SOME STUDIES OF DIELECTRIC RELAXATION

A THESIS SUBMITTED BY:

AKIO MORITA

In partial fulfillment of the requirements of the degree of MASTER OF SCIENCE

TO:

LAKEHEAD UNIVERSITY
THUNDER BAY "P"
ONTARIO

- ON:

MARCH, 2973.
$\mathbb{T} \mathbb{T}$

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611583
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

THESES
MASC.
1.973

- M86
C. 1

Copyright (C) 1973 Akio Morita

Canadian Theses on Microfilm No. 17088

SUMMARY:

A general correlation function is firstly reviewed in line with Kubo's formulation (Chap. 1, (a)), and dielectric relaxation processes together with some fundamental properties are considered with the help of the function (Chap. 1, (b)). The introduction of Hoffmann's site model enables us to calculate a dielectric correlation function. This technique is applied to the dielectric relaxation of some molecules, (Chap. 1 (c)).

Discussion with respect to the calculation of the molecular dipole moment for a molecule which contains two equivalent rotational groups is made (Chap. 2, (a)). The results are applied to two convenient models, i.e., a free rotation model and a model called "free oscillation" which is proposed in this thesis. The latter model is employed for the cases of o-haloanisole and o-halothioanisole, (Chap. 2, (b) and (c)).

Experimental dielectric constant and loss data were analyzed by the Cole-Cole equation as well as Budó's equation (Chap. 3).

Rotation of the methoxy group in dimethoxy compounds was examined by relaxation time and dipole moment. The mean relaxation time for o-dimethoxybenzene is found to be short. (Chap. 4).

The variation of the relaxation time of the methoxy group of anisole is considered theoretically (Chap. 4, (c)).

Mesomeric and double internal rotation mechanisms concerning the anomalously short relaxation time of diphenyl ether are discussed. Correlation function treatments are made based on
the former mechanism.(Chap. 5).
Rotation around S-S bonds is concluded to be restrictive. (Chap. 6). Relaxation time and dipole moment values of difuryl mercury are explained in terms of the non-linearity of $\mathrm{C}-\mathrm{Hg}-\mathrm{C}$ bond. (Chap. 7).

ACKNOWLEDGMENTS

I wish to express my sincere thanks to my research supervisor, Dr. S. Walker, for his encouragement and many helpful discussions throughout this work.

I also wish to thank Mr. B. K. Morgan, for his invaluable technical assistance.

Mr. Borden Krupay, for providing 2-2' and 3-3'-difury1 mercuries.

Mr. Sing Pin Tay, and Mr. C. K. McLellan, for their useful discussions.

Dr. R. A. Ross, for his financial support in typing this thesis; and Madeline Morris, for typing this thesis.

Finally, I would like to thank the National Research Council and Lakehead University for providing financial supports.

TABLE OF CONTENTS
CHAPTER 1 Correlation Function and Delectric Relaxation 1
(a) CORRELATION FUNCTION 1
(b) DIELECTRIC CORRELATION FUNCTION 6
(c) APPLICATION OF DIELECTRIC CORRELATION FUNCTION 13
(i) Hindered Internal Rotation Characterized by Two Equipotential Wells 13
(ii) Hindered Internal Rotation of 1,4-Disubsti- tuted Benzene 20
(iii) Hindered Internal Rotation of Two Equivalent Rotational Groups 25
CHAPTER 2 Evaluation of Molecular Dipole Moment for a Molecule Which Contains Two Equivalent Rotational Groups 33
(a) GENERAL ASPECTS 33
(b) DIPOLE MOMENT FOR FREE ROTATION 39
(c) DIPOLE MOMENT FOR "FREE OSCILLATION" 45
CHAPTER 3 Experimental 54
(a) APPARATUS 54
(b) PURIFICATION OF MATERIAL 54
(c) DIELECTRIC PARAMETERS 54
CHAPTER 4 Methoxy Group Relaxation in Dimethoxy Group 60
(a) INTRODUCTION 60
(b) RESULTS AND DISCUSSION 65
(c) VARIATION OF RELAXATION TIME OF METHOXY GROUP 93
CHAPTER 5 Dielectric Relation of Other Ether Compounds 102
(a) ANOMALOUSLY SHORT RELAXATION TIME OF DIPHENYL ETHER 102
(i) Mesomeric Moment Mechanism 105
(ii) Double Internal Rotation Mechanism 108
(b) CORRELATION FUNCTION TREATMENT OF DIELECTRIC RELAXA- TION OF DIPHENYL ETHER 112
(c) DISCUSSION AND RESULTS 115
CHAPTER 6 Dielectric Relaxation of Some Sulfur Compound 125
(a) Di-B-NAPHTHYL AND DIMETHYL DISULFIDES. 125
(b) THIOPHENOL AND 4-CHLORO-M-BENZENEDITHIOL. 130
CHAPTER 7 Dielectric Relaxation of Difuryl Mercuries 134

CHAPTER 1 Correlation Function and Dielectric Relaxation

(a) CORRELATION FUNCTION

Dielectric relaxation can be treated as a problem of timedependent statistical mechanics. A traditional approach to treat this problem is the Boltzmann's transport equation or Kinetic equation ${ }^{1}$, i.e.:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v \nabla_{r}+\frac{F}{m} \nabla_{v}=\left(\frac{\partial f}{\partial t}\right)_{\operatorname{coll}} \tag{1-1}
\end{equation*}
$$

where f is the distribution function, v the velocity vector, ∇_{r} the position gradient, ∇_{v} the velocity gradient, F an external force, m the mass, and $\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}$ is the so-called "collision term". The other is a rather elegant correlation function treatment, which was initiated by R. Kubo ${ }^{2}$. In this section we shall review the theory briefly on the basis of purely statistical standpoint.

Let us consider an isolated system, the Hamiltonian of which is represented by H. If an external field $F(t)$ is applied to the system, the perturbation energy H^{\prime} is

$$
\begin{equation*}
H^{\prime}(t)=-A F(t) \tag{1-2}
\end{equation*}
$$

where A is a generalized dipole moment operator. Introducing the Poison bracket, we can express the Liouville equation for "the natural motion" as

$$
\begin{align*}
\frac{\partial f(p, q)}{\partial t} & =\left(\frac{\partial f}{\partial q} \frac{\partial H}{\partial p}-\frac{\partial f}{\partial p} \frac{\partial H}{\partial q}\right) \tag{1-3}\\
& =(H, f)
\end{align*}
$$

where f is the distribution function in the phase space, and (H, f) is the Poison bracket which is in general

$$
\begin{equation*}
(X, Y)=\sum\left(\frac{\partial x}{\partial q} \frac{\partial y}{\partial p}-\frac{\partial x}{\partial p} \frac{\partial y}{\partial q}\right) \tag{1-4}
\end{equation*}
$$

We assume that the distribution function is given by f° at $t=-\infty$, that is, at the infinite past and it is in equilibrium, i.e., $\left(\pi, f^{\circ}\right)=0$. Since we have confined ourselves to the $1 i-$ near perturbation, the distribution function at time t may be expressed as

$$
f=f^{o}+\Delta f
$$

therefore

$$
\begin{equation*}
\frac{\partial \Delta f}{\partial t}=(H, \Delta f)-F(t)\left(A, f^{\circ}\right) \tag{1-5}
\end{equation*}
$$

Now we must solve the differential equation above to get $\Delta f(t)$. Let us define a linear self-adjoint operator L as

$$
i L g=(H, g)=\frac{\partial g}{\partial t}
$$

Here it should be remembered that $\exp (i t L)$ represents the unperturbed or natural motion of the system, and it induces the natural motion of a phase point P to P_{t} over the time t, i.e.,

$$
e^{-i t L p}=P_{t}
$$

correspondingly the natural motion of any dynamical quantity $(p, q)=Q(p)$ is given by

$$
Q(t) \equiv Q\left(P_{t}\right)=e^{-i t L_{Q}}\left(P_{t}-\tau\right)
$$

which is the solution of the equation of motion

$$
\begin{equation*}
\frac{d Q}{d t}=(Q, H) \tag{1-6}
\end{equation*}
$$

Using the conditions $F(-\infty)=0$ and $\Delta f(-\infty)=0$, we have the solution of Eq. (1-5):

$$
\begin{equation*}
f(t)=-\int_{-\infty}^{t} e^{i}\left(t-t^{\prime}\right) L\left(A, f^{\circ}\right) d t^{\prime} F\left(t^{\prime}\right) \tag{1-7}
\end{equation*}
$$

where t^{\prime} is a time parameter; $-\infty \leq t^{\prime} \leq t$.
Once we know $\Delta f(t)$, we can obtain ensemble average of an arbitrary quantity $B(t)$ from

$$
\begin{align*}
<A B(t)> & =\int B(t) \Delta f(t) d \Gamma \\
& =-\int_{-\infty}^{t} d t^{\prime} d \Gamma B e^{i\left(t-t^{\prime}\right) L}\left(A, f^{\circ}\right) F\left(t^{\prime}\right) \\
& =\int_{-\infty}^{t} d t^{\prime} F\left(t^{\prime}\right)\left(A, f^{\circ}\right) B\left(t-t^{\prime}\right) d \Gamma \tag{7-8}
\end{align*}
$$

It should be noted that $B(p, q)$ satisfies Eq (1-6). Now we define a new function called "response function" $\phi_{B A}(t)$ as

$$
\begin{align*}
\phi_{B A}(t) & =\int\left(f^{\circ}, A\right) B(t) d \Gamma \\
& =\int f^{\circ}(A, B(t)) d \Gamma \\
& =\langle(A(0), B(t))\rangle \tag{1-9}
\end{align*}
$$

therefore

$$
\begin{equation*}
\left\langle\Delta B(t)>=\int_{-\infty}^{t} \phi_{B A}\left(t-t^{\prime}\right) P F\left(t^{\prime}\right) d t^{\prime}\right. \tag{1-10}
\end{equation*}
$$

when f° is canonical, i.e.,

$$
f^{\circ}=\mathrm{Ce}-\beta H, \quad \beta=\frac{1}{k T}
$$

then

$$
\left(f^{\circ}, A\right)=\beta \dot{A} f^{\circ}
$$

so that

$$
\begin{equation*}
\phi_{B A}(t)=\dot{\beta} \dot{A}(0) B(t)>=-\beta<A(0) \dot{B}(t)> \tag{1-11}
\end{equation*}
$$

Now let us define the general correlation function $\phi_{B A}$ as

$$
\begin{equation*}
\Phi_{B A}=\frac{\langle A(0) B(t)\rangle}{\langle A(0) B(0)\rangle} \tag{1-12}
\end{equation*}
$$

therefore $\dot{\Phi}_{B A}\langle A(0) B(0)\rangle=\frac{\oint_{B A}}{\beta}$

Eq. (1-9) can be interpreted as follows $-\left(A, f^{\circ}\right)$ is the change of the distribution function produced by a pulse. The effect of this on the average value of B at a later time is given by the first equation of (1-9). Instead of talking about the change of distribution function, we may also think of the effect of the pulse on the motion of B. In the second equation of (1-9), ($A, B(t)$) represents such an effect.
(b) DIELECTRIC CORRELATION FUNCTION

General correlation function in the previous section is directly related to the dielectric correlation function formally by replacing B and A by $<M(t)$. $\underset{\sim}{e}>$ (the average number of the macroscopic dipole moments $\underset{\sim}{M}$ along a direction of an applied electric field $\underset{\sim}{F}(t)$, whose unit vector is denoted by $\underset{\sim}{f})$ and the microscopic dipole moment μ, respectively. At first, let us define the dielectric correlation function Φ as

$$
\begin{equation*}
\Phi(t)=\frac{\left\langle\underset{\sim}{\mu}(0) \cdot{\underset{\sim}{n}}_{M}^{M}(t)\right\rangle}{\left\langle\sim_{\sim}(0) \cdot \sim_{\sim}^{M}(0)\right\rangle} \tag{1-13}
\end{equation*}
$$

This corresponds to the definition of Eq. (1-12). From Eqs. (1-10), (1-11), (1-12), and (1-13), adding the contribution from the polarizability term to the total polarization $\underset{\sim}{\operatorname{M}}(\mathrm{t}) \cdot \underset{\sim}{e}>$, we have
$\left\langle\underset{\sim}{M}(t) \cdot \underset{\sim}{e}=N \alpha F(t)-\frac{N<\dot{M}(0) \cdot \sim_{\sim}^{M}(0)>}{3 k T} \int_{-\infty}^{t} \Phi\left(t-t^{\prime}\right) F\left(t^{\prime}\right) d t^{\prime}\right.$
where the factor $1 / 3$ in the second term on the right hand have been introduced taking into account the above problem threedimentionally.

The second term in Eq. (1-14) may be regarded as the effect of reorientation of dipoles on the total polarization.

From the definition of polarization, $<\underset{\sim}{M} \cdot \underset{\sim}{ } \gg$ has a relation;

$$
\begin{equation*}
\frac{\varepsilon^{*}-1}{4 \pi} \quad V=\frac{\langle\underset{\sim}{M \cdot e}\rangle}{\text { Fo } \exp (i \omega t)} \tag{1-15}
\end{equation*}
$$

where ε^{*} is the complex dielectric constant, V the volume of the system, ω the frequency of the applied field, Fo the amplitude of the field $F(t)$, and $i=\sqrt{-T}$. Neglecting the internal field factor, we have;

$$
\begin{align*}
\frac{\varepsilon^{*}-1}{4 \pi} V & =N \alpha-\frac{N<\underset{\sim}{u}(0) \cdot \underset{\sim}{M}(0)>}{3 k T} \int_{-\infty}^{t} \dot{\Phi}\left(t-t^{-}\right) d t^{-} \cdot e^{-i \omega t^{-}} \\
& =N \alpha+\frac{N<\underset{\sim}{u}(0) \cdot \underset{\sim}{M}(0)>}{3 k T} L(-\dot{\Phi}(t)) \tag{1-16}
\end{align*}
$$

where L represents the Laplace transform, whose definition is

$$
\int_{0}^{\infty} f(t) e^{-i \omega t} d t=L(f(t))
$$

Now it is assumed that the first term on the right hand in Eq(1-16) remains unaffected even if the frequency ω goes to infinity, therefore

$$
\begin{equation*}
\frac{\varepsilon_{\infty}-7}{4 \pi} \quad V=N \alpha \tag{1-17}
\end{equation*}
$$

On the other hand, when ω goes to zero, it is assumed that

$$
\begin{equation*}
\frac{\varepsilon_{0}-1}{4 \pi} V=N \alpha+\frac{N<\underset{\sim}{u}(0) \cdot \sim_{\sim}^{M}(0)>}{3 K T} \tag{1-18}
\end{equation*}
$$

Hence from Eqs. $(1-16),(1-17)$ and (1-18), it follows that

$$
\begin{equation*}
\frac{\varepsilon^{*}-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=L(-\dot{\Phi}(t))=-\int_{0}^{\infty} \dot{\Phi}(t) e^{-i \omega t} d t \tag{1-19}
\end{equation*}
$$

It should be noted Eq. (1-19) is the same as Cole's result ${ }^{4}$. Cole took account of Hamiltonian explicitly by approximating the assembly of dipoles as that of harmonic oscillators. However, the present derivation does not depend on such an approximation. The assumptions employed here are (i) neglect of internal field, (ii) all molecules have isotropic polarizability (otherwise we must consider tensor expression for polarizability), and (iii) a microscopic dipolar molecule is surrounded by macroscopic dipolar molecules, which eventually act as "background" for the microscopic molecule.

We shall examine some important consequences from Eq. (1-19). Mathematically Eq. (1-19) can be rewritten as

$$
\begin{align*}
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}} & =-\int_{0}^{\infty} \dot{\Phi}(t) e^{-i \omega t} d t \\
& =-\left(\left.\Phi(t) e^{-i \omega t}\right|_{0} ^{\infty}+i \omega \int_{0}^{\infty} \Phi(t) e^{-i \omega t} d t\right) \\
& =1-i \omega \int_{0}^{\infty} \Phi(t) e^{-i \omega t} d t \\
& =1-i \omega L(\Phi(t)) \tag{1-20}
\end{align*}
$$

since $\Phi(0) \equiv 1$
therefore

$$
\begin{equation*}
\frac{1}{i \omega}\left(1-\frac{\varepsilon^{\star}(\omega)-\varepsilon_{0}}{\varepsilon_{0}-\varepsilon_{\infty}}\right)=L(\Phi(t)) \tag{1-21}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi(t)=L^{-1}\left\{\frac{1}{i \omega}\left(1-\frac{\varepsilon^{*}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}\right)\right\} \tag{1-22}
\end{equation*}
$$

where L^{-1} stands for the inverse Laplace transform.
The representations of Eqs. (1-21), and (1-22) would be more straight forward than that of Eq. (1-19) because the former equations do not contain ${ }_{\wedge}^{\text {a }}$ time derivative of the correlation function, i.e., $\dot{\Phi}(\mathrm{t})$, whereas the latter equation does.

Let us consider a simple example to obtain ${ }_{\wedge}^{\text {a }}$ correlation function from the Debye equation using Eq. (1-22). According to Debye, an expression for dielectric dispersion was given by

$$
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{1}{1+i \omega \tau}
$$

where τ is the dielectric relaxation time.
Thus

$$
\frac{1}{i \omega}\left(1-\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}\right)=\frac{\tau}{1+i \omega \tau}
$$

From Eq. (1-22)

$$
\begin{aligned}
\Phi(t) & =L^{-1}\left\{\frac{1}{i \omega-\left(-\frac{1}{\tau}\right)}\right\} \\
& =e^{-} \frac{t}{\tau}
\end{aligned}
$$

This is a well-known correlation function for the Debye equation. It will be seen that Eq. (1-22) can be used to obtain ${ }_{x}$ correlation function from an empirical equation or an equation derived without reference to the correlation function treatment to examine its physical meaning.

Separating both sides of Eq. (1-20) into the real and imaginary parts, we have other representations below;

$$
\begin{align*}
& \frac{\varepsilon^{\prime}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=1-\omega \int_{0}^{\infty} \Phi(t) \sin \omega t d t \tag{1-23}\\
& \frac{\varepsilon^{\prime \prime}(\omega)}{\varepsilon_{0} \varepsilon_{\infty}}=\omega \int_{0}^{\infty} \Phi(t) \cos \omega t d t
\end{align*}
$$

where $\varepsilon^{\prime}(\omega)$ and $\varepsilon "(\omega)$ are dielectric constant and loss, respectively.

Let us now turn back to Eq. (1-19) and define

$$
\phi(t) \equiv-\dot{\Phi}(t)
$$

It will be seen that $\phi(t)$ corresponds to the ${ }^{\text {th }}$ decay function" defined by Fröhlich ${ }^{5}$.
From Eq. (1-19),

$$
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=L(\phi(t))=\int_{0}^{\infty} \phi(t) e^{-i \omega t} d t
$$

Separation into the real and imaginary parts leads to

$$
\begin{align*}
& \frac{\varepsilon^{\prime}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\int_{0}^{\infty} \phi(t) \cos \omega t d t \tag{1-24}\\
& \frac{\varepsilon^{\prime \prime}(\omega)}{\varepsilon_{0}-\varepsilon_{\infty}}=\int_{0}^{\infty} \phi(t) \sin \omega t d t \tag{1-25}
\end{align*}
$$

It should be pointed out that Eqs. (1-24) and (1-25) can be regarded as Fourier transforms for the odd and even functions of ω respectively. Therefore, $\varepsilon^{\prime}(\omega)$ and $\varepsilon^{\prime \prime}(\omega)$ require eveness and oddness, respectively, with respect to ω, which is a quite general requirement for the generalized susceptibility ${ }^{6}$. In addition, Eqs. (1-24), and (1-25) are identical with those derived by Frön ich ${ }^{5}$.

From Eqs. (1-24) and (1-25),

$$
\begin{align*}
\phi(t) & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\varepsilon^{\prime}(n)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}} \cos n t d n \tag{1-26}\\
& =\frac{2}{\pi} \int_{0}^{\infty} \frac{\varepsilon^{\prime \prime}(n)}{\varepsilon_{0}-\varepsilon_{\infty}} \sin n t d n \tag{1-27}
\end{align*}
$$

where n is an integral parameter.

Substitutions of Eqs. (1-26) and (1-27), respectively, in Eqs. (1-24) and (1-25) give the widely known Kramers-Kronig equations;

$$
\begin{align*}
\varepsilon^{\prime}(\omega)-\varepsilon_{\infty} & =\frac{2}{\pi} \int_{0}^{\infty} \varepsilon^{\prime \prime}(\eta) \frac{\eta}{\eta^{2}-\omega^{2}} d \eta \tag{1-28}\\
\varepsilon^{\prime \prime}(\omega) & =\frac{2}{\pi} \int_{0}^{\infty}\left\{\varepsilon^{\prime}(\eta)-\varepsilon_{\infty}\right\} \frac{\omega}{\omega^{2}-\eta^{2}} d \eta \tag{1-29}
\end{align*}
$$

Therefore it is seen that in order to satisfy Eqs. (1-28), and (1-29), $\varepsilon^{\prime}(\omega)$ and $\varepsilon^{\prime \prime}(\omega)$ should be even and odd functions of ω, respectively, because the Kramers-Kronig equations require the conditions.

Setting $\omega=0$ in Eq. (1-28), we have

$$
\begin{align*}
\varepsilon_{0}-\varepsilon_{\infty} & =\frac{2}{\pi} \int_{0}^{\infty} \varepsilon^{\prime \prime}(\eta) \frac{d \eta}{\eta} \\
& =\frac{2}{\pi} \int_{0}^{\infty} \varepsilon^{\prime \prime}(\eta) d(\log \eta) \tag{1-30}
\end{align*}
$$

From this expression, $\left(\varepsilon_{0}-\varepsilon_{\infty}\right)$ can be calculated by measuring only ε ' (ω) with the whole frequency range.

From the above discussion, it is seen that $\varepsilon^{\prime}(\omega)$ and $\varepsilon^{\prime \prime}(\omega)$ are not independent from each other.

(c) APPLICATION OF DIELECTRIC CORRELATION FUNCTION

(i) Hindered Internal Rotation Characterized by Two Equipotential Wells.

The molecular model employed here consists of the
a a moment of ${ }_{\boldsymbol{A}}$ rotational group $\underset{\sim}{\mu g}$ and that of ${ }_{\wedge}{ }^{\text {molecule }} \mu_{\sim}^{\mu m}$ as shown in Figures 1 and 2. With the help of Hoffman's site model ${ }^{7}$
the rate equations for populations P_{A} and P_{A} of the two sites can be expressed in terms of the transition probability k :

$$
\begin{align*}
& \frac{d P_{A}}{d t}=-k P_{A}+k P_{A^{\prime}} \tag{1-30}\\
& \frac{d P_{A^{\prime}}}{d t}=k P_{A}-k P_{A^{\prime}}
\end{align*}
$$

These equations must satisfy the following secular determinant:

$$
\left|\begin{array}{cc}
D+k & -k \\
-k & D+k
\end{array}\right|=0
$$

where D is a differential operator, which is $d / d t$. The solutions of the secular equation are:
$D=0$ and $-2 k$.

Figure 1-2: Dinole moment coordinates for a single rotator.

Figure 1-3: Potential energy curve versus rotational angle for a single group rotator

Therefore the occupational probabilities for states 1 and 2 are given by

$$
\begin{equation*}
P_{A}=a_{11}+a_{12} \exp (-2 k t) \tag{1-31}
\end{equation*}
$$

$$
P_{A^{\prime}}=a_{21}+a_{22} \exp (-2 k t)
$$

where $a_{i j}$ is ${ }^{a}$ constant obtained by the initial condition and $a_{i j}$ represents the equilibrium occupational probability for site \mathbf{i}. Since, thetal probability must be $1, P_{A}+P_{A}$ is always 1, which gives us

$$
a_{11}+a_{21}=1
$$

at $t=\infty$. And substitution of Eq. (1-31) in one of Eqs. (1-30) gives

$$
\begin{aligned}
& a_{11}=a_{21}=1 / 2 \\
& a_{12}=a_{22} \equiv m
\end{aligned}
$$

Moreover it is assumed that the rotational group lies on each site completely at $t=0$

Therefore,
For $P_{A}(0)=1$ and $P_{A^{\prime}}(0)=0, \quad m=1 / 2$
For $P_{A}^{\prime}(0)=11$ and $P_{A}(0)=0, m=-1 / 2$

As seen from Figure 1-2, introducing unit vectors along the x - and y - axes, i.e., $\underset{\sim}{x}$ and x, respectively, the dipole moment of molecule as a whole $\mu(t)$ at a given time t is

$$
\begin{align*}
\underset{\sim}{p}(t) & =s \underset{\sim}{y}\left(P_{A}+P_{A^{\prime}}\right)+u P_{A} \underset{\sim}{x}(t)-u P_{A} \cdot \underset{\sim}{x}(t) \\
& =s_{\sim}^{y}(t)+u\left(P_{A}-P_{A^{\prime}}\right){\underset{\sim}{x}}_{x}^{x}(t) \tag{1-33}
\end{align*}
$$

where $s=\mu m+\mu g \cdot \cos \theta$ and $u=\mu g \cdot \sin \theta$. This is because the dipole moment of the y axis component does not depend on the group rotation, whereas that of the f^{x} axis component changes its sign, i.e., + for state A or - for state A'. At the same time, the molecular re-orientation will be considered in terms of the motion of the coordinates. From Eq. (1-32), Eq. (1-33) becomes;

$$
\begin{equation*}
\underset{\sim}{u}(t)=\operatorname{syz}_{\sim}(t)+2 \operatorname{muexp}(-2 k t) \tag{1-34}
\end{equation*}
$$

Therefore from Eqs. (1-32), and (1-34), it follows that

$$
\begin{align*}
& \mathcal{U}_{A}(t)=\operatorname{sy}_{\sim}(t)+u \exp (-2 k) x_{\sim}^{x}(t) \\
& {\underset{\sim}{A}}^{\prime}(t)=\operatorname{syv}_{\sim}^{y}(t)-u \exp (-2 k t)_{\sim}^{x}(t) \tag{1-35}
\end{align*}
$$

Then the scalar product of $\dot{\sim}_{j}(0)$ and ${\underset{\sim}{i}}_{i}(t)$ ($i=A$ and A^{\prime}) is

$$
\begin{align*}
& {\underset{\sim}{u}}_{A}(0) \cdot{\underset{\sim}{u}}_{A}(t)=s^{2}\left(\underset{\sim}{y}(0) \cdot{\underset{\sim}{x}}^{y}(t)\right)+u^{2} \exp (-2 k t)(\underset{\sim}{x}(0) \cdot x(t)) \\
& +\operatorname{suexp}(-2 k t)(\underset{\sim}{y}(0) \cdot \underset{\sim}{x}(t))+s u(\underset{\sim}{x}(0) \cdot \underset{\sim}{y}(t)) \\
& {\underset{\sim}{u}}_{\mu^{\prime}}(0) \cdot{\underset{\sim}{A}}_{A^{\prime}}(t)=s^{2}\left(\underset{\sim}{y}(0) \cdot X^{y}(t)\right)+u^{2} \exp (-2 k t)(\underset{\sim}{x}(0) \cdot \underbrace{x}_{\sim}(t)) \\
& -\operatorname{suexp}(-2 k t)(\underset{\sim}{y}(0) \cdot \underset{\sim}{x}(t))-s u(\underset{\sim}{x}(0) \cdot \underset{\sim}{y}(t)) \tag{1-36}
\end{align*}
$$

So far we have, beencerned with a one body problem but we are now in a position to solve, the equation of motion for an ${ }_{\wedge}^{\text {assembly }}$ of molecules. We shall select the correlation function treatment as the appropriate mechanics to : answer the problem.

The correlation function Φ may be given by

$$
\Phi=\frac{\sum_{i}^{2} P i<\mu i(0) \cdot \mu^{i} i(t)>}{\sum_{i}^{2} P i<\mu i(o) \cdot \mu^{i} i(0)>}
$$

where ${ }^{\circ} P_{i}$ represents the equilibrium occupational probability at site i. Taking ensemble average for Eqs. (1-36), we have $\Phi(t)=$ $\frac{s^{2}<\underset{\sim}{y}(0) \cdot \underset{\sim}{y}(t) x+u^{2} \exp (-2 k t)<\sim_{\sim}^{x}(0) \cdot \underset{\sim}{x}(t)>}{s^{2}+u^{2}}$

Now let us assume $\langle\underset{\sim}{y}(0) \cdot \underset{\sim}{y}(t)\rangle=\langle\underset{\sim}{x}(0) \cdot \underset{\sim}{x}(t)\rangle=\exp \left(-\frac{t}{\tau m}\right)$
where $\tau \mathrm{m}$ can be regarded as the molecular relaxation time, because the coordinate system was taken so as to move with the molecule. In this respect, $\tau \mathrm{g}=1 / 2 \mathrm{k}$ would be connected with
the group relaxation time. Therefore the correlation function becomes;

$$
\begin{equation*}
\Phi(t)=\frac{s^{2}}{s^{2}+u^{2}} \exp \left(-\frac{t}{\tau m}\right)+\frac{u^{2}}{s^{2}+u^{2}} \exp -\left(\frac{1}{\tau m}+\frac{1}{\tau g}\right) t \tag{1-38}
\end{equation*}
$$

This should give us an equation for dielectric dispersion below; (see Eq. (1-19))

$$
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{C_{1}}{1 t i \omega \tau_{1}}+\frac{C_{2}}{1 t i \omega \tau_{2}}
$$

where

$$
C_{1}=\frac{s^{2}}{s^{2}+u^{2}}, C_{2}=\frac{u^{2}}{s^{2}+u^{2}}, \tau_{1}=\tau m
$$

and $\frac{1}{\tau_{2}}=\frac{1}{\tau m}+\frac{1}{\tau g}$ or $\tau_{2}=\frac{\tau g}{1+\left(\frac{\tau g}{\tau m}\right)}$
Hence the observed relaxation time of group rotation for the present model should be less than $\mathrm{\tau g}$. This model was also applied to inversion of aniline molecule by Williams ${ }^{8}$. If there is no y-component dipole, $s=0$, Eq. (1-39) yields a single relaxation process, the observed relaxation time τ * of which is

$$
\tau^{\star}=\frac{\tau g}{1+\left(\frac{\tau g}{\tau m}\right)}
$$

This is the case of inversion model of the type $N R_{3}$.
(ii) Hindered Internal Rotation of 1,4 -Disubstituted Benzene This problem was firstly worked out by Williams ${ }^{9}$. We shall consider the same problem with somewhat different approach. Our starting model is shown in Figures 1-3 \& 1-4. The occupational probabilities for each state i are:

$$
\begin{align*}
& d P_{1} / d t=-2 k P_{1}(t)+k^{\prime}\left(P_{2}(t)+P_{4}(t)\right) \\
& d P_{2} / d t=-2 k^{\prime} P_{2}(t)+k\left(P_{1}(t)+P_{3}(t)\right) \tag{1-40}\\
& d P_{3} / d t=-2 k P_{3}(t)+k^{\prime}\left(P_{2}(t)+P_{4}(t)\right) \\
& d P_{4} / d t=-2 k^{\prime} P_{4}(t)+k\left(P_{1}(t)+P_{3}(t)\right)
\end{align*}
$$

The secular determinant

$$
\left|\begin{array}{lllc}
D+2 k & -k^{\prime} & 0 & -k^{\prime} \\
-k & D+2 k^{\prime} & -k & 0 \\
0 & -k^{\prime} & D+2 k & -k^{\prime} \\
-k & 0 & -k^{\prime} & D+2 k^{\prime}
\end{array}\right|=0
$$

yields $D=0,-2\left(k+k^{\prime}\right),-2 k$, and $-2 k^{\prime}$. We can, therefore, write

$$
\begin{align*}
& P_{1}(t)=a_{11}+a_{12} \psi_{2}(t)+a_{13} \psi_{3}(t) \\
& P_{2}(t)=a_{21}-a_{12} \psi_{2}(t)+a_{24} \psi_{4}(t) \tag{1-41}\\
& P_{3}(t)=a_{31}+a_{12} \psi_{2}(t)-a_{13} \psi_{3}(t) \\
& P_{4}(t)=a_{41}-a_{12} \psi_{2}(t)-a_{24} \psi_{4}(t)
\end{align*}
$$

State 1

Figure 1-4 (a): Schmatic representation of molecular configurations of 1,4-disubstituted benzene and its coordinates with reference to dinole moments. In all states, benzene rings are assumed to be perpendicular to this naper.
19:3N3
where $a_{11}=a_{31}=x / 2(1+x), a_{21}=a_{41}=1 / 2(1+x), x=k^{1} / k=$ $\exp (-$ potential energy difference)/(Boltzmann constant) \times (absolute temperature $), \psi_{2}(t)=\exp \left(-2\left(k+k^{\prime}\right) t\right), \psi_{3}(t)=\exp (-2 k t)$, and $\psi_{4}(t)=\exp \left(-2 k^{\prime} t\right)$ and $a_{i 1}(i=1,2,3$, and 4$)$ represents the equilibrium occupational probability for site i. From Figure 3, it is seen that states 2 and 4 do not contribute to the molecular dipole moment. Suppose the x component of the dipole moment of group rotation is denoted by $\mu x(t)$ the total dipole moment of all states of the molecule is given by:

$$
\begin{align*}
\mu(t) & =2 \mu \sim P_{1}(t)-2 \mu_{2} x P_{3}(t) \\
& =2 \mu_{2} x\left(P_{1}(t)-P_{3}(t)\right) \tag{1-42}
\end{align*}
$$

From Eq. (1-41)

$$
\mu(t)=4 a_{13}{ }_{\sim}^{\mu} x(t) \psi_{3}(t)
$$

Therefore

$$
\begin{equation*}
\underset{\sim}{\mu}(0) \cdot \mu \sim \sim(t)=8 a_{13}^{2}(\underset{\sim}{\mu x}(0) \cdot \underset{\sim}{\mu}(t)) \psi_{3}(t) \tag{1-43}
\end{equation*}
$$

For $t=0$

$$
\begin{equation*}
\mu(0) \cdot \mu(0)=8 a_{13}^{2}(\underset{\sim}{\mu} x(0) \cdot \underset{\sim}{x}(0)) \tag{1-44}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Phi=\frac{8 a_{13}^{2} \mu^{2} x<\cos g>\psi_{3}(t)}{8 a_{13}{ }^{2}{ }^{2} x}=<\cos g>\psi_{3}(t) \tag{1-45}
\end{equation*}
$$

where g is an angle between $\mu x(0)$ and $\mu x(t)$. Assuming the molecular correlation function is $\exp \left(-\frac{t}{\tau m}\right)$ and setting the group relaxation time $\tau \mathrm{m}=1 / 2 k$, we have

$$
\begin{equation*}
\Phi(t)=\exp \left[-\left(\frac{1}{\tau m}+\frac{1}{\tau g}\right) t\right] \tag{1-46}
\end{equation*}
$$

this gives us (see Eq. (1-19))

$$
\frac{\varepsilon^{*}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{1}{1+i \omega \tau^{\star}}
$$

where

$$
\begin{equation*}
\tau^{*}=\frac{\tau g}{\tau+\left(\frac{\tau g}{\tau m}\right)} \tag{1-47}
\end{equation*}
$$

Thus we have seen that 1,4 -disubstituted benzene should give us a single relaxation time, if the assumptions employed here are satisfactory. This model can be easily extended to $\mathrm{NR}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NR}_{2}$ since $N R_{2}$ inversion or internal rotation could be characterized by four equipotential wells ${ }^{8}$. In this case, k must be equal to k^{\prime}. In addition, the present model can be applicable to $1,2-$ disubstituted ethane.

(iii) Two Equivalent Rotational Groups

We shall extend treatment in (ii) to general internal rotation of two equivalent groups. The starting model is shown in Figures 1-5 \& 1-6. It is assumed here that the potential curve is essentially similar to that used in (ii). Therefore Eqs. (1-41) are to be used again. As before, we employ unit vectors to consider re-orientations of molecular and group dipoles. Therefore we need a scalar quantity a for the unit vector $\underset{\sim}{x}(t)$ and a scalar b for the unit vecor $\underset{\sim}{y}(t)$ to describe motions of dipoles involved in a molecule. It is beyond doubt that we can always specify a and b completely, the if $f_{\text {molecular }}$ structure and suitable group dipole moments of the molecule are known. As an example, consider m-dimethoxythe the benzene. Denoting angles between $\wedge^{y-a x i s}$ and the directions of μ_{CO} and $\mu_{\mathrm{OCH}_{3}}$ as α and β, respectively, we have

$$
\begin{array}{rlr}
a & =2 \mu_{0 \mathrm{CH}_{3} \sin \beta} & \text { for states } 1 \text { and } 2 \\
& =0 & \text { for states } 2 \text { and } 4 \\
b & =2\left(\mu_{\mathrm{CO}^{+}{ }^{+} \mathrm{OCH}_{3}} \cos \beta\right) \cos \alpha & \text { for all states }
\end{array}
$$

The secular determinant

$$
\left|\begin{array}{cccc}
D+2 k & -k^{\prime} & 0 & -k^{\prime} \\
-k & D+2 k^{\prime} & -k & 0 \\
0 & -k^{\prime} & D+2 k & -k^{\prime} \\
-k & 0 & -k^{\prime} & D+2 k^{\prime}
\end{array}\right|=0
$$

Figure 1-5: Coordinates for m-dimethoxybenzene as an examnle of two equivalent rotators.

State 1

State 2

Figure 1-6: Configurations of two enuivalent rotators corresponding to Figure 1-5.
where $a_{11}=a_{31}=x / 2(1+x), a_{21}=a_{41}=1 / 2(1+x), x=k^{\prime} / k$ $=\exp (-$ potential energy difference $) /(($ Boltzmann constant $) X$ (absolute temperature)), $\psi_{2}(t)=\exp \left(-2\left(k+k^{\prime}\right) t\right), \psi_{3}(t)=\exp$ $(-2 k t)$, and $\psi_{4}(t)=\exp \left(-2 k^{\prime} t\right)$ and $a_{i 1}(i=1,2,3$, and 4) represents the equilibrium occupational probability for site i. From Figure 1-3,it is seen that states 2 and 4 do not contribute to the molecular dipole moment. Suppose the \times component of the dipole moment of group rotation is denoted by $\underset{\sim}{\mu} x(t)$ the total dipole moment of all states of the molecule is given by:

$$
\begin{align*}
\underset{\sim}{\mu}(t) & =2 \underset{\sim}{\mu} x P_{1}(t)-2 \underset{\sim}{\mu} x P_{3}(t) \tag{1-42}\\
& =2 \underset{\sim}{\mu} x\left(P_{1}(t)-P_{3}(t)\right)
\end{align*}
$$

From Eq. (1-41),
$\underset{\sim}{\mu}(t)=4 a_{1}{\underset{\sim}{2}}_{\mu x}^{\mu}(t) \psi_{3}(t)$
Therefore
$\underset{\sim}{\mu}(0) \cdot \underset{\sim}{\mu}(t)=8 a_{13}^{2}(\underset{\sim}{\mu} x(0) \cdot \underset{\sim}{\mu}(t)) \psi_{3}(t)$
For $t=0$
$\underset{\sim}{\mu}(0) \cdot \underset{\sim}{\mu}(0)=8 a_{13}^{2}(\underset{\sim}{\mu} x(0) \cdot \underset{\sim}{\mu} x(0))$
$\begin{aligned} & \text { Hence }{ }^{2}{ }^{2}{ }_{13}{ }^{2} x<\cos g>\psi_{3}(t) \\ & 8 a_{13}{ }^{2}{ }^{2} x\end{aligned}=<\cos g>\psi_{3}(t)$
where g is an angle between $\underset{\sim}{\mu}(0)$ and $\underset{\sim}{\mu} x(t)$. Assuming the molecular correlation function is $\exp \left(-\frac{t}{\tau \tilde{m}}\right)$ and setting the group relaxation time $\tau \mathrm{m}=1 / 2 \mathrm{k}$, we have

$$
\begin{equation*}
\Phi(t)=\exp \left[-\left(\frac{1}{\tau m}+\frac{1}{\tau g}\right) t\right] \tag{1-46}
\end{equation*}
$$

This gives us (see Eq. (1-19))

$$
\frac{\varepsilon^{*}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{1}{1+i \omega \tau^{*}} .
$$

where

$$
\begin{equation*}
\tau^{*}=\frac{\tau g}{1+\left(\frac{\tau g}{\tau m}\right)} \tag{1-47}
\end{equation*}
$$

Now the molecular dipole moment at each state is

$$
\begin{array}{cl}
a x(t)+b y(t) & \text { for state } 1 \\
b y \sim & \text { for state } 2
\end{array}
$$

$$
\begin{array}{cl}
-a \underset{\sim}{x}(t)+b \underset{\sim}{c}(t) & \text { for state } 3 \\
\text { by }(t) & \text { for state } 4
\end{array}
$$

Hence the total moment at a given time t, i.e., $\mu(t)$ is

$$
\begin{align*}
\underset{\sim}{p}(t) & =(a x \\
& =a x\left(x_{1}-P_{3}\right)+b y \\
& =2 a a_{13} x(t) \psi_{3}(t)+\underset{\sim}{x y}(t) P_{2}+(b y-a x) P_{3}+(b y) p_{4} \tag{1-48}
\end{align*}
$$

At $t=0$, it is assumed that the rotators occupies site i completely ($i=1,2,3$, and 4).

Then

$$
\begin{aligned}
P_{1}(0) & =1 \text { and } P_{2}(0)=P_{3}(0)=P_{4}(0)=0 & \text { give } a_{13}=1 / 2 \\
P_{2}(0) & =1 \text { and } P_{1}(0)=P_{3}(0)=P_{4}(0)=0 & \text { give } a_{13}=0 \\
P_{3}(0) & =1 \text { and } P_{1}(0)=P_{2}(0)=P_{4}(0)=0 & \text { give } a_{13}=-1 / 2 \\
\text {, and } P_{4}(0) & =1 \text { and } P_{1}(0)=P_{2}(0)=P_{3}(0)=0 & \text { give } a_{13}=0
\end{aligned}
$$

Therefore it follows that

$$
\begin{aligned}
& {\underset{\sim}{1}}_{1}(t)=a x_{\sim}(t) \psi_{3}(t)+b \underset{\sim}{x}(t) \\
& {\underset{\sim}{2}}_{\mu_{2}}(t)=b y(t) \\
& \underset{\sim}{\mu_{3}}(t)=-a \underset{\sim}{x}(t) \psi_{3}(t)+\underset{\sim}{b}(t) \\
& \mu_{4}(t)=\operatorname{by}_{\sim}(t)
\end{aligned}
$$

where $\underset{\sim}{\underset{i}{i}}(t)$ denotes dipole moment at state i at $t=t$.
The correlation function may be expressed as

$$
\begin{equation*}
\Phi(t)=\frac{\sum_{i}^{4} 0 P_{i}<\mu_{i}(0) \cdot \mu_{i}(t)>}{\sum_{i}^{4} O_{i} P_{i}<\mu_{i}(0) \cdot \mu_{i}(0)>} \tag{1-49}
\end{equation*}
$$

where ${ }^{\circ} P_{1}={ }^{\circ} P_{3}=\frac{x}{2(7+x)}$ and ${ }^{\circ} P_{2}={ }^{\circ} P_{4}=\frac{1}{2(1+x)}$

Making scalar products of $\mu_{i}(0) \cdot \mu_{i}(t)$ and $\mu_{i}(0) \cdot \mu_{j}(0)$ and using Eq. (1-49), we finally obtain

$$
\begin{equation*}
\Phi(t)=\frac{b^{2}<x(0) \cdot y(t)>+\frac{x}{1+x} a^{2} \psi_{3}(t)<\underset{\sim}{x}(0) \cdot{\underset{\sim}{x}}_{x}(t)>}{b^{2}+\frac{x}{1+x} a^{2}} \tag{1-50}
\end{equation*}
$$

Therefore assuming that the molecular re-orientation decays exponentially, we have an equation for dielectric dispersion of Budo's type;

$$
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{c_{1}}{T+i \omega \tau_{1}}+\frac{c_{2}}{1+i \omega \tau_{2}}
$$

where

$$
\begin{align*}
& c_{1}=\frac{b^{2}}{b^{2}+\frac{x}{1+x} a^{2}}, c_{2}=\frac{\frac{x}{1+x} a^{2}}{b^{2}+\frac{x}{1+x} a^{2}}, \tag{1-51}\\
& \frac{1}{\tau_{2}}=\frac{1}{\tau m}+\frac{1}{\tau g}, \text { and } \tau m=\tau_{1} .
\end{align*}
$$

Hence it is shown that the molecule which has two equivalent rotational groups should give us two relaxation times, and the dispersion equation is formally same as that for the molecule which has just one rotational group (see (i)). When $b=0$, Eq. (1-57) becomes Eq. (1-47), which is necessary, because the present treatment includes all features in (ii). In this sense, the present treatment would be regarded as a generalization of that in (ii). Furthermore it has also shown that c_{1} and c_{2} depend on temperature and the potential energy difference V through $x=\exp (-V / k T)$.

CHAPTER 2 Evaluation of Molecular Dipole Moments for a
 Molecule which Contains Two Rotational Groups.

(a) GENERAL ASPECTS

Since dipole moments are considered to be vectors, their fundamental properties can be used for dipole moment analysis.

Let us consider a purely geometric problem of two vectors $\underset{\sim}{P}$ and $\mathbb{\sim}$ in which the latter vector \mathbb{Q} rotates around the former one $\underset{\sim}{P}$ with an angle ϕ.

As shown in Figure 1, we shall introduce two coordinate systems e.g., ($x^{\prime}, y^{\prime}, z^{\prime}$) and (x, y, z) coordinates, where the two vectors P_{\sim} and $\underset{\sim}{Q}$ are assumed to be on both $x^{\prime}-y^{\prime}$-and $x-y-p l a n e s$ (the paper plane) at $\phi=0$ (this is always possible as far as we are concerned with the two vectors), and the former coordinates are taken by assuming that y^{\prime} axis lies along $\underset{\sim}{P}$ vector, x^{\prime}-axis makes a right angle with the y^{\prime} axis, and z^{\prime} and z axes are perpendicular to the paper $p l a n e$. Then the dipole moments along the x^{\prime}, y^{\prime} and z^{\prime}-axes are given by

$$
\begin{aligned}
& \underset{\sim}{X} X^{\prime}=-\underset{\sim}{\sin B \cos \phi} \\
& \mu y^{\prime}=\underset{\sim}{\operatorname{O}} \cos B+\underset{\sim}{P} \\
& \dot{\sim} Z^{\prime}=\underset{\sim}{\sin B} \sin \phi
\end{aligned}
$$

Therefore dipole moments along the $x-, y$ - and z-axes have the relation shown on the next page ${ }^{10}$;

Figure 2-1: Coordinate svstems for a single rotator Q. A and B are angles between $\underset{\sim}{P}$ and the y-axis and between $\underset{\sim}{P}$ and $\underset{\sim}{Q}$, respectively.

$$
\left(\begin{array}{l}
\dot{u}_{x} \\
\mu_{y} \\
\dot{u}_{z}
\end{array}\right)\left(\begin{array}{ccc}
\cos A & \sin A & 0 \\
-\sin A & \cos A & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\dot{\mu}_{x}{ }^{\prime} \\
\dot{\mu}_{y} \\
\dot{u}_{z}
\end{array}\right)
$$

where A is an angle between the z-axis and $\underset{\sim}{P}$. This gives us $H_{x}=(R+Q \cos B) \sin A-O \sin B \cos A \cos \phi$
$\mu_{y}=(\underset{\sim}{p}+Q \cos B) \cos A+Q \sin B \sin A \cos \phi$
$X_{Z}=Q_{Q}^{Q} \sin B \sin \phi$
As an example, in the case of anisole, setting $A=0$,
$\underset{\sim}{P}=\mu_{C-0}$ (bond moment of $\mathrm{C}-0$ bond), and $\underset{\sim}{P}=\mu_{\sim}^{0} \mathrm{OCH}_{3}$ (group moment of $0-\mathrm{CH}_{3}$ group), we have

$$
\begin{aligned}
& \mu_{x}=-\mu_{O C H_{3}} \sin B \cos \phi \\
& \mu_{y}=\left(\mu_{C O}+\mu_{O C H} \cos B\right) \\
& \mu_{z}=\mu_{O C H} \sin B \sin \phi
\end{aligned}
$$

Then the square of total dipole moment of anisole is

$$
\begin{aligned}
& \dot{u}^{2}=\dot{u}_{2}^{2}+\dot{\mu}_{y}^{2}+\dot{u}_{z}^{2}
\end{aligned}
$$

Therefore it is seen that the total dipole moment of anisole does not depend on the rotational angle ϕ.

Next let us consider two equivalent rotational groups, using Eq. (2-1). The coordinates to be used here are shown in Figure 2.

Figure 2-2: Coordinates for two equivalent rotational grouns

Assuming that $\underset{\sim}{P}$ vectors of rotators 1 and 2 make an angle A with the y-axis, we have the following moments along the $x-, y$ - and z-axes for the rotator 1.

$$
\begin{align*}
& \mu_{x_{1}}=(P+Q \cos B) \sin A-Q \sin B \cos A \cos \phi_{1} \\
& \mu_{y_{1}}=(Q+Q \cos B) \cos A+Q \sin B \sin A \cos \phi_{1} \\
& \dot{\mu}_{z_{1}}=Q \sin B \sin \phi_{1} \tag{2-2}
\end{align*}
$$

where ϕ_{1} is rotational angle for the rotator 1 . Similarly setting $A=-A$ in Eq. $(2-1)$, we have

$$
\begin{aligned}
& \mu_{x_{2}}=-(\underset{\sim}{P}+Q \cos B) \sin A-Q \sin B \cos A \cos \phi_{2} \\
& \mu_{y_{2}}=(P+Q \cos B) \cos A-Q \sin B \sin A \cos \phi_{2} \\
& \mu_{z_{2}}=Q \sin B \sin \phi_{2}
\end{aligned}
$$

where ϕ_{2} is rotational angle for the rotator 2 . Therefore the overall moments along the $x-, y$ - and z-axes are

$$
\begin{align*}
& \mu_{x}=\mu_{x_{1}}+\dot{\mu}_{x_{2}}=-Q_{\rho} \sin B \cos A\left(\cos \phi_{1}+\cos \phi_{1}\right) \\
& \mu_{y}=\mu_{n} y_{1}+\mu y_{2} \\
& =2\left(\sim_{\sim}+\underset{\sim}{0} \cos B\right) \cos A+\underset{\sim}{0} \sin B \sin A\left(\cos \phi_{1}-\cos \phi_{2}\right) \tag{2-3}
\end{align*}
$$

Dependencies of these moments on ϕ_{1} and ϕ_{2} are collected in Table 1.

Table 2-1: Dependencies of the component moments ${ }_{\sim}^{n} x$, $\mu_{y} y$ and ${\underset{\sim}{z}}^{z}$ along the x, y, and z axes, in Figure 2 , respectively.

ϕ_{1}	0°	0°	0°	0°	90°	90°	90°	90°
ϕ_{2}	0°	90°	180°	270°	0°	90°	180°	270°
${ }_{2}$	${ }^{2 a} \mathrm{x}$	${ }^{\text {a }} \times$	0	${ }^{a_{x}}$	${ }^{a} \times$	0	${ }^{-a} x$	0
${ }^{2} \mathrm{y}$	$\mathrm{a}_{\text {yo }}$	$a_{\text {yo }}+a_{y}$	$a_{y_{0}}+2 a_{y}$	$a_{x 0}+a^{y}$	${ }^{a_{y o}}{ }^{-a} y$	${ }^{\text {a yo }}$	$a_{y o}+a_{y}$	$\mathrm{a}_{\text {yo }}$
n_{z}	0	a_{2}	0	$-a_{z}$	a_{z}	$\mathrm{2a}_{z}$	a_{2}	0
ϕ_{1}	180°	180°	180°	180°	270°	270°	270°	270°
ϕ_{2}	0°	90°	180°	270°	0°	90°	180°	270°
${ }_{2} \times$	0	${ }^{-a} x$	$-2 a_{x}$	${ }^{-a} x$	${ }^{\text {a }} \mathrm{x}$	0	${ }^{-a} x$	0
dy	$a_{y o}-2 a_{y}$	${ }^{a_{00}-a^{\prime} y}$	$\mathrm{a}_{\text {yo }}$	${ }^{\mathrm{yyo}^{-a}}{ }^{\text {a }}$	${ }^{\mathrm{yyo}^{-a} y}$	a_{xo}	$\mathrm{a}_{\mathrm{yo}}+\mathrm{a}_{\mathrm{y}}$	${ }^{\text {xo }}$
$\stackrel{H}{4}_{\sim}^{2}$	0	a_{2}	0	${ }^{-a_{z}}$	${ }^{-a} z$	0	${ }^{-a} z$	$-2 a_{z}$

where $a_{x}=-Q \sin B \cos A, a_{y o}=2(P+Q \cos B) \cos A$
$a_{y}=Q \sin B \sin A$, and $a_{z}=$ Osin B
(b) DIPOLE MOMENT FOR FREE ROTATION MODEL

If the potential energy curves for the rotators 1 and 2 do not depend on the rotational angles ϕ_{1} and ϕ_{2}, i.e., the potential energy V is constant for $0 \leqq \phi_{1} \leqq 2 \pi$. and $0 \leqq \phi_{2} \leqq 2 \pi$, then the average value for μ^{2} (μ is the total dipole moment) can be expressed as ${ }^{11}$

$$
\begin{align*}
\left\langle\mu^{2}\right\rangle & =\frac{\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mu^{2} \exp (-V / k T) d \phi_{1} d \phi_{2}}{\int_{0}^{2 \pi} \int_{0}^{2 \pi} \exp (-V / k T) d \phi_{1} d \phi_{2}} \\
& =\frac{\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mu^{2 \pi} d \phi_{1} d \phi_{2}}{\int_{0}^{2 \pi} d \phi_{1} d \phi_{2}} \tag{2-4}
\end{align*}
$$

Figure 2-3: Coordinates for a rigid group and two equivalent rotational groups. X is the dipole moment of the rigid group, and C is its angle from the y-axis.

From Eqs. (2-3)

$$
\mu^{2}=\mu_{x}^{2}+\mu_{y}^{2}+\mu_{z}^{2}
$$

Therefore for two equivalent rotators, $\left\langle\mu^{2}\right\rangle$ becomes

$$
\begin{equation*}
\left\langle\mu^{2}\right\rangle=4(P+O \cos B)^{2} \cos ^{2} A+2 Q^{2} \sin ^{2} B \tag{2-5}
\end{equation*}
$$

For molecule which contains a rigid group in addition to the two equivalent rotational groups, ${ }^{\text {, }}$, ${ }^{\text {dip }}$ pole moment coordinates may be taken as in Figure 3.

In this case, $x \sin C$ and $x \cos C$ are added to $\mu_{x}{ }^{\text {and }} \mu_{y}$ in Eq. (2-3) respectively. Hence using Eq. (2-4) we have

$$
\begin{align*}
\left\langle\mu^{2}\right\rangle & =[2(P+Q \cos B) \cos A+x \cos C]^{2} \\
& +2 Q^{2} \sin ^{2} B+x^{2} \sin ^{2} C \tag{2-6}
\end{align*}
$$

In the case when the rotational group of 2 exhibits free rotation while that of 1 is fixed at an angle ϕ_{1}, then $\left\langle\mu^{2}\right\rangle$ may have the relation

$$
\begin{align*}
\left\langle\mu^{2}\right\rangle & =\frac{\int_{0}^{2 \pi} \mu^{2} d \phi_{2}}{\int_{0}^{2 \pi} d \phi_{2}} \\
& =M_{x}^{2}+M^{2}+2 Q^{2} \sin ^{2} B+2 Q \sin B\left(M \sin A-M_{x} \cos A\right) \cos \phi_{1} \tag{2-7}
\end{align*}
$$

where $M_{x}=X \sin C, M=2(P+Q \cos B) \cos A+X \cos C$

Figure 2-4: Coordinate system for a rotator and a rigid dinole.

For a molecule which has a rotational group and a rigid group, setting $A=0$ in Eq. (2-1) and taking the coordinate system as in Figure (2-4), $\left\langle\mu^{2}\right\rangle$ is given by

$$
\left\langle\mu^{2}\right\rangle=(P+Q \cos B+x \cos C)^{2}+x^{2} \sin ^{2} C+Q^{2} \sin ^{2} B
$$

In the case when two equivalent rotational groups have identical equilibrium potential minima at $\phi_{\mathbf{i}}=0^{\circ}$ and 180° ($i=1$ and 2), then the total dipole moment would have the relation below;
where $\mu^{2}{ }_{\phi_{1}}=0^{\circ}$ or 180° stands for the square of dipole
moment at the corresponding angles.
From Table 2

$$
\begin{align*}
& \mu_{\substack{\phi_{1}=0^{\circ} \\
\phi_{2}=0^{\circ}}}=\left(2 a_{x}+M_{x}\right)^{2}+\left(a_{y o}+M_{y}\right)^{2} \\
& \mu_{\phi_{1}=0^{\circ}}=\left(M_{x}^{2}+\left(a_{y 0}+M_{y}+2 a_{y}\right)^{2}\right. \\
& \phi_{2}=180^{\circ} \\
& \mu^{2}{ }_{\phi_{1}}{ }_{\phi_{2}=0^{\circ}} 180^{\circ}=M_{x}{ }^{2}+\left(a_{y o}+M_{y}-2 a_{y}\right)^{2} \\
& \begin{array}{c}
\mu^{2}{ }_{\phi_{1}}=180^{\circ}=\left(M_{x}-2 a_{x}\right)^{2}+\left(a_{y o}+M_{y}\right)^{2} .180^{\circ}
\end{array} \tag{2-9}
\end{align*}
$$

Where $M_{y}=x \sin C$

Substitutions of Eqs. (2-9) in Eq. (2-8) give exactly the same equation as the right hand side of Eq. (2-6), i.e.,

$$
\begin{equation*}
\mu^{2}=\left(a_{y o}+M_{x}\right)^{2}+2\left(a_{x}^{2}+a_{y}{ }^{2}\right)+M_{x}^{2} \tag{2-10}
\end{equation*}
$$

Similarly in the case when the rotational groups have identical equilibrium potential minima at $\phi_{i}=90^{\circ}$ and 270°, the total dipole moment has the relation;

$$
\begin{equation*}
\mu^{2}=\frac{1}{4} \mu_{\substack{\phi_{1} \\ \phi_{2}=90^{\circ}}}+\frac{1}{4} \mu_{\substack{\phi_{1} \\ \phi_{2}=90^{\circ} \\ \phi_{2}=270^{\circ}}}+\frac{1}{4} \mu_{\substack{\phi_{1} \\ \phi_{2}=90^{\circ}}}+\frac{1}{4} \mu^{2}{\underset{y}{\phi_{1}}=270^{\circ}}_{\phi_{2}=270^{\circ}} \tag{2-11}
\end{equation*}
$$

where notations will be seen from Eq. (2-8).
From table 1

$$
\begin{align*}
& \mu^{2}{ }_{\phi_{1}}=90^{\circ}=\mu^{2}{ }_{\phi_{1}}=270^{\circ}=M_{x}{ }^{2}+\left(a_{y o}+M_{y}\right)^{2}+4 a_{z}{ }^{2} \\
& \phi_{2}=90^{\circ} \quad \phi_{2}=270^{\circ}
\end{aligned}{ }^{\mu^{2}{ }_{\phi_{1}}=90^{\circ}=\mu^{2}{ }_{\phi_{1}}=270^{\circ}=M_{x}{ }^{2}+\left(a_{y o}+M_{y}\right)^{2}} \begin{aligned}
& \phi_{2}=270^{\circ} \quad \begin{array}{l}
\phi_{2}=90^{\circ}
\end{array} \tag{2-12}
\end{align*}
$$

Substitutions of Eq. (2-12) in Eq. (2-11) lead to Eq. (2-10).
Therefore it is seen that Eq. (2-6) which results from the assumption of "free rotation" can be simultaneously derived from the above two cases so that in ${ }^{\text {a }}$ discussion of dipole moment such a fact should be taken into account. It is readily shown that this result is also applicable to the dipole moment analysis of a molecule which has a rotational group and a rigid group.

(c) DIPOLE MOMENT FOR "FREE OSCILLATION"

In the previous section, we have introduced a horizontal potential energy line against rotational angle to obtain the average of dipole moment assuming "free rotation". But here we shall introduce a square pulse potential whose height W is very large in comparison with the agitation energy kT.

In order to introduce an idea of "free oscillation" and to understand it, let us consider internal rotation of methoxy group of o-chloro anisole as an example. From Eq. (2-1), the square of dipole moment for the molecule is given by

$$
\begin{equation*}
\mu^{2}=M_{x}^{2}+Q^{2} \sin ^{2} B+\mu y^{2}+2 M_{x} 0 \sin B \cos \phi \tag{2-13}
\end{equation*}
$$

where $M_{x}=M_{C-C 1} \sin 60^{\circ}, M_{y}=\mu_{C-C 1} \cos 60^{\circ}, Q=-\mu_{0 C H_{3}}, P={ }^{\mu} C 0$, $B=180^{\circ}-<\operatorname{COC}$, and $\mu_{y}=P+Q \cos B+M_{y}$

In this molecule, the steric repulsion near $\phi=0^{\circ}$ would be expected so that a square pulse potential as in Figure 1 may be approximately taken into account for rotation of the methoxy group with neglect of possible mesomeric effect.

The average square dipole moment in this case is, therefore,

$$
\left\langle\mu^{2}\right\rangle=\frac{\int_{0}^{\frac{\pi}{2}-\Delta} \mu^{2} e^{-\frac{W}{k T}}+\int_{d \phi}^{\frac{3 \pi}{2}+\Delta}{ }_{\frac{\pi}{2}-\Delta} e^{-\frac{V}{k T}}+\int_{\frac{d}{2}+\Delta}^{2 \pi} \mu^{2} e^{-\frac{W}{k T}} d \phi}{\int_{0}^{\frac{\pi}{2}-\Delta} e-\frac{W}{k T} d \phi+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}-\Delta} e^{-\frac{V}{k T}}+\int_{\frac{3 \pi}{2}+\Delta}^{2 \pi} e^{-\frac{W}{k T} d \phi}}
$$

Figure 1: A square nulse potential.

Figure 2: Coordinate system of 0 -chloroanisole corresponding to $\emptyset=0$

Figure 3: Definition of Δ

Now if it is assumed that $W \gg k T$, then

$$
\begin{align*}
&\left\langle\mu^{2}\right\rangle=\frac{\int \frac{3 \pi}{2}+{ }^{\Delta} \mu^{2} e^{-\frac{V}{k T}} d \phi}{\int \frac{3 \pi}{2}+\Delta}=\frac{\int \frac{3 \pi}{2}+{ }^{\Delta} \mu^{2} d^{2} \phi}{\frac{\pi}{2}-\Delta} \frac{\int^{-\frac{\pi}{k T}} d \phi}{\frac{3 \pi}{2}+\Delta} d \phi \\
&=M_{x}^{2}-\Delta \tag{2-14}\\
& \frac{\pi}{2}+\mu_{y}^{2}+Q^{2} \sin ^{2} B-4 M_{x} Q \sin B \cdot \frac{\cos \Delta}{\pi+2 \Delta}
\end{align*}
$$

It is clear that $\Delta=90^{\circ}$ gives $\left\langle\mu^{2}\right\rangle$ for free rotation. Hence it will be seen from Eq. (2-14) that the observed dipole moment of this molecule would be greater than the moment for free rotation, if the above assumptions are satisfactory. ($Q<0$ and $\cos \Delta \geqq 0$ for $-90^{\circ}<\Delta \leqq 90^{\circ}$). This is satisfied for $0-$ haloanisoles and o-halothioanisoles as seen from Tables I and II. Using observed moments and Eq. (2-14), it is possible to evaluate Δ values, which are also collected in Tables I and II. It is interesting to note that ($90^{\circ}-\Delta$) increases with the atomic radius the of 0 osubstituent, which is expected from the steric repulsion. Eq. (2-14) is also applied to similar evaluations for m-halothioanisoles

Table I: Observed Dipole Moments $\mu_{\text {obs }}$, Dipole Moments for Free Rotation $\sqrt{\left\langle\mu^{2}\right\rangle}$, and $\Delta^{\prime} s$ of o-haloanisoles, X $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3}$.

X	F	$C 1$	Br
$\mu_{C-X}(D)^{12}$	1.46	1.58	1.54
$\mu_{o b s}(D)^{13}$	2.31	2.50	2.47
$\sqrt{\left\langle\mu^{2}\right\rangle}(D)$	2.09	2.19	2.16
Δ°	37	18	16

${ }^{{ }^{u}}{ }_{C-0}=0.95$ (D), $u_{0-\mathrm{CH}_{3}}=1.11$ (D), and $\mathrm{COC}=110^{\circ}$ are used.
Table II: Observed Dipole Moments $\mu_{o b s}$, Dipole Moments for Free Rotation $\sqrt{\left\langle\mu^{2}\right\rangle}$, and Δ^{\prime} s of o-halothioanisole $X_{6} \mathrm{H}_{5} \mathrm{SCH}_{3}$.

X	$C 1$	Br
$\mu_{\text {obs }}(D)^{14}$	2.56	2.53
$\sqrt{\left.\alpha^{2}\right\rangle}(D)$	2.23	2.20
Δ°	27	26

(Dipole moment of 1.38 (D) for thioanisole and group moment angle of 75° for $-\mathrm{SH}_{3}$ are used ${ }^{15}$) and m-halothiophenols with small changes of calculation procedures. These are collected in Tables III and IV. It should be pointed out that for all these compounds, Δ becomes almost 90°. Therefore it can be said that the steric repulsions for these compounds are negligible so that the rotational groups ($-\mathrm{SCH}_{3}$ and $-\mathrm{S}-\mathrm{H}$) may mainly exhibit free rotation. This may also be supported by agreement between the observed moment of $\mathrm{p}-\mathrm{CH}_{3} \mathrm{~S}-\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{SCH}_{3}{ }^{14}(1.85 \mathrm{D})$ and $\sqrt{\left\langle\mu^{2}\right\rangle}=1.89$ (D) for free rotation.

Table III: Observed Dipole Moments $\mu_{o b s}$ and Dipole Moments for Free Rotation $\sqrt{\left\langle\mu^{2}\right\rangle}$ of m-halothioanisoles, $\mathrm{M}-\mathrm{XC}_{6} \mathrm{H}_{5} \mathrm{SCH}_{3}$.

X	$C 1$	Br
Uobs $^{\text {(D) }}{ }^{14}$	1.89	1.85
$\sqrt{\left\langle\mu^{2}\right\rangle}(D)$	1.96	1.93

Table IV: Observed Dipole Moments $\mu_{o b s}$ and Dipole Moments for Free Rotation of m-halothiophenols, $M-X \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$.

X	$C 1$	Br
$\mu_{\text {obs }}(D)^{14}$	1.56	1.51
$\sqrt{\alpha_{\left.\mu^{2}\right\rangle}}(D)$	1.61	1.59

Dipole moment of 1.19 (D) and group moment angle of 15 46° for -SH are used.

Table V: Observed Dipole Moments $\mu_{o b s}$ and Dipole Moments for Free Rotation of o-halothiophenols, $0-X \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SH}$.

X	$C 1$	Br
$\mu_{\text {obs }}(D)^{14}$	1.98	1.96
$\sqrt{\left\langle\mu^{2}\right\rangle}$ (D)	2.28	2.25

Similar calculations are made for o-halothiophenols and the results are listed in Table V. It will be seen from Table V that $\mu<\sqrt{\left\langle\mu^{2}\right\rangle}$, which suggests that the assumptions used to derive Eq. (2-14) are no longer valid for o-halothiophenols. This may be due to intramoleculiar hydrogen bonding.

Now let us apply the above considerations to a molecule which has two equivalent rotational groups and one rigid substituent. (for example 6-chloro-1,4-dimethoxybenzene (Chap. 4 (b)).

It is assumed that one of the two rotational groups exhibits free rotation and the other (2) free oscillation. From Eq. (2-3)

$$
\begin{align*}
& \mu_{x}=X \sin C-Q \sin B \cos A\left(\cos \phi_{1}+\cos \phi_{2}\right) \\
& \mu_{y}=2(P+Q \cos B) \cos A+X \cos C+Q \sin B \sin A\left(\cos \phi_{1}-\cos \phi_{2}\right) \\
& \mu_{z}=Q \sin B\left(\sin \phi_{1}+\sin \phi_{2}\right) \tag{2-15}
\end{align*}
$$

In this case, < $\mu^{2}>$ corresponding to the left hand side of Eq. (2-14) may be defined by

$$
\begin{equation*}
\left\langle\mu^{2}\right\rangle=\frac{\int_{0}^{2 \pi} d \phi_{2} \int_{\frac{3 \pi}{2}+\Delta}^{\frac{3}{2}}-\Delta \mu^{2} d \phi_{1}}{\int_{0}^{2 \pi} d \phi_{2} \int_{\frac{3 \pi}{2}-\Delta}^{\frac{3 \pi}{2}+\Delta} d \phi_{1}} \tag{2-16}
\end{equation*}
$$

$\mu^{2}=\mu_{x}^{2}+\mu_{y}^{2}+\mu_{z}^{2}$ can be calculated from Eq. (2-15), and substitution of μ^{2} in Eq. (2-16) gives

$$
\begin{align*}
& <\mu^{2}>-M_{x}^{2}+M^{2}+20^{2} \sin ^{2} B \\
& \quad \pm 4 Q \sin B\left(M_{x} \cos A-M \sin A\right) \frac{\cos \Delta}{\pi+2 \Delta} \tag{2-17}
\end{align*}
$$

where $M_{x}=X \sin C, M=2(P+0 \cos B) \cos A+M_{y}$, and + for $C \leqq A$ and - for $C \geqq A$.

For 6-chloro-1,4-dimethoxybenzene, $X=1.6$ (D), $B=70^{\circ}$, $P=0.95(D), C=30^{\circ}, Q=-7.11(D), A=90^{\circ}$, and $\mu_{\text {obs }}=2.47(D)=$ $\sqrt{\left.<\mu^{2}\right\rangle}$ gives $\Delta=22^{\circ}$, which is in good agreement with $\Delta=18^{\circ}$ of o-chloroanisole (see Table I).

Abstract

a the The above models are only $\boldsymbol{A}_{\boldsymbol{A}}$ few applications of \wedge "free oscillation" ${ }_{\wedge}$ It can be also used for other systems without meeting mathematical difficulties.

CHAPTER 3 Experimental

(a) APPARATUS

The dielectric constant and loss were measured at 145 , $70,35.11,23.98,16.2,9.313\left(\mathrm{GH}_{\mathrm{Z}}\right)$ and $2\left(\mathrm{MH}_{\mathrm{Z}}\right)$ as well as $1 \sim 3\left(\mathrm{CH}_{\mathrm{Z}}\right)$ range with the apparatus ${ }^{16 \sim 25}$ available in this laboratory. The experimental techniques required for the measurements are excellently described by some of the workers in this laboratory. The results are collected in "Appendices".
(b) PURIFICATION OF MATERIAL

P-Xylene (solvent) was distilled with sodium wire, and kept in amber bottles with sodium wire. Liquids (solute) were dried by suitable drying agents and distilled under vacuum. 2-2'- and 3-3'-difury1 mercuries were synthetized by Mr. Bordan Drupay, Department of Chemistry, Lakehead University, Canada. Other chemicals were obtained commercially.
(c) DIELECTRIC PARAMETERS

The experimentally obtained dielectric constant ε^{\prime} and loss $\varepsilon^{\prime \prime}$ were corrected with usual procedure and fitted to Cole-Cole equation ${ }^{26}$ firstly.

$$
\begin{align*}
& \frac{\varepsilon^{\prime}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{1+\left(\omega \tau_{0}\right)^{(1-\alpha)} \sin \left(\frac{\pi^{\prime} \alpha}{2}\right)}{1+\left(\omega \tau_{0}\right)^{2(1-\alpha)}+2\left(\omega \tau_{0}\right)^{(1-\alpha)} \sin \left(\frac{\pi \alpha}{2}\right)} \\
& \frac{\varepsilon^{\prime \prime}(\omega)}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{\left(\omega \tau_{0}\right)^{(1-\alpha)} \cos \left(\frac{\pi \alpha}{2}\right)}{1+\left(\omega \tau_{0}\right)^{2(1-\alpha)}+2\left(\omega \tau_{0}\right)^{(1-\alpha)} \sin \left(\frac{\pi \alpha}{2}\right)} \tag{3-1}
\end{align*}
$$

From these equations, τ_{0}, α, and ε_{∞} were determined. Using this ε_{∞}, the same data were also fitted to Budd's equation ${ }^{27}$.

$$
\begin{align*}
& \frac{\varepsilon^{\prime}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{C_{1}}{1+\omega^{2} \tau_{1}{ }^{2}}+\frac{C_{2}}{1+\omega^{2} \tau_{2}{ }^{2}} \tag{3-2}\\
& \frac{\varepsilon^{\prime \prime}(\omega)}{\varepsilon_{0}-\varepsilon_{\infty}}=C_{1} \frac{\omega \tau_{1}}{1+\omega^{2} \tau_{1}{ }^{2}}+C_{2} \frac{\omega \tau_{2}}{1+\omega^{2} \tau_{2}{ }^{2}}
\end{align*}
$$

where $C_{1}+C_{2}=1$.
For a system of $\alpha \tilde{\sim} 0$, the above calculation procedures necessarily requires the following approximation;
$\frac{1}{1+i \omega \tau_{0}} \approx \frac{C_{1}}{1+i \omega \tau_{1}}+\frac{C_{2}}{1+i \omega \tau_{2}}$
$C_{1}+C_{2}=1$

The right and left hand sides in Eq. (3-3) are Debye's and Sud's equations, respectively. Eq. (3-3) leads to

$$
\begin{equation*}
\left(\tau_{0}-C_{1} \tau_{1}-C_{2} \tau_{2}\right) i \omega+\left\{\tau_{1} \tau_{2}-\tau_{0}\left(C_{1} \tau_{2}+C_{2} \tau_{1}\right)\right\} \omega^{2} z 0 \tag{3-4}
\end{equation*}
$$

In order to satisfy Eq. (3-4), irrespective of frequency $0<\omega<\infty$, it is necessary that the first and second terms in brackets should be zero simultaneously.

Therefore,

$$
\begin{align*}
& \tau_{0} \approx C_{1} \tau_{1}+C_{2} \tau_{2} \tag{3-5}\\
& \tau_{0} \approx \frac{\tau_{1} \tau_{2}}{C_{1} \tau_{2}+C_{2} \tau_{1}} \tag{3-6}
\end{align*}
$$

These two equations can be used to the above ColeCole and Sud's analyses to avoid improbable results. Setting $"="$ in the places of $" \approx "$ in Eqs. (3-3), (3-4), (3-5) and (3-6), we have exact answers, e.g., $\tau_{0}=\tau_{2}$ and $C_{1}=1$ or $\tau_{0}=\tau_{2}$ and $C_{2}=1$, which do not tell anything useful.

In calculating the above dielectric parameters, the usual procedures ${ }^{16 \sim 28}$ in this laboratory were used.

Dipole moment μ was evaluated with the help of the aquaLion ${ }^{16 \sim 25}$,

$$
\mu=\sqrt{\frac{3 T\left(\varepsilon_{0}-\varepsilon_{\infty}\right) M_{2}}{\left(\varepsilon_{1}+2\right)^{2} W_{2} d_{1}}}
$$

where M_{2} is the molecular weight of solute, W_{2} the weight fraction of solute, and d_{1} and ε_{1} are the density and dielectric constant of solvent, respectively.

CHAPTER 4 Methoxy Group Relaxation in Dimethoxy Compounds.
(a) INTRODUCTION

The methoxy group attached to benzene usually exhibits hindered rotation ${ }^{20,21}$. Anisole should be firstly considered values for Budo's C_{1} exist in the literature, i.e., Farmer and Walker ${ }^{29}$, Forest and Smyth ${ }^{30}$, and Klages and Krauss ${ }^{31}$ report $C_{1}=0.33$ or 0.15 , (in $p=x y l e n e$), $C_{1}=0.20$ (in benzene) and $C_{1}=0.17$ (in mesitylene, benzene and carbon disulphide), respectively, whereas Vaughan and Smyth ${ }^{32}$, Vaughan, Roeder and Provder ${ }^{33}$, Garg and Smyth, Kranbueh1, Klug and Vaughan ${ }^{35}$ report $C_{1}=0.80,0.77,0.78$ (pure liquid anisole) and 0.8 (in benzene), respectively. The last authors measured the dielectric parameters of anisole-benzene mixtures, changing concentration, temperature and frequency to examine internal field effect on C_{1} and concluded that the contribution from the effect is very smal1. As seen from Table $4-7$, the τ_{2} value for anisole is about $7 \sim 8$ psec at room temperature. Farmer ${ }^{20}$ reported that the relaxation times of diethyl ether and diethyl ketone are 2.7 and 2.9 psec. respectively, in cyclohexane at $15^{\circ} \mathrm{C}$. In addition, he also reported the τ_{2} values of benzylchloride are $2.6,4.7$, and 3.6 psec at 15,25 and $50^{\circ} \mathrm{C}$, respectively, in p-xylene. In view of the molecular shape and size, the τ_{2}
of anisole accounted for the relaxation time of methoxy group, therefore, appears to be too long. P-dimethoxybenzene is expected to have a single relaxation time (Chap. 1 (c) (ii)) which is mainly connected with the re-orientation of the methoxy group. Literature values of relaxation times for the compound are given in Table 4-2. It is seen that the relaxation time of the compound is about $6 \sim 7 \mathrm{psec}$. in normal solvent (benzene, p -xylene, cyclohexane and carbontetrachloride etc.) at room temperature. This value is very close to the τ_{2} of anisole so that it is assigned to the relaxation time of the methoxy group. This conclusion is drawn from the variation of the mean relaxation time of p-dimethoxybenzene upon the viscous solvents like nujol and decalin. If the relaxation is due to the dipole orientation of the over all molecule by an introduction of electric field, the relaxation time would be dependent on viscosity of a solvent directly, while if the relaxation results from the orientation of intramolecular dipole, the relaxation time would not depend on the viscosity so strong as the former case.

Klages and Knobloch report $\tau_{2}=1.7$ for 1 -methoxy-naphthalene $\left(C_{1}=0.93\right)$ and $\tau_{2}=1.1$ for 2-methoxynaphthalene $\left(C_{1}=0.8\right)$ in benzene at $20^{\circ} \mathrm{C}$, while Vaughan, Roeder and Provder report $\tau_{2}=2.3$ $\left(C_{1}=0.87\right)$ at $20^{\circ} \mathrm{C}$ and $\tau_{2}=1.0\left(C_{1}=0.8\right)$ at $80^{\circ} \mathrm{C}$ for 1 -methoxynaphthalene and 2-methoxynaphthalene, respectively, as pure liquid (see Table 1). The literature values for the relaxation
times of 0 - and m-dimethoxybenzenes are collected, in Table4-3.
It is of interest to note that the τ_{2} value of the 0 -compound is about 3 (psec.) while that of the $\wedge^{m-c o m p o u n d ~ i s ~ a b o u t ~} 2$ (psec.). The τ_{2} values for both compounds are roughly $1 / 2$ of that for anisole or shorter.

Roberti and Smyth ${ }^{37}$ (D. M. Roberti and C. P. Smyth, J. Am. Chem. Soc., 82, 2106 (1960)) obtained two discrete ColeCole arcs for pure o-dimethoxybenzene at $25^{\circ} \mathrm{C}$ and assigned 3.7 psec . and 69 psec . to the high and low frequency relaxations.

TABLE 4-1: Dielectric Parametors of Anisole

TABLE 4-2: Literature Value of Relaxation of p-Dimethoxybenzene

Solvent	t°	$\tau_{0}(\mathrm{psec})$	$\tau_{1}(\mathrm{psec})$	$\tau_{2}(\mathrm{psec})$	C_{1}	Ref.
B_{2}	20	6.2				39
B_{z}	40	5.2				39
B_{z}	60	4.6				39
B_{z}	20	9.7				37
B_{2}	40	6.4				37
B_{z}	60	4.6				37
B_{z}	20		8.5	0.75	0.73	40
B_{z}	25	6.9				41
B_{z}	20			8.35		31
Xylene	15	6.3				
Decalin	20	17.5	31.6	13.8	0.19	42
Decalin	40	13.3	27.5	11.0	0.17	42
Decalin	60	9.8	21.9	9.6	0.16	42
Nujol	20	20.0	112	14.0	0.22	42
Nujol	40	. 14.8	97	10.5	0.18	42
Nujol	60	11.6	40	7.2	0.15	42
Pure	60		8.5	0.7	0.87	33
Liquid	80		6.2	0.9	0.88	33
Cyclohexane	15	8.3				20
Cyclohexane	25	6.9				20
Cyclohexane	40	5.7				20
Cyclohexane	50	4.9				20
Mesitylene	70			5.1		31
Mesitylene	20			10.9		31
Mesitylene	0			16.7		31
Mesitylene	-30			36.2		31

TABLE 4-3: Dielectric Parameters for 0- and m-dimethyoxybenzenes in the Literature
o-dimethoxybenzene

25
20^{*}
25
40
60

m-dimethoxybenzene	τ_{2} (psec)	$\tau_{2}(\mathrm{psec})$	C_{1}	Ref.
60	15.9	2.3	0.80	32
$20 *$	14.7	0.6	0.16	36
20	32.8	2.1	0.89	33
40	24.6	2.4	0.81	33
60	16.3	2.7	0.79	33

* were measured in benzene solution.

TABLE 4-4: Dielectric Parameters of Dimethoxy Compounds in p-xylene

	${ }^{\circ} \mathrm{t}$	τ_{0}	α	${ }^{\tau}$	${ }^{\tau} 2$	$\mathrm{C}_{\text {I }}$	
Dimethoxymethane	25	3.5	0				0.58
1,2-Dimethoxyethane	25	3.0	0				1.55
4-4 Dimethoxybipheny1	25	5.2	0				1.86
o-Dimethoxybenzene	40	3.8	0.12	6.26	1.43	0.63	1.30
m-Dimethoxybenzene	40	10.1	0.07	13.7	3.6	0.71	1.54
$\begin{aligned} & \text { 6-chloro-1 ,4-dimethoxy- } \\ & \text { benzene } \end{aligned}$	40	14	0.16	17.2	4.2	0.78	2.47
2,6-Dimethoxypridine	25	9.0	0.05	12.7	4.8	0.67	0.94
4,4-Dimethoxythiobenzophenone	25	46.6	0	62.1	10.	0.87	3.83
5,6-Dimethoxy-1-indanone	25			$\begin{aligned} & 50 \\ & 45 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 5.7 * \end{aligned}$	0.90	3.30
2,5-Dimethoxy-2,5-dihydrofuran	25	17.0	0				1.63
2,5-Dimethoxytatrahydrofuran	40	9.7	0	10.4	2.2	0.73	1.12

The results of the present work for dimethoxy compounds are collected in Table 4-4.

Dimethoxymethane has $\tau_{0}=3.5$ (psec), $\alpha \sim 0$ and $\mu=0.58$ (D) at $25^{\circ} \mathrm{C}$ in p -xylene while 1,2 -dimethoxyethane has $\tau_{0}=3.0$ (psec)
$\alpha \sim 0$ and $\mu=1.55$ (D) at the same conditions. In view of molecular volume, the latter compound is expected to have a longer relaxation time than the former. Dimethoxymethane has two degrees of freedom for its internal rotation which influences the value of the observed dipole moment as seen from Figure 4-1, whereas, 1,2-dimethoxyethane has three degrees of freedom. In 1,2-dimethoxyethane the steric effect and electrostatic repulsion make the internal rotation around $-\mathrm{CH}_{2}-\mathrm{O}^{\prime}$ highly improbable so that two $-\mathrm{CH}_{2}-\mathrm{O}^{\mathrm{CH}_{3}}$ groups may be fixed at most probable positions. Therefore we should take into account the internal rotation around $C-C$ bond. In this case, the dipole moment along the direction of the $\mathrm{C}-\mathrm{C}$ bond should be cancelled out so that a single relaxation time connected with group rotation $\left(-\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$ would be predominant. But for dimethoxymethane, such a cancellation would not occur so that the contribution from the molecular re-orientation as well as the group rotation should be also taken into account. The molecular re-orientation leads to longer relaxation time than $-\mathrm{CH}_{2} \mathrm{OCH}_{3}$ group relaxation time. $\alpha \sim 0$ for 1,2-dimethoxyethane supports the above considerations of the internal rotation, on the other hand, $\alpha \sim 0$ for dimethoxymethane suggests that the internal rotation may be very hindered so that this compound could be essentially regarded as the rigid molecule.

Figure 4-2: Proposed molecular configuration of dimethoxvmethane from the nresent work.

This arises from the steric effect and electrostatic repulsion. The dipole moment for free rotation is calculated for this molecule from Eq. (2-5) to give us 1.62 (D), ($\mu_{C-0}=0.95$ (D), ${ }^{\mu} \mathrm{OCH}_{3}-1.11(D), \angle \mathrm{COC}=110^{\circ}$ and $\angle O C O=110^{\circ}$ are used) and 1.70 (D) (form the group moment of ${ }^{\mu} \mathrm{CH}_{3} \mathrm{OCH}_{3}=1.25$ (D), $P=0$, $Q=1.25(D)$ and $\left.O C O=110^{\circ}\right)$. Therefore it is seen that the calculated dipole moment for free rotation is about three times of the observed one, which again suggests that the internal rotation of dimethoxymethane may be very hindered. Making use of Table 2-1 and Eqs. (2-3), $\phi_{1}=90^{\circ}$ (2700) and $\phi_{2}=270^{\circ}\left(90^{\circ}\right)$ give us the calculated dipole moment of 0.65 (D), which is in good agreement with the observed one of 0.58 (D). The molecular configuration corresponds to these angles is schematically shown in Figure 2. It is of interest to note that this molecular configuration has not dipole moments along the x and z axes but has a y component dipole which does not change with the rotation around C-O bonds. (see Table 2-1 and Eqs. (2-3)). In other words, the molecular re-orientation would mainly contribute to the dielectric relaxation, which necessarily implies $\alpha \sim 0$.

With respect to calculation of the dipole moment for free rotation in 1,2-dimethoxyethane, ${ }^{\mu} \mathrm{CH}_{3} \mathrm{OCH}_{3}=1.25$ (D), $\angle \mathrm{COC}=$ 110° and $\angle O C C=110^{\circ}$ give us $1.58(D)$, which is well compared to the observed one of 1.55 (D). In calculation, the rotation
around $\mathrm{C}-\mathrm{OCH}_{3}$ bond is neglected in accordance with the above assumption. From the observed dipole moment alone, it is difficult to determine whether the moment is originated from internal rotation or freezing of the rotation (see Chap. 2 (b)). There are three possibilities about this calculated value. (i) The free rotations of two rotational groups, (ii) equal probabilities for the cis and trans forms, and (iii) $\phi_{1}+\phi_{2}=90^{\circ}$. In view of the electrostatic repulsion of two oxygen atoms, the first two possibilities may be excluded.

It is well-known that 1,2-dichloroethane has two forms of rotational isomers, i.e., the trans and the gauche isomers ${ }^{38}$.

The observed dipole moment $\mu_{\text {obs }}$ of this molecule was given by ${ }^{38}$

$$
\begin{align*}
& \mu_{\text {obs }}^{2}=x_{g} \mu^{2}{ }_{g}+x_{t}{ }_{t}{ }^{2} \\
& x_{g}+x_{t}=1 \tag{4-1}
\end{align*}
$$

where x_{g} and x_{t} are the mole fractions of the gauche and the trans forms, respectively, and μ_{g} and μ_{t} are the corresponding dipole moments. In addition, the energy difference ΔE between the trans and gauche isomers would be characterized by

$$
\begin{equation*}
\frac{x_{g}}{2 x_{t}}=\exp \left(\frac{(-\Delta E}{R T}\right) \tag{4-2}
\end{equation*}
$$

where R is the gas constant and T is the absolute temperature.

In this particular case, $\mu_{t}=0$ so that $E q$. (4-1) would become

$$
\begin{equation*}
\mu_{o b s}^{2}=x_{g}{ }^{\mu^{2}} \tag{4-3}
\end{equation*}
$$

In a similar manner, Eq. (4-3) may be applicable to 1,2-dimethoxyethane. In this case, using $x_{g}=2.03$ (D), we have $\mu_{g}=0.59$ and $\Delta E=0.20 \mathrm{Kcal} / \mathrm{mole}$. Because of $\Delta E<R T \approx 0.6$ Kcal/mole at room temperature, the barrier would not be significant. The relaxation time of diethyl ether, at $19^{\circ} \mathrm{C}$ in cyclohexane is reported to be $2.9(\mathrm{psec})^{20}$. Although we need some corrections to compare this value to the present results, τ_{0} value of 1,2-dimethoxyethane is very close to this value. 4-4'-Dimethoxybiphenyl is measured at $25^{\circ} \mathrm{C}$ in p-xylene to have $\tau_{0}=5.2(\mathrm{psec}), \alpha \sim 0$ and $\mu=1.86$ (D). These parameters are in good agreement with those of p-dimethoxybenzene $\tau_{0}=6.9$ (psec), $\alpha=0.04$ and $\mu=1.68$ (D) at $2.5^{\circ} \mathrm{C}$ in cyclohexane 20. Therefore, since the molecular relaxation times of these molecules would differ appreciably, the dielectric relaxation of this molecule is likely to be the re-orientation of methoxy group (see Chap. I (c) (ii)). It is interesting to note that the τ_{0} value of 4-4'-dimethoxybiphenyl is slightly shorter than that of p -dimethoxybenzene and the dipole moment of the former compound is greater than that of the latter. Without considering the mesomeric effect between the lone pair electrons of the oxygen atom and the phenyl ring, the

Figure 4-5: Configurations for o-dimethoxybenzene
dipole moment for free rotation is calculated to become 1.46 (D) for both 4-4'-dimethoxybiphenyl and p-dimethoxybenzene.
o-Dimethoxybenzene is found to have very short relaxation time $\left(\tau_{0}=3.8(\mathrm{psec})\right), \alpha=0.12$ and $\mu=1.30$ (D) at $40^{\circ} \mathrm{C}$ in p-xylene. The dipole moment based on a free rotation model is obtained to be 1.78 (D), which is not in good agreement with the observed one. Apparently the steric hinderance of this molecule would reach maximum at $\phi_{1}=0$ and $\phi_{2}=180^{\circ}$ (see Figure 2-2 where rotational angles ϕ_{1} and ϕ_{2} are defined).

These angles lead to the calculated dipole moment of 0.06 (D) and Budd's C_{I} of 1 , which do not agree with the experimental results. However, $\phi_{1}=0^{\circ}$ and $\phi_{2}=90^{\circ}$ and 270° or $\phi_{1}=90^{\circ}$ and 270°, and $\phi_{2}=180^{\circ}$ give the calculated dipole moment of 1.46 (D), which is very close to the experimental one. But the molecular configuration corresponds to these angles is unlikely to exist, because of steric hinderance between one of the methyl group and the oxygen atom of another. On the other hand, the methyl groups are also possible to touch the nearest hydrogen atom attached to the benzene ring. Therefore the configurations given in Figure 4-5 may be most probable, i.e., $\phi_{1}=90^{\circ}\left(270^{\circ}\right)$ and $\phi_{2}=270^{\circ}\left(90^{\circ}\right)$: trans form, and $\phi_{1}=90^{\circ}\left(27.0^{\circ}\right)$ and $\phi_{2}=90^{\circ}\left(270^{\circ}\right)$: cis form.

In this case, Eq. (4-1) can be re-written as

$$
\begin{equation*}
\mu_{o b s}{ }^{2}=x_{t}{ }^{\eta^{2}} t+x_{c i s}{ }^{\mu_{c i s}}{ }^{2} \tag{4-4}
\end{equation*}
$$

Making use of $\mu_{\text {cis }}=2.31$ (D) and $\mu_{t}=0.99$ (D), we have $x_{t}=0.84$ for 0 -dimethoxybenzene. The same calculations were made for m-dimethoxybenzene ($\mu_{\text {obs }}=1.52$ (D), $\mu_{t}=0.57$ (D) and $\mu_{\text {cis }}=2.16(D)$), and p-dimethoxybenzene ($\mu_{o b s}=1.68$, $\mu_{t}=0(D)$ and $\left.\mu_{\text {cis }}=2.09(D)\right)$, and $x_{t}=0.54$ and $x_{t}=0.35$ were obtained for the former and the latter compounds, respectively. At the same time, the dipole moments for free rotation were also evaluated, and 1.78 (D), 1.57 (D) and 1.46 (D) were obtained for $0-, m$ - and p-dimethoxybenzenes, respectively. It is noted that especially in m^{m}-compound, the calculated value for free rotation is in good agreement with the observed one. In order to estimate the energy difference between the cis and the trans forms, we can use ${ }^{\text {a }}$ similar equation to Eq . (4-2), i.e.,

$$
\begin{equation*}
\frac{x_{\text {cis }}}{x_{t}}=\exp \left(-\frac{\Delta E}{R T}\right) \tag{4-5}
\end{equation*}
$$

substitution of $x_{t}=0.84$ and $x_{\text {cis }}=0.16$ in Eq. (4-5) gives $\Delta E=0.96 \mathrm{Kcal} / \mathrm{mole}$ for o-compound. Therefore it becomes clear that the rotation of the methoxy group of the compound is very hindered and it appears to exist mostly in the trans form.

We could see another evidence to suport the above conclusion from temperature dependence of the observed dipole moment of o-dimethoxybenzene ${ }^{43}$. According to the theory treated in Chap 1 (c) ($\mathrm{i} i \mathrm{i}$), C_{1} may be given by

$$
\begin{equation*}
c_{1}=\frac{b^{2}}{\frac{x}{1+x} a^{2}+b^{2}} \tag{4-6}
\end{equation*}
$$

(see Eq. (1-51)
and

$$
\begin{equation*}
x=\frac{x_{\text {cis }}}{x_{t}} \tag{4-7}
\end{equation*}
$$

since

$$
\Delta E=V
$$

Eqs. (4-6) and (4-7) give $C_{1}=0.54$ for o-compound. (the observed $C_{1}=0.63$).

This good agreement of the calculated C with the observed one suggests the validity of the starting model based on two sites of the cis and the trans configurations. The relaxation times ($\tau_{1}=6.3(\mathrm{psec})$ and $\tau_{2}=1.4$ (psec) at $40^{\circ} \mathrm{C}$ in p -xylene) of 0 -dimethoxybenzene can be used to estimate the relaxation time of the methoxy group τ_{g} from the site model

$$
\frac{1}{\tau_{g}}=\frac{1}{\tau_{2}}-\frac{1}{\tau_{1}}
$$

This gives $\mathrm{T}=1.9$ (psec) at $40^{\circ} \mathrm{C}$ in $\mathrm{p}-\mathrm{xy}$ lene.
Roberti and Smyth attributed the short relaxation time of the o-compound ($\tau_{2}=3.7$ (psec) and $\tau_{1}=69$ (psec) at $25^{\circ} \mathrm{C}$ pure liquid) to a cooperative motion of the methoxy group
rotation which becomes similar to an oscillation about an equilibrium, because of steric hinderance to rotation, each methoxy group influences the rotation of the other ${ }^{37}$. In view of molecular size and shape, the τ_{i} value of the compound can be compared with that of o-xylene at $50^{\circ} \mathrm{C}$ in cyclohexane $\left(\tau_{1}=6.4(\mathrm{psec}), \tau_{2}=4.0(\mathrm{psec}), C_{1}=0.8\right.$ and $\tau_{0}=6.1$ (psec)) ${ }^{44}$. Also note that $0-x y 7$ ene has $\tau_{0}=8.3$ (psec), $\tau_{1}=11.0(\mathrm{psec}), \tau_{2}=4.3(\mathrm{psec})$, and $\mathrm{C}_{1}=0.70$ at $25^{\circ} \mathrm{C}$ in cyclohexane, while o-dichlorobenzene has $\tau_{0}=9.4$ (psec) at $25^{\circ} \mathrm{C}$ in cycTohexane ${ }^{44^{4}}$.
m -Dimethoxybenzene was measured at $40^{\circ} \mathrm{C}$ in p -xylene to have $\tau_{0}=10.1(\mathrm{psec}), \alpha=0.07, \tau_{1}=13.7(\mathrm{psec}), \tau_{2}=3.6$ (psec) and $C_{1}=0.71$ (for comparison with the literature values, see Table 4-3). Eqs. (4-6) and (4-7) give $C_{1}=0.13$, which does not agree with the observed one. However, the conformational analysis indicates that $\phi_{1}=90^{\circ}\left(180^{\circ}\right.$ and $\left.270^{\circ}\right)$ and $\phi_{2}=0^{\circ}\left(90^{\circ}\right.$ and $\left.0^{\circ}\right)$ give the calculated $\mu=1.88$ (D) and $C_{1}=0.61$. The molecular configurations corresponding these angles may be originated from repulsion of the methoxy group at $\phi_{1}=0^{\circ}$ and $\phi_{2}=180^{\circ}$. From calculations of the dipole moments for this compound, there would exist two points of view about the internal rotation (i) free rotation, and (ii) four stable sites (see Chap. 2 (b)(ii)) and the energies of them
are almost identical ($\Delta \mathrm{E} \approx 0$). It is of interest to note that the τ_{2} value of this compound is close to τ_{0} value of $1,2-$ dimethoxyethane. Therefore the τ_{2} value may be regarded as the relaxation time of the methoxy group.

6 -chloro-1,4-dimethoxybenzene was measured at $40^{\circ} \mathrm{C}$ in p-xylene to have $\tau_{0}=14(\mathrm{psec}), \alpha=0.16, \tau_{1}=17.2(\mathrm{psec})$, $\tau_{2}=4.2(\mathrm{psec}), C_{1}=0.78$ and $\mu=2.47$ (D). The dipole moment for free rotation is calculated to have 2.18 (D) (${ }^{u_{C-C l}}{ }=1.60 \mathrm{D}$) is used, see ref. (12)), which is not in good agreement with the observed one. The calculated dipole moments for the cis and the trans forms (see Fig. 4-6) are 2.63 (D) and 1.60 (D), respectively, which give $x_{t}=0.19$ and $x_{c i s}=0.81$. However these x values are not likely, when we take into account the environment of the dimethoxy group at 4 position upon internal rotation. In other words, we may predict $x_{t}=x_{c} \bar{F}_{s} 1 / 2$ in this case.

Now setting the coordinates of this compound as in Figure 4-6 and fixing $\phi_{1}=180^{\circ}$, we have the calculated dipole moments $\mu_{0}=3.56$ (D) and $\mu_{180}=1.60$ (D) for $\phi_{2}=0^{\circ}$ and $\phi_{2}=180^{\circ}$, respectively. And defining the mole fractions at $\phi_{2}=0$ and $\phi_{2}=180^{\circ}$ by x_{0} and x_{180}, respectively, we may have the equation similar to Eq . (4-1);

$$
\mu_{\text {obs }}{ }^{2}=x_{0} \mu_{0}{ }^{2}+x_{180} \mu^{\mu^{2}} 180
$$

This equation gives $x_{0}=0.65$ and $x_{180}=0.35$, which is more probable than the previous calculation.

Figure 4-6: Coordinates of 6-chloro-1,4-dimethoxybenzene for calculation of its dipole moment.

Let us in ${ }^{a}$
Let us introduce ${ }^{\prime \prime}$ free oscillation model" (Chap. 2-(c)) (i) the methoxy group at the position is assumed to rotate freely, while the methoxy group at the position remains at $\phi_{1}=180^{\circ}$, and (ii) the methoxy groups at 1 and 4 positions are assumed to rotate freely with the regions $90^{\circ}-\Delta \leqq \phi_{1} \leqq$ $270^{\circ}+\Delta$ and $0 \leqq \phi_{2} \leqq 360^{\circ}$ where $90^{\circ} \leqq \Delta \leqq 0^{\circ}$. These assumptions are made taking into account the steric hindrance near $\phi_{1}=0^{\circ}$.

From Eqs. (2-3), $\Delta=90^{\circ}$ gives

$$
\begin{aligned}
& \mu_{x}=X \sin C \\
& \mu_{y}=X \cos C+Q \sin B\left(\cos \phi_{1}-\cos \phi_{2}\right) \\
& \mu_{z}=Q \sin B\left(\sin \phi_{1}+\sin \phi_{2}\right)
\end{aligned}
$$

where $X={ }^{\mu}{ }_{C-C l}$ and $\mathrm{C}=30^{\circ}$ in accordance with Figure 5 .
Therefore the total dipole moment μ becomes

$$
\begin{aligned}
\mu^{2}=X^{2} & +2 Q^{2} \sin ^{2} B-2 Q^{2} \sin ^{2} B \cos \left(\phi_{1}+\phi_{2}\right) \\
& +2 Q X \sin B \cos C\left(\cos \phi_{1}-\cos \phi_{2}\right)
\end{aligned}
$$

For the assumption (i), the average of the square of the total dipole moment $<\mu^{2}>$ is given by;

$$
\begin{equation*}
\left\langle\mu^{2}\right\rangle=\frac{\int_{0}^{2 \pi} \mu^{2} d \phi_{2}}{\int_{0}^{2 \pi} d \phi_{2}}=X^{2}+2 Q^{2} \sin ^{2} B \tag{4-8}
\end{equation*}
$$

It should be noted that $\phi_{1}=90^{\circ}$ or 270° gives the same calculated dipole moment as the case of the double free rotation (see Eqs. (2-6), (2-10) and (2-12)). $\phi_{1}=180^{\circ}$ gives $\sqrt{\left\langle\mu^{2}\right\rangle}=2.76(\mathrm{D})$, which is the same value as $\phi_{1}=90^{\circ}, 180^{\circ}$ and 270° and $\phi_{2}=0^{\circ}, 270^{\circ}$ and 0°, respectively, while $\sqrt{\left.<\mu^{2}\right\rangle}$ $=\mu_{\text {obs }}$ gives $\phi_{1}=118^{\circ}$ or 242°. On the other hand, for the assumption (ii),

$$
\begin{aligned}
\left\langle\mu^{2}\right\rangle & =\frac{\int_{0}^{2 \pi} d \phi_{2} \int_{0}^{\frac{1}{2} \pi-\Delta} \mu^{2} \pi+\Delta}{\int^{2 \pi} d \phi_{1}} \int_{0}^{\frac{1}{2} \pi-\Delta} \phi_{2} d \phi_{1} \\
& =x^{2}+2 Q^{2} \sin ^{2} B-\frac{4 Q X \sin B \cos C \cos A}{\pi+2 \Delta}
\end{aligned}
$$

$\Delta=90^{\circ}$ corresponds to the double free rotation. $\Delta=0^{\circ}$ gives $\sqrt{\left\langle\mu^{2}\right\rangle}=2.56(D)$, while setting $\left\langle\mu^{2}\right\rangle=\mu^{2}$ obs, we have $\Delta=22^{\circ}$, i.e. $68^{\circ} \leqq \phi_{1} \leqq 290^{\circ}$, (This is very close to the one obtained from o-chloroanisole (18°) see Chap. 2-(c)). Such a rotation may lead to $\alpha \neq 0$. Both assumptions seem to be likely, however, we cannot decide which one is more probable from the observed dipole moment alone.

Maier ${ }^{45}$ reported that τ_{0} of 2,6 -dichloroanisole in benzene at $20^{\circ} \mathrm{C}$ is 19.9 (psec), which may be compared with τ_{1} of 6 -chloro-1,4-dimethoxybenzene, $\left(\tau_{1}=17.2(\mathrm{psec})\right)$. At the same time this
may be also compared with τ_{0} values of o-diiodobenzene ${ }^{21} \tau_{0}=$ 14.6 (psec) in p-xylene at $60^{\circ} \mathrm{C}$), o-bromoiodobenzene ${ }^{21}\left(\tau_{0}=\right.$ 12.0 (psec) in p-xylene at $60^{\circ} \mathrm{C}$) and o-chloroiodobenzene ($\tau_{0}=11.0$ (psec) at $60^{\circ} \mathrm{C}$), because anisole is considered to be intermediate in size between that of bromo and iodobenzene ${ }^{46}$.

Mountain, measuring relaxation times of o-haloanisoles, concluded that relaxation processes of these compounds except fluoroanisole were mainly due to the molecular re-orientation ${ }^{21}$. If this is the case, it would be expected that the τ_{2} value of 6-chloro-1,4-dimethoxybenzene would become similar to that of anisole $\left(\tau_{0}=7.7(\mathrm{psec}), \tau_{1}=11.4(\mathrm{psec}), \tau_{2}=5.9(\mathrm{psec})\right.$ and $C_{1}=0.33$ at $40^{\circ} \mathrm{C}$ in p-xylene $)^{29}$. And if it is not, the τ_{2} of the former compound would be close to τ_{0} of p-dimethoxybenzene $\left(\tau_{0}=5.7\right.$ (psec) at $40^{\circ} \mathrm{C}$ in cyclohexane) ${ }^{29}$. Because the methoxy relaxation times in the both cases are almost similar, it is difficult to attribute the observed τ_{2} value of 6 -chloro-1,4-dimethoxybenzene to one of the above two cases.

The dielectric parameters of 2,6-dimethoxypyridine are $\tau_{0}=9.03(\mathrm{psec}), \alpha=0.05, \tau_{1}=12.7(\mathrm{psec}), \tau_{2}=4.8(\mathrm{psec})$, $C_{1}=0.67$ and $\mu=0.94$ (D) at $25^{\circ} \mathrm{C}$ in $p-x y l e n e$. The dipole moment for free rotation is calculated to become 3.12 (D), which suggests that the internal rotation should be hindered. While the conformational analysis indicates that $\phi_{1}=0$ and $\phi_{2}=180^{\circ}$ give us the calculated moment of 0.99 (D), ($\mu_{\text {pridine }}=2.23$ (D) is used. Ref. (41)), which is in good

Figure 4-7: Molecular configuration of 2,6-dimethoxynyridine pronosed from dipole moment measurement.
agreement with the observed one. The configuration corresponds to these angles is shown in Figure 4-7. It suggests that the repulsions at $\phi_{1}=180^{\circ}$ and $\phi_{2}=180^{\circ}$ of the methyl groups with the hydrogen atoms at 3 and 5 positions may lead the two methoxy groups to the configuration in Figure 6, since the nitrogen atom athe position has no hydrogen atom so that there would be no appreciable steric effect in this configuration. At the same time, the configuration would be favoured by the mesomeric effect. Therefore it will be seen that internal motion of the methoxy groups in the compound is very different from that in m-dimethoxybenzene.

The τ_{1} value may be compared with τ_{1} of m-xylene ($\tau_{1}=$ $12.0(\mathrm{psec}), \tau_{2}=4.0(\mathrm{psec}) \mathrm{C}_{1}=0.67$ and $\tau_{0}=9.3(\mathrm{psec})$ at $25^{\circ} \mathrm{C}$ in cyclohexane) ${ }^{44}$ as well as τ_{0} of m-dichlorobenzene (10.0 (psec) at $25^{\circ} \mathrm{C}$ in cyclohexane) ${ }^{44}$. τ_{0} of pure pyridine was reported to be 7.3 (psec) at $20^{\circ} \mathrm{C}^{65}$.

4-4'-Dimethoxythiobenzophenone was measured at $25^{\circ} \mathrm{C}$ in p -xylene to have $\tau_{0}=46.6(\mathrm{psec}), \alpha=0, \tau_{1}=62.1(\mathrm{psec})$, $\tau_{2}=10.2($ psec $), C_{1}=0.87$ and $\mu=3.83(D)$. The mean relaxation time of benzophenone is reported to have $\tau_{0}=19.0$ (psec) at $25^{\circ} \mathrm{C}$ in cyclohexane solution. It is interesting to note that the τ_{2} value of 4-4'-dimethoxythiobenzophenone is in the order of the $v a l u e$ of anisole ($\tau_{0}=9.0$ (psec) at $25^{\circ} \mathrm{C}$ in p-xylene) ${ }^{29}$.

Figure 4-8: Coordinates of 4-4'dimethoxythiobenzonhenone.

The dipole moment for free rotation of this compound is found to be 2.51 (D), which is too small to account for the observed value, ${ }^{11} \mathrm{C}=\mathrm{S}=2.60$ (D) is used. Ref. (12)) while $\phi_{1}=0^{\circ}$ and $\phi_{2}=180^{\circ}$ give the calculated dipole moment of 3.84 (D), which is in good agreement with the observed this
one. Infcalculation, the mesomeric effect is totally ignored so that the configuration of the benzene ring cannot be determined by the present analysis, however, the molecular configuration may be simplified and shown as in Figure 4-9. This configuration also gives the calculated Budd's $C_{1}=1$, which might explain the observed $\alpha \sim 0$ for this molecule. 5,6-Dimethoxy-1-indanone was observed at $25^{\circ} \mathrm{C}$ in p xylene to show two separate lines of ε^{\prime} versus $\omega \varepsilon^{\prime \prime}$ plot, which gives $\tau_{1}=45$ (psec) and $\tau_{2}=5.7$ (psec). ε_{∞} was evaluated from the relation;

$$
\varepsilon^{\prime}=\frac{1}{\tau_{2}}\left(\frac{\varepsilon^{\prime \prime}}{\omega}\right)+\varepsilon_{\infty}
$$

Here ($\varepsilon^{\prime}, \varepsilon^{\prime \prime}$) points of the second relaxation process were selected to give $\varepsilon_{\infty}=2.278$, from which dipole moment of the compound was obtained to be 3.30 (D). At the same time, using the $\varepsilon_{\infty}, \tau_{1}=51$ (psec), $\tau_{2}=7.0(\mathrm{psec})$ and $\mathrm{C}_{1}=0.90$ were obtained by computer analysis.

This compound is expected to indicate internal rotation of methoxy group similar to o-dimethoxybenzene. The dipole

$\varepsilon^{\prime \prime}$ versus log. ω plot for 4-4'-dimethoxythiobenzophenone (Big points represent the observed values while the small ones were obtained from Debye equation assuming $\tau_{0}=46.6(p s e c)$)

ε " versus log ω plot for 4-4'-dimethoxythiobenzophenone (Big points represent the observed values while the small ones were obtained from Budd's equation assuming $\tau_{1}=62.1$ (psec), $\tau_{2}=10.2(\mathrm{psec})$ and $\mathrm{C}_{1}=0.87$)

Figure 4-9: Simplified molecular configuration of 4-4'-dimethoxythiobenzophenone.
moment for free rotation is evaluated to be 3.34 (D), which is very close to the observed one. (${ }^{\mathfrak{j}} \mathrm{C}=0=2.83$ (D) is used in calculation, see Ref. (47)). At the same time, making use of the calculated dipole moments 3.65 (D) and 3.00 (D) of the cis and the trans configurations, respectively, and $x_{\text {cis }}=0.16$ and $x_{t}=0.84$ of o-dimethoxybenzene, we obtain the calculated dipole moment of 3.11 (D), which is also close to the observed one within the errors involved in these treatments. On the other hand, using the observed moment of 3.30 (D) and Eq. (4-1), we have $x_{t}=0.56$ and $x_{\text {cis }}=0.44$.

Here it should be pointed out that this calculation is very sensitive to the observed dipole moment as well as the group moment of $\mu_{C=0}$. (In this molecule, $\mu_{\mathrm{Cis}^{-}} \mu_{\mathrm{t}}=0.65$ (D) and $\mu_{o b s}=3.30(D)$, while in o-dimethoxybenzene, $\mu_{\text {cis }}-\mu_{t}=$ 1.32 (D) and $\mu_{o b s}=1.30$ (D)). The C_{1} calculation from the site model would be possible, using

$$
C_{1}=\frac{b^{2}+\mu^{2} C=0}{\left(b^{2}+\mu^{2} C=0\right)+\frac{x}{1+X} a^{2}}
$$

Eq (4-7) and $x_{t}=0.56$ give $C_{1}=0.95$, which suggests that the observed relaxation time may be mainly due to the molecular relaxation process. Therefore, the internal rotation of methoxy group in 5,6-dimethoxy-1-indanone is very similar
to that in o-dimethoxybenzene. Since the τ_{1} and τ_{2} of the former compound are very different, the coupling of the molecular relaxation time τ_{1} with the group relaxation time τ_{g} would be very small so that $\tau_{g} \approx \tau_{1}$. Therefore τ_{g} of 0 dimethoxybenzene, 1.85 (psec) at $40^{\circ} \mathrm{C}$ may be compared with that of 5,6-dimethoxy-1-indanone, 2.94 (psec) at $25^{\circ} \mathrm{C}$.

2,5-Dimethoxy-2,5-dihydrofuran was measured at $25^{\circ} \mathrm{C}$ in $p-x y l e n e$ to have $\tau_{0}=11.0(\mathrm{psec}), \alpha=0$ and $\mu=1.63$ (D), while 2,5-dimethoxytetrahydrofuran was al so measured at $40^{\circ} \mathrm{C}$ in p-xylene to have $\tau_{0}=9.7(\mathrm{psec}), \alpha=0, \tau_{1}=10.4(\mathrm{psec})$, $\tau_{2}=2.2(\mathrm{psec}), C_{1}=0.73$, and $\mu=1.12(D)$.

It is noted that τ_{0} values of the both compounds are very similar. The τ_{2} value of the latter compound may be regarded as the methoxy group relaxation time. There are three possible molecular configurations in cyclopentane, i.e., the planar, the envelope, and the half-chair forms ${ }^{48}$.

(c) VARIATION OF RELAXATION TIME OF METHOXY GROUP

It has been pointed out that the relaxation time of methoxy group changes with its circumstances. Now let us consider anisole as an example to see the reason of this change.

Let us consider the relaxation process in terms of four potential sites with the same method. The starting molecular model can be constructed by taking : account of both steric

Figure 4-10: Molecular model of anisole for internal rotation of the methoxy groun

Figure 4-11: Potential eneray curve corresponding to Figure 4-10
and mesomeric effects as shown in Figure 4-10.
The occupational probability of each site has already worked out in Chap. 1 (c) (ii). The results are

$$
\begin{align*}
& P_{1}(t)=a_{11}+a_{12} \psi_{2}(t)+a_{13} \psi_{2}(t) \\
& P_{2}(t)=a_{21}-a_{12} \psi_{2}(t)+a_{24} \psi_{4}(t) \tag{4-9}\\
& P_{3}(t)=a_{11}+a_{12} \psi_{2}(t)-a_{13} \psi_{3}(t) \\
& P_{4}(t)=a_{21}-a_{12} \psi_{2}(t)-a_{24} \psi_{4}(t)
\end{align*}
$$

where $a_{11}=X / 2(1+X), a_{21}=1 / 2(1+X), X=\left(k^{\prime} / k\right)=\exp \left(-V / k^{\prime} P\right)$, $\psi_{2}(t)=\exp \left(-2\left(k+k^{\prime}\right) t\right), \quad \psi_{3}(t)=\exp (-2 k t)$, and $\psi_{4}(t)=$ $\exp \left(-2 k^{\prime} t\right)$.

When each site is assumed to be occupied completely, the dipole moment $\mu_{i}(i=1,2,3$ and 4$)$ at the site $i s$ given by

$$
\begin{align*}
& \mu_{1}(0)=\mu_{y} y(0)+\mu_{x} x(0) \\
& \mu_{2}(0)=\mu_{y} y(0)+\mu_{x} z(0) \tag{4-10}\\
& \mu_{3}(0)=\mu_{y} y(0)-\mu_{x}(0) \\
& \mu_{4}(0)=\mu_{y} y(0)-\mu_{x} Z(0)
\end{align*}
$$

where $\mu_{x}=$ (dipole moment of $-0 \mathrm{CH}_{3}$ group) $x \sin \theta, \mu_{y}=$ (dipole moment of $-\mathrm{OCH}_{3}$ group) $x \cos \theta+$ (dipole moment of $0-\mathrm{C}$), and $\underset{\sim}{x}(0)$, $X(0)$, and $\underset{\sim}{z}(0)$ are the unit vectors along the x, y, and z axes, respectively.

The total dipole moment $\underset{\sim}{(}(t)$ at an arbitray time can be expressed in terms of occupational probabilities as follows:

$$
u(t)=\sum_{i}^{4} P_{i}(t)_{u_{i}}(0)
$$

From Eqs. (4-9) and (4-10), this is given by $\mathfrak{x}(t)=\mu_{y} y(t)+$ $\mu_{x}\left(2 a_{13}\right) \psi_{3}(t) x_{\lambda}(t)+\mu_{x}\left(2 a_{24}\right) \psi_{4}(t)_{\sim}^{z}(t)$

At the same time,
$P_{1}=1$ and $P_{2}=P_{3}=P_{4}=0$ give $a_{13}=\frac{1}{2}$ and $a_{24}=0$
$P_{2}=1$ and $P_{1}=P_{3}=P_{4}=0$ give $a_{13}=0$ and $a_{24}=\frac{1}{2}$
$P_{3}=1$ and $P_{1}=P_{2}=P_{4}=0$ give $a_{13}=-\frac{1}{2}$ and $a_{24}=0$, and
$P_{4}=1$ and $P_{1}=P_{2}=P_{3}=0$ give $a_{13}=0$ and $a_{24}=-\frac{1}{2}$

Therefore $\dot{\sim}(t)$ at each site becomes :
$\mu_{1}(t)=\mu_{y} y(t)+\mu_{x} \psi_{3}(t) x_{z}^{x}(t)$
$\dot{\sim}_{2}(t)=\mu_{y} \chi^{2}(t)+\mu_{x} \psi_{4}(t) z_{\lambda}(t)$
$\mu_{3}(t)=\mu_{y} y(t)-\mu_{x} \psi_{3}(t) x(t)$
$\mu_{4}(t)=\mu_{y} y(t)-\mu_{x} \psi_{4}(t) z_{z}(t)$

It is obvious that substitutions of $t=0$ in Eqs. (4-13) give Eqs. (4-10).

The correlation function $\Gamma(t)$ may be written

$$
\begin{align*}
& \Gamma(t)=\frac{\sum_{i=1}^{i=4} \quad \otimes_{i}<P_{i}(0) \cdot \dot{d}_{i}(t)>}{i} \tag{4-14}\\
& \sum_{i=1}{ }^{\circ} P_{i}<\dot{u}_{i}(0) \cdot \dot{\sim}_{i}(0)>
\end{align*}
$$

where ${ }^{\circ} P_{\mathbf{i}}$ represents the equilibrium occupational probability, i.e., in this case, ${ }^{\circ} P_{1}={ }^{\circ} P_{3}=a_{11}$ and ${ }^{\circ} P_{2}={ }^{\circ} P_{4}=a_{21}$.

It follows from Eqs. (4-9), (4-10), and (4-14) that,

$$
\begin{align*}
\Gamma(t)=\frac{\mu^{2}}{\mu^{2} x^{+\mu^{2}} y}<\chi(0) \cdot x(t)> & +\frac{\mu^{2} x}{\mu^{2} x^{+} \mu^{2} y} \frac{X}{1+X} \psi_{3}(t)<\underbrace{x}_{2}(0) \cdot \underset{\sim}{x}(t)> \\
& +\frac{\mu^{2} x}{\mu^{2} x^{+} \mu^{2} y} \frac{1}{1+x} \psi_{4}(t)<z(0) \cdot \underset{Z}{z}(t)> \tag{4-15}
\end{align*}
$$

Now it is assumed that the molecular correlation function

$$
\begin{aligned}
& \exp \left(-\frac{t}{\tau_{m}}\right) \\
= & \langle x(0) \cdot x(t)\rangle=\langle\chi(0) \cdot x(t)\rangle \\
= & \left\langle z_{\sim}(0) \cdot z(t)\right\rangle
\end{aligned}
$$

Then Eq. (4-15) should give the following equation for dielectric relaxation;

$$
\begin{equation*}
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{A_{1}}{1+i \omega \tau}+\frac{A_{2}}{1+i \omega \tau_{3}}+\frac{A_{3}}{1+i \omega \tau_{4}} \tag{4-16}
\end{equation*}
$$

where $\frac{1}{\tau_{3}}=\frac{1}{\tau_{m}}+(2 k), \frac{1}{\tau_{4}}=\frac{1}{\tau_{m}}+\left(2 k^{\prime}\right)$
$A_{1}=\frac{\mu^{2} y}{\mu_{x}^{2}+\mu_{y}^{2}}, \quad A=\frac{\mu^{2} x}{\mu^{2} x^{2}+\mu^{2} y} \quad \frac{x}{1+x}$, and
$A_{3}=\frac{\mu^{2} x}{\mu^{2} x+\mu^{2} y} \quad \frac{1}{1+X}$
If the dielectric data are analised by Budo's equation, viz,

$$
\begin{equation*}
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{C_{1}}{1+i \omega \tau_{1}}+\frac{C_{2}}{T+i \omega \tau_{2}} \tag{4-17}
\end{equation*}
$$

where $\tau=\tau_{m}, C_{1}=A_{1}$ and $C_{2}=\frac{\mu^{2}}{\mu^{2} \quad \mu^{2}}$
then,
$\frac{1}{1+i \omega \tau_{2}}=\frac{X}{1+X} \frac{1}{1+i \omega \tau_{3}}+\frac{1}{1+X} \frac{1}{1+i \omega \tau_{4}}$
This equation is formaliy similar to Eq. (4-17) so that approximately (see Chap. 3 - (c))

$$
\begin{equation*}
\tau_{2}=\frac{X}{1+X} \tau_{3}+\frac{1}{1+X} \tau_{4} \tag{4-19}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\frac{\tau_{2}}{\tau_{4}} & =\frac{X}{1+X}\left(\frac{\tau_{3}}{\tau_{4}}\right)+\frac{1}{1+X} \\
& \approx \frac{X^{2}}{1+X}+\frac{1}{1+X}=\frac{1+X^{2}}{1+X}
\end{aligned}
$$

This corresponds to

$$
(x-1)\left[x+1-\left(\frac{\tau 2}{\tau 4}\right)\right]=0
$$

This gives

$$
\begin{equation*}
x=1 \tag{4-20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\tau_{2}}{\tau_{4}}=x+1 \tag{4-21}
\end{equation*}
$$

Eq. (4-20) corresponds to the case when all the potential sites are identical to each other, whereas Eq. (4-21) corresponds to the case when the observed relaxation time τ_{2} from Budd's equation is greater than the group relaxation time. In the particular case of $X=1$, the observed relaxation time becomes twice of the group relaxation time.

This may explain the variation of relaxation time of methoxy group. According to the present considerations, the dielectric data should be analysed in terms of three relaxation times and weight factors so that the approximations in Eqs. (4-19) and (4-21) can be avoided. However, Budd's equation is usually used, because of the experimental limitations and calculation procedures.

The potential energy at sites II and IV may depend on the steric repulsion (o-substituent), while the energy at sites I and III may be independent of it, becasue the energy
is mainly based on the mesomeric effect. If the steric repulsion between methoxy group and o-substituent is great in comparison to the mesomeric effect, i.e., ($k^{\prime} / k-X$ \& 0), the τ_{2} / τ_{4} may explain the above conclusion that the steric effect shortens methoxy relaxation time. On the other hand, if the potential energy of the mesomeric effect and the steric repulsion is almost identical to each other ($V \approx 0$), then χ_{\sim}^{\approx}, which leads to the result that the observed τ_{2} should be twice the group relaxation time. This might be the case of anisole. In other words, anisole may be characterized by almost identical energy of the steric repulsion and the mesomeric effect.

Therefore we have seen that the observed τ_{2} for methoxy group depends on the relative importance of the steric repulsion to the mesomeric effect. This conslusion may be applicable not only to methoxy group relaxation but also to other rotational groups which have the possibility of mesomeric effect.
(a) ANOMALOUSLY SHORT RELAXATION TIME OF DIPHENYL ETHER

Fisher found that relaxation times of diphenyl ether and benzophenone in benzene solution at $23^{\circ} \mathrm{C}$ were 2.8 and 20.4 (psec) respectively ${ }^{49}$. If the relaxation times are considered to be mainly due to Stokes' type friction of dipolar molecule as proposed by Debye, the former relaxation time would be anomalously short compared to the latter one by taking account of Debye's relation, i.e., relaxation time is proportional to the molecular volume in the same solvent and at the same temperature.

The existing data regarding to diphenyl ether and other related compounds are listed in Table 5-1.

There are two main interpretations about this phenomenon (i) mesomeric effect due to overlap of π electrons of oxygen atom with those of benzene rings, proposed by Higasi and Smyth ${ }^{50}$, and (ii) double internal rotation mechanism suggested by Fong ${ }^{51}$.

Let us review these mechanisms briefly.

Table 5-1: Literature values in connection with "anomalousty short relaxation time of diphenyl ether".
(1) SYMMETRIC MOLECULES

COMPOUND	SOLVENT		$\underline{\tau_{0}(\mathrm{psec})}$	$\underline{\alpha}$	$\underline{\mu}$ (D)	REF.
Dipheny 1	Benzene	20	4		1.12	57
Ether	Benzene		2.8			49
Dinaphthyl ether	Benzene	20	15.4		1.14	57
Dinaphthyl sulfide	Benzene	20	9.2		1.55	57
	Benzene	20	10.0	0.08		
	Nujol	20	28.8	0.44		53
	Nujol	40	13.5	0.36		53
	Nujol	60	9.1	. 29		53
Diphenyl methane		30	6.5		0.26	52
		40	5.4		0.26	52
		40	13	0.08	0.22	53
		60	3.9		0.26	52
		60	7	0.08	0.22	53
		20	20.1		0.36	57
Dibenzyl ether	Benzene	20	18			54
	Benzene	20	27.6		1.12	52
	Benzene	40	15			54
	Benzene	40	18.7		1.11	52
	Benzene	60	13			54
	Benzene	60	13.2		1.11	52
Bibenzy 1		60	13.3		0.36	52
		75	10.5		0.34	52
Dicyclohexyl ether	Benzene	20	17			54
	Benzene	40	13			54
	Benzene :	60	9			54
Benzophenone	Cyclohexane	25	19.0	0.04	2.93	20
	Cyclohexane	40	15.2	0.03	2.92	20
	Benzene	20	21.2		2.98	5749
	Benzene	23	20.4			
Dicyclohexyl ketone	cyclohexane	25	14.8	0.08	2.69	20
	cyclohexane	40	11.2	0.04	2.69	20
Decafluorobenzophenone	p-xylene p -xylene	15 25	30.0 27.4	0	1.31 1.30	20
	p -xylene	40	20.0	0	1.30	20
	p-xylene	60	16.0	0	1.30	20
Bis (p-bromopheny 1) ether	Nujol	20	8.7	0.39		56

Table 5-1 continued:

COMPOUND	SOLVENT	TEMP. (${ }^{\circ} \mathrm{C}$)	To(psec) α		$\mu(D)$	REF.
4-4'-dibromodiphenyl sulfide Bis(p-nitrophenyl) ether	Benzene	20	8.2			57
	Benzene	20	12.5	0.1	2.22	55
	Benzene	20	13.9	0.10		56
Bis(o-nitrophenyl) ether	Benzene	20	52.0	0.14		56
	Benzene	40	37.4	0.14		56
	Benzene	60	27.8	0.08		56
Bis(diphenylmethyl) ether	Benzene	20	130	0.2	1.23	55
	Benzene	40	120	0.1	1.15	55
Bis(p-nitrophenyl) methane	Benzene	20	22.8	0.11		56

(2) ASYMMETRIC MOLECULES

COMPOUND	SOLVENT	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\tau_{0}(\mathrm{psec})$	$\underline{\alpha}$	$\mu(D)$	REF.
2-nitrophenyl phenyl ether	Benzene	20	41			54
	Benzene	40	30			54
	Benzene	60	23			54
4-bromophenyl phenyl ether	Benzene	20	72			54
	Benzene	40	53			54
	Benzene	60	43			54
m-nitrodiphenyl ether	Benzene	20	47.0		4.04	57
2-hydroxydiphenyl ether	Benzene	20	20		1.60	45
2-methyl diphenyl ether	Benzene	20	6.6		1.03	45
4-Biphenylyl phenyl ether	Benzene	20	9.4			54
	Benzene	40	9.8			54
	Benzene	60	9.1			54
		20	10.1		1.07	57
Benzyle phenyl ether	Benzene	20	20			54
	Benzene	40	16			54
	Benzene	40	31		1.13	52
	Benzene	60	12			54
	Benzene	60	17.5		1.14	52
m-Dibenzoyl benzene	p-xylene	25	43.6		2.52	20
	p-xylene	60	27.7		2.50	20
4-Benzoyl pyridine	p-xylene	25	38.0	0.07	2.99	20
	p-xylene Benzene	40 20	30.4 17.7	0.07	3.01 1.96	20 57
p-Pyridyl phenyl ether	Benzene	20	52.2		2.46	57

Table 5-1 Continued:

COMPOUND	SOLVENT	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\tau_{0}(\mathrm{psec})$	$\underline{\alpha}$	$\underline{\mu}$ (D.)	REF.
n-Buty 1 pheny 1 ether	Benzene	20	25	0.1	1.19	55
	Benzene	20	46	0.1	1.11	55
	Benzene	40	32	0	1.13	55
	Benzene	60	23	0	1.15	55
m-Diphenoxybenzene	Benzene	20	11			54
	Benzene	40	8			54
	Benzene	60	6			54
(3) OTHER MOLECULES						
COMPOUND	SOLVENT	TEMP. $\left(C^{\circ}\right)$	τ_{0} (psec)	α	$\mu(D)$	REF.
Fluorenone		20				
	Benzene	40	14.9			58
	Benzene	60	11.5			58
Thianthrene	Benzene	20	31			54
	Benzene	40	24			54
	Benzene	60	19			54

(i) Mesomeric Moment Mechanism ${ }^{50}$.

There are four possible molecular configurations for diphenyl ether as shown in Figure $5-1^{50}$. Configuration A represents that two benzene rings are coplanar, whereas Configuration B shows that two benzene rings are perpendicular to the plane of the paper. Configurations C and D show that one of the benzene rings lies on the same plane of the paper, while another ring is perpendicualr to the plane. Obviously Configuration A is expected to exhibit the greatest steric repulsion from

the hydrogens in other positions, while the repulsion of Configuration B is expected to be very weak. However, we should also take into account delocalization energy arising frompoveriap of π electrons of the central oxygen atom with the benzene rings. This energy is appeared to increase with the order: A> C=D> B. Electron diffraction measurements favour Configurations C and D. Now focusing our attention on the mesomeric effect of Configurations C and D, we see that the mesomeric moment changes its direction by internal rotation as shown in Figure 2.

Therefore, the change of the moment depends only on internal rotation, which would mainly contribute to the dielectric relaxation. This necessarily means shortening of the observed relaxation time τ_{0} in comparision with the molecular relaxation time. In the case of benzophenone, however, such an internal rotation is highly hindered by the strong overlap of π orbitals of benzene rings with $s p^{2}$ orbitals of the central carbon atom so that only the molecular re-orientation would influence on the relaxation processes. This is the difference between the mechanism of dielectric relaxation of diphenyl ether and that of benzophenone.
(ii) Double Internal Rotation ${ }^{51}$.

In this model, the effect of mesomeric moment is entirely excluded, instead, the internal rotation around the $\mathrm{C}-\mathrm{O}$ bonds is inspected mechanically and it is concluded that if the

Figure 5-4: Potential energy curve corresponding to 5-3.
internal rotation takes place with minimal potential energy, i.e., $\phi_{1}=180^{\circ}-\left(90^{\circ}+\phi_{2}\right)$, where ϕ_{1} and ϕ_{2} are the rotational angles of two phenyl rings, the simultaneous variations of ϕ_{1} and ϕ_{2} should occur.

In addition, the successive rotations of two phenyl rings lead to overall molecular rotation and approximatelysame volume swept out by the rotations as that of benzene. Such a coupled rotation would, therefore, explain the anomalous relaxation time of diphenyl ether.

Recently structural problems of dipheny1 ether and the related compounds have been investigated by N.M.R. ${ }^{62 \sim 66}$ and dipole moments ${ }^{59}{ }^{61}$
(b) CORRELATION FUNCTION TREATMENT OF DIELECTRIC. RELAXATION OF DIPHENYL ETHER.

We shall consider two equivalent potential wells for internal rotation of dipheny ether in accordance with the mesomeric moment mechanism.

The potential energy curve corresponding to Figure 5-3 is shown in Figure 5-4.

The occupational probability $\mathrm{P}_{\mathbf{i}}$ at each site $(\mathbf{i}=1,2)$ is given by

$$
\begin{align*}
& P_{1}(t)=\frac{1}{2}+m \psi(t) \\
& P(t)=\frac{1}{2}-m \psi(t) \tag{5-1}
\end{align*}
$$

where $\psi=\exp (-2 k t)$ and m is a constant determined from the initial conditions. If each site is assumed to be occupied completely, the dipole moment ${\underset{\sim}{i}}_{i}$ at the site would be;

$$
\begin{align*}
& \mu_{1}(0)=\mu_{x} x(0)+\mu_{y} y(0) \\
& \mu_{2}(0)=-\mu_{x} x(0)+\mu_{y} y(0) \tag{5-2}
\end{align*}
$$

where $\mu_{x}=-\mu_{m} \sin \phi, \mu_{y}=\mu_{0}-\mu_{m} \cos \phi$, and $\underset{\sim}{x}(t)$ and $\chi(t)$ stand for the unit vectors along the x and y axes, respectively.

The total dipole moment of the system at an arbitrary time is, therefore, given by:

$$
\begin{align*}
\mu_{n}(t) & =\mu_{1}(0) P_{1}(t)+\mu_{2}(0) P_{2}(t) \\
& =\mu_{x}(2 m) \psi(t) x(t)+\mu_{y} y(t) \tag{5-3}
\end{align*}
$$

m can be obtained by the assumptions in Eq. (5-2).

$$
\begin{align*}
& P_{1}(0)=1 \quad \text { and } P_{1}=0 \quad \text { give } m=\frac{1}{2} \\
& P_{2}(0)=1 \quad \text { and } P_{1}(0)=0 \text { give } m=-\frac{1}{2} \tag{5-4}
\end{align*}
$$

Hence Eqs. (5-4) and (5-3) lead to

$$
\begin{align*}
& {\underset{L}{1}}_{1}(t)=\mu_{x} \psi(t) \underset{\sim}{x}(t)+\mu_{y} y(t) \\
& {\underset{\sim}{x}}_{2}(t)=-\mu_{x} \psi(t) \underset{\sim}{x}(t)+\mu_{y} y(t) \tag{5-5}
\end{align*}
$$

The correlation function $\Phi(t)$ for this system may be given by

$$
\begin{equation*}
\Phi(t)=\frac{\sum_{i}^{2} P_{i}<{\underset{\sim}{u}}_{i}(0) \cdot \dot{\mu}_{i}(t)>}{\sum_{i}^{0} P_{i}<{\underset{\sim}{i}}_{i}(0) \cdot \dot{\sim}_{i}(t)>} \tag{5-6}
\end{equation*}
$$

where ${ }^{\circ} \mathrm{Pi}$ is the equilibrium occupational probability (in the present case, ${ }^{\circ} P_{1}={ }^{\circ} P_{2}=\frac{1}{2}$).

Making the scaTer-products in Eq.(5-6) from Eqs.(5-2)
and (5-5) we finally find:

$$
\Phi(t)=\frac{\mu^{2} y}{\mu_{x}^{2}+\mu_{y}^{2}}<\chi^{2}(0) \cdot \chi(t)>+\frac{\mu^{2} x}{\mu_{x}^{2}+\mu_{y}^{2}}<x(0) \cdot x(t)>
$$

This should give the following equation for dielectric relaxation

$$
\begin{equation*}
\frac{\varepsilon^{\star}(\omega)-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}}=\frac{C_{1}}{1+i \omega \tau_{m}}+\frac{C_{2}}{1+i \omega \tau_{2}} \tag{5-7}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{1}=\frac{\mu^{2} y}{\mu^{2} x+\mu^{2} y}, \quad C_{2}=\frac{\mu^{2} x}{\mu^{2} x+\mu^{2} y} \tag{5-8}\\
& <\underset{\sim}{x}(0) \cdot \underset{\sim}{x}(t)\rangle=\langle\chi(0) \cdot \chi(t)\rangle=\exp \left(-\frac{t}{\tau m}\right)
\end{align*}
$$

(τ_{m} is the molecular relaxation time)
and $\frac{1}{\tau_{2}}=\frac{1}{\tau_{m}}+(2 k)$
As the group relaxation time τ_{g} may be defined by $\tau_{g}=(2 k)^{-1}$, then

$$
\begin{equation*}
\frac{1}{\tau_{2}}=\frac{1}{\tau_{m}}+\frac{1}{\tau_{g}} \tag{5-9}
\end{equation*}
$$

C_{2} can be rewritten as

$$
\begin{equation*}
C=\frac{1}{1+\left(\frac{\mu y}{\mu_{x}}\right)^{2}}=\frac{1}{1+\left(\frac{2 \mu C-0}{\mu_{m}}-1\right)^{2} \cot ^{2} \theta} \tag{5-10}
\end{equation*}
$$

where ${ }^{\mu}-0$ is the bond dipole moment at $C-0$ bond.
If $\mu_{x} \gg \mu_{y}$ in Eq. (5-7), the second term on the right hand would be dominant so that Eq. (5-9) may govern the relaxation process, which is essentially the same as Fong's conclusion.

Therefore we have seen that Fong's result can be derived with the help of Higasi's point of view.
(c) DISCUSSION AND RESULTS

The anomously short relaxation time can be explained by the present treatment as follows:

Substitutions of $\mu_{C-0}=0.95=\mu_{m}$ and $\theta=60^{\circ}$ in Eq. (5-10) lead to $C_{2}=0.75$, (This is only a tentative estimate, which just states that if $\mu_{m} \geqslant \mu_{C O}=0.95$ (D), then $C_{2} \geqslant 0.7$) and from Eq. (5-9) $\tau_{m}=19(\mathrm{psec})^{20}$ (relaxation time of benzophenone) and $\tau_{g}=7.3$ (psec)(pure pyridine at $\left.20^{\circ} \mathrm{C}\right)^{101}$ give $\tau_{\text {obs }}=5.3(\mathrm{psec})$, which can be compared with the experimental results (see Table 5-1).

According to Eq. $(5-10)$, if μ_{CO} has the same direction as the mesomeric moment μ_{m}, and $\left|\mu_{\mathrm{CO}}\right| \leqq 1(\mathrm{D}), \mathrm{C}_{2}$ becomes almost unity for $\mu_{m} \approx 1(D)$. (Note that for $\left(p-X C_{6} H_{5}\right)_{2}$, ${ }^{\mu} \mathrm{C}-0$ in Eq. (5-10) can be readily obtained by [(dipole moment of $C-0$) - (dipole moment of $C-X)]$. Therefore molecules which contain $X=F, C 1, \mathrm{Br}$, and I^{12} are expected to have $\mathrm{C}_{2} \approx 1$, and apparently short relaxation time, because they have ${ }^{\mu} C-X$ of 1 (D) $\sim 2(D)$, and the same directions of ${ }^{\mu} C-x$ as μ_{m}. Molecules of $\mathrm{X}=\mathrm{CH}_{2} \mathrm{~F}, \mathrm{CF}_{3}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CHCl}_{2}, \mathrm{CH}_{2} \mathrm{Br}, \mathrm{OCH}_{3}$, $\mathrm{SCH}_{3}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{SH}, \mathrm{COOH}, \mathrm{COOCH}_{3}$, and $\left.\mathrm{NCCH}_{3}\right)_{2}$, may al so satisfy the above conditions, although they are so called "flexible".

For bis-(p-nitrophenyl) ether, the present model fails to explain the short relaxation time of $\tau_{2}=12.5$ (psec) without assumption of $\mu_{m} \approx 3$ (D). But at the same time it should be also pointed out that bis- $(p-n i t r o p h e n y 1)$ methane has $\tau_{0}=$ 22.8 (psec), which may be explained not by Fong's model but by the present treatment.

The short relaxation time of diphenyl methane may be explained in terms of the hyperconjugation of the central $-\mathrm{CH}_{2}-$ group with the two phenyl rings ${ }^{50}$.

In the case of benzophenone, Eq. (5-10) can be written as

$$
C_{2}=\frac{1}{1+\left(\frac{\mu_{C=0^{-\mu_{m}} \cos 60^{\circ}}^{\mu_{m} \sin 60^{\circ}}}{}\right)^{2}}
$$

where $<\mathrm{C}-\mathrm{C}-\mathrm{C}$ is taken as $120^{67,68}$. Insertions of $u_{m}=1$ (D) and ${ }^{\mu}{ }_{C=0}=2.83$ in the above equation give $\mathrm{C}_{2}=0.12$, which indicates that contribution from the molecular relaxation to the mean relaxation time is very large in this molecule. Fong's model requires freezing of internal rotation around the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond to account for the observed relaxation time of benzophenone in connection with that of flurorenone (obviously internal rotation around the $\mathrm{C}-\mathrm{C}_{\mathrm{C}}^{\mathrm{C}}-\mathrm{c}$ bond in this molecule is not probable). However as seen from the above estimates, the present model implies that the relaxation time of benzophenone should be similar to that of fluroenone even if the internal rotation in the former compound is possible. Non-planar configuration of the two aromatic rings in benzophenone is recently suggested from N.M.R. measurements by Montaudo, Finocchiaro and Maravigua. This configuration is also favoured by several workers ${ }^{67 / 69}$.

We cannot strictly apply the present model to the asymmetrical molecules. However it is of interest to note that 0 -methylphenyl phenyl ether ($\mu=1.03 \mathrm{D}$) and biphenyl phenyl ether ($\mu=1.07 \mathrm{D}$) have relaxation times of 6.6 (psec) and 10.1 (psec), respectively, and dipole moments of the both compounds are very close to that of diphenyl ether ($\mu=1.12 \mathrm{D}$). (See Table 5-1).

If molecular configurations given in Figure 5-5 are possible, and dipole moments of the phenyl group indicated by " $\mathrm{C}_{6} \mathrm{H}_{5}$ " and the methyl group are negligibly small, the same treatment as that employed for diphenyl ether would be possible.

Fiqure 5-5 (b): Molecular Configurations for biohenyl phenyl ether

119

If $\tau_{m}=18$ (psec) and $\tau_{g}=9(p s e c)$ are assumed for o-methylpheny 1 phenyl ether, Eq. (5-9) gives $\tau_{\text {obs }}=6.0$ (psec). Similarly if $\tau_{m}=3 \times 9=27$ (psec) and $\tau_{g}=3 \times 9 / 2=13.5$ (psec) are assumed for biphenyl phenyl ether, Eq. (5-9) gives $\tau_{o b s}=9$ (psec). On the other hand, in the cases of o-hydroxyphenyl phenyl ether and o-nitrophenyl phenyl ether, the group moments of $-\mathrm{OH}(1.6 \mathrm{D})$ and $-\mathrm{NO}_{2}$ (4(D)) cannot be neglected so that stortening of relaxation times may not occur ${ }^{12}$.

Bis-(alkyl) ether is not expected to show the shortening of relaxation time, because there is no mesomeric moment, and internal rotation around $C-0$ bonds would be different from those of diphenyl ether.

Allyi ether was measured in p-xylene at $25^{\circ} \mathrm{C}$ to have $\tau_{0}=$ 5.65 (psec), $\alpha=0$ and $\mu=1.22$ (D). The τ_{0} value is wel 1 compared with those of di-n-butyl ether ${ }^{70}\left(\tau_{0} 6.5\right.$ (psec) in benzene at $25^{\circ} \mathrm{C}$) and di-n-propy1 ketone ${ }^{71}\left(\tau_{0}=5.4\right.$ (psec) in benzene at $25^{\circ} \mathrm{C}$), which suggests that the shortening of relaxation time does not occur in the compound. Furthermore, the observed dipole moment is in excellent agreement with that of diethyl ether $\left(\tau_{0}=2.4(\mathrm{psec}) \text { and } \mu=1.22(D)\right)^{20}$, which implies that the π electrons involved in this compound do not shift toward C-0 bonds so that the coupling of molecular relaxation time with group one may not be expected.

Anderson and Smyth ${ }^{54}$ attempted to calculate dipole moments for substituted phenyl ethers based on "free rotation model" without considering mesomeric moments and obtained "not bad" agreement between calculated and experimental values for most of compounds treated by them. But here dipole moment calculations are made for simple compounds to obtain the mesomeric moments from the experimental values. For 4-4'-dihalodiphenyl ether, melecular models are essentially based on Figure 5-1, and the results are listed in Table 5-2 together with those of Anderson and Smyth. On the other hand, for 4-halophenyl phenyl ethers, the molecular models are given in Figure 5-6, and the results are collected in Table 5-3. It will be seen that for 4-4'-dihalodiphenyl ethers, calculated mesomeric moments in cases A, C. and D are very smal1, however, for 4-halopheny1 phenyl ether, they are in the order of 1 (D), which was assumed in estimates of C_{2} previously.

122

Table 5-2: Calculated mesomeric moments μ_{m} for 4-4 -dihalodipheny1 ethers $\left(p-\mathrm{XC}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{O}$, and diphenyl ether. (see Figure 5-1)

	Mode 1	F	Br	H
$\mu_{\text {obs }}$ (D)		$0.57^{\text {a }}$)	$0.60{ }^{\text {a }}$)	$1.16^{\text {b }}$
${ }^{\mu} \mathrm{XC}_{6} \mathrm{H}_{5}$ (D)		$1.46{ }^{\text {b }}$)	$7.54{ }^{\text {b) }}$	--
$\mu_{m}(D)$	A	0.09	0.10	2.20
	C \& D	0.15	0.17	1.25
${ }^{\mu} \mathrm{calc}$	B	0.42	0.50	1.04
${ }^{\text {catc }}$ *		$0.44^{\text {a }}$)	$0.50^{\text {a }}$)	--

${ }^{\mu} C_{0}=1.04$ (D) was used after ref. (50). a) and b) were obtained from refs. (54) and (12). Hcalc based on Model B is expected to be the same as ${ }^{\mu}$ calc ${ }^{*}$: < COC was regarded as $120^{\circ} \mathrm{b}$).

Table 5-3: Calculated mesomeric moments μ_{m} for 4-halopheny1 phenyl ethers $\mathrm{p}-\mathrm{XC}_{6} \mathrm{H}_{5} \mathrm{O} \quad \mathrm{C}_{6} \mathrm{H}_{5}$. (see Figure 5-6)

	Mode 1	F	C1	Br
$\mu_{\text {obs }}$ (D)		$1.37^{\text {a) }}$	$1.55^{\text {a }}$)	$1.57^{\text {a) }}$
${ }^{\mu} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}$ (D)		1.46 b)	1.58 b)	1.54 b)
μ_{m} (D)				
-	A^{\prime}	0.84	0.98	1.10
	C^{\prime}	1.11	1.21	1.26
	D^{\prime}	0.51	0.74	0.77
$\mu_{m}(a v)$	$C^{\prime} \& D^{\prime}$	0.81	0.98	1.02
${ }^{4} \mathrm{calc}$	B^{\prime}	1.30	1.39	1.36
${ }^{\prime} \mathrm{calc}{ }^{*}$		$1.30^{\text {a) }}$	$1.39{ }^{\text {a) }}$	$1.32{ }^{\text {a }}$

$\mu_{m}(a v)$ was obtained by $1 / 2\left(\mu_{m}\left(C^{\prime}\right)+\mu_{m}\left(D^{\prime}\right)\right)$, where $\mu_{m}\left(C^{\prime}\right)$ and $\mu_{m}\left(D^{\prime}\right)$ are μ_{m} s for models C^{\prime} and D^{\prime}, respectively, and other symbols are the same as those in Table 5-3.

CHAPTER 6 Some Sulfur Compounds.

(a) DI-B-NAPHTHYL AND DIMETHYL DISULFIDES

Dialkyl and diaryl disulfides are thought to have skew configurations ${ }^{72 \sim 76}$. Bergson ${ }^{77 \sim 78}$ has shown from molecular orbital considerations that a dihedral angle of 90° is energetically favoured in a sulfide, as this leads to minimal repulsions between the lone-pair electrons of the two sulfur atoms. Furthermore, the stability of this form could be enhanced by π-bonding arising from overlap of the p electron pair of one sulfur atom with 3d orbitals of the other. These considerations are compatible with the observed S-S bond shortening ${ }^{74}$.

The dielectric measurements of dialkyl and diaryl disulfides were made by Aroney, Chio, Le Fevre, and Radford ${ }^{79}$, whose results are collected in Table I.

Di-B-naphthy 1 disulfide is measured in p-xylene at $25^{\circ} \mathrm{C}$ to have $\tau_{0}=16.1$ (psec), $\alpha=0$, and $\mu=1.94$ (D), and dimethy1 sulfide is also measured at the same conditions to have $\tau_{0}=4.1$ (psec), $\alpha=0$, and $\mu=1.97$ (D). These values are well compared with those of Table 6-1 except the relaxation time of $d i-\beta-$ naphthyl sulfide.

Table 6-1: Dipole moments μ and relaxation times τ of some dialkyl and diaryl disulfides. Reported in Ref. (79).

	$\underline{\mu(D)}$	$\underline{\tau(p s e c)}$
$\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{O}_{2}$	0.83	1.9
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}_{2}$	1.87	4.3
$\left(\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{~S}_{2}$	1.84	8.5
$\left(\mathrm{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{~S}_{2}$	0.45	20
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{~S}_{2}$	1.79	15
$\left(\beta-\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{S}_{2}$	1.97	

It should be added that Aroney et al determined relaxation times in Table I from the dielectric loss measurements at two frequencies, using the Debye equation ${ }^{79}$.

In the disulfide compounds, there is no dipole component along the $\mathrm{S}-\mathrm{S}$ bond. Therefore if the rotation around the S-S bond is possible, while the rotations around the S-C bonds

are not possible, the shortening of relaxation time similar to that for p-dimethoxybenzene would be expected (see Chap. 1 (c) (ii)) so that the observed relaxation time $\tau_{\text {obs }}$ could be expressed in the form as

$$
\begin{equation*}
\frac{1}{\tau_{\mathrm{obs}}}=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}} \tag{6-1}
\end{equation*}
$$

where τ_{1} is the molecular relaxation time and τ_{2} the group relaxation time associated with the rotation of the S-S bond.

On the other hand, in the case when the rotations around the two C-S bonds are possible, while the rotation of the S-S is not possible, the dielectric behaviour somewhat similar to that for diphenyl ether would be expected (see Chap. 5), and the observed relaxation time may be characterized by the equation

$$
\begin{equation*}
\frac{1}{\tau_{o b s}}=\frac{1}{\tau_{1}}+\frac{1}{\tau_{d}} \tag{6-2}
\end{equation*}
$$

where τ_{d} is the relaxation time connected with the rotations about the two C-S bonds.

As the third case, if it is assumed that the rotations of the three rotational axes in Figure 6-1 simultaneously occur, the following equation would be satisfied

$$
\begin{equation*}
\frac{1}{\tau_{o b s}}=\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}}+\frac{1}{\tau_{d}} \tag{6-3}
\end{equation*}
$$

Substitutions of $\tau_{1}=40, \tau_{2}=30$ and $\tau_{d}=20$ in Eqs. (6-1), $(6-2)$ and $(6-3)$ give $\tau_{\text {obs }}=17.1,13.3$, and 9.2 , respectively.
(τ_{0} of 2-bromonaphthalene in cyclohexane at $25^{\circ} \mathrm{C}$ is 25.5 $(\mathrm{psec}))^{25}$. It is interesting to note that dinaphthyl ether, which may be responsible for possibility (2), has $\tau_{0}=15.4$ (psec) in benzene at $25^{\circ} \mathrm{C}^{57}$. The observed relaxation time of di- β-naphthyledisulfide of 16.1 (psec) would, therefore, exclude the possibility of the third case. But because of uncertainty of the above substitutions, we cannot say that possibility (1) is more possible than possibility (2).

From the To value of dimethyl disulfide, it can be said that the rotation around the S-S bond is unlikely to occur. (For example, compare it with \wedge_{0}^{τ} value of dimethoxymethane (3.52 (psec)), which is regarded as, rigid molecule). (Chap. 4). This suggests that the possibility (1) may not be valid. Therefore, the possibility (2) is most likely for the disulfide compounds. For dimethyl disulfide, as there is no appreciable mesomeric moment contribution to the shortening of the observed relaxation time, the rotations around the C-S bonds do not apparently contribute to the observed relaxation time.

The possibility (2) is also supported by the measurements of Kerr constant ${ }^{80}$, and dipole moment ${ }^{79 \sim 81}$. From the standpoint, the diheral angles of dialkyl and diaryl disulfides are evaluated.
(b) THIOPHENOL AND 4-CHLORO-M-BENZENEDITHIOL

0-chlorophenol is known to make intramolecular hydrogen bond, which is supported by measurements of infra-red spectra ${ }^{38,85}$ and dipole moments ${ }^{13,82 \sim 84}$. Similar hydrogen bonds have been reported for 0-halothiophenols by Josien, Castinal and Saumagne ${ }^{86}$, and Lumbroso and Passerini ${ }^{14}$.

Thiophenol is measured in $p-x y l e n e$ at $25^{\circ} \mathrm{C}$ to have $\tau_{0}=$ $10.9(\mathrm{psec}), \alpha=0, \tau_{1}=12.8(\mathrm{psec}), \tau_{2}=3.2(\mathrm{psec}), \mathrm{C}_{1}=$ 0.84 and $\mu=1.03$ (D). Lumbroso and Dumas ${ }^{15}$ determined a group moment angle of 46° and a dipole moment of 1.19 (D) for the compound. Using these values, we obtain $\mathrm{C}_{1}=0.48$, which is very smal1 in comparison with the observed value. It is interesting to note that the above observed values are well compared with those of anisole. (Farmer and Walker ${ }^{29} ; \tau_{0}=9.0$ (psec), $\alpha=0.03, \tau_{1}=13.3(\mathrm{psec}), \tau_{2}=7.0(\mathrm{psec}), C_{1}=0.33$, and $\mu=1.19$ (D) in p-xylene at $25^{\circ} \mathrm{C}$, and Kranbuehl, Klug, and Vaughan $^{35} ; \tau_{1}=12.4(\mathrm{psec}), \tau_{2}=2.28(\mathrm{psec})$, and $C_{1}=0.75$ in benzene at $20^{\circ} \mathrm{C}$, for instance, mole fraction $=0.721$). Therefore, the observed τ_{1} and τ_{2} of thiophenol may be attributed to molecular and group relaxation times, respectively.

4-Chloro-m-benzenedithiol has $\tau_{0}=12.6(\mathrm{psec}), \alpha=0.12$ $\tau_{1}=15.5(\mathrm{psec}), \tau_{2}=2.5(\mathrm{psec}), C_{1}=0.84$, and $\mu=1.45$ (D) in p-xylene at $25^{\circ} \mathrm{C}$.

Figure 6-2: Coordinate system for 4-chloro-m-benzenedithiol

The dipole moment for free rotation is calculated as 1.83 (D), which is too large to account for the observed value. Conformational analysis gives 1.49 (D).for (ϕ_{1}, ϕ_{2}) = $\left(0^{\circ}, 90^{\circ}\right)=\left(0^{\circ}, 270^{\circ}\right), 1.45(\mathrm{D})$ for $\left(\phi_{1}, \phi_{2}\right)=\left(90^{\circ}, 0^{\circ}\right)=$ $\left(270^{\circ}, 0^{\circ}\right)$, and 1.37 (D) for $\left(\phi_{1}, \phi_{2}\right)=\left(90^{\circ}, 270^{\circ}\right)=\left(270^{\circ}, 90^{\circ}\right)$. If this molecule makes \wedge intra-molecular hydrogen bond between the chlorine atom and the $-S H$ group $a t^{\prime} 2$ position, then $\phi_{1}=180^{\circ}$ may be expected. However, this angle gives 1.99 (D), 2.11 (D), 2.23 (D) and 2.11 (D) for $\phi_{2}=0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°, respectively, all of which do not agree with the observed moment.

Now if the SH group at the 4 position is assumed to exhibit free rotation, while that of 2 position is assumed to be fixed at an angle of ϕ_{1}, then the average square dipole moment is given by

$$
\begin{aligned}
\left.<\mu^{2}\right\rangle & =\frac{\int_{0}^{2 \pi} \mu^{2} d \phi_{2}}{2 \pi} d \phi_{2} \\
& =m_{x}^{2}+\mu^{2}+2 Q^{2} \sin ^{2} B+2 Q \sin B\left(\mu \sin A-m_{x} \cos A\right) \cos \phi_{1}
\end{aligned}
$$

where $m_{x}=x \sin c, \mu=2(P+Q \cos B) \cos A+X \cos C$, and notations are found in $X=1.58(D), C=120^{\circ}, P=0, Q=1.19(D), B=46^{\circ}$ and $A=60^{\circ}$ give moments of 1.49 (D), 1.83 (D), and 2.11 (D) for $\phi_{1}=0^{\circ}, 90^{\circ}$ and 180°, respectively. The above assumptions
may be supported by agreements between the observed dipole moments and the calculated ones for free rotation of m-dimethoxybenzene, and m-halothiophenols (see Tables 2-5 \& 2-6). However, $\phi_{1}=180^{\circ}$ gives a moment of 2.11 (D), which does not agree with the observed one, whereas $\phi_{1}=0^{\circ}$ gives a moment, which is very close to the observed one. Therefore it will be seen that an the formation of intramolecular hydrogen bond in this compound is unlikely. This may be also indicated by comparison of $\tau_{2}=2.48$ (psec) with $\tau_{2}=3.15$ (psec) of thiopheno1. Because such an intramolecular hydrogen bond is expected to lengthen the SH group relaxation time.

CHAPTER 7 Difuryl Mercuries

There are two opinions in connection with the valence angle of mercury when it is bonded to carbon or to carbon and halogen, i.e., (i) the valence angle is $180^{\circ 87 \sim 92}$, and (ii) it is not $180^{93 \sim 97}$. Measurements of Raman spectra ${ }^{89,90}$, electron diffraction ${ }^{91}$, and X-ray diffraction ${ }^{92}$ in the $\Lambda^{\text {vapour state }}$ support (j). In addition, Smyth and Oesper ${ }^{88}$ assumed (i) in calculation of the dipole moment of benzylmercuric chloride. The valence electrons of Hg (II) which occupies $6 s^{2}$ orbitals might be expected in compound formation to assume sp orbitals, which implies (i).

However, Hampson ${ }^{94}$ reported dipole moments 1 isted in Table I for diphenyl mercury and mercuri-bis-p-substituted benzene. These non-zero moments suggested (ii).

Coop and Sutton ${ }^{99}$ attempted to explain that the nonzero apparent orientation polarization of mercuri-bis-chlorobenzene was due to the atomic polarization, but their calculaan tions showed too low, atomic polarization for this compound to account for the apparent orientation polarization.

Sipos, Sawatzky and Wright ${ }^{95}$ measured the distortion polarization of diphenyl mercury, and reported ${ }^{a}$ dipole moment of 0.79 (D) for the compound. Later it was shown by Sawatzky and Wright ${ }^{96}$ that aliphatic bis-mercurials also had non-zero dipole moment. (See Table 7-1).

Table 7-1: Dipole moments of bis-mercurials ${ }^{96}$.

COMPOUND	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	SOLVENT	$\mu_{\text {obs }}(\mathrm{D})$
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	40	Benzene	1.08
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	30	Benzene	0.92
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	20	Benzene	0.72
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	40	Dioxane	0.80
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	25	Dioxane	0.85
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	20	Dioxane	0.89
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	40	Dioxane	0.88
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$	25	Dioxane	0.85
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$.	20	Dioxane	0.93
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}$	20	Dioxane	0.71
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}$	20	Benzene	0.69
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}$	20	Benzene	0.74
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg}$	20	Benzene	0.97
$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Hg}$	20	CCl_{4}	0.29
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Hg}$	20	Benzene	0.55
$\left(\mathrm{N}-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{Hg}$	20	Benzene	0.54
Mercuracyclohexane	20	Benzene	0.86
Mercuracycloheptane	20	CS_{2}	0.90

Figure 7-1: Parameters for calculations of dinole moments of 2-2'- and 3-3'-difuryl mercuries ${ }^{100}$

Measurements of dielectric relaxation of 2-2'- and 3-3'difuryl mercuries would provide some information to this problem. The former compound has $\tau_{0}=14.4(\mathrm{psec}), \alpha=0$, and $\mu=1.16(D)$, and the latter one has $\tau_{0}=15.8(\mathrm{psec}), \alpha=0$, and $\mu=1.08$ (D).

If $<\mathrm{CHgC}$ is assumed to be 180°, the dipole moments for free rotation are calculated to become 0.46 (D), and 0.61 (D) for the 2-2'-, and 3-3'-compounds, respectively. (see Figure 7-1). Under the same assumption, the dipole moments of the cis configurations are 0.65 (D) for the 2-2'-compound, and 0.86 (D) for the 3-3'-compound. It is, therefore, seen that the assumption of $\angle \mathrm{CHgC}=180^{\circ}$ does not appear to explain the observed dipole moments. Moreover, if this angle is assumed, the most probable relaxation time τ_{0} may be mainly due to reorientation of the fury rings.

Therefore the shortening of the relaxation time in comparison with the molecular one may be expected as in the case of p-dimethoxybenzene. Supposing the relaxation time of furyl ring is 10 (psec) as a maxium value, then that of the observed value should be 6.6 (psec) which does not agree with the observed relaxation times. On the other hand, if $\mathrm{C}-\mathrm{Hg}-\mathrm{C}$ bond is assumed to be non-linear, there would exist two cases (1) the shortening of relaxation time as seen in diphenyl ether, and (2) normal behaviour of relaxation time as seen in anisole, acetophenone,
chlorobenzene, etc. As discussed in Chapter 5, for the case (1) the observed relaxation time would change, depending on $\wedge C_{2}$ value, i.e., $\left(6.6 \sim 20(\mathrm{psec})\right.$, where τ_{m} is assumed to be 2×10 (psec)), whereas Fong's model implies $\tau_{\text {obs }}=6.6(\mathrm{psec}) .0 \mathrm{n}$ the other hand, the case (2) would give $10 \leqq \tau_{\text {obs }} \leqq 20$. Therefore both cases would explain the observed relaxation times of the difuryl mercuries except Fong's model. Of course, it is very difficult to attribute the relaxation mechanism of the compounds to one of the two cases from the relaxation time alone. However, it may be concluded from the above considerations that $<\mathrm{CHgC}$ of 2-2'- and 3-3'-difuryl mercuries appears not to be 180°.

REFERENCES

1. For examples: E. P. Gross, Phys. Review, 97, 395 (1954), J. Chem. Phys., 23, 1415 (1955).
2. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
R. Kubo, "Lectures in Theoretical Physics", Interscience Pub., London (1959).
3. J. Kirkwood, J. Chem. Phys., 7, 911 (1939).
4. R. H. Cole, J. Chem. Phys., 42, 637 (1965).
h
5. H. Fröllich, "Theory of Dielectrics", 2nd Ed., Oxford Univ., Press, London (1958).
6. For example: L. D. Landau and E. M. Lifshitz, "Statistical Physics", translated from Russian, Perganon Press Ltd., (1958).
7. J. D. Hoffmann and H. G. Pfeiffer, J. Chem. Phys., 22, 132 (1954), J. D. Hoffmann, J. Chem. Phys., 23, 1331 (1955).
8. G. Williams, Trans. Faraday Soc., 64, 1219 (1968).
9. G. Williams, Trans. Faraday Soc., 64, 1934 (1968).
10. H. Goldstein, "Classical Mechanics", Addison-WesTey Pub. Co. Inc. (1950).
11. H. Eyring, Phys. Rev., 39, 746 (1932).
M. V. Volkenstein, "Configurational Statistics of Polymetric Chains", Interscience Pbu. N.Y., (1963). (Translation from Russian).
P. J. Flory, "Statistical Mechanics of Chain Molecules", Interscience Pub., N.Y. (1969).
12. C. P. Smyth, "Dielectric Behaviour and Structure", McGrawHill, N.Y. and London (1955).
13. W. F. Anzilotti and B. C. Curran, J. Amer. Chem. Soc., 65, 607 (1943).
14. H. Lumbroso and R. Passerini, Bul1. Soc. Chim. (France), 311, (1957).
15. H. Lumbroso and G. Dunas, Bull. Soc. Chim. (France) 651 (1955).
16. W. F. Hassell, M. D. Magee, S. W. Tucker and S. Walker, Tetrahedron, 20, 2137 (1964).
17. W. F. Hassel1, Ph.D. Thesis, University of Aston in Birmingham (1966).
18. M. D. Magee, Ph.D. Thesis, University of Aston in Birmingham (1967).
19. Sing Pin Tay, M.Sc. Thesis, Lakehead University, Thunder Bay, Ontario, Canada (1972).
20. D. B. Farmer, Ph.D. Thesis, University of Aston in Birmingham (1967), Coaxial Line Method.
21. P. F. Moutain, Ph.D. Thesis, University of Aston in Birmingham (1969).
22. T. J. Buchanan and E. H. Grant, Brit. J. App1. Phys., 6, 64 (1955).
23. M. W. Aaron and E. H. Grant, Trans. Faraday Soc., 59, 85 (1963).
24. E. H. Grant and S. E. Keefe, Rev. Sci. Instr., 39, 1800 (1968).
25. S. K. Garg, H. Kilp and C. P. Smyth, J. Chem. Phys., 43, 2341 (1965).
26. K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941).
27. A. Budd, Z. Phys., 39, 706 (1938).
28. M. D. Magee and S. Walker, J. Chem. Phys., 50, 2580 (1969).
29. D. B. Farmer and S. Walker, Can. J. Chem., 47, 4645 (1969).
30. E. Forest and C. P. Smyth, J. Phys. Chem., 69, 1302 (1965).
31. G. Klages and G. Krauss, F. Naturforsh, 26a, 1272 (1971).
32. W. E. Vaughan and C. P. Smyth, J. Phys. Chem., 65, 98 (1961).
33. W. E. Vaughan, S. B. W. Roeder and T. Provder, J. Chem. Phys., 39, 701 (1963).
34. S. K. Garg and C. P. Smyth, J. Chem. Phys., 46, 373 (1967).
35. D. E. Kranbueht, D. D. Klug and W. E. Vaughan, J. Chem. Phys., 50, 5266 (1969).
36. G. Klages and A. Zentek, F. Naturforsh, 169, 1016 (1961).
37. D. M. Roberti and C. P. Smyth, J. Amer. Chem. Soc., 82, 2106 (1960).
38. S. Mizuchima, "Internal Rotation", Academic Press, New York (1954).
K. Higasi, Bull. Chem. Soc., Japan, 39, 2157 (1966).
39. E. Forest and C. P. Smyth, J. Amer. Chem. Soc., 86, 3474 (1964).
40. G. Klages and P. Knobloch, F. Naturforsh, 20a, 580 (1965).
41. E. Fisher, F. Naturforsh, 92, 909 (1954).
42. E. L. Grubb and C. P. Smyth, J. Amer. Chem. Soc., 83, 4873 (1961).
43. S. Mizushina, E. Morino and H. Okazaki, Sci. Pap. Inst. Phys. Chem. Res., Tokyo, 34, 1147 (1938).
44. J. Crossley, W. F. Hassell and S. Walker, J. Chem. Phys. 48, 1261 (1968).
45. W. Maier, Arch. Sci., (Geneva), 12, 20 (1959).
46. G. S. Hartley and C. Robinson, Trans. Faraday Soc., 48, 847 (1952).
47. A. L. McClellan, "Tables of Experimental Dipole Moments", W. H. Freeman \& Co., San Fransisco (1963).
48. E. L. Eliel, "Stereochemistry of Carbon Compounds", McGrawHill Book Co. Inc., New York (1962).
49. E. Fisher, F. Elektrochem., 53, 16 (1949).
50. K. Higasi and C. P. Smyth, J. Amer. Chem. Soc., 82, 4759 (1960).
51. F. K. Fong, J. Chem. Phys., 40, 132 (1964).
52. D. M. Roberti, O. F. Kalman and C. P. Smyth, J. Amer. Chem. Soc., 82, 3523 (1960).
53. E. N. DiCarlo and D. P. Smyth, J. Amer. Chem. Soc., 84, 3638 (1962).
54. J. E. Anderson and C. P. Smyth, J. Chem. Phys., 42, 473 (1965).
55. R. D. Nelson and C. P. Smyth, J. Phys. Chem., 69, 1006 (1965).
56. W. P. Purcell and C. P. Smyth, J. Amer. Chem. Soc., 83, 1063 (1961).
57. F. Hufnage1, G. Klages and P. Knoblock, F. Naturforsh, 17a, 96 (1962).
58. D. A. Pitt and C. P. Smyth, J. Amer. Chem. Soc., 80, 1061 (1958).
59. P. A. Lehmann F. and D. M. McEacher B. J. Mot. Structure, I, 253 (1971).
60. D. M. McEacher B. and P. A. Lehmann F., J. Mo7. Structure, 7, 267 (1971).
61. P.A. Lehmann F. and D. M. McEachern B., J. Mol. Structure, 7, 277 (1971).
62. G. Montaudo and P. Finocchiaro, J. Mo1. Structure 14, 53 (1972).
63. G. Montaudo, S. Caccamese and P. Finocchiaro, J. Amer. Chem. Soc., 93, 4202 (1971).
64. G. Montaudo, P. Finocchiaro, S. Caccamese and F. Bottino, J. Amer. Chem. Soc., 93, 4208 (1971).
65. G. Montaudo, P. Finocchiaro, E. Trivellone, F. Bottino and P. Maravigna, Tetrahedron, 27, 2125 (1971).
66. G. Montaudo, F. Bottino and E. Trivellone, J. Org. Chem., 37, 504 (1972).
67. G. M. Lobanova, Kristallografya, 13 (b), 984 (1969).
68. E. B. Fleischer, Nako Surg and S. Hawkinson, J. Phys. Chem., 72, 4311 (1968).
69. R. Bradley and R. J. W. LeFevre, J. Chem. Soc., 56 (1962).
70. J. K. Vij and K. K. Srivastava, Bull. Chem. Soc., Japan 43,2313 (1970).
71. A. Vyas and H. N. Srivastava, J. Sci. and Ind. Res., 399 (1959).
72. S. C. Q. Abrahams, Rev. Chem. Soc., 10, 407 (1956).
73. C. W. N. Cumper, J. F. Read and A. I. Voge1, J. Chem. Soc., 5323 (1965).
74. A. Hordvick, Acta. Chem. Scavod. 20, 1885 (1966).
75. J. Tonssaint, Bull. Soc. Chim. Belg., 54, 346 (1945).
76. L. G. Vorontsova, Z. V. Zvonkova and G. S. Zhdanov, Soviet. Phys. Chrystallgr. ${ }^{5}$, 668 (1961).
77. G. Bergson, Ark. Kemi., 12, 233 (1958).
78. G. Bergson, Ark. Kemi., 18, 409 (1961).
79. M. J. Aroney, Hera Chio, R. J. W. LeFevre and D. V. Radford, Aust. J. Chem., 23, 199 (1970).
80. M. J. Aroney, R. J. W. LeFevre, R. K. Pierens and Hera L. K. The, Aust. J. Chem. 21, 281 (1968).
81. M. J. Aroney, R. J. W. LeFevre and R. K. Pierens, Aust. J. Chem. 20, 2251 (1967).
82. C. T. Zahn, Phys. Rev., 27, 455 (1926)
83. J. W. Williams, Physik, F. 29, 683 (1928).
J. Amer. Chem. Soc., 52, 1356 (1930).
84. K. Kozima and S. Mizushima, Sci. Pap. Inst. Phys. Chem. Res. Tokyo, 31, 296 (1937).
85. S. Mizushima, P. Kubota and Y. Morino, Bu11. Chem. Soc., Japan 14, 15 (1939).
86. M. L. Josien, C. Castinal and P. Saumagne, Bull. Soc. Chim. (France), 648 (1957).
87. C. P. Smyth, J. Org. Chem., 6421 (1941).
88. P. F. Oesper and C. P. Smyth, J. Amer. Chem. Soc., 64173 (1942).
89. P. Krishnamurti, Ind. J. Phys. 5, 113 (1939).
90. H. Braune and G. Engelbrecht, F. Physik. Chem., 10B, 1, (1930); 11B, 409 (1931).
91. H. Braune and S. Knobe, F. Physik. Chem., 23B, 163 (1933).
92. H. Braune and R. Linke, F. Physik. Chem., 31B, 12 (1935).
93. B. C. Curran, J. Amer. Chem. Soc., 64, 830 (1942).
94. G. C. Hampson, Trans. Faraday Soc., 30, 877 (1934).
95. J. C. Sipos, H. Sawatzky and G. F. Wright, J. Amer. Chem. Soc., 77, 2759 (1955).
96. H. Sawatzky and G. F. Wright, Can. J. Chem., 36, 1555 (1958).
97. W. C. Horning, F. Lautenschlager and G. F. Wright, Can. J. Chem., 411441 (1962).
98. R. S. Armstrong, C. G. LeFevre and R. J. W. LeFevre, J. Chem. Soc., 371 (1957).
99. I. E. Coop and L. E. Sutton, J. Chem. Sipc., 1269 (1938).
100. "Tables of Interatomic Distances and Configuration in Molecules and Ions", Special Pub. \#11, Chem. Soc. of London (1958).
101. R. S. Holland and C. P. Smyth, J. Phys. Chem., (Ithaca), 59, 1088 (1955).

A P P E $\underset{\sim}{\mathrm{D}} \underline{I} \underline{X}$

Tables of Dielectric Constants and Losses

The calculated dielectric constant $\varepsilon^{\prime} c a l c$ and loss ε "calc were obtained from the Cole-Cole equations, i.e., Eq. (3-1).
$1,2-$ Dimethoxyethane in p -xylene at $25^{\circ} \mathrm{C}$
$\omega=0.04617$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	ε^{\prime} obs	$\varepsilon^{\prime} \mathrm{ca1c}$	$\varepsilon^{\prime \prime}$ obs	ε "calc
9.311	2.414	2.414	0.0280	0.0220
16.202	2.406	2.407	0.0541	0.0362
24.001	2.396	2.396	0.0569	0.0487
35.11	2.379	2.378	0.0653	0.0597
70.354	2.352	2.335	0.0614	0.0624
	$\varepsilon_{0}=2.4176$			

Dimethoxymethane in p-xylene at $25^{\circ} \mathrm{C}$
$\omega=0.1070$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	$\frac{\varepsilon^{\prime} \mathrm{obs}}{}$		$\varepsilon^{\prime} \mathrm{calc}$	$\varepsilon^{\text {"obs }}$

4-4'Dimethoxybiphenyl in p -xylene at $25^{\circ} \mathrm{C}$
$\omega=0.00735$

Freq. (GHz)	ε^{\prime} obs	E'calc	ع"obs	ε "calc
9:312	2.2764	2.275	0.0038	0.0035
16.202	2.2724	2.273	0.0049	0.0052
24.001	2.2712	2.271	0.0071	0.0061
35.11	2.2694	2.269	0.0066	0.0063
70.354	2.2661	2.265	0.0040	0.0046

$$
\begin{aligned}
& \varepsilon_{0}=2.2758 \\
& \varepsilon_{\infty}=2.2632
\end{aligned}
$$

m -Dimethoxybenzene in p-xylene at $40^{\circ} \mathrm{C}$
$\omega=0.06752$

Freq. $\left(\mathrm{GH}_{Z}\right)$	$\frac{\varepsilon^{\prime} \text { obs }}{}$		$\frac{\varepsilon^{\prime} \text { calc }}{}$	$\underline{\varepsilon^{\prime \prime} \text { obs }}$
0.95	2.364	2.363	0.0110	0.0083
9.311	2.333	2.331	0.0480	0.0466
24.001	2.277	2.288	0.0470	0.0484
35.11	2.274	2.274	0.0410	0.0411
70.39	2.269	2.259	0.0322	0.0257
140.8	2.258	2.253	0.0151	0.0144
		$\varepsilon_{0}=2.365$		
		$\varepsilon_{\infty}=2.249$		

6-Chloro-1,4-dimethoxybenzene in p-xylene at $40^{\circ} \mathrm{C}$
$\omega=0.06658$

2,5-Dimethoxy-2,5-dihydrofuran in p-xylene at $25^{\circ} \mathrm{C}$
$\omega=0.07401$

Freq. ($\mathrm{GH}_{\mathbf{z}}$)	ع'obs	$\varepsilon^{\prime} \mathrm{calc}$	ع"obs	ع"calc
9.312	2.399	2.391	0.0746	0.0732
16.202	2.344	2.349	0.0821	0.0798
24.001	2.322	2.321	0.0708	0.0709
35.11	2.310	2.301	0.0562	0.0565
70.36	2.306	2.285	0.0287	0.0316
	$\varepsilon_{0}=2.4386$			

2,5-Dimethoxytetrahydrofuran in p-xylene at $40^{\circ} \mathrm{C}$
$\omega=0.07683$

Freq. ($\mathrm{GHz}_{\mathrm{z}}$)	ε^{\prime} obs	$\varepsilon^{\prime} \mathrm{calc}$	ε "obs	ع"calc
0.95	2.308	2.309	0.008	0.0039
1.80	2.294	2.308	0.028	0.0074
24.001	2.262	2.263	0.030	0.0317
35.11	2.256	2.253	0.026	0.0260
70.39	2.253	2.244	0.022	0.0150
140.8	2.249	2.242	0.017	0.0078
	$\varepsilon_{0}=2.241$	$\begin{aligned} & \varepsilon_{0}=2 \\ & \varepsilon_{\infty}=2 \end{aligned}$		

2,6-Dimethoxypyridine in p-xylene at $25^{\circ} \mathrm{C}$
$\omega=0.08041$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	$\underline{\text { c'obs }}$	E'calc	ع"obs	ع"calc
9.31	2.319	2.318	0.0234	0.0214
16.20	2.305	2.306	0.0235	0.0252
24.00	2.298	2.297	0.0243	0.0243
35.11	2.289	2.289	0.0204	0.0209
70.04	2.281	2.281	0.0138	0.0130
$\begin{aligned} & \varepsilon_{0}=2.3311 \\ & \varepsilon_{\infty}=2.277 \end{aligned}$				

4-4'Dimethoxythiobenzophenone in p-xylene at $25^{\circ} \mathrm{C}$ $\omega=0.01336$

Freq. $\left(\mathrm{GH}_{\mathbf{z}}\right)$	E'obs	$\underline{\varepsilon^{\prime} \mathrm{calc}}$	ع"obs	$\underline{\varepsilon}$ "calc
0.90	2.362	2.343	0.0251	0.0198
1.20	2.350	2.340	0.0300	0.0252
1.50	2.346	2.336	0.0326	0.0297
1.80	2.334	2.331	0.0364	0.0332
2.48	2.308	2.321	0.0386	0.0383
9.31	2.283	2.278	0.0251	0.0260
16.2	2.2725	2.272	0.0179	0.0162
24.0	2.271	2.270	0.0143	0.0112
35.1	2.270	2.269	0.0105	0.0078
70.4	2.2665	2.268	0.0090	0.0039
$\varepsilon_{0}=2.3486$				

5,6-Dimethoxy-1-indanone in p-xylene at $25^{\circ} \mathrm{C}$ $\omega=0.02508$

Freq. $\left(\mathrm{GH}_{z}\right)$		$\varepsilon^{\prime} \mathrm{obs}$	$\frac{\varepsilon^{\prime \prime} \mathrm{obs}}{}$
0.95	2.440	0.0479	
1.20	2.437	0.0615	
1.50	2.430	0.0700	
1.80	2.425	0.0758	
2.36	2.413	0.0529	
9.312	2.313	0.0348	150
16.202	2.302	0.0293	
24.001	2.286	0.0293	

5,6-Dimethoxy-1-idanone in p-xylene at $25^{\circ} \mathrm{C} \ldots$...continued

Freq. $\left(\mathrm{GH}_{\mathrm{Z}}\right)$		$\varepsilon^{\text {'obs }}$
35.11	2.282	$\frac{\varepsilon^{\text {"obs }}}{}$
70.355	2.274	0.0227
		0.0175

$$
\begin{aligned}
& \varepsilon_{o}=2.4413 \\
& \varepsilon_{\infty}=2.278 *
\end{aligned}
$$

Allyl ether in $p-x y l e n e$ at $25^{\circ} \mathrm{C}$
$\omega=0.04416$

Freq. $\left(\mathrm{GH}_{\mathrm{Z}}\right)$	ε^{\prime} obs	$\varepsilon^{\prime} \mathrm{calc}$	$\varepsilon \varepsilon^{\prime \prime}$ obs	E"calc
9.31	2.333	2.334	0.0215	0.0210
16.202	2.325	2.324	0.0288	0.0305
24.001	2.311	2.311	0.0380	0.0348
35.11	2.2955	2.298	0.0354	0.0344
70.39	2.284	2.280	0.0248	0.0243
	$\varepsilon_{0}=2.3470$			

β-Dinaphthyl disulfide in $p-x y l e n e$ at $25^{\circ} \mathrm{C}$
$\omega=0.01390$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	$\varepsilon^{\text {'obs }}$	$\underline{\varepsilon^{\prime} \mathrm{calc}}$	$\underline{\varepsilon}$ "obs	ع"calc
9.311	2.2767	2.275	0.0046	0.0071
16.202	2.2748	2.271	0.0052	0.0055
24.001	2.2693	2.270	0.0038	0.0041
35.11	2.2659	2.270	0.0029	0.0029
70.354	2.2640	2.269	0.0023	0.0015
	$\varepsilon_{0}=2.2935$			

Thiophenol in $p-x y$ lene at $25^{\circ} \mathrm{C}$
$\omega=0.09752$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	ε^{\prime} obs	$\varepsilon^{\prime} \mathrm{calc}$	ε "obs	ع"calc
0.95	2.417	2.420	0.0092	0.0065
1.80	2.417	2.419	0.0136	0.0121
9.31	2.416	2.407	0.0375	0.0345
16.202	2.389	2.388	0.0500	0.0469
24.0	2.373	2.369	0.0468	0.0499
35.11	2.356	2.351	0.0412	0.0460
70.39	2.340	2.325	0.0312	0.0199
	$\varepsilon_{0}=2.4206$			

Methyl disulfide in p-xylene at $25^{\circ} \mathrm{C}$
$\omega=0.09162$

Freq. $\left(\mathrm{GH}_{2}\right)$		$\varepsilon^{\prime} \mathrm{obs}$		$\varepsilon^{\prime} \mathrm{ca1c}$	$\varepsilon^{\prime \prime o b s}$
0.95	2.660	2.675	0.0131	0.0085	
1.8	2.657	2.674	0.0191	0.0161	
9.311	2.675	2.656	0.0859	0.0790	
16.202	2.639	2.624	0.1426	0.1241	
24.001	2.5865	2.579	0.1637	0.1565	
35.11	2.543	2.519	0.1845	0.1748	
70.4	2.458	2.407	0.1434	0.1496	
			$\varepsilon_{0}=2.6752$		
			$\varepsilon_{\infty}=2.324$		

4 -Chloro-m-benzenedithiol in p-xylene at $25^{\circ} \mathrm{C}$ $\omega=0.08782$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	$\frac{\varepsilon^{\prime} \mathrm{obs}}{}$		$\varepsilon^{\prime} \mathrm{calc}$		$\varepsilon^{\text {"obs }}$
9.311	2.394	2.388		0.0395	0.0446
16.202	2.355	2.365	0.0469	0.0451	
24.001	2.346	2.351	0.0411	0.0404	
35.17	2.344	2.340	0.0334	0.0338	
70.389	2.328	2.328	0.0215	0.0213	

$$
\begin{aligned}
& \varepsilon_{0}=2.4307 \\
& \varepsilon_{\infty}=2.320
\end{aligned}
$$

$2-2^{\prime}$ Difuryl mercury in $\mathrm{p}-\mathrm{xyl}$ ene at $25^{\circ} \mathrm{C}$
$\omega=0.03194$

Freq. $\left(\mathrm{GH}_{2}\right)$	$\varepsilon^{\prime} \mathrm{obs}$		$\varepsilon^{\prime} \mathrm{calc}$	$\underline{\varepsilon^{\prime \prime} \mathrm{obs}}$
9.317	2.274	2.271	0.0033	0.0054
16.202	2.267	2.268	0.0056	0.0051
24.001	2.265	2.267	0.0042	0.0042
35.108	2.264	2.266	0.0020	0.0031
70.389	2.263	2.265	0.0017	0.0017
		$\varepsilon_{0}=2.2757$		
		$\varepsilon_{\infty}=2.265$		

$3-3^{\prime}$ Difuryl mercury in p-xylene at $25^{\circ} \mathrm{C}$
$\omega=0.03289$

Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	ع'obs	ع'calc	ε "obs	ع"calc
8.881	2.273	2.270	0.0038	0.0048
16.202	2.267	2.267	0.0045	0.0043
24.001	2.265	2.266	0.0037	0.0034
35.108	2.264	2.265	0.0012	0.0026
70.389	2.263	2.265	0.0010	0.0014
$\varepsilon_{0}=2.2743$				

O-Dimethyoxybenzene in $\mathrm{p}-\mathrm{xy}$ ene at $40^{\circ} \mathrm{C}$				
$\omega=0.06073$				
Freq. $\left(\mathrm{GH}_{\mathrm{z}}\right)$	ε^{\prime} obs	$\varepsilon^{\prime} \mathrm{calc}$	ع"obs	$\varepsilon \varepsilon^{\prime \prime} \mathrm{caic}$
9.311	2.336	2.335	0.0175	0.0158
16.202	2.327	2.328	0.0224	0.0223
24.001	2.318	2.320	0.0263	0.0265
35.11	2.312	2.317	0.0306	0.0289
67.518	2.296	2.295	0.0258	0.0271
140.8	2.284	2.282	0.0203	0.0190
$\varepsilon_{0}=2.3420$				

