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ABSTRACT 

Title of Thesis! The Effect of Various Leg Positions at the Catch 
on the Force of the Rowing Stroke 

Boris Klavora: Master of Science, 1978 

Thesis Advisor: Dr. Brent S. Rushall, 
Professor, 
Graduate Studies in Theory of Coaching 
Lakehead University 

The purpose of this thesis was to test in isolation various leg 

and body movements in the rowing action and to relate them to forces 

created on the oar handle. The subjects were four senior oarsmen. 

The independent variables were the four knee angles at the catch with 

hip flexion maximized at each. The dependent variable was the maxi- 

mal force exerted on each trial. An intra-subject ABAB experimental 

design was used. Four reindom sequences of the three experimental 

conditions were determined and each subject was tested on all four 

testing orders. An analysis of variance revealed no significant 

difference in force magnitudes between the four treatments (£>.05)• 

The interaction between days and subjects vras significant (£<.05). 

Subjects* performances varied considerably from day to day, and also 

from trial to trial. All subjects displayed difficulty in stabilizing 

their performances under all treatment conditions. 
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Chapter 1 

INTRODUCTION 

Statement of the Problem 

The purpose of this study was to test in isolation various leg 

and body movements in the rowing action and to relate them to forces 

created on the oar handle. 

Significance of the Study 

Back and particularly leg actions have been researched in jumping, 

running, and bicycling movements. However, results may not be relevant 

for back and leg actions in a sitting position which is peculiar to the 

sport of rowing* Should the actions be different from the ones that 

are known, this study would contribute to and expand the knowledge of 

leg and body actions. 

At present, there is a controversy an to what is the most effective 

form of action at the beginning of the force phase of the rowing stroke, 

the catch. Two distinctly different body positions have been demon- 

strated by winning international crews in recent yeans. Without being 

objectively assessed, the two forms have been accepted by rowing 

coaches throughout the world. An attempt to discover the advantages 

and disadvantaiges of each style would make a contribution to the practi- 

cal field of coaching rowing. 

There is a reason of sociail importauice for objectively assessing 

both techniques. In 1975 Canadiain elite coaches chose the East German 

technique to be presented through the Cauiadiaui Association of Amateur 

Oairsmen Coaching Certification Program (Klavora, 1976). This program 

has the potential to be of great imj^act on all members of the rapidly 

1 
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growing rowing fraternity in Canada. The verification of whether or 

not this technique is mechanically the most effective would indicate 

an in^ortant finding for the sport. This study may inspire coaches 

and other rowing enthusieusts to follow a more scientific approach in 

determining the solutions to questions about rowing. 

As a former Olympic oarsman and a coach, the investigator himself 

has a personal interest in clsirifying some of the problems that are 

associated with rowing. 

Coaching methods in the sport of rowing in Canada, as well as in 

many other countries, are still based on conventionalism and imprecise 

observations. None of the popular rowing techniques have been scien- 

tifically assessed. Research from other sports that has been done on 

body and leg actions may not be relevant for rowing. Therefore, it 

was the object of this study to 1) objectively aissess the body and the 

leg actions in rowing, and 2) to propose, if possible, which of the 

distinctly different rowing techniques is the more effective. 

Delimitations 

1) The subjects of this study were three of the Thunder Bay 

Rowing Club*s senior oarsmen eund one former international oarsman. 

The effect of various knee angles at the catch on S’s force output 

will . .e measured. 

2) The independent variable was the subject’s knee angle at the 

catch. 

3) The dependent variable was the maximal exerted force. 

4) The forces were measured by means of a tension load cell and 

recorded by an electric graph recorder. 
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Limitations 

1) The testing was done in a controlled laboratory situation. 

2) It was assumed that subjects* actions simulated the real action 

in rowing. 

3) It was assumed that subjects exerted maximal force on each 

trial• 

Definitions 

Force is the capacity to do work or cause physical change. 

Knee Angle is considered as the line extending from the greater 

trochanter of the femur to the lateral epicondyle of the femur, and 

another line from the lateral malleolus through the head of the fibula. 

Catch is the transition from the resting-phase to the propulsive 

phase of the stroke. Oarsmen reach fully forward and insert blades 

into the water. The movements at the knee and hip joints change from 

flexion to extension. 

Drive is the propulsive phase of the stroke. It starts when the 

blades are fully covered in the water and ends when they leave the 

water• 
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Chapter 2 

REVIEW OF LITERATURE 

A survey of available literature revealed a deficiency with regard 

to scientific research on the sport of rowing. Researchers were con- 

cerned primarily with the mechanics of equipment (Celentano, Cortili, 

Di Pampero, & Cerretelli, 197^; Gerdes, 1972; Herberger, Beyer, Harre, 

Krueger, Querg, & Sieler, 1970; Williams, J. G. P. 8e Scott, 1967), with 

the ELBsessment of elite oarsmen (Hagerman, Addington, & Gaensler, 1972; 

Morgan, 1975; di Pampero, Cortili, Celentano, & Cerretelli, 1971; and 

Williams, L. R. T., 1977)$ with forces exerted on the osu: throughout 

the stroke, and with the speed and the acceleration of the boat 

(Edwards, 1963$ Herberger et al., 1970; and Ishiko, 1971)* The rowing 

technique was also elaborated (Adam, Lenk, Nowacki, Rulfs, & Schroeder, 

1977$ Adam, 1962, Boiirne, 1925; Edwards, 1963$ Herberger et al., 1970; 

Klavora, 1977$ 1976; and .Wilson, 1959)$ however, all attempts have been 

of a descriptive nature about the muscles involved in rowing and/or the 

body action of winning crews. 

It is a generally accepted principle in the sport of rowing that 

the powerful leg muscles au7e the most effective force-producers for 

propelling the boat. However, successful international crews have dem- 

onstrated the existence of a great variety of leg and body movemehts 

Karl Adam developed a technique whereby the stroke length at the catch 

was achieved by using longer slides. EKtremely flexed knee and hip 

joints, allowing very little forward body swing, allowed the use of as 

much leg range as was physically possible. The possible mechanical 

disEuivantage of the unfavorable initial knee angle was thought to be 
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overcompttnsated for by IncreaBlng the distance of the leg work (Adam, 

1962; €ind Adam et al., 1977) • 

The most recent East German Coaches recommended shorter slides 

that decreased the range of leg movement in the stroke. Stroke length 

is achieved by swinging more the upper trunk sind the shoulders forward 

at the beginning and backward at the end of the stroke (Klavora, 1977) 

It has not been verified yet which of the two techniques is me- 

chanically more effective. Moreover,. there is a complete gap in the 

research with regard to the characteristics of the leg and body actions 

in rowing. 

A number of studies have been conducted to determine the amount of 

force iidiich can be exerted by muscles when body parts are in different 

positions. Experiments on leg strength associated with varying knee 

angles have produced seemingly contradictory results. An early study 

by Carpenter (1938) proved knee angles between 115^ and 124° to be the 

most effective for knee extension. Strength decreased rapidly at an- 

gles above and below ^03^• This is essentially in agreement with 

Everts and Hathaway (1938), who reported the highest readings at a 

knee angle of approximately 130°. A leg dynamometer was used for 

testing subjects in semi-erect positions. 

Campney and Wehr (1965) found no significant strength difference 

resulting from knee angle changes from 80° to 130° in 10° increments. 

The extension strength at greater angles decreased rapidly. Subjects 

sat on the table with freely-hanging lower legs. They leaned backward 

with arms extended to the rear and hands grasping the sides of the 

table. A cable-tensiometer was used in testing. 
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Hiigh-Jones (19^7) examined the effect of limb position in seated 

subjects on their ability to utilize the maximum contractile force of 

limb muscles. Sitting with the trunk vertical and with their feet in 

the same horizontal plane as the hips, subjects were able to exert 

more force as the knee angle increased up to 160^« The activity in 

leg extension stopped just before the limb became straight. 

An inverted leg press was another position used in leg strength 

testing. In this test, the subject lies on the back with legs raised 

above the hips. Force is exerted upward in a direction perpendicular 

to the trunk. Looking for the maximal force only, Berger (1966) and 

Lindehurg (1964) tested leg strength at angles greater than 1CX)°. The 

findings of both studies showed a knee angle at around 140^ to be the 

most effective for leg extension. Lindeburg used a strain gauge dyna- 

mometer to measure strength. 

There is still considerable lack of agreement regarding the 

influence of the knee angle upon strength scores obtained through 

testing. Much of the difference in results between these studies is 

probably due to the variations in testing positions, whereby other 

muscles may eiffect the knee extensors' strength. For example, a dif- 

ference of ZWo in knee extension strength was found for subjects in two 

different sitting positions (Clarke, Elkins, Martin, & Wakim, 1950). 

The method of knee angle measurement (Linford & RELrick, 1968) as well 

as testing equipment used (Clau:ke, Bailey, & Shay, 1952; and Everts, 

& Hathaway, 1938) may aJLso have contributed to contrsuiictory results. 

All studios and results support the assertion that muscular effi- 

ciency varies throizghout the range of movement of the knee joint. Small 
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knee angle changes do not affect significantly the leg extension strength 

in the middle range of motion (Campney & Wehr, 19^5; Carpenter, 1938; 

Lindeburg, 196^; and Linford & Rarick, 1968), however, strength de- 

creases as the knee angle approaches its upper and lower limits 

(Campney 8e Wehr, 1965; Caurpenter, 1938; Clarke et aJ.., 1950; and 

Williams, M. & Stutsman, 1959)* 

Reseau?ch is scauity on trunk auid hip extension strength auad various 

hip angles. Claurke amd Bailey (1950) tested hip extension strength in 

subjects in a supine position. Their ability to exert strength waus 

the greatest when the hip wais fully flexed. In the saune study strength 

was aaiaQ.yzed for 13 other joint movements. Strength vauried throughout 

the range of motion for all joints. This may be attributed to changes 

in muscle length and geometricail ELrrangements of bones (levers, angles 

of pull, etc.; Astrand & RodhaG., 1977; and Claurke & Bailey 1950). 

Paist reseau*ch on leg and body strength throughout the rauige of 

motion maty not be relevant to the action in rowing because the testing 

position differed greatly from those that occur in rowing. 

Leg amd body positions in rowing are quite peculiar. Oarsmen are 

seated on movable seats that facilitate knee flexion amd extension. 

Their feet are secured to adjustable footstretchers that are amgled 

around ^5^ and placed deep in the shell. The oau^smen's heels are from 

14 to 18 cm below the seat. A long stroke, which is one of the impor- 

tant features of rowing, requires maximal, hip flexion at the catch. 

Knee flexion at the stroke’s beginning vairies from to 70^ between 

different oarsmen. 

The normaCL range of motion at the amkle joint is about 60^ of 
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voluntary movement, which includes around 20° of dorsal flexion, and 

flexion (Barham Se Wooten, 1973)- Leighton (1959) found special 

flexibility performance ability in college men involved in specialized 

competitive sports. Baseball players, and swimmers, for exaunple, had 

greater than average ankle flexion-extension (around 70°). No data 

on oarsmen’s flexibility are available; however, greater tham normal 

dorsaQ. flexion may be expected in well-trained individuals. Neverthe- 

less, the compressed body position at the catch may require the heels 

to be lifted from the footstretcher (Figure 1). This is particularly 

true for techniques that advocate a small knee angle at the catch. This 

heel raising may affect an oarsman’s action. Therefore it further 

increases the specificity of body position in rowing. 

Figure 1. The Oarsman at Full Reach Lifts Heels From the Foot- 
stretcher. 
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The acceleration of a rowing shell fluctuates throughout the stroke 

(Figure 2). It is the greatest soon after the release (the beginning 

of recovery or the resting phase of the stroke), reaches the lowest 

point at the catch, and then abruptly increases. This is the be- 

ginning of the propulsive phase. It is at this point that the force 

exerted on the oar reaches the maximal values of 8o to 100 kg (Ishiko, 

1971). 

STRAIN OF OAR 

ACCELERATION OF BOAT 

Figure 2. Forces Exerted on the Oar and Acceleration of 
the Boat (ishiko, 1971; A = the catch; 
B = the release). 

The scope of this thesis was to measure the effect of various knee 

angles at the catch on oarsmen’s force output during the first patrt of 

the stroke, that is, from the catch to the point when the arms are 

engaged (Figure 5)« 
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a. Pull reach 

Figure 3« Stages of a Sculling Stroke; Arms Are Extended at the 
Elbows During the Beginning of Drive. 
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Chapter 3 

METHODS AND PROCEDURES 

Subjects 

The subjects of the study (SI, S2 and S3) were three of the 

Thunder Bay Rowing Club*s national level oarsmen. In the 1977 

rowing season, they rowed in various events aind won the coxed four 

at the Royal Canadian Henley held at St. Catharines. At the time 

of testing, they were fully employed and in heavy training. The 

fourth subject (S4) was a former international level oarsman, who 

had maintained a relatively high level of physical fitness. 

Testing Location and Time 

The testing took place from May 27 to June 7» 1978, in the gym- 

nastic equipment storage room of the C. Sanders Fieldhouse at 

Lakehead University, Thunder Bay. The testing sessions were arranged 

at each subject's convenience. An attempt was made to test each sub- 

ject at the same time each day. 

Experimental Equipment 

A firmly-secured "pool rowing trainer" ("Fredericton Clinic", 

1977) was used for testing. Its design is similar to that of racing 

shells (footstretcher angle, slope of slides, seat, etc.). Therefore, 

a subject's testing position was similar to that attained in rowing. 

A tension standard-shaped load cell was made of 1' x 1/8* mild steel. 

The half-bridge (two micro-strain gauges ) was tested and balanced by 

the Lakehead University engineering laboratory. The forces exerted on 

1 
EA-06-230BG-120, micro«measurements, Romulus, Michigan 
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the load cell extended the steel plate. This deformation was measured 

by the change in electrical resistance of both strain gauges. The 

strain gauge output was displayed on a Vishay-Ellis 20-A Digital 

Strain Indicator in micro inches/inch ( in./in.) of strain gauge, gauge 

length (hereafter referred to as "load cell unit"). Forces were rec- 

orded on a Beckman RS Dynograph as a force-time curve. All recordings 

were taken at a paper speed of 5 mm/second. A schematic outline of 

test design and testing equipment is displayed in Figure 4. 

Beperimental Design 

An intra-subject ABAB experimental design (A refers to baseline, 

and B to the ejqperimental condition, Kazdin, 1973) was used in this 

study. This research uses an alternate presentation of the baseline 

and the experimental condition within a subject. A preferred knee 

angle (P) was considered as the baseline condition. The experimental 

conditions were P decreased by 10° (P-10°), P increased by 10° (P*»'10°), 

and P increased by 20° (P+20°). 

Each day, testing started with the preferred angle (baseline 

condition). After the performance at einother angle was measured, 

(experimental condition), the subject was re-tested at the preferred 

knee angle. 

Each subject repeated trials at each knee angle until the per- 

formance stabilized, that is, when the exerted force of at least five 

consecutive trials fell within a 3 kg range, or when a stable perform- 

ance force pattern was apparent. However, if the performance did not 

stabilize a maximum of 20 trials was allowed to prevent fatigue. 
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TENSION CONTACT 
LOAD CELL PLATES 

Figure k Test Design and Testing Equipment 
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Pilot Study 

A pilot study vraus carried out at the beginning of May. The expe- 

rimenter himself and all the subjects took pEurt to familiarize them- 

selves with the testing equipment amd procedure, and to determine the 

weight to be attached to the cable as the stroke resistance. The 

subjects were to choose a weight that would create resistance similar 

to that esq)erienced on the oar handle in rowing. A weight of 35 kg 

was acceptable to everyone. 

The preliminary testing revealed several, deficiencies in the 

e3q>erimental design and equipment. Maximally flexed knees amd knee 

aingles of 60°, and 70° had been proposed as the testing 

positions. However, S1 and S3 were unable to flex their knees to 

(see Table 1). Furthermore, al.1 subjects felt uncomfortable at the 

knee angle of 70°. The testing positions were therefore changed to 

be appropriate for each subject. 

Initially, the subjects were asked to exert a maximum force on 

each trial.. Doing this, they were unable to stabilize their perform- 

ance. The subjects were then instructed to pull maximally but in a 

controlled manner, attempting to simulate the rowing action and effort 

of short sprints of up to 20 strokes. These instructions slightly 

reduced the previously demonstrated performance vauriability• 

The force that an oarsman can exert on the oarhandle at the catch 

of a stroke increauses gradually from zero at the beginning of the 

blade's entry into the water, to its peak when the bleule is conqpletely 

buried. In the pilot test, a force greater than 35 kg wais required 



Table 1 

The Knee Angles and the Position of Equipment Under Various 

Treatment Conditions 
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to initiate the vertical movement of the weight. The subjects con- 

sidered that this testing action was too jerky amd quite different 

from that in rowing. To smooth the initiating action, a plate was 

secured 15 cm above the floor to six utility extension springs that 

were attached to a frame. The weight forced the plate to the floor; 

however, a force of approximately 2 kg only was necessary to initiate 

its movements. The spring-assisted testing action was much smoother 

and, according to the subjects, it simulated quite well the action 

in rowing immediately after the catch, that is, the beginning of the 

propulsive phase. 

A micro switch was placed on the floor under the spring-supported 

plate. It was connected to a 9 V battery and to the second chart 

recorder channel. When the plate contacted the micro switch, it 

produced a signal on this channel which indicated for each trial that 

the appropriate weight position had been attained. 

To eliminate a disturbing side-to-side movement of the weight, 

four aluminum rails were secured along the weight’s vertical path, 

atLlowing only 1 cm of lateral movement. They were occasionally sprayed 

with silicon to decrease friction. 

The experimental knee angles were determined and measured during 

the second, pre-testing session. Each subject warmed-up and stretched 

for 10 minutes, and then completed 20 trials on the testing equipment. 

seat was positioned at the front stops, the knee and hip joints 

were seximally flexed and the arms extended horizontally. The proper 

PAPCO 632, 11" X 
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footstretcher position was set and recorded. The subject was then 

asked to put himself into a comfortable catching position, that is, 

to flex his knees to the angle that he usually experienced at the catch 

when rowing. Without pulling the weight, the subject went through 

four entire stroke movements, brought his trunk and arms to the ^normal” 

catching position, and stopped the seat. The experimenter marked the 

seat position %rith chalk. The average of four trials was considered 

as the subject’s preferred catching position, and the corresponding 

knee angle as the preferred angle. This knee suigle was considered as 

the baseline condition in this study. 

The subject was then positioned to the preferred catching position. 

The four anatomic landmarks that determine the knee suigle were palpated 

and marked with a marker pen. The position of the knee joint suces was 

also determined and msu*ked. Two straight lines were marked on subject's 

leg! one running from the lateral malleolus to the head of the fibula, 

and another from the greater trochanter of the femur to the lateral 

A 

condyle of the femur. A goniometer was secured to the subject's leg, 

the seat moved to the front stops (maximal knee angle or P-10^ experi- 

mental condition) and to the preferred catching position (preferred 

knee angle), and the knee angles at both positions were measured and 

recorded. The subject then extended his knees to 55° (P+10° experi- 

mental condition for S2 and Sk) and 65° (P+20° experimental condition 

for S2 and S4j but P+10° experimental condition for S1 and S3). The 

e3q>erimenter marked both seat positions. The subject was then asked 

1 
International Standard Goniometer Rajowalt Compeuiy Atwood, Indiiuia 



18 

to extend and flex his knees several times. The same measures were 

repeated two more times. The average of three trials was considered 

to be the true value for the maximal and preferred knee aingles (see 

Table 1) and the seat positions for knee angles of 55° and 65°- 

Appropriate wooden front stops were then made and labelled for each 

seat position. During the testing sessions the front stops were 

secured onto the slide with a rubber band. 

Finally, the cable length at each knee angle had to be determined. 

With the appropriate front stop secured onto the slide, the subject 

positioned himself into the catching position, held the handle with 

his hands, the weight resting on the floor. The experimenter adjusted 

and recorded the chain length as the subject requested. This was neces- 

sary because it was found that the length of stroke, i.e., how far a 

subject could reach forward, varied with each angle (see Table 1). 

Each subject was aGJ.owed enough trials to familiarize himself with 

the testing action. Familiarity was determined by the subject: that is, 

when he was satisfied and ready for testing. The testing times and 

days were then arranged at each subject's convenience. However, they 

were asked to schedule their testing sessions at the same time each day 

whenever possible. The subjects were also instructed to avoid strenuous 

physical activity, to eat properly, and to rest adequately prior to each 

testing session. 

The load-cell was calibrated. The reliability within the working 

range was 89 to The consistency of the Dynograph was also checked 

and was satisfactory (see Appendix B). 



19 

Testing Sessions 

The purpose of these sessions was to test the effect of different 

knee angles on the subjects* force output- The testing order was pre- 

determined by random selection (see Appendix D). The author himself 

did sG.1 testing- Only the subject and the tester were present in the 

testing room. The room temperature remained 20° C throughout all testing 

sessions. 

One hour prior to testing, the experimenter Switched on the 

Digitail Strain Indicator, checked the function of all instruments 

(Dynograph, load cell, horns), and adjusted the experimental equipment 

(footstretcher, cable length, front stop) to the subject’s preferred 

catching position- Then he adjusted the Digital Strain Indicator zero 

setting and internal calibration and set to zero the graph recorder. 

The zero setting for the load cell and graph recorder was rechecked 

prior to each set of trials. The Digital Strain Indicator internal 

calibration was checked only occasionally during each testing session. 

The subject, dressed in gym clothing (runners, shorts, and shirt) 

came 15 minutes prior to testing time euid warmed-up. Then he removed 

his shirt and was seated on the testing machine, the two contact plates 

being secured to his thigh and chest. He was asked to make 20 warm-up 

trials to coordinate his body movements. 

The signal on the graph recorder’s second channel, produced by the 

micro'switch under the springed plate, indicated the weight contact with 

the floor. Forward movement of the seat (knee angle) and trunk (hip 

angle) were indicated by means of two bicycle horns that produced dif- 

ferent sounds. A movable micro-switch was secured to the slide and a 
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special lever on the seat. Lever pressure on the micro-switch engaged 

the horni indicating an adequate forward movement of the seat. The 

trunk movement was controlled by means of contact plates. A contact 

of the two plates soiinded the horn and thus signified an appropriate 

forward trunk movement. Simultaneous sounds of the two horns indicated 

the proper body and leg position for each catch. These sounds were 

the signal for the subject to pull the handle as hard and fast as 

possible. The arms remained extended at the shoulders in a horizontal 

position with the elbows straight throughout this action* 

The tester attempted to standardize the motivational circumstances. 

Prior to the first series of trials, he aaked the subject to concentrate 

and relax. He also encouraged the subject to perform as in rowing 

during a 20 stroke power drill at a moderate stroke rate, that is, to 

make in each series five preparatory trials, and then to start pulling 

each trial maximally but in a controlled manner. Similar instructions 

were also given occasionally between sets. The subject was not told the 

results of his efforts until all testing was completed. 

Exerted forces were measured by the load cell and recorded on a 

I)ynograph as a force-time curve. An example of the output recording is 

shown in Figure 5- 

Data Analysis 

Data were graphed for each subject, day, treatment, and trial. The 

maximal force exerted on each trial was determined from the force-time 

ctirve recordings in the following manner: The vertical distances from 

the zero-line to each force-time curve's peak were determined (in milli- 

meters dynograph deflections) by counting the horizontal lines on the 
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▼ = recovery recoil 

* Dynograph zero setting 

s the signal on the second channel produced by the weight 

contact with the micro-switch on the floor 

Figure 5 The Force-Time Curve Showiiig Exerted Forces 

graph pax»er* The closest line was considered as the score. These 

scores were recorded and converted into kilograms (kg) by using the 

conversion table listed in Appendix C« 

Bata weare analyaed using an analysis of variance (ANOVA). The 
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treatment conditions in the ANOVA were limited to preferred angle 1, 

preferred angle? .-t 10°, preferred angle 2, and preferred single - 10°. 

The ordering of the occurrence of 10° and - 10° conditions was 

randomized in the original design. The ANOVA was concerned with the 

effects of angles, order, subject, and days within subjects. Statistical 

significance was set at alpha = .05* 
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Chapter k 

RESULTS 

The results are graphically presented in Figures 6-9* Each dot 

represents one trial. The representative averages for each series (the 

broken lines) were obtained by averaging the representative trials. 

The requirement for these representative trials was that they all fall 

within the range of ^ to 5 kg* Three methods were used in choosing the 

representative trials: 

1. Five or more consecutive trials had to fall within the required 

range; 

2. 80^ of trials in a series of seven or more trials had to agree 

with the requirement; 

3* In the sets with an unstable performance, pairs of trials were 

consecutively removed from one series (one trial from the lower and one 

from the upper force limit within the series) until the remaining trials 

accorded with the requirement. 

The following trends are evident from graphs: 

1. Performances within each set of trials varied a great deal. The 

difference between the maximal and minimal forces exerted within one 

set fluctuated between a low of k,k kg (Figure 7i Day 1, P + 20®) sind the 

high of 21.7 kg (Figure 6, Day 4, P^). The required performance sta- 

bility, that is, five consecutive trials within the range of 4 to 3 kg, 

was achieved in only 29 sets (28^ of £L11 sets performed): 14 times at 

the preferred knee angle and 13 times at other knee angles. However, 

the i>erformances of only 10 sets (169^; all trials within 3 kg range) 

could be considered as stable (Figure 7, Day 1: P + 20®; Day 2: P^; 
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DAY ONE 

Figure 6. Forces Sjcerted on Each Trial and the Representative Average 
Forces for Each of the Treatment Conditions for S1 
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DAY ONE 

Figure ?• Forces Sbeertad on EEu;h Trial and the Representative Average 
Forces for Each of the Treatment Conditions for S2 
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DAY ONE 

Figure 8. Forces Sxerted on Each Trial and the Representative Average 
Forces for Each of the Treatment Conditions for S3 
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3? Day 4s P^; Figure 8, Day 4: P^; Figure 9» Day 1; P - 10^, P^, 

and P + 10®; Day 4: P^ and P - 10®). Generally speaking, the force 

msignitude of consecutive trials continuously fluctuated. The greatest 

difference between two consecutive trials was 17 kg (Figure 8, Day 4, 

P + 10®). 

2. Stable performances were infrequent. On six occasions all the 

average scores for each baseline condition in a session fell within the 

5 kg range (Figure 6: Day 1, 2, and 4; Figure 8: Days 2 and 5» Figure 9s 

Day 3)* However, the variability between the baseline averages was much 

greater in other testing sessions. For example, a difference of 13*7 kg 

between the average baseline scores for Session 8 was recorded in S1. 

The difference between the highest and the lowest representative average 

' baseline scores within one subject ranged from a low of 8.9 kg (P^) in 

S2 to a high of 24.5 kg (P2) in S4 (see Table 2). Although the action 

under the baseline condition was replicated the most frequently, there 

was no evidence of an increase in performance stability. This suggests 

that it is characteristic that these subjects vary their performances 

considerably. 

3« Within subjects* performance variability at other knee angles 

was also evidenced (see Table 2). At P - 10®, the difference between the 

maximal and minimal representative averaige scores varied from 4.0 kg (S2) 

to 26.1 kg (S3). Corresponding values at P + 10® were 2.4 kg in S3 and 

16.9 kg in S4. Thus, forces that subjects exerted at each knee angle 

varied greatly from one day to the other. Within-set performance varia- 

bility appeared to be considerable at all knee angles. 

4. The ranking of performances under the treatment conditions varied 
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Table 2 

The Difference Between the Highest and Lowest Representative Average 

Scores (kg) Under One Treatment Condition 

from one testing session to the other in 32 sind Sk (see Table 3)* 

The former recorded best daily performances at three different knee 

angles, and the latter at four. The other two subjects performed in a 

somewhat more stable maimer. S1 scored four times maximally under 

condition. Contrcmtingly, his performance under condition ramked 

much lower. S3 performed best three times under P - 10° experimental 

condition smd on four occasions recorded second best averages under P^ 

condition. 

3. The force magnitude seemed to fluctuate a great deal from one day 

to the other. For example, all but one Si's representative average 

scores in Session 2 were above 50 kg (see Table >)• His performance 

declined msmkedly in the last session when three average scores dropped 

by 10 kg and one by 5 kg. This fluctuation was even higher in S4 with 

differences of up to 2k kg between the relevant average scores of 

Sessions 3 4. 

6. Performance variability changed considerably from one day to the 



Table 3 

The Representative Average Forces Tinder the Treatment Conditions and 

Their Daily Ranking 

Subject Day 
TREATMENT 

P - 10 P + 10 P + 20 

1 

2 

3 

k 

47-0 

^9-9 

^.9 

k 

42.7 

51.0 

45.7 

37.0 

47.2 

55.2 

60.6 

45*6 

44.8 ^ 

50.7 ^ 

44.4 5 

45-1 ^ 

1 

2 

3 

4 

52.6 

49.4 

46.5 

52.4 

48.4 

48.6 

43.9 

44.6 

42.0 

52.1 

46.9 

42.1 

49.9 

55.5 

47.8 

44.5 

48.6 

42*9 

35.3 

52.1 

63.4 

49.4 

47.1 

36.1 

1 

2 

3 

4 

48.5 

52.1 

40.5 

48.1 

30.9 

64.4 

38.1 

49.0 

42.1 

50.8 

38.2 

35.4 

40.8 

43.7 

41.6 

40.4 

1 

2 

3 

4 

48.6 5 

38.9 ^ 

41.7 ^ 

51.3 ^ 

38.3 

43.8 

41.5 

64.3 

37.0 

^.9 

38.8 

62.6 

55.1 

40.7 

52.2 

37-5 

56.0 

48.8 

38.6 

37.6 

45.1 

31.9 

^.4 

52.0 

* Numbers denote the daily ranking of performances 

other. For example« S1*s representative averages for Day 2 were within 

a range of 5 kg but on Day 3 the range increased to l6.2 kg (see Table 3). 

Similarly, S3»s averages for day 3 were also within a 5 kg range but on Day 2 



the range was 20*7 kg. 

7« The analysis of varieuace (see Table 4) revealed no significant 

differences between treatments nor any testing order effect. Warm-up 

learning, and fatigue did not appear to have affected the subjects* 

performances. Puthermore, there was no significant difference in 

performance between subjects. The interaction between subjects euid 

days was significant at .05 level of confidence. This indicated a 

subject’s performance varied from day to day with little similarity 

between subjects. 

Table 4 

The Analysis of Variance of the Force Amplitudes Under 

Four Treatment Conditions 

Significant at the .05 level of confidence 

Cell entries used in the ANOVA are listed in Appendix E. 

8. The length of forwecrd reach and various knee angles at the 

catch were related (see Table 1). The more flexible subjects, S2 and 

S4, had similar patterns. Their forward reach did not change at the 
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two most compressed knee angles but their ability to reach forward was 

decreased by 5 cm under the P + 10° condition, and by an additional 

2.5 cm at P + 20° angle. The forward reach of the other two subjects 

was shortened by 2.5 cm at P + 20° angle. The forward reach of the 

other two subjects was shortened by 2.5 to 5 cm whenever the knee 

angle increased by 10°. This indicates that the stroke length forward 

is determined partly by the angle of the knee that is attained in the 

stroke. 
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Chapter 5 

DISCUSSION 

Variability and inconsistency were the two most distinctive char- 

acteristics of the subjects* performances. It is possible that the 

testing equipment and the nature of movements in testing could have 

caused these excessive fluctuations. 

According to the subjects, the testing action immediately prior 

to the force phase (the spring-assisted lowering of the weight to 

floor) and the force phase itself simulated quite well the rowing 

action at similar stages. But they felt that the force phase in testing 

did require a little more speed. The eirra action differed somewhat from 

that of sculling, because the arm abduction, that is peculiar to 

sculling, did not take place. However, the subjects, who soon famili- 

arized themselves with the movements required for testing, felt com- 

fortable and did not think that the difference in the arm action could 

have affected their performance. Their principal expressed concern 

was with the steady pull on the handle caused by the suspended weight, 

during recovery. This was deemed to be rather imcomfortable and much 

different to that of rowing. 

The uncontrolled rowing environment renders testing and research 

in this sport more difficult. Wind and water conditions, balance, speed 

of the rowing shell, and blade depth change continuously suid rarely 

can be effectively controlled. All these factors may affect an oars- 

man's performance, that is, the magnitude of force that he C6ui exert 

on the oar. Numerous uncontrollable conditions in a real rowing situa- 

tion may justify and favour the equipment used in this study as a more 
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objective testing environment* The subjects* positions on the testing 

equipment were similar to those used in a racing shell. The adequacy 

of their body movements in the testing situation was continuously 

controlled by the tester and, at the same time, evaluated by testing 

instruments (horns, dynograph signals). The work load remained con- 

stant for each trial. Furthermore, the testing environment wa.s 

closely controlled to eliminate distractions as much as possible. One 

would expect the fluctuations in performance in such a controlled 

environment to be much smaller than those which would be displayed 

in the real rowing situation. 

The subjects appeared to this investigator to have concentrated 

prior to each set, and to have exerted a maximum controlled effort on 

each trial. However, aus Figures 6 to 9 demonstrate, none of them 

seemed to have succeeded in minimizing the vauriability in their per- 

formance. Most frequently, the magnitude of forces in successive 

trials changed in either direction. Although there were ten sets of 

trials with limited vau^iamces it seemed that large variamces in per- 

fonnamce were more chsiracteristic of the subjects. 

Ishiko (1971) and Schneider, Angst, and Brandt (1977) analyzed 

forces exerted on the oau:* in a rowing action. Both researchers referred 

to force-time patterns as being peculiar for each individ\ial. According 

to Ishiko, **no particular national or international difference in the 

chaLTacteristics of the force-time curves can be observed.** Schneider 

et al. stated, **that force curves may only be discussed intra-individ- 

ually amd that paurameters for style exist but differ from oarsmaui to 

oaursman.*' The results of this study support these interpretations amd 
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further highlight that between days an individual's performance will 

vary. 

The force-time curves in Ishiko*s study demonstrated variability 

in force-time patterns within an individual. The musciolar forces 

exerted on the oar were within a range of 80 to 100 kg. However, it 

is not clear ajs to whether this range referred to the variability of 

forces within one individual, or to the maximal forces of all the 

subjects involved in the study. His subjects were top international 

oarsmen and one might have expected the variability in their perform- 

ances to have been smaller. On the other hand, some of Schneider et 

al.'s subjects were youth oarsmen, who possibly would not yet have 

perfected their rowing movements. Considerable variability in their 

performances would be expected. Neither Schneider nor Ishiko discussed 

the fluctuations in the performance of their subjects. This now appears 

to be an important variable which has attracted little attention in 

research on the sport of rowing itself. 

The aim of this study was to measure the effect of knee angle 

variations at the catch on the magnitude of exerted forces. Changing 

the knee angles did not affect the subjects* performances in any pre- 

dictable manner. The scores that were achieved at an angle in one 

testing session could not be replicated in other sessions. The fluctu- 

ations in the magnitude of the exerted forces of those wais high in all 

subjects. Thus, the knee angle at the catch may not affect an oarsman’s 

performance as much as is commonly believed. The knee angle at the 

catch and forward reach were related, but the relationship differed 

with each subject. In light of the results of this study, this aspect 
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of rowing technique should most probably be considered individually. 

Xhat iSy the knee angle which feels the most comfortable and its effect 

on forward reach should be considered for each athlete. 

Since the original intent of this study was to decide which of 

the Adam and East German styles was better, the above finding does 

not shed any light on deciding a preference. Although the styles differ 

in both knee angles and body positions at the catch, these differences 

have no predictable outcome on the magnitude of the forces created. 

Therefore, one style cannot be recommended over another. 

The synchroni2sation of movements of members of rowing crews is 

considered to be an important aspect of coaching rowing. It is commonly 

proposed that all crew members move their legs, bodies and arms in 

unison. This iu^ortance could be overestimated. According to Ii^lko 

(1971) a uniformity of blade and body movements does not ensure a 

uniformity of force-time patterns. Similarly, a uniformity of body-leg 

positions would not cause a maximization of the forces exerted. 

Coaches are thus faced with a difficulty. IVom a theoretical view- 

point what needs to be achieved is a synchronization of the peak forces 

and the entire force-time patterns. This implication serves as recogni- 

tion for the need of sophisticated measurement devices to determine the 

force-time patterns of crew members. Thus, the common coaching effort 

involved in changing oarsmen's styles is most probably, in vain. 

The crews that are to represent Canada at major international 

regattas are frequently determined by a single trial race. If the 

within subjects day-to- day fluctuations in the magnitude of exerted 

forces that were demonstrated in this study are considered, then the 
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reliability of a single race for team selection ought to be questioned. 

The results of one day’s testing may not represent the real abilities of 

all crews involved in the trial. Therefore, trials consisting of a 

number of performances on different days may prove to be a more reliable 

method for selecting the best national crews. Certainly, they would 

indicate performance consistencies. 

Variability in force magnitudes was the most distinctive charac- 

teristic in the performance of all this study’s subjects. It was 

interesting to note, that fluctuations at the preferred knee angle were 

just as great as at the other knee angles. The subjects replicated 

trials at this position the most frequently, and one would have expected 

the variability of the bauseline condition to decrease somewhat because 

of a practice effect. However, this did not occur. It would appear 

that the force exerted on an oar will vary considerably from stroke 

to stroke even in elite athletes. 

There are various factors in this study that could have caused 

extensive fluctuations in the performeuices demonstrated. Testing 

equipment might be one. The suspended weight caused the recovery phase 

to be uncomfortable and may have distracted the subjects in their pre- 

paration for each catch. Arm movements were different. On this 

equipment the arm pull was inhibited. Also the action during the force 

phase was considered to be somewhat faster than the action of the drive 

phase in rowing. The subjects would have preferred a greater resistance 

during the testing force phase, but this would have made the recovery 

too imcomfortable and difficult. This smaller resistance may have 

created a reduced resistance but it allowed faster movements. The 
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results of this study may support this assertion. The highest regis- 

tered forces reached values of around 65 kg, which au:*e by 15 to 35 kg 

less than those recorded on the oars and reported by Ishiko. One was 

led to believe that it was the subjects’ speed, rather than their 

strength, that affected the magnitudes of exerted forces in the testing 

situation. S4’s results may give good reason for this assumption. Of 

all the subjects, he was physically the weakest, but his performance 

in testing Session k (Figure 9) was the highest recorded during the 

study. A rowing ergometer with precise speed and work-load control 

shOTild be used in any possible future studies. The possibility of it 

better simulating the rowing environment may facilitate more stability 

in performance. 

Performance in testing involved the simultaneous action of knee, 

hip, and tznmk extensors. Clarke (1950) measured the isometric strength 

of knee and hip extensors through the whole range of joint movements. 

His subjects exerted with their knee extensors an average force of 110 

pounds at knee angles from 40° to 60^. The power of the hip extensors 

was the greatest when the hip was fully flexed. The average pull of 

the subjects tested %^a6 I80 pounds. These results may not be relevant 

for the dynamic action in rowing and its peculiar body position at the 

catch. Nevertheless, in this study the action of the strong hip and 

trunk extensors may have obscured any differences in the treatments 

that were applied. A future study should include strength as a relevant 

associated measure. Information about knee, hip, and trunk extension 

strength at the catch position may further contribute to understanding 

of the rowing action. 
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Changes in the dependent variable should also be considered for 

future investigations- The effect of knee angles on force magnitude 

might be observed more easily at eeirlier stages of the drive, that is, 

before maximal force is achieved. Another possibility might be to 

determine the relation between the knee angle and the time that elapses 

from the beginning of piill to the moment of peak force. 

The laboratory testing environment as well as the action in testing, 

will always differ from the resG. situation in rowing shell. These two 

factors may have contributed to the subjects’ inability to stabilize 

their performances. In the intra-subject replication research design, 

the baseline must be stabilized prior to the commencement of testing. 

The effect of an e3q>erimental condition cannot be demonstrated unless the 

baseline scores au:*e replicated. Preliminary baseline trials are neces- 

sary and must be repeated until the performance stability is achieved. 

In this circumstance a greater manber of trials woiild have produced 

undue fatigue which would cuiversely affect performance. In the future 

a researcher may wish to experiment with the experimental design. For 

example, the number of test sessions and the nusiber of sets at each 

knee angle could be increased and the number of trials within each 

series pre-set. The warm-up as well as the rest between sets could 

also be lengthened and standardized for all subjects. 

The subjects in this investigation were usually tested follo%ring 

their day’A work. Hence, fatigue may have contributed to the fluctu- 

ations in performance. A future study should consider, if possible, 

testing in the morning. It may be necessary to control other factors, 

such as sleep, motivation, and the resistance in the pull, if the true 
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effects of the treatments are to be fully evaluated. 

FinallyI elite subjects in training, who have already perfected 

their rowing movements, should be used in a similar investigation. 

Less variability in their performances 6uid more stable baselines would 

be expected. 

The effect of various knee 5uigles at the catch on the exerted 

force magnitudes in rowing may not be as great as it is generally 

believed. All the common assumptions concerning this aspect of the 

rowing technique might be too presumptuous. This study has failed to 

clarify the existing controversy of the preference between two styles 

of rowing. Future studies should include suggested modifications in 

the design and investigation of this tppic. Perhaps they could con- 

tribute to a better understanding of the action in rowing. 



Chapter 6 

SUMMm, CONCLtTSIONS, AND BBCOMMKNDATIONS 

Smnmary 

This thesis studied in isolation the relationship between various 

leg and body movements in the rowing action and forces created on the 

oar handle* The subjects were four national ranked oarsmen from the 

Thunder Bay Rowing Club. 

Each subject had two preliminary testing sessions to become 

familiar with testing equipment, testing procedure, and the action in 

testing. A modified pool rowing trainer was used to simulate the action 

in rowing. The independent variables were four different knee angles 

at the catch with hip flesdlon maximized in each position. The 

dependent variable was the maximal force that the subject exerted on 

each trial. 

An intra-subject ABAB experimental design was used in this study. 

Four random orders of the three experimental conditions were determined. 

Each subject WEUB tested %rith all four testing orders. Since no obvious 

effect of the esqperimental conditions could be discerned, em analysis 

of variance was used to determine whether a significant difference in 

force magnitudes at different knee angles existed. The baseline condi- 

tions and only two experimental conditions for the four subjects were 

included in the ainalysis. No significant difference between treatments 

was evident nor was there a difference in j>erformance between subjects. 

The interaction between subjects and days was significcuit. This indi- 

cated a subject’s performsmce varied from day to day with little simi- 

larity between subjects. 



Conclusions 

It has been a popular belief, that the leg and body position at 

the catch nay affect the ability of oarsmen to create forces on the 

oar handle. This study revealed that there was no significant dif- 

ference in the magnitude of forces exerted between the four treatments. 

Excessive variability in force magnitudes was the most distinctive 

characteristic in the performance of all subjects. Average scores 

achieved under one experimental condition on one day could not be 

replicated on another day. Variability in successive trials was marked. 

The lack of a difference in performance between the four treatment 

conditions may have been caused by the nonspecific experimental envi- 

ronment and the simulated action involved in the testing. In addition, 

the subjects may not have yet perfected their movements which may be 

necessary to achieve stable performances. 

Recommendations 

1. A rowing ergometer with precise speed and work-load control 

should be used in future research to better simulate the action in rowing. 

2. A stable baseline must be achieved before the commencement of 

each testing condition. 

3. Subjects* strength at various body positions that are peculiar 

to rowing should be measured. 

4. The subjects in future studies should be elite oarsmen. 

A replication of this thesis implementing these siaggestions may 

clarify the effect that various knee angles at the catch have on the 

exerted forces in rowing. 
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APPENDIX A 

Sixteen Tables, One for Each Testing Day, 
Showing the Forces Exerted on Each Trial and 
the Representative Average Forces for Each 
Treatment Condition. Forces are Expressed in 

Kilograms 



Subject 1, Day 1 ^7 

TREATMENT 

P - 10' P + 10' 

37.3 
42.1 

38.1 

44.4 

35.0 

46.1* 

46.1* 

48.6* 

48.6* 

45.2* 

46.1* 

48.6* 

47.0 1^ 

38.9 

39.7 
43.6* 

46.1 

46.1 

43.6* 

42.8* 

41.3* 

39.7 
42.1* 

42.8* 

45.2 

42.7^ 

42.8 

46.9* 
47.8* 

46.1* 

52.1 

47.8* 

50.3 
47.8* 

43.6 

52.1 
47.8* 

46.1* 

44.4 

47.2^ 

46.1* 

40.5 

41.3 
36.6 

44.4* 

52.9 

51.2 

47.8 

43.6* 

47.8 

53.8 
43.6* 

46.1* 

38.9 

40.5 

44.8' 

Representative trieils 

^ Numbers denote the method that weus used for choosing the 
representative trials (see page 23) 



Subject 1, Day 2 

TREATMENT 

P - 10" P + 10 

^9-5 

52.9* 

55.5 
i*6.9 

52.1* 

^9.5* 

55.5 
46.1 

49.5* 
47.8 

51.2* 

53.8* 

57.7 
54.6 

51.2* 

49.5* 

50.3* 

49-5* 

45.2 

52.9 
52.1 

46.9 

49.5* 

49.5* 
51.2* 
52.1* 

51.2* 

50.7 

56.6 

55.5* 

59.9 
47.8 

59.9 
51.2 

50.3 
48.6 

53.8* 

57.7 
56.6* 

52.9* 
56.6* 

55.5* 

55 .2^ 

46.1 

54.6 
48.6 

51.2 

53.8 

51.2 

49.5 
46.1 

46.9 

55.5 
46.9 
51.2* 

52.9* 
49.2* 

51.2* 
51.2* 

50.3* 

51.0 

51.0- 

Representative trials 

Numbers denote the method that was used for choosing the 
representative trieils (see page 23) 



49 

Subject 1, Day 3 

TREATMENT 

P - 10' P + 10 

40.5* 

38.1 

44.4* 

31-2 

46.9 

37.3 

40.5* 

39.7 

35.8 

31.9 

41.3* 

34.2 

41.3* 

46.1 

51.2 

48.6 

44.4* 

52.9 

49.5 

50.3 

44.4* 

43.6* 

42.8* 

38.9 

46.1 

35.8 

35.0 

38.9 

43.6* 

40.5 

41.3 

47.8 

45.2* 

47.8 

50.3 

45.2* 

46.1* 

49.5 

49.5 

44.4- 

54.6 

59.9 

62.1 

62.1 

55.5 

56.6 

61.0* 

58.8* 

57.7* 

62.1* 

62.1* 

62.1* 

63.2 

60.6 

42.8 

46.1 

47.8 

45.2 

46.9 

47.8 

45.2 

47.8 

42.8 

48.6 

41.3 
45.2* 

45.2* 

45.2* 

46.9* 

46.1* 

45.7 

42^1 ,3^ 

Representative trials 

Numbers denote the method that was used for choosing the 
representative trials (see page 23) 



50 

Subject 1, Day ^ 

TREATMENT 

P - 10 P + 10 

39.7* 

3^.2 

^.8 

41.3* 
36.6 
43.6 

35.8 

38.9 

44.4 

39.7* 

37.3 

44.4 

42.8 

43.6 

41.3* 

38.1 
kO.3* 
37.3 

41.3* 

42.5* 

40.5* 

38.1* 

29.6 
38.1* 

32.7 

35.8 

41.3 

30.4 

42.1 

38.1* 

41.3 

36.6* 

42.1 

34.2 

31.2 

34.2 

57.05 

'*6.9* 

44.4‘ 

45.2* 

40.5 

42.1 

46.1* 

39-7 

46.9 

48.6 

46.1 

45.2* 

45.6- 

42.1 

31.2 

46.1* 

^.1* 

45.2* 

46.1* 

35.8 

45.2* 

38.1 

50.3 

49.5 

45.2* 

42.1* 

42.8* 

46.1* 

48.6 

46.1* 

49.5 

45.1* 

^.9‘ 

Representative trials 

^Numbers denote the method that was used for choosing the 
representative trials (see paige 23) 



51 

Subject 2, Day 1 

TREATMENT 

P + 10 P + 20 P - 10 

57.7 

58.8 
5^.6 
58.8 
51.2* 

52.9* 

55.8* 

52.9* 

52.1* 

52.6 1^ 

52.9 

5^.6 

49.5* 

43.6 

46.1 

48.6* 

50.3* 

52.1* 
48.6* 

^.9 

47.8* 

52.1 

50.3* 

50.3* 

49.9^ 

42.8* 

39.7 

41.3* 

38.1 

33.5 
42.8* 

39.7 
44.4 

42.1* 

42.1* 

39.7* 

44.4 

47.8 
43.6* 
44.4 

41.3* 
43.6* 

40.5* 

61.0* 

65.4 

64.5* 

65.4* 

62.1* 

65.4* 

64.3* 

61.0* 
62.1* 

62.1* 

64.3* 

63.4' 

38.1 

37.3 

^.5* 

46.9 

43.6* 

44.4 

39.7 
42.1* 

43.6* 

40.5* 

31.9 

48.6 

43.6* 
46.1 

37.3 
46.1 

42.3' 

52.1 

52.9 
44.4 

48.6* 

46.9* 

44.4 

50.3 

48.6 

45.2 

50.3* 

47.8* 

48.4- 

42.0- 

Representative trials 

^ Numbers denote the method that was \ised for choosing the representative 
trials (see page 23) 



52 

Subject 2, Day 2 

TREATMENT 

1 
P + 20' P + 10 

^7.8* 

^9.5* 

50.3* 

47.8* 
51.2* 

51.2* 

47.8^ 

49.4' 

48.6* 

48.6* 

i^.6* 

44.4 

50.3* 

53.8 

47,8* 

54.6 

46.9 

51.2* 
51.2* 

48.6* 

49.4- 

51.2* 
52.1* 

50.3* 

53.8* 

47.8 

55.5 

52.1- 

48.6 

57.7* 
52.1 

55.5* 

57.7* 

53.8* 

57.7* 

59.9 

52.9* 
55.5* 

58.8 

57.7* 

52.9* 
56.6* 

52.9* 
58.8 

52.9 

55.5- 

ho.3* 

39.7 
42.1* 

29.0 

39.7 
48.6 

38.1 

39.7 
44.4* 

^.1 

44.4* 

30.5 
50.3 
45.2 

38.1 

49.5 
45.2 

^♦6.9 

^2.9^ 

P - 10° 

¥f.4 

44.4 

50.3 
42.1 

47.8 

46.9 

37.3 
42.8 

40.5 
48.6* 

49.5* 

49.5* 

47.8* 
47.8* 

48.6'' 

Representative trials 

* Nvmibers denote the method that was \ised for choosing the representative 
trials (see page 23) 



33 

Subject 2, Day 3 

TREATMENT 

P - 10' P + 20 P + 10 

38.1 

^3.2* 

A5.2* 

48.6» 

kkA* 

^.9* 

k6.9* 
48.6* 

46.5 

42.1 

39.7 

38.9 

44.4 

42-8 

38.9 

38.1 
38-1 

39.7 

46.1* 

42.8* 

42.1* 

45.2* 

43.6* 

43.6* 

43.9 

50.3 

46.9 

40-5 

kS.6 

46.9 

45.2 

46.9 

46.9 

42.1 

42.8 

47.8* 

46.9* 

46.9* 

46.1* 

46.9* 

46.9 

46.9* 

46.1* 

52.1 

52.9 

56.6 

46.9* 

44.4 

54.6 

43.6 

45.2 

45.2 

52-1 

50.3 
42.1 

54.6 

41.3 

48.6* 

42.8 

50.3 

43.6 

47.1- 

35.8* 

37.3* 
36.6* 

35.0* 

34.2* 

35.8* 

34.2* 

34.2* 

35.0* 

35.3 

46.9* 

48.6* 

42.8 

43.6 

42.8 

53.8 

46.1* 

52.1 

53.8 

54.6 

45.2* 

45.2 

42.8 

39.7 

51.2 

47.8* 

49.5* 

42.8 

56.6 

50.3* 

55.5 

41,8^ 

Representative trials 

^ Numbers denote the method that was used for choosing the representative 
trials (see page 23) 



5^ 

Subject 2, Day. 4 

ITRE/ITMENT 

P + 10 P - 10 P + 20 

52.9 
51.2 

kZ.S 

52.1 

45.2 

55.5 
47.8 

54.6 

57.7 

50.3 
58.8 

57.7 
53.8* 
54.6* 

52.1» 

50.3* 

50.3* 
51.2* 

52.9* 
53.8* 

49.5 
54.6 

52.4 1^ 

43.6 

42.1* 

50.3 
45.2* 

45.2* 

46.2* 

46.9 
42.8* 

37.3 
45.2* 

47.8 

45.2* 

38.9 

44.4* 

44.4* 

44.5' 

36.6 

33.5 
42.1 

38.9 
37.3 
35.0 

42.1* 

42.1* 

42.1* 

42.1* 

38.1* 
43.6* 

43.6* 

42.8* 

42.1' 

44.4* 

46.9* 
44.4* 

43.6* 
43.6* 

40.5 
43.6 

39.7 
35.0 
46.1 

45.2 

45.2 

46.6 

43.6 
45.2 

44.4 

^.1 

44.6 

53.8* 

53.8* 

52.9* 
46.9* 
51.2* 
52.1* 
52.1* 
51.2* 
52.1* 
54.6* 

52.V 

41.3 
35.8* 
34.2* 
42.1 

42.1 

44.4 

37.3* 
31.2 

42.1 

38.1* 

35.8* 
34.2* 

33.5 
36.6* 

35.0* 

32.7 
33.5 
38.1* 

33.5 

36.1- 

Representative trials 

Numbers denote the method that was used for choosing the representative 

trials (see page 23) 



55 

Subject 3- 

TREA3ZMENT 

P - 10' P + 10 

47.8* 

46.9* 
53.8 

50.3* 
50.3* 
58.8 

50.3 

43.6 

48.6* 
43.6 

45.2 

40.5 

48.6* 
55.5 

51.2 

45.2 

46.9* 

48.5* 

43.6 

37.3 

39.7* 
40.5* 
39.7* 
46.1 

32.0 

42.1* 
42.8 

38.9* 
35.8 

34.2 

42.1* 
42.8 

42.8* 
40.5* 

40.8' 

ko.3* 
38.1 

37.3 

42.8* 
47.8 

46.1 

42.8* 
^.5* 

37.3 

48.6 

43.6* 
34.2 

42.8* 
42.8* 
39.7 

46.9 

44.4 

41.3* 

48.6* 
50.3* 
51.2* 

51.2* 

54.6 

46.1 

50.3* 
52.1* 

52.9* 

50 .9^ 

42.1' 

Representative trials 

* Numbers denote the method that was used for choosing the 
representative trials (see page 23) 



56 

Subject 3, Day 2 

TREATMENT 

P - 10 P + 10' 

53.8 
51.2 

^9.5 
61.0 

38.8 
56.6 

61.0 

32.1 

hs.e 
34.6 

36.6 

^7.8 

36.6 

55.5 

^9.5 
i»6.l 

57.7 
32. l"^ 

31.2* 

53.8* 

31.2* 

32.1* 

66.3* 

63-A-* 

61. O* 

59.9* 
65.2* 

66.3* 
67.6* 

63.4* 

64.5* 

64.V 

46.1 
43.6 

44.4 
^.6 
42.8 
44.4 
50.3* 
32.1* 

48.6* 
31.2* 

50.5* 
50.3* 
52.9* 

50.8' 

38.9 
34.2 

33.8 

42.8* 
36.6 

42.1* 
53.8 

36.6 

36.6 

38.9 

52.9 

50.3 

46.9 
46.1* 
53.8 

52.9 
53.8 

41.3 
39.7 

43.7^ 

52.1 
1A 

Representative trials 

^ Numbers denote the method that was used for choosing the 
representative trials (see page 23) 



57 

Subject 3» Day 3 

TEEATMENT 

P - 10 P + 10 

39.7* 

kj.6 

40.5* 

43.6 

41.3* 

40.5* 

34.2 

35.0 

42.1* 

38.9* 

39.7* 

35.0 

^1.3* 

36.6 

42.8 

38.1 
43.6 

^.5* 

46.1 

31.2 

38.1* 

38.9* 

44.4 

40.5 

41.3 

34.2 

34.2 

39.7* 

33.5 

38.9* 

36.6* 

35.8* 

42.8 

38.9* 

35.8 

34.2 

38.1* 

42.8 

42.1 

33.5 

42.8 

38.9* 
38.1* 

33.5 

39.7* 

42.1 

39.7* 

38.8* 

38.1* 

42.1 

37.3* 
38.1* 

38.9* 

32.7 

37.3* 

35.0 

^.1 

37.5* 

37.3* 
38.8* 

31.2 

36.6* 

42.8* 

35.0 

38.9 
38.1 

41.3* 

44.4 

46.9 

39.7* 

Vf.4 

43.6 

37.3 
41.3* 
42.1* 

49.5 
36.6 

47.8 

42.1* 

43.6 

36.6 

32.0 

40.5* 

4l .4- 

38.1* 38.2^ 

Representative trials 

Numbers denote the method that was used for choosing the 
representative trials (see page 23) 



58 

Subject 3i Day ^ 

TREATMENT 

± 
P - 10 P + 10' 

^.6* 

^6.9* 

k7-S* 

30.3* 

^.9* 

47.8* 

45.2 

46.9 

50.3 

46.1 

45.2 

47.8 

^1^.6 

48.1 

38.1 
35.8 

40.5* 

43.6 

39.7* 

38.1 

51.2 

34.2 

50.3 

37.3 
39.7* 

46.1 

48.6 

40.5* 

47.8 

42.8* 

^.9 

40.5* 

29.7 

39.7* 

50.3 

39.7* 

37.3 
40.5* 

38.1 

31.2 

33.5 
29.0 

36.6* 

33.5 
32.0 

34.2* 

36.6* 

^iO.5 
34.2* 

35.0* 

43.6 

38.1 

43.6 

42.1 

32.7 

35.8* 

39.7 
32.0 

45.2 

35.4- 

^.1 

50.3* 

52.9 

47.8* 

49.5* 
47.8^ 

49.5* 

49.0^ 

40.4-' 

Representative trials 

^ Numbers denote the method that was used for choosing the 

representative trials (see page 23) 



59 

Subject 4, Day 1 

TREATMENT 

P - 10 P + 20 P + 10 

53-8 

58.8 

58.8 
52.1 

^7.8 

50.3 

43.6 

47.8 

46.9 

46.1 

45.2 

48.6- 

50.3 

46.9 

47.8 

37.3* 

36.6* 

38.1* 

38.1* 

39.7* 

^.5 

37.3 

36.6* 

38.3 

45.2 
42.8 

38.1* 

35.8* 

35.8* 

36.6* 

35.8* 

38.9* 

38.1* 

37.0 

45.2* 

49.5 
43.6* 

53-8 

46.9* 

52.1 
47-8 
43-6* 

41.3 
47.8 
42.1 

41.3 

42.1 

42.1 

52.1 
52.1 
48.6 

37.7* 

53.8* 

55-5* 

56.6* 
56.6* 

52.1 

56.0 

53.8 

54.6 

47.8 

52.9* 
57.7* 

57.7* 

53.8* 

37-7* 

33-3* 

53.8* 

55.5* 

52.9* 

53.8 

55.1 

45.1- 

Representative trials 

Numbers denote the method that was used for choosing the representative 
trials (see paige 23) 



6o 

Subject Day 2 

TREATMENT 

P + 10' P - 10 P + 20 

38.1* 

ko.3* 

41.3* 

46.9 

38.1* 

45-2 
36.6 

34.2 

35-0 

36.6 

35.8 

38.1* 

43.6 

42.1 

40.5* 

37.3* 

44.4 

39.7* 

38.1* 

38.1* 

37.3* 

39.7* 

38.9 3^ 

36.6 

35.0 

35.8 

36-6 

35.8 

39.7* 

35.0 

36.6 

39.7* 

39.7* 

39.7* 

35.8 

42.1* 

45.2 

42.8 

39.7* 

41.3* 

42.1* 

41.3* 

43.6 

42.1* 

45.2 

44.4 

47-8 

43.6 

42.8 

kO.7^ 

39.7* 

42.1* 

38.1 

38.9 

38.9 

41.3* 
49.5 

45.2 

39.7* 

46.1 

39.7* 

38.9 

42.8* 

37.3 

38.1 

39.7* 

^.5* 

42.8* 

45.2 

45.2 

42.1* 

42.8* 

51.2 

39.7* 

38.9* 

41.3* 

hO.9^ 

42.8 

38.1 

45.2* 

45.2* 

42.8* 

42.8* 

42.8* 

43.8 

45.2 

56.6 

62.1 

50.3* 

37-7 

32.9 

30.3* 

33.8 

46.1 

46.9* 

49.3* 
52.1 

54.6 

49.3* 

45.2 

49.3* 

37.7 

45.2 

52.1 

46.1 

47.8* 

40.5 
43.6 

44.4 

42.8 

44.4 

46.9* 

48.8- 

48.6 

54.6 

51.2* 

48.6* 

45.2 

30.3* 

30.3* 

39.9 
33.8* 

46.9 

46.9 
33-8* 

33.8* 

46.1 

32.9* 

47.8 

55.5 
33.3 

33.3 

33.5 
52.1* 

51.9^ 

Representative trials 

Numbers denote the method that was used for choosing the representative 
trials (see page 23) 



6l 

Subject 4, Day 3 

TREATMENT 

P + 10 P + 20 P - 10 

42.8* 

49-5 

38.1 

42.1* 

46.1 

43.6* 

38.9 
40.5* 

39.7* 

40.5* 

39.7* 

44.4 

42.1* 

42.8* 

41.3 

46.9 

42.1* 

43.6* 

38.1 
47.8 

38.9 
38.1 

38.9 

41.7- 

46.9 

53.5 
46.1 

58.6 

35.5 
56.6 

32.9* 

56.6 

32.9* 

62.1 
58.8 
52.1* 
47.8 

33.3 
47.8 
43.6 
47.8 

49.3* 

30.3* 
33.8* 

51.2* 

39.3 
56.6 

32.9* 
46.1 

46.9 

47.8 

53.8* 

52.2- 

38.1* 

41.3* 
38.1* 
44.4 

37.3* 

39-7* 

33.0 

36.6 
43.6 

30.3 
36.6 

39.7* 

44.4 

38.1* 
38.1* 

39.7* 

38.1* 
36.6 

38.8- 

44.4 

39.7* 

39-7* 

38.1* 

41.3* 

38.9* 
42.8* 

42.8* 

39.7* 

41.3* 

46.9 

41.3 

38.9 

49-3 
44.4 

45.2 

44.4 

42.8 

38.9 
39.7 
42.1 

40.5 

40.4 

33.8 

37.3* 

56.6 
47.8 

33.0 

37- 3* 

41.3 

42.1 

44.4 

39-7* 

39-7* 

33-3 

34.2 

38- 9* 
39- 7* 

33-0 

43.6 
43.6 

39-7* 

36.6* 
42.1 

38.9* 

38.6' 

39.7 
45.2 

38.8 
56.6 
45-2 

42.8* 

43-6* 

45-2 

38-9 
42.1* 

42.1* 

44.4 

38.1 
44.4 

36.6 

33-0 

33-3 

39.7* 

40.5* 

37-3 

39.7* 

39.7 

41.5' 

Representative trials 

Numbers denote the method 
trials (see page 23) 

that >ras used for choosing the representative 



62 

Subject Day 4 

TREATMENT 

50.3* 
54.6 

52.1* 

52.9* 
54.6 

46.9 

55.8* 

51.2* 

50.3* 

49.5* 

50.3* 

49.5 

51.3- 

P + 20 

49.5 

48.6 

54.6 

49.5 

48.6 

54.6 

48.6 

56.6 
51.2* 
52.1* 

49.5* 
50.3* 
52.9* 
52.9* 
54.6* 
54.6* 

50.3* 

52.0 

49.5 
A8.6 
45.2 

49.5 
46.9 

62.1 

57.7 
56.6 
56.6 

55.5 
58.8 
62.1 

49.5 
59.9* 
65.4* 

59.9* 
62.1* 

64.3* 

64.3* 

63.2* 
61.0* 
63.2* 

62.6 

P + 10 

61.0 

53.8 
61.0 
58.8* 
63.2 
61.0 

52.9 
56.6* 

54.6 

63.2 

52.9 
53.8 

57.7* 
53.8 

61.0 
58.8* 

55.5* 
58.8* 
56.6* 

57.5- 

54.6* 
54.6* 
56.6* 

57.7* 
59.9* 
58.8* 

59.9* 
57.7* 
57.7* 
57.7* 

55.5* 

57.6 

P - 10 

58.8 

64.3* 

63.2* 

64.3* 

65.4* 
62.1* 
65.4* 
65.4* 

64.3 

Representative trials 

^ Numbers denote the method that was used for choosing the representative 
trials (see page 23) 
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APPENDIX B 

Calibration of Experimental Instruments 

Known weights were suspended on the cable to ceLlibrate the 

dynamometer. The handle was secured to a special frame at the 

pulley’s height. Thus, pull on the dynamometer was exerted in a 

horizontal direction. The reliability within the working range was 

89 to 9^ (see table on the following page). Occasionsilly, the load 

cell was recalibrated during the testing. 

The consistency of the Dynograph was checked by comparing sever- 

al calibration recordings with the corresponding dynamometer units 

that were displayed on the Digital Strain Indicator. (See the following 

table). 

Calibration of the Beckman RS Dynograph 



APPENDIX B (cont.) 

Three Calibrations of the Load Cell Expressed in the Load Cell 

Units Ou inches/inch) and Dynograph Deflections 

Force 
(kg) 

Load Cell Units 
in Calibration 

Ayerage 
Load Cell 

Units 

Heliability 
of the . 

Load Cell 

Average 
Dynograph 
Deflection 

23-7^ 

26.3 
28.8 

31.^ 

33.7 
35.0* 

37.7 
A0.1 

42.7 
45.2* 

47.8 

30.4 

52.9 

58.0 

60.3 
62.8 
63.4* 

63 
70 

76 
84 

90 

90 

96 

103 
110 

117 

123 
130 

136 
l4l 
1A6 

152 

138 

164 

56 

63 
70 

67 

83 

87 

93 
99 

106 
112 

118 

124 

130 

134 

138 

143 
150 

155 

64 

71 

79 
86 

93 
97 

104 
110 

116 
122 

128 

134 

140 

143 
130 

157 

163 

167 

61 

68 

75 
81 

88 

91 

97 
104 
110 

117 

123 
129 

135 
1^ 

143 
130 

156 

162 

88 
89 

89 
90 

89 
90 

89 
90 

91 
92 

92 

93 
93 
92 

92 
92 

91 
92 

31* 
34 

37 

44 
46* 

49 
52 

55 
59* 
62 

65 
68 

71* 
74 

76 

78 

80* 

^AU but two weight increments were 2*36 kg 

^Weight increment of I.3 kg 

^Vei£^t increment of 2.36 kg 

^Reliability of the load cell was conqputed by the formulas 

the smallest number of load 
cell units at one wei^t 

~ “ X 100 ss % agreement the largest number of load ^ 
cell units at the same wei^t 

* Upper and lower limits of the four sections in the load cell*s 
working range (data from Appendix B) 
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Conversion Table 

At calibration loads below 35 icg, a weight increcuse of 2.56 kg 

resulted in an average increause of seven load cell Units. The 

corresponding average dynograph deflection increased by 3 inni. At 

calibration loads above 55 hg, the same weight increment caused a 

change of only five to six load cell units and dynograph deflections 

of merely 2 mm (see table in Appendix B). This load cell's uneven 

sensitivity produced a curvelineaur relationship between the forces 

(sxispended weights) and the corresponding dynograph deflections. To 

minimize the error caused by this relationship, it was necessary to 

divide the load cell's total working range into four sections. Within 

these sections the relationship between the two scales was considered 

to be linear (see the following figure). 

ao 30 AO 50 60 70 
kilograms 

0~ Upper and lower limits of the four sections in the load cell's 
working range 

The Curvelinear Belationship Between the Dynograph Deflections (mm) 
and the Corresponding Forces (kg). Straight Lines Represent the 
Conqputed Linear Relationship Between the Two Sc6Q.es Within the Four 
Sections 
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The average forces that correspond to the dynograph deflections within 

each section were computed by the formula: 

weight at section's _ weight at section's 
upper limit  lower limit  

dynograph deflection at dynograph deflection at 
section's upper limit section's lower limit 

average force 
per one milli- 
meter (kg/mm) 

A conversion table was then tabulated for converting the dynograph 

deflections into kilograms (see the following table). 

The Force Conversion Table to Convert Dynograph Deflections 
to Kilograms 

FORCE FORCE FORCE 

kg mm kg mm kg 

31 

32 

33 

34 

35 

36 

37 

38 

39 
40 

41 

42 

43 
44 

45 

46* 

47 

23.7* 
24.6 

25.2 

26.0 

26.7 

27-5 
28.2 

29.0 

29.7 

30.5 
31.2 

32.0 

32.7 

33.5 
34.2 

35.0* 

35.8 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 
64 

36.6 

37.3 

38.1 

38.9 
39.7 

40.5 

41.3 
42.1 

42.8 

43.6 
44.4 

45.2^ 

46.1 

46.9 
47.8 
48.6 

49.5 

65 
66 

67 
68 

69 
70 

i 

71 
72 

73 
74 

75 

76 

77 

78 

79 
80^ 

81 
82 

50.3 
51.2 

52.1 

52.9 
53.8 

54.6 

55.5' 

56.6 

57.7 
58.8 

59.9 
61.0 
62.1 

63.2 

64.3 

65.4* 

66*5 
67.6 

and lower limits of the four sections in the load cell's 

working range (data from Appendix B) 
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APPENDIX D 

Testing Order 

Four perntutations (one for each testing session) of the numbers 

1, 2, and 3 were randomly selected to determine the testing order for 

the three experimental conditions. For the first session, the sub> 

jects were randomly asigned to one of the testing orders- For the 

following sessions, they were rotated according to the one->step 

cyclic permutations. That is, the subject tested at the first testing 

order moved to the extreme bottom (foxirth testing order), simultane- 

ously moving all other subjects one position higher. Thus,each sub- 

ject was tested with all four testing orders- See the following 

table. 

Assignment of the Subjects to the Four Testing Orders 
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APPENDIX E 

Cell Entries Used in the Analysis of Variance 

Subject 1 Day 1 

2 

3 

4 

TREATMENT 

47.0 

51 .o" 

42.1^ 

^.9 

1* 

P - 10 

42.7 

I 
51.0 

45.7' 

37.0‘ 

47.2^ 
55.2^ 

60.6^ 
45.6^ 

P + 10' 

44.8^ 
50.7' 

44.4^ 

45.1^ 

Numbers denote the order of presentation of the experimental conditions 
P>|, ~ knee angle 

P - 10^ = preferred knee angle decreased by 10^ 
P -I. 10^ = preferred knee angle increased by 10^ 


