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ABSTRACT 

Savage, D.W. 2003. The effects of forest management, weather, and landscape pattern 
on furbearer harvests at large-scales. 109 pp. Advisors: U.T. Runesson and I.D. 
Thompson. 

Key Words: beaver {Castor canadensis (Kuhl)), fisher {Mariespennanti (Erxleben)), 
forest management, geographic information system (GIS), landscape pattern, logging, 
lynx {Lynx canadensis (Kerr)), marten {Martes americana (Turton)), natural disturbance, 
Ontario, scale, weather. 

Over the past 50 years, Ontario’s forest landscape has changed due to ever increasing 
natural resource management. The natural vegetation pattern, forest composition, and the 
fire regime have been altered. Maintaining wildlife species diversity is an important goal 
of current forest management. However, little is understood about the impacts of large- 
scale land use and landscape scale processes that influence wildlife. This project used 
trapline harvest statistics Ifom 1972-1990 to identify broad-scale effects of forest 
management, weather, and landscape structure on furbearers (marten, beaver, fisher, and 
lynx). 

Spatial variables for logging and fire disturbance, forest cover type, weather, spatial 
pattern, and road density were compiled in a geographic information system (GIS) and 
standardized by trapline. Regression models were created for each species and analysed 
at five spatial scales ranging from the Ontario Ministry of Natural Resources (OMNR) 
district (5000 sq. km) to the ‘provincial’ (800,000 sq. km) scales. The models were then 
compared temporally and spatially for consistency in variable contribution to the 
regression models. Forest cover type, weather, and spatial pattern variables accounted for 
the greatest variation in furbearer harvest, while disturbance and road density variables 
accounted for little variation. Model predictive capability ranged from 10 to 55% for all 
species. Marten models had the greatest predictive power (r^) at the ‘OMNR District’ 
scale, while fisher and beaver models had the highest r^ values at the ‘Hills site region’ 
and ‘provincial’ scales, respectively. Lynx models were inconsistent with relatively low 
predictive power at all scales. 

The models suggest that disturbance from forest management is not affecting furbearer 
harvests. Landscape scale variables such as forest cover type, weather, and landscape 
pattern account for a relatively high proportion of marten, beaver, and fisher harvests. 
These variables and the predictive power of the models reveal the influence that broad 
landscape factors have on wildlife. 
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INTRODUCTION 

In Ontario, much of the forest landscape has been managed for forest products over 

the past 50 to 60 years. The area disturbed by logging has tripled since the 1950s, while 

the area burned has decreased slightly over the same period (Perera and Baldwin 2000). 

Intensive fire management in populated and economically important zones has changed 

the natural lire regime of many areas. The boreal forest is adapted to fire and dependent 

on it for controlling species composition, age class structure and the pattern of vegetation, 

as well as initiating forest succession (Li 2000). 

Although managers are currently trying to emulate forest compositional patterns 

resulting from natural disturbance in their planning, the disturbance pattern created in the 

past by clearcutting differs from that caused by natural disturbances (mostly fire) (Perera 

and Baldwin 2000). From 1970-1991, the spruce and mixed softwood tree species groups 

decreased in area by 14% and 8%, respectively, while deciduous forest types have 

concurrently increased (Heamden et al. 1992). Intensive fire management has altered the 

fire regime by increasing the fire cycle and reducing the mean fire size. The total area 

burned in these intensive fire management zones has also decreased (Li 2000). 

White and Harrod (1997) suggested that wildlife species presence and abundance 

will be affected by changing the disturbance regime of the landscape. By altering the 

disturbance regime, species that are dependent on the conditions created by fire can be 

reduced and possibly extirpated. 

In Ontario there has been concern about the impacts of forest management on 

species such as marten {Martes americana (Turton)) (Watt et al. 1996), as well as fisher 
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{Maries pennanti (Erxleben)) and lynx {Lynx canadensis (Kerr)). In contrast, beaver 

{Castor canadensis (Kuhl)), an early successional species, may benefit from increased 

timber harvesting that creates younger forests suitable for beaver foraging. All four latter 

species are economically important for trappers and widely harvested across the province. 

As well, all four species have been suggested as ecological indicators of different habitat 

types at the forest (1000-10,000 ha) and landscape (10,000-1,000,000 ha) scales 

(McLaren et al. 1998). Long-term data sets of population estimates for these species do 

not exist due to the complexity involved with the data collection. However, there are 

long-term data sets of trapper harvests that were recorded by the Ontario Ministry of 

Natural Resources (OMNR) for each registered trapline across the province. Trapper 

harvest data cannot be reliably used as a proxy for population estimates because trapper 

effort may be dependent on socio-economic factors on an inter-annual basis (Weinstein 

1977, Smith et al. 1984). However, by controlling for trapping effort, harvest data can be 

used to compare the effects of environmental variables on the relative furbearer 

population over time and space. The general hypothesis is that if timber harvesting is 

having a large-scale impact on furbearer populations, then there should be a relationship 

between forest disturbance variables and trapper harvests at one or more spatial scales. 

Alternatively, population change over time as indicated by trapper harvests might be 

better correlated with other variables such as weather. 

Disturbance processes on the landscape influence an ecosystem at multiple spatial 

and temporal scales (Lertzman and Fall 1998). As a result, ecosystems operate at many 

scales (both spatially and temporally) as well, and rarely have a single correct or optimal 

scale of measurement or observation (Gardner 1998). Spatial scale is also important for 
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identifying the habitat elements that are important for wildlife populations (Kolasa and 

Waltho 1998). Determining and measuring the most appropriate scale for the analysis of 

landscape effects is a key ecological problem (Goodwin and Fahrig 1998). Hierarchy 

theory defines a hierarchical structure with upper level processes constraining lower level 

processes and the resulting phenomena observed. Climate, a broad spatial process, 

constrains forest cover type, succession, and micro/meso scale disturbances at a lower 

level in the hierarchy, thus influencing wildlife at multiple spatial and temporal scales 

(Voigt et al. 2000). 

This study used fur harvest statistics from the 1970s and 1980s to examine the 

association among several landscape scale variables on the densities of marten, fisher, 

lynx and beaver. The analysis was also expected to determine the optimum scale for 

measuring these associations. There were two primary goals for this project: 

1. To determine whether forest management, natural disturbance, weather, and 
landscape pattern affected furbearer densities. Logging disturbance was used 
to measure the direct effects of forest management, while species 
composition and the spatial pattern of young and mature forest were indirect 
effects. 

2. To establish the optimum spatial scale at which these effects might be 
identified and predicted. 

The analysis was expected to provide insight into which landscape variables 

influenced trapline harvests. 
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LITERATURE REVIEW 

BIOLOGY OF MARTEN, FISHER, BEAVER AND LYNX 

Marten (Martes americana) 

Distribution 

Marten are found throughout the forested regions of Canada. Habitat loss due to 

land clearing and over-trapping in the Great Lakes region in the 1800s caused extirpation 

throughout much of the southern part of their range (Strickland and Douglas 1987). 

Population Density 

In the late winter, an unharvested population of marten in Algonquin Park has a 

resident density of approximately 0.6 marten/sq. km. An influx of juvenile and transient 

marten increases the summer density to approximately 1.2-1.9 marten/sq. km (Strickland 

and Douglas 1987). Thompson (1994) found that marten densities were 88-95% higher 

in uncut forests compared to logged areas. The age difference in marten between uncut 

and cut areas was also different in the winter with a greater number of mature marten 

inhabiting uncut forest areas (Thompson 1994) 

Habitat 

Marten can tolerate a wide range of forest habitats if food and cover are present. 

However, they seem to prefer mature conifer dominated or mixedwood forests 

(Strickland and Douglas 1987). Spencer (1987) found that marten tended to use trees, 

snags, stumps, and logs for non-subnivean (above snow) resting sites. During periods of 
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continuous snow cover, subnivean resting sites were used exclusively and were 

associated with logs, stumps, and snags (Spencer 1987). Marten prefer large snags, rock 

crevasses, and large logs for natal dens. Dens are located primarily near the ground and 

offer some security from predators (Ruggiero et al. 1998). Many studies have looked at 

marten home range sizes using an array of techniques including mark-recapture and 

telemetry methods. These techniques provide a variety of home range estimates that vary 

from 0.1 to 15.7 sq. km. Male home range sizes, in general, are 1.3 to 3 times larger than 

female home ranges (Strickland and Douglas 1987). Thompson and Colgan (1987) found 

that in years during food shortages marten home ranges will increase in size. Female 

marten are especially sensitive to food shortages and can increase their home ranges 1.5-2 

times. 

Food Habits 

Marten are omnivores eonsuming a variety of plant and animal materials that are 

located predominantly in their preferred habitat (Strickland and Douglas 1987). Clem 

(1977) found marten diets were variable during the winter, although snowshoe hare 

{Lepus americanus) constituted 20-40% of their diet, throughout the season. Red-backed 

voles {Clethrionomys gapperi (Vigors)), ruffed grouse {Bonasa umbellus (L.)), gray jay 

(Perisoreus canadensis (L.)), red squirrel (Tamiasciurus hudsonicus (Erxelehen), deer 

mice {Peromyscus maniculatus (Wagner)), and redhorse sucker {Moxostoma spp.) were 

all eonsumed by marten from November to February (Clem 1977). Raine (1987) found 

similar results for the winter season with a large proportion of the marten’s diet 

composed of snowshoe hare (58.9%), microtines and shrews (20.5%), red squirrels 
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(15.9%), and birds (17.8%). Thompson and Colgan (1990) suggested that marten 

primarily forage for large prey (snowshoe hare) and consume smaller species incidentally 

in winter. As well, they predicted that marten diet selection would expand during 

declines in large prey abundance. 

Response to Disturbance 

Large-scale clearcutting and severe fire disturbances reduce habitat suitability for 

marten, depending on the intensity of disturbance and rate of regeneration (Strickland and 

Douglas 1987). Thompson (1994) found that marten density indices are 88-95% higher 

in uncut mature mixedwood forest compared to logged areas up to 40 years old. Using 

closed canopy forests for predator avoidance and greater success in prey capture may 

have contributed to the overall habitat preference (Thompson and Colgan 1994). Similar 

studies (Potvin et al. 2000) have suggested that marten use of logged landscapes in the 

winter can be variable. They also found that marten selected mixedwood stands. Potvin 

et al. (2000) recommended that forest management retain greater than 50% of the forest 

on the landscape in an uncut condition and the forest be greater than 30 years of age. 

After forest harvesting has occurred, 15 to 23 years of regeneration is considered 

adequate for providing suitable habitat for marten (Strickland and Douglas 1987). 

However, other studies suggest that greater stand development is required over a longer 

period of time (Snyder and Bissonette 1987). One consequence of logged landscapes is 

increased mortality due to predation and commercial trapping (Thompson 1994). 
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Fisher (Martes pennanti) 

Distribution 

Fisher occurs throughout most of the forested regions of Canada, excluding some 

of British Columbia (B.C.). Its original range included B.C., the northern boundary of 

the Pacific Northwest and the northeastern area of the U.S. including the Great Lakes 

region. Land clearing, over-trapping and the use of strychnine as a harvest and predator 

control have reduced their range since the early 1900s. The fisher’s range has been 

restored in several parts of North America through protective legislation, habitat 

improvement, and reintroductions (Douglas and Strickland 1987). 

Population Density 

Although density is difficult to measure, estimates from trapping records and 

radio-telemetry methods have been made. Densities ranging from 1 fisher/3.9-7.5 sq. km 

to 1 fisher/18.9 sq. km have been reported (Douglas and Strickland 1987). 

Habitat 

Powell (1994) found that fishers selected habitat for foraging and resting sites at 

multiple scales. Foraging habitat for fisher in their home range was comprised of pine 

and lowland-conifer habitats with relatively small amounts of upland-hardwood habitat. 

Lowland-conifer sites were used more often as resting sites, while the upland-hardwood 

habitats in close proximity to foraging habitat were avoided (Powell 1994). Overhead 

forest cover provides concealment, access to prey, denning sites and escape. Areas of 

increased edge tend to have more fisher activity due to high prey availability than interior 
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habitat. Fishers seem to adapt better than marten to early successional stages of forest 

growth. Fishers use a variety of resting sites including; hollow logs, tree cavities, 

brushpiles, rockpiles, burrows, dens of other animals and snow dens. Home ranges for 

fisher vary from 15 to 39 sq. km for males, and 3.6 to 20 sq. km for females (Douglas and 

Strickland 1987). 

Food 

Fishers are somewhat opportunistic feeders that prey on species associated with 

their habitat (Douglas and Strickland 1987). Raine (1987) found that fishers consumed 

hares most often (84.3%), with birds (8.2%) and martens (5.0%) as secondary sources of 

food in Manitoba. Fishers have also been observed consuming carrion, fruits, nuts, and 

berries. Fisher consumption of small mammals has been shown to increase during 

declines in hare populations. Porcupines (Erethizon dorsatum (L.)), a species with few 

predators, are also a primary food source for fishers (Douglas and Strickland 1987). 

Response to Disturbance 

Severe disturbance reduces habitat value for fishers by removing overhead 

concealment and allowing snow to accumulate and inhibit movement (Raine 1987). Low 

intensity disturbances may provide habitat diversity for improved prey densities and 

denning sites (Douglas and Strickland 1987). 
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Relationship Between Marten and Fisher 

Studies indicate that some interaction between marten and fisher populations 

occurs. These two species are sympatric and may compete for food resources (Clem 

1977, Strickland and Douglas 1987, Raine 1987). The theory of competitive exclusion 

suggests that species cannot fill the same role in a community (Elton 1927) or a similar 

subdivision of the environment (Grinnell 1917). Both marten and fisher have large diet 

requirements that are common to several species. However, marten may prey more 

frequently on smaller mammals and birds, as opposed to fishers preying on larger species, 

such as porcupines (Clem 1977, Strickland and Douglas 1987). Marten and fisher both 

hunt on the ground, although marten use areas under the snow (subnivean) and frequent 

trees (arboreal) more often. Both require similar denning sites (Strickland and Douglas 

1987). Clem (1977) compared the diets of marten and fisher trapped in Algonquin Park 

and found the diets differed until winter when an overlap in prey occurred. The overlap 

in prey studied by Clem (1977) and Raine (1987) was not a stress for either species. 

Raine (1987) also found that marten made up approximately 5% of the fisher’s diet. 

However, Strickland and Douglas (1987) suggested this phenomenon was uncommon. 

A study conducted in Maine by Krohn et al. (1995) tried to find evidence of 

marten and fisher interactions. They found indications that there are weather variables 

conducive to marten (snowfall) that negatively affect fisher and precluded their range 

from certain parts of Maine. Marten were not present in southern Maine and it is 

hypothesized that interactions with a dense fisher population is preventing expansion. 

Weather factors in this region that enable fisher to thrive may prevent marten from 

expanding its distribution (Krohn et al. 1995). 
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Beaver (Castor canadensis^ 

Distribution 

Beavers are distributed throughout North America and are limited primarily by 

food and stream availability. They are not found north of the treeline, in peninsular 

Florida, some parts of the Midwest U.S. and arid regions. A reduced beaver distribution 

throughout Canada and the U.S. can be attributed to over-trapping in the early 1900s. 

Current management of beaver has allowed the species to repopulate most of its former 

range (Novak 1987). 

Population Density 

Population density is dependent on several factors including habitat, mortality and 

behaviour. The number of families and the average number of individuals per family will 

give an estimate of the total beaver population. Surveys have indicated a range in 

densities from 0.15 families/sq. km to 4,6 families/sq. km. Individual colonies are also 

variable in size ranging from 3 to 8 beavers per family. Family size has been shown to 

vary over several seasons but there is no evidence that beaver populations are cyclic 

(Novak 1987). 

Habitat 

Beavers inhabit a wide variety of habitats. They colonize ice-free ponds, 

permanent water systems in the arid southwestern U.S., arctic and sub-arctic areas with 

nine months of ice cover and montane regions above 3400 m. Water is the most 

important component of beaver habitat, but it cannot fluctuate severely between seasons 
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or flow too quickly. Ponds, small lakes and meandering streams with muddy bottoms are 

ideal for beavers. Beaver home ranges vary from 0.6 to 0.9 km of stream. Studies have 

shown that when beaver densities are low, home ranges can be up to 2.2 km of stream 

(Novak 1987). 

Food 

Beavers are strictly herbivores and consume approximately 30% of their diet in 

cellulose and 44% in protein. The number of vegetative species consumed by beaver 

increases from north to south. In Mississippi, beavers were found to eat 42 species of 

trees, 36 genera of herbaceous plants, and four types of woody vines. Beavers in all 

regions of North America cut conifer tree species. However, beavers are dependent on 

deciduous species and shrubs (Novak 1987). Barnes and Mallik (2001) found that 

trembling aspen (Populus tremuloides (Michx.)), a preferred food species, did not 

regenerate significantly after 12 years of initial dam construction and colonization. 

Slough and Sadleir (1997) considered trembling aspen to be an essential eomponent of 

beaver diet and that population health was dependent on it. 

Canada Lynx (Lynx canadensis) 

Distribution 

Canada Lynx are found throughout most of Canada in the boreal forest zone. Its 

range extends southward along the Rocky Mountains into Colorado. Lynx populations 

declined in the first half of the 1900s until they were fully extirpated from the northern 

U.S. and parts of southern Canada because of overtrapping. Throughout the 1960s and 
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1970s population growth occurred and they reclaimed some of their former range 

throughout Canada and several areas through the northern U.S. (Anon. 1988). Lynx were 

placed on the U.S. Threatened Species list in 2000 (Anon. 2002). 

Population Density 

The population density is variable across Canada and can reach highs of 1 lynx/5- 

10 sq. km or can be as low as 1 lynx/50-70 sq. km. Generally, the density is thought to 

fall within the range of 1 lynx/15-25 sq. km. Habitat quality and availability of prey are 

factors contributing to the variability in lynx density across the country (Quinn and 

Parker 1987). 

Habitat 

Lynx habitat requirements are not well-documented and require more research. 

Selection of habitat is thought to be based on their primary food source, snowshoe hare. 

Studies of snowshoe hare have determined that a diversity of forest types including 

conifer swamp are preferred for cover with alternating shrubby openings for feeding. 

Openings of approximately two to four ha within conifer-dominated sites are considered 

ideal. In studies of lynx habitat selection, successional forests and open mature conifer 

stands were selected more often than mature mixedwood sites (Quinn and Parker 1987). 

Lynx have also been observed in fragmented agricultural landscapes. Their persistence in 

this habitat is based on a minimum quantity of forest cover and the availability of prey 

(Anon. 1988). Home ranges for lynx are approximately 16 to 29 sq. km, but can vary by 

as much as 12 to 243 sq. km. Many factors including habitat quality and prey abundance 
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likely contribute to the high variability in recorded home ranges for lynx (Quinn and 

Parker 1987). 

Food 

Lynx prey primarily on snowshoe hare that constitute 60% of their winter diet and 

40% of their summer diet. Lynx also prey on mice {Peromyscus spp.), voles, red 

squirrels, ruffed grouse and ptarmigan {Lagopus spp.) when hare populations are 

declining. Predation on larger mammals is not common for lynx but does occur on deer 

(Odocoileus spp.) fawns, caribou (Rangifer tarandus (L.)) fawns, moose (Alces alces 

(L.)) calves, but very rarely on adult deer or caribou. Lynx in Newfoundland commonly 

preyed on caribou calves and can be a limiting factor to the caribou population when hare 

populations are declining (Quinn and Parker 1987). 

Response to Disturbance 

Little is known about the response of lynx to forest disturbances, but the early-to- 

mid-successional conditions created by fire and clearcutting should produce prime habitat 

for snowshoe hare and therefore lynx, as well (Quinn and Parker 1987). 

Lynx and Snowshoe Hare Cycles 

Snowshoe hare populations follow a regular interval of abundance and decline in 

an eight to 11-year cycle throughout the boreal forest. No clear consensus can be reached 

on whether predation of snowshoe hare is the driving factor behind its decline or simply a 

contributor. Most researchers agree that predation by lynx is a driving force behind the 
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decline and may in fact cause the population to decrease more than normal and for a 

longer period of time (O’Donoghue et al. 1998). 

Poole (1994) studied lynx populations during the first year of a snowshoe hare 

decline and determined that kitten survival and the overall density was unchanged from 

the previous year. The following year however, showed no kitten recruitment, home 

ranges increased, dispersal intensified and mortality increased. By late winter of that 

same season no lynx were detected on the study area. 

MONITORING FURBEARERS AND REGULATING HARVESTS 

Monitoring 

Several methods have been studied to accurately monitor and estimate 

populations of furbearers. Thompson et al. (1989) used 1 km track transects as an index 

of the relative abundance of several species in winter. Live trap captures of marten, hare, 

and red squirrel were highly correlated with the abundance of tracks recorded. To use 

this method as a monitoring system, Thompson et al. (1989) recommended installing four 

or more permanent 1 km transects, in two different sites that are proportional in size to 

the occurrence of habitats on the landscape. This system would be adequate for 

monitoring the relative abundance of ermine, marten, hare and red squirrel. Depending 

on home range size and population levels, a longer transect may be required to ensure 

that sample size is large enough for other species such as red fox (Vulpes vulpes) 

(Thompson et al. 1989). 

In California sooted track plates with bait have been studied as a method for 

indexing population change in marten and fisher. Zielinski and Stauffer (1996) stratified 
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the landscape into broad regions based on the variation in occurrence of marten and fisher 

and then sampled for the presence or absence of the two species. The detection ratio 

(number of stations visited divided by the total number of stations) was used as the 

relative measure of abundance. Power analysis was performed to determine the number 

of samples required to detect different levels of decline in the population. These tests 

were only able to detect declines in the index and not increases, due to the large sample 

size requirements. This method of non-lethal monitoring may be more socially accepted 

in the future (Zielinski and Stauffer 1996). 

Trapping records are commonly used as a measure of species abundance but are 

subject to variation by other factors. The price of fur, access to the traplines, and the 

availability of other employment for trappers are all factors contributing to the density- 

independent variation observed in catch totals (Thompson 1988). Weinstein (1977) and 

Smith et al. (1984) criticized trapline harvest data as an indicator of furbearer abundance 

based on changing capture probabilities among years and socio-economic factors. 

Similar studies have shown that by controlling trapping effort, the overall variation in 

effort can be reduced and an accurate population estimate made. McDonald and Harris 

(1999) used trapper questionnaires combined with harvest records to make population 

size estimates in England. They found that total catches were directly related to trapping 

intensity and alone did not reflect population trends. To monitor populations using this 

method McDonald and Harris (1999) suggested it would be necessary to record the 

number of traps set in each month, the total catches, and the sex of each animal. 
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Marten and Fisher Management 

To properly manage marten and fisher, an estimate of the population size and its 

rate of change are required. Based on this population estimate a proportion of the 

animals are allocated for harvest. Population size for both of these species is very 

difficult to measure and therefore obtaining an accurate estimate is economically 

impractical. Managers have resorted to population indices to measure the performance of 

each species on the landscape (Douglas and Strickland 1987). 

The trapping vulnerability of males compared to females, and juveniles compared 

to adults, is reflected in the sex and age ratios of marten trapped. Juveniles that lack a 

home range tend to constitute a large proportion of the fall harvest, approximately 67% in 

some years. By February, the proportion of juveniles trapped decreases to approximately 

37% partly due to the large harvest in the fall. The proportion of marten in a certain sex 

and age group can be used as a tool for identifying the harvest intensity in the population. 

When harvest intensity is low, juvenile males are more susceptible to being trapped and 

constitute the primary demographic from the population being harvested (Strickland and 

Douglas 1987, Thompson and Colgan 1994, and Hodgman et al. 1994). However, when 

the population is declining or being over-harvested adult females become more 

susceptible to harvest and will be an increasingly large component of the harvest. To 

combat the effects of over-harvest, quotas are imposed on a trapline to ensure the 

population is not devastated (Strickland and Douglas 1987). A quota imposes a 

maximum harvest level on a species to ensure its trapped on a sustained yield basis 

(Novak 1987). 
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Fishers experience similar disparities in the trapped ratios of males compared to 

females and juveniles compared to adults within the population. Male fishers have a 

larger home range size and are therefore more susceptible to being trapped than females. 

Population indices and the sex-to-age ratios have been monitored to ensure over-trapping 

does not occur (Douglas and Strickland 1987). 

Fryxell et al. (2001) used cohort analysis to determine the age structure of a 

marten population harvested from 1972 to 1990 in Algonquin Park, Ontario. The total 

harvest and corresponding ages were used in a backward recursion formula to estimate 

the minimum population sizes present in the past. Monte Carlo simulations were then 

used to calculate the expected maximum yield from the estimated population. This 

procedure estimated a marten harvest proportion of 36% would be the maximum 

biological potential of the population. Trappers were actually removing 34% of the 

population. The near maximum yield harvest was attributed to trapper/manager 

cooperation and active participation by trappers in the age determination program. The 

ability to adjust harvest levels when fluctuations were observed in the proportion of 

marten trapped was considered an overriding factor (Fryxell et al. 2001). 

Lynx Management 

Fluctuating lynx populations (or cycles) influence the number of animals trapped 

each year. Quotas based on trapping history for an area are generally employed to 

prevent over-harvesting, but do not achieve an optimum yield. Documented and 

predictable cycles within the population are used to aid managers in setting quota limits. 

Areas of high intensity trapping should be monitored closely to ensure populations are 
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not over-harvested especially on the declining portion of the lynx cycle. Monitoring 

programs that record the sex and age of harvested lynx can be used to detect the onset of 

a decline. One indicator of a population decline is the harvesting of primarily older lynx; 

this signifies a lack of yearlings within the population (Quinn and Parker 1987). To 

offset the effects of a declining population, Quinn and Thompson (1987) and Poole 

(1994) suggested eliminating lynx trapping for several seasons until populations begin to 

increase again. This measure ensures high adult lynx survival when the population cycle 

restarts. 

Beaver Management 

To accurately regulate beaver harvests, estimates of population size are required. 

Aerial surveys are carried out to determine the number of active beaver families in an 

area and the size of food caches that are being stored for winter. The surveys are 

generally carried out in the autumn after leaf-fail to enhance the detection of colonies and 

because food caches are usually completed. Knowing the total number of families on a 

trapline does not give an accurate estimate of the total population unless the mean 

number of animals per family is known. Studies have found that large, medium, and 

small food caches support 9.0 animals, 7.1 animals, and 3.7 animals, respectively. 

Formulas have also been derived based on the number of kits, and non-breeding adults 

within a colony (Novak 1987). 

Beaver harvests throughout Ontario are regulated by a quota system. Quotas can 

vary greatly depending on region and site type. In the past, quotas of 40 to 70% were 
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considered excessive. Ontario, through research and years of trial and error, has adopted a 

standard catch quota of 30% of the total estimated population (Novak 1987). 

A DESCRIPTION OF ONTARIO’S ECOLOGY, CLIMATE, AND NATURAL 

PROCESSES 

Ecological Land Classification 

The primary ecological land classification for Ontario was derived by Hills (1959) 

(Figure 1). This system is based on a hierarchy of ecological units where landform is the 

smallest unit, site district is an intermediate classification and site region is the largest 

unit. The landform unit is the initial building block of the system. Each level is based 

on the level below it, site distriets are an assemblage of landform units and site regions a 

grouping of site districts. Landform units are based on broad soil and topographieal 

features, as well as vegetation succession patterns. The landform units are then combined 

to form site districts. As Hills’ hierarchical land classification moves to a larger spatial 

scale, climate is the next controlling factor for ecological processes across the landscape. 

Climatic gradients are used to combine the site districts into site regions (Perera and 

Baldwin 2000). 

Recently Mackey et al. (1996) studied Hills’ ecological land classification and 

attempted to quantify the site region boundaries using several climatic elements ineluding 

minimum temperature, maximum temperature and precipitation. Using these broad 

climatic measurements, eight climate variables were created. The variables used in the 

analysis were degree days, length of growing season, minimum temperature of coldest 

month, maximum temperature of warmest month, precipitation of warmest quarter, and 
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temperature of warmest quarter. As well, two precipitation variables for different periods 

were included. The eight spatial climate variables were then analyzed to identify climatic 

trends using an agglomerative classification procedure. Results showed that temperature 

is the climatic factor driving the north-south gradient in Hills’ classification, while 

summer precipitation is the factor contributing to the east-west split. Overall, many of 

Hills’ site regions were similar to climatic gradients modeled. However, some of the 

boundaries clearly did not coincide with significant climatic gradients, which may be due 

to improved climate modeling and analysis (Mackey et al. 1996). 

Climate 

Most of Ontario is dominated by a humid continental climate, which is influenced 

by cold, dry polar air from the north, Pacific polar air from the prairies and warm, moist, 

subtropical air from the Atlantic Ocean and Gulf of Mexico. Temperature follows a 
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north-south gradient but is affected by Hudson Bay and James Bay which reduces the 

number of growing degree days over an extensive area. Continental conditions from the 

prairies influence the northwestern part of Ontario, while warm air in summer from the 

southwest U.S. brings warm dry conditions to the western shores of Lake Superior. 

These conditions increase the number of growing degree days (Baldwin et al. 2000). 

Precipitation throughout the province increases generally from the northwest to the 

southeast but can be altered significantly by large bodies of water. In the winter, 

precipitation and snow accumulation are highly variable and can be influenced by the 

high-pressure zones in the northern and eastern parts of the province. Low-pressure 

moist air accompanied by winds from the southwest deposit precipitation on the colder 

landmass. Precipitation throughout the summer is localized away from bodies of water 

and tends to be highest in central Ontario (Baldwin et al. 2000) 

Species Distribution 

The distribution of vegetation in Ontario is directly associated with climatic 

patterns across the province. Vegetation structure and function are linked to climate and 

the associated weather through temperature and precipitation (Flannigan and Weber 

2000). Vegetation is also influenced by weather indirectly through disturbance and 

permafrost. The minimum temperature in winter is recognized as a major factor in 

determining tree species distribution. Most deciduous species cannot tolerate 

temperatures below -40°C, while conifer species use a different strategy to prevent 

damage in cold weather and can withstand temperatures of -70° to —80°C (Flannigan and 

Weber 2000). Although minimum temperature limits the distribution of species, a 



22 

minimum growing season temperature is also required to initiate growth and germinate 

seeds. Mechanical damage to vegetation can also occur due to snow accumulation. 

Although most areas are characterized by mean temperature and precipitation, variability 

within these weather attributes can have consequences to the landscape (Flannigan and 

Weber 2000). 

Species richness in Ontario is distributed along a gradient that increases from 

north to south and is maximized in the Algonquin Park region. This area contains about 

110 species of forest birds, 49 mammal species, and 22 forest dwelling amphibian and 

reptile species. Southern Ontario shows lower species richness due to increased 

agriculture and urbanization. The entire province contains approximately eight species of 

reptiles, 14 species of amphibians, 60 species of mammals, and 150 species of birds that 

use forests for breeding (Thompson 2000a). 

At broad provincial scales species richness corresponds to the forest’s net primary 

productivity, which has a similar north-south gradient throughout Ontario. Climate is a 

controlling factor in forest productivity (Thompson 2000a). 

Although species distributions have changed over the last 50 years, documenting 

the degree of change is difficult. In general, climate change combined with deviations in 

weather and habitat alteration caused by forest management are thought to be factors in 

several documented changes in wildlife distribution (Thompson 2000a). Fisher has 

shown the most dramatic shift in range, which began from 1964 to 1975 in a province- 

wide decline followed by a recovery over the past 5-7 years (Thompson 2000a). The 

decline in the west was not as severe but the fisher did reduce its range. Western Ontario 

experienced a slight change in distribution while the decline in eastern Ontario was more 
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severe. In north central Ontario the fisher range declined from White River, 

Manitouwadge and Geraldton. The population further declined from Cochrane to a 

southerly limit near Kirkland Lake (Thompson 2000a). 

Pattern of Clearcut and Fire Disturbance in Ontario 

Perera and Baldwin (2000) state that approximately 20% of the landscape was 

disturbed by fire and timber harvest, in the forest management zone of Ontario from 1951 

to 1995 (-0.5%/year). Forest fires were more spatially clustered (Figure 2) while timber 

harvesting (Figure 3) was distributed evenly across the landscape (Perera and Baldwin 

2000). Site regions 2W, 2E, and 5E show very little disturbance by either fire or timber 

harvesting. The site region encompassing Red Lake (4S) had the greatest disturbance, 

15% from fire and another 25% from timber harvesting. Site region 3S exhibited the 

greatest area burned by forest fires (17%) while 3E, which encompasses Timmins, 

Cochrane, and Hearst had the most timber harvesting (24%). Edge created by timber 

harvesting has increased greatly throughout the forest management zone, while the 

quantity of edge created by fire has remained constant. The increasing amount of edge 

was partly caused by an increase in timber harvesting from 0.5 million ha from 1951 to 

1960 to 2.0 million ha from 1981-1990. A decrease in clearcut size has further 

confounded the problem by creating a landscape with many small disturbance patches 

(Perera and Baldwin 2000). The mean patch size of clearcuts has decreased from 939 ha 

in the 1960s to 105 ha in the 1990s, while the number of clearcuts has increased from 

1,141 to 15,934 over the same period (Table 1) (D. Savage, unpub.). 
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Figure 2. Fire Disturbances in Ontario and Hills site region land classification. 

Clearcut Disturbance 

1940s 

IIB 1950s 

1960s 

HUB 
1980s 

1990s 

200 200 400 600 800 Kilometers 

Figure 3. Clearcut Disturbances in Ontario and Hills site region land classification. 
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Table 1. A summary of logging disturbances for Ontario from 1940 to 1995 
Decade Total 

Clearcuts 
Average Clearcut 

Size (ha) 
Standard Deviation 

of Clearcut Size 
Total Area 

Harvested (ha) 

1940s 
1950s 
1960s 
1970s 
1980s 
1990s 

141 
377 

1,141 
2,060 
8,398 
15,934 

1,558 
1,381 
939 
711 
244 
105 

4697 
3574 
2337 
2034 
889 
466 

219,677 
520,564 

1,071,784 
1,465,321 
2,045,633 
1,670,809 

Gluck and Rempel (1996) analyzed both fire and clearcut disturbed landscapes to 

identify key differences in spatial pattern. Landscape metrics were chosen that describe 

composition, size, shape and interspersion. The clearcut landscape tended to have larger 

more variable patches at lower densities with greater irregularities in shape. Edge 

densities between fire and clearcut were not different in recent disturbances. However, 

they were different in older disturbances. The mean core area size for areas burned was 

greater in recent disturbances. Interspersion of fire disturbances was greater in the fire- 

dominated landscape for both recent and older disturbances (Gluck and Rempel 1996). 

This study was conducted north of Fort Frances and does not necessarily represent the 

conditions found throughout the boreal forest. 

Forest Composition 

The boreal forest is dominated by a limited number of tree species including jack 

pine (Pinus banksiana (Lamb.)), black spruce (Picea mariana ((Mill.) B.S.P.)), white 

spruce {Picea glauca ((Moench) Voss)), white birch {Betula papyrifera (Marsh)), 

trembling aspen, balsam poplar {Populus balsamifera (L.)) and balsam fir {Abies 

balsamea ((L.) Mill.)). These species are found in several associations across the 
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landscape producing both conifer and mixedwood stands. Topography plays an 

important role in forest composition by either limiting or enhancing the growing 

conditions for certain species. Poorly drained lowland areas are dominated by 

homogeneous stands of black spruce, with small proportions of cedar {Thuja occidentalis 

(L.)) and larch {Larix laricina (Du Roi) K. Koch). Dryer sites with greater productivity 

tend to have more diverse stand composition with increased productivity (Thompson 

2000b). 

The Great Lakes-St. Lawrence Forest Region is situated in central and southern 

Ontario and to the east and west of Lake Superior. This region contains a greater 

diversity of vegetation than the boreal forest and is characterized by primarily 

mixedwood and deciduous forests. Some common hardwood species found in this region 

are: sugar maple {Acer saccharum (Marsh.)), yellow birch {Betula alleghaniensis 

(Britt.)), beech {Fagus grandifolia (Ehrh)), trembling aspen and red oak {Quercus rubra 

(L.)). White pine {Pinus strobus (L.)) that was located throughout most of the Great 

Lakes-St. Lawrence Forest Region in the 1700s, is currently found in much smaller 

densities because of over-harvest (Thompson 2000b). 

Fire Regime 

Since the 1920s improved fire detection and suppression technologies have 

influeneed fire disturbance dynamics across the landscape (Li 2000). Fire in the boreal 

forest is highly variable in intensity, frequency and spatial extent. Small, frequent fires of 

less than 100 ha are most common in the boreal forest. However, high intensity crown 

fires that disturb tens of thousands of hectares occur as well. These large disturbances are 
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primarily responsible for vegetation patterns at the landscape scale. In general, a small 

proportion of fires are responsible for the majority of disturbed areas (Thompson 2000a). 

The fire cycle in pre-suppression history is estimated to be between 20 and 135 years 

with a mean of 60 years. The fire cycle across Ontario is not uniform but is instead 

influenced by a number of factors including weather, topography, fire events, and fuel 

conditions (Li 2000). Eastern Ontario generally has a longer fire cycle due to increased 

moisture and a low summer temperature from the influence of Hudson’s Bay (Thompson 

2000a). 

The Great Lake-St. Lawrence forest region rarely experiences large stand- 

destroying fires, but instead is disturbed by low intensity ground fires that influence 

understory succession. These fires cause individual tree mortality and create small to 

large openings in the canopy (Thompson 2000a). 

A qualitative comparison of three fire management zones in the OMNR Red Lake 

District found that several key components of the fire regime had been altered by human 

interactions on the landscape (Li 2000). The total number of fires, mean fire size, 

percentage of total area burned, percentage of the mean annual bum, and the fire cycle 

were compared for intensive, measured, and extensive fire management areas. Intensive 

fire management zones are located in areas with greater population densities and 

therefore had an increased incidence of human-caused fires. Fires caused by lightning 

strikes dominated extensive areas. As a result of increased forest activity in intensive 

areas, fire suppression efficiency is greater, thus decreasing the percentage of total area 

burned and the mean fire size. The mean fire size was 182 ha, 353 ha and 1,993 ha for 

the intensive, measured, and extensive management areas, respectively. The fire return 
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cycle has also been altered and ranged from 51 years in the extensive fire zone to 135 

years in the intensive fire management zone (Li 2000). 

CLIMATE AND WEATHER 

Climate is defined as the variation in weather over a specific time period in a 

certain location. It is usually measured over 30 years and can represent many different 

variations of weather that occur. Mean temperature and precipitation are common 

variables used in climate studies. However, the extreme variations (i.e., 

minimum/maximum temperatures) in weather that occur may offer more evidence to 

processes that will affect vegetation and the landscape (Flannigan and Weber 2000). 

Generating a Weather Model 

Mackey et al. (1996) used a smoothing thin-plate spline interpolation technique to 

generate climatic surfaces for the province of Ontario. These surfaces were used to 

characterize the climate for each of Hills’ site regions. The thin-plate smoothing spline 

algorithm offers several advantages to other geostatistical techniques. This method does 

not require initial subjective estimates to generate the surfaces (Mackey et al. 1996), A 

surface produced using the thin plate smoothing spline also passes exactly through the 

measurement points and will have a smooth interpolation (ESRI 2001). Flannigan and 

Wotton (1989) did a comparison of interpolation techniques for generating fire weather 

index (FWI) surfaces, and suggested that a thin-plate smoothing spline algorithm was 

optimal for estimating the fire rating between stations. 
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HABITAT AND CLIMATE 

Habitat and climate are not mutually exclusive factors for wildlife but instead 

interact, in part, to form the landscape where populations succeed (survive, reproduce, 

feed, etc.). The spatial and temporal composition, structure, and productivity of forest 

ecosystems are in part determined by climate. Vegetation and wildlife are also 

influenced by these climatic gradients (Mackey et al. 1996). In theory, habitat has three 

components; cover, food and water. Cover has been further divided into habitat 

requirements and escape cover. There are two components of vegetation that are 

important for wildlife habitat: the forest landscape structure and the taxa of the plants, or 

floristics (Morrison et al. 1998). The vegetation structure and habitat configuration (size, 

shape, distribution of vegetation) was thought to be more important than floristics for 

determining patterns of habitat occupancy. However, species composition of the forest is 

now also widely recognized as an important factor in determining habitat occupancy. 

(Morrison cf <3/. 1998). 

Weather patterns can influence wildlife populations at small spatial scales for 

short periods of time. Severe winter conditions can affect ungulate populations by 

limiting food availability resulting in increased predation rates (Voigt et al. 2000). 

Fishers also respond negatively to increasing snow depths, which reduce their fitness, by 

decreasing recruitment, survival, or a combination of the two (Krohn et al. 1995). 

DISTURBANCE 

Disturbance is defined as “a discrete event, either natural or human-induced, that 

changes the existing conditions of an ecological system; ... an allogenic disturbance is 
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the result of external factors such as fire, drought, and wind” (Perera et al. 2000). In 

Ontario, the fire regime can be described through several variables including size, 

intensity, and frequency. The fire regimes can be classified according to intensity and 

frequency of occurrence. A combination of short and long-term fire frequencies, along 

with varying intensities of surface and crown fires can be classified into approximately 

six classes of fire regime (Li 2000). 

From an ecological point of view, fire disturbance is important to boreal tree 

species, which have become adapted to varying fire intensities and frequencies. Fire 

dictates species composition, the spatial pattern of vegetation and successional processes 

occurring on the landscape (Li 2000). 

NATURAL DISTURBANCE AND WILDLIFE HABITAT 

All types of disturbances have some influence on wildlife depending on the scale, 

frequency and intensity. Landscape disturbances such as fire and windstorms can change 

habitat suitability by altering the structure, composition and function of the forest. 

Herbivory, considered a small-scale disturbance, can also affect wildlife by modifying 

species composition of both forests and herbaceous vegetation over time. Disturbances 

that are infrequent but high in intensity can have drastic effects on forest structure. An 

example of a rare but intense disturbance was the 1998 ice storm that struck eastern 

Ontario. Wildlife that are dependent on older forest conditions may find it difficult to 

find these patches in landscapes with high frequency disturbances (i.e., fire, windstorm, 

and clearcutting). Fire and windstorm disturbances that are common in the boreal forest 

can be highly variable in their extent and intensity (Voigt et al. 2000). All types of 
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disturbances interacting at multiple scales, intensities and frequencies are important 

factors influencing wildlife habitat. 

ECOLOGICAL BASIS FOR ANALYSIS AT MULTIPLE SCALES 

Scale functions both temporally and spatially across a given landscape. Scale is 

defined as a change in pattern related to temporal and/or spatial attributes that are of 

interest and can be measured (Gardner 1998). There are two measured components of 

scale: grain and extent. Grain is the resolution or unit measured when sampling. In a 

spatial sense, grain is the plot or pixel size. The spatial domain over which measurements 

are made is referred to as the extent and is the geographic area of observation (Goodwin 

and Fahrig 1998). A species response and perception of habitat are functions of scale and 

resolution of interpretation. Wildlife species of different sizes that occupy the same 

spatial area will interpret the landscape at different scales thus influencing interactions 

and functions among species (Kolasa and Waltho 1998). Wildlife populations can be 

characterized by both an upper and lower spatial scale. The smallest spatial scale of a 

species is defined by the individual and is characterized by the area that an individual 

occupies during non-dispersal activities. The global population is recognized as the 

largest spatial scale and encompasses the distribution of a species (Goodwin and Fahrig 

1998). 

Choosing the appropriate scale for sampling and analysis of population dynamics 

can be very difficult. In the past, cost and logistical constraints have been major factors 

in choosing the scale for ecological studies. Human interpretations of habitat structure 

and species requirements have also been a method used for choosing scale. Elements of 
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the landscape that are simple to delineate such as clearcuts, agricultural fields or urban 

areas, may not encompass the local or regional populations thus giving researchers an 

incomplete understanding of the true population dynamics. A third method for choosing 

the appropriate scale of study is to observe the population at its inherent local, regional, 

or global population scales and match the study to one of these scales. This method 

requires species distribution and rates of dispersal information that are extremely costly 

and often difficult to collect, making this method very difficult to use. Wildlife 

population dynamics cannot be understood at any single scale and should be explored at 

multiple scales to accurately identify factors that control population dynamics (Goodwin 

and Fahrig 1998). 

HIERARCHY THEORY 

Hierarchy theory is a method for observing different levels of organization that 

are ordered based on their interaction strength and frequency. The focal level (L) is 

composed of a system of elements that are at a lower level (L-1), while at the same time 

is a single component of a higher system in the hierarchy (L+1) (King 1997). Level L is 

the focal scale at which a certain biological phenomenon is being measured. If the 

phenomenon is collective then the components of the system fully explain level L. 

However, if the system is emergent, a higher level of information (L+1) is required to 

explain the variation in the phenomenon. As a system is observed at successive levels in 

the hierarchy, functional relationships at the focal level may show qualitative differences 

or variability at higher levels; this phenomenon is known as transmutation. To 

understand processes at the focal level, a reductionist will look for explanations at a lower 
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level (L-1). However, the move from one level of organization to the next will involve 

variability that cannot be explained and this variability is transmutation (Bissonette 

1997). Boundary conditions are external influences that constrain the behaviour and 

dynamics of a system at higher levels of organization. Factors that are abiotic such as 

climate, topography, and soils, are classified as extra-hierarchical boundary conditions 

(King 1997). Habitat specialists and generalists are defined by their habitat requirements 

and are a good example of species using different levels in the hierarchy to meet their 

needs. Specialists occupy lower levels in the hierarchy by using a more specific 

component of the habitat on the landscape than generalists. Generalists are defined by 

the broad type of habitat elements used and therefore exploit a higher level in the 

hierarchy (Kolasa and Waltho 1998). Habitat specialists and generalists operate at many 

spatial scales and are not restricted to a specific scale because of their place in the 

hierarchy. 
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MATERIALS AND METHODS 

DATA 

Data for this project were obtained primarily from the Ontario Ministry of Natural 

Resources (OMNR) and have a variety of temporal and spatial extents (Table 2). Most 

of the data sets were spatial in nature when they were obtained. However, the fur harvest 

database and the Canadian Daily Climate Data were developed into a spatial data set 

using a geographic information system (GIS). The spatial data were represented by both 

vector and raster data types and had a provincial extent. 

Table 2. Summary of data sets used in this study 
Data Set Data type Thematic 

Structure 
Time Period Source 

Fur Harvest Database Aspatial N/A 1972-1990 OMNR 
Fire Disturbance Spatial Vector 1920-1990 OMNR 
Clearcut Disturbance Spatial Vector 1940-1990 OMNR 
Provincial Road 
Coverage 

Spatial Vector 2002 OMNR 

Provincial Stream 
Coverage  

Spatial Vector 2002 OMNR 

Landcover 28 Spatial Raster 1996 OMNR 
Canadian Daily Weather 
Data 

Aspatial N/A 1970-1990 Environment 
Canada 

HARDWARE AND SOFTWARE 

Environmental Systems Research Institute (ESRI) software was used for the GIS. 

ARC/INFO and ArcView were used primarily for spatial analysis of the data sets. Patch 

Analyst (Elkie et al. 1999), an OMNR ArcView extension, was used to calculate spatial 

statistics. ERDAS Imagine was used for some of the raster analysis and data conversion. 
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For data compilation and organization, Microsoft Access and Excel were used. SPSS and 

Datadesk were used for the statistical analyses. 

The methods had two distinct components. The first component involved 

database standardization, variable generation, and spatial data compilation. The second 

was the statistical analysis of the compiled data sets and involved a variety of parametric 

tests to assess alternative hypotheses. 

SPATIAL SCALES OF ANALYSIS 

The trapline was the fundamental spatial unit used in the analysis. All spatial 

variables (disturbance (fire and clearcut), percentage forest cover type, weather (1970s 

and 1980s), spatial statistics, road density and stream density) were compiled in the GIS 

to provide an estimate for each trapline. Furbearer harvests were analysed at five spatial 

scales. These scales of analyses changed the spatial extent or grouping of the traplines 

while maintaining each trapline as an individual sample unit. At different scales the 

variation in the spatial variables and the subsequent furbearer trapping densities changed. 

Each scale was comprised of spatial extents that encompassed the entire geographic area 

of that scale. At the largest scale, i.e., the entire province of Ontario, all of the traplines 

were included in the analysis with only one spatial extent (Figure 4). As the scale of the 

analysis decreased to the ‘forest biome’ scale, traplines located in the boreal forest were 

grouped and analysed together while traplines in the Great Lakes-St. Lawrence forest east 

and west were grouped and analysed separately for a total of three spatial extents at this 

scale (Figure 5). The analysis continued to decrease in spatial scale (smaller and smaller 

classifications) to the ‘sub-boreaF scale (two spatial extents), ‘Hills site region’ scale 
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(seven spatial extents), and the ‘OMNR District’ scale (30 spatial extents) (Figures 6-10). 

As the scale decreased, the geographic area of each classification also became smaller, 

theoretically decreasing the spatial variation across the landscape. This multi-scaled 

analysis of furbearer harvest data identified factors that affected trapline harvests, first at 

the ‘provincial’ scale and then at subsequently smaller classifications of the landscape. 

This analysis method was expected to reduce the variation in the landscape variables and 

furbearer harvests caused by individual landscape processes such as fire, timber 

harvesting, and weather because at large scales these processes were highly variable and 

decreased in variation at subsequently smaller scales. 

Each scale and its spatial extents could be represented by both its total spatial area 

on the landscape and the total trapline area that was contained within that scale (Table 3). 

In some cases, the OMNR District boundaries were administrative and no longer existed 

(i.e., area reorganization) and therefore the total district areas were not presented, only the 

total trapline area. 
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Table 3. A summary of the five spatial scales, their total spatial area and total trapline 
area. 

Scale 
‘Provincial’ 

‘Forest biome’ 
Boreal Forest 
GSL West 
GSL East 

‘Sub-BoreaF 
Boreal West 
Boreal East 
‘Hill's Site Region’ 
Site Region 3S 
Site Region 4S 
Site Region 4W 
Site Region 3W 
Site Region 3E 
Site Region 4E 
Site Region 5E 

‘OMNR District’ 
Arnprior 
Atikokan 
Bancroft 
Blind River 
Bracebridge 
Cochrane 
Chapleau 
Dryden 
Espanola 
Fort Frances 
Geraldton 
Gogama 
Hearst 
Huronia 
Ignace 
Kapuskasing 
Kirkland Lake 
Minden 
North Bay 
Nipigon 
Parry Sound 
Red Lake 
Sioux Lookout 
Sault Ste. Marie 
Thunder Bay 
Temiskaming 
Timmins 
Terrace Bay 
Wawa 
Kenora 

Number of Traplines 
1397 

764 
202 

431 

411 
353 

97 
236 
66 
196 
347 
126 
329 

42 
20 

37 
63 
27 
34 
47 
27 
12 

33 
24 
22 

36 
9 
16 
50 
67 
45 
51 
60 
52 
78 
87 
41 
97 
22 

39 
51 
88 

120 

Area (sq. km) 
800,000 

500.000 
^ 43,000 
155.000 

360.000 
140.000 

' 66,000 
^ 59,000 
' 20,000 
' 89,000 
137,000 

^41,000 
= 74,000 

Area on Traplines (sq. km) 
227,877 

168,193 
23,547 
36,137 

110,677 
57,516 

45,163 
36,967 
8,644 

40,110 
57,224 
14,681 
25,088 

3,961 
2,539 
1,357 
5,668 
1,944 
5,905 
7,428 
3,818 
1,507 
4,854 
5,397 
3,315 
7,946 

180 
3,105 
10,851 
6,375 
1.236 
5,405 
14,081 
3,041 
32,247 
29,131 
3,516 
15,291 
2.237 
5,858 
8,560 
12,610 
10,676 
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Figure 4 shows the ‘provincial’ scale and gives an overview of the traplines 

available before the minimum trapping effort constraints were applied (see below). Each 

polygon was a trapline while the colour grouping represented different OMNR Districts 

(spatial extents). Figures 5 and 6 show the ‘forest biome’ and the ‘sub-boreal’ scales, and 

a map of the ‘Hills site region’ (Hills 1960) scale is presented in Figure 7. The ‘OMNR 

District’ scale is shown in Figures 8-10. 

Figure 4. Provincial overview of registered traplines used in the study. 



39 

Figure 5. ‘Forest biome’ scale 

Figure 6. ‘Sub-boreal’ forest scale 
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Figure 7. ‘Hills site region’ scale 

Figure 8. Northwestern Ontario traplines used in the study. 
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Figure 9. Northeastern Ontario traplines used in the study. 

Figure 10. Southern Ontario traplines used in the study. 



42 

DATA COMPILATION 

Aspatial and spatial data were used for analyses. The fur harvest data set was 

used as the dependent variable in the analysis. This data set was aspatial and required 

standardization and compilation. All of the independent variables were spatial and 

needed to be compiled by trapline and converted to an aspatial, tabular format for 

analysis (see flowchart - Figure 11). 

Compilation of the Trapline Fur Harvest Data 

The fur harvest database contained an annual total catch of each furbearer species 

harvested from each registered trapline across Ontario. The temporal extent of the fur 

harvest data set was 19 years, from 1972 to 1990, with three years missing in that period 

(1975, 1986, 1989) for marten, fisher, beaver and lynx. To ensure consistency in trapline 

identification, the database was first converted to a standardized label format with a two- 

letter district indicator and a three number trapline identifier (TB = Thunder Bay District, 

001 = trapline number, trapline label = TBOOl). The 20 years of data were then divided 

into four, five-year periods (1972-1974, 1975-1979, 1980-1984 and 1985-1990), each to 

be analysed separately. Periods 1, 2, 3, and 4 refer to these time periods: 1972-1974, 

1975-1979, 1980-1984 and 1985-1990, respectively. The data were analysed individually 

by period to control for some of the variation in furbearer harvest potentially caused by 

pelt value among years and to allow a qualitative temporal comparison of the variables 

that accounted for the greatest variation in furbearer harvests. 



Dependent Variables Independent Variables 

Figure 11. An overall summary of data compilation 
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Controlling for Trapping Effort 

To reduce the variability in furbearer harvest and the effects of trapping effort, 

several constraints were imposed on the data set to ensure that the traplines selected were 

representative of ones that were actively and consistently harvested. An issue within the 

database was determining whether low catches were the result of minimal trapping effort 

or other factors. A restriction of ‘minimum effort’ was placed on the selection of 

traplines to ensure that a trapper harvested at least one animal per year. A trapline must 

have maintained the minimum trapping effort (>1 animal) for at least three years in each 

of the previously-noted five-year periods. The mean number of animals harvested for the 

five-year period for each trapline was then calculated. This procedure was used for 

marten, fisher, and lynx. 

Beaver harvest in Ontario was subject to a quota (a minimum harvest). Therefore 

by measuring success in relation to the quota by trapline, a level of confidence in trapping 

effort could be achieved for this species. If a trapper met 50% of the quota for three years 

in a five-year period, the trapline was considered to be representative of a consistently 

trapped trapline. If not, the line was deleted. Once the traplines were selected for 

analysis, a five-year mean was calculated for each trapline. This procedure was repeated 

for the four periods of analysis (1972-1974, 1975-1979, 1980-1984, and 1985-1990) for 

marten, fisher, beaver, and lynx. This procedure created a list of traplines that met the 

expressed criteria. Altogether, 16 lists of traplines were created, four for each species 

(four species total). Lynx trapping success was low in the period from 1972-1974 and 

therefore this data set was not used in the analysis, leaving 15 data sets for the analysis 
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(four marten data sets, four fisher data sets, four beaver data sets, and three lynx data 

sets). 

Trapline sizes were variable throughout the province and therefore the number of 

furbearers harvested was standardized to trapline size. The number of furbearers was 

divided by the trapline area to calculate the number of furbearers harvested per square 

kilometre. 

Spatial Data Compilation 

Registered Trapline Boundary Data 

The trapline boundary data set was a polygon coverage of registered traplines 

within the province. Although this data set did not require compilation, many traplines 

had boundaries that had been changed over the time period of this study, which would 

have caused errors in the analysis. The most common change in trapline boundaries was 

the union of adjacent traplines. Amalgamating traplines occurred because of insufficient 

animal harvest or for administrative purposes (Helen Milne, OMNR Peterborough, 

Personal Communication, July 24, 2001). The GIS coverage was compared with the 

official maps located in Peterborough, Ontario. Traplines that had changed during the 

period of analysis were eliminated to ensure furbearer harvest totals and areas were 

consistent across all traplines. Traplines that bordered OMNR District boundaries were 

also eliminated because of changes that have occurred to these district boundaries 

through time. Tracking these changes would have been very difficult, especially with 

inconsistencies in trapline numbering systems for some districts. 
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Water Data 

To calculate furbearer densities, stream and road densities as well as the 

percentage of land in different disturbance classes and forest types, the quantity of 

terrestrial land was required (i.e., without significant water-bodies). The water 

classification in Landcover 28 was used to calculate the total area for lakes by trapline. 

Landcover 28 was a raster data set and was reclassified from 28 classes to a simple binary 

data set (water/no water). Due to limitations in ARC/INFO, the binary data set could not 

be converted directly to a polygon coverage and it was therefore subdivided into OMNR 

Districts using a clip procedure within an arc macro language (AML) script. The 

individual districts were then converted to a polygon coverage. Each district polygon 

was intersected with the trapline boundary map to associate each lake with its respective 

trapline. A database was used to sum the total lake area by trapline. The lake area was 

subtracted from the total trapline area to obtain an estimated terrestrial area. 

Disturbance Variables 

Disturbances within the fire data set were classified on a yearly basis, whereas the 

clearcut disturbances were labeled by decade. To ensure that a comparison between the 

two types of disturbances could be made, the fire disturbances were reclassified by 

decade. The first task was to classify the disturbances into temporal periods for analysis. 

Fires were classified into seven classes and the clearcuts into six disturbance classes for 

analysis (Table 4). 
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Table 4. Disturbance classes used in the analysis and corresponding years. 
Disturbance Type 

Fire Clearcut Time Period Temporal Extent 
Bum 1970s 
Bum 1960s 
Bum 1950s 
Bum 1940s 

Bum 1920s-1930s 
1970s Cumulative Bums 
1980s Cumulative Bums 

Cut 1970s 
Cut 1960s 
Cut 1950s 
Cut 1940s 

Not Available 
1970s Cumulative Cuts 
1980s Cumulative Cuts 

1971-1980 
1961-1970 
1951-1960 
1941-1950 
1921-1940 
1941-1970 
1951-1980 

10 years 
10 years 
10 years 
10 years 
20 years 
30 years 
30 years 

Each class was considered a separate variable for the analysis and represented the time 

since disturbance. For both the fire and clearcut variables, a cumulative disturbance 

variable was created that represented 30 years of total disturbance. Thirty years was 

chosen as the estimated average age at which forests change from early successional 

structure to a more mature successional structure. Two separate variables were created 

for both disturbances, each variable was used in the analysis. The first cumulative 

variable was analyzed with the furbearer harvest data in the first two periods (1972-1974, 

1975-1979) and extended from 1941 to 1970 and the second cumulative variable 

(analysis of periods 3 and 4) extends from 1951 to 1980. Therefore, when the trapline 

harvest data were analyzed in the four temporal periods (1972-1974, 1975-1979, 1980- 

1984, and 1985-1990), there were two cumulative disturbance variables, one for the 

1970s and another for the 1980s, each spanning 30 years. The decadal disturbance 

variables were used to test whether a specific time since disturbance was influencing 

furbearer harvests. The cumulative variables tested whether the affects of disturbance 

persisted beyond 10 years and continued to affect the furbearer population. 

The lakes coverage was first clipped from the fire and clearcut coverages to 

account for inaccuracies in disturbance boundary that occurred in the mapping process. 

A further inspection of the GIS database showed that some disturbances overlapped 
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spatially (both fire and clearcut). These overlapping disturbances would have provided 

incorrect estimates of the quantity of area disturbed for each decade by disturbance type. 

Since the disturbance variables were surrogates of age classes on the landscape, the most 

recent disturbances were considered the most important for measurement. Therefore, in 

areas where multiple disturbances occurred on the same site, the most recent disturbance 

was considered correct. An older disturbance on an overlapping disturbance site would 

not have provided an accurate estimate of the proportion of the trapline in that age-class. 

An AML script was written to clip the most recent disturbance polygons from older 

disturbance polygons to ensure that recent disturbances took priority in the analysis. As 

well, the fire and clearcut disturbances were clipped from each other to account for areas 

that may have been salvage logged and for new plantations that may have burned. Once 

the coverages were clipped, each layer was intersected with the trapline boundary 

coverage to assign trapline identifiers to each disturbance. The attribute tables were then 

exported from ARC/fNFO to Microsoft Access and the total disturbance by trapline was 

calculated. To standardize the amount of disturbance per trapline, the total disturbance 

was divided by the trapline area to obtain the percentage of disturbance by trapline. 

Weather Variables 

Weather Station Measurements 

Environment Canada had a network of 1380 weather stations across Ontario. The 

database contained daily measurements of three principal weather variables: temperature, 

precipitation and snow depth (Anon. 1999). Ordinary stations recorded the maximum 



50 

temperature in a 24-hour period, while some stations recorded the minimum temperature, 

as well. Environment Canada computed a mean temperature for each day (Anon. 1999). 

Rain, drizzle, freezing rain, freezing drizzle and hail are considered precipitation 

and were measured using the standard Canadian rain gauge. The precipitation was 

funneled into the rain gauge, which is a cylindrical container 40 cm in length and 11.3 cm 

in diameter. The precipitation measurement was the water equivalent of all types of 

precipitation. Snowfall, a specific type of precipitation was measured on the ground. 

Environment Canada averaged the snow depth for ordinary weather stations at several 

locations and then divided by ten to calculate the equivalent quantity of water. Principal 

weather stations measured snowfall by melting the precipitation that collects in a 

specialized collection system called a Nipher gauge. This method was more accurate 

than the 10 to 1 technique where 10 cm of snowfall equals 1 cm of precipitation. This 

method was utilized by smaller weather stations for calculating snowfall. Snow depth 

was measured at several representative points around the weather station and then 

averaged (Anon. 1999). 

Weather Model 

To examine the association of weather on furbearers, four continuous weather 

surfaces were produced by interpolation for the province and used in the statistical 

analysis. The weather station data were obtained from Environment Canada’s Canadian 

Daily Climate Data (Anon. 1999). Temperature, precipitation, snowfall and snow depth 

were calculated for both the 1970s and 1980s. Data from individual weather stations 

(Figures 12 and 13) were compiled by decade to produce mean estimates of the four 
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variables. Monthly means (i.e., a mean for the months of January, then a mean for the 

months of February, etc.), and a decadal mean were calculated. The monthly means were 

used to offset the effects of missing months within the data set, otherwise a single 

missing month (which was common in the data) would have provided an incorrect 

estimate of the mean yearly temperature. Due to some inconsistencies in weather station 

measurements (missing months/years) a minimum of five years of data were required 

from a weather station for it to be used in the analysis. Once a weather station met the 

minimum requirement and the variable was calculated, the latitude and longitude, and the 

weather estimate were entered into a spreadsheet. The spreadsheet was then exported 

into a comma delimited file to be used in ARC/INFO. This process was repeated for all 

four variables in both decades. 

Figure 12. Weather station locations throughout Northern Ontario. 
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Figure 13. Weather station loeations throughout Southern Ontario 

Using the ‘generate’ command in ARC/INFO, a point coverage was created from 

the latitude and longitude locations. Estimates for the four weather variables were stored 

in the coverages attribute table. To use this point coverage with the other data sets 

required re-projection to a standardized Lambert projection used by the OMNR. An 

AML script was written to re-project all four variables in both decades to a compatible 

projection. 

The GRID module in ARC/INFO was used to create a continuous weather model 

of the province and to compile individual weather observations by trapline. The surface 

was generated using a spline interpolation algorithm. The grid was interpolated to a grain 

of 1 km and the tension option within the software was set to 10. A tension value of 10 

was typical according to ESRI (2001) and ensured the values interpolated in the surface 

corresponded to the weather station point data. Using the trapline boundary coverage and 

the weather surface, a ‘focalmean’ procedure produced a neighbourhood mean for each 
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trapline. A ‘zonalcentroid’ procedure was then used to create a grid of individual cells 

that represented the mean weather value for each trapline, the cells were located at the 

centre of each zone (trapline). The trapline centroids were then converted to a point 

coverage and intersected with the trapline boundary coverage to ensure eorrect 

identification of each weather variable. Mean annual temperature, mean annual 

precipitation, mean annual snowfall, and mean annual snow depth were calculated in 

each trapline for the two decades (1970s and 1980s). The weather values for each 

trapline were exported to a Microsoft Access database. 

Spatial Forest Age Structure Variables 

Ontario did not have a provincial forest age data set. However, using the fire and 

clearcut data sets to represent the majority of disturbance (windthrow, insects, and 

pathogens account for the majority of the remaining disturbance types, but few data are 

available), patches of young and mature forest were identified. Landcover 28 was 

reclassified to a forested/non-forested binary data set and integrated with the disturbance 

layers to generate spatial variables. Disturbance patches from 1960-1990 were selected 

from both the fire and clearcut coverages. The two types of disturbances were combined 

to represent young forest. This data set was then converted to a 25 m raster coverage for 

use with Landcover 28. Landcover 28 was used to distinguish between areas of forested 

and non-forested land (Table 5). The 28 classes were reclassified to a three-class data set, 

two forest classes (unknown age forest and recent disturbance forest) and non-forested. 

A recent disturbance class that was identified within Landcover 28, was classified as a 

second young forest class. Using the forested areas from the Landcover 28 with 
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unknown age, the fire and clearcut disturbance data were combined to identify areas of 

forest <30 years of age. With the disturbance data and Landcover 28 combined, the 

entire data set was reclassified a final time to produce a young forest class (<30 years), a 

mature forest class (>30 years), and a non-forested class. 

To use this data set in the statistical analysis component of the project, spatial 

statistics (i.e., landscape indices/landscape metrics) were required for each trapline. An 

AML script was written to clip all of the traplines from the overall derived data set, into 

individual raster data sets. 

Once the three data sets were combined, and each trapline was clipped and spatial 

statistics were calculated. Each trapline was considered a separate data set and analyzed 

using Patch GRID (Elkie et al. 1999), an OMNR extension designed for ArcView. 

Approximately 300 raster data sets (traplines) could be analyzed at once for a variety of 

spatial attributes. The extension calculated approximately 50 spatial statistics divided 

into several classes including metrics for: area, patch density and size, edge, shape, 

diversity and interspersion and core area. Simple statistics that measure basic landscape 

patterns were calculated (Table 6). Mean patch size, edge density, and core area density 

were chosen, calculated for both the young and mature forest in Patch Grid, and were 

then exported into a database and associated with its respective trapline number. 
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Table 5. Reclassification table for broad species classes and coarse age classes 
Landcover 28 
Classification 

Broad Species 
Classification 

Broad Forest Age 
Classification 

Water 
Coastal Mudflats 
Intertidal Marsh 
Supertidal Marsh 
Freshwater Coastal Marsh 
Deciduous Swamp 
Conifer Swamp 
Open Fen 
Treed Fen 
Open Bog 
Treed Bog 
Tundra Heath 
Dense Deciduous Forest 
Dense Coniferous Forest 
Coniferous Plantation 
Mixed Forest, Mainly 
Deciduous 
Mixed Forest, Mainly 
Coniferous 
Sparse Coniferous Forest 
Sparse Deciduous Forest 
Recent Cutovers 
Recent Bums 
Old Cuts and Bums 
Mine Tailings, Quarries, 
Bedrock 
Settlement and Developed 
Land 
Pasture and Abandoned 
Field 
Cropland 
Alvar 
Unclassified 

Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 

Deciduous Forest 
Coniferous Forest 
Coniferous Forest 

Mixed Forest 

Mixed Forest 

Coniferous Forest 
Deciduous Forest 

Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 

Non-Forested 

Non-Forested 

Non-Forested 
Non-Forested 
Non-Forested 

Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 
Non-Forested 

Forested (>30 yrs) 
Non-Forested 

Forested (>30 yrs) 
Forested (>30 yrs) 
Forested (>30 yrs) 
Forested (>30 yrs) 

Forested (>30 yrs) 

Forested (>30 yrs) 
Forested (>30 yrs) 
Forested (<30 yrs) 
Forested (<30 yrs) 

Non-Forested 
Non-Forested 

Non-Forested 

Non-Forested 

Non-Forested 
Non-Forested 
Non-Forested 
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Table 6. Definitions of spatia statistics calculated. 
Landscape Structure Definition 

Mean Patch Size (MPS) The average patch size (forest <30 yrs. and forest >30 
yrs.) in a specified area (trapline) for an individual class 
(forest type) or the landscape. MPS is measured in 
hectares (Elkie et al. 1999). 

Edge Density (ED) The quantity of edge habitat expressed over a relative area 
(trapline) for an individual class (forest type) or the 
landscape. ED is measured in metres/hectare (Elkie et al. 
1999). 

Core Area Density (CAD) The total number of unconnected core areas over an area 
(trapline) and is a measure of their distribution for an 
individual class (forest type) or the landscape (Elkie et al. 
1999). 

Species Composition Variables 

The percentage of conifer, deciduous and mixedwood forest on each trapline was 

determined from the Landcover 28 data set. The data set was first reclassified from 28 

classes to four, three of which were forested and one that was a non-forested class (Table 

5). 

Using ARC/INFO, each OMNR District was clipped from the overall raster data 

set and then converted to a polygon coverage. Limitations in the software (ARC/INFO) 

prevented the entire data set from being processed in a single procedure and therefore the 

landscape was divided into smaller subsets (districts) to be processed individually. An 

intersect command was used to associate each patch of the three forest types with the 

respective trapline in which it occurred. The percentage forest cover type data sets were 

then exported into Microsoft Access and queried to determine the total area for each of 

the three forested land types in each trapline. To standardize the data set for different 



57 

trapline areas, the total area of each forest type was divided by the total terrestrial area to 

obtain a percentage forest cover by trapline. 

Road Density Variables 

Primary, secondary and tertiary road coverages were obtained for the province. 

All of the coverages were transformed to a common Lambert projection. Upon 

inspection, the tertiary roads data were eliminated from the analysis due to 

inconsistencies. In northern Ontario, companies used different road classification 

systems and the tertiary roads data were incomplete (Len Hunt, OMNR, CNFER, 

Thunder Bay, Personal Communication, Oct. 22, 2001). The primary and secondary 

roads were then intersected with the trapline boundary map in the GIS to associate each 

segment of road with its respective trapline. The data were then exported to a database 

and the linear segments were totaled by trapline. To standardize the quantity of primary 

and secondary road for each trapline, the total road length was divided by the total 

terrestrial area to determine road density (m/ha). 

Stream Density Variables 

The stream data set had a similar format and structure to the road data set and was 

therefore compiled in the same manner. All streams were intersected with the trapline 

boundary coverage and the total stream length for a given trapline was related to the 

record for that trapline. This variable was also standardized to account for different 

trapline areas and was divided by the total terrestrial area to obtain a stream density 

(m/ha) by trapline. 
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Database Construction 

The final step was the amalgamation of the data sets into a common database. 

Using the minimum furbearer harvest constraints (> 1 animal harvested in three years out 

of five-years), a list of available traplines was created for each of the four time periods 

(1972-1974, 1975-1979, 1980-1984, and 1985-1990) and for each of the four furbearers 

(marten, beaver, fisher and lynx). Fifteen data sets (lists of traplines) were created in this 

procedure (four marten data sets, four fisher data sets, four beaver data sets, and three 

lynx data sets). Microsoft Access was used to associate the disturbance (fire and 

clearcut), percentage forest cover type, weather (1970s and 1980s), spatial statistics, road 

density and stream density variables with the respective traplines from each of the fifteen 

data sets. 

STATISTICAL ANALYSIS 

Descriptive statistics were calculated for all of the independent variables 

(disturbance (fire and clearcut), percentage forest cover type, weather (1970s and 1980s), 

spatial statistics, road density and stream density) at all scales of analysis. The mean at 

each scale, the standard deviation, the standard error, and minimum and maximum values 

were calculated for all of the traplines throughout Ontario. Each variable in the data set 

was evaluated for normality, and variability using histograms and box-plots to ensure 

they satisfied assumptions of the parametric tests that were performed. Most variables 

required a transformation. Logarithm, square root, and cube root transformations were 

most commonly used (Appendix IV, Table 54, Table 55, Table 56, Table 57). 
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Principal Components Analysis 

Principal components analysis (PCA) was used to reduce the overall number of 

variables to be analyzed in subsequent procedures. A PCA was performed at each scale, 

for all four furbearer species for all four periods of analysis. Principal components (PC) 

that aceounted for >10% of the total variation among unit variability in the data set were 

used to subdivide the variables. This rule removed PCs that accounted for little variation 

of the landscape variables in the data set. The majority of the analyses summarized 

among trapline variation in the first three PCs, although in some cases two or four PCs 

were used when >10% of the variation was explained. PCs were interpreted using the 

component loading factors to assess the contribution of each variable to the individual 

PC. The eigenvectors were only comparable within each PC, but not among PCs 

(Johnson 1998). Variables with the greatest contribution to the PC were retained for 

further analysis. Approximately 14 to 18 variables were seleeted from each model. 

To determine whether any relationship existed between the dependent variable 

and the PC score, correlation analysis was done. This test gave some insight into whether 

the variables being seleeted by the PCA were in fact accounting for some of the variation 

in the furbearer harvest data. 

Stepwise Multiple Regression Analysis 

Using the variables selected by the PCA, forward stepwise multiple regression 

procedures were used to identify those variables that explained the majority of the 

variation in the furbearer harvest data among sampling units at the various scales. The 
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spatial variables developed in the GIS were used as the independent variables in the 

Multiple Linear Regression and the furbearer harvest data was used as the dependent 

variable. The analyses were run for each species at each of four time periods and for 

each of the spatial extents at the various scales. The regression analysis had two 

purposes: 1) to build models that accounted for the greatest variation in furbearer harvest 

data and; 2) to identify variables that repeatedly explained variation in furbearer harvests 

within and among scales and among the time periods. Using the forward stepwise 

automatic variable selection procedure, an entry probability of 0.05 and a removal 

probability of 0.10 was used. Johnson (1981) suggested that a minimum of 20 samples 

was required for multivariate analysis plus an additional three to five samples per variable 

in the model. A minimum of 25 samples was required for each model developed in this 

project. 

The regression model was considered significant if a < 0.05. Each variable that 

accounted for variation in the furbearer harvest data was then evaluated to ensure the 

slope was not equal to 0 (a < 0.05) and therefore significantly contributed to the model. 

Multicollinearity could occur when correlation among the predictor variables was high 

and may cause imprecise estimates of regression coefficients. The variance inflation 

factor (VIF), a statistic that can identify potential multicollinearity among variables, was 

used to assess all regression models (Neter et al. 1996). Neter et al. (1996) suggested a 

VIF <10 was acceptable. However, a conservative value of 5 was chosen, although in 

most cases the VIF was <2. As the multicollinearity between two or more variables 

increases so does the VIF. Once an interaction between two or more variables was 

detected, a Pearson Correlation was calculated, and if the correlation was <0.70, the 
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multicollinearity was considered acceptable. A Pearson Correlation of 0.70 was chosen 

as a reasonably conservative maximum association between two variables to ensure that 

the relationship between some of the landscape variables did not influence the regression 

models. The Pearson Correlations were performed on the data sets used in the PCA and 

the Multiple Linear Regression and therefore had sample sizes greater than 25. A final 

diagnostic evaluated the distribution of the residuals to ensure that they were randomly 

distributed. This statistical procedure was repeated for each spatial extent at the five 

scales of analysis, over four time periods, and for the four species of furbearer (Table 7). 

Not all spatial extents were analysed at each scale due to insufficient sample sizes (i.e., 

not enough traplines met the minimum trapping effort requirement in some spatial 

extents). The variables that accounted for the greatest variation in furbearer harvest data 

within the regression models were then compared for consistency, within and among 

scales and time periods. The r values for all models were also compared for consistency 

in the variation in furbearer harvest explained, within and among scales and time periods. 
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Table 7. Summary of the number of regression models developed for each species, time 
period, and scale.  

Time Period 
1 

Scale 
'provincial' 
'forest biome' 

'sub-boreal' 
'Hills site region' 
'OMNR District' 

Sub-Total 

'provincial' 
'forest biome' 
'sub-boreal' 
'Hills site region' 
'OMNR District' 

Sub-Total 
'provincial' 

'forest biome' 
'sub-boreal' 
'Hills site region' 

'OMNR District' 

Sub-Total 

'provincial' 
'forest biome' 
'sub-boreal' 

'Hills site region' 
'OMNR District' 

Sub-Total 

TOTAL 

Number of Spatial Extents Analysed/Regression 
Models Developed* 

Marten Beaver 

1 

3 
2 
7 
13 

26 
1 

3 
2 
7 

16 

29 
1 

3 
2 

7 
14 

27 

91 

1 
3 
2 
7 

10 

23 
1 

3 
2 
7 

13 

26 

20 

74 

Fisher 

10 

14 

12 

42 

Lynx 

10 

22 

*One regression model developed for each spatial extent analysed. Each spatial extent had 
>25 traplines (sample units) to be analysed. 
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RESULTS 

DESCRIPTIVE STATISTICS 

Descriptive statistics were calculated for each variable at all five spatial scales and 

most are presented in Appendix III. Several variables that demonstrated important trends 

have been represented graphically below to illustrate relationships that were detected. 

The variability in the percentage of fire disturbed area was low in the 1970s 

among traplines, across all scales (Appendix III, Table 21). However, two ‘OMNR 

Districts’ (Ignace and Red Lake) had traplines where the percentage of disturbance 

ranged from 50-80% in the 1970s. The percentage of fire-disturbed area from 1921-1940 

was highly variable among traplines (Appendix III, Table 25). At the ‘OMNR District’ 

scale, nine of the districts had traplines with >80% of their area disturbed by fire and six 

had <30% fire disturbance. Variability in the proportion of traplines disturbed by fire 

decreased from the 1940s to the 1960s (Appendix III, Tables 22-24). The mean and 

standard deviation for the percentage of traplines disturbed by fire for the ‘provincial’, 

‘forest biome’, ‘sub-boreal’, and ‘Hills site region’ scales was calculated for the decades 

1921-1940, 1940s, 1950s, 1960s, and 1970s (Figure 14). There was a decrease in the 

mean proportion of area disturbed by fire per trapline from the 1920s to the 1970s, as 

well as a decrease in the variability of the percentage of area disturbed by fire. At the 

‘OMNR District’ scale, the percentage of fire-disturbed area per trapline was highly 

variable both spatially and temporally (Appendix III, Tables 21-25, Figure 32). The 

mean percentage of cumulative fire disturbances (1951-1980 and 1941-1970) was 

variable spatially and temporally (Appendix III, Tables 26-27). Cumulative fire 
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disturbances from 1951-1980 and 1941-1970 were higher in northwestern Ontario, and 

central Ontario, respectively when compared to the other parts of the province (Appendix 

III, Figures 33-34). 

The variability in the percentage of each trapline that was clearcut increased from 

1940-1970, while the variability of trapline area disturbed by fire decreased through time 

(Appendix III, Tables 28-31). In the 1970s, twelve districts at the ‘OMNR District’ scale 

contained traplines with maximum harvests of >30% of their area, while seven districts 

had traplines with <1% of their area harvested. The districts with the highest harvest 

levels were found throughout northern Ontario. There was an increase in the mean 

harvest area of traplines at the ‘provincial’, ‘forest biome’, ‘sub-boreal’ and ‘Hills site 

region’ scales (Figure 15). The mean percent area disturbed by logging for traplines at 

the ‘OMNR District’ scale increased from the 1940s to the 1970s (Appendix III, Tables 

28-31, Figure 35). Cumulative logging disturbances from 1951-1980 and 1941-1970 

were higher in ‘Hills’ site regions’ 3W and 3E for both time periods when compared to 

the other parts of the province (Appendix III, Tables 32-33, Figures 36-37). The 

percentage of disturbance on traplines increased through time and shifted from fire to 

clearcut disturbances. The variation in area disturbed on traplines also changed through 

time with greater variation from logging than fire occurring on traplines. 
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Across Ontario the mean annual temperature in the 1970s and 1980s was higher in 

southern districts and showed low variability in temperature across all scales (Figure 16). 

In general, there was an increase in the mean annual temperature throughout the province 

between the 1970s and 1980s. 

Mean annual precipitation increased from west to east across Ontario in the 1970s 

and 1980s (Appendix III, Tables 36 and 37), and this is a typical provincial pattern 

(Thompson 2000b). ‘Hills’ site regions’ 3S and 4S in the northwest received consistently 

less precipitation than ‘Hills’ site regions’ 4E and 5E in eastern and southern areas of 

Ontario (Appendix III, Figure 38). Throughout the province the mean annual snowfall 

decreased from the 1970s to the 1980s, but only minimally (Appendix III, Figure 39). In 

the Parry Sound, Temiskaming, and Kirkland Lake districts, the mean snowfall increased 

from the 1970s to the 1980s. Mean annual snow depth was greater in the 1970s than the 

1980s throughout the province (Appendix III, Tables 40 and 41). A north-south gradient 

of decreasing snow depth was identified in the 1970s data (Appendix III, Figure 40). The 

variability in mean annual snow depth among traplines was low. Weather conditions 

throughout Ontario were highly variable with obvious changes across the landscape 

occurring between the 1970s and the 1980s. 
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The mean patch size for young forest decreased on a north-to-south gradient and 

was variable among traplines. Northwestern Ontario had smaller patches of mature forest 

than the other parts of the province and was highly variable among traplines. A 

comparison of mean patch sizes for mature and young forest revealed that patches of 

young forest were much smaller than mature forest patches across the landscape at all 

scales (Figure 17). 

In general, the edge density of young forest decreased from north to south but was 

highly variable among traplines (Appendix III, Figure 41), The edge density for mature 

forest showed no clear pattern across the province, but was lowest in ‘Hills site region’ 

4S (Red Lake). ‘Hills site region’ 5E (southern Ontario) had the highest mean edge 

density for mature forest and had the most variability among traplines. 

There was no consistent pattern for core area density of young and mature forest 

across the province. However, both were highly variable among traplines (Appendix III, 

Figure 42). Generally, mature forest had a greater core area density than did young forest 

but the inverse occurred in ‘Hills’ site regions’ 3S and 4E. 
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The percentage of forest cover types on each trapline fluctuated spatially 

throughout the province (Appendix III, Tables 48-50). In general, mixedwood forest 

covered a higher proportion of area than conifer or deciduous forests, except in ‘Hills site 

region’ 3S, where conifer forest occurred in higher proportion than the other two cover 

types. Variability among forest cover types was high in individual traplines (Appendix 

III, Figures 43-44). 

In northwestern Ontario, stream densities were lower than eastern and southern 

parts of the province (Appendix III, Figure 45). Among traplines stream densities were 

variable (Appendix III, Table 51). There was little change in the primary and secondary 

road densities throughout the province at the ‘Hills site region’ scale, except for 3S (Red 

Lake) where road densities were lower (Appendix III, Tables 52-53). At the ‘OMNR 

District’ scale, the variability in mean road density among traplines was high and 

fluctuated among districts (Appendix III, Figure 46). 

SPECIES ANALYSIS 

Factor loading tables and PC score correlations were used to reduce the overall 

number of variables and are presented in Appendices V and VI, respectively. As well, 

regression model coefficients and diagnostics are presented in Appendices VII and VIII. 

The complete SPSS output is in Appendix IV. The variables used in the initial analyses 

are presented in Table 8. 
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Table 8. Summary of all variables examined prior to principal components analysis. 
Variable Description Broad Variable 

Classes 
Bum 1970s Percentage of trapline disturbed by 

fire from 1971-1980. 
Fire Disturbance 
Variables 

Bum 1960s Percentage of trapline disturbed by 
fire from 1961-1970. 

Fire Disturbance 
Variables 

Bum 1950s Percentage of trapline disturbed by 
fire from 1951-1960. 

Fire Disturbance 
Variables 

Bum 1940s Percentage of trapline disturbed by 
fire from 1941-1950. 

Fire Disturbance 
Variables 

Bum 1920s-193 Os Percentage of trapline disturbed by 
fire from 1921-1940. 

Fire Disturbance 
Variables 

1970s Cumulative Bum Percentage of trapline disturbed by 
fire from 1941-1970. 

Fire Disturbance 
Variables 

1980s Cumulative Bum Percentage of trapline disturbed by 
fire from 1951-1980. 

Fire Disturbance 
Variables 

Cut 1970s Percentage of trapline disturbed by 
logging from 1971-1980.  

Logging Disturbance 
Variables 

Cut 1960s Percentage of trapline disturbed by 
logging from 1961-1970.  

Logging Disturbance 
Variables 

Cut 1950s Percentage of trapline disturbed by 
logging from 1951-1960.   

Logging Disturbance 
Variables 

Cut 1940s Percentage of trapline disturbed by 
logging from 1941-1950.  

Logging Disturbance 
Variables 

1970s Cumulative Cuts Percentage of trapline disturbed by 
logging from 1941-1970.  

Logging Disturbance 
Variables 

1980s Cumulative Cuts Percentage of trapline disturbed by 
logging from 1951-1980.  

Logging Disturbance 
Variables 

Conifer Forest Cover Percentage of conifer forest cover on 
each trapline.  

Forest Cover Type 
Variables 

Deciduous Forest Cover Percentage of deciduous forest cover 
on each trapline.   

Forest Cover Type 
Variables 

Mixedwood Forest Cover Percentage of mixedwood forest 
cover on each trapline.  

Forest Cover Type 
Variables 

Mean Temperature Mean annual temperature from the 
1980s on each trapline.  

Weather Variables 

Mean Precipitation Mean annual precipitation from the 
1980s on each trapline.  

Weather Variables 

Mean Snow Depth Mean annual snow depth from the 
1980s on each trapline.  

Weather Variables 

Mean Snowfall Mean annual snowfall from the 
1980s on each trapline.  

Weather Variables 

Mean Patch Size - Young 
Forest 

The mean patch size of forest <30 
yrs of age on each trapline.  

Spatial Pattern 
Variables 
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Table 8. (Continued) 
Variable Description Broad Variable 

Classes 
Edge Density 
Forest 

Young The edge density of forest <30 yrs of 
age on each trapline.  

Spatial Pattern 
Variables 

Core Area Density 
Young Forest  

The core area density of forest <30 
yrs of age on each trapline.  

Spatial Pattern 
Variables 

Mean Patch Size - Mature 
Forest 

The mean patch size of forest >30 
yrs of age on each trapline.  

Spatial Pattern 
Variables 

Edge Density 
Forest 

Mature The edge density of forest >30 yrs of 
age on each trapline.  

Spatial Pattern 
Variables 

Core Area Density 
Mature Forest 

The core area density of forest >30 
yrs of age on each trapline.  

Spatial Pattern 
Variables 

Primary Road Density The density of primary roads (m/ha) 
on each trapline.  

Road Density 
Variables 

Secondary Road Density The density of secondary roads 
(m/ha) on each trapline.  

Road Density 
Variables 

Stream Density The density of streams (m/ha) on 
each trapline.  

Stream Density 
Variable 

Marten 

Marten harvest density was the dependent variable in the analyses and a subset of 

variables selected through the PCA procedure and compiled in the GIS were the 

independent variables. Variables that contributed significantly to regression models in 

the stepwise regression procedure for all four periods were compared spatially and 

temporally (Table 9). Darkly shaded boxes in Table 9 correspond to positive correlations 

between the independent variables and marten harvests in the regression models at 

different scales, while lightly shaded boxes indicate negative correlations. Empty boxes 

in this table represent variables that did not contribute significantly (a < 0.05) to the 

regression models (Table 9). The corresponding r values from each model were also 

compared with models that had sufficient sample sizes but no significant independent 

variables contributing to the model. The models without significant independent 
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variables are represented in this table as no model (NM) (Table 9). Periods 1, 2, 3, and 4 

correspond to the years 1972-1974, 1975-1979, 1980-1984, and 1985-1990, respectively. 

For period 1, a lack of trapping effort produced an insufficient number of cases for most 
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of the districts at the ‘OMNR District’ scale and spatial extents at the ‘Hills site region’ 

scale. 

The percentage of forest cover types on the landscape, were positively correlated 

with marten harvests at the ‘provincial’ and ‘forest biome’ scales and consistently 

contributed to the regression models at these two scales (Table 9). The percentage of 

mixedwood and deciduous forest were positively correlated with marten harvests for time 

periods 2, 3 and 4. At the ‘forest biome’ scale the percentage of mixedwood forest 

variable accounted for the greatest variability in furbearer harvest in the boreal forest, and 

the percentage of deciduous forest contributed significantly to regression models in the 

Great Lake-St. Lawrence forest. At the ‘Hills site region’ scale, the percentage of 

mixedwood forest contributed significantly to the regression models in seven of the 23 

possible models. The proportion of mixedwood forest variable at the ‘OMNR District’ 

scale was positively and negatively correlated with marten harvests among these models 

for the various districts. However, the percentage of mixedwood forest was positively 

correlated with marten harvests in northeastern Ontario for Hearst, Cochrane, Kirkland 

Lake, and North Bay Districts, at the ‘OMNR District’ scale. The percentage of conifer 

forest cover on a trapline was not a significant variable in the regression models at any 

scale and was positively and negatively correlated with marten harvests in several 

districts at the ‘OMNR District’ scale (Appendix VII). 

Road density variables across the landscape were not significant and contributed 

inconsistently to explaining the variation in marten harvests at any of the scales 

(Appendix VII). The primary road density variable was positively correlated with marten 

harvests in several boreal districts (Sioux Lookout, Nipigon, and Terrace Bay), but did 
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not contribute to the regression models consistently either temporally or spatially. The 

secondary road density variable was positively and negatively correlated with marten 

harvests at several scales as were a variety of spatial extents within those scales. 

Fire disturbance variables were significant in few regression models and 

contributed inconsistently at all scales or for any time period (Appendix VII). Burn 

variables were positively and negatively correlated with the marten harvest in the 1970s 

and 1950s. Variables representing fire disturbance in the period 1921 to 1940 and the 

cumulative disturbance variables were negatively eorrelated with marten harvests but did 

not contribute consistently to the regression models among time periods in six of the 78 

models. 

The logging disturbance variables, as a group, were negatively correlated with 

marten harvests (Appendix VII). However, no single variable contributed consistently to 

the regression models at any scale or time period. Logging disturbance variables from 

the 1970s contributed to regression models in Timmins District, and at the ‘forest biome’ 

scale in the eastern Great Lake-St. Lawrence forest. Logging disturbances from the 

1960s contributed significantly to regression models from the western Great Lake-St. 

Lawrence forest at the ‘forest biome’ scale in period 1, and Thunder Bay and Terrace Bay 

Districts at the ‘OMNR District’ scale in period 2 and 3. 

Weather variables contributed to the regression models for marten more often 

than any other variable (Table 9). Precipitation, snow depth, and snowfall accounted for 

variation in marten harvests at the ‘provincial’ and ‘forest biome’ scales. Precipitation, 

snow depth, and snowfall variables were not consistent in their influence among models 

(both positively and negatively correlated). Temperature consistently accounted for 
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variation in marten harvests at the ‘forest biome’, ‘Hills site region’ and ‘OMNR District’ 

scales, but was positively and negatively correlated with the trapping data in separate 

models among scales and spatial extents throughout Ontario. Overall, weather variables 

contributed to many of the regression models, but their relationship to the marten harvest 

data was not consistent. 

Variables representing the spatial pattern of young forest did not contribute to the 

regression models consistently at any scale or time period (Appendix VII). The 

correlation among these variables and marten harvest was positive and negative. The 

positive and negative correlations occurred in separate models among scales and among 

spatial extents throughout Ontario. The spatial pattern of mature forest accounted for 

variation in marten harvests in more models than young forest (Table 9). Mean patch 

size contributed to regression models at the ‘forest biome’ and ‘Hills site region’ scales. 

However, MPS was not a consistent influence on marten harvests (both positively and 

negatively correlated). The edge density of mature forest accounted for variation in 

marten harvests in the regression models and was positively correlated with marten 

harvests at several spatial scales and showed temporal consistency for one district at the 

‘OMNR District’ scale. Core area density contributed to regression models primarily at 

the largest spatial scales and was positively correlated with marten harvests, for most 

models. 

The total amount of variation in marten harvest accounted for in each regression 

model was highly variable (Table 9). However, in general, as the spatial scale decreased 

the r values increased. At the ‘provincial’, ‘forest biome’, and ‘sub-boreaT scales, the r 

values ranged from 0-20%. The variability in marten harvest explained by the models 
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increased slightly at the ‘Hills site region’ scale from 15-35% and at the ‘OMNR District’ 

scale the r^ values ranged from approximately 25-50%. The smallest scale (‘OMNR 

District’) had the most variability in marten harvest explained. Most regression models 

had two to four variables, with the models for the largest spatial scales containing the 

most variables. 

Beaver 

Regression models with beaver harvest as the dependent variable for the four 

periods of analysis were compared (Table 10). Periods 2, 3, and 4 were trapped more 

intensively than period 1 and therefore had a greater number of regression models for 

comparison. Most regression models contained two to four variables, with the greatest 

number of variables contributing to regression models at the ‘provincial’ and ‘forest 

biome’ scales. 

The percentage forest cover variables contributed to the regression models at the 

‘forest biome’ and ‘Hills site region’ scales and were predominant in many of the models 

(Table 10). The proportion of mixedwood forest cover on each trapline was positively 

correlated with beaver harvests in two of the 11 models at the ‘forest biome’ scale and 

four of the 19 models at the ‘Hills site region’ scale. The proportion of mixedwood forest 

cover consistently accounted for variability in beaver harvests in ‘Hills site region’ 3E 

and at the ‘OMNR District’ scale for Kirkland Lake District. The percentage of 

deciduous forest cover for each trapline was positively correlated with beaver harvests in 

three of the six models at the ‘sub-boreaT seale and five of the 19 regression models at 
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the ‘Hills site region’ scale. The percentage of conifer forest cover contributed to 

regression models at the ‘provincial’ (three of the four models), ‘Hills site region’ (three 

of the 19 models), and ‘OMNR District’ (five of the 31 models) scales and was 

negatively correlated with beaver harvests. 

Primary and secondary road density variables were negatively correlated with 

beaver harvest at all scales (Appendix VII). Stream density was negatively correlated 

with beaver harvests in five of the 68 models and showed no spatial consistency. No 

temporal consistency across the four periods was identified among these variables. 

Fire disturbance variables contributed to three of the 68 regression models across 

all scales (Appendix VII). Disturbances from 1921 to 1940 accounted for significant 

variability in beaver harvests in ‘Hills site region’ 4W and the cumulative bum variable 

contributed to two models in ‘Hills’ site regions’ 4S and 3W. However, there was no 

consistency either spatially or temporally in the contribution of the fire disturbance 

variables to the regression models. Three logging disturbance variables (cut 1970s, cut 

1960s, and cumulative cut) contributed significantly to eight of the 68 models from all of 

the scales. Cuts in the 1960s, 1970s, and the cumulative cut variables were not consistent 

in the regression models either spatially or temporally. The models were also positively 

and negatively correlated with beaver harvests. 

Weather variables contributed to many of the regression models and were most 

prominent at the ‘provincial’, ‘forest biome’ and ‘Hills site region’ scales (Table 10). 

Mean temperature consistently contributed to the models at the ‘provincial’ and ‘forest 

biome’ scales and was positively correlated with beaver harvests. Precipitation, snow 

depth, and snowfall were temporally and spatially consistent as a source of variability in 
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beaver harvests for many of the models at the various scales. However, the variables 

were positively and negatively correlated with beaver harvests at different scales and for 

different spatial extents. At the ‘OMNR District’ scale there was no consistency among 

weather variable contributions to the regression models. 

In general, the spatial pattern of young forest was negatively correlated with 

beaver harvests in most models (Table 10). Mean patch size of young forest was not 

consistent in the regression models either spatially or temporally, but was negatively 

correlated with beaver harvests. The edge density of young forest contributed to 12 of 

the 68 models and was spatially consistent at the ‘provincial’ scale (three of the four 

models), and for the ‘OMNR District’ scale at Bancroft District (two of two models). For 

‘Hills site region’ 5E the core area density of young forest contributed to regression 

models in periods 2, 3 and 4. The mean patch size and edge density of mature forest 

contributed to several models. Mean patch size was negatively correlated with beaver 

harvests at the ‘provincial’ scale, and edge density was positively correlated also at the 

‘provincial’ scale (Appendix VII). Edge density also contributed consistently to 

regression models at the ‘forest biome’ and ‘Hills site region’ scales in southern Ontario 

(Table 10). Core area density contributed to very few regression models and did not have 

a consistent influence (positive and negative correlations) on beaver harvests (Appendix 

VII). 

At the ‘provincial’ scale, various variables contributed to the regression models 

and accounted for approximately 50% of the variation of the beaver harvests (Table 10). 

Similar r values were seen at the ‘forest biome’ and ‘Hills site region’ scales. However, 

the regression models at the ‘forest biome’ scale, specifically in the ‘boreal forest’. 
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accounted for less variation in beaver harvests. At the ‘OMNR District’ scale, the 

amount of variation in beaver harvests explained was variable, but was highest in the 

extreme east and west of the province (Kenora and Timmins Districts), and for parts of 

southern Ontario (Bancroft, Bracebridge, and Algonquin Park Districts). 

Fisher 

Regression models with fisher as the dependent variable were compared for the 

four periods of analysis (Table 11). The percentage of forest cover in each trapline 

contributed to four of the 42 models across all the scales and showed no consistency 

spatially, temporally, or in their influence on fisher harvests (positively and negatively 

correlated) (Appendix Vlf). Secondary road densities were negatively correlated with 

fisher harvests in two of the four models at the ‘provincial’ scale, three of the 11 models 

at the ‘forest biome’ scale, and three of the 11 models at the ‘Hills site region’ scale 

(Table 11). Fire disturbance variables only contributed to two fisher models and showed 

no consistency in scale (Appendix VII). Both fire variables were negatively correlated 

with fisher harvest at the ‘provincial’ scale and for Kenora District. Three clearcut 

disturbance variables were statistically significant in the regression models, cuts in the 

1970s, 1960s, and the cumulative cut variables, but were not consistent in all temporal 

periods. Cuts in the 1960s were positively correlated with fisher harvests in one 

regression model at the ‘sub-boreaT scale. However, cuts in the 1970s and the 

cumulative cut variables were negatively correlated with fisher harvests in six of the 42 

models at the ‘provincial’, ‘sub-boreal’, ‘Hills site region’, and ‘OMNR District’ scale. 



86 



87 

Weather variables contributed most often to the regression models at the 

‘provincial’, ‘forest biome’ and ‘Hills site region’ scales (Table 11). Mean temperature 

was positively correlated with fisher harvests in all regression models, and consistently 

contributed to models at the ‘provincial’, ‘forest biome’ and ‘Hills site region’ scales. 

Precipitation variables were not consistent in the regression models, either spatially or 

temporally and were positively and negatively correlated with fisher harvests at the 

different scales (Appendix VII). Snow depth and snowfall were both negatively 

correlated with fisher harvests and contributed significantly to regression models at the 

‘Hills site region’ and ‘provincial’ scales (Table 11). 

Mean patch size, edge density, and core area density of young forest were 

negatively correlated with fisher harvests at all scales (Table 11). At the ‘provincial’ 

scale, mean patch size of young forest consistently contributed to the regression models. 
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while the edge density contributed at the ‘Hills site region’ scale (Appendix VII). The 

core area density of young forest consistently accounted for variability in fisher harvests 

at the ‘forest biome’ scale. The mean patch size of mature forest was negatively 

correlated with fisher harvests at the ‘provincial’ and ‘forest biome’ scales (Table 11). 

Conversely, edge density and core area density of mature forest were positively 

correlated with fisher harvests at the ‘provincial’, ‘forest biome’, ‘Hills site region’, and 

‘OMNR District’ scales. The edge density of mature forest consistently contributed to 

models at the ‘forest biome’ and ‘Hills site region’ scales in eastern Ontario, while core 

area density accounted for variability in fisher harvests in ‘Hills site region’ 4S. 

At the ‘provincial’ scale, regression models explained 30-45% of the variability in 

fisher harvests (Table 11). Variables in the boreal forest of the ‘forest biome’ scale were 

only able to account for 10-20% of the variation in fisher harvest. In the Great Lake-St. 

'y 

Lawrence forest at the ‘forest biome’ scale, the r values increased up to 50%. 

Regression models in ‘Hills’ site regions’ 3S and 4S, in northwestern Ontario, accounted 

for approximately 40-55% of the variability in fisher harvest. 

Lynx 

Variables that contributed significantly to the regression models for lynx and the 

corresponding r values for all four periods were compared spatially and temporally 

(Table 12). Regression models were developed for lynx at all scales. However, many 

traplines were not able to meet the minimum trapping effort requirement and therefore 

the number of regression models produced within each scale was low compared to the 
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other three species. Low harvest values for the period 1972 to 1974 resulted in this 

period being excluded. 

The percentage of mixedwood and conifer cover types on a trapline were 

positively correlated with lynx harvests and accounted for variability in lynx harvests at 

the ‘provincial’ and ‘forest biome’ scales (Table 12). The proportion of deciduous forest 

cover was not a significant variable in the regression models (Appendix VII). The 

primary road density variable contributed to one model at the ‘sub-boreaT scale and was 

positively correlated with lynx harvests. Fire disturbance from the 1970s and 1960s 

accounted for variability in lynx harvests for the Red Lake District, at the ‘OMNR 

District’ scale. The lire disturbance variables contributed to two of the 22 regression 

models and were negatively correlated with lynx harvests for the Red Lake District. 

Logging disturbance variables from the 1950s, 1960s, and 1970s were all negatively 

correlated with lynx harvests. At the ‘sub-boreaT scale, logging in the 1960s and 1970s 

contributed to two regression models consistently in relation to the time since 

disturbance. 

Temperature and snow depth contributed to the regression models and were 

positively correlated with lynx harvests at the ‘provincial’ and ‘sub-boreal’ scales (Table 

12). Temperature accounted for variability in lynx harvests for periods 2 and 3 at the 

‘provincial’ scale. Snow depth only contributed to one regression model at the ‘sub- 

boreal’ scale and precipitation and snowfall variables were not significant in the 

regression models for lynx. 
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The mean patch size of young forest consistently contributed to regression models 

at the ‘provincial’ and ‘Hills’ Site’ Region’ scales and was negatively correlated to lynx 

harvests (Table 12). The edge density of young forest accounted for variability in lynx 

harvests in two regression models but showed no temporal consistency (Appendix VII). 

The spatial pattern of mature forest contributed to two regression models for lynx. The 

mean patch size was negatively correlated with lynx harvests at the ‘provincial’ scale, 

while edge density was positively correlated with lynx harvests in the Red Lake District, 

at the ‘OMNR District’ scale. 
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DISCUSSION 

This study examined the association of several forest landscape scale variables, 

weather, and access on furbearer harvests at large scales ranging from ‘provincial’ (e.g., 

1:1 million) to the ‘OMNR District’ scale (e.g., 1; 100,000). There were three important 

aspects for discussion: 1) data quality and the limitations in detecting landscape-scale 

associations; 2) landscape-scale habitat and climate changes that influenced furbearer 

harvests through time; 3) and the implications of the results. This study examined the 

potential to use trapline harvest statistics as measures of broad landscape changes on 

furbearer populations at multiple scales. 

DATA QUALITY AND VALIDATION 

Data Resolution and Scale 

The resolution, or grain, of the spatial variables influenced the scale at which the 

data were associated with furbearer harvests. The forest cover type variables had a grain, 

or pixel size, of 25 m. However, this classification was a broad representation of forest 

species across the landscape and likely should not be used below the scale of a trapline (~ 

100-1500 sq. km). Logging and fire disturbances had a broad range of disturbance sizes 

with upper ranges of 200-390 sq. km and 1000-1500 sq. km, respectively, for older 

disturbances. These phenomena may have been most appropriate at the ‘OMNR District’ 

scale where only a few of these very large-scale disturbances have occurred and the 

majority of disturbances were much smaller. 
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Weather variables were generated from approximately 40-60 weather stations 

across Ontario. The weather estimates were coarse and the variability inherent in weather 

would suggest that this variable had the most influence at the ‘Hills site region’, ‘forest 

biome’, and ‘provincial’ scales. The pattern of forest age (young vs. mature) 

incorporated disturbances from both logging and fire. These disturbances would cause a 

broad pattern across the forest at scales larger than the ‘OMNR District’ scale, making 

this variable most meaningful at the ‘Hills site region’, ‘forest biome’, and ‘provincial’ 

scales. 

Trapline Data 

The use of trapline harvest statistics for monitoring fiirbearer populations was 

criticized by several authors including Weinstein (1977) and Smith et al. (1984). Their 

criticism focused on socio-economic and probability of capture issues that may have 

influenced the number of animals trapped. Trapper employment and pelt value were the 

primary socio-economic factors and contributed to the effort a trapper expends. 

McDonald and Harris (1999) conducted trapper surveys and found that trapping totals 

were highly variable depending on the amount of trapping effort. 

Controlling the effects of variation in trapping effort among traplines and years 

reduced variability in the Ontario fur harvest database by selecting traplines that were 

harvested a priori with a specified minimum effort. The trapping effort condition used 

gave conservative estimates of harvest densities and ensured a minimum trapping effort 

was applied to all traplines. The four, five-year periods of analysis were used to select 

consistently harvested traplines, and also to reduce the variability in effort among years. 
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Although pelt value influences trapping effort, this effect was likely to have been 

constant and proportional to effort across the province due to a fixed pelt value for all 

trappers for any given year. With the effect of trapping effort removed, fluctuations in 

trapline harvests may be attributed to relative changes in environmental conditions. The 

temporal comparisons were also unaffected because each period was considered a 

discrete, relative qualitative comparison. 

One factor that may have prevented the association of forest management on 

furbearers from being always detectable was the grain or sample unit size (trapline) used. 

Across the province, traplines varied in size from 100-1400 sq. km, with the largest 

occurring in the north. The large area of the northern traplines may have allowed 

trappers to change the focus of their trapping effort among years and to move to areas 

with less disturbance, greater access, or that were unharvested for several years thereby 

masking the predicted association between logging and trapping. By reducing trapline 

size and reducing options for trap relocation, forest management effects may be more 

pronounced. Areas in southern Ontario with smaller traplines were not subjected to 

large-scale clearcutting that occurred in the north, and would probably not be affected to 

the same degree by trapper prerogative. 

Forest Age Data 

This forest age classification, developed from the spatial fire and forest harvest 

databases combined with Landcover 28, did not take into account widespread 

disturbances caused by wind, insects, and pathogens. Insect disturbances have been 

widespread, occurring across most of the province in both boreal and Great Lake-St. 
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Lawrence forest biomes. Though the extent of this disturbance has been mapped, the 

forest mortality and intensity of disturbance to the forest landscape pattern has not been 

quantified. Many of the disturbance types interact, for example insects and fires, or 

salvage logging associated with extensive insect and wind disturbances. These 

disturbances also result in a range of successional stages for different forest types 

(Fleming et al. 2000). Although the association of wind, insects and pathogens were not 

quantified, fire and clearcut disturbances provided a broad representation of the spatial 

pattern of forest age. The pattern of forest age was expected to account for variation in 

furbearer harvest and to be important for species dependent on habitat configuration. 

FOREST LANDSCAPE CHANGE AND COMMUNITY STRUCTURE 

Ontario’s forest landscape has been altered by forest management, in three 

primary ways; 1) through changes to species composition (Heamden et al. 1992, 

Carleton 2000), 2) altered spatial vegetation pattern (Perera and Baldwin 2000), and 3) 

modification of the province’s fire regime (Li 2000). Andren (1994) and Fahrig (1997) 

predicted that the presence of wildlife on the landscape would be affected by both the 

loss of habitat and alteration of habitat configuration. Changes to the disturbance regime 

of a landscape have been shown to affect the wildlife species that are present (White and 

Harrod 1997). Boutin and Hebert (2002) suggested that forest managers should focus on 

maintaining habitat quantity, while habitat configuration will have greater importance 

only at a minimum threshold. Forest management and timber harvesting have 

undoubtedly influenced wildlife across the province through habitat loss and changes to 

spatial configuration (Voigt et al. 2000). The scale of observation is another important 
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factor that must be considered when examining ecological dynamics. For example, using 

inappropriate or arbitrary scales of analysis might reveal misleading patterns and/or 

processes on the forest landscape and may produce ambiguous results (Wiens 1989). 

Although the forest landscape is being altered through intensive management, 

climate changes have consequences for wildlife as well. A warmer climate will have a 

direct impact on species distribution and growing season across the province, but will 

also indirectly affect vegetation dynamics through an altered fire regime. The new fire 

regime is predicted to have a shorter return interval, with larger fires, of greater intensity. 

These changes may affect species distributions, landscape structure, and the overall age 

distribution of the forest (Thompson et al. 1998). With all of the changes that were 

occurring on the landscape the prediction of wildlife response is likely to be difficult. 

Nevertheless, to maintain biodiversity, the interaction of multiple landscape factors must 

be studied. 

EFFECTS OF LANDSCAPE VARIABLES ON FURBEARER SPECIES 

The furbearer harvest database offered a unique opportunity to identify large-scale 

trends in trapline harvests across a range of sizes (spatial scales) of selected landscapes. 

There were many factors that contributed to the variability in trapline harvests including 

socio-economic factors, environmental or biological responses by individual furbearer 

species to disturbance and weather, and the effect of trapper site selection on individual 

traplines. Variables selected in the stepwise regression procedure therefore represented a 

range of factors over space and time, including biologically significant associations and 

the influence of trapper site selection. 
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General Trends 

The proportion of forest cover, weather and spatial pattern variables at the 

‘provincial’, ‘forest biome’ and ‘Hills site region’ scales contributed to the regression 

models and accounted for the greatest variation in trapline harvests for each of the four 

species. Habitat is a combination of resources and environmental conditions; in general, 

vegetation and weather are necessary components for species survival (Morrison et al. 

1998). The four species examined each have different forest cover type requirements and 

distribution patterns that have been influenced by weather. The spatial patterns of young 

and mature forest have influenced furbearer harvests by causing a biological response in 

the species and/or affecting trapper site selection. Primary and secondary road densities 

were used to determine if improved access enhanced overall trapping success. However, 

this variable was not a significant factor for harvest of any of the species. Disturbance 

variables did not occur consistently in the regression models and accounted for little of 

the variation in furbearer harvests. The disturbance variables also did not consistently 

contribute to the regression models, either spatially or temporally, and so showed little 

evidence of influencing animal harvests at large-scales. 

The scales used in this study were not based on prior knowledge of either the 

local or regional populations. Levin (1986) suggested that population predictability 

would be highest at the scale of the global population and lowest at the scale of the 

individual. Individuals in a population have been affected by many factors that function 

at small scales (Spencer 1987). These influences would likely not be obvious or 

detectable by human observation of a species at the scale of the individual. In contrast, a 

global population may have been influenced by factors at much larger scales, that humans 
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can observe, measure, and attempt to interpret. As the scale of analysis increased, the 

variation explained (r^) also increased for beaver and fisher harvests possibly indicating 

that the appropriate scale to observe these two species was used. ‘Hills site region’ and 

‘forest biome’ scales may have been the optimum scales at which to measure the 

association of landscape variables on fisher because the variation explained in furbearer 

harvest was relatively high compared to marten and lynx harvests and the variables 

contributing to the regression models were consistent at these scales. Regression models 

at the ‘provincial’ scale accounted for the most variation in beaver harvests. Goodwin 

and Fahrig (1998) suggested that population predictability increased when the sampling 

scale matched either the local or regional population scales. The ‘forest biome’ and 

‘Hills site region’ classifications were used to reduce variability in climate and vegetation 

patterns that were being influenced at these large-scales. Climate and vegetation patterns 

were used initially to derive Hills’ site regions (Perera and Baldwin 2000) and therefore 

this scale was predicted to be appropriate to reduce variability in climate and vegetation 

processes among sample units on the landscape. 

Morrison et al. (1998) suggested that habitat models could likely only account for 

50% of the variation in wildlife densities, because many other factors on the landscape 

influences species, such as predator/prey relationships, competition, and small scale 

vegetation influences. For example, a habitat suitability index for fisher (Thomasma et 

al. 1991) accounted for 46.6% (r-value) of the variation in fisher occurrence on different 

sites, and a similar model for pronghorn sheep (Antilocapra americana (Ord)) was able to 

account for 39-70% of the winter habitat densities in the northwestern U.S.A. (Cook and 

Irwin 1985). The variation in furbearer harvest densities explained by the regression 
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models in this study showed similar results. Although, marten and lynx regression 

models were comparatively weaker in the variation that they explained, the beaver and 

fisher models were successful in explaining 40-50% of the variation in furbearer harvests. 

With all of the factors that influenced the harvest of these species (trapping effort, 

landscape processes, trapline access, etc.), the ability to account for this level of variation 

in furbearer harvest established that trapline harvest data, especially beaver and fisher 

harvests, may be useful for identifying broad landscape factors that affect these 

furbearers. 

Hierarchy theory defines a hierarchical structure of processes on the landscape 

that function at multiple spatial and temporal scales. Processes at broad spatial scales, 

such as climate and weather, have been shown to constrain processes at smaller spatial 

scales such as forest cover type distribution, succession, and natural disturbance (Voigt et 

al. 2000). A similar pattern of influence has been shown in the contribution of the 

landscape variables to the regression models at the scales analysed here. The weather 

variables contributed to regression models at all seales for marten, beaver, fisher, and 

lynx. However, weather variables had the greatest consistency and variability at the 

‘forest biome’ and ‘provincial’ scales. The proportion of forest cover type and the spatial 

pattern of young forest compared to mature forest were similarly found at all scales but 

were most consistent in regression models for the four species at the ‘forest biome’, ‘sub- 

boreal’, and ‘Hills site region’ scales. The pattern of hierarchical structure within the 

variables that influenced furbearer harvests provided some evidence to support the 

hypothesis that wildlife species are influenced by broad-scale climate and habitat factors 
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(Voigt et al. 2000) and require a multi-scale approach for future modeling and 

management. 

Marten 

The proportion of mixedwood, and deciduous forest, covers on a trapline were 

positively correlated with marten harvests at the ‘forest biome’ scale in the boreal forest 

and Great Lakes-St. Lawrence forest biome, respectively. Strickland and Douglas (1987) 

and Potvin (1999) have suggested marten prefer mixedwood forest. The contribution of 

deciduous forest cover variables in the regression models was in opposition to reported 

habitat preferences for marten of conifer and mixedwood forest cover types and may 

have resulted from other processes occurring on the landscape, such as juvenile dispersal 

or trapper site selection. As well, in the Great Lakes-St. Lawrence forest biome at the 

‘forest biome’ scale, the percentage of conifer cover type on each trapline was much 

lower than the boreal forest biome with a mean of approximately 6%, while deciduous 

forest covered approximately 26% of traplines in the Great Lakes-St. Lawrence forest 

biome. The amount of conifer forest cover did not vary markedly among traplines and so 

may have affected the value of this variable to account for variation in marten harvests. 

Weather variables accounted for substantial variation in marten harvests in many 

of the regression models. Marten harvests were clearly influenced by weather but were 

influenced inconsistently spatially and temporally. A direct association among weather 

and marten was expected from snowfall and snow depth, which could have influenced 

trapline access and trap site selection. Temperature may also have been a limiting factor, 

affecting marten survival. At very large-scales, weather may have affected marten 
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harvests indirectly by influencing tree species distributions and fire disturbance over time 

(Flannigan and Weber 2000). Weather variables undoubtedly influenced marten 

harvests. However, the interpretation of their direct association was made difficult by the 

spatial and temporal scales at which these variables operated and in some cases the scales 

did not correspond. 

The spatial landscape pattern variables for young forest (<30 years) did not 

contribute consistently to the regression models spatially or temporally. The mean patch 

size (MPS), edge density (ED), and core area density (CAD) for mature forest (>30 

years) accounted for a small proportion of the variation in marten harvests. The 

regression models revealed that as MPS decreased, marten harvests increased, possibly 

indicating the influence of trap placement by trappers. This relationship was opposite to 

the goal of current forest management guidelines that attempt to increase the overall 

patch size distribution and prevent further species and age-class fragmentation from 

occurring in the forest (Watt et al. 1996). However, the MPS of mature forest in the 

traplines was large with a mean area of 614 ha and a standard deviation of 1529 ha. The 

association of MPS and marten harvest on mature forest was likely having little effect. 

Edge density was positively correlated with marten harvests at several scales. Marten use 

of edge habitat was limited and they do not respond positively to disturbance (Snyder and 

Bissonnette 1997, Thompson 1994, Potvin et al. 2000). Therefore this result was not 

expected. Regression models with ED for mature forest did not have a higher quantity or 

greater variability of ED than other regression models thus causing difficulty in 

interpretation. The positive correlation of CAD with marten harvests suggested that as 

the number of core areas in a trapline increased (i.e., interior contiguous areas not 



101 

influenced by edge), marten harvests (and presumably marten population) increased as 

well. Current forest management practices attempt to create these types of habitat 

conditions with large core areas (Watt et al. 1996). 

Strickland and Douglas (1987), Thompson and Colgan (1994), and Hodgman et 

al. (1994) found that a high proportion of marten harvests in the fall consisted of young, 

dispersing juveniles that do not maintain home ranges. As a result, dispersing juveniles 

may not have been representative of the habitat that they were trapped in, in the sense 

that they probably do not live where they are caught, and may have confounded results by 

increasing the variation in harvest totals through the use of sub-optimal habitat. 

Regression models at the ‘provincial’, ‘forest biome’, and ‘Hills site region’ 

scales for marten harvests accounted for less variation (r = 5-25%) than did regression 

models at the ‘OMNR District’ scale, where approximately 25-45% of the variation in 

marten harvests was explained. Individual models for several individual ‘OMNR 

Districts’, and for ‘Hills site region’ 3S, accounted for more variation («50-65%) in 

marten harvests than other models at these scales. The proportion of forest cover type, 

weather, and the spatial pattern of young compared to mature forest contributed 

consistently to the regression models for marten. These variables explained the most 

variation in marten harvests and provided an indication of landscape processes that may 

have affected marten populations. However, low r values in the majority of the models 

indicated that there were other important influences within the system that affected 

marten harvests, but that were not accounted for in these models. Marten trapline 

harvests appeared generally to be a poor index of marten densities, and hence habitat 

quality. 
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Beaver 

The proportion of mixedwood and deeiduous forest eover types were consistently 

positively correlated with beaver harvests at the ‘Hills site region’ scale. Deciduous 

species in these two forest covers were a main food source and therefore an essential 

component of habitat for beaver (Novak 1987). The proportion of conifer forest cover 

contributed to regression models at the ‘provincial’, ‘Hills site region’, and ‘OMNR 

District’ scales and indicated that with an increasing proportion of conifer forest, the 

number of beavers harvested decreased. Beavers may feed on conifer species across their 

range but these species were not preferred (Novak 1987). 

At the ‘Hills site region’, ‘forest biome’ and ‘provincial’ scales, weather variables 

accounted for variation in beaver harvests in many of the regression models. However, 

mean temperature was the only variable that contributed consistently to these models, and 

was positively correlated with beaver harvests at the ‘provincial’ scale. Temperature may 

have been a limiting factor for beavers in Ontario because longer and colder winters in 

the north may have limited food availability, as well as the distribution of favoured tree 

species (Flannigan and Weber 2000). Precipitation, snowfall, and snow depth explained 

a significant proportion of the variation in beaver harvests in many models at the ‘Hills 

site region’, ‘forest biome’, and ‘provincial’ scales. However, these variables were 

correlated positively and negatively with beaver harvests. In places where snowfall and 

snow depth were high, access to the trapline was expected to be low resulting in these 

variables being negatively correlated with beaver harvests. This relationship was in fact 

observed for the boreal east spatial extent of the ‘sub-boreal’ scale where the mean 

annual snow depth was greater than other parts of the province and the snow depth 
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variable was negatively correlated with beaver harvests. Thermal protection provided by 

snow cover may have been another factor that influenced beaver harvests. Shallow 

beaver ponds in Alberta have been shown to freeze completely when snow levels are low, 

and when the ponds were completely frozen, beavers could not access food piles, causing 

the population to be affected over broad areas (Suzanne Bayley, Professor of Biological 

Sciences, University of Alberta, Personal Communication, November 13, 2002). 

Stream density was a habitat characteristic that was expected to contribute to 

regression models for beaver harvests. However, the large area that each trapline 

encompassed and the low variability in stream density among traplines, may have 

excluded this variable from being an important factor for beaver harvests. 

The spatial pattern of young and mature forest contributed consistently to 

regression models at the ‘Hills site region’, ‘forest biome’, and ‘provincial’ scales. 

Young forest variables were consistently negatively correlated with beaver harvests. 

Beavers have been shown to cut and use large diameter, early successional tree species 

(Donkor and Fryxell 1999) that are characteristic of mature forests. Traplines with a high 

proportion of young forest, regardless of spatial arrangement would therefore likely have 

low beaver harvests. However, due to riparian management guidelines in the province of 

Ontario, a minimum 30 m “area of concern” buffer (OMNR 1988) is applied to all 

streams. This area is protected from logging and therefore timber harvesting may not 

have influenced beaver harvests negatively. On the other hand, the protection of riparian 

areas may also have a negative impact on beavers by promoting late successional species, 

which are not optimal for beaver habitat (Barnes and Mallik 2001). The ED of mature 

forest was positively correlated with beaver harvests suggesting mature forest and the 
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associated edge with young disturbed forest was important habitat for beavers seeking 

early successional forest conditions. 

Models for beaver explained more variation in harvest than the marten models, 

with consistently 50% of the variation in harvest data explained at the ‘provincial’ scale, 

and slightly less explained at the ‘forest biome’ and ‘Hills site region’ scales. The 

variation in beaver harvests explained by the regression models was similar in magnitude 

(-50%) to that found in studies by Thomasma et al. (1991), Cook and Irwin (1985) and 

research by Morrison et al. (1998) and indicated that other factors, possibly at smaller 

scales, were also influencing beaver harvests such as vegetation dynamics or predator 

prey relationships. 

Fisher 

At the ‘provincial’, ‘forest biome’, and ‘Hills site region’ scales secondary road 

densities were negatively correlated with fisher harvests. This relationship was not 

expected because road density was anticipated to be an indicator of trapline access and 

increased harvest. Roads may have influenced fishers biologically by decreasing the 

amount of core area, reducing patch size, increasing edge, and causing habitat 

fragmentation (Reed et al. 1996). Mean temperature was positively correlated with fisher 

harvests at the ‘forest biome’ scale in the Great Lake-St. Lawrence forest biome and may 

have been a factor that limited fisher’s range throughout Ontario. Snowfall and snow 

depth were negatively correlated with fisher harvests at the ‘Hills site region’, ‘forest 

biome’, and ‘provincial’ scales. Snowfall was shown by Voigt et al. (2000), Krohn et al. 

(1995), Raine (1983) to negatively affect fisher by reducing their mobility and foraging 
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success. Snowfall and snow depth may have also reduced access to the trapline and 

decreased trapper success. The spatial pattern variables for mature forest contributed 

consistently to regression models at the ‘Hills site region’, ‘forest biome’, and 

‘provincial’ scales. MPS was negatively correlated with fisher harvests at the 

‘provincial’ scale and in the western Great Lakes-St. Lawrence forest biome of the ‘forest 

biome’ scale. The negative correlation of fisher harvests with MPS and the positive 

correlation with ED suggested that fisher required habitat in the early stages of stand 

development. Younger forest may have promoted snowshoe hare populations (Quinn and 

Parker 1987) through a diversity of habitats created by disturbance (Douglas and 

Strickland 1987). Therefore the early stages of stand development created by logging 

and the diversity of species regenerated may have promoted snowshoe hare populations 

and possibly could have been a positive influence on fisher harvests. 

The variability explained in the fisher harvests was not consistent at any scale. 

However, greater variability was accounted for within the Great Lake-St. Lawrence forest 

biome than in the boreal forest biome of the ‘forest biome’ scale, with approximately 25- 

50% of the variation in the fisher harvest data explained. The regression models with the 

highest explanatory power corresponded to areas where fishers have their highest 

densities throughout northwestern and southern Ontario (Thompson 2000a). Models for 

the boreal forest biome, where fisher densities were lower than the Great Lake-St. 

Lawrence forest biome of the ‘forest biome’ seale, aecounted for approximately 10-20% 

of the variation in fisher harvests. 
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Lynx 

Lynx models had relatively low explanatory power with r^ values ranging from 

10-25%. However, the proportion of mixedwood forest cover type contributed to four of 

the 22 regression models and was positively correlated with lynx harvests at the ‘forest 

biome’ and ‘provincial’ scales. Young mixedwood forest was a main component of lynx 

habitat and its main prey, snowshoe hare (Quinn and Parker 1987). Mean temperature 

and lynx harvests were positively correlated, possibly indicating that temperature may 

have been a limiting factor in their distribution. Temperature may have affected lynx 

directly through decreased survival in colder temperatures or indirectly by influencing 

snowshoe hare and their associated habitat. The MPS of young forest was negatively 

correlated with lynx harvests at the ‘Hills site region’, ‘forest biome’, and ‘provincial’ 

scales. This relationship may have indicated a preference by lynx for mature forest or 

small openings, as suggested by Quinn and Parker (1987). 
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CONCLUSIONS AND RECOMMENDATIONS 

Furbearer harvests have been influenced by broad landscape factors such as forest 

cover type, weather, and landscape pattern. These three broad variables accounted for 

approximately 30-50% of the variation in marten, beaver, fisher, and lynx harvests using 

regression models. Although it was difficult to interpret some of the associations among 

the landscape variables, it was important to recognize that habitat was only one 

component that influenced these species. Throughout the landscape other factors at 

smaller scales (e.g., predator/prey relationships) and possibly even larger scales 

(continental climate patterns) may be affecting the distribution and harvests of these 

species. 

The main hypothesis was that forest management influenced the population and 

hence the harvests of marten, beaver, fisher, and lynx. The direct influence of logging 

does not appear to affect the harvests of these animals at the ‘trapline’ scale. However, 

traplines in northern Ontario, which were subject to large-scale logging activities may 

have been of sufficient in size to accommodate both forestry and trapping activities. As 

logging occurred within a trapline, trappers may have been able to move their furbearer 

harvesting efforts to areas not subject to forestry activities, especially as these were made 

more accessible from new logging roads. Indirectly, logging has been shown to influence 

the forest cover type, and therefore forest managers should be cautious about altering 

forest stand composition on the landscape. The spatial pattern of young forests was 

another indirect effect of forest management. Marten in particular do not prefer early 

stand conditions and forest management therefore should try to maintain areas of 
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contiguous mature forest habitat for this species. Beaver, fisher, and lynx may respond 

well to a diversity of stand developmental stages for their foraging activities. Beaver 

harvests would likely be affected negatively in the short-term by timber harvesting. 

However, the early successional conditions created would inerease beaver habitat in the 

long-term. Lynx and fisher may benefit from the early suceessional forest eonditions 

through inereased prey abundance and hence improved foraging. Road density variables 

explained very little variation in furbearer harvests, although forest management 

activities were a primary factor in the level of access available to trappers. 

Several improvements in data collection and provincial spatial data sets would 

improve results of the analysis. An accuracy associated with the provincial landcover 

(Landcover 28) data set would improve user confidence in the reliability of the broad 

forest cover types. Spatial information on other disturbance processes such as wind and 

insects would diversify the range of effeets on the landseape that may have been 

influencing furbearer harvests. Furbearer ages from the trapline harvests would be 

beneficial to understanding the dynamics of the animals harvested (especially for marten) 

and provide more insight for interpretation. A measure of trapper effort would also 

provide useful data for analysis and interpretation of changes to furbearer harvest levels. 

The harvest of marten, beaver, fisher, and lynx was clearly influenced by broad 

landscape variables. Some of these variables, such as forest cover type and landscape 

pattern were indirectly affected by forest management and should be an important 

consideration for future resource managers. Weather variables, that influence furbearers 

directly and their habitat indireetly will be diffieult to anticipate in the future under 

current predietions of elimate change. Resource managers trying to conserve furbearers 
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for the future will have the difficult task of incorporating habitat dynamics occurring at 

many scales with current forest management policy while realizing that uncontrollable 

global and local processes are also influencing the landscape. 
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