program, and 

U.S. Navy submarines and cruise missiles [70]. The filter operates recursive!}- on a series of noisy 

measurements to produce an optimal estimate of the underlying system state. The Kalman filter 

was originally developed for a system defined by a set of linear differential equations. 

The algorithm works in two steps. The first step of the Kalman filter predicts the current state 

variables based on the system dynamic model and the previous estimate. The next step involves 

updating the predicted states with weighted noisy measurements from the sensors to produce 

the current estimate of attitude. Due to this recursive nature of the Kalman filter, it is ideally 

suited to real-time applications involving corrupted sensor measurements. 

Let us assume that the true state Xk of a linear system is described at time k in terms of the 

previous state as 

Xk = Fxk-\-kWk-\ (5.6) 

where F is the state transition matrix and Wk~i is the process noise. The Kalman filter attempts 

to estimate the state with measurement Zk that can be modeled as 

2,. = Hxk + Vk (5.7) 

where 11 and Vk are the measurement matrix and measurement noise respectively. Using the 

previously estimated state Xk-i to predict the current state Xk as shown by the following equations 

.Tj- = Fxk^i (5.8) 

a = FP,-xF'^ + W (5.9) 
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The process and measurement noise are assumed to be drawn from their normal probability dis- 

tributions with covariance W and V respectively. Pk is the predicted error covariance depending 

upon the previous estimate of the error covariance. The current optimal Kalman gain can 

be computed as 

K, = PkH'^(HP,,H'^ + V')-i (5.10) 

and the current state estimate and error covariance Pk are given by 

Xk = Xk + Kk{zk - Hxk) (5-11) 

Pk = (I-KkH)Pk (5.12) 

The Kalman filter, however, was designed for linear systems and cannot be directly applied to 

nonlinear systems such as the quadrotor model. Its application has been extended to incorporate 

nonlinear systems and their state estimation. 

5.2.1 Extended Kalman Filter 

In simplistic terms, extended Kalman filter (EKF) is the nonlinear version of the Kalman filter. 

It linearizes the nonlinear system about an estimate of the current mean and covariance to obtain 

the Jacobian matrices in Kalman filter [71]. As opposed to Equation (5.6) the nonlinear system 

can be defined in discrete-time as 

= f{xk-i) P Wk-i (5.13) 

Zk = h[xk)Pvk (5.14) 

where all variables are defined in the same manner as Equation (5.6), and f{xk~i) and h{xk) are 

the process nonlinear vector function and measurement nonlinear vector function respectively. 

The Jacobian matrices Fk and Hk associated with f{xk—i) and h{xk) respectively are given as 

Fk 

Hk 

df{x) 
dx 

dh[x) 
dx 

(5.15) 

1 

(5.16) 



CHAPTER, 5. D YNAMIC ATTITUDE ESTIMATION 54 

It can be seen that the Jacobian matrices are derived from the linearization of the nonlinear 

system at each instant of time around the best estimate of the system state. The rernairrder 

of the procedure follows from the original Kalnran filter. The Jacobiarr nratrices derived in this 

case are, however, just approximations and the higher-order terms have been trrrncated from the 

Taylor series expansion. A more accurate version employing second-order extended Kalman filters 

has been discussed in [72] and [73]. The EKF has been one of the most used attitude estimation 

techrriques for UAVs owing to its nrerits in dealing with measurement noise. However, if the 

initial estimates are highly inaccurate, it may lead to divergence or poor estimation of the states. 

Therefore, global convergence of EKF is not guaranteed as suggested in [4,74,75]. A survey of 

stability analysis of EKF based attitude determination has been conducted in [76]. 

While many versions of the EKF are available in the literature [4], this thesis focuses on the 

Multiplicative EKF proposed in [62] and the Additive EKF proposed in [77] as they were the 

most widely implemented algorithms. 

5.2.2 Multiplicative EKF 

The Multiplicative Extended Kalman Filtering (AIEKF) approach [62] was proposed by E. J. 

Lefferts, F. L. Markley and M. D. Shuster based on the unit quaternion attitude representation as 

given by Equation (2.19). Shuster suggested that the actual attitude in quaternion representation 

Q can be represented as the the quaternion product of the estimated unit quaternion Q and an 

error in estimation given by the unit quaternion 6Q. Thus the error quaternion can be defined 

as 

5Q = Q0Q-^ (5.17) 

An alternative form of representation can be used to define the error quaternion where the order 

of multiplication can be reversed. This has the advantage that the attitude error is represented 

in the inertial frame of reference rather than the body frame [78]. Let a be a three-dimensional 

rotation vector by which JQ(a) is parameterized. 

cos(ao/2) 

(a/oo) sin(a,o/2) 
JQ(a) (5.18) 
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where = |la||^. Assuming that the body undergoes small rotations, this error quaternion can 

be approximated by a second-order Taylor series expansion and re-written as 

^Q(a) = 
1 — CIQ/S 

a/2 
(5.19) 

The multiplication of two unit quaternions P = [po^p]^ and R = [7’o,r] is described in [79] as 

P C) R = (5.20) 
Po7’o - P r 

Pol* + rop - p X r 

where (x) denotes the cross product. The kinematics of the orientation Q can be redefined as 

0 
Q = - ^ 2 ij 

N) Q (5.21) 

where u is defined in terms of the gyroscope measurement bias b and white noise as 

uj — ujm — b — (o.22) 

Let us assume that an estimate of Q is given by Q as follows 

Q = 
1 0 

(2J 
N) Q (5.23) 

where cj is defined in terms of the gyroscope measurement CoVn and an estimate of the gyroscope 

bias b as 

Lj — — b (5.24) 

Then the error quaternion JQ as given by [79] is 

<5Q{a) = Q CS (?-' (5.25) 

Taking the derivative of the above equation with respect to time and considering Equation (5.21) 

and Equation (5.23) yields 

4(J(a) = Q<SQ^-\-Q^Q^ 

0 

UJ 

N) 6Q{ai) - -6Q{3L) >0 
0 

u 

[5.26) 

[5.27) 
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The nonlinear system is described by the state vector x in terms of the error rotation vector a 

and the gyro bias b and given in [79] as 

X = (5.28) 

where w is the process noise assumed to be given by its normal probability distribution with 

covariance IT 

X 

F 

G 

Fx + Gw 

— S{CJ) —/3X3 

03x3 03x3 

— ^3x3 03x3 

0sx3 03x3 

(5.29) 

(5.30) 

(5.31) 

The covariance matrix P for the MEKF estimation algorithm that can be partitioned into 3x3 

submatrices as 

P - 
Pa Pc 

Pi Pb 
(5.32) 

and its time propagation is given by 

p = FP A- PF^ + GWG'^ (5.33) 

The measurements 2 for the MEKF algorithm as given in [79] are described as a function of a as 

2 = h{a) + V (5.34) 

where V is the normal probability distribution of the measurement noise v and the linearization 

of h results in the measurement sensitivity matrix H 

H = dh / dsi dh/dh (5.35) 

However, the measurements from the accelerometer Am. and magnetometer Mm, can be used to 

calculate a measurement unit quaternion Qm using a static attitude estimation algorithm as 

discussed in Chapter 4. The advantage is that the measurement z for the MEKF algorithm can 
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now be described as an error in the measured quaternion Qm and the estimated quaternion Q 

defined as 

6Q{z) = Qm CA) (5.36) 

The measurement sensitivity matrix H can be shown to be [/3X.3 63x3] as the measurement model 

is simply h(a) = a (as shown in [79]). The recursive MEKF algorithm to be implemented in 

discrete-time for a sample period T is given as 

(pk 

Qk 

<^m,k + bk 

1 0 

S (Cjk) 

= / + Tf7(cJA:) 

— CkQk-l 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

where Ql_i is the most recent corrected estimate given by Equation (5.48). The prediction step 

is given as 

h 
= (IETF) 

a^-i 

bk-i 

P^. = p;_^pT{FP;_^ + Pl_^F'^+ GWG'^] 

(5.41) 

(5.42) 

where F^_^ is the most recent estimate of the covariance given by Equation (5.47). Pa,k and 7 

must be extracted from Pk as given by Equation (5.32) to compute the Kalman gains as follows 

h'a.k = PaMPa.k + V)-'^ (5.43) 

Kt.k = PpPa,k + V)-^ (5.44) 

Equation (5.36) and Equation (5.19) are used to recover z and the state estimate is updated as 

afc + Ka(z - afc) (5.45) 

bk = bk + AT(z - afc) (5.46) 

The covariance of the MEKF algorithm is updated as 

F; = a - [F,t P,P[Pa,k + Vp[P„.k P.:,k] (5.47) 
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The continuous time propagation is expected to maintain a(t) = 0, but the discrete measurement 

update assigns a finite post-update value a/,, to a. Immediately after the measurement update, 

the estimated quaternion still retains its preupdate value Qk, so that it no longer represents 

the optimal estimate. The following operation corrects this situation by moving the update 

information from a^ to a post update estimate Ql 

Ql = SQ{k,)soQ, (5.48) 

and a^, is reset to zero to avoid the need to propagate two representations of the attitude. The 

reset does not modify the covariance, since it neither increases nor decreases the total information 

content of the estimate. The reset operation concludes the recursive filter algorithm and the 

process resumes from Equation (5.37). 

The MEKF has an inherent advantage that the estimated quaternion Q is a unit quaternion by 

definition. Therefore, it can be shown that for an initial estimate Qo ^ Q and small angular 

movements, the error quaternion 6Q -N 0. Its simplicity and stability under the aforementioned 

restrictions led to its implementation in the Space Precision Attitude Reference System (SPARS) 

in 1969 [80]. It was later developed for NASA’s Multimission Modular Spacecraft [81] and since 

then has been widely used in many practical applications [82], [83]. The MEKF algorithm has 

also been extended to incorporate GPS measurements to include the rigid body position and 

velocity in the state vector (see for instance [84] and [85]). 

5.2.3 Additive EKF 

The additive extended Kalman filter (AEKF) was introduced as an alternative to the MEKF by 

I. Y. Bar-Itzhack and Y. Oshman in [77]. Unlike the MEKF the true quaternion Q was defined 

as the sum of the quaternion error 5Q and the estimated quaternion Q. Mathematically, this 

can be written in discrete-time as 

Qk = Qk T ^Qk (5.49) 

However, the sum of two unit quaternions is not a unit quaternion and the resulting quaternion 

needs to be normalized. A collection of different methods for normalizing a quaternion are 

presented in [86]. One common method for quaternion normalization as presented in [77] is as 
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follows 

Ql = 
Qk (5.50) 

The rate of change of the actual quaternion Q is known to be a function of angular velocity 

LJ [^x 7 7 ] 

Q = n{cj)Q (5.51) 

where 
1 r 0 

2 uj —S((jj) 

and S{.) is the skew-symmetric operator. Considering the gyroscope model given by Equation 

(2.21), we can re-write the above equation as 

(5.52) 

Q — T B5ij (5.53) 

where and 5uj are the gyroscope output and gyroscope bias respectively and B is given by 

B = 1 
2 

<?1 Q2 Q3 

-Qo Qs —Q2 

-Qs -Qo qi 

<?2 “^1 

The estimated quaternion is propagated computationally according to 

(5.54) 

Q — ^{p^m)Q (5.55) 

Subtracting Equation (5.55) from Equation (5.53) we have 

5Q = n{LOm)5Q + B5u (5.56) 

It can be discretized for a sample period T by Euler integration to result in the following difference 

equation obtained for the propagation of 6Q. 

5Qk+i = (t>k5Qk + Bk5uJk (5.57) 

where 

(t>k — -f T T^iuJm) (5.58) 
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and 
Qk,i Qk,2 Qk.;s 

~Qk,0 —Qk,2 

~QkA —Qkfi Qk,l 

Qk,2 —Qk,i —Qk,o 

(5.59) 

The AEKF algorithm calculates the estimated quaternion Q and the error quaternion 6Q, and 

can be summarized by the following recursive process. 

Prediction step: 

Qk = Ml-I (5.60) 

Pk = <f>kPUCk+BkWBl (5.61) 

SQl = Mk-iQl-iSQk-i (5.62) 

The process and measurement noise are given by their normal probability distributions with 

covariance W and V respectively. 

Optimal Kalman gain calculation step: 

Dk 

li{ 

Hk 

Kk 

R{Qk) 

dD, 
dqi 

i = 0,1,...3 

Qk 
A{u, i = 0,1, • • • 3 

hi fi2 h's I14 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

where R{Qk) is the rotation matrix representation of the current estimate of attitude described 

in quaternion form and Kk is the optimal Kalman gain. The column vectors ri and v consist 

of the reference vectors described in the inertial frame and body frame respectively. Explicitly, 
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AQ, AI, A2 and A3 are given as 

Ar 

Ai = 2 

Ao = 2 

A.3 = 2 

<ik,Q Qk,3 —Qk,2 

~Qk,3 Qk,0 4k,l 

Qk,2 —Qk,l qk,0 

Qk,l Qk,2 Qk,3 

Qk,2 —Qk,l Qk,0 

Qk,S —Qk,o —Qk,i 

~Qk,2 qk,l —^k,0 

Qk,l Qk,2 <?fc,3 

Qk,0 Qk,3 ~4k,2 

— ^k,3 Qk,0 <7fe,l 

— Qk,0 —Qk,3 4k,2 

4k,I 4k,2 4k,3 

State update step: 

The error in current measurements Ck is given as 

Ck Vk DkU 

dQk = ^Ql + ^k{ck — IlkdQl) 

Quaternion normalization and covariance update step: 

Qk 

Ql 

p; 

Q k dQk 
Q k 

(/ - KkH::)Pk(I - KtHlf + KkVKl 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

The asterisk on HI denotes that it is recomputed using the normalized estimated quaternion Ql.. 

A comparison of AEKF and MEKF can be found in [87] and [88]. It argues that although the 

quaternion error is added to the estimated quaternion, the process noise and dynamic parameters 

enter the kinematic equation multiplicatively. Thus, it is not entirely similar to the linear Kalman 
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filter. Also, a comparative study provided in [4] suggests that MEKF is computationall}^ more 

efficient than the AEKF as the latter involves reconstructing the rotation matrix. 

5.3 Complementary Filter 

The complementar}^ hlter provides a much simpler algorithm to provide better estimates from 

noisy measurements of the same signal which are fused together to complement each other. 

Earlier implementations focused on retrieving the velocity from position and acceleration mea- 

surements. Thus, the complementary filter can be modified to use measurements from sensors 

that are related to the original signal by differential signals [89]. This is specificall}^ advantageous 

in attitude estimation techniques where the system is described by nonlinear equations in terms 

of the gyroscope measurement [65,90]. 

5.3.1 Linear Complementary Filter 

The implementation of linear complementary hlter on the proposed experimental apparatus 

requires the knowledge of the Euler angles at specihc intervals of time. For this purpose, the 

accelerometer is used to provide the roll 0 and pitch 9. Assuming that the quadrotor doesn't 

undergo any high linear accelerations, the calibrated accelerometer Ac can be normalized and 

re-written as 

A, 
A. 

1.4,. 11 

.4, 

/I, 

sm d 

— cos 9 sin (f) 

— cos 9 cos 6 

The roll and pitch can be calculated algebraically from A„ as follows 

(5.77) 

(p = arctan 2(—Ay,—A^) (5.78) 

9 = arctan 2(A.„. Ay sin 0-H A^ cos 0) (5.79) 

However, the accelerometer cannot be used to determine the yaw 0 of the rigid body. The 

magnetometer, as discussed earlier is the only sensor on-board capable of providing accurate yaw 

information. The calibrated magnetometer reading Me can be described by a set of rotations 

about X, y and 2 axes as 

il/, = Rl(^)E,{e)Rl(i>)m, (5.80) 
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where mi is the unit vector of the local magnetic field in the inertial frame of reference. Let nip 

denote the projection of the magnetometer reading on the x — y plane given by 

nip = Ry(0) R^.{(l)) M(. (5.81) 

Then the magnetometer, utilizing the roll and pitch values provided by the accelerometer, can 

be used to compute the yaw angle as 

V’ = arctan — mjmJj.mj'mp + (5.82) 

A similar method to estimate the Euler angles using linear observers was proposed in [92]. 

Whereas, the original paper discussed the design and implementation of a complementary filter 

using two inclinometers and a rate gyro, it can easily be extended to work with a three-axis 

accelerometer, magnetometer and gyroscope. 

Assume that the system is described by the state vector x = [x\, where Xi = [0, 0, 'ipY and 

^2 = [yiCj2Py'iY output y. Using Equation (2.20), the system dynamics can be written 

as 

Xi = poj = 

1 sin 0 tan 0 cos 9 tan ^ 

0 cos 0 — sin 0 

0 sin 0 sec 9 cos 0 sec 0 

X2 

n 0 0 

0 T2 0 

0 0 T3 

(.Ti - X2[ 

= Cx = 0 .3x3 -*3x3 I-A X 3 

Xi 

X2 

(jJn 

to. 

(5.83) 

(5.84) 

(5.85) 

where ri, T2 and T3 are the filter time constants for roll pitch and and yaw calculated from the 

accelerometer and magnetometer. The authors suggest an observer based on the assumption 

that the gyroscope measurements are ideal 

.T = f{xp^) + L{y -Cx) (5.86) 
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where x is the state estimate and L is the observer gain matrix. This is one of the first papers 

to study the stability or the observer. It is shown that the error terms for the proposed observer 

are bounded. This not only guarantees convergence, but for a suitable choice of gain, promises 

exponential non-local convergence. 

This approach however, fails to take into account the bias term of the gyroscope. In order 

to maintain uniformity and produce comparable results, another linear complementary filter 

algorithm proposed recently in [93] is used. A discrete-time complementary filter with bias 

estimation is provided to serve as a basis for reasonable comparison with EKF algorithms. Let 

the state vectors be defined as X\ = [0, 6*, 0]^ and X2 = \bx,hy,hzY■, where by and 6. are the 

gyro-biases and ujrk is the corrected gyroscope measurement. The estimator is given by 

^2,k+l 

-Tpk 

I 

xi,k 

X2,k 
+ 

Tpk 

0 
LOj-k + 

Pk{T \ — I) A- pk-\ 

K2 
^Pk- Vk) (5.87) 

where 

Vk = Pk-i^i-k (5-88) 

Vk = Pk-pipk (5.89) 

and Ki and K2 are positive definite gain matrices. The pk matrix is the discrete-time equivalent 

of the p matrix in Equation (5.83) and T is the execution time. Eigure 5.1 depicts the process 

flow of the above algorithm. 

Figure 5.1; Linear complementary filter 
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The linear complementary filter proposed in [93] is shown to be uniformly asymptotically stable 

assuming that the pitch described by the quadrotor is bounded as |0| < O^ax < TT/2. This means 

that the estimation error resulting from Equation (5.87) can be described as the difference in 

Euler angles dehning the true orientation of the rigid body and their estimates. Lyapunov 

stabilit}’' analysis based on these error dehnitions proves that the origin of the estimation error 

dynamics is uniformly asymptotically stable. 

5.3.2 Non-linear Complementary Filter 

The nonlinear complementary filtering has become immensely popular due its ability to trul}^ 

capture the nonlinear nature of the rotational dynamics of a rigid body. The nonlinear observer 

reinforced with strong Lyapunov theory arguments assures that the estimated states are more 

accurate as compared to linear estimators. While previous observers focused on linearizing the 

system dynamics to obtain an estimate about the linearized model, the nonlinear complementary 

hlter design is based on the nonlinear structure of the system. 

One of the earliest works is nonlinear observer design is presented in [94]. The author proposes 

a novel solution to the problem of angular velocity measurement from torque and orientation 

measurements only. The observer for estimation of angular velocity of the rigid body is described 

using a mechanical energy function and it is shown to be globally exponentially convergent. 

Works such as [95], [96], [97], [98], [99] and [100] suggest that the literature is rich in research 

based on the nonlinear complementary filtering technique for attitude estimation. Also, the 

authors provide rigorous proof of stability through Lyapunov analysis. 

However, these filtering techniques are often described by means of theoretical representations 

and fail to represent the observers as a function of sensors outputs from the IMU. The estimation 

algorithm presented in [65] explicitly defines the observer in terms of the sensors. Let us consider 

that a set of vectors r,; and hi for i = 1,.. ., 7i are available in inertial and body reference frames 

respectively and the angular velocity measurement is available in the body frame. Then a 
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simple and efficient observer with bias correction is given as 

R = RS{LUC — bgkpaj ) 

hg kjCJj- 

(5.90) 

(5.91) 
71 

(5.92) 
i=l 

where 6,; = R^Vi is an estimate of a known inertial vector in the body-fixed frame. The gains 

kp and kj are positive scalar gains and ki are positive coefficients influencing the individual 

contribution of sensors to the estimation algorithm. 

The authors prove that the attitude and bias estimation errors are locally exponentially stable, 

assuming that at least two non-parallel vector measurements are available for feedback and 

Mo = kiT^rf has three distinct eigenvalues. The equilibrium points are identified and 

undesirable equilibria are shown to be unstable using Chetaev’s Theorem. It is proven using 

Lyapunov analysis that for all initial conditions, except the unstable equilibria, the estimated 

attitude and bias converge to the actual values. 

However, it is evident that decoupling of sensor measurements to ensure that the roll and pitch 

estimates are not disturbed by deviation in magnetometer measurements should be considered for 

higher accuracy and faster convergence. The modifications presented in [lOlj and [102] account 

for local decoupling of the roll and pitch estimation from the magnetometer measurements and 

present results to verify the overall improvement in quality of the attitude estimate. Another 

issue with bias estimation revolves around the integral wind-up in the presence of measurement 

noise. 

With these considerations in perspective, a modified nonlinear complementary filter design has 

been proposed in [103] that is alniost-globally stable and locally exponentially stable, and that 

ensures the global decoupling of the dynamics of the roll and pitch estimates from magnetic 

disturbances and from the dynamics of the yaw estimate. Moreover, a gyro-bias compensation 

technique is proposed that incorporates a saturation function to effectively work as an anti-wind- 

up nonlinear integrator. 



CHAPTER 5. D YNAMIC ATTITUDE ESTIMATION 67 

Let us assume that IMU provides the ealibrated aecelerometer and magnetometer values in the 

body-fixed frame, given as A^, and d/,. respectively. The gyroscope measurement is available for 

feedback, although the constant gyroscope bias bg is unknown. Then, the proposed observer 

in [103] estimates the quaternion representing the attitude of the rigid body Q and can be given 

in discrete-time as 

Qk+l 

bg.k+l 

A{n,) 

^r,k 

T{ — khbgk + kbSat/\{bg^^~) + CTb^k) + 

^c,k ^ bg^k + (^r,k 

1 
2 

0 -nl 

Cik s{Ctk) 

kiAf.^k X ^k + k‘2Ai,,A^.{Mk x A A) 

—ksAc.k X Ak — k4Mc.k X Ah: 

l^(0)| < A 

(5.93) 

(5.94) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

where A and M are the estimates of the gravity field vector and magnetic field vector in the body- 

fixed frame and T is the sampling time period. The gains /ci, /c2, ^3, k^ and /c/, are positive scalars 

such that Aq < Aq. The saturation function satA(-) can be defined as sat^{x) = .T min(l, A/|x|), 

where x is a vector and A is a positive number. 

Assuming that the gyroscope measurement is bounded and the gyro-bias is bounded in norm 

by A, the error dynamics are shown to have only four isolated eciuilibria of which three unde- 

sirable equilibria are proven to be unstable and the desirable equilibrium is proven to be locally 

exponentially stable. Thus, almost global exponential convergence of the attitude estimates 

is guaranteed. Furthermore, the gyroscope bias estimate bg is shown to be bounded and the 

estimation of roll and pith angles does not depend upon the rnagnetie field measurement. 

5.4 Globally Exponentially Stable Observers Non-evolving in 803 

Attitude estimation algorithms so far have been plagued with drawbacks such as lack of con- 

vergence guarantees, topological limitations for achieving global asymptotic stability, and slow 

convergence to a stable equilibrium [4]. The previously discussed nonlinear attitude observers 
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were designed to have a structure that imposed a topological restriction on the estimates them- 

selves. Thus, R G .90(3) or Q E were the constraints on the estimated rotation matrix 

or quaternion respectively, so that the attitude estimate would essentially be a member of the 

rotation group itself. 

Some recent papers such as [66,67,104,105] present an interesting approach. The authors suggest 

that the definition of the estimated attitude may be extended and allowed to evolve in Euclidean 

spaces (as discussed in detail in [106,107]) and finally converge to a value that lies within the 

.90(3). This not only enables them to overcome the topological hurdle encountered in the attitude 

observers evolving in SO (3), but also helps in guaranteeing exponential convergence. One of the 

most recent papers found in the literature dealing with such problems is [67]. 

Let us recall the rotational dynamics of a rigid body as given by Equation (2.13). Assume that 

a pair of non-collinear vectors Aj and AR in the inertial frame are known and their projections 

in the body-fixed frame are As and MB respectively can be measured by an accelerometer and a 

magnetometer. Let the accelerometer and magnetometer measurements be scaled and calibrated 

appropriately to give A^. and Me respectively. Then, an estimate of the attitude R is proposed 

in [67] as 

R = RS{uj) + r J 
J — AJIAJ — RAi)Aj 

Ah — [ Ac Ac X Me Ac X (Ae x Me) ] 

Af, = [ AI Aj x Mj Aj X {Aj x Mj) ] 

where L is a symmetric positive-definite gain matrix. Note that R is not necessarily a rotation 

matrix. It is only a rotation matrix when the matrix J is a null matrix or in other words, the 

estimation error given by 

R=R-R (5.103) 

is a null matrix. The Lyapunov analysis of this observer yields that the origin of R is globally ex- 

ponentially stable, provided that cc is known and bounded. However, the gyroscope measurement 

is affected by a constant bias h. 

(5.99) 

(5.100) 

(5.101) 

(5.102) 
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In order to maintain consistency and receive comparable results, an observer for the bias estima- 

tion needs to developed. For this purpose we modify the Equation (5.99) such that to = ujc — b. 

This can be seen as 

R = RS{oJc-b)Erj 

b = -K Vex{M ~ M^) 

M = ff(AbAlY'J 

where Vex[.) is the anti-skew symmetric operator defined as 

Vex{S{x)) = X 

The bias estimation error can be defined as 

b = b-b (5.108) 

The dynamics of the estimation error can be re-written using equations 2.13, 5.103 and 5.104 as 

R = RS(iJa -b)- RS{cJc -bMb-b) - TJ 

= RS{LO) - RS{b) - rj (5.109) 

(5.104) 

(5.105) 

(5.106) 

(5.107) 

Proposition 1: Assuming that oj is uniformly bounded, the origin of the dynamics of the es- 

timation error as given by Equation (5.109); for the observer described in Equation (5.104), is 

globally exponentially stable. 

Proof: Let us recapitulate a few properties of the trace of a matrix given by 

tr(X^Y) = tr(XY^) (5.110) 

tr{X + Y) = tr(X)Mtr{Y) (5.111) 

tr{XY) = tr{YX) (5.112) 

tr(X) = tr{X^) (5.113) 

tr(S{a)X) - -a^ Vex(X - X'^) (5.114) 
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Let us consider the following positive definite Lyapunov function candidate 

V(R,b) = ^WR^ + ^h-^K-^h 

= hriffR) + Tb^K-'b (5.115) 
2 2 

where K is a symmetric positive definite gain matrix. The time derivative of the Lyapunov 

function candidate is given by 

V = hr{R^R + R^R) + (5.116) 

Substituting Equation (5.103) and Equation (5.109), and using the properties of trace, we have 

V = tr{ff'RS{Lo))-tr(ffTRAbAl)+tr{S{b)R^R) + YK-^b (5.117) 

Taking the derivative of Equation (5.108) and remembering that b is assumed to be constant 

with respect to time, we can say that 

b = ~b (5.118) 

Since An = RA^^ we can rewrite J as 

J = RAbAj - RAbAj = RAbAj (5.119) 

Rearranging to describe R in terms of J, we have 

R = (AtAlY'j (5.120) 

Let us substitute Equation (5.118) and Equation (5.120) in Equation (5.117). This results in 

V = tr{R^RS(u)) - tr(HrRAbAl) + tr(S(b)Ff(AbAl)-^J) - VK~^b (5.121) 

Let us consider 

tr{S{b)H(AbAj,)-^ J) - V'K-'^b = 0 (5.122) 

This implies that 

VK~^b = tr{S{b)H{AbAf)-^J) 

= tr{S{b)M) (5.123) 
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Using property 5.114, it can be shown that 

= -F Vex{M - M'^) (5.124) 

which lea.ds to Equation (5.105). Under this condition, the derivative of the Lyapunov function 

is reduced to 

V = tr{R^RS(F) - tr(NVRA,,Al) (5.125) 

Noting that tr(S{x)X) — 0 for any x € R"* and symmetric X e we have 

C< -A„„.„(A/ir)A„„;„(r)||i?||- (5.126) 

(see [108], for the relevant trace inequalities). Let us write A/, = NA. where the columns of N 

are the normalized columns of Ah and A is a diagonal matrix with elements corresponding to 

the column norms of Ah- Since A^. and AA are non-colliiiear, i.e. \\Af. x AA|| > 0 it can be said 

that N is an orthogonal matrix. It follows that A,A/;= Xmin{N= A„,.„;(A^). Thus, 

V < —Amyn(r)'^min(A^)||7f|p aiid we can say that the origin of the dynamics of the estimation 

error as given by Equation (5.109), for the observer described in Equation (5.104), is globally 

exponentially stable. 

The concept of observers non-evolving in S'0(3) is interesting as it opens up new horizons for 

improvement and innovation. Whereas, classical nonlinear observers evolving in 50(3) can only 

achieve almost global results, these observers face no such restrictions. Also, they claim to have 

faster convergence as they are not restricted by the topological definition of a rotation matrix 

or unit quaternion. However, despite these theoretical advantages, global attitude estimators 

have yet to be extensively tested on physical systems. One of the major concerns is that the 

the estimated attitude matrix is not a direction cosine matrix. This implies that the estimated 

attitude matrix may not retain its orthogonal nature. A simple orthogonalization process as 

given by [109] is 

R„ = ^{R + R-^) (5.127) 

Under the assumption that the accelerometer and magnetometer are not affected by noise, the 

algorithm operates flawlessly. In practice, both the vector observations are subjected to a variety 
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of noises as discussed in Cliapter 3. This results in the loss of orthogonality of the attitude 

estimate and leads to inaccurate measurements. 

5.5 Experimental Results 

The experimental apparatus is configured and calibrated as discussed in Chapter 3. The dynamic 

attitude estimation algorithms discussed in this chapter have been implemented on the quadrotor 

platform and their performance under the effect of noisy sensor measurements is recorded and 

discussed. The actuators were run at fifty per cent capacity with the propeller removed. This 

produced the necessary vibrations and magnetic disturbances to simulate an actual flight. The 

results are compared to the attitude provided by the 3DM-GX1 IMU as discussed earlier. These 

results were visualized in SIMULINK by transmitting the data via UDP packets, in real-time. 

The estimated attitude is indicated in blue color and the attitude measurement from 3DM-GX1 

module is shown in red color. 

The parameters in the dynamic attitude estimators can be varied to change, the extent of influence 

that the sensors have on measurements. Tlierefore, careful tuning of these gains in the estimation 

algorithms is necessary. Decreasing the influence of accelerometer and magnetometer helps to 

reduce the noise effecting the estimates, but it also leads to much slower dynamics and larger 

transient delays. On the other hand, increasing the influence of accelerometer and magnetometer 

results in faster convergence rates by compromising the efficiency of the filter to reduce noise in 

estimates. 

The 3DM-GX1 module output is noted to have an approximate delay of 0.1 seconds to converge 

to a steady state value. This serves as a benchmark to achieve comparable delays in the esti- 

mated attitude. However, upon implementation, the loop execution time for attitude estimation 

algorithms was in the approximate range of 0.0091 seconds to 0.0115 seconds depending on the 

functions being called by the main loop. This meant that the linear estimation methods would 

be incapable of converging to a steady state value within 10 loops if the initial errors are too 

large. 
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The gains are adjusted in order to ininimize the noise from sensor measurements while maintain- 

ing a reasonable amount of delay. The output of the estimation algorithms is recorded as shown 

in Figures 5.2 to 5.7 where the platform is held at approximately yaw = 36.63 degrees, pitch = 

-15.11 degrees and roll = 15.06 degrees. The variation in steady state estimation error A of an 

angle a, in degrees, can be defined as 

A((v) = I max(a) — min(a)| (5.128) 

Table 5.1 gives an indication of the variation in steady state attitude estimation error for the 

first set of results. Then the orientation is changed to approximately yaw = 95.35 degrees, pitch 

= -30.68 degrees and roll = 63.07 degrees and the results are recorded as shown in Figures 5.2 to 

5.7 and Table 5.2. For the third set of results the platform is rotated about all axes to simulate 

motion of the quadrotor in an agile flight manoeuvre. 

Table 5.1: Variation of Euler angles estimated for results set 1 

Table 5.2; Variation of Euler angles estimated for results set 2 
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Figure 5.2: Filter QUEST result 1 

Figure 5.3: MEKF result 1 
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Time in seconds 

Figure 5.4: AEKF result 1 

Figure 5.5: Linear complementary filter result 1 
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Figure 5.6: Nonlinear complementary filter result 1 

Time in seconds 

Figure 5.7: Globally exponentially stable Observer result 1 
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Figure 5.8; Filter QUEST result 2 

Figure 5.9: MEKF result 2 
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Figure 5.10: AEKF result 2 

Figure 5.11: Linear complementary filter result 2 
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Figure 5.12: Nonlinear complementary filter result 2 

Figure 5.13: Globally exponentially stable Observer result 2 
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The first two sets of results clearly show that the Filter QUEST algorithm performs better than 

the static attitude estimation algorithms as indicated by comparison of Tables 5.1, 5.2 and 4.1. 

However, the variation A is still too large to be used for practical implementation of an estimation 

algorithm. We also observe in Figure 5.14 that there is a noticeable transient delay. This shows 

that the noise affecting the estimates is not due to a small filter parameter, but the inability of 

the algorithm to effectively tackle measurement noise. 

The MEKF and AEKF techniques have been used extensively in the past and the reason is clear 

from tables 5.1 and 5.2. We notice that the noise from the accelerometer and magnetometer has 

been dealt with almost completely and we see a very small variation in the estimates. However, 

it is interesting to note that the time delay to reach a steady state value in Figures 5.3 and 5.4 

is approximately 0.5 seconds. This is due to the fact that the MEKF and AEKF algorithms are 

based on the linearization of an underlying nonlinear model. This delay is larger as we move 

further away from the equilibrium point. This is demonstrated by the Figures 5.9 and 5.10 

where the convergence to a steady state value takes approximately as long as 0.8 seconds. For 

sufficiently large deviations in initial conditions from the equilibrium point the algorithm may 

not even converge to the true attitude. This is the major drawback of a Kalman filter based 

attitude estimation algorithm. 

The linear complementary filter algorithm shows similar results as the MEKF and AEKF with 

a marginal improvement in performance. The transient delay also follows a similar trend and 

convergence time increases as the initial conditions deviate from the equilibrium point. The 

nonlinear complementary filter however exhibits much more favorable results. The convergence 

time for roll and pitch axes is approximately 0.2 seconds and 1 second for the yaw estimate as 

shown in Figures 5.6 and 5.12. The convergence time is independent of the initial condition. 

The globally exponentially stable observer results as shown in 5.7 and 5.13 provide an interesting 

insight into the effectiveness of such nonlinear observers. While the variation in steady state error 

in estimation is of a similar magnitude as the complementary filter based algorithms, the attitude 

estimates do not converge to the values provided by the 3DM-GX1. This can be attributed to the 

definition of observer. As discussed earlier, the attitude estimate is not strictly constrained within 
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the *5*0(3) domain and fails to be an orthogonal matrix. Without this constraint, the estimated 

attitude needs to be orthogonalized and we note an error in the estimated Euler angles. 

Figures 5.14 to 5.19 show the result of the dynamic attitude estimation techniques when the 

platform in rotated about all axes to simulate motion of the quadrotor in a flight. We note that 

the estimates follow the 3DM-GX1 output with a reasonable degree of accuracy. This suggests 

that the gains have been adjusted appropriately to meet the needs of aggressive manoeuvres and 

quasi-stationary flights alike. 

It can be argued that the gains for the globally exponentially stable observer can be decreased in 

order for the attitude estimates to converge to the values provided by the 3DM-GX1. A trial and 

error approach is adopted for this purpose and the gains are reduced till the estimates converge 

to the desired value. This can be seen in Figure 5.20 

In the presence of noisy measurements from the accelerometer, magnetometer and gyroscope, 

the nonlinear complementary filter presents the most favorable results amongst the attitude 

observers discussed within the scope of this thesis. Its nonlinear structure coupled with the 

Lyapunov analysis guaranteeing almost global convergence are the reason behind its success. 
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Figure 5.14: Filter QUEST result 3 

Figure 5.15: MEKF result 3 
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Figure 5.16: AEKF result 3 

Figure 5.17: Linear complementary filter result 3 
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Figure 5.18: Nonlinear complementary filter result 3 

Figure 5.19: Globally exponentially stable Observer result 3 
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Figure 5.20: Globally exponentially stable Observer result 4 

Figure 5.21: Globally exponentially stable Observer result 5 



Chapter 6 

Conclusion 

Unmanned aerial vehicles have been the prime focus for many researchers due to their suitability 

to applications where human presence may not be feasible. However, autonomous stable flight, 

requires control strategies that rely on accurate attitude estimations. Moreover, noise and uncer- 

tainties due to low-cost sensor measurements and the inherent instability of aerial robots make it 

an exciting and interesting held of research. Therefore, rigorous and reliable attitude estiination 

techniques are required to produce good estimations in a real-time environment. 

Various conhgurations of flying vehicles have evolved over the years. The quadrotor concept 

has proven to be one of the most desirable conhgurations among rotary wing aircrafts due 

to its maneuverability, efficient design and capability to land and take-off vertically. These 

features coupled with light-weight MEMS sensors, make it an ideal research platform. Quadrotor 

mathematical modelling and parameterization has been reviewed to understand the dynamics 

governing the motion of the aerial vehicle. 

A suitable quadrotor platform with an on-board three-axis gyroscope, accelerometer and magne- 

tometer has been used to serve as a reliable test-bed for the comparative study of some prominent 

attitude estimation techniques. Conhguration of the experimental apparatus was given prime 

importance and sensor calibration techniciues were employed to provide reliable measurements. 
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Key components of the experimental apparatus have been discussed to present a clear view of 

their roles and limitations. 

The on-board IMU consists of integrated digital low pass filters and ADCs and can be utilized 

in a large variety of attitude estimation techniques. The earliest static estimation algorithms 

take advantage of the body vector observations to numerically determine the attitude without 

necessarily considering its kinematics. They are intended to be used with accurate sensor mea- 

surements and it is evident from the implementation results that they are not well suited with 

noisy sensor measurements. 

The motivation behind the dynamic attitude estimation methods is discussed and various promi- 

nent techniques are presented. Their practical implementation is discussed and experimental 

results are studied to better understand their relative advantages and disadvantages. 

Whereas, extended Kalman filtering tehniques have been in use for a few decades, the lack of 

global convergence proofs and sub-optimal performance for large errors in initial estimates, have 

motivated the search for other reliable attitude estimation techniques. Complimentary filters are 

among the promising candidates to replace them, due to their simplicity, accuracy and larger 

domain of convergence. 

Alore recently unconstrained nonlinear observers have evolved with lucrative properties such as 

exponential global convergence. However, experimental results suggest that their performance 

deteriorates with noisy measurements and we observe a large choice of observer gain results 

in high estimation error and smaller gains produce slower convergence rates. Although from 

a theoretical perspective, they seem promising and provide newer avenues for innovation and 

improvement. 

Future development could involve comparison of attitude estimation algorithms incorporating 

position estimation using GPS sensors. GPS is limited by the fact that it is only usable out- 

doors and usually ofi’ers a small bandwidth range. For indoor applications where GPS signal is 

not available, optical flow sensors can be utilized. Proximity sensors such as rangefinders using 

LADAR, technology or sonar detection can also be added to the platform. Each of these ini- 
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provements may be added to the experimental platform to facilitate in attaining a higher degree 

of autonomy. 
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