AEROBIC POWER AND ANAEROBIC THRESHOLD OF MALE ROWERS

A Thesis Presented to the Faculty of University Schools Lakehead University

In Partial Fulfillment of the Requirements for the Degree Master of Science in the Theory of Coaching

_

by Argyrios V. Fotis November, 1985 ProQuest Number: 10611732

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611732

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ABSTRACT

TITLE OF THESIS:	Aerobic Power and Anaerobic Threshold of Male Rowers
AUTHOR:	Argyrios V. Fotis
THESIS ADVISOR:	Dr. Thomas M. K. Song. Professor Lakehead University

The purpose of this study was to investigate the endurance component of off-season rowing performance in male rowers before and after an 8-week training period. Specific attention was given to laboratory assessment of aerobic power (AP) and anaerobic threshold (AT) as they were affected by the above training period.

A single subject case study research design was employed, which involved pre- and post-training tests, of seven male rowers of national and provincial calibre. Following the pre-training test, individualized training programs were designed involving continuous and interval endurance training. The training intensity for continuous training (CT) and interval training (IT) was based on a percentage below (AT -10% $\dot{V}O_2$ max) and above (AT +10 to 25% $\dot{V}O_2$ max) the subject's AT. The training intensity was monitored through heart rate count. The training was carried out on rowing ergometers (Concept II), 3 times per week, each session lasting 50 to 60 minutes. After the training period, $\dot{V}O_2$ max

ii

1.8% and 22.9% and -4.2% to 16.3%, respectively. As well, the maximum rowing ergometer performance, power output, maximum workload, and time before reaching AT increased.

High levels of AT among oarsmen are attributed to the specific nature of training regimens which may have increased the oxidative capacity of muscle fibers and the cardiorespiratory transport system. Measurement of HR at AT could provide the coach and the oarsman with an objective method of monitoring the intensity of training. These results demonstrate that the AT in rowers is profoundly influenced by endurance training.

ACKNOWLEDGEMENTS

To Dr. Thomas M. K. Song, my advisor and teacher, I extend sincere gratitude and deep appreciation for his expertise, constant availability and encouragement that were offered throughout my years as a graduate student.

The author wishes to express his sincere appreciation to the rowers who participated in the study.

Finally, my family deserve the highest praise for their constant love, encouragement and understanding of certain sacrifices that were made for the attainment of this educational goal.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix

Chapter

1.	INTRODUCTION Statement of the Problem Significance of the Study Delimitations Limitations Definitions	1 1 5 5 6
2.	REVIEW OF LITERATURE	8
	Maximal uxygen uptake in Uarsmen	۲ م
	The Relationship Between the Ventilatory	10
	and Blood Lactate Responses	16
	Factors Influencing the Determination of	
	Anaerobic Threshold	24
	Effect of selected Training Protocols	29
	Interval Training	29
	Endurance Training	30
	Summary	32
3.	METHODS AND PROCEDURES	33
	Research Design	33
	The Subjects	33
	Investigative Period	33
	Training Schedule	33
	Training Programs	35
	Testing Schedule	37
	Pre and Post-Training Test Procedures	37
	Measuring VO ₂ max	37

TABLE OF CONTENTS (continued)

	Gas Analysis Criteria for Attaining Ý0 ₂ max	38 38
	Heart Rate. Power Output Stroke Rate Determination of the Anaerobic Threshold Data Analysis	39 39 39 40 40
4.	RESULTS Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Summary	41 45 46 47 55 56 57 65
5.	DISCUSSION	67
6.	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS Summary Conclusions Recommendations	79 79 80 80
	REFERENCES	82

APPENDIX A RAW DATA TABLES	95
Pre- Training Test Raw Data of subject 1	95
Post- Training Test Raw Data of subject 1	97
Pre- Training Test Raw Data of subject 2	100
Post- Training Test Raw Data of subject 2	102
Pre- Training Test Raw Data of subject 3	104
Post- Training Test Raw Data of subject 3	106
Pre- Training Test Raw Data of subject 4	109
Post- Training Test Raw Data of subject 4	111
Pre- Training Test Raw Data of subject 5	113
Post- Training Test Raw Data of subject 5	115
Pre- Training Test Raw Data of subject 6	117
Post-Training Test Raw Data of subject 6	119
Pre- Training Test Raw Data of subject 7	122
Post- Training Test Raw Data of subject 7	125
APPENDIX B TRAINING PROGRAMS	128
Training Program of Subject 1	128
Training Program of Subject 2	132
Training Program of Subject 3	136
Training Program of Subject 4	140
Training Program of Subject 5	144
Training Program of Subject 6	148
Training Program of Subject 7	152

LIST OF TABLES

Table		Page
1.	Characteristics of Subjects	34
2.	The Intensity, Frequency and Duration of the Eight-Week Continuous and Interval Rowing Ergometer Training Program	36
3.	Pre- and Post-Training Test Results of Subject 1	43
4.	Pre- and Post-Training Test Results of Subject 2	49
5.	Pre- and Post-Training Test Results of Subject 3	51
6.	Pre- and Post-Training Test Results of Subject 4	53
7.	Pre- and Post-Training Test Results of Subject 5	59
8.	Pre- and Post-Training Test Results of Subject 6	61
9.	Pre- and Post-Training Test Results of Subject 7	63

LIST OF FIGURES

Figure		Page
1.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 1	. 44
2.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 2	. 50
3.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 3	. 52
4.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 4	. 54
5.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 5	. 60
б.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 6	. 62
7.	Representative Plots of Ventilation and Respiratory Gas Exchange Responses During an Incremental Rowing Ergometer Pre- and Post-Training Tests of Subject 7	. 64

Chapter 1

INTRODUCTION

Statement of the Problem

The purpose of this study was to investigate the endurance component of off-season rowing performance in male rowers before and after an 8 week training period. Specific attention was given to laboratory assessment of "aerobic power" and "anaerobic threshold" as they were affected by the above-mentioned training period.

Significance of the Study

High performance in the sport of rowing is only achieved through systematic training that is structured according to known scientific laws and principles. This high performance is a result of the development and interaction of the following basic components: endurance, strength and power, technique, flexibility, co-ordination and motivational factors.

Rowing has long been considered one of the most demanding continuous endurance activities in competitive sport (Hagerman & Lee, 1971; Hagerman, Addington & Gaensler, 1972; Hagerman, Gault, Connors & Hagerman, 1975a; Hagerman, Whitney, Geensler & Geensler, 1975b; Hagerman, Connors, Gault, Hagerman & Polinski, 1978; Hagerman & Staron, 1983; Jackson & Secher, 1976; Mickelson & Hagerman, 1982; Pyke, 1979; Szögy & Cherebetiu, 1974; Vrijens & Bouckaert, 1984; Wright, Bompa & Shephard, 1976), and as a result, most physiological studies have been concerned with measuring the oxygen demands of rowing at submaximal and maximal levels.

1

Rowing is a continuous performance which utilizes arm, leg and back musculature; therefore, the energy demands placed on oarsmen are great (Jackson & Secher, 1976). Oarsmen, during a 2,000 meter race, do work at intensities which are near to their maximal cardio-respiratory capacity (Vrijens & Bouckaert, 1984). Experiments under laboratory conditions suggest that during a 6 minute, 2,000 meter performance, about 70% of the total energy cost is produced by aerobic processes, while the anaerobic component accounts for the remaining 30% (Hagerman & Lee; 1978). Because of the importance of the aerobic component in rowing performance, the determination of maximal oxygen uptake (\dot{VO}_2 max) is undoubtedly a basic criterion when assessing the aerobic power of a rower. In order to increase this aerobic power, an optimal endurance training program is needed.

Maximal oxygen uptake has been used extensively as an objective measurement of physical work capacity, and as an indicator of performance in endurance events for both trained and untrained individuals (Åstrand & Rodahl, 1977; Bergh, Thorstensson, Sjödin, Holten, Piehl & Karlsson, 1978; Cunningham, Goode & Critz, 1975; MacDougal, 1977), however, these values normally serve only to rank athletes or their untrained peers with respect to previously determined norms or expected maximal standards. Although this information is useful in determining the success of various training programs as well as in providing a stimulus for training, it does little to help when designing specific aerobic and anaerobic exercise programs to meet individual or team training needs.

The percentage of VO_2 max at which an increase in blood lactate occurs is known as the anaerobic threshold (AT) and can be determined

non-invasively during a graded exercise test by analysing expired respiratory gases (Davis, Frank, Whipp & Wasserman, 1979). Many studies have indicated that the AT can be increased with training (Davis et al., 1979; Denis, Fougnet, Poty, Geyssant & Lacour, 1982; Dwyer & Bybee, 1983; MacDougall, 1977; Williams, Wyndham, Kok & Von Rahden, 1967; Yoshida, Yoshihiro & Takenchi, 1982).

The non-invasive technique for the measurement of AT (Davis, Vodak, Wilmore, Vodak & Kurtz, 1976; Naimark, Wasserman & Mcllroy, 1964; Wasserman & Mcllroy, 1964; Wasserman, Whipp, Koyal & Beaver, 1973) was originally designed for use as a diagnostic tool for people suffering from cardiovascular and/or respiratory abnormalities. This technique, however, can also be very useful when applied to asymptomatic subjects and, in particular, to highly conditioned endurance athletes. By measuring the AT of a rower during a step-wise, progressive VO2 max test, it is possible to determine an individual's power output (PO), heart rate (HR), and VO₂ at AT in addition to maximum values for ventilation (VE),volume of oxygen (VO2max), volume of carbon dioxide (VCO2max) and HR. The AT information obtained will then allow the outlining of individualized training programs which can limit the deleterious effects of metabolic acidosis. By varying exercise intensity in relation to AT, PO and VO_2 max, it will be possible to determine the effectiveness of various training programs in increasing a rower's AT, VO₂ max or both concurrently.

Traditionally, training prescriptions based on specific percentages of \dot{VO}_2 max have been used to impose work stress believed to be optimal in terms of the required effort and resulting benefits (American College of Sports Medicine, "Position Statement", 1978; Dwyer & Bybee, 1983 Pollock,

1973). While the AT is not a constant percentage of VO_2 max for all individuals, its influence on fuel use and on lactate accumulation and its supposed reflection of a discrepancy between oxygen supply and demand suggest that precise training prescriptions, with respect to metabolic stress, may be developed with the AT as the major consideration. Some studies have suggested that the AT, reflecting subtle changes in cellular metabolism, may be a more sensitive indicator of circulatory and metabolic adaptations to exercise than some arbitrary fraction of the VO_2 max (Wasserman et al., 1973; Weltman, Katch, Sandy & Freedson, 1978). Currently, training prescriptions based on percent VO₂ max do not distinguish between work above and below AT (Katch & Weltman, 1979). Consequently, exercise performed at a specific intensity with the commonly used range of 50 to 85% VO₂ max, may result in dissimilar work stresses in individuals with different AT values but similar VO2 max (Weltman et al., 1978). A more uniform training stress may be imposed if work is equated on the basis of AT (Davis et al., 1979; Katch & Weltman, 1978; Dwyer & Bybee, 1983; Mickelson & Hagerman, 1982; and Vrijens & Bouckaert, 1984).

The AT, expressed as $\forall O_2$ (L·min⁻¹) or percent $\forall O_2$ max, must be translated into a field-measurable term if training intensity is to be regulated at a fixed percent of AT. Heart rate can be an effective means of regulating the intensity of exercise above or below the threshold. The effect of training specificity on AT in rowers has not been directly examined. The amount and intensity of training necessary to produce changes in the AT are not yet known. The coach must determine which form of training will best improve AT.

This study will attempt to reveal information in the area of endurance training and AT as found in rowers. Since this investigator is a national

level coach and former rower, there is a personal interest in investigating the effects of off-season training on the aerobic power and anaerobic threshold in male rowers. Implications of this study may improve the knowledge and coaching skills of this researcher.

<u>Delimitations</u>

- The subjects of this study were seven male rowers, members of the Thunder Bay Rowing Club, who ranged from 15 to 29 years of age.
- The investigative period was 8 weeks in duration, commencing April 2, 1984, and terminating May 28, 1984.
- 3. The subjects were required to complete three training sessions, each about 50 to 60 minutes in duration, per week.
- 4. Training was carried out on rowing ergometers.
- Diurnal variation was avoided by testing the subject at the same time each day.

<u>Limitations</u>

- 1. The subjects in this study participated on a voluntary basis.
- The subjects completed all testing and training sessions during the investigative period.
- 3. It was assumed that the subjects would exert maximum effort on $\dot{V}O_2$ max tests.
- It was assumed that the dependent variables (VO₂ max and AT) would accurately detect any change in the performance of the subjects.
- Any change in the performance of the subjects was due to the training effect.

Definitions

<u>Aerobic Power</u> (AP) Also called oxygen uptake, and maximal oxygen consumption ($\forall O_2$ max). The greatest amount of oxygen a person is able to utilize during a maximal effort. It can be reported as absolute $\forall O_2$ (liters \cdot min $^{-1}$) or relative $\forall O_2$ max (milliliters \cdot Kilogram body weight $^{-1}$. min $^{-1}$).

<u>Anaerobic threshold</u> (AT) or <u>Ventilatory Threshold</u> (VT) The point of curvilinear increase of ventilation during graded exercise (Wasserman et al., 1973). Anaerobic threshold is identified by a departure from linearity of the VEO_2 , VE and VCO_2 relative to VO_2 , FEO_2 and $FECO_2$.

<u>Carbon dioxide production</u> ($\dot{V}CO_2$) The volume of carbon dioxide produced per minute by the body.

<u>Continuous endurance training</u> (CET) Exercise performed to completion without rest periods.

<u>The expiratory fraction of carbon dioxide</u> ($FECO_2$) Mixed carbon dioxide present in the expired air sample.

<u>The expiratory fraction of oxygen</u> (FEO₂) Mixed oxygen present in the expired air sample.

Heart Rate (HR) The number of heart beats per minute.

<u>Interval training</u> (IT) Exercise performed with alternate periods of rest, as opposed to continuous training.

<u>Oxygen consumption</u> ($\dot{V}O_2$) The volume of oxygen utilized per minute by the body.

<u>Respiratory exchange ratio</u> (RER) The ratio of the volume of carbon dioxide expired per minute ($\dot{V}CO_2$) to the volume of oxygen consumed during the same time interval ($\dot{V}O_2$). Proportionately more fats are being metabolized when the RER is near 0.7, and more carbohydrates are being metabolized when the RER is near 1.00.

<u>Ventilation (VE)</u> The volume of air expired per minute.

<u>The ventilatory equivalent of carbon dioxide</u> ($VE \cdot VCO_2^{-1}$) The ratio of ventilation to carbon dioxide produced per minute.

The ventilatory equivalent of oxygen ($\forall E \cdot VEO_2^{-1}$) The ratio of ventilation to oxygen consumed per minute.

Chopter 2

REVIEW OF LITERATURE

Maximal Oxygen Uptake in Oarsmen

Maximal oxygen uptake is an excellent indicator of aerobic fitness (Åstrand & Rodahl, 1977). An increase in the total aerobic metabolism during maximal exercise of 4 to 6 minutes duration will be reflected by a similar increase in the \dot{VO}_2 max (Secher et al., 1982a). Thus, the use of aerobic power for the assessment of aerobic fitness level seems justified in oarsmen.

Maximal aerobic power measured in young untrained men is about 3.4 L⁻ min⁻¹ (Åstrand & Rodahl,1977), while in oarsmen it ranges from between 2.4 L⁻min⁻¹ (Strydom,Wyndham & Greyson, 1967) and 6.6 L⁻min⁻¹ (Hagerman et al., 1978). The highly developed aerobic power of oarsmen is essential in maintaining the high steady state energy during the body of the race and permits the oarsmen to work for at least 5 minutes at 97 to 98% of maximal aerobic power (Hagerman et al., 1975). This supposition is strengthened by the finding of a positive correlation between the average $\dot{V}O_2$ of the crew and their placing in international championships. A direct relationship between placing in an international championship regatta and the average $\dot{V}O_2$ max of a crew has been established (y = 6.15 - 0.08x, r = 0.87, n = 10) (Secher et al., 1982b), giving a value of 6.1 L⁻min⁻¹ for first place and 5.1 L⁻min⁻¹ for 13th place when 15 to 20 crews are competing, as in FISA championships. These findings indicate that the maximal aerobic power of the best oarsmen may be a limiting factor in rowing performance. The mean

8

 VO_2 max was 6.1 L·min⁻¹ for the crew taking first place, 5.7 L·min⁻¹ for the crew taking the sixth place, and 5.1 liters ·min ·⁻¹ for the crew attaining the thirteenth place.

One group reported a VO_2 max of 7.7 L min⁻¹ (Nowacki, Krause & Adam, 1969), however, their VO_2 increased curvilinearly as work intensity increased. The large VO_2 max of oarsmen are due mainly to their large body dimensions. When the VO_2 max is expressed per kilogram of body weight (Vaage & Hermansen, 1977), the smaller oarsmen show similar or slightly larger values.

A correlation between rowing performance and vital capacity (Ishiko, 1967) may reflect the advantage of the larger oarsman. International competitive oarsmen have vital capacities of about 6.8 L (BTPS) with a largest recorded value of 9.1 L, but are characterized by their large aerobic power, and their large body size (Secher, 1983).

Studies on elite rowers have suggested that the VO_2 max values are indeed important. Szögy and Cherebetiu (1974), stated that rowers have been found to exhibit some of the highest absolute VO_2 max values of all athletes. Åstrand and Rodahl (1977) also reported that rowers had the highest absolute VO_2 max values (5.8 to 6.0 L·min⁻¹) next to cross country skiers (6.3 L·min⁻¹) of all the athletes they tested.

Hagerman et al. (1979) has published a physiological profile of many (n=663) elite heavyweight, lightweight and female rowers. The mean value of 6.1 L min⁻¹ is similar to the value reported by Åstrand and Rodahl, 1977; Jackson and Secher, 1976; Secher, 1973; Szögy and Cherebetiu, 1974. It may therefore be postulated that the greater VO_2 max contributes to a superior rowing performance.

Anaerobic Threshold

During low levels of physical effort, oxygen demand by the working muscle is adequately supplied by adjustments in cardiac output and increased oxygen extraction. With a further increase in work intensity, the increasing contribution of anaerobic metabolism results in production of lactic acid (LA). Anaerobic threshold (AT) has been defined as the rate of work or VO_2 just below the point at which LA begins to accumulate in the blood. According to Wasserman and McIlroy (1964), evidence of anaerobic metabolism is provided by biochemical changes in the blood. It may be detected as an increase in blood LA concentration to 2 mMol·L⁻¹, and as a decrease in blood bicarbonate (HCO₃⁻) and hydrogen ion (pH).

Indirect evidence of the onset of anaerobic metabolism is provided by non-linear increases in minute ventilation (\forall E), respiratory exchange ratio (RER), carbon dioxide (CO₂) production and an abrupt increase in the fraction of expired oxygen (FEO₂), with progressively increased work rate. Several investigators have established the validity and reliability of AT determination while employing non-invasive measures.

In an early investigation, Naimark, Wasserman and McIlroy (1964) found that increases in blood LA levels were associated with abrupt increases in RER and a decrease in blood (HCO_3^-), and that these changes occured at lower work loads in heart patients than in healthy individuals; however, Wasserman, Whipp, Koyal and Beaver (1973), concluded that the RER was of limited usefulness in determining the AT because the elevation of RER occurred only when the rate of HCO_3^- change was at its maximum. Wasserman et al. (1973) defined the AT as the work rate at which the volume of CO_2 produced and the VE deviate from linearity as compared to increases in $\dot{V}O_2$ as work load is incremented. Davis, Vodak, Wilmore, Vodak and Kurtz (1976) measured gas exchange parameters and blood LA levels during progressive bicycle ergometer exercise on nine male subjects. Of the respiratory parameters measured, $\dot{V}E$, volume of carbon dioxide produced ($\dot{V}CO_2$) and FEO₂ were found to give estimates of the AT within 30 seconds of each other. No significant difference was found between AT by blood LA or gas exchange parameters. Determination of test- retest correlation coefficients were 0.77, 0.74 and 0.72, respectively.

In a later investigation, Davis et al. (1979) measured exercise responses in nine sedentary middle-aged males and seven control subjects before and after an endurance training program. Each subject was given two work incremented ergometer tests before and after training. The criteria for AT were a systematic increase in the $\forall EO_2$ without an increase in the $\forall ECO_2$ and a systematic decrease in end-tidal oxygen presure (PO₂) without a decrease in end-tidal carbon dioxide pressure (PCO₂). Test-retest correlation coefficients for the AT expressed as $\forall O_2$ in L·min⁻¹ for all subjects were 0.94 pre-training and 0.95 post- training.

Bailey, MacNab and Wenger (1977) measured VE and blood LA of 26 males during a continuous incremental bicycle ergometer work test. No difference was found in estimates of the AT by the two methods. It appears that measurement of the AT from gas exchange parameters is a valid procedure (Davis et al., 1976).

It has been suggested that the AT may provide an indication of functional work capacity or fitness. Several investigators (Naimark, et al., 1964; Wasserman et al., 1973) have reported findings that suggest that the AT of patients with limited cardiovascular function is well below that of healthy individuals. The patients had significantly greater changes in RER and higher LA levels than the healthy subjects at similar work rates, leading to the conclusion that the AT appears to accurately reflect the functional capacity of these groups.

Other evidence suggests that the AT may be useful in assessing physical work capacity in athletes. Weltman and Katch (1979) found that trained athletes reached AT at greater absolute and relative levels of $\dot{V}O_2$ than untrained individuals. A number of investigators have examined differences in the AT in trained and untrained subjects using a cross-sectional approach with the "break-away" ventilatory responses during progressive exercise as the indicator that the AT has been reached. McDougal (1977) compared nine elite athletes with ten non-athletes. The AT occurred at 85% and 70% of $\dot{V}O_2$ max, respectively. Patton, Heffner, Baun, Gettman and Raven (1979) reported similar findings using the non-linear inflection point in the ventilatory responses to determine the AT during progressive treadmill exercise. The AT occurred at a significantly higher percentage of $\dot{V}O_2$ max in varsity cross-country runners (N=5) than physically fit non-runners (N=6), or at 75% and 53% percent of $\dot{V}O_2$ max, respectively.

12

Londeree and Ames (1975) evaluated maximal steady state in 13 adult males during mild to exhaustive discontinuous treadmill exercise. Venous blood LA was measured during minutes 10 and 15 of exercise. Subjects were classified as low-fit, medium-fit and high-fit from an activity recall record for the previous six month. Significant differences between submaximal HR at 2.2 mMol· L⁻¹ LA were found between all three groups. The work rate corresponded to 74%, 60% and 47% of $\forall 0_2$ max for the high, medium and low-fit groups, respectively. Relative $\dot{\forall}0_2$ max differences were significant for the high and low-fit groups. It is concluded from these results that the rate of work above which there is a significant accumulation of LA in the blood (above 2 mMol· L⁻¹) is reached at a higher percentage of the $\dot{\forall}0_2$ max in high-fit than in low-fit subjects.

In a related study, Weltman, Katch, Sandy and Freedson (1978) compared submaximal exercise responses in 22 female subjects matched with respect to $\dot{V}O_2$ max. Subjects were subsequently classified with respect to $\dot{V}O_2$ at the onset of metabolic acidosis, determined using gas exchange variables, into high and low $\dot{V}O_2$ -AT groups. The high $\dot{V}O_2$ -AT group reached a steady state for $\dot{V}O_2$ at a significantly faster rate than the low $\dot{V}O_2$ -AT group. In addition, the AT was reached at a significantly higher percentage of $\dot{V}O_2$ max in the high-fit group. The percentages were 53% and 46% for the high and low-fit groups, respectively.

Comparing 12 trained male cyclists with 12 untrained males during submaximal bicycle ergometer exercise, Edwards, Jones, Oppenheimer, Hughes and Knill-Jones (1979) found steady state HRs were reached in less than one minute in trained subjects, whereas steady state HRs were generally not attained until two minutes in the untrained group. Blood LA increased at a higher lat_2 in the trained than the untrained group, and at a higher percentage of lat_2 max.

In summary, the AT occurs at higher absolute levels of \dot{VO}_2 at a higher percentage of the \dot{VO}_2 max in healthy individuals than in patients with cardiovascular disease, and in endurance-trained individuals than in untrained individuals. In addition, trained individuals reach steady state \dot{VO}_2 faster and are able to work with only minimal levels of blood LA at higher \dot{VO}_2 levels than untrained individuals. Furthermore, LA production occurs at lower work levels in the untrained. These findings suggest that the AT may be a useful submaximal criterion of physical condition.

Further insight into the relationship between the AT and training has been provided by several longitudinal studies. Davies et al. (1979) compared the physiological responses of nine middle-aged men before and after 9 weeks of endurance training on the bicycle ergometer with those of seven control subjects. The subjects trained at a VD_2 of 50% between the AT and VD_2 max for the first four weeks. This was increased to 70% for the last five weeks. Following training, AT increased 44% when expressed as an absolute rate of $VD_2 L \cdot \min^{-1}$ and 15% when expressed as a percentage of VD_2 max. No changes were observed in the control subjects. Williams, Wyndham, Kok and Von Rahden (1967) reported increases in the AT using a criterion of excess LA, when expressed both as an absolute rate of work and relative to VD_2 max, in 13 males following 4 to 16 weeks of training four hours daily at submaximal and maximal levels of work. The level of work at which excess LA appeared in the blood increased from 46% to 62% of $\dot{V}O_2$ max.

McLellan and Skinner (1981) reported conflicting findings in 14 male subjects training on the bicycle ergometer 30 to 45 minutes per day, 3 times per week for 8 weeks. They reported increases in the AT on an absolute basis, but no change was observed when AT was expressed relative to VO_2 max. In addition, subjects training 5% to 15% above the AT did not differ from those training at or below the AT.

Mickleson and Hagerman (1982) tested 25 members of the 1980 U.S. Olympic Rowing Team during a progressive (to exhaustion) rowing ergometer exercise. Anaerobic threshold, $\dot{V}O_2$ max, HR and POs were also measured to gauge the severity of the exercise and were compared with metabolic data. Power increments of 27 watts each minute were achieved by progressively increasing the brake weight resistance on the ergometer while maintaining a stroke rate of 28 to 32 strokes \cdot min ⁻¹ and spinning the ergometer flywheel at 550 revolutions \cdot min ⁻¹. Anaerobic threshold measurements were determined by observing the onset of a non-linear relationship between $\dot{V}O_2$, $\dot{V}E$ and $\dot{V}CO_2$. A mean AT of 83% of $\dot{V}O_2$ max, and a mean HR value at AT of 167 beats \cdot min⁻¹ were found.

Dwyer and Bybee (1983) examined the HR response and percent maximal HR (%HRmax) at the AT in 20 young women. The AT, $\forall O_2$ max and HR were assessed during incremental (25 watts each minute to exhaustion). Ventilation and gas exchange were measured each minute. Anaerobic threshold was identified by departure from linearity of the $\forall EO_2$, $\forall E$, and VCO_2 relative to VO_2 . Reliability coefficients for AT and HR at AT were 0.92 and 0.86, respectively. The mean AT observed in the incremental tests carried out to exhaustion was 70.1% of VO_2 max, ranging from 54 to 83%. The mean work rate at AT was 151 ± 28 Watts or 73% of the average maximal work rate. They concluded that training prescriptions for intensity can be developed and expressed in percent HR max at AT as the major consideration. Indeed, evidence is accumulating which suggests that the training prescriptions lack metabolic specificity if they are not based on AT.

Based on the research reviewed above, it appears that increases in the AT may be observed following training (when the AT is expressed in an absolute rate of work). Increases in the AT expressed relative to $\dot{V}O_2$ max may depend on the initial level of condition of the subject and the type of training program engaged in, particularly with respect to the intensity of exercise performed.

The Relationship Between the Ventilatory and Blood Lactate Responses

As the intensity of exercise increases from low levels to approximately 40% to 50% of $\forall O_2$ max, a greater portion of oxygen is extracted by the active tissues, resulting in a decreased fraction of oxygen in the expired air (FEO₂). In addition, there is a proportional increase in CO₂ produced oxidatively and in expired FECO₂. Ventilation rises in proportion to the progressively in- creasing $\forall O_2$ and $\forall CO_2$ expired $\forall ECO_2$. Although the entry rate of LA into the blood may be increased during these levels of exercise,

the removal rate of LA is also increased (Graham, 1978; Sutton & Jones, 1979). As a result, little or no change in blood LA is usually observed. Further, the RERs of 0.7 to 0.8 suggest that the predominant source of energy at this intensity of exercise involves FFA oxidation (Skinner & McLellan, 1980).

As the exercise intensity continues to increase and reaches a level exceeding approximately 50% VO_2 max, there is an initial continuous rise in LA from values close to 1.5 to 2.0 mMol L^{-1} . This change in acidity (H⁺) is buffered principally by the base bound as HCO_{x}^{-} (Bouhuys, Pool, Binkhorst & Van Leeuwen, 1966), resulting in an increased production of $\rm CO_2$ from the dissociation of carbonic acid (H_2CO_3) and a continuous rise in FECO₂ (Skinner & McLellan, 1980). This increased CO₂ production which results in a disproportionate rise in VE, however, is related to the change in VCO_2 , as arterial CO_2 levels remain normal (Sutton & Jones, 1979; Wasserman, Whipp & Davis, 1981). This results in a lower extraction of oxygen relative to the total ventilation and a subsequent rise in FEO, (Wasserman et al., 1973). The point at which these changes in gas exchange variables and/or LA occur have been defined as the AT (Wasserman et al., 1973), the lactate threshold (Ivy, Whithers, VanHandel, Elger & Costill, 1980), and the aerobic threshold (AerT) (Kindermann, Simon & Keul, 1979; Skinner & McLellan, 1980).

With increasing intensity of exercise between approximately 50% to 80% VO_2 max, LA continues to increase to values close to 4 mMol·L⁻¹ (Sjödin & Jackobs, 1981; Galdwell & Pekkarinen, 1983; Davis, Gass, Eager & Basset, 1981). The proportionate changes in VE and VCO₂ maintain normal

arterial PCO₂ during this period of isocaphic buffering, suggesting that respiratory compensation is effective (Skinner & McLellan, 1980).

After approximately 80% VO_2 max and with increasing intensity, LA increases rapidly, resulting in a greater change in arterial pH. This decreased pH increases the afferent discharge from the carotid bodies to the respiratory centre, which increases VE at a rate greater than the continued rise in VCO_2 (Davis, Basset, Hughes & Gass, 1983). As a result, FECO₂ begins to decrease, while FEO₂ continues to rise (Skinner & McLellan, 1980). This intensity is associated with a point of "break-away" ventilation and/or the onset of a rapid rise in LA and has been associated with the terms respiratory compensation (Wasserman et al., 1973, and 1981), onset of blood lactate accumulation or OBLA (Jacobs, 1983; Sjödin & Jacobs, 1981) and the AT (Kinderman et al., 1979; Skinner & McLellan, 1980).

As noted, considerable variability exists in the literature with respect to the terminology used to identify these changes in the ventilatory and blood LA responses during an incremental test. This controversy over terminology appears to be related to two principal issues: the changes in ventilation and gas exchange resulting from and/or relating to the alterations in blood LA values, and the criteria used to define anaerobiosis and its relationship to tissue hypoxia.

The mechanisms involved in the control of ventilation during exercise have provided researchers with a complex topic of investigation for many years. Review articles have summarized the current foci of investigation of the ventilatory response to exercise as relative to the influence of neural and hormonal stimuli originating in the exercising muscle (Mahler, 1979) and as carotid body chemoreceptor sensitivity (Whipp,1971). Swansson (1979) characterized the control of ventilation in terms of feed-forward and feedback regulating mechanisms. It would appear that neural impulses originating in the exercising muscles, CO_2 flux to the lungs, increased venous return and/or direct cortical influence, may provide the feed-forward stimuli for regulating ventilation relative to the metabolic state of active tissue (Wasserman et al., 1973 and 1981). Feedback control appears to involve the regulation of arterial CO_2 (and pH) by the carotid bodies and the "fine tuning" by higher cortical centers (Whipp, 1971).

Since the buffering of elevated CO_2 in the blood by HCO_3^- represents an additional non-metabolic CO_2 stimulus to increase ventilation, Wasserman et al. (1973) examined the relationships among responses in LA, HCO_3^- , VO_2 and $\forall E$ during an incremental (to exhaustion) work test. It was found that the initial continuous increase in LA and decrease in HCO_3^- occurred at the same PO level as the first disproportionate increase in $\forall CO_2$ and $\forall E$, i.e., at AT. These findings suggest a "cause and effect" relationship between the increasing blood LA and $\forall E$ response. Subsequent studies by Davis et al., (1976) and by Yoshida, Yoshihiro and Takeuchi (1981) produced correlation coefficients of 0.95 and 0.86, respectively, between LA response and the PO associated with the initial change in $\forall E$.

Sutton and Jones (1979) have stated, however, that increasing LA values will effect the exercise ventilatory response in two ways: as an increased CO_2 flux to the lungs due to the buffering of LA by HCO_3^- and as a change in pH, the magnitude of which depends on the relative changes in

19

 HCO_3^- and the partial pressure of CO_2 . Therefore, with rapidly increasing blood LA values, one would expect not only an augmented CO_2 flux but also a substantial increase in H^+ concentration due to decreasing HCO_3^- levels.

During low-intensity exercise, increasing amounts of FFA are released into the circulatory system and transported to the working muscle. Since the rate of diffusion of FFA across the cell membrane is proportional to its concentration gradient, high levels of FFA in the blood ensure a constant supply, making FFA the dominant source of fuel for a contracting muscle at low PO levels (Issekutz, Shaw & Issekutz, 1976).

As the exercise intensity increases, more ST and possibly some FT fibres will be recruited (Burke, 1980; Éssen, 1978a & b); this produces a greater need for, and utilization of, ATP, with a corresponding increase in the concentration of adenosine diphosphate (ADP), adenosine monophosphate (AMP) and phosphate (P_i). Since FFA oxidation, however, would still represent a predominant substrate for oxidative phosphorylation, some inhibition of pyruvate oxidation will occur. As a result, there is an imbalance between the rate of pyruvate production, regulated by the energy state of the tissue, and pyruvate oxidative metabolism (Issekutz et al., 1976). The intensity of exercise associated with this imbalance between a glycolytic and oxidative substrate flux should also be associated with an initial continuous rise in blood LA values and the initial disproportionate increase in VE or AerT (Skinner & McLellan, 1980).

The previous discussion has defined AT as an intensity of exercise that is associated with the initiation of a hyperventilatory response that is greater than the response observed at POs slightly above AerT. The relationship of \forall E to \forall CO₂ from low-intensity to maximal exercise can be characterized by three different linear equations: below AerT, above AerT but below AT and above AT (Skinner & McLellan, 1980).

As noted previously, the term "anaerobic threshold" (AT) has been used to define the change in \forall E associated with a rise in blood LA (Wasserman et al., 1973) and the point of "break away" \forall E associated with the onset of a rapid rise in blood LA (Kindermann et al., 1979; McLellan & Skinner, 1980). This controversy appears to be related to the onset of anaerobiosis. Research by Graham (1978) demonstrated that LA was produced when there was an insufficient supply of O_2 to the working muscle. Based on these findings, it was then generally assumed that the presence of LA implied hypoxia. This assumption, however, has been questioned by a number of investigators (Holloszy, 1976).

It has been shown that athletes can work at high intensities for prolonged periods with low levels of LA (Costill, 1970). Following the assumption that LA implies hypoxia, the lower LA at a higher relative PO would be due to a removal of hypoxic conditions (Holloszy, 1976). If these hypoxic conditions were reduced, then $\forall 0_2$ at a given submaximal PO would have to increase, suggesting an alteration in total body efficiency with training. Since $\dot{\forall}0_2$ at a given submaximal PO does not change with training, however, local hypoxia cannot be the reason for change in LA (Holloszy, 1976). It should be realized that blood LA values are also influenced by muscle fibre composition and muscle fibre recruitment (Sjödin, 1976). For example, the production and removal of LA are influenced by the content of lactate dehydrogenase (LDH) in the sarcoplasm of muscle (M) specific subunits (Sjödin, Thorstenson, Firth, & Karlsson, 1976). Therefore, as pyruvate concentrations increase within the sarcoplasm, less LA will be produced with the heart (H)-LDH isozyme. Consequently, it is generally assumed that M-LDH facilitates the reduction of pyruvate to LA, whereas H-LDH favours the oxidation of LA to pyruvate for subsequent utilization in the Krebs cycle (Sjödin et al., 1976).

There appears to be a relationship between muscle fibre composition and both the total LDH activity and LDH isozyme distribution. Slow twitch muscle fibres have a relative H-LDH activity (Sjödin et al., 1976), while FT fibres have almost three times as much M-LDH activity (Sjödin et al., 1976). Graham (1978) hypothesized that FT fibres would also be more likely to become hypoxic because they have lower values for capillary-fibre ratio, mitochondrial concentration and a lower rate of oxidative metabolism. This is in agreement with the finding that LA concentration is higher in FT fibres following intense dynamic exercise (Tesch, Sjödin & Karlson, 1978).

Similarly, Bonen, Campbell, Kirby and Belcastro (1978) found a moderate but significant relationship (r=0.54) between ST fibres and the rate of LA removal after heavy exercise. They suggested that FT fibres tend to produce LA, while ST fibres continuously extract and oxidize LA from the blood and from FT fibres. In addition, Graham (1978) found an inverse relationship between the percentage of ST fibres and the LA concentration gradient between muscle and blood. Although the blood LA concentrations were similar, the muscle LA concentration in FT fibres was three times as high as that found in ST fibres. The explanation for this was that FT fibres have a greater rate of LA production and/or a lower rate of LA release.

During the various phases of progressive exercise, there appears to be a preferential recruitment of specific fibre types (Burke, 1980). Based on studies of glycogen depletion in muscle fibres, (Éssen, 1978a & b) found a greater loss of glycogen in ST fibres at intensities of 30 to 85% $\dot{V}0_2$ max. As the duration or intensity of work increased, more FT fibres were recruited. Éssen (1978a) also found that FT oxidative fibres were recruited before FT glycolytic fibres. Athough patterns of glycogen depletion do yield information about muscle fibre recruitment, they are not necessarily indicative of the extent to which the different fibres have been active, since muscle glycogen is not the only substrate used to produce energy (i.e., fat and glucose can also be used).

Summarizing these findings, it would appear that the initial alterations in the ventilatory and blood LA response are associated with tissue hypoxia, and that the term AT is adequate to represent these changes. The onset of the rapid rise in blood LA and the point of break-away VE appear to be related more to anaerobiosis and tissue hypoxia due to the recruitment of the more glycolytic FT fibres, with their predisposition for hypoxia, and a possible reduction of the mitochondrial oxidative potential.

Factors Influencing the Determination of Anaerobic Threshold

During a progressive work test, AT has usually been determined by using non-invasive measurement techniques, e.g., a non-linear increase in VE and VCO_2 , an increase in end-tidal O_2 tension without a corresponding decrease in end-tidal CO_2 tension, and an increase in RER (Wasserman et al., 1973). Davis et al. (1976) found a reliability coefficient of 0.95 between the AT determined from these gas exchange variables and AT determined from repeated serial venous LA samples. They also reported a test-retest correlation coefficient of 0.72 for AT determinations from gas exchange alterations. Subsequently, Davis et al. (1979) reported a test-retest reliability coefficient of 0.95 for AT determined from an increase in the ventilatory equivalent for O_2 (VEVO $_2^{-1}$) without an increase in the ventilatory equivalent for CO_2 ($\forall E \cdot \forall CO_2^{-1}$). Although the use of only one or two criteria measures may provide a more reliable non-invasive estimate of AT, the sensitivity of a ratio measure (such as $VE VO_2^{-1}$) has been questioned. For example, Davis et al. (1979) suggested that differences occuring in the absolute change of two measures (e.g., VE and VO_2) are not necessarily reflected by the same change in the ratio of these variables (e.g., $VE VO_2^{-1}$). It is possible, therefore, that a greater change in VE is required to detect a change in the $\dot{V}E\dot{V}O_2^{-1}$ as an estimate of AT, if the ventilatory response alone was examined relative to the changing $\dot{V}O_2$.

Anaerobic threshold determinations have generally been based on direct LA measures (Kindermann et al.,1979; Stegmann et al.,1981). Although mean LA concentrations at AT approximate 4 mMol·L⁻¹, Stegmann et al. (1981),

have emphasized the need for the evaluation of AT based on individual blood LA kinetics. Individual differences associated with diet (Ivy et al., 1980), alterations in the time course between muscle LA production and release (Graham, 1978), intracellular and extracellular buffering capacity (Stamford et al., 1981), the dissociation of pH and LA ion muscle efflux rates (Jones, 1980), as well as LDH isozyme patterns (Sjödin, 1976) may all influence blood LA values. Therefore, the assignment of absolute or arbitrary levels (as used by Sjödin & Jacobs, 1981) is of little value as a criterion of equal metabolic stress among all individuals (Åstrand, 1984).

Wasserman et al. (1973) and Stamford, Weltman, Moffat and Sandy (1978) suggested that POs of at least 2 to 3 minutes duration were necessary for the accurate determination of AT. Due to the delay in diffusion of LA from muscle to blood, shorter PO durations are likely to result in overestimates, that is, the subject will be exercising at a higher intensity of and will have a higher VO_2 before the blood LA rises due to conditions produced during the previous PO.

Davis et al. (1976) measured LA and various gas exchange variables during arm cranking, as well as, during leg exercise on a cycle ergometer and treadmill. There were no individual differences between leg cycling and treadmill walking when the respective AT values were expressed relative to the $\dot{V}O_2$ max (% $\dot{V}O_2$ max) obtained with the same exercise test. Significatly lower values for $\dot{V}O_2$ max and relative AT were found for arm cranking. The authors speculated that these lower values were due to the smaller muscle mass of the arms, to little or no experience with arm cranking so that the arms were less trained, to differences in ST and FT muscle fibre distribution between arms and legs, or to a lack of uniform motor unit recruitment in arm work. Likewise, Stamford et al. (1978) hypothesized that nonfamiliarity could have produced different patterns of motor fibre recruitment. On the other hand, they did not feel that the size of the total muscle mass involved was important since no difference in relative AT values were found during cycling with one or two legs. Withers, Sherman, Miller and Costill (1981) have reported that there is a specificity for relative AT values depending on the mode of testing.

There is little information in the literature on the influence of the type of exercise on AT. Kindermann et al. (1979) have reported, however, that well-trained cross-country skiers were able to exercise at a given intensity for a longer period of time during roller-ski training than during treadmill running. This difference was attributed to the greater muscle mass involved (arms and legs), to the possibility of training specificity since the skiers trained both arms and legs.

Substrate availability also appears to influence the AT. For example, when high levels of blood glucose were present, Ivy et al. (1980) found AT values similar to those found under control conditions. When they elevated blood FFA levels, however, there was a significant rise in relative AT and a reduction in blood LA at AT. Since FFA oxidation inhibits glycolysis (Issekutz et al., 1976), an artificial increase in blood FFA concentrations should produce a greater muscle to blood concentration gradient and a greater inhibition of carbohydrate metabolism at the same PO. As a result, blood LA values should be reduced and AT could occur at a higher PO.
Muscle fibre composition, LDH isozyme patterns and endurance training may effect AT determinations. Ivy et al. (1980) reported that AT was related both to the relative distribution of ST fibres and to oxidative potential of muscle. Therefore, the high relative AT values reported for well-trained endurance athletes (Costill, 1970; Withers et al., 1981) may result both from a high percentage of ST fibres (Bergh, Thorstensson, Sjödin, Holten, Piehl & Karlsson, 1978; Costill et al. 1976a and b; Golnick et al., 1972; Saltin et al., 1977) and from a greater muscle oxidative potential, as reflected by high succinate dehydrogenase (SDH) activity (Costill, Daniels, Evans, Fink, Krahenbuhl & Saltin, 1976a and b; Gollnick et al., 1972; Saltin et al., 1977).

Endurance training may also influence the LDH isozyme pattern of the muscle fibres. For example, Sjödin et al. (1976) found a decrease in total LDH activity with training, as well as, a shift towards the H-LDH isozyme, while, the relative activity of the H-LDH isozyme increased in both ST and FT fibres. A preferential H-LDH isozyme pattern may result in a slower LA production (Sjödin et al., 1976), suggesting that AT could occur at higher relative intensity in trained athletes than in untrained persons. A possible explanation for the fact that endurance athletes may have higher values for AT is that these athletes generally have a lower ventilatory response to similar levels of alveolar CO_2 pressure (Stegmann et al., 1981). Since many determinations of AT are based on alterations in VE and VCO₂, this reduced sensitivity of the peripheral and central chemoreceptors to CO_2 might decrease the magnitude of these changes (Stegmann et al., 1981).

The amount and intensity of training necessary to produce changes in AT are not known. Williams et al. (1976) reported a 16% increase in AT following 4 to 16 weeks of daily training sessions lasting up to 4 hours. This increase was greater than and independent of the mean rise in $\forall 0_2$ max of 7%. Similarly, Davis et al. (1979) reported that relative AT values increased from 49% to 57% $\forall 0_2$ max following a 9-week exercise program consisting of four 45-minute sessions per week at an intensity of 75-85% $\forall 0_2$ max. In contrast, McLellan and Skinner (1981), found no change in relative AT after 8 weeks of endurance training, 3 times per week with 30 to 45 minutes of each session at about 60 to 65% $\forall 0_2$ max.

In summary, it is apparent that several factors may influence relative AT values. For example, reliable and sensitive non-invasive estimates should be provided by examining the change in the ventilatory response to the progressively increasing $\forall O_2$ with POs of approximately 2 to 3 minutes duration. The pattern of change in the LA response appears to be more useful than assigning absolute LA values to represent each AT. Further, the mode of testing should be specific to allow for a valid cross-sectional or longitudinal comparison of the effects of training on relative AT values.

Effects of Selected Training Protocols

Interval Training

After the development of non-invasive techniques to determine AT, several studies have investigated specific training methods and their effects on the AT. The most commonly investigated training technique is interval training.

Rivera, Metz and Robertson (1980) measured VO_2 max, maximal LA capacity and performance of athletes during 100-meter and 400-meter timed swims. Twenty-four swimmers, 12 to 19 years of age, were tested before and after 6 weeks of high intensity interval training. The subjects were randomly assigned to one of two training groups. One group trained at 85% of its best performance time and a second group at their AT. Both groups had significant gains in VO_2 , and maximal LA capacity. Both groups improved performance levels, with the AT training group improving at a faster rate. These data support the theory that AT training enhances the efficiency of aerobic and anaerobic metabolic systems and that AT is influenced by swim training. The results of this study indicate that high intensity training has a profound effect on metabolic responses; however, training at AT was equally or more effective with regards to performance.

In another study, Cunningham & Faulkner (1969) investigated aerobic and anaerobic metabolism during a short exhaustive treadmill run. Eight males served as subjects for the 6 week training program. The training program consisted of interval sprints of 220 yards and distance runs of two miles. The short exhaustive runs were performed on a treadmill at a speed of 8 miles per hour at a grade of 20%. Run times ranged from 36 to 66 seconds. The training program resulted in a 23% increase in run time for the short exhaustive run, a 9% increase in oxygen debt, and a 17% increase in blood LA concentration. The authors hypothesized that these parameters indicated an increase in the amount of adenosine triphosphate (ATP) produced by oxidative phosphorylation, by glycolysis and from creatine phosphate (CP) during the short exhaustive run.

Endurance Training

Still other investigators have examined the effects of endurance training on AT. Kinderman et al. (1979) determined AT as identified by 4 mMol \cdot L⁻¹ of LA; and measured $\forall O_2$ max in seven cross-country skiers of national skill level. All subjects ran on a treadmill for at least 30 minutes at constant running speeds while maintaining constant HRs. During the exercise, performed with a constant speed, LA concentration initially rose to values of nearly 4 mMol \cdot L⁻¹ and then remained essentially constant during the remainder of the exercise. This research was done to show that workload intensities above the AT can be maintained, with slightly elevated LA levels, for prolonged periods of time. The results of this investigation demonstrated that endurance training done with an intensity leading to LA levels in the range of 4 mMol \cdot L⁻¹can be maintained for 45 to 60 minutes or even longer. The study also led to the conclusion that endurance training will maintain a particular level of conditioning when performed in the range of the AT and that it will increase exercise capacity when performed in the range of Aer-AT. Davis et al. (1979) attemped to evaluate the relative

alterations in AT and $\forall O_2$ max after 9 weeks of endurance training in healthy middle-aged males. The training program consisted of exercise on a stationary cycle ergometer five days per week for 45 minutes per exercise session. For the first four weeks of training, the subjects exercised at a target HR designed to correspond to a $\forall O_2$ of 50% of the difference between their AT, $\forall O_2$ and $\forall O_2$ max. For the last five weeks of training, this value was increased to 70% of the difference between their AT, $\forall O_2$, and $\forall O_2$ max. The major finding of this study was that AT level, expressed as an absolute $\forall O_2$ and as a fraction of $\forall O_2$ max, increased significantly after endurance training. This study demonstrated that AT is profoundly influenced by endurance training in middle-aged males.

Robinson and Sucec (1980) investigated the effect of training intensity of $\forall O_2$ max, AT, and endurance performance as measured by a 15-minute run. The subjects were 21 healthy active males, with a mean age of 22.3 years, who were divided into three groups and tested prior to and following a twelve-week training program. One group trained by running continuously for 30 minutes at 85% of their $\forall O_2$ max. Another group trained by running intervals at a work to rest ratio of 1 to 3 for 30 minutes; a third group served as a control group with average activity patterns. The data indicated that both moderate and intensive training programs increased AT as well as endurance performance. The data also demonstrated that AT changes are more closely related to endurance performance changes than $\forall O_2$ max changes.

<u>Summary</u>

Quantities of LA form when muscles are activated by anaerobic metabolism processes. Formation of this LA during exercise permits oxidation to proceed anaerobically and accounts for most of the oxygen debt which accumulates during strenuous exercise. Therefore, measurement of blood LA level has traditionally been used as an indicator of anaerobic metabolism. Because the measurement of LA levels in the past required invasive techniques (specifically, blood sampling), precise research concerning AT has been limited. The development of noninvasive techniques, specifically measurement of respiratory gas exchange ratios, has immensely simplified the reresearch procedures in this area.

Researchers have investigated the effects of various types of exercise on AT. Their findings have indicated that AT will significantly improve using an interval training (IT) exercise mode. Still other researchers have investigated the effects of endurance training on AT. Their conclusions have been that endurance training will either maintain present AT or, in some cases, increase AT.

There is a need for specific research as to the efficiency of various training intensity levels and the effects that these intensity levels have on AT. There is also a need for investigations involving rowers as subjects since most of the studies have involved other athlete groups.

Chapter 3

METHODS AND PROCEDURES

<u>Research Design</u>

An individual case study approach was employed to investigate the effect of an 8 week endurance training period on the aerobic power and the anaerobic threshold of male rowers.

The Subjects

The subjects in this study were 7 male volunteers ranging in age from 15 to 29 years, all members of the Thunder Bay Rowing Club. The calibre of the subjects is such that they have competed at both provincial and national championships (see Table 1).

Investigative Period

The investigative period for this study was 8 weeks, commencing on April 2, 1984 and terminating May 28, 1984.

Training Schedule

The investigative period consisted of three training sessions per week, each session lasting 50 to 60 minutes. The training was carried out on rowing ergometers (Concept II).

33

Subject	Calibre	Age (Yr)	Height (cm)	Weight (Kg)
1. B.B.	Nationa)	29	177.0	75.0
2. G.F.	Provincial	15	177.0	78.0
3. T.H.	National	27	178.0	77.0
4. D.J.	Provincial	16	180.0	64.0
5. J.O.	Provincial	18	174.0	76.0
6. J.W.	Provincial	15	192.0	90.5
7. S.W.	National	23	187.0	88.0

Characteristics of Subjects

Table 1

=

<u>Training Programs</u>

The training programs were designed for each individual subject. Decisions regarding training intensity were made based on each subject's AT, $\dot{V}O_2$ max, workload and HR, which have been obtained during the pre-training investigative period. The level of intensity of continuous endurance training (CET) was a percentage below the subject's AT and the level of intensity of interval training (IT) was a percentage above the subject's AT (see Table 2). The intensity of training was monitored through the subject's HR (see Appendix B).

<u> </u>		· · · · · · · · · · · · · · · · · · ·
	Tra	ining Mode
	Continuous Training	Interval Training
Intensity	AT-10% VO ₂ max	Low: AT + 10% VO ₂ max
		High: AT+ 15 to 25% VO ₂ max
Frequency	3 · week ⁻¹	
Duration	50 to 60 Minutes · se	ession ⁻¹

Table 2

The intensity, Frequency and Duration of the Eight-Week Continuous and Interval Rowing Ergometer Training Program.

Testing Schedule

Each of the subjects visited the Human Performance Laboratory at Lakehead University, on three separate occasions: Orientation session, pre-training test and post-training test. The subjects were tested at the same time and day of the week to avoid diurnal effects. During the orientation session, the subjects were familiarized with the testing environment, equipment and procedures.

<u>Pre- and Post-Training Test Procedures</u>

During the pre- and post-training test, the subjects reported to the laboratory in a post-absorptive state for the performance of an incremental rowing ergometer work test, carried out until the subject reached a state of exhaustion. The subjects were instructed to avoid any vigorous activity 36 hours prior to the testing day. Upon arrival at the laboratory, each subject had his age, weight and height recorded. A balance scale (Continental Scale, Bridgeview, Illinois) was used to measure the subject's weight to the nearest one-tenth of a kilogram and height to the nearest .5 centimeter.

<u>Measuring VO₂ max</u>

To determine each subject's VO₂ max, a Gjessing rowing ergometer was used, increasing the subject's workload progressively until he reached the point of exhaustion. The subject began to row at a stroke rate of 27 to 32 strokes per minute, while maintaining the ergometer's flywheel at 600 revolutions per minute. The initial workload was 1.5 Kp and it was increased by .25 Kp every two minutes until a workload of 3.0 Kp was attained. After this point, the workload was increased by .50 Kp to a maximum of 3.75 Kp, whereupon the subject was encouraged to increase maximally the stroke rate and the revolutions per minute until VO₂ max criteria were observed.

Gas Analysis

Expired air samples were collected continuously and analyzed every 15 seconds, using a pre-calibrated, computerized Beckman Metabolic Measurement Cart (MMC Horizon II system). Along with the continuous presentation of time, $\dot{V}O_2$, $\dot{V}E$, RER and HR were displayed every 15 seconds on the system's visual readout screen. As well, the values for $\dot{V}E$, $\dot{V}EO_2$, $\dot{V}O_2$, \dot

Criteria for Attaining VO₂ max

- 1. As the workload increases the subject's VO_2 reaches a plateau or begins to decrease.
- The RER value should be greater than 1.10.
- The observed HR should be close to the subject's personal maximum or to the anticipated age maximum.
- The subject becomes volitionally exhausted.

<u>Heart Rate</u>

Heart rate was monitored continuously with a 3-lead (Campbridge, VS4 model) electrocardiograph, integrated via digital analog to the Beckman MMC system.

Power Output

A mechanical counter as well as an electronic, computerized counter, connected to the ergometer's flywheel registered and recorded the number of revolutions of the flywheel. A television monitor connected to the electronic counter, provided visual feedback to the subject by displaying the number of revolutions recorded after each 30-second interval, as well as after each one-minute interval. This was done in order to control the subject's power output. Upon completion of the test each subject's results (number of revolutions after all 30-second and one-minute intervals, as well as the number of revolutions accumulated during the entire test) was printed out by the computer.

<u>Stroke Rate</u>

The stroke rate was monitored every 30 seconds via a specialized (Herwins, Swiss) rowing stroke rate stopwatch. Each minute, feedback was given to the subject in order to control his stroke rate during the test.

Determination of the Anaerobic Threshold

The ventilatory equivalent for O_2 (VE·VO₂⁻¹), CO₂ (VE·VCO₂⁻¹), as well as VE, VO₂, VCO₂, FEO₂, FECO₂ and workload, were plotted against time (in 30-second intervals) until VO₂ max was reached. Two criteria were used to locate each subject's AT: an increase in the VE·VO₂⁻¹ without an increase in VE·VCO₂⁻¹ and an increase in FEO₂ without a decrease in FECO₂. These are identical criteria to those recommended by Davis et al. (1979) who's findings reported a correlation coefficient of 0.95. In this study, test-retest reliability of seven AT rowing tests, determined by averaging the analyses of 2 separate investigators using the above criteria (3 analyses per investigator), yielded a correlation coefficient of 0.97.

<u>Data Analysis</u>

Each subject's pre-training and post-training test results were presented in tables and graphs. Also, the improvement (or lack thereof) of each subject's \dot{VO}_2 max and AT was recorded. Since this is a descriptive study, no statistical analysis was done.

Chapter 4

RESULTS

The general characteristics of each subject are presented in Table 1. The results of pre-training (pre-t) and post-training (post-t) tests for individual subjects are presented in Tables 3 to 9, as well as graphical representations of the pre-t and post-t tests' alterations in gas exchange responses are presented in Figures 1 to 7.

<u>Subject 1 (S1)</u>

The results of S1 are shown in Table 3 and Figure 1.

The absolute value of $\forall D_2$ max was increased by 21.6%, from 4.030 to 4.900 L min⁻¹. The relative value of $\forall D_2$ max was increased by 26.4%, from 52.2 to 66.0 ml \cdot Kg⁻¹ min⁻¹.

The total test time, or the time to reach VO_2 max was 13 minutes (min) and 30 seconds (sec) during the pre-t test and 17 min during the post-t test, the time increase was 25.9%.

The maximum (max) workload was 3.00 Kp during the pre-t while the post-t test max workload increased to 3.50 Kp, the percentage change was 16.7%.

The total power output (PO) was increased by 41.7% from the pre-t test and post-t PO totals of 18,192 Kpm and 25,779 Kpm, respectively. The maximum heart rate (HR max) decreased by 1.1%, from 187 to 185 beats min⁻¹ (bpm) during the post-t test.

The average stroke rates of the pre-t and post-t tests were 29 and 27 strokes min⁻¹ (spm), respectively, the percentage decrease was 6.9%.

The AT percent of VO₂ max was increased from 77.8% to 85.1% following the training program, the percent increase was 9.4%.

The time taken to reach AT was 5 min during the pre-t test and 11 min 30 sec during the post-t test, the improvement rate was 130%.

The workloads at AT in the pre-t and the post-t tests were 2.00 Kp and 2.75 kp, respectively, the percentage increase was 37.5%.

The PO at AT was 5,212 Kpm during the pre-t test and 14,888 kpm during the post-t, the percentage increase was 186%.

The absolute value of $\forall O_2$ max at AT was 3.136 L \cdot min⁻¹ during the pre-t test and 4.171 L \cdot min⁻¹ during the post-t test, the percentage increase was 33.0%.

The body weight adjusted value of VO_2 max at AT was 42.0 ml \cdot Kg⁻¹. min⁻¹ during the pre-t test and 51.6 ml \cdot Kg⁻¹ \cdot min⁻¹ during the post-t test, the percentage improvement was 34.8%.

The HRs at AT were 161 and 172 bpm for the pre-t and post-t tests, respectively, the HR at AT was increased by 6.8%.

Table	3
-------	---

Pre- and Post-Training Test Results of Subject 1

Variables	Pre-Training Test	Post-Training Test	% Change	
Total Test Time (min:sec)	13:30	17:00	25.9 ↑	
Maximum Workload (Kp)	3.00	3.50	16.7 t	
Total Power Output (Kpm)	18,192	25,779	41.7 ↑	
Average Stroke Rate (stks min^{-1})	29	27	6.9 ↓	
V0 ₂ max L∙min ⁻¹	4.030	4.900	21.6 ↑	
VO ₂ ml·Kg ⁻¹ ·min ⁻¹	52.2	66.0	26.4 †	
Maximum Heart Rate (bts∙min ⁻¹)	187	185	1.14	
AT % of VO ₂ max	77.8	85.1	9.4 ↑	
Time at AT	5:00	11:30	130 †	
Workload at AT	2.00	2.75	37.5 ↑	
Power Output at AT	5,212	14,888	186 t	
V0 ₂ L∙min ⁻¹ at AT	3.136	4.171	33.0 t	
VO ₂ m1·Kg ⁻¹ ·min ⁻¹ at AT	42.0	56.6	34.8 ↑	
Heart Rate at AT	161	172	6.8 t	

↑ : Increase,

↓:Decrease.

Figure 1: Representative plots of ventilation and respiratory gas exchange responses during an incremental rowing ergometer Pre-Training and Post-Training tests. The AT occurs at the time period represented by the two vertical lines.

<u>Subject 2 (S2)</u>

The results of S2 are shown in Table 4 and Figure 2.

The absolute value of $\forall O_2$ max was increased by 22.9%, from 4.010 to 4.929 L \cdot min⁻¹. The relative value of $\forall O_2$ max, was increased by 15.4%, from 53.3 to 61.5 ml \cdot Kg⁻¹ \cdot min⁻¹.

The total test time, or the time to reach VO₂ max was 11 min 30 sec during the pre-t test and 14 min during the post-t test, the time increase was 21.7%.

The max workload was 2.75 Kp during the pre-t while the post-t test max workload increased to 3.00 Kp, the percentage change was 9.1%.

The total PO was increased by 26.3% from the pre-t test and the post-t PO totals of 14,284 kpm and 18,037 Kpm, respectively.

The HR max decreased by 2.0%, from 202 to 198 bpm during the post-t test.

The average stroke rates of the pre-t and the post-t tests were 30 and 28 spm, respectively, the percentage decrease was 6.7%.

The AT percent of $\forall O_2$ max was decreased from 84.0% to 80.5% following the training program, the percent decrease was 4.2%.

The time taken to reach AT was 4 min during the pre-t test and 9 min and 30 sec during the post-t test, there was a time improvement of 137.5%.

The workloads at AT in the pre-t and the post-t tests were 1.75 kp and 2.50 Kp, respectively, the workload was increased by 42.9%.

The PO at AT was 3,932 Kpm during the pre-t test and 10,535 Kpm during the post-t test, the improvement rate was 168%. The absolute value of VO_2 max at AT was 3.395 L \cdot min⁻¹ during the pre-t test and 3.969 L \cdot min⁻¹ during the post-t test, the percentage increase was 16.9%.

The body weight adjusted value of VO_2 max at AT was 45.2 ml \cdot Kg⁻¹ · min⁻¹ during the pre-t test and 52.5 ml \cdot Kg⁻¹ · min⁻¹ during the post-t test, the percentage improvement was16.2%.

The HRs at AT were 177 and 180 bpm for the pre-t and post-t tests, respectively, the HR at AT was increased by 1.7%.

Subject 3 (S3)

The results of S3 are shown in Table 5 and Figure 3.

The absolute value of $\forall O_2$ max was increased by 15.4%, from 4.513 to $5.270 \text{ L} \cdot \text{min}^{-1}$. The relative value of $\forall O_2$ max was increased by 11.0%, from 60.0 to 66.6 ml $\cdot \text{Kg}^{-1} \cdot \text{min}^{-1}$.

The total test time, or the time to reach VO_2 max was 14 min during the pre-t test and 18 min during the post-t test, the time increase was 28.6%.

The pre-t test max workload was 3.00 Kp, while the post-t test max workload was increased to 3.75 Kp, the percentage change was 25.0%.

The total PO was increased by 22.6% from the pre-t test and post-t test totals of 18,962 kpm and 23,247 Kpm, respectively.

The HR max decreased by 1.6%, from 189 to 186 bpm during the post-t test.

The average stroke rate during the pre-t and post-t tests were 28 and 29 spm, respectively, the percentage increase was 3.6%.

The AT percent of \dot{VO}_2 max was increased from 74.3% to 82.1% following the training program, the percent increase was 10.5%.

The time taken to reach AT was 6 min and 15 sec during the pre-t test and 10 min and 15 sec during the post-t test, there was an improvement of 64.0%.

The workload at AT in the pre-t and post-t tests were 2.25 kp and 2.75 Kp, respectively, the percent increase was 22.2%.

The PO at AT was 6,662 Kpm during the pre-t test and 12,052 Kpm during the post-t, the PO was increased by 80.9%.

The absolute value of VO_2 max at AT was 3.355 L min⁻¹ during the pre-t test and 4.327 L min⁻¹ during the post-t, the percent increase was 29.0%.

The body adjusted value of $\forall O_2$ max at AT was 44.6 ml · Kg⁻¹ · min⁻¹ during the pre-t test and 54.7 ml · Kg⁻¹ · min⁻¹ during the post-t test, the percentage improvement was 22.6%.

The HRs at AT were 163 and 164 bpm for the pre-t and post-t tests, respectively, the HR at AT was increased by 0.6%.

Subject 4 (S4)

The results of S4 are shown in Table 6 and Figure 4.

The absolute value of $\forall O_2$ max was increased by 7.6%, from 3.797 to 4.086 L \cdot min⁻¹. The relative value of $\forall O_2$ max was increased by 4.2%, from 61.6 to 64.2 ml \cdot Kg⁻¹ \cdot min⁻¹.

The total test time, or the time to reach $\forall O_2$ max was 11 min during the pre-t test and 13min during the post-t test, the time increase was 16.2%.

The max workload was 2.75 Kp during the pre-t test, while the max workload during the post-t test increased to 3.00 Kp, the percent increase was 9.1%.

The total PO was increased by 22.9% from the pre-t test and post-t test totals of 14,319 kpm and 17,602 Kpm, respectively.

The HR max decreased by 0.5%, from 215 to 214 bpm during the post-t test.

The average stroke rate of the pre-t and post-t tests were 30 and 29 spm, respectively, the percentage decrease was 3.3%.

The AT percent of VO₂ max was increased from 86.8% to 88.8% following the training program, the percent increase was 2.3%.

The time taken to reach AT was 4 min during the pre-t test and 5min and 15 sec during the post-t test, the time was increased by 58.3%.

The workloads at AT in the pre-t and the post-t test, were 2.00 kp and 2.50 kp, respectively, the workload was increased by 25.0%.

The PO at AT was 3,948 Kpm during the pre-t test and 9,322 Kpm during the post-t test, the PO was increased by 136.1%.

The absolute value of $\forall O_2$ max at AT was 3.330 L \cdot min ⁻¹during the pre-t test and 3.813 L \cdot min⁻¹ during the post-t test, the percentage increase was 14.5%.

The body weight adjusted value of VO_2 max at AT was 54.0 ml \cdot Kg⁻¹ \cdot min⁻¹ during the pre-t test and 59.9 ml \cdot Kg⁻¹ \cdot min⁻¹ during the post-t test, the percentage increase was10.9%.

The HRs at AT were 202 and 203 bpm for the pre-t- and post-t tests, respectively, the HR at AT was increased by 0.5%.

Tabl	e 4
------	-----

Pre- and Post-Training Test Results of Subject 2

Variables	Pre-Training Test	Post-Training Test	% Change	
Total Test Time (min:sec)	11:30	14:00	21.7 +	
Maximum Workload (Kp)	2.75	3.00	9.1 t	
Total Power Output (Kpm)	14,284	18,037	26.3 +	
Average Stroke Rate (stks min	¹) 30	28	6.7 ↓	
V0 ₂ max L∙min ⁻¹	4.010	4.929	22.9 ↑	
VO ₂ ml·Kg ^{−1} ·min ^{−1}	53.3	61.5	15.4 †	
Maximum Heart Rate (bts·min ⁻¹) 202	198	2.0 +	
AT % of VO ₂ max	84.0	80.5	4.2 ↓	
Time at AT	4:00	9:30	137.5 r	
Workload at AT	1.75	2.50	42.9 ↑	
Power Output at AT	3,932	10,535	168 t	
V0 ₂ L∙min ⁻¹ at AT	3.395	3.969	16.9 ↑	
VO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	45.2	52.5	16.2 ↑	
Heart Rate at AT	177	180	1.7 ↓	

↑:Increase,

↓: Decrease.

Figure 2: Representative plots of ventilation and respiratory gas exchange responses during an incremental rowing ergometer Pre-Training and Post-Training tests. The AT occurs at the time period represented by the two vertical lines.

Table 5

Variables	Pre-Training Test	Post-Training Test	% Change	
Total Test Time (min:sec)	14:00	18:00	28.6 ↑	
Maximum Workload (Kp)	3.00	3.75	25.0 ↑	
Total Power Output (Kpm)	18,962	23,247	22.6 +	
Average Stroke Rate (stks min ⁻¹)	28	29	3.6 t	
VO ₂ max L·min ⁻¹	4.513	5.207	15.4 +	
VO₂ m1·Kg ⁻¹ ·min ⁻¹	60.0	66.6	11.0 +	
Maximum Heart Rate (bts·min ⁻¹)	189	186	1.6 ↓	
AT % of VO ₂ max	74.3	82.1	10.5 ↑	
Time at AT	6:15	10:15	64.0 t	
Workload at AT	2.25	2.75	22.2 ↑	
Power Output at AT	6,662	12,052	80.9 ↑	
VO ₂ L∙min ⁻¹ at AT	3.355	4.327	29.0 +	
V0 ₂ m1·Kg ^{−1} ·min ^{−1} at AT	44.6	54.7	22.6 ↑	
Heart Rate at AT	163	164	0.6 +	

↑:Increase,

↓:Decrease.

Figure 3: Representative plots of ventilation and respiratory gas exchange responses during an incremental rowing ergometer Pre-Training and Post-Training tests. The AT occurs at the time period represented by the two vertical lines.

Table 6

Pre- and Post-Training Test Results of Subject 4

Variables	Pre-Training Test	Post-Training Test	% Change	
Total Test Time (min:sec)	11:00	13:00	18.2 ↑	
Maximum Workload (Kp)	2.75	3.00	9.1 ↑	
Total Power Output (kpm)	14,319	17,602	22.9 +	
Average Stroke Rate (stks min ⁻¹)	30	29	3.3 ↓	
VO₂ max L·min ^{−1}	3.797	4.086	7.6 ↑	
VO ₂ m1·Kg ⁻¹ ·min ⁻¹	61.6	64.2	4.2 t	
Maximum Heart Rate (bts∙min ⁻¹)	215	214	0.5 ↓	
AT % of VO ₂ max	86.8	88.8	2.3 ↑	
Time at AT	5:15	8:15	57.1 t	
Workload at AT	2.00	2.50	25.0 ↑	
Power Output at AT	3,948	9,322	136.1 +	
VO ₂ L∙min ⁻¹ at AT	3.330	3.813	14.5 +	
VO ₂ ml·Kg ^{-1.} min ⁻¹ at AT	54.0	59.9	10.9 ↑	
Heart Rate at AT	202	203	0.5 ↑	

↑:Increase,

↓:Decrease.

<u>Subject 5 (S5)</u>

The results of S5 are shown in Table 7 and Figure 5.

The absolute value of $\forall O_2$ max was increased by 4.6%, from 4.990 to 5.221 L \cdot min⁻¹. The relative value of $\forall O_2$ max was increased by 7.4%, from 64.7 to 69.5 ml \cdot Kg⁻¹ \cdot min⁻¹.

The total test time, or the time to reach VO₂ max, was10 min during the pre-titest and 14 min during the post-t test, the time increase was 40%:

The max workload was 2.50 Kp during the pre-t, while the post-t test max workload increased to 3.00 Kp, the percentage change was 20.0%.

The total PO increased by 53.8% from the pre-t test and post-t test totals of 12,486 kpm and 19,210 Kpm, respectively.

The HR max increased by 3.6%, from 196 to 203 bpm during the post-t test.

The average strokes rate during the pre-t and post-t tests were 29 and 28 spm, respectively, the percentage decrease was 3.4%.

The AT percent of $\dot{V}O_2$ max was increased from 64.9% to 69.5% following the training program, the percentage increase was 7.4%.

The time taken to reach AT was 5 min and 30 sec during the pre-t test and 8 min and 30 sec during the post-t test, the time was increase by 56:6%.

The workloads at AT during the pre-t and post-t tests, were 2.00 kp and 2.50 Kp, respectively, the workloadat AT was increase by 25.0%.

The PO at AT was 5,338 Kpm during the pre-t test and 9,526 kpm during the post-t test, the percentage increase was 78.5%.

The absolute value of VO_2 max at AT was 3.906 L \cdot min⁻¹ during the pre-t test and 4.239 L \cdot min⁻¹ during the post-t test, the percentage improvement was 8.5%.

The body weight adjusted value of $\dot{V}O_2$ max at AT was 50.6 ml \cdot Kg⁻¹ \cdot min⁻¹ during the pre-t test and 56.4 ml \cdot Kg⁻¹ \cdot min⁻¹ during the post-t test, the percentage increase was 11.5%.

The HRs at AT were 180 and 188 bpm for the pre-t and post-t tests, respectively, the HR was increased by 4.4%.

Subject 6 (S6)

The results of S6 are shown in Table 8 and Figure 6.

The absolute value of $\forall D_2$ max was increased by 2.0%, from 4.917 to 5.013 L \cdot min⁻¹. The relative value of $\forall D_2$ max was increased by 4.3%, from 53.9 ml \cdot kg \cdot min⁻¹ to 56.2 ml \cdot Kg⁻¹ \cdot min⁻¹.

The total test time, or the time to reach VO_2 max was14 min during the pre-t test and16 min during the post-t test, the time was increased by14.3%.

The max workload was 3.00 Kp during the pre-t-test, while the post-t test max workload increased to 3.50 Kp, the percentage change was 16.7%.

The total PO increased by 20.9% from the pre-t test and post-t test totals of 18,505 kpm and 22,367 Kpm, respectively.

The HR max decreased by 5.0%, from 198 to 188 bpm during the post-t test.

The average stroke rates of the pre-t and post-t tests were 29 and 27 spm, respectively, a stroke rate decrease of 6.9%.

The AT percent of VO_2 max was increased from 76.7% to 89.2% following the training program, the percentage increase was 16.3%.

The time taken to reach AT was 6 min during the pre-t test and 9 min and 15 sec during the post-t test, the time was increased by 54.2%.

The workload at AT was 2.00 Kp during the pre-t test and 2.50 Kp during the post-t test, respectively, the workload was increased by 25.0%.

The PD at AT was 6,340 Kpm during the pre-t test and 10,825 kpm during the post-t test, the increased rate was 70.7%.

The absolute value of $\forall O_2$ max at AT was 3.775 L \cdot min⁻¹ during the pre-t test and 4.471 L \cdot min⁻¹ during the post-t test, the percentage increase was 18.4%.

The body weight adjusted value of VO_2 max at AT was 45.2 ml Kg^{-1} min⁻¹ during the pre-t test and 50.1 ml Kg^{-1} min⁻¹ during the post-t test, the percentage improvement was 21.0%.

The HRs at AT were 173 and 175 bpm for the pre-t and post-t tests, respectively, the HR at AT was increased by 1.2%.

Subject 7 (S7)

The results of S7 are shown in Table 9 and Figure 7.

The absolute value of $\forall O_2$ max was increased by 5.9%, from 6.287 L min⁻¹ to 6.658 L min⁻¹. The relative value of $\forall O_2$ max was increased by 7.0%, from 70.4 ml kg min⁻¹ to 75.3 ml Kg⁻¹ min⁻¹.

The total test time, or the time to reach VO₂ max was17 min during the pre-t test, and19 min during the post-t test, the time increase was 11.8%.

The max workload of 3.75 Kp was the same in both pre-t and post-t tests.

The total PO was increased by 16.3% from the pre-t test and post-t test PO totals of 25,474 kpm and 29,627 Kpm, respectively.

The HR max increased by 1.7%, from 180 to183 bpm during the post-t test.

The average stroke rates of the pre-t and post-t tests were 29 and 28 spm, respectively, the percentage decrease was 3.4%.

The AT percent of VO₂ max was increased from 81.3% to 87.3% following the training program, the percentage increase was 7.4%.

The time taken to reach AT was 12 min and 30 sec min during the pre-t test and 14 min and 45 sec during the post-t test, the time was increased by 18.0%.

The workloads at AT during the pre-t and the post-t tests, were 3.00kp and 3.50 kp, respectively, the percentage increase was 16.7%.

The PO at AT was 16,362 Kpm during the pre-t test and 22,138 Kpm during the post-t test, the improvement rate was 35.3%.

The absolute value of $\forall O_2$ max at AT was 5.110 L \cdot min⁻¹ during the pre-t test and 5.812 L \cdot min⁻¹ during the post-t test, the percentage change was 13.7%.

The body weight adjusted value of VO_2 max at AT was 57.2 ml · Kg⁻¹ · min⁻¹ during the pre-t test and 65.8 ml · Kg⁻¹ · min⁻¹ during the post-t test, a percentage increase of 15.0%.

The HRs at AT were 168 and 174 bpm for the pre-t and post-t tests, respectively, the HR at AT was increased by 3.6%.

Table 7

Pre- and Post-Training Tes	st Results of Subject 5
----------------------------	-------------------------

Variables	Pre-Training Test	Post-Training Test	% Change	
Total Test Time (min:sec)	10:00	14:00	40.0 t	
Maximum Workload (Kp)	2.50	3.00	20.0 ↑	
Total Power Output (Kpm)	12,486	19,210	53.8 ↑	
Average Stroke Rate (stks min ⁻¹)	29	28	3.4 ↓	
V0 ₂ max L∙min ⁻¹	4.990	5.221	4.6 ↑	
VO2 m1·Kg ⁻¹ ·min ⁻¹	64.7	69.5	7.4 ↑	
Maximum Heart Rate (bts min ⁻¹)	196	203	3.6 ↑	
AT % of VO ₂ max	78.2	81.2	3.8 ↑	
Time at AT	5:30	8:30	56.6 t	
Workload at AT	2.00	2.50	25.0 ↑	
Power Output at AT	5,338	9,526	78 .5 ↑	
V0 ₂ L∙min ⁻¹ at AT	3.906	4.239	8.5 t	
VO ₂ m1·Kg ⁻¹ ·min ⁻¹ at AT	50.6	56.4	11.5 +	
Heart Rate at AT	180	188	4.4 t	

↑:Increase,

↓:Decrease.

TIME (min)

Figure 5: Representative plots of ventilation and respiratory gas exchange responses during an incremental rowing ergometer Pre-Training and Post-Training tests. The AT occurs at the time period represented by the two vertical lines.

Table 8

Pre-	and	Post-	Training	Test	Results	of	Subjec	t 6

Variables	Pre-Training Test	Post-Training Test	% Change
Total Test Time (min:sec)	14:00	16:00	14.3 ↑
Maximum Workload (Kp)	3.00	3.50	16.7 ↑
Total Power Output (kpm)	18,505	22,367	20.9 ↑
Average Stroke Rate (stks:min ⁻¹)) 29	27	6.9 ↓
V0 ₂ max L∙min ⁻¹	4.917	5.013	2.0 t
Ÿ0 ₂ m1·Kg ^{−1} ·min ^{−1}	53.9	56.2	4.3 ↑
Maximum Heart Rate (bts·min ⁻¹)	198	188	5.0 ↓
AT % of VO ₂ max	76.7	89.2	16.3 t
Time at AT	6:00	9:15	54.2 ↑
Workload at AT	2.00	2.50	25.0 ↑
Power Output at AT	6,340	10,825	70.7 t
VO ₂ L∙min ^{−1} at AT	3.775	4.471	18.4 ↑
VO ₂ ml·Kg ^{-1:} min ⁻¹ at AT	41.4	50.1	21.0 +
Heart Rate at AT	173	175	1.2 t

t : Increase,

↓:Decrease.

Figure 6: Representative plots of ventilation and respiratory gas exchange responses during an incremental rowing ergometer Pre-Training and Post-Training tests. The AT occurs at the time period represented by the two vertical lines.
Table 9

Variables	Pre-Training Test	Post-Training Test	% Change
Total Test Time (min:sec)	17:00	19:00	11.8 ↑
Maximum Workload (Kp)	3.75	3.75	=
Total Power Output (Kpm)	25,474	29,627	16.3 ↑
Average Stroke Rate (stks:min ⁻¹)	29	28	3.4 ↓
V0 ₂ max L∙min ⁻¹	6.287	6.658	5.9 ↑
VO ₂ ml·Kg ⁻¹ ·min ⁻¹	70.4	75.3	7.0 ↑
Maximum Heart Rate (bts∙min ⁻¹)	180	183	1.7 †
AT % of VO ₂ max	81.3	87.3	7.4 ↑
Time at AT	12:30	14:45	18.0 +
Workload at AT	3.00	3.50	16.7 +
Power Output at AT	16,362	22,138	35.3 ↑
V0 ₂ L∙min ⁻¹ at AT	5.110	5.812	13.7 t
VO ₂ m1·Kg ⁻¹ ·min ⁻¹ at AT	57.2	65.8	15.0 †
Heart Rate at AT	168	174	3.6 ተ

↑:Increase,

↓:Decrease,

= : No change

<u>Summary</u>

After the 8-week training program, improvements were found in the results of the post-t test as compared with the pre-t test results. The following statements apply to all subjects and summarize the data which illustrate this improvement :

The absolute and relative values of VO_2 max were increased within the range of 1.8% to 22.9% and -4.2% to 16.3%, respectively.

The AT percent of VO₂ max was increased within the range of -4.2% to16.3%. The total test time was increased during the post-t tests within the range of 11.8% to 40.0%.

The total PO, as well as, the max workload, were increased during the post-t tests within the range of 16.3% to 53.8% and 9.1% to 25.0%, respectively. The time, workload and PO at AT were increased during the post-t tests within the range of 18.0% to 137.5%, 16.7% to 42.9%, and 35.3% to 186%, respectively.

All of the subjects reached AT at higher absolute and relative values of VO₂max during the post-t test, and the improvements were within the range of 8.5% to 33.0% and 11.5% to 34.8%, respectively.

The maximum HRs were increased within the ranges of 1.0% to 3.6% in S2, S5 and S7, during the post-t test, and were decreased within the range of 1.0% to 5.0% in S1, S3, S4 and S6.

The HRs at AT were increased during the post-t test within the range of 1.10% to 6.8% in S1, S3, S4, S5, S6, and S7, however, in S2 was decreased by 1.7%.

The average stroke rates were decreased during the post-t test within the range of 3.3% to 6.9%, respectively.

The rowing performance was improved in all subjects following the 8-week training program.

Chapter 5

DISCUSSION

Results from cross-sectional and longitudinal studies suggest that endurance training produces changes in VO₂ max and AT values, i.e., the AT occurs at a higher percentage of $\dot{V}O_2$ max following training. For example, Costill (1970) and Costill et al. (1973) reported that well-trained endurance athletes could exercise at 70% of VO_2 max with little or no change in blood LA values. These athletes also were able to maintain, for 30 minutes, a running pace which required an energy cost close to 90% of VO_2 max. From this information, AT values for these athletes would appear to approximate 85% VO_2 max. This value is higher than the normally reported values of 50 to 55% and 70 to 80% $\dot{V}0_2$ max for untrained and trained individuals, respectively (Davis et al.,1976; MacDougall,1977). Data from endurance training programs have also indicated improvements in relative AT values. Davis et al. (1979) and Sady et al. (1980) reported that relative AT values increased from 49% to 57% VO_2 max following 8 to 10 weeks of training. The findings of this study are in agreement with the previous investigations.

The effects of high-intensity IT on relative AT values are not well documented. Since it has been proposed by Skinner and McLellan (1980) that the ventilatory and LA responses during an incremental work test reflect changes in metabolic substrate flux within the muscle fibres that are being recruited, high-intensity IT, which demands fast energy turnover, should be associated with an enhanced carbohydrate utilization

67

within specific muscle fibres. For example, Costill et al. (1976a) reported that the highest muscle phosphorylase (MP) activity was found among sprint and middle-distance runners who were utilizing high-intensity IT. These enzyme levels were not related to fibre composition and were more than two times greater than the MP activity of endurance athletes. Therefore, high-intensity IT appears to increase an individual's ability to utilize carbohydrate as a fuel substrate. It may also produce a greater glycolytic than oxidative substrate flux. From the results of this study, as well as, from these previous investigations, it is apparent that endurance training increases AT values, whereas the effects of high-intensity IT are essentially unknown.

In this study, the non-invasive technique was used to detect the AT. The test-retest reliability coefficient value of 0.97 for the determination of AT is higher than the value of 0.95 established by Davis et al. (1976) but is comparable to the coefficient value of 0.96 obtained by Davis et al. (1979). Absolute (L·min⁻¹) and relative (% VO₂ max) AT values for the two tests were not different. This suggests that the non-invasive estimates of AT are also reproducable.

The relative values of VO_2 max (see Tables 3, 5, 7 and 9) of the subjects S1, S3, S5 and S7 in this study are comparable to previous data on well-trained endurance athletes (Costill et al., 1976a). The VO_2 max values approaching 60 ml \cdot kg⁻¹ \cdot min⁻¹ for S2 and S6 are similar to values reported for trained individuals (Gollnick et al. 1972), and to club

level rowers (Hagerman and Mikelson, 1979; Vrijens and Bouckaert, 1984).

The higher relative values of $\dot{V}O_2$ max observed for S1, S3, S4, S5, and S7 (see Tables 3, 5, 6, 7 and 9) are comparable to the interpreted data presented by Costill (1970), but are lower than the mean value of 72 $\dot{V}O_2$ max ml·kg⁻¹·min⁻¹determined by Hagerman et al. (1979). This later study, however, used higher calibre rowers.

The values of AT obtained in this study (80.5 to 89.2% of VO_2 max) are comparable to the mean values of 83% VO_2 max obtained by Mickelson and Hagerman (1982). Thus, individuals involved in endurance training appear to have higher AT values than individuals participating in other types and intensities of exercise (Costill et al., 1970; Withers et al., 1981; Stegman, 1981; Weltman & Katch, 1979). Since national calibre subjects in this study had higher values of VO_2 max and AT than the provincial calibre subjects, the magnitude of the training influence may depend on other factors: for example, it cannot be disregarded that these differences resulted because national calibre subjects had been training for more years, or had trained at higher intensities. All the subjects, however, were involved in endurance training prior to the study.

The difference in AT among the subjects might also be related to the influence of training on a given muscle fibre composition. It has been reported that well-trained endurance athletes tend to have a higher portion of ST fibres with specifically trained muscle groups (Costill et al., 1976b; Gollnick et al., 1972; Bergh, Thorstensson, Sjodin, Hulten, Piehl and

Karlsson, 1978; Larsson and Forsberg,1980). Bergh et al. (1978) have shown shown a positive relationship between high VO_2 max values and a large percentage of ST muscle fibres in the gastrognemius and vastus lateralis of elite athletes. The high oxidative characteristics present in the vastus lateralis, one of the primary muscles used in rowing (Larsson and Forsberg, 1980), may be representative of an overall increase in the oxidative capacity of the muscles utilized in rowing. It, therefore, appears that highly trained oarsmen, along with other endurance-trained athletes, have a greater mitochondrial density along with an increase in the oxidative enzymes, which may allow them to oxidize large quantities of LA during exercise. Although training appears to have no influence on the percentage of ST fibre distribution (Saltin et al., 1977), it may enhance the oxidative potential of all fibre types (Saltin et al., 1977). Ivy et al. (1980) reported that AT is related both to the oxidative potential of the muscle and to the percentage of ST fibre distribution; therefore, it may be that relative AT values are the result of a training effect (i.e., oxidative potential) on a given muscle fibre distribution. If so, the endurance athletes should have higher AT values due to the influence of training or the high proportion of ST fibres which are more likely to be recruited during the initial workloads of the rowing ergometer test.

Type of training appears to influence VO_2 max and AT values. The fact that national calibre subjects had higher values than provincial calibre subjects, suggests that high intensity IT, although enhancing the oxidative potential of all fibre types (Saltin et al., 1977), may lead to a greater dependence on carbohydrate metabolism at a given relative workload.

Endurance training appears, from the results of this study, to augment AT values in the range of 2.3% to 16.3% of $\forall 0_2$ max as observed in subjects 1, 3, 4, 5, 6 and 7, with an exception of subject 2 which showed 4.2% decrease. The mechanism whereby the type of training affects AT values cannot be established from this data. It is possible, however, that endurance training, which is known to augment the relative proportion of FFA oxidation at a given PO (Holloszy, 1977), produces increased inhibition of carbohydrate flux through glycolysis and the Kreb's cycle due to elevated sarcoplasmic citrate concentrations and mitochondrial acetyl CoA levels (Newsholme, 1977). Conversely, high-intensity IT could lead to an augmented carbohydrate flux due to the fast energy turnover required. As a result, AT may occur at lower relative values (Skinner and McLellan, 1980) due to an earlier dependence on an anaerobic, rather than an oxidative, carbohydrate flux within the muscle fibres being recruited.

The degree of improvement in $\forall O_2$ max and AT following the 8 weeks of training is in agreement with other reports for both CT (McLellan and Skinner, 1981; Pollock, 1973) and IT (Rivera et al., 1980) with subjects of similar fitness levels. Further, since this improvement was found during both CT and IT, one type of training does not appear to enhance $\forall O_2$ max and AT more than the other. The pattern of responses following the training program is similar to the one reported by Davis et al. (1979), and Williams et al. (1976), but the magnitude of change is less than the changes documented by these earlier investigations. This difference could be explained by the greater intensity (approximately 95% $\forall O_2$ max), frequency (4 to 7 days per week) and/or duration of training (60 minutes)

per session for 9 weeks) used by these investigators. As mentioned before, it appears that the intensity of exercise may be a more important determinant for producing changes in $\forall O_2$ max and AT with only 8 weeks of CT and IT 3 times per week. Since there was a change in $\forall O_2$ max and AT with CT and IT, this may suggest that the intensity of exercise (CT: AT -10% $\forall O_2$ max and IT: AT + 10 to 25% $\forall O_2$ max) was sufficient to enhance the oxidative potential and rate of FFA oxidation within the more glycolytic fibres which would be recruited during the above intensities of training. Since muscle adaptation appears to be localized in those fibres recruited during a given exercise intensity (Saltin et al., 1977), it is suggested that future research focus on the effects of a CT program with the PO maintained closer to individual AT levels.

The maximum performance time increased among all subjects (see Tables 3 to 9) after the 8 weeks of training. The results are in contrast to the findings of Eddy et al. (1977), who stated that performance time at 90% $\forall O_2$ max was not affected by CTor IT programs. Since these researchers reported an increase in $\forall O_2$ max (42 to 48 ml kg⁻¹ min⁻¹) lower than the results of the present investigation, it appears that fitness level can account for the different findings. Further, the CT program used by Eddy et al (1977) consisted of 4 sessions per week at 70% $\forall O_2$ max for 7 weeks, a program which was similar to the one used in this study. Although the average PO for the IT group was 50% $\forall O_2$ max (IT low was 1 minute of rest), the high phase consisted of 1 minute of exercise at 100% $\forall O_2$ max , which was similar to the IT high used in this study.

The major discrepancy between the CT and IT programs used by Eddy et al. (1977) and those of the present study, concerns the total PO and, as a result, the total duration of each training session. Eddy et al (1977) controlled the total PO for the CT and IT programs. The differences between the training program of the present study and those reported by Eddy et al. (1977) suggest that the duration and total PO of each exercise session were important for producing the changes observed between the two tests of maximum performance time following the 8-week program. Also, this change may reflect the improvement in the fitness level of the subjects.

Following the 8-week training program, AT occurred at greater values of \dot{VO}_2 , PO and time (see Tables 3 to 9 and Figures 1 to 7). These values are in agreement with Davis et al. (1979). These findings indicate that the subjects were able to perform greater amounts of work without an accumulation of LA during the incremental test. This can most likely be explained by the delayed onset of LA acidosis consequent to exercise training (Holloszy, 1976), and to the fact that exercise training reduces the level of blood LA at submaximal work rates (Davis et al., 1979). Possible mechanisms which might account for an increased AT after endurance training include an improved distribution of blood flow in the trained muscles, increased oxidative capacity at the cellular level, and an alteration in the muscle fibre recruitment pattern resulting in an increased activation of the ST muscle fibres. As it has been discussed previously, there appears to be a great deal of support in the literature for each of these possible mechanisms. It is tempting to suggest that the post-training differences in the rate of change in VO₂ max during the rowing test reflected the changes in relative AT values which were observed.

It is believed that the mode of exercise used in this study was specific to the rowing movement (Specificity of Training Concept, Åstrand and Rodahl,1977, p. 434-435), may have contributed to the enhancement of VO_2 max and AT. Rowing ergometer training replicates the movement patterns of the actual rowing performance; therefore, the muscular adaptations are specific to rowing performance.

Tables 3 to 9, present the changes in HR at AT during the pre- and post-training tests, there were notable different ranges for HR at AT among the subjects. The AT occurred at slightly higher HR responses following the endurance training program; however, the subjects reached AT during the post-training test at greater workloads than during the pre-t test. These specific observations have been made by other investigators (Davis et al., 1979; Katch et al., 1978). Although HR cannot be used to identify the AT, it may be used to regulate training intensity above or below AT, and this requires individual assessment of HR at AT.

Another observation worth mentioning is that the subjects, during the post-training test, were able to maintain the PO required during the test by rowing at a lower stroke rate. This indicates that the mechanical efficiency of the subjects had improved during the training period.

The high AT and $\forall O_2$ max outputs of oarsmen can be attributed, at least in part, to the specific nature of their training programs. Because rowing is primarily an aerobic event, a substantial percentage (75-80%) of training time is devoted to aerobic work. The effect of this type of training on both ST and FT muscle fibres has been well documented. The result is an increased of aerobic adaptations at the cellular level, most likely a result of the rigorous training regimen. The increase in oxygen utilization could, therefore, delay the deleterious effects of LA accumulation during high intensity exercise. The high AT of trained athletes may also be indicative of their increased ability to utilize LA as a fuel during exercise (Larsson and Forsberg, 1980). The increased oxidation of LA could therefore result in a diminished influence of LA at AT (Larsson and Forsberg, 1980).

The morphological, histochemical and biochemical nature of major muscles contributing to the rowing movement may also affect the AT. Oarsmen routinely train daily all year round, and their in-season regimen includes long-duration exercise at varying intensities and shorter IT sessions at very high intensity. This training program is aimed at delaying the onset of metabolic acidosis during the early part of a 2,000 meter race, developing a high aerobic power output, and increasing tolerance of high LA levels.

The main findings of the present study indicate increases in $\forall O_2$ max and AT, and increases in performance times, PO and $\forall O_2$ max before reaching AT following the 8 weeks of endurance training. These findings are in agreement with the results obtained from other investigations (Bueno, 1982; Davis et al., 1976), however, because of differences in the training regimen, mode of exercise, age, fitness level of the subjects and type of exercise test, the results obtained could not always be compared with each other.

Training programs using prescriptions based on percent VO₂ max or HR max without considerations of individual AT create, among the participants, multiple training stimuli which in turn result in a wide range of improvements in cardiovascular and metabolic functions. A better approach would be to make individual assessments of the AT and HR at the AT before prescribing a target HR for training intensity.

The idea that exercise should be maintained at a level above or below AT to determine training intensity more effectively according to objectives, rests on the premise that real differences exist in the exercise stress at, for example, 90% of AT compared to 110% of AT. In this regard, clear differences in $\forall O_2$ kinetics and ventilatory responses have been observed above and below the AT. There is a preliminary evidence supporting this presumption (Vrijens and Bouckaert,1983). In this regard, compliance with a voluntary training program may be influenced by indiscriminately prescribed exercise which requires an individual to exercise at that level. This reveals a need for greater precision, with respect to metabolic stress, in developing training prescriptions. Prescriptions for training intensity can be developed and expressed in percent HR max with AT as the major consideration. Indeed, evidence is accumulating which suggests that training prescriptions lack metabolic specificity if they are

not based on AT to some degree. Standard values for the percentage of HR max at AT, grouped by age, for example, should not be applied to individuals due to the wide range, among homogeneous subjects, of relative HR at the AT (Vrijens and Bouckaert, 1983).

For the purpose of obtaining information which can be applied to training, measurement of HR at AT may provide very useful information. Use of the HR at AT in determining intensities of training sessions could prove to be a valuable aid to both coaches and oarsmen(Mickelson & Hagerman, 1982; Vrijens and Bouckaert,1983). More specifically, the increased use of long, steady-state training sessions below an oarsman's AT are becoming more common, not only to develop aerobic power but also to train neuromuscular pathways and increase local muscular endurance. Along with this, the progressive test used to measure AT allows one to determine what percentage of an oarsman's VO₂ max is elicited by a particular PO. Previously, training sessions at or near AT were determined by the calculated estimate of the coach or by the intuition of the oarsman during the training exercise. Some of this trial-and-error technique can now be eliminated and training time can be utilized more efficiently. Anaerobic threshold measurements not only point out deficiencies in aerobic conditioning, but they can also provide insight into the PO at AT, i.e.,the maximum power which can be generated while avoiding an accumulation of LA and a resultant drop in blood pH. This information along with the HR at AT, can be very important to a coach when planning or assessing land and water training sessions.

The results of this study demonstrated that VO₂ max and AT can be altered with CT and IT training programs. Future research within this area of investigation should include control groups, and training at different intensities in order to determine the optimal training intensity.

There has been a great deal of controversy and discussion as to the means of measuring AT and the exact definition of AT. Although the AT reported in this study is indeed an estimate, it does give the coach and athlete a useful tool with which to evaluate relative fitness levels. At the same time, AT serves as a beneficial guide in determining the intensity of training programs for oarsmen.

The findings of this study appear to be more applicable to an individual involved in continuous, long duration athletic competitions. It may seem difficult to apply these results to the majority of endurance events or team sports which involve interval exercise. A coach should be aware, however, that specific training programs may influence AT values and endurance performance differently.

Chapter 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

<u>Summary</u>

This study was conducted to evaluate the influence of an 8-week endurance training program (continuous and interval), carried out 3 times per week, for 50 to 60 minutes each session, on the aerobic power and the anaerobic threshold of male rowers.

The research design selected for this investigation was a single subject case study. The aerobic power and AT were measured in 7 subjects, all members of the Thunder Bay Rowing Club, before (Pre-Training Test) and after (Post-Training Test) the investigative period. Following the pre-training test, training programs were designed for each subject, based on a percentage above and below the subject's AT (AT +10 to 25% $\dot{V}0_2$ max, for interval training, and AT-10% $\dot{V}0_2$ max, for continuous training, respectively). The training intensity was monitored through the subject's heart rate.

The results obtained following the training program, indicated that \dot{VO}_2 max values were increased in all subjects within the ranges of 1.8% to 22.9%. AT values were also increased within the ranges of 0.3% to 16.3% in subjects 1, 3, 4, 5, 6, and 7, and in subject 2 there was a decrease of 4.2%. The total test time, PO and maximum workload were also increased. Similarly, time and PO at AT were increased in all of the subjects. These findings indicated that \dot{VO}_2 max and AT values can be altered with rowing ergometer CT and IT training, and that AT is an important factor to consider when devising training programs.

79

<u>Conclusions</u>

Based upon the results obtained and within the limitations of the experiment in this study, the following conclusions appear justified regarding the influence of an 8-week rowing ergometer training program on the \dot{VO}_2 max and AT in male rowers:

- Continuous and interval endurance training program(s) based on an individual's AT increase both VO₂ max and AT.
- Anaerobic threshold values can be used to prescribe training intensities, while HR at AT can be used to monitor these training intensities.

Recommendations

- Perhaps the most important recommendation would be to emphasize the effect of IT with different intensities and durations in several training groups, on AT and subsequent endurance performance. These investigations may elucidate an optimal training program for enhancing an individual's capacity to perform maximal or submaximal exercise.
- 2. Throughout this study, it was stated that several other mechanisms of response remain unclear: for example, it would be useful to investigate the influence of FFA oxidation to account for the different

changes in AT values following a continuous or interval training program. Further, it would be interesting to isolate the intramuscular mechanism(s) responsible for determining AT values. Athough this suggestion may seem impractical, scientific techniques are now available which use single muscle fibre dissections for micro-enzymatic studies. The application of such procedures to the observed responses during incremental exercise may help to clarify the controversy in terminology which exists in the literature with respect to the AT.

REFERENCES

- American College of Sports Medicine. (1978). Position Statement: <u>The</u> <u>recommended quantity and quality of exercise for developing and</u> <u>mainting fitness in healthy adults</u>. <u>13</u>(3).
- Annola, S., & Rusko, H. (1982). The anaerobic threshold measures by four different bicycle exercise tests. <u>Scandinavian Journal of Sports</u> <u>Sciences</u>, <u>4(</u>2), 44-48.
- Arnot, R. P. B. (1979, December). Physiological gauges. <u>The Darsman</u>, <u>5</u>, 11-17.
- Åstrand, P. O. & Rodahl, K. (1977). <u>Textbook of Work Physiology: Physio-</u> logical Bases of Exercise (2nd ed.). New York: McGraw-Hill.
- Astrand, P. O. (1984). Principles in ergometry and their implications in sports practice. <u>Sports Medicine</u>, <u>1</u>, 1–5.
- Bailey, G., McNab, R. & Wenger, H. (1977). Maximal aerobic capacity vs VO₂ max as measures of endurance. <u>Canadian Journal at Applied Sports</u> <u>Science</u>, <u>2</u>, 222–223.
- Bergh, V., Thorstensson, A., Sjödin, B., Holten, B., Piehl, K. & Karlsson, J. (1978). Maximal oxygen uptake and muscle fibre types in trained and untrained humans. <u>Medicine and Science in Sports</u>, <u>10</u>, 151–154.
- Black, A., Ribeiro, J. P. & Bochese, R. A. (1984). Effects of previous exercise on the ventilatory determination of the aerobic threshold. <u>European</u> <u>Journal of Applied Physiology</u>, <u>52</u>(3), 315-319.
- Bloomfield, J. & Roberts, A. D. (1972). A correlational and trend analysis of strength and aerobic power scores in prediction of rowing performance. <u>Australian Journal of Sports Medicine</u>, <u>4</u>, 25–36.
- Bobin R. (1978, Jan./Fev.). L'éntrainement d'aviron: Bases theoriques et pratiques. <u>Education Physique et Sport</u>, <u>147</u>, 34-43.

- Bohen, A., Campbell, C. J., Kirby, R. L. & Belcastro, A. N. (1978). Relationship between slow twitch muscle fibres and lactic acid removal. <u>Canadian Journal of Applied Sports Science</u>, <u>3</u>, 160–162.
- Bouhuys, A., Pool, J., Binkhorst, R. A. & Van Leeuwen, P. (1966). Metabolic acidosis of exercise in healthy males. <u>Journal of Applied Physio-</u> <u>logu</u>, <u>21</u>, 1040-1046.
- Brooks, G. A. (1985a). Anaerobic threshold: review of the concept and directions for future research. <u>Medicine and Science in Sports and Exer-</u> <u>cise</u>, <u>17</u>, 22-31.
- Brooks, G. A. (1985b). Response to Davis' manuscript. <u>Medicine and Science</u> <u>in Sports and Exercise</u>, <u>17</u>, 19-21.
- Bueno, M. (1982). Current conceptions of endurance training. <u>Modern Athlete</u> and Coach, <u>20(</u>3), 3-7.
- Burke, R. E. (1980). Motorunit types: functional specializations in motor control. <u>Trends Neuroscience</u>, <u>3</u>, 255-258.
- Caiozzo, J., Davis, J. A., Ellis, J. F., Azus, J. L., Vandagriff, R., Prietto, C. A. & McMaster, W. C. (1982). A comparison of gas exchange indices used to detect the anaerobic threshold. <u>Journal of Applied Physiology</u>, <u>53(</u>5), 1184-1189.
- Carey, P., Stenslend, M. & Hartley L. H. (1974). Comparison of oxygen uptake during maximal work on the treadmill and the rowing ergometer. <u>Medicine and Science in Sports</u>, <u>6(2)</u>, 101–103.
- Conconi, C., Ferrari, M., Ziglio, P. G., Droghetti, P. & Codeca, L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. <u>Journal of Applied Physiology</u>, <u>52</u>(4), 869–873.
- Costill, D. L. (1970). Metabolic responses during distance running. <u>Journal</u> of <u>Applied Physiology</u>, <u>28</u>, 61–66.
- Costill, D. L., Thomason, H. & Roberts, E. (1973). Fractional utilization of the aerobic capacity during distance running. <u>Medicine and Science in</u> <u>Sports</u>, <u>5</u>, 248-252.

- Costill, D. L., Daniels, J., Evans, W. Fink, W., Krahenbuhl, G. & Saltin, B. (1976a). Skeletal muscle enzymes and fibre composition in male and female track athletes. <u>Journal of Applied Physiology</u>, <u>40</u>, 143– 154.
- Costill, D. L., Fink, W. & Pollock, M. (1976b). Muscle fibre composition and enzyme activities of elite distance runners. <u>Medicine and Science</u> <u>in Sports</u>, <u>8</u>, 96-100.
- Cunningham, D. A. & Faulkner, J. A. (1969). The effect of training on aerobic and anaerobic metabolism during a short exhaustive run. <u>Medicine</u> <u>and Science in Sports</u>, <u>1</u>(2), 65-69.
- Cunningham, D. A., Goode, P. B. & Critz, J. B. (1975). Cardiorespiratory response to exercise on a rowing and bicycle ergometer. <u>Medicine</u> <u>and Science in Sports</u>, 7(1), 37-43.
- Davis, J. A., Vodak, P., Wilmore, J. H., Vodak, J. & Kurtz, P. (1976). Anaerobic threshold and maximal aerobic power for three modes of exercise. Journal of Applied Physiology, <u>41</u>(4), 544-550.
- Davis, J. A., Frank, M. H., Whipp, B. J. & Wasserman, K. (1979). Anaerobic threshold alterations caused by endurance training in middle-aged men. <u>Journal of Applied Physiology</u>, <u>46</u>(5), 1039-1046.
- Davis, H. A., & Gass, G. C. (1981). The anaerobic threshold as determined before and during lactic acidosis. <u>European Journal of Applied</u> <u>Physiology</u>, <u>47</u>(2), 133-140.
- Davis, H. A., Gass, G. C., Eager, D. & Bassett, J. (1981). Oxygen deficit during incremental exercise. <u>European Journal of Applied Physiology</u>, <u>47(2)</u>, 133-140.
- Davis, H. A., Bassett, J., Hughes, P. & Gass, G. C. (1983). Anaerobic threshold and lactate turnpoint. <u>European Journal of Applied Physiology</u>, <u>50(3)</u>, 383-392.
- Davis, J. A., Caiozzo, V. J., Lamarra, N., Ellis, J. F., Vandagriff, R., Prietto, C. A. & McMaster, W. C. (1983). Does the gas exchange anaerobic threshold occur at a fixed blood lactate concentration of 2 or 4 mMol. <u>International Journal of Sports Medicine</u>, <u>4</u>(2), 89–93.

- Davis, J. A. (1985a). Anaerobic threshold: review of the concept and directions for future research. <u>Medicine and Science in Sports and Exercise</u>, <u>17</u>, 6–18.
- Davis, J. A. (1985b). Response to Brooks' manuscript. <u>Medicine and Science</u> in Sports and Exercise, <u>17</u>, 32-34.
- Denis, C., Fouguet, R., Poty, P., Geyssant, A., & Lacour, J. R. (1982). Effect of 40 weeks of endurance training on the anaerobic threshold. <u>International Journal of Sports Medecine</u>, <u>3</u>, 208–214.
- Denis, C., Fouguet, R., Geyssant, A. & Lacour, J. R. (1982). Effect of 40 weeks of endurance training on the anaerobic threshold. <u>International</u> <u>Journal of Sports Medicine</u>, <u>3</u>, 208–214.
- Dick, F. (1980). Notes on the concepts of training loads. In Gowan, G. Bales, J. (Eds.) <u>Proceedings of 1980 National Coaches Seminar</u> (pp.41-46). Ottawa, Ontario, Canada: Coaching Association of Canada.
- Dratchewski, L. (1977). The development of endurance and strength in oarsmen. <u>National Coaching Journal</u>, <u>3</u>, 40-43.
- Dwyer, J. & Bydee, R. (1983). Heart rate indices of the anaerobic threshold. Medicine and Science in Sports and Exercise, 15, 72-76.
- Eddy, D. O., Sparks, K. L. & Adelizi, D. A. (1977). The effects of continuous and interval training in women and men. <u>European Journal of</u> <u>Applied Physiology</u>, <u>37</u>, 83-92.
- Edwards, R. H. T., Jones, N. L. Oppenheimer, E. A., Hughes, R. L. & Knill-Jones, R. P. (1969). Inter-relationships of responses during progressive exercise in trained and untrained subjects. <u>Quarterly Journal of</u> <u>Experimental Physiology</u>, <u>41</u>, 544-550.
- Éssen, B. (1978a). Glycogen depletion of different fibre types in human skeletal muscle during intermitent and continuous exercise. <u>Acta</u> <u>Physiologica Scandinavica</u>, <u>102</u>, 336-455.
- Essen, B. (1978b). Studies of the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. <u>Acta</u> <u>Physiologica Scandinavica</u>, (Suppl. 454), 1-32.

- Galdwell, J. E. & Pekkarinen, H. (1983). A comparison of the anaerobic threshold and blood lactate increases during cycle ergometry and free swimming. <u>Proceedings of International Symposium of Bio-</u> <u>mechanics and Medicine in Swimming</u> (pp. 235-243). Human Kinetics Publisher.
- Ghesquiere, J. T., Reybrouck, T., Faulkner, J. A., Cattaert, A., Fagard, R. & Amery, A. (1982). Anaerobic threshold for long-term exercise and maximal exercise performance. <u>Annals of Clinical Research</u>, <u>14</u>, (Suppl. 21), 37-41.
- Gollnick, P. D., Armstrong, R. B., Saubert, C. W., Piehl, K. & Saltin, B. (1972). Enzyme activity and fibre composition in skeletal muscle of untrained and trained men. <u>Journal of Applied Physiology</u>, <u>33</u>, 312-319.
- Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert, C. W., Sembrowich, W. L. & Shepherd, R. E. (1973). Effect of training on enzyme activity and fiber composition of human skeletal muscle. <u>Journal of Applied</u> <u>Physiology</u>, <u>34</u>(1), 107-111.
- Gollnick, P. D. (1973). Biochemical adaptions to exercise: Anaerobic Metabolism. <u>Exercise and Sports Sciences Reviews</u>, <u>1</u>, 1-41.
- Graham, T. (1978). Oxygen delivery and blood muscle lactate changes during muscular activity. <u>Canadian Journal of Applied Sports Sciences</u>, <u>3</u>, 153-159.
- Hagerman, F. C. & Lee, D. (1971). Measurement of oxygen consumption, heart rate, and work output during rowing. <u>Medicine and Science in</u> <u>Sports</u>, <u>3</u>(4), 155-160.
- Hagerman, F. C., Addington, W. W. & Gaensler, E. A. (1972). A comparison of selected physiological variables among outstanding competitive oarsmen. <u>Journal of Sports Medicine and Physical fitness</u>, <u>2</u>, 12-22.
- Hagerman, F. C. (1972, May). Physiological testing of Darsmen. <u>The Dars-</u> <u>man</u>, 31-39.
- Hagerman, F. C. (1972, Nov/Dec.). Physiological testing of the U.S. National Olympic crew. <u>The Darsman</u>, 13–18.

- Hagerman, F. C., Gault, J. A., Connors, M. F. & Hagerman, G. R. (1975a). A summary of physiological testing at the 1974 U.S. National rowing camp. <u>The Darsman</u>, <u>4</u>, 34–37.
- Hagerman, F. C., Whitney, W., Geensler, A. & Geensler, E. (1975b). Severe steady state exercise at sea level and altitude in Olympic oarsmen. <u>Medicine and Science in Sports</u>, 7(4), 275-279.
- Hagerman, F. C., McKirnan, M. D. & Pompei, J. A. (1975). Maximal oxygen consumption of conditioned and unconditioned oarsmen. <u>Journal of</u> <u>Sports Medicine</u>, <u>5</u>, 43-48.
- Hagerman, G. R. Hagerman, F. C., Gault, J. A. & Pollnski, W. (1977, July/Aug.). A physiological analysis of the 1975 national lightweight crews. <u>The Oarsman</u>, 6-9.
- Hagerman, F. C., Connors, M. C., Gault, J. A., Hageman, G. R. & Polinski, W. J. (1978). Energy expenditure during simulated rowing. <u>Journal of</u> <u>Applied Physiology</u>, <u>45</u>(1), 87–93.
- Hagerman, F. C. Hagerman, G. R. & Mickelson, T. C. (1979, Nov./Dec.). Physiological profiles of elite rowers. <u>The Darsman</u>, 11-14.
- Hagerman, F. C. & Staron, R. C. (1983). Seasonal variations among physiological variables in elite oarsmen. <u>Canadian Journal of Applied</u> <u>Sports Sciences</u>, <u>8</u>(3), 143-148.
- Hagerman, F. C. (1984). Applied Physiology of Rowing. <u>Spotrs Medicine</u>, 1, 303–326.
- Holloszy, J. O. (1976). Adaptation of skeletal muscle to endurance exercise. <u>Medicine and Science in Sports</u>, <u>7</u>(3), 155–164.
- Ishiko, T. (1967). Aerobic Capacity and External Criteria of Performance. <u>Canadian Medical Journal</u>, <u>26</u>, 746–749.
- Issekutz, B., Shaw, W. & Issekutz, T. (1976). Effect of lactate on FFA and glycerol turnover in testing and exercising dogs. <u>Journal of Applied</u> <u>Physiology</u>, <u>39</u>, 349-353.
- Ivy, J. L., Withers, R. T., Van Handel, P. J., Elger, D. H. & Costill, D. L. (1980). Muscle respiratory capacity and fibre type as determinants of the lactate threshold. <u>Journal of Applied Physiology</u>, <u>48</u>, 523-527.

- Jackson, R. C. & Secher, N. H. (1976). The aerobic demands of rowing in two Olympic rowers. <u>Medicine and Science in Sports</u>, <u>8</u>(3), 168-170.
- Jacobs, I. (1983, September). Blood lactate and the evaluation of endurance fitness. <u>Science Periodical on Research and Technology in Sport</u>.
- Janousek, B. (1974). Advice on training international and senior standard oarsmen. <u>Rowing</u>, <u>12</u>, 225.
- Jones, N. L. (1980). Hydrogen ion balance during exercise. <u>Clinical Science</u>, <u>53</u>, 85-91.
- Jones, N. L. & Ehrsam, R. E. (1982). The anaerobic threshold. <u>Exercise and</u> <u>Sports Sciences Reviews</u>, <u>10</u>, 49–83.
- Jooste, P. L., Read, D. B. & Strydon, N. B. (1981). The influence of endurance training on rowing performance. <u>Physical Fitness Assessment, 8</u>, 156–162.
- Katch, V. L., Weltman, A., Sady, S. & Freedson, P. (1978). Validity of the relative percent concept for equating training intensity. <u>European</u> <u>Journal of Applied Physiology</u>, <u>39</u>, 219-227.
- Katch, V. L. & Weltman, A. (1979). Interelationship between anaerobic power output, anaerobic capacity and aerobic power. <u>Ergonomics</u>, <u>22</u>(3), 325-332.
- Kindermann, W. Simon, G. & Keul, J. (1979). The significance of the aerobicanaerobic transition for the determination of workload intensities during endurance training. <u>European Journal of Applied Physiology</u>, <u>42</u>, 25-24.
- Klavora, P. (1974), July/Aug.). Interval training. 1. Evaluation of the effect of two successful training methods on the rowing performance of varsity rowers. 2. Anaerobic aspects of rowing and interval training. <u>The Oarsman</u>, <u>6</u>(3), 11–18.
- Larsson, L. & Forsberg, A. (1980). Morphological muscle characteristics in rowers. <u>Canadian Journal of Sports Sciences</u>, <u>5</u>(4), 239-244.

- Kumagain, S., Tanaka, K., Matsuura, Y., Matsuzaka, A., HiraKoba, K. & Asano, K. (1982). Relationships of the anaerobic threshold with the 5km, 10km and 10 miles races. <u>European Journal of Applied Physiology</u>, <u>49(1)</u>, 13-23.
- Liang, M. T. C., Alexander, J. F., Taylor, H. L., Serfass, R. C., Leon, A. S. & Stull, A. G. (1982). Aerobic training threshold. <u>Scandinavian Journal of</u> <u>Sports Series</u>, <u>4</u>(1), 5-8.
- Londeree, B. R. & Ames, S. A. (1975). Maximal steady state versus state conditioning. <u>European Journal of Applied Physiology</u>, <u>34</u>, 269-278.
- MacDougall, J. D. (1977). The anaerobic threshold: Its significance for the endurance athlete. <u>Canadian Journal of Applied Sport Sciences</u>, <u>2</u>, 137-140.
- MacDougall, D. & Digby, S. (1981). Continuous vs interval training: A Review for the athlete and the coach. <u>Canadian Journal of Applied Sport</u>. <u>Sciences</u>, <u>6</u>(2), 93-97.
- Mahler, M. (1979). Neural and humoral signals for pulmonary ventilation arising in exercising muscle. <u>Medicine and Science in Sports</u>, <u>11</u>, 191–197.
- McLellan, T. & Skinner, J. S. (1981). Use of the anaerobic threshold as a basis for training. <u>Canadian Journal of Applied Sports Sciences</u>, <u>6(4)</u>, 197-201.
- Mickleson, T. C. & Hagerman, F. C. (1982). Anaerobic threshold measurements of elite oarsmen. <u>Medicine and Science in Sports and Exer-</u> <u>cise, 14</u>(6), 440-444.
- Molé, P., Bladwin, K., Terjung, R. & Hollszy, J. (1973). Enzymatic pathways of pyruvate metabolism in skeletal muscle adaptations to exercise. <u>American Journal of Physiology</u>, <u>224</u>, 50–54.
- Naimark, A., Wasserman, K. & McIlroy, M. B. (1984). Continuous measurement of ventilatory exchange ratio during exercise. <u>Journal of Applied</u> <u>Physiology</u>, <u>19(</u>4), 644-652.

- Niels, H., Secher, N. H. & Jackson, R. C. (1982). Rowing performance and maximal aerobic power of oarsmen. <u>Scandinavian Journal of Sports</u> <u>Science</u>, <u>4</u>(1), 9-11.
- Nowacki, P. E., Kranse, R. & Adam, K. (1969). Maximal oxygen uptake by the rowing crew winning the Olympic Gold medal 1968. <u>Pflügers</u> <u>Archives</u>, <u>312</u>, R66-R67.
- Parkhouse, W. S., McKenzie, D. C., Rhodes, E. C., Dunwoody, D. & Wiley, P. (1982). Cardiac frequency and anaerobic threshold. Implications for prescriptive exercise programs. <u>European Journal of Applied</u> <u>Physiology</u>, <u>50</u>(1), 36-42.
- Patton, R. W., Heffner, K. D., Baun, W. B., Gettman, L. R. & Raven, P. B. (1979). Anaerobic threshold of runners and non-runners. <u>Medicine and</u> <u>Science in Sports</u>, <u>36</u>, 107-114.
- Pollock, M. (1973). The quantification of endurance training programs. In J. Wilmore (Ed.) <u>Exercise and Sports Sciences Reviews</u> (pp. 155–188). New York: Academic Press.
- Powers, S. K., Dodd, S. & Garner, R. (1984). Precision of ventilatory and gas exchange alterations as a predictor of the anaerobic threshold. <u>European Journal of Applied Physiology</u>, <u>52</u>(2), 173-177.
- diPrampero, P. E., Limos, P. F. & Sassi, G. (1970). Maximal muscular power (aerobic and anaerobic) in 116 athletes performing at XIX Olympic Games in Mexico. <u>Ergonomics</u>, <u>3</u>, 40-43.
- diPrampero, P. E., Cortili, G., Celentano, F. & Cerretelli, P. (1971). Physiological aspects of rowing. <u>Journal of Applied Physiology</u>, <u>31</u>, 853-857.
- Prietto, C. A., Caiozzo, V. J., Ellis, J. F., Davis, J. A. & McMaster, W. C. (1981). Anaerobic thresholds in elite middle and long distance runners. <u>American Medical Journal Association</u>, <u>4</u>, 41-46.
- Pyke, F. S. (1979). Some aspects of the physiology of rowing and training. Sport Coach, 3(4), 6-8.

- Pyke, F. S., Minikin, B. R., Woodman, L. R., Roberts, A. D. & Wright, T. G. (1979). Isokinetic strength and maximal oxygen uptake of trained oarsmen. <u>Canadian Journal of Applied Sport Sciences</u>, <u>4</u>(4), 277-279.
- Rivera, M. A., Metz, K. F. & Robertson, R. (1980). Metabolic and performance responses to anaerobic threshold and high intensity training. <u>Medicine and Science in Sports</u>, <u>12</u>, 124. (Abstract)
- Robinson, T. & Sucec, A. A. (1980). The relationship of training intensity and anaerobic threshold to endurance performance. <u>Medicine and Science</u> <u>in Sports</u>, <u>12</u>, 124. (Abstract)
- Rusko, H. & Rahkila Paano, E. (1982). Maximum oxygen uptake, anaerobic threshold, and skeletal muscle enzymes in male athletes. In P. Komi, (Ed.), <u>Exercise and Sport Biology</u>. International Series of Sports Sciences, <u>Vol. 12</u>, (pp. 24-31). Champaign, Illinois: Human Kinetics Publishers.
- Sady, S., Katch, V., Frudson, P. & Weltman, A. (1980). Changes in metabolic acidosis: evidence for an intensity threshold. <u>Journal of Sports</u> <u>Medicine</u>, <u>20</u>, 41-46.
- Sahlin, K., Harris, R. C., Nylind, B. & Hultman, E. (1976). Lactate content and pH in muscle samples obtained after dynamic exercise. <u>Pflügers Ar-</u> <u>chives</u>, <u>367</u>, 143-149.
- Saltin, B. (1971). Guidelines for physical training. <u>Scandinavian Journal of</u> <u>Rehabilitation and Medicine</u>, <u>3</u>, 39-46.
- Saltin, B., Henricksson, J. Nygaard, E. & Andersen, P. (1977). Fibre types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. <u>Annual New York Academy of Science</u>, <u>301</u>, 3-29.
- Secher, N. H. (1973). Development of results in international rowing championships 1893-1971. <u>Medicine and Science in Sports</u>, 5, 195-198.
- Secher, N. H., Espersen, M., Binkhorst, R. A., Andersen, P. A. & Rube, N. (1982a). Aerobic power at the onset of maximal exercise. <u>Scandinavian Journal of Sports Sciences</u>, <u>4</u>, 12–16.

- Secher, N. H., Vaage, O. & Jackson, R. C. (1982b). Rowing performance and maximal aerobic power of oarsmen. <u>Scandinavian Journal of Sports</u> <u>Sciences</u>, <u>4</u>, 9-11.
- Secher, H. N. (1983). The Physiology of Rowing. <u>Journal of Sports Sciences</u>, <u>1</u>, 23-53.
- Shephard, R. J. (1978). Aerobic versus anaerobic training for success in various athletic events. <u>Canadian Journal of Applied Sport Sciences</u>, <u>3</u>, 9-15.
- Sjödin, B., Thorstennson, A., Firth, K. & Karlsson, J. (1976). Effect of physical training on LDH activity and LDH isozyme pattern in human skeletal muscle. <u>Acta Physiologica Scandinavica</u>, <u>97</u>, 150–157.
- Sjödin, B. & Jackobs, I. (1981). Onset of blood lactate accumulation and marathon running performance. <u>International Journal of Sports</u> <u>Medicine</u>, <u>2</u>, 166–170.
- Skinner, J. S. & McLellan, T. H. (1980). The transition from aerobic to anaerobic metabolism. <u>Research Quarterly for Exercise and Sport</u>, <u>51(1)</u>, 231-247.
- Stamford, B. A., Weltman, A. & Fulco, C. (1978). Anaerobic threshold and cardiovascular responses during one versus two-legged cycling. <u>Research Quarterly</u>, <u>49</u>, 357-362.
- Stamford, B. A., Weltman, A., Moffat, R. & Sandy, S. (1981). Exercise recovery above and below anaerobic threshold following maximal work. <u>Journal of Applied Physiology</u>, <u>51</u>, 840-844.
- Stegmann, H., Kindermann, W. & Schnabel, A. (1981). Lactate kinetics and individual anaerobic threshold. <u>International Journal of Sports</u> <u>Medicine</u>, <u>2</u>(3), 160-165.
- Stegmann, H. & Kindermann, W. (1982). Comparison of prolonged exercise test at the individual anaerobic threshold and the fixed anaerobic threshold of 4mMol lactate. <u>International Journal of Sports Medi-</u> <u>cine</u>, <u>3</u>(2), 105-110.
- Strømme, S. B., Ingjer, F. & Meen, H.D. (1977). Assessment of maximal aerobic power in specifically trained athletes. <u>Journal of Applied</u> <u>Physiology</u>, <u>42</u>, 833–837.

- Strydom, N. B., Wyndham, C. H. & Greyson, J. S. (1967). A scientific approach to the selection and training of oarsmen. <u>South African Medical</u> <u>Journal</u>, <u>41</u>, 1100–1102.
- Sutton, J. R. & Jones, N. L. (1979). Control of pulmonary ventilation during exercise and mediators in the blood: CO₂ and hydrogen ion. <u>Medicine and Science in Sports</u>, <u>11</u>, 198–203.
- Swansson, G. D. (1979). Overview of ventilatory control during exercise. <u>Medicine and Science in Sports</u>, <u>11</u>, 221–226.
- Szögy, A. & Cherebetiu, G. (1974). Physical work capacity testing in male performance rowers with practical conclusions for their training process. Journal of Sports Medicine and Physical Fitness, 14, 218-223.
- Tanaka, K., Matsura, Y., Kumagai, S., Matsuzaka, A., Hirakoba, K. & Asano, K. (1983). Relationships of anaerobic threshold and onset of blood lactate accumulation with endurance performance. <u>European Journal</u> <u>of Applied Physiology</u>, <u>52</u>(1), 71-76.
- Tesch, P., Sjödin, B. & Karlsson, J. (1978). Relationship between lactate accumaltion, LDH activity, LDH isozyme and fibre type distribution in human skeletal muscle. <u>Acta Physiologica Scandinavica</u>, <u>104</u>, 373-374.
- Thevnin, C., Hilpert, F. & Blondel, J. H. (1978). Rameurs de competition protocole de surveillance de l'entraînement. <u>Medecine du Sport</u>, <u>52(</u>2), 53-61.
- Vaage, O. and Hermansen, L. (1977). Maximal Oxygen Uptake in a groip of Norwegian top Athletes Trained in different events. In Textbook of Work Physiology. (Ed.) Astrand, P. O. and Rodahl, K., p. 377. New York: Mc Graw Hill.
- de Vries, W. R., Bernink, M. J. E., de Beer, E. L., Biersteker, P. A. & Lensink, J. A. (1977). Upon the effect of season's rowing training on physiological parameters under a measured workload. <u>Sportartz und</u> <u>Sportmedizin</u>, <u>28</u>(8), 231-236.
- Vrijens, J. & Bouckaert, J. (1983). Aerobic capacity and anaerobic threshold, laboratory assessment and specific approach guidelines for coaches. <u>Coaching Notes</u>, <u>4</u>, 1-12.

- Wasserman, K., Whipp, B. J., Koyal, S. N. & Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. <u>Journal of</u> <u>Applied Physiology</u>, <u>35</u>(2), 236-243.
- Wasserman, K., Whipp, B. J. & Davis, J. A. (1981). Respiratory physiology of exercise: metabolism, gas exchange, and ventilatory control. In J. G. Widdicombe (Ed.), <u>International Review of Physiology</u> (pp. 149-211). Baltimore: University Park Press.
- Weltman, A., Katch, V., Sandy, S. & Freedson. (1978). Onset of metabolic acidosis (anaerobic threshold) as a criterion measure of submaximal fitness. <u>Respiratory Quarterly</u>, <u>49</u>, 218–227.
- Weltman, A. & Katch, V. (1979). Relationship between the onset of metabolic acidosis (anaerobic threshold) and maximal oxygen uptake. Journal of Sports Medicine, <u>19</u>, 135–142.
- Whithers, R. T., Sherman, W. M., Miller, J. M. & Costill, D. L. (1981). Specificity of the anaerobic threshold in endurance trained cyclists and runners. <u>European Journal of Applied Physiology</u>, <u>47</u>, 93-104.
- Williams, C. G., Wyndham, C. H., Kok, R. & Von Rahden, M. J. E. (1967). Effect of training on maximum oxygen intake and on anaerobic metabolism in man. <u>International Journal of Work Physiology</u>, <u>24</u>, 18–23.
- Wright, G. R., Bompa, T. & Shephard, R. J. (1976). Physiological evaluation of winter training programme for oarsmen. <u>Journal of Sports Medicine</u>, <u>16</u>, 22–37.
- Yeh, M. P., Gardner, R. M., Adams, T. D., Yanowitz, F. G. & Crapo, R. O. (1983). "Anaerobic threshold": Problems of determination and validation. <u>Journal of Applied Physiology</u>, <u>55</u>(4), 34-39.
- Yoshida, T., Yoshihiro, S. & Takeuchi, N. (1982). Endurance training regimen based upon arterial blood lactate: Effects on anaerobic threshold. <u>European Journal of Applied Physiology</u>, <u>49</u>, 223-230.

APPENDIX A

RAW DATA TABLES

Pre-Training Test Raw Data of Subjet 1

Time	Revs	St. R	t./ Ÿ _E	FEO ₂	FECO ₂	ΫE	ΫE	ΫO ₂	ÝCO ₂	RER	Heart	ΫO ₂
min:see	c No/min	min	BTF L/m	'S 11 n		02 L/L	CO2 L/L	STPD L/min	STPD L/min	<u></u>	Rate Bts/mi	m1/Kg n /min
		WORK	LOAD	1, 1	1.5 Kp							
0:15			31.4	0.1634	0.0398	26.0	31.3	1.207	1.003	0.83	124	15.6
0:30	305	27	36.5	0.1585	0.0412	23.1	30.2	1.579	1.209	0.77	133	20.5
0:45			50.3								139	
1:00	610	27	53.7								142	
1:15			56.1	0.1523	0.0480	20.8	25.9	2.699	2.163	0.80	145	35.0
1:30	310	28	56.0								145	
1:45			62.9								147	
2:00	615	28	64.0	0.1573	0.0477	23.2	26.1	2.754	2.455	0.89	145	35.7
		WORK	LOAD	2,	1.75 Kp,	chan	ged at :	2:00 mii	nutes			
2.15			675								1 45	
2.13	710	20	0J.J 27 E	1							143	
2.30	310	20	61 /	0 1542	0.0502	21.0	248	2 803	2 480	0.88	150	363
2.4J 3.00	610	28	67.3	0.1342	0.0002	21.7	24.0	2.005	2.400	0.00	150	JU.J
J.00 Z.15	010	20	64.0								153	
3.13	310	28	65.0	0 1521	0.0525	21.1	237	3 077	2 747	0 80	155	70 0
3.30	510	20	66.0	0.1341	0.0525	21.1	23.6	J.011	<u>2.17</u> 1	0.09	154	39.7
4:00	615	28	66.5								154	
		WORK	load	3,	2.00 Kp,	chan	ged at	4:00 mi	nutes			
4:15			71.5	0.1563	0.0488	22.8	25.5	3.196	2.807	0.90	156	40.6
4:30	310	28	71.8								156	
4:45			74.1								160	
5:00	615	28	75.2	0.1569	0.0492	23.2	25.3	3.242	2.975	0.92	161	42.0
5:15			77.2	0.1564	0.0502	23.0	24.8	3.350	3.112	0.93	164	43.4
5:30	305	28	79.1								166	
5:45			75.3								167	
6:00	610	28	75.3	0.1557	0.0512	22.8	24.3	3.229	3.028	0.94	167	43.0
		WORK	LOAD	4,	2.25 Kp,	chan	ged at i	6:00 mi	nutes			
6:15			77.8	0.1571	0.0501	23.4	24.8	3.328	3.133	0.94	167	43.1
6:30	310	30	78.9								167	
6:45			79.2								167	
7:00	610	30	80.0	0,1552	0.0526	23.2	23.6	3,340	3.134	0.94	167	43.3
7:15			81 0							•	169	
7:30	305	29	81 0								168	
7:45			79.9	0.1585	0 0522	245	238	3.264	3,353	1.03	168	43.3
8.00	605	30	80.1	0 1568	0.0517	23.4	241	3.069	2.988	1.03	167	43.1
0.00	~~~	~~		Q. 1 0 0 0	0.0011	T	_ 1.1					

		WOR	RLOAD	5,	2.50 Kp, changed at 8:00 minutes							
8:15			80.9								169	
8:30	305	30	81.9								171	
8:45			81.9	0.1545	0.0528	22.3	23.6	3.671	3.473	0.99	170	47.6
9:00	605	30	80.8	0.1539	0.0535	22.1	23.2	3.614	3.439	0.99	171	47.8
9:15			82.6								171	
9:30	300	31	84.9								175	
9:45			91.4	0.1567	0.0530	23.5	23.4	3.891	3.901	1.00	175	50.4
10:00	600	31	92.4	0.1562	0.0542	23.6	22.8	3.813	3.793	1.00	175	50.5
				-								
		WUR	KLUAD	6,	2.75 Kp,	chai	nged at	10:00	minutes			
10.15			05 2	0 1575	0.0526	27.0	227	3 075	4 0 2 3	1.01	176	515
10.13	300	30	95.2	0.1313	0.0320	2J.7	2J.1	J.77J	4.020	1.01	178	J1.J
10.00	300	50	97.4	0 1595	0.0514	25.0	242	3 893	4 0 2 8	1.03	181	515
11.00	600	30	97.7	0.1583	0.0531	24.5	23.4	3 991	4 171	1.00	181	51.7
11:15	000		97.9	0.1598	0.0513	25.2	24.2	3.882	4.040	1.06	182	51.6
11:30	300	32	99.4								185	
11:45			98.8	0.1585	0.0543	24.9	22:9	3.972	4.293	1.08	184	51.5
12:00	605	32	101.2	0.1592	0.0535	25.1	23.3	3.976	4.288	1.08	184	51.5
		WOR	Kload	7,	3.00 Kp,	cha	nged a	t 12:00	minutes			
1015			101.0								100	
12:15	700	70	101.2								186	
12:30	200	52	104.7	0 1 4 0 7	0.0525	26.0	07 J	7 0 0 0	4 7 7 0	1 10	100	F 1 7
12:40	600	32	104.0	0.1007	0.0525	20.U	23.1	3.90U 7.057	4.339	1.10	100	51.5
13.00	000	JZ	109.0	0.1012	0.0327	20.3	23.0	J.7JZ	4.412	1.12	186	JI.J 52.2
13.13	300	31	112.1	0.1600	0.0320	26.5	23.J	3 967	4.608	1.19	186	51.2
10.00	500	51	114.1	0.1007	0.0000	<u>ເ</u> ບ.ປ	<u> </u>	5.701	4.020	1.10	100	J1.4

Total Test time (min:sec)	13:30
Total Number of Revolutions	8,230
Maximum Workload (Kp)	3.00
Total Power Output (Kpm)	18,192
Average Stroke Rate (stks min ⁻¹)	29
$VO_2 \max(L \min^{-1})$	4.030
$\dot{V}O_2$ max ml·Kg ⁻¹ ·min ⁻¹	52.2
Maximum Heart Rate (bts:min ⁻¹)	187
AT % of $\dot{Y}O_2$ max (L·min ⁻¹)	77.8%
Time at AT	5:00
Workload at AT	2.00
Revolutions at AT	3,065
Power Output at AT	5,212
VO ₂ Limin ⁻¹ at AT	3.136
VO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	42.0
Heart Rate at AT	161

Post-Training Test Raw Data of Subject 1

Time min:sec	Revs : No/min	St. Rt. min	/ ^Ý E BTP	FEO ₂	FECO ₂	Ϋ _Ε 02	Ϋ _E CO ₂	ÝO ₂ STPD	ÝCO ₂ Stpd	RER	Heart Rate	¥02 m1/Ka
			L/m	in		ĹŹĹ	L/L	L/min	L/min		Bts/min	/min
	·	WORK	LOAD	1, 1	l.50 Kp							
0:15			19.9								113	
0:30	310	26	34.9	0.1532	0.0449	21.2	28.1	1.645	1.240	0.75	121	22.3
0:45	(20	27	51.0	0.1483	0.0493	19.5	25.6	2.615	1.995	0.76	137	35.5
1.15	620	21	58.0								135	
1:30	320	271/2	58.8	0.1482	0.0536	19.8	23.5	2.962	2.500	0.84	135	40.2
1:45			60.5				20.0	2.702	2.000		136	
2:00	630	27	58.5								138	
		WORKLOAD		2,	1.75 Kp,	chang	jed at 2	2:00 mi	nute s			
2.15			61.6	0 1484	0 0557	20.1	22.6	3 071	2 724	0.80	130	41 7
2:30	315	27	58.3	0.1404	0.0334	20.1	22.0	5.077	2.127	0.07	140	41.6
2:45			62.2								143	
3:00	625	27	65.1	0.1485	0.0556	20.1	22.7	3.236	2.871	0.89	143	43.9
3:15			63.5								147	
3:30	320	27	63.8	0 1 46 0	0.0500	10.4		7 10/	0.010	0.01	148	40.0
5:45 4-00	620	27	64.2	0.1460	0.0588	19.4	21.4	3.106	2.812	0.91	147	4Z.Z
4.00	020	21	04.2								140	
		WORKI	LOAD	3,	2.00 Kp,	chang	jed at 4	4:00 miı	nutes			
4:15			63.3								145	
4:30	305	27	65.8	0.1488	0.0582	20.4	21.6	3.217	3.039	0.94	146	43.7
4:45			68.0								147	
5:00	615	27	68.3		0.0575		~ ~ ~		7 4 40		148	
5:15	310	27	60.0	0.1491	0.0575	20.5	21.9	3.352	5.140	0.94	149	45.5
5.45	510	27	73.6								149	
6:00	620	27	72.0	0.1498	0.0574	20.8	21.9	3.452	3.281	0.95	153	46.9
		WORKI	LOAD	4,	2.25 Kp,	chan	ged at	6:00 mi	nutes			
6.15			ח סר								107	
0110	305	27	775								157	
6:45	505	<u></u> (79.7	0 1515	0.0567	21.5	222	3 703	3 586	0 97	157	50.3
7:00	610	27	77.1	0.1010	0.0001	944 9 - 14 ¹		0.100	0.000	0.21	157	
7:15			79.9								159	
7:30	310	27	79.3	0.1513	0.0581	21.6	21.7	3.678	3.659	0.99	158	49.9
7:45	8		78.8	0.1511	0.0585	21.6	21.5	3.466	3.301	0.98	158	49.9
8:00	615	27	78.8								157	
		WOR	KLOAD	5,	2.50 Kp,	e hanged a	it 0 :00 m	i nutes				
-------	-------------	-----------	-------	----------	------------------	-------------	-----------------------	----------------	------	-----	------	
8:15	700	07	86.3					/		160		
8:30	300	27	86.9	0.1530	0.0564	22.2 22.	3 3.914	3.891	0.99	166	53.1	
8:45	605	07	84.1	0.1521	0.0574	21.9 21.	9 3.841	3.836	1.00	163	53.0	
9:00	605	27	89.5							165		
9:15	745	~ 7	95.1							166		
9:30	315	27	94.0	0.1519	0.0575	21.8 21.	9 3.806	3.792	1.00	166	52.7	
9:45			92.3	0.1553	0.0544	23.2 23.	2 3.977	3.987	1.00	167	54.0	
10:00	615	27	89.2							167		
		າມດອ	KIOAD	۷	275 / 5	obongod a	+ 10.00	minutaa				
		NUK	KLUHD	υ,	2.73 κμ ,	changeu a	10.001	ininu(es				
10.15			88.4							167		
10.30	310	27	93.7	0 1536	0.0566	22.5.22	2 4 1 5 9	4 2 1 3	1.01	170	56 5	
10:45			92.5	0 1533	0.0575	22.5 21	9 4 1 1 1	4 2 2 3	1.01	170	55.8	
11:00	620	27	93.8		0.0010					170	00.0	
11:15			98.0							171		
11:30	310	27	97.1	0.1550	0.0564	23.3.22	3 4 1 7 1	4 3 4 5	1.04	172	56.6	
11:45		- ·	98.6	0.1551	0.0566	23.4 22.3	2 4 2 1 9	4.434	1.05	172	57.3	
12:00	615	27	103.8							174		
		WOR	KLOAD	7,	3.00 Kp,	, changed :	et 12:00	minutes				
12:15	710	07	108.9	0 4577	0.05.40	044.00		4 (00	1.07	174	50.4	
12:30	510	27	100.2	0.1573	0.0549	24.4 ZZ.	9 4.550	4.629	1.05	175	59.1	
12:45	600	~7	109.5	0.1575	0.0551	24.5 ZZ.	9 4.445	4.779	1.07	177	60.4	
13:00	620	27	105.2	0.1575	0.0588	24.6 22.0	6 4.Z6 <i>1</i>	4.658	1.09	177	57.9	
13:13	Z 0E	77	112.0	0 1570	0.0544	240 22	7 4 5 0 4	E 107		170	600	
13:30	303	27	114.1	0.1570	0.0504	24.9 22.	3 4.304 4 4 5 3 4	5.107	1.11	170	02.2	
10:40	675	20	109.0	0.1503	0.0307	24.3 21.9	4 4.520 n 4 072	5.122 5.445	1.10	177	01.0	
14:00	023	20	119.2	0.1572	0.0575	24.7 21.3	9 4.052	5.445	1.15	174	03.0	
		WOR	KLOAD	8.	3.50 Kp.	changed	at 14:00	minutes				
				~		.						
14:15			119.0							180		
14:30	300	28	121.6	0.1593	0.0551	25.7 22.8	8 4.731	5.326	1.13	183	65.2	
14:45			117.8	0.1584	0.0565	25.3 22.3	3 4.640	5.276	1.14	184	64.6	
15:00	605	28	117.0							184		
15:15			123.2							184		
15:30	300	28	123.0	0.1580	0.0575	25.2 21.9	9 4.630	5.327	1.15	184	64.0	
15:45			123.0	0.1580	0.0591	24.1 21.3	3 4.539	5.141	1.14	182	62.8	
16:00	600	28	123.7							184		
		wan		0	7 7C V-			•				
		WUK	KLUAD	У,	5.75 KP,	cnanged a	at 16:00	minutes				
16:15			1247	0.1597	0.0561	26.1 22 9	5 4,762	5.540	1 16	184	649	
16.30	300	28	127.6	0.1599	0.0560	26.2 22 9	5 4 863	5.675	1 17	185	66.0	
16:45			129.9	.	2.0000			2.2.2		185		
17:00	560	28	133.3							185		
	-	_										

Total Test time (min:sec) Total Number of Revolutions Maximum Workload (Kp) Average Stroke Rate (stks·min ⁻¹) Total Power Output (Kpm) ¥O ₂ max (L·min ⁻¹) ¥O ₂ max ml·Kg ⁻¹ ·min ⁻¹ Maximum Heart Rate (bts·min ⁻¹) AT % of ¥O ₂ max (L·min ⁻¹) Time at AT Workload at AT Revolutions at AT Power Output at AT ¥O ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	17:00 10,420 3.50 27 25,779 4.900 66.0 185 85.1% 11:30 2.75 7,105 14,888 4.171 56.6
Heart Rate at AT	172

Table	A3
-------	----

Time min:sec	Revs No/min	St. F mi	Rt/ Ÿ _E in BTPS	FEO2	FEC02	^ў Е 02	[¥] ε CO2	ÝO ₂ STPD	ÝCO ₂ STPD	RER	Heart Rate	ÝO ₂ m1/Kg
<u> </u>			L/111			L/L		171010			0(3711111	7000
		<u> ហេ</u> ព	IN DAD	1 ,	150 / 0							
		TUR	NLUHD	١,	1.JU KP							
0:15			39.8	0.1665	0.0431	29.0	29.0	1.374	1.372	1.00	131	18.3
0:30	310	28	35.9	0.1613	0.0451	25.4	27.7	1.412	1.295	0.92	132	18.8
0:45			54.8								145	
1:00	610	28	55.4								148	
1:15			62.5	0.1571	0.0489	23.4	25.5	2.671	2.446	0.92	152	35.5
1:30	305	28	68.8								156	
1:45			68.7								158	
2:00	605	28	70.6	0.1589	0.0500	24.6	25.0	2.875	2.825	0.98	159	38.3
		WOR	KLOAD	2,	1.75 Kp,	chan	ged at :	2:00 mi	nutes			
2:15			77.1								172	
2:30	305	28	79.3								174	
2:45			83.0	0.1619	0.0501	26.6	24.9	3.124	3.329	1.07	179	41.6
3:00	605	28	85.7	0.1620	0.0507	26.7	24.6	3.214	3.480	1.08	187	42.8
3:15			85.4								189	
3:30	300	28	85.4								187	
3:45			88.0	0.1628	0.0506	27.3	24.7	3.227	3.565	1.10	189	42.9
4:00	600	28	91.9	0.1624	0.0509	27.1	24.5	3.395	3.743	1.10	191	45.2
		WOR	KLOAD	3,	2.00 Kp,	char	iged at	4:00 mi	inutes			
1.15			05 /								102	
4.15	300	28	100.1								102	
4.30	500	20	100.1	0 1634	0.0505	27 7	247	3 608	4 0 4 0	1 1 2	192	48.0
5.00	600	30	100.0	0.1034	0.0303	285	24.1	3.000	4.040	1.12	190	40.0
5.15	000	50	107.2	0.1045	0.0470	20.0	2. U. I	0.402	4.011	1.1-4	198	40.0
5.30	300	30	106.9								202	
5.45	000	00	100.2	0 1667	0 0/79	30.1	26.1	3617	4170	1 1 5	108	48.1
6:00	600	30	105.9	0.1649	0.0495	28.8	25.2	3.646	4.165	1.15	198	48.5
		WOR	KLOAD	4,	2.25 Kp,	char	iged at	6:00 mi	inutes			
6.1E			105.0								107	
0110	7 05	70									177	
0:50	205	3 0	109.7	01475	0 0 46 7	70 5	270	7 700	4 201	1 1 7	190	50 F
0:40 7.00	605	70		0.1073	0.0400	30.3 70.2	21.0	3.190 7204	4.301 4.104	1.10	170	50.5 E1 0
7:00	CUG	οU	110.0	0.1070	0.0470	5U.Z	20.0	5.094	4.100	1.10	190	0.IC
7:10	700	70	114.0								195	
7:30	300	50	114.0	0 1270	0.0440	70 4	72 7	7 070	4 705	1 1 7	194	E1 1
7.40 8.00	600	70	1111	0.1070	0.0400	30.1 70.1	20.7	3.030 X 707	4.323	1.10	174	01.1 51.1
0.00	000	32	114.0	0.1070	U407	ວບ.1	- 20. f	3.703	4.107	1.13	192	51.I

Pre-Training Test Raw Data of Subject 2

		WOR	KLOAD	5,	2.50 Kp	, chai	nged at	8:00 m	ninutes			
8:15			114.5								194	
8:30	300	30	114.0								193	
8:45			113.7	0.1654	0.0460	28.9	27.2	3.858	4.068	1.12	191	51.3
9:00	600	30	114.8	0.1663	0.0455	29.3	27.4	3.815	4.072	1.12	191	51.8
9:15			114.0								190	
9:30	300	32	114.1								190	
9:45			114.5	0.1660	0.0460	29.1	27.2	3.924	4.204	1.10	190	52.2
10:00	600	32	113.9	0.1648	0.0484	28.5	25.8	3.969	4.384	1.10	190	52.5
		WOR	(LOAD	6,	2.75 Kp,	char	nged at	10:00	minutes			
10:15			116.0								191	
10:30	290	32	117.1								191	
10:45			117.1	0.1657	0.0460	28.6	25.4	3.974	4.312	1.12	191	52.9
11:00	565	32	118.6	0.1667	0.0455	29.6	27.5	4.010	4.320	1.12	190	53.3
11:15			116.3								189	
11:30	250	32	116.2	0.1654	0.0461	27.9	26.6	3.678	3.826	1.12	190	51.1

Total Test time (min:sec)	11:30
Total Number of Revolutions	6,840
Maximum Workload (Kp)	2.75
Average Stroke Rate (stks min ⁻¹)	30
Total Power Output (Kpm)	14,284
$\dot{V}O_2 \max(L \min^{-1})$	4.010
$\frac{1}{100}$ max m ¹⁻¹ .Kg ⁻¹ .min ⁻¹	53.3
Maximum Heart Rate (bts;min ⁻¹)	202
AT % of Ý0₂ max (L·min ^{−1})	84%
Time at AT	4:00
Workload at AT	1.75
Revolutions at AT	2,420
Power Output at AT	3,932
ÝO ₂ Limin ⁻¹ at AT	3.395
ÝO₂ml·Kg ⁻¹ ·min ⁻¹ at AT	45.2
Heart Rate at AT	177

Post-Training Test Raw Data of Subject 2

Time	Revs	St. Rt.	/ ÝF	FEO ₂	FECO ₂	ΫF	ΫF	ΫO2	ÝCO ₂	RER	Heart	ΫO ₂
min:sec	No/min	min	BTPS L/mi	; N		02 L/L	CO ₂ L/L	STPD L/min	STPD L/min		Rate Bts/mir	m1/Kg min
		WORK	LOAD	1, 1	I.50 Kp							
0:15 0:30 0:45	310	26	35.5 48.1 47.9	0.1601 0.1586	0.0474 0.0480	25.5 24.1	26.3	1.421 1.997	1.348 1.848	0.95 0.93	124 136 138	18.8 26.4
1:00 1:15	610	26	50.0 64.1	0.1545	0.0514	22.3	24.3	2.879	2.640	0.92	140 144	38.1
1:30 1:45	305	26	64.3 62.7								144 144	
2:00	605	26	69.5	0.1562	0.0527	23.3	23.7	2.987	2.932	0.98	145	39.5
		WORK	LOAD	2,	1.75 Kp,	chan	iged at	2:00 mi	nutes			
2:15 2:30	310	26	68.2 71.1						~		150 151	
2:45 3:00	610	26	75.4	0.1577	0.0529	24.2	23.6	5.057	3.112	1.02	155	40.1
3:15 3:30 3:45	300	27	70.0 83.0 77.7	0.1595 0.1579	0.0528 0.0543	25.3 24.5	23.6	3.284 3.175	3.512 3.384	1.07	157 155	43.4 42.0
4:00	600	27	85.0	0.1017	0.0010	2	20.0	0.110	0.001		161	
		WORK	load	3,	2.00 Kp,	cha	nged at	4:00 m	inutes			
4:15			86.9								164	
4:30 4:45	300	27	90.6 92.9	0.1602 0.1604	0.0529 0.0532	25.8 26.0	23.6 23.5	3.512 3.576	3.841 3.956	1.09 1.11	164 164	46.4 47.3
5:00 5:15	600	27	83.4 97.3								167 168	
5:30 5:45	295	27	92.6 94.2	0.1605	0.0526 0.0528	25.0 26.0	23.7	3.567 3.620	3.902 3.979	1.09 1.10	169 170	47.1 47.8
6:00	595	27	92.5								172	
		WORK	LOAD	4,	2.25 Kp,	chai	nged at	6:00 m	inutes			
6:15			99.9								174	
6:30	300	27	103.0	0.1633	0.0504	27.6	24.8	3.727	4.155	1.12	176	49.3
6:45			93.5	0.1608	0.0527	26.1	23.7	3.578	3.944	1.10	176	47.3
7:00	595	27	104.0								177	
7:15	X 00	27	95.1	01614	0.0521	26 E	240	Z 0 02	4 201	1 10	178	50 7
7:45 8:00	600	27	100.7	0.1614	0.0521	20.5	24.0	3.802 3.787	4.201	1.11	178	50.5 50.1
0.00	000	<u> </u>	100.4								117	

		WO	RKLOAD	5,	2.50 Kp), ch	anged	at 8:00	minutes			
8:15			107.8								179	
8:30	290	28	104.8	0.1632	0.0504	27.6	24.8	3.796	4.229	1.11	179	50.2
8:45			106.7	0.1640	0.0495	28.0	25.2	3.805	4.226	1.11	180	50.3
9:00	590	28	107.0								180	
9:15			111.6								180	
9:30	300	28	113.2	0.1648	0.0484	28.5	25.8	3.969	4.384	.1.10	180	52.5
9:45			111.0	0.1649	0.0483	28.5	25.8	3.889	4.295	1.10	182	51.4
10:00	600	29	105.1	0.1669	0.0470	30.1	26.6	3.491	3.954	1.13	180	46.1
		WOR	kload	6,	2.75 Kp,	chai	nged at	10:00	minutes			
10:15			109.9	0.1640	0.0488	27.9	25.6	3.941	4.292	1.09	182	52.1
10:30	305	29	108.7								180	
10:45			96.7								180	
11:00	595	30	104.9	0.1622	0.0494	26.6	25.3	3.936	4.147	1.05	180	52.0
11:15			108.8								181	
11:30	300	30	103.8								181	
11:45			108.7	0.1643	0.0496	28.3	25.2	3.841	4.312	1.12	181	50.8
12:00	600	31	103.9	0.1617	0.0491	26.2	25.4	3.954	4.081	1.03	181	52.3
		WOR	kload	7,	3.00 Kp	, cha	nged a	t 12:00	minutes			
12:15			101.6	0.1602	0.0435	24.3	28.5	4.184	4.569	1.09	182	52.5
12:30	300	31	99.4	0.1592	0.0441	23.7	28.1	4.187	4.543	1.08	184	52.2
12:45											185	_
13:00	590	32									186	
13:15			102.4	0.1602	0.0428	24.2	28.9	4.236	4.541	1.07	186	52.8
13:30	290	32	109.3	0.1605	0.0422	24.4	29.0	4.487	5.071	1.13	189	56.0
13:45		•	119.7	0.1605	0.0422	24.3	29.3	4.929	5.183	1.05	190	61.5
14:00	565	32	106.8	··· = = =							192	

Total Test time (min:sec)	14:00
Total Number of Revolutions	8,370
Maximum Workload (Kp)	3.00
Total Power Output (Kpm)	18,037
Average Stroke Rate (stks min ⁻¹)	28
$\dot{V}O_2 \max(L\min^{-1})$	4.929
ÝO ₂ max m·Kg ⁻¹ ·min ⁻¹	61.5
Maximum Heart Rate (bts_min ⁻¹)	198
AT % of ÝO₂ max (L∙min ⁻¹)	80.5%
Time at AT	9:30
Workload at AT	2.50
Revolutions at AT	6,005
Power Output at AT	10,535
VO ₂ L·min ⁻¹ at AT	3.969
ÝO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	52.5
Heart Rate at AT	180

.

Pre-Training Test Raw Data of Subject 3

Time	Revs	St. Rt/	Ϋ́Ε	FEO ₂	FEC0 ₂	Ϋ _Ε	ΫE	ΫO ₂	ÝCO ₂	RER	Heart	0 ₂
min:sec	No/min	min	BTPS	,		02	CO2	STPD	STPD		Rate	m1/Kg
			L/mi	n		L/L	L/L	L/min	L/min		Bts/mi	n /min
		WORKI	LOAD	1, 1	1.50 Kp							
0:15			30.1								120	
0:30	315	26	40.2	0.1679	0.0411	29.9	30.4	1.346	1.321	0.98	121	17.9
0:45			48.2								124	
1:00	625	26	48.0								127	
1:15			53.0	0.1562	0.0449	22.4	1 27.8	2.362	1.904	0.81	130	31.4
1:30	310	27	54.3								132	
1:45			59.0		0.0444			a	0 4 40		134	77.0
2:00	620	27	65.6	0.1578	0.0466	23.5	26.8	2.793	2.448	0.88	137	57.2
		WORKI	.0AD	2,	1.75 Kp,	char	iged at i	2:00 mi	nutes			
2:15			64.6								141	
2:30	305	27	66.1								144	
2:45			70.2	0.1584	0.0479	24.0	26.1	2.925	2.692	0.92	146	38.9
3:00	610	27	71.4								147	
3:15			77.0								148	
3:30	305	27	75.8	0.1615	0.0474	25.9	26.4	2.929	2.872	0.98	149	39.0
3:45			79.1								151	
4:00	605	27	74.2								154	
		WORKI	.0AD	3,	2.00 Kp,	cha	nged at	4:00 mi	inutes			
4:15			81.7	0.1632	0.0455	26.8	27.5	3.047	2.973	0.98	156	40.5
4:30	305	27	82.1	0.1646	0.0450	27.7	27.8	2.958	2.953	1.00	158	39.4
4:45			84.9								160	
5:00	610	28	87.3								160	
5:15			86.4	0.1627	0.0478	26.8	26.1	3.220	3.306	1.03	161	42.8
5:30	300	28	90.2								161	
5:45	600	00	89.9	0.4440	0.0444	00 F		7.045	7 7 40	4.0.4	162	40.0
6:00	600	28	94.9	0.1669	0.0441	29.5	28.4	3.215	5.548	1.04	162	42.8
		WORKI	.0AD	4,	2.25 Kp,	cha	nged at	6:00 mi	inutes			
6:15		1	01.3	0.1676	0.0444	30.2	28.2	3.355	3.594	1.07	163	44.6
6:30	305	28	92.2								163	
6:45		1	01.1								164	
7:00	605	28	99.0	0.1670	0.0448	29.7	27.9	3.328	3.549	1.09	165	44.3
7:15		1	04.3	0.1673	0.0447	30.0	28.0	3.475	3.729	1.07	166	46.2
7:30	300	28 1	14.3								166	
7:45	(00	- 20 - 4	U8.0	0.1601	0.0404	71 7		7 700	7 500	1.07	168	47.0
0:00	000	28 I	U3.1	0.1091	0.0424	51.5	29.5	5.500	5.500	1.06	169	45.9

		WOR	RKLOAD	5,	2.50 Kp	, cha	inged a	t 8:00 n	ninutes			
8:15 8:30 8:45	305	28	112.0 111.4 115.3	0.1693	0.0430	31.6	29.1	3.548	3.580	1.08	170 170 171	47.2
9:00 9:15	605	28	121.0 119.2	0.1702 0.1706	0.0423 0.0420	32.3 32.8	29.6 29.8	3.742 3.636	4.090 4.003	1.09 1.10	172 172	49.8 48.4
9:30 9:45	310	28	115.1 119.6								174 174	
10:00	610	28	124.9	0.1709	0.0421	33.1	29.7	3.776	4.198	1.11	175	50.2
		WOR	Kload	6,	2.75 Kp,	chai	nged at	10:00	minutes			
10:15 10:30	300	29	134.1 130.5	0.1722	0.0411	34.3	30.4	3.905	4.407	1.13	175 177	52.0
10:45 11:00 11:15	600	29	138.9 131.5 130.3	0.1725 0.1730	0.0410 0.0400	34.7 35.1	30.5 31.2	3.790 3.715	4.310 4.170	1.14	178 179 180	50.4 49.4
11:30 11:45	300	29	138.2 153.7	0.1747	0.0389	37.0	32.2	4.158	4.775	1.15	182 182	55.3
12:00	600	29	160.1	0.1759	0.0385	38.6	32.5	4.143	4.923	1.19	184	55.1
		WOR	KLOAD	7,	3:00 Kp,	, cha	nged a'	t 12:00	minutes			
12:15 12:30	300	31	166.3 165.6	0.1762 0.1757	0.0383 0.0395	39.0 38.6	32.7 31.7	4.265 4.285	5.092 5.227	1.19 1.22	185 185	56.7 57.0
12:45 13:00	600	31	173.9 179.6	0.1755 0.1771	0.0399 0.0384	38.5 40.6	31.4 32.6	4.513 4.429	5.544 5.515	1.23 1.25	186 186	60.0 58.9
13:15 13:30	305	32	171.9	0.1766	0.0384	39.7	32.6	4.328	5.282	1.22	187 188	57.6
13:45 14:00	600	32	185.5	0.1779	0.0365 0.0373	41.3 40.5	54.5 33.6	4.441 4.508	5.346 5.432	1.20	189	59.1 60.0

Total Test time (min:sec)	14:00
Total Number of Revolutions	8,490
Maximum Workload (Kp)	3.00
Total Power Output (Kpm)	18,962
Average Stroke Rate (stks min ⁻¹)	28
$VO_2 \max(L\min^{-1})$	4.513
$\dot{v}O_2$ max ml·Kg ⁻¹ ·min ⁻¹	60.0
Maximum Heart Rate (bts min ⁻¹)	189
AT % of \dot{V}_2 max (L·min ⁻¹)	74.3%
Time at AT	6:15
Workload at AT	2.25
Revolutions at AT	3,670
Power Output at AT	6,662
YO ₂ L min ⁻¹ at AT	3.355
$\dot{\gamma}0_2 \text{ ml}\cdot\text{Kg}^{-1}\cdot\text{min}^{-1}$ at AT	44.6
Heart Rate at AT	163

Post-Training Test Raw Data of Subject 3

Time	Revs	St. R	t/ IŸF	FEO ₂	FECO ₂	Ϋ _F	ΫF	Ý02	ÝCO ₂	RER	Heart	
min:sec	: No/min	min	BTPS L/mi) N		02 L/L	CO ₂ L/L	STPD L/min	STPD L/min		Rate Bts/min	m1/Kg i /min
		WORK	LOAD	1, 1	1.50 Kp							
0:15 0:30	305	26	40.2 46.5	0.1736	0.0375 0.0391	35.1 26.9	33.2 31.9	1.145	1.210 1.458	1.06 0.85	123 123	14.5 21.8
0:45 1:00 1:15	605	26	45.0 52.7 61.9	0.1591	0.0401	23.4	5 27.9	2.748	2.219	0.81	108 119 128	24.5 34.7
1:30 1:45	310	26	68.2 66.5	0.4507	0.0454	07.0		0.445	0.740	0.07	129 130	77 7
2:00	610	26	63.4	0.1587	0.0454	23.8	\$ 27.4	2.665	2.310	0.87	130	33.7
		WORK	(LOAD	2,	1.75 Kp,	char	iged at	2:00 mi	nutes			
2:15 2:30	305	26	70.7 63.8	0 1607	0.0444	240	200	2 200	2 102	0 00	130 131 172	75 /
3:00 3:15	605	26	69.4 72.0	0.1007	0.0444	24.3	, 20.0	2.177	2.403	0.09	135 136	JJ.4
3:30 3:45 4:00	310 610	26 26	77.1 80.2	0.1611 0.1619	0.0450 0.0446	25.2 25.7	27.7 27.9	3.062 3.123	2.787 2.873	0.91 0.92	138 140	38.7 39.5
4.00	010	WORK	(LOAD	3,	2.00 Kp,	cha	nged at	4:00 m	inutes		140	
4:15 4:30	300	27	73.4 80.6	0.1625	0.0442	26.0	28.2	3.101	2.861	0.92	140 140	39.2
4:45 5:00 5:15	600	27	82.8 85.4 87.5	0 1637	0 0425	26 F	29.3	3 289	2 987	N 91	141 143 145	
5:30 5:45	295	27	88.1 86.3	0.1001	0.0 120	20.0		0.203	2.501	0.71	146 146	
6:00	595	27 27	81.1 1040	0.1649	0.0413	27.3	5 30.2	2.974	2.688	0.90	147	37.6
		TORF		ч,	ζ.ζυκμ,	CHa	ngeu at	0.00 m	muteo			
6:15 6:30 6:45	300	27	88.0 93.2 93.1	0.1643	0 0419	26.9	1 29 7	3 457	3 1 3 1	N 91	149 151 153	43 7
7:00 7:15	600	27	100.7 102.0	0.1657	0.0414	27.9	30.1	3.611	3.345	0.93	153 154	45.6
7:30 7:45 8:00	295 600	27 27	101.6 105.5 103.3	0.1657 0.1667	0.0418 0.0407	28.0 28.6	29.6 30.6	3.766 3.613	3.542 3.378	0.94 0.93	154 154 156	47.6 45.6

		WORI	KLOAD	5,	2.50 Kp,	chan	iged at	8:00 m	inut es			
8:15			110.8								157	
8:30	300	27	114.2								157	
8:45			121.9	0.1683	0.0397	29.0	31.3	4.084	3.890	0.95	158	51.6
9:00	605	27	116.7	0.1684	0.0401	30.0	31.1	3.890	3.753	0.96	159	49.1
9:15	700	07	120.6								160	
9:30	300	27	122.5		0.070/	** *	70.0		7 0 7 0	0.07	160	54.0
9:45	600	27	127.2	0.1697	0.0385	30.9	32.2	4.111	3.939	0.95	101	51.9
10:00	600	21	150.2	0.1094	0.0309	JU.O	32.0	4.237	4.090	0.90	103	55.5
		WOR	rkload	6,	2.75 Kp	, cha	inged a	t 10:00	minutes			
10.15			1346	0 1699	0.0383	311	325	4 3 2 7	4134	0.96	164	547
10:30	305	28	139.3	0.1077	0.0000	01.1	02.0	1.021		0.70	167	•
10:45			136.9	0.1702	0.0385	31.4	32.4	4.356	4.226	0.97	168	55.0
11:00	605	28	134.9	0.1702	0.0383	31.4	32.5	4.297	4.150	0.97	167	54.3
11:15			146.3	0.1719	0.0383	33.2	32.7	4.409	4.473	1.01	169	55.7
11:30	305	28	140.7								170	
11:45			145.1	0.1710	0.0379	32.2	32.9	4.512	4.407	0.98	170	57.0
12:00	605	28	151.2	0.1727	0.0366	33.7	34.1	4.484	4.436	0.99	169	56.6
		WOR	KLOAD	7,	3.00 Kp	, cha	nged a	t 12:00	minutes			
10.15			1 47 4	0 1 7 2 0	0.0760	740	77.0	4 7 7 7	4765	1.01	145	547
12:10	700	70	147.4	0.1729	0.0303	34.0	33.0	4.332	4.505	1.01	100	54.7
12:30	500	50	144.4	0.1700	0.0372	32.5	344	4.270	4.041	0.94	167	56.1
13.00	600	30	148 1	0.7111	0.0002	02.0	04.4	7.774	4.170	0.24	168	00.1
13:15	000	00	146.7								169	
13:30	305	30	153.9	0.1730	0.0358	33.8	34.8	4.553	4.420	0.97	170	57.5
13:45			161.5	0.1733	0.0358	34.8	34.8	4.714	4.642	0.98	171	59.5
14:00	605	30	155.8								171	
		won		0	7 E0 Ka			4.1.00	minutaa			
		NUK	KLUAD	ο,	5.50 KP	, cna	nyeu a	(14:00	mmutes			
14.15			165.5	0.1736	0.0353	34.4	35.3	4.807	4.685	0.97	173	60.7
14:30	305	32	164.9	0.1737	0.0352	34.5	35.4	4.774	4.658	0.98	175	60.3
14:45			164.3	0.1735	0.0358	34.4	35.0	4.811	4.718	0.98	176	60.8
15:00	605	32	169.5	0.1732	0.0364	34.2	34.2	4.951	4.951	1.00	176	62.5
15:15			168.6	0.1733	0.0365	34.4	34.2	4.901	4.938	1.01	177	61.9
15:30	305	33	172.2	0.1733	0.0362	34.3	34.4	5.016	5.004	1.00	178	63.4
15:45			183.0						5 4 0 0		181	
16:00	610	34	186.4	0.1753	0.0348	36.5	35.8	5.111	5.198	1.02	182	64.6
		WOR	KLOAD	9,	3.75 Kp	, cha	nged a	t 16:00	minutes			
16.15			183 5	0.1746	0.0355	35 8	35 1	5,122	5.228	1.02	183	64.7
16:30	305	34	184.9	0.1746	0.0353	35.7	35.3	5.184	5.235	1.01	183	65.5
16:45		<u> </u>	190.4	0.1752	0.0350	36.5	35.6	5.222	5.348	1.02	184	66.0
17:00	605	34	192.3	0.1751	0.0355	36.5	35.2	5.270	5.471	1.04	184	66.6
17:15		-	183.2	0.1748	0.0365	36.3	34.1	5.042	5.367	1.06	185	63.7
17:30	305	35	188.5	0.1748	0.0355	36.1	35.1	5.228	5.372	1.03	185	66.0
17:45			194.1	0.1756	0.0352	37.1	35.4	5.237	5.483	1.05	186	66.2
18:00	610	36	190.3	0.1753	0.0355	36.7	35.2	5.182	5.411	1.04	182	65.5

107

Total Test time (min:sec) 18:00 Total Number of Revolutions 10,880 Maximum Workload (Kp) 3.75 Total Power Output (Kpm) 23,247 Average Stroke Rate (stks min⁻¹) 29 $\dot{V}O_2 \max(L \min^{-1})$ 5.270 $\dot{V}O_2 \max ml \cdot Kg^{-1} \cdot min^{-1} 66.6$ Maximum Heart Rate (bts·min⁻¹) AT % of $\dot{V}O_2 \max (L \cdot min^{-1})$ 82.1% 186 Time at AT 10:15 Workload at AT 2.75 Revolutions at AT 6,030 Power Output at AT VO₂ L·min⁻¹ at AT VO₂ ml·Kg⁻¹·min⁻¹ Heart Rate at AT 12,052 4.327 at AT54.7 163

Table A7

Pre-Training Test Raw Data of Subject 4	4
---	---

Time min:se	Revs c No/min	St. Rt/ min	Ϋ _Е ВТРЗ	FEO ₂	FECO ₂	Ϋ _E O ₂	Ÿ _E CO₂	Ÿ0 ₂ STPD	ÝCO ₂ Stpd	RER	Heart Rate	ÝO ₂ /m1/Kg
			L/mi	n		L/L	L/L	L/min	L/min		Bts/m	nin /min
		WORK	LOAD	1, 1	1.50 Kp							
0:15			29.0	0.1644	0.0395	27.1	32.0	1.071	0.906	0.85	126	17.4
0:30	310	28	35.6	0 1551	0.0417	21.8	3 30 4	1 632	1 1 7 3	0.72	136	26.4
0:45			46.8								140	
1:00	610	28	49.6								145	
1.15	010	20	52.2	0 1537	0 0469	21 f	5 27 0	2 413	1 936	0.80	165	39.1
1.30	305	28	59.2	0.1001	0.0403	21.0		2.410	1.200	0.00	170	02.1
1.30	000	20	50.2								172	
2.00	610	28	57.2	0 1502	0.0451	21	1 28 0	2 910	2 445	0.97	172	15 6
2.00	010	20	00.0	0.1392	0.0451	24.4	+ 20.0	2.010	2.443	0.07	170	43.0
		WORK	load	2,	1.75 Kp,	char	nged at	2:00 mi	inutes			
2.15			61.6								182	
2.13	205	20	71 5								195	
2.30	JUJ	20	74.4	0 1500	0.0460	240	1 27 5		2 700	0.01	100	40 E
Z:43 Z.00	20E	20	14.4 70 A	0.1399	0.0400	24.3	> 27.3	2.907	2.709	0.91	100	40.0
3:00	000	29	70.4								190	
3:15	700	00	77.8	0 4 4 0 7	0.0464	000			0.000	0.04	195	50 5
3:30	500	29	79.5	0.1607	0.0464	25.5	> 27.5	5.111	2.909	0.94	198	50.5
5:45			82.7								198	
4:00	605	29	82.7								201	
		WORKL	OAD	3,	2.00 Kp,	char	iged at	4:00 mi	nutes			
4.15			00 4	0 1 6 0 0	0.0460	25.4		7 1 40	2 007	0.05	207	E1 0
4:10	700	20	00.4	0.1000	0.0409	23.0	27.0	5.140	2.900	0.95	207	51.0
4:50	500	29	11.3	0.1598	0.0476	25.1	26.6	5.079	2.905	0.94	205	50.0
4:45		~~	85.6								204	
5:00	600	29	88.9								204	
5:15			88.7	0.1624	0.0461	26.6	27.4	5.330	3.233	0.97	205	54.0
5:30	300	30	90.3	0.1624	0.0461	26.6	27.4	3.393	3.293	0.97	210	55.1
5:45			89.1								210	•
6:00	600	30	91.5								204	
		WORKL	OAD	4,	2.25 Kp,	char	iged at	6:00 mi	nutes			
6.1E			00 1	0 1417	0.0445	26 0		7 700	7 7 2 0	0.04	204	EVE
0:15	700	7.	00.1	0.1017	0.0405	20.2	. 21.2	3.359	3.328	0.90	204	04.0 E7 /
0:50	500	31	05.0	0.1010	0.0475	25.5 25		3.306	5.214	0.97	204	53.5 61.0
0:45 7.00			95.6	0.1601	0.0484	25.4	F 26.1	5.770	5.658	0.97	205	61.Z
7:00	600	30	91.6	0.1615	0.0479	26.3	26.4	5.547	3.529	0.99	209	57.6
7:15			93.2			-	_	_			209	
7:30	300	31	97.8	0.1629	0.0470	27.1	26.9	3.603	3.634	1.01	211	58.5
7:45			97.3								211	
8:00	600	31	90.5								210	

		WOR	KLOAD	5,	2.50 Kp, changed at 8:00 minutes	
8:15			104.0	0.1640	0.0464 27.9 27.2 3.730 3.817 1.02 210	60.5
8:30	300	31	104.4	0.1648	0.0459 28.4 27.6 3.682 3.789 1.03 210	59.7
8:45			101.9		210	
9:00	600	32	107.0		210	
9:15			104.0	0.1643	0.0464 28.1 27.2 3.701 3.819 1.03 210	610
9:30	300	32	99.2	0.1632	0.0467 27.3 27.1 3.631 3.663 1.01 210	58.9
9:45			106.0		212	
10:00	595	32			212	
		WOR	Kload	6,	2.75 Kp, changed at 10:00 minutes	
10:15			104.5	0.1640	0.0458 27.8 27.6 3.761 3.789 1.01 215	61.0
10:30	305	32	108.0	0.1651	0.0449 28.5 28.2 3.797 3.832 1.01 215	61.6
10:45			108.5	0.1661	0.0441 29.1 28.7 3.723 3.784 1.02 214	60.4
11:00	525	32	109.0	0.1665	0.0438 29.5 28.9 3.696 3.773 1.02 213	60 .0

Total Test time (min:sec)	11:00
Total Number of Revolutions	6,550
Maximum Workload (Kp)	2.75
Total Power Output (Kpm)	14,319
Average Stroke Rate (stks min ⁻¹)	30
$VO_2 \max(L \min^{-1})$	3.797
ÝO ₂ max ml·Kg ⁻¹ ·mín ⁻¹	61.6
Maximum Heart Rate (bts;min ⁻¹)	215
AT % of ŸO₂ max (L·min ⁻¹)	86.8%
Time at AT	5:15
Workload at AT	2.00
Revolutions at AT	3,030
Power Output at AT	3,948
¥0₂ L·min [−]] at AŢ	3.330
¥0 ₂ m1·Kg ⁻¹ ·min ⁻¹ at AT	54.0
Heart Rate at AT	202

Post-Training Test Raw Data of Subject 4

Time min:sec	Revs No/min	St. R min	t/ Ÿ _E BTP: L/m	FEO ₂ S in	FECO ₂	Ÿ _E O ₂ L/L	^Ϋ Ε CO ₂ L/L	ÝO ₂ STPD L/min	ÝCO ₂ STPD L/min	RER	Heart Rate Bts/m	Ÿ0 ₂ m]/Kg in ∕min
		WORI	<load< th=""><th>1, 1</th><th>1.50 Kp</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></load<>	1, 1	1.50 Kp							
0:15 0:30 0:45	300	26	34.9 42.0 47.6	0.1667 0.1576	0.0428 0.0440	29.1 23.1	29.2 28.4	1.199 1.820	1.193 1.477	1.00 0.81	166 171 168	18.8 28.6
1:00 1:15	600	26	52.9 59.5	0.1547	0.0468	21.9	26.7	2.717	2.225	0.82	175 174	42.7
1:30 1:45 2:00	300 600	26 26	51.2 63.8	0 1548	0.0491	22.1	25 5	2 705	2351	0.87	172 180 181	12 5
2:00	000	20	37.7	0.1340	0.0471	22.1	20.0	2.705	2.334	0.07	101	42.3
		WORI	<load< td=""><td>2,</td><td>1.75 Kp,</td><td>chan</td><td>ged at</td><td>2:00 mi</td><td>nutes</td><td></td><td></td><td></td></load<>	2,	1.75 Kp,	chan	ged at	2:00 mi	nutes			
2:15 2:30 2:45	300	26	65.7 67.3 65.1	0 1563	በ በ494	23.0	25.3	2 833	2 575	N 91	184 185 184	44.5
3:00 3:15	600	26	68.4 71.4	0.1000	0.0 17 1	20.0	20.0	2.000	2.010	0.71	188 190	
3:30 3:45 4:00	295 595	26 26	77.6 76.2 75.7	0.1580 0.1584	0.0493 0.0493	23.9 24.2	25.3 25.3	3.245 3.155	3.064 3.008	0.94 0.95	192 192 192	51.0 49.6
		WORK	(LOAD	3,	2.00 Kp,	char	nged at	4:00 mi	nutes			
4:15 4:30 4:45	300	27	78.4 75.8 80.1	0.1571	0.0508	23.6	24.6	3.212	3.083	0.96	192 194 194	50.5
5:00 5:15	600 300	27 27	82.6 78.9 86.1	0.1517	0.0517	23.5	24.2	3.359 3.458	3.264 3.461	0.97	194 195 196	52.8 54 3
5:45 6:00	600	27	89.6 88.0	0.1024	0.0002	24.7	24.7	5.450	5.401	1.00	196 198	34.3
		WORK	LOAD	4,	2.25 Kp,	chan	ged at	6:00 mi	nutes			
6:15 6:30 6:45	300	27	94.2 89.4 95.7	0.1622 0.1609	0.0484 0.0495	26.5 25.8	25.8 25.2	3.556 3.467	3.648 3.542	1.03 1.02	200 200 200	55.9 54.5
7:00 7:15 7:30	600 295	27 27	97.2 96.4 98 1	0.1626	0.0478 0.0⊿79	26.7	26.1	3.606 3.637	3.687 3.763	1.02	200 201 201	56.7 57.2
7:45 8:00	580	27	95.8 105.5	0.1022	9.9 H Z	21.0	20.1	0.001	0.100	1.00	202 202	ст. <u>с</u>

		W0	RKLOAD	5,	2.50 Kp, changed at 8:00 minutes	
8:15			104.7	0.1636	0.0477 27.5 26.2 3.813 3.995 1.05 203 59	9.9
8:30	300	27	104.3	0.1626	0.0492 26.9 25.4 3.869 4.104 1.06 204 60).8
8:45			99.4	0.1600	0.0522 25.6 23.9 3.889 4.153 1.07 205 61	.1
9:00	600	27	110.7		205	
9:15			109.8	0.1646	0.0476 28.2 26.3 3.893 4.181 1.07 205 61	.2
9:30	300	27	108.6	0.1649	0.0472 28.4 26.4 3.828 4.106 1.07 205 60).2
9:45			107.5		206	
10:00	600	27	114.2		206	
		WOR	KLOAD	6,	2.75 Kp, changed at 10:00 minutes	
10:15			111.0	0.1659	0.0458 29.0 27.3 3.825 4.070 1.06 208 60).1
10:30	300	27	105.9		209	
10:45			110.7		209	
11:00	600	27	112.7	0.1638	0.0476 27.6 26.2 4.086 4.297 1.05 208 64	1.2
11:15			113.6	0.1662	0.0455 29.2 27.5 3.891 4.139 1.06 209 61	.9
11:30	300	27	113.3	0.1662	0.0459 29.3 27.5 3.871 4.156 1.07 198 60).8
11:45			115.3	<i>.</i> •	210	
12:00	600	27	112.2		210	
		WOR	Kload	7,	3.00 Kp, changed at 12:00 minutes	
12:15			119.9	0.1674	0.0445 30.1 28.1 3.986 4.265 1.07 212 62	2.6
12:30	280	31	118.6		212	
12:45			118.9		212	
13:00	505	31	116.6	0.1685	0.0437 30.9 28.6 3.774 4.072 1.08 214 59	9.6

Total Test time (min:sec)	13:00
Total Number of Revolutions	7,670
Maximum Workload (Kp)	3.00
Total Power Output (Kpm)	17,602
Average Stroke Rate (stks min ⁻¹)	29
$\dot{V}O_2 \max(L \min^{-1})$	4.086
$\dot{v}O_2$ max ml·Kg ⁻¹ ·min ⁻¹	64.2
Maximum Heart Rate (bts;min ⁻¹)	214
AT % of $\dot{V}O_2$ max (L·min ⁻¹)	88.8%
Time at AT	8:15
Workload at AT	2.50
Revolutions at AT	4,775
Power Output at AT	9,322
VO ₂ L·min ⁻¹ at AT	3.813
ÝO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	59.9
Heart Rate at AT	203

Pre-Training Test Raw Data of Subject S

Time min:sec	Revs No/min	St. R mit	t/ Ÿ _E n BTPS	FEO ₂	FEC02	Ϋ _Ε 0 ₂	^Ϋ Ε CO ₂	ÝO ₂ STPD	ÝCO ₂ STPD	RER	Heart Rate Bts/mi	ÝO2 m1/Kg
			<u> </u>	···								
		WOR	<load< td=""><td>1, 1</td><td>1.50 Kp</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></load<>	1, 1	1.50 Kp							
0:15			26.1	0.1607	0.0458	25.0	27.2	1.044	0.961	0.92	122	13.5
0:30	335	27	27.3	0.1557	0.0481	22.4	25.8	1.217	1.055	0.87	118	15.8
0:45			25.7								136	
1:00	665	27	38.4								138	
1.15			42.5	0 1620	0.0451	25.8	27.6	1.651	1 5 4 2	0.93	149	
1.30	310	28	542	0.1020	0.0 101	20.0		1.001	1.0 12	0.50	159	
1.45	010	20	57.6								164	
2.00	620	28	69.8	0 1576	0 0487	235	25 5	2 969	2 734	0.92	166	38 5
2.00	020	20	07.0	0.1510	0.0401	20.0	20.0	2.707	2.134	0.72	100	30.5
		WORK	(LOAD	2,	1.75 Kp,	chan	ged at	2:00 mi	nutes			
0 4 F			74.7									
2:15		~~	71.5								167	
2:30	305	29	69.2								167	
2:45			78.0	0.1564	0.0542	23.5	22.9	3.323	3.401	1.02	169	43.1
3:00	620	29	77.5								170	
3:15			87.3								170	
3:30	310	30	84.5	0.1592	0.0543	25.2	22.9	3.357	3.689	1.10	171	43.5
3.45			89.0	0.1594	0.0546	25.4	22.8	3.506	3.912	1.12	174	45.4
4:00	620	30	89.5						135	٠	176	
				_					22.4			
		WORK	(LOAD	3,	2.00 Kp,	char	nged at	4:00 mi	nutes			
4.15			843								176	
4.30	310	30	80.0	0 1580	0.0553	25.1	22 5	3 577	4 003	1 1 2	176	<u> 46 4</u>
4.00	510	50	96.5	0.1502	0.0000	26.7	22.5	3 6 2 0	4.003	1 1 7	178	46.Q
5.00	620	Z 0	1045	0.1017	0.0520	20.1	23.0	J.020	4.000	1.15	170	40.2
5.15	020	00	05 /								170	
5.15	71 0	X 0	107 5	0 1470	0.0517	27 5	241	7 004	1 167	1 1 4	100	E0 4
5:30 E AE	310	30	107.0	0.1030	0.0317	27.0	24.1	J.700	4.407	1.14	100	30.0 52.2
5.45 4.00	C15	70	100.9	0.1045	0.0400	20.2	29.9	J.002	4.274	1.11	102	52.2
0:00	013	30	111.9								104	
		WORK	(LOAD	4,	2.25 Kp,	char	nged at	6:00 mi	nutes			
6.15			1101								104	
0:10	705	70	110.1	0.1451	0.0477	20 5	26.1	4 0 2 0	4 707	1.00	104	E2 2
0:50	203	JU	114.0	0.1001	0.0477	20.0	20.1	4.020	4.377	1.09	100	92.2 59.5
0:45 T.cc		.	119.7	0.1665	0.0467	29.6	20.0	4.048	4.492	1.11	180	52.5
7:00	625	5U	114.7								188	
7:15			120.0			_					188	
7:30	305	29	127.6	0.1670	0.0462	29.9	27.0	4.272	4.731	1.11	188	55.4
7:45			120.8	0.1666	0.0458	29.5	27.2	4.101	4.449	1.08	190	53.2
8:00	615	30	125.3								191	

		WOR	KLOAD	5,	2.50 Kp,	char	iged at	8:00 m	inutes			
8:15			126.2	0.1688	0.0432	31.0	28.9	4.071	4.375	1.07	192	52.8
8:30	310	30	136.5	0.1694	0.0429	31.5	29.0	4.328	4.700	1.09	193	56.1
8:45			125.4	0.1669	0.0446	29.6	27.9	4.243	4.495	1.06	195	55.0
9:00	620	30	131.4	0.1681	0.0436	30.4	28.5	4.323	4.605	1.07	195	56.0
9:15			140.7	0.1691	0.0424	31.1	29.4	4.516	4.789	1.06	195	58.5
9:30	330	28	156.1	0.1691	0.0429	31.3	29.0	4.990	5.377	1.08	195	64.7
9:45			156.3	0.1700	0.0439	32.3	28.4	4.833	5.508	1.14	196	62.6
10:00	640	28	159.4	0.1698	0.0442	32.2	28.2	4.948	5.664	1.14	196	64.1

Total Test time (min:sec)	10:00
Total Number of Revolutions	6,260
Maximum Workload (Kp)	2.50
Total Power Output (Kpm)	12,486
Average Stroke Rate (stks min ⁻¹)	29
$VO_2 \max(L \min^{-1})$	4.990
\dot{VO}_2 max ml·Kg ⁻¹ ·min ⁻¹	64.7
Maximum Heart Rate (bts min ⁻¹)	196
AT % of ¥0₂ max (L·min ^{−1})	78.2%
Time at AT	5:30
Workload at AT	2.00
Revolutions at AT	3,145
Power Output at AT	5,338
YO ₂ L·min ⁻¹ at AT	3.906
ŸO₂m1·Kg ⁻¹ ·min ⁻¹ at AT	50.6
Heart Rate at AT	180

Post-Training Test Raw Data of Subject 5

Time	Revs	St. Rt	ΥΎF	FEO ₂	FECO ₂	Ýϝ	Ϋ _F	ΫO ₂	ÝCO ₂	RER	Heart	ΫO ₂
min:see	c No/min	mir	n BTPS	6		02	$\overline{CO_2}$	STPD	STPD		Rate	m1/Kg
			L/mi	N		ιλ	L/Ī	L/min	L/min		Bts/n	nin /min
		WORK	LOAD	1, 1	1.50 Kp							
0.4E			70.0	0 4 5 4 7	0.0.474					0.07		47.0
0:15	705	~ 7	50.8	0.1567	0.04/1	22.9	26.6	1.544	1.160	0.86	146	17.9
0:50	325	27	40.6	U.1486	0.0508	19.6	24.6	2.351	1.875	0.80	148	51.5
0:45	(70	~ 7	46.5								149	
1:00	630	27	52.5	0.1454	0 0530	100	- 21 - 2	2 0 2 0	2 407	0.00	151	777
1:15	705	07	55.8	0.1450	0.0578	19.0	21.0	2.829	2.495	0.88	151	J/.D
1:50	205	27	02.9 50.2								155	
1:45	610	27	59.Z	0 1493	0.0576	20 5	217	3 041	2 870	n 94	150	40.5
2.00	010	C 1	06.6	0.1420	0.0010	20.0	21 .1	0.041	2.010	Q.24	100	-10.0
		WORK	LOAD	2,	1.75 Kp,	chan	ged at :	2:00 mi	nutes			
2.15			73 5								150	
2.13	310	27	687								160	
2.30	510	21	60.7	0 1400	0 0505	20 5	21.0	3 376	3 300	0.08	162	44.9
2.40	610	27	76.6	0.1490	0.0393	20.0	21.0	3.570	3.500	1.00	162	лт.2 Л7 3
3.00	010	21	75.4	0.1311	0.0017	21.0	21.5	0.004	5.555	1.00	164	71.0
3.30	305	27	61.2								165	
3.45	000	2.1	82.6	0 1532	0.0575	22 3	217	3 710	3 806	1.03	166	49 4
4:00	610	27	80.1	0.1528	0.0583	22.1	21.4	3.617	3.743	1.03	167	48.1
		woov	1045	7	2.00 %-		and at	4.00 mi				
		TOKK	LUHD	J,	2.00 κμ,	Cilai	iyeu at	4.00 m	110162			
4:15			81.0								169	
4:30	305	27	77.2								169	
4:45			86.5	0.1539	0.0574	22.6	21.8	3.832	3.974	1.04	170	51.0
5:00	605	27	71.0	0.1497	0.0614	21.0	20.3	3.382	3.492	1.03	171	45.0
5:15			77.9								172	
5:30	310	27	86.0								173	
5:45			76.2	0.1518	0.0586	21.7	21.3	3.516	3.582	1.02	174	46.8
6:00	610	27	87.0								174	
		WORK	LOAD	4,	2.25 Kp,	char	nged at	6:00 mi	nutes			
C.15			0F 4								100	
0:15	700	7 7	05.4	0 1674	0.0574	31 4	31.0	7 00 4	4 0 40	1.07	107	52.2
0:00	500	21	00.1	0.1530	0.0574	22.4	21.8	3.924	4.048	1.05	100	JZ.Z
0:45	20E	27	90.J 00 0								103	
7:00	000	21	00.0	0.1554	0.0570	27 F	21.0	4 705	1211	1.07	103	577
7:10	700	27	101.1	0.1000	0.0570	23.3	21.9	4.305	4.011	1.07	104	57.3 E7 4
7:30	500	21	94.0	0.1558	0.0564	23.5	22.1	4.017	4.273	1.06	105	55.4
7:40 9.00	200	27	92.0									
0.00	000	41	77.l								107	

		WORK	(LOAD	5,	2.50 Kp,	chan	ged at	8:00 mi	inutes			
8:15			99.6	0.1572	0.0555	24.2	22.5	4.111	4.429	1.08	188	54.7
8:30	310	28	100.7	0.1561	0.0572	23.8	21.8	4.239	4.611	1.09	188	56.4
8:45			106.0	0.1534	0.0592	22.5	21.1	4.702	5.031	1.07	189	62.6
9:00	615	28	101.3								190	
9:15			110.3	0.1585	0.0545	24.9	22.9	4.433	4.817	1.09	190	59.0
9:30	305	29	97.8	0.1571	0.0564	24.3	22.1	4.034	4.423	1.10	189	53.7
9:45			109.9								190	
10:00	610	29	110.0								190	
		WOR	KLOAD	6,	2.75 Kp,	char	nged at	10:00	minutes			
10:15			110.1	0.1586	0.0551	25.0	22.7	4.400	4.856	1.10	192	58.5
10:30	300	29	109.4	0.1596	0.0542	25.6	23.0	4.280	4.751	1.11	195	57.0
10:45			115.4								194	
11:00	600	29	119.8								195	
11:15			127.5	0.1615	0.0527	26.6	23.7	4.790	5.378	1.12	196	63.7
11:30	305	30	121.2	0.1611	0.0531	26.4	23.5	4.589	5.158	1.12	197	61.1
11:45			124.4								197	
12:00	605	29	127.1								198	
		WOR	KLOAD	7,	3:00 Kp	, cha	nged a	t 12:00	minutes			
12:15			137.6	0.1633	0.0507	27.7	24.7	4.972	5.583	1.12	199	66.2
12:30	315	30	131.2	0.1633	0.0511	27.8	24.4	4.729	5.371	1.14	202	62.9
12:45			143.9	0.1633	0.0496	27.6	25.2	5.221	5.717	1.09	203	69.5
13:00	625	30	147.2									
13:15			130.1									
13:30	310	30	148.8	0.1654	0.0503	29.4	24.8	5.065	5.997	1.18	203	67.4
13:45			156.9	0.1668	0.0491	30.4	25.4	5.157	6.170	1.20	203	68.6
14:00	615	30	147.7	0.1650	0.0546	29.8	22.9	4.948	6.461	1.31	203	65.8

Total Test time (min:sec)	14:00
Total Number of Revolutions	8,550
Maximum Workload (Kp)	3.00
Total Power Output (Kpm)	19,219
Average Stroke Rate (stks·min ⁻¹)	28
$\dot{V}O_2 \max(L \min[1])$	5.221
ÝO ₂ max ml·Kg ⁻¹ ·min ⁻¹	69.5
Maximum Heart Rate (bts;min ⁻¹)	203
AT % of VO ₂ max (L·min ⁻¹)	81.2%
Time at AT	8:30
Workload at AT	2.50
Revolutions at AT	5,190
Power Output at AT	9,526
¥0 ₂ L·min [−]] at AT	4.239
ÝO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	56.4
Heart Rate at AT	188

Pre-Training Test Raw Data of Subject 6

Time	Revs	St. Rt	/ Ŷ _E	FEO ₂	FECO ₂	ΫE	Ϋ _E	ΫO ₂	ÝCO ₂	RER	Heart	ΫO ₂
min:sec	No/min	min	BTPS	; n		02 L/L	CO ₂ L/L	STPD L/min	STPD L/min		Rate Bts/m	m1/Kg nin /min
		WORK	LOAD	1, 1	.50 Kp							
0:15			34.8	0.1719	0.0400	34.1	31.6	1.019	1.100	1.08	147	11.2
0:30 0:45	305	27	50.7 54.0	0.1610	0.0439	25.4	28.8	1.998	1.757	0.88	144 146	21.9
1:00 1:15	605	27	66.5 70.4	0.1556	0.0510	23.1	24.8	3.052	2.845	0.93	1 46 1 48	33.5
1:30 1:45	305	27	78.3 74.7								1 49 1 49	
2:00	610	27	82.5	0.1588	0.0514	25.0	24.6	3.308	3.356	1.01	150	36.3
		WORK	LOAD	2,	1.75 Kp,	chan	ged at 2	2:00 mi	nutes			
2:15 2:30 2:45	310	28	76.4 82.4 75 9	0.1573	0.0538	24.3	23.5	3.140	3.258	1.04	154 154 156	34.4
3:00 3:15	610	28	86.6 82.9	0.1579 0.1579	0.0532 0.0528	24.6 25.1	23.8 23.9	3.515 3.303	3.643 3.463	1.04	157 158	38.5 36.2
3:30 3:45	300	28	86.6 84.1								158 160	
4:00	600	29	86.8	0.1594	0.0527	25.5	24.0	3.403	3.625	1.07	162	37.3
		WORK	LOAD	3,	2.00 Kp,	char	nged at	4:00 mi	nutes			
4:15 4:30 4:45	300	29	77.3 96.7 92.3	0.1575	0.0537	24.4	1 23.5	3,162	3.283	1.04	164 165 168	34.7
5:00 5:15	605	29	90.0 100.4	0.1601 0.1624	0.0505 0.0499	25.7 27.2	25.0 25.3	3.503 3.689	3.597 3.968	1.03 1.08	169 170	38.4 40.5
5:30 5:45	295	30	99.8 96.6								170 172	
6:00	59 5	30	102.9	0.1628	0.0485	27.3	26.0	3.775	3.953	1.05	173	41.4
		WORK	LOAD	4,	2.25 Kp,	char	iged at	6:00 mi	nutes			
6:15 6:30	300	30	103.4	0.1627 0.1586	0.0491 0.0531	27.3 25.0	25.7 23.8	3.787 4.137	4.019 4.359	1.06 1.05	174 175	41.5 45.5
6:45			106.8								176	
7:00 7:15	600	30	101.8 109.2	0.1624 0.1627	0.0490 0.0488	27.1 27.2	25.8 25.9	3.748 4.010	3.948 4.222	1.05 1.05	176 177	41.2 44.0
7:30 7:45	500	30	94.8 113.6	0.1475	0.0474			4.00.4			179 180	47.0
5:UU	6UU	5U	110.9	0.1655	0.0476	21.1	26.6	4.004	4.171	1.04	181	45.9

		WO	RKLOAD	5,	2.50 Kp, changed at 8:00 minutes	
8:15	700	70	118.6	0.1648	0.0471 28.6 26.8 4.144 4.423 1.07 181 4	5.4
0:50 8:45	500	50	112.8	0.1010	0.0514 20.4 24.6 4.272 4.594 1.06 102 40	0.0
9:00	600	30	112.6	0.1638	0.0471 27.8 26.9 4.045 4.191 1.04 183 4	4.4
9.15			123.3	0.1656	0.0460 29.1 27.5 4.240 4.486 1.06 184 44	6.5
9:30	295	31	117.8		184	
9:45 10-00	600	31	125.0	0 1657	0.0448 29.0 28.2 4.311 4.425 1.03 186 4	73
10.00	000	01	120.0	0.1001	0.0440 23.0 20.2 4.011 1.120 1.00 100 1	1.0
		WOR	KLOAD	6,	2.75 Kp, changed at 10:00 minutes	
10.15			100.0		107	
10:15	300	31	122.2		100	
10:45	500	51	118.0	0.1642	0.0459 27.9 27.6 4.226 4.280 1.01 187 40	6.3
11:00	600	31	128.9	0.1659	0.0450 29.2 28.1 4.416 4.588 1.04 188 44	8.4
11:15			118.8	0.1633	0.0474 27.5 26.7 4.326 4.458 1.03 189 4	7.4
11:30	300	31	113.9	0.445.4		~ ~
11:45	600	71	128.2	0.1654		5.8 5.5
12:00	000	51	110.0	0.1055	0.0430 29.0 20.1 4.140 4.230 1.02 190 4	J.J
		WOR	KLOAD	7,	3.00 Kp, changed at 12:00 minutes	
12:15			132.5		192	
12:30	295	32	122.5		192	
12:45			110.0	0.1613	0.0496 26.4 25.5 4.171 4.316 1.03 193 45	5.7
13:00	595	32	122.7	0.1652	0.0443 28.5 28.5 4.304 4.300 1.00 195 4	7.2
13:15	285	32	141.5	0.1661	U.U458 29.1 28.9 4.917 4.959 1.01 195 53	э.У
13:45	200	JZ	130.5	0.1658	0.0455 29.2 27.8 4.472 4.700 1.05 197 49	9.0
14:00	460	32	139.3	0.1669	0.0445 30.0 28.4 4.650 4.901 1.05 198 51	1.0

Total Test time (min:sec)	14:00
Total Number-of Revolutions	8,280
Maximum Workload (Kp)	3.00
Total Power Output (Kpm)	18,505
Average Stroke Rate (stks min ⁻¹)	29
$\dot{Y}O_2 \max(L\min^{-1})$	4.917
ÝO ₂ max ml·Kg ⁻¹ ·min ⁻¹	53.9
Maximum Heart Rate (bts;min ⁻¹)	198
AT $\%$ of VO_2 max (L min ⁻¹)	76.7%
Time at AT	6:00
Workload at AT	2.00
Revolutions at AT	3,615
Power Output at AT	6,340
ÝO ₂ Limin ⁻¹ at AT	3.775
ÝO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	41.4
Heart Rate lat AT	173

Post-Training Test Raw Data of Subject 6
--

Time	Revs	St. R	V Ÿ _E	FEO ₂	FECO ₂	Ϋ́Ε	Ϋ _E	Ý0 ₂	ÝCO ₂	RER	Heart	ΫO ₂
min:sec	No/min	min	BTP: L/m	5 in		02 L/L	CO2 L/L	STPD L/min	STPD L/min		Rate Bts/min	m1/Kg /min
		WORK	LOAD	1, 1	.50 Kp							
0:15			35.6	0.1604	0.0453	24.9	27.6	1.432	1.291	0.90	127	16.1
0:30 0:45	305	25	44.4 44.5	0.1545	0.0486	22.0	25.7	2.021	1.727	0.85	130 131	22.7
1:00 1:15	605	25	49.2 49.9	0.1470	0.0525	19.1	23.8	2.611	2 097	0.80	131 132	
1:30	300	25	53.0	0.1 110	0.0020	12.1	20.0	2.011	2.071	0.00	132	
2:00	600	26	61.8	0.1505	0.0515	20.4	24.2	3.027	2.549	0.84	139	33.9
		WORK	(LOAD	2,	1.75 Kp,	chang	jed at 2	2:00 mii	nutes			
2:15 2:30	300	26	61.5 65.0								1 40 1 40	
2:45 3:00	600	26	61.5 68.6	0.1501	0.0532	20.4	23.5	3.019	2.618	0.87	140 144	33.8
3:30 3:45	300	26	65.8 68.6	0.1494	0.0558	20.3	22.4	3.235	2.940	0.91	149 1 149	36.3
4:00	60 0	26	73.7								150	
		WORK	LOAD	3,	2.00 Kp,	chang	ged at 4	4:00 mii	nutes			
4:15 4:30 4:45	300	26	70.3 84.3 84.9	0.1524 0.1533	0.0541 0.0539	21.5 21.9	23.1 23.2	3.269 3.844	3.043 3.693	0.93 0.95	152 154 156	36.6 43.1
5:00 5:15	600	26	82.3 83.6	0.1545	0.0532	22.4	23.5	3.726	3.559	0.96	157 158	41.8
5:30 5:45	295	26	89.8 90.9	0.1553	0.0532	22.9	23.5	3.931	3.831	0.97	163 164	44.1
6:00	595	26	86.8								165	
		WORK	LOAD	4,	2.25 Kp,	chan	ged at	6:00 mi	nutes			
6:15 6:30 6:45	290	26	93.5 87.4 99.4	0.1556 0.1548	0.0536 0.0542	31.1 22.7	23.3 23.0	4.054 3.845	4.010 3.790	0.99 0.99	165 165 166	45.5 43.1
7:00 7:15	590	26	92.9 95.0	0.1561	0.0530	23.3	23.6	4.083	4.031	0.98	167 169	45.8
7:30 7:45	300	26	98.9 98.1	0.1566	0.0529	23.6	23.6	4.194	4.187	1.00	170	47.0
8:00	600	26	104.7								172	

		WORI	(LOAD	5,	2.50 Kp,	chan	ged at	8:00 mi	inutes			
8:15 8:30 8:45	295	27	100.7 98.5 106.3	0.1567 0.1572	0.0537 0.0532	23.7 23.9	23.3 23.5	4.254 4.118	4.328 4.194	1.02 1.02	173 174 175	47.7 46.2
9:00 9:15	595	27	100.5	0 1580	0.0521	243	24.0	4 471	4 5 2 4	1 0 1	175 175	50.1
9:30	295	27	106.8	0.1582	0.0526	24.5	23.7	4.368	4.503	1.03	177	49.0
9:45 10:00	600	27	11.9.8								179	
		WOR	KLOAD	6,	2.75 Kp,	chan	ged at	10:00 n	ninutes			
10:15			110.3	0.1590	0.0515	24.8	24.2	4.450	4.549	1.02	178	49.9
10:30 10:45	300 🖹	27	115.6	0.1608	0.0505	25.8	24.7	4.476	4.673	1.04	178 179	50.2
11:00	600	27	102.7								179	
11:15	295	27	115.6	0.1600	0.0516	25.5 25.3	24.2	4.535	4.776	1.05	180 181	50.8 51.8
11:45			106.2								181	
12:00	595	27	117.5								181	
		WOR	KLOAD	7,	3.00 Kp,	, char	nged at	12:00	minutes			
12:15		~ 7	117.8	0.1602	0.0515	25.6	24.2	4.610	4.858	1.05	182	51.7
12:30	300	27	123.5	0.1615	0.0506	20.2	24.7	4.720	4.998	1.06	182	52.9
13:00	600	28	124.2	0 1611	0.0500	26 1	24 F	1020	E 107	1.07	182	546
13:30	300	28	127.2	0.1604	0.0509	25.7	24.J 24.1	4.798	5.121	1.07	184	- 53.8
13:45	600	28	127.1								184 184	
17.00	000	20	121.1	_							104	
		WOR	KLOAD	8,	3.50 Kp,	char	nged at	14:001	minutes			
14:15												
12.41			122.1	0.1592	0.0529	25.1	23.6	4.858	5.177	1.07	184	54.5
14:45	300	28	122.1 128.9 136.0	0.1592 0.1608	0.0529 0.0516	25.1 26.0	23.6 24.2	4.858 4.954	5.177 5.325	1.07 1.07	184 185 185	54.5 55.5
14:45 15:00	300 600	28 28	122.1 128.9 136.0 135.2	0.1592	0.0529	25.1 26.0	23.6 24.2	4.858 4.954	5.177 5.325	1.07	184 185 185 185	54.5 55.5
14:45 15:00 15:15 15:30	300 600 295	28 28 28	122.1 128.9 136.0 135.2 131.6 135.5	0.1592 0.1608 0.1612 0.1625	0.0529 0.0516 0.0513 0.0507	25.1 26.0 26.2 27.1	23.6 24.2 24.4 24.6	4.858 4.954 5.013 5.007	5.177 5.325 5.399 5.497	1.07 1.07 1.08 1.10	184 185 185 185 185 185	54.5 55.5 56.2 56.1
14:45 15:00 15:15 15:30 15:45	300 600 295	28 28 28	122.1 128.9 136.0 135.2 131.6 135.5 138.9	0.1592 0.1608 0.1612 0.1625	0.0529 0.0516 0.0513 0.0507	25.1 26.0 26.2 27.1	23.6 24.2 24.4 24.6	4.858 4.954 5.013 5.007	5.177 5.325 5.399 5.497	1.07 1.07 1.08 1.10	184 185 185 185 185 185 187 188	54.5 55.5 56.2 56.1
14:30 14:45 15:00 15:15 15:30 15:45 16:00	300 600 295 405	28 28 28 28	122.1 128.9 136.0 135.2 131.6 135.5 138.9 127.7	0.1592 0.1608 0.1612 0.1625 0.1599	0.0529 0.0516 0.0513 0.0507 0.0531	25.1 26.0 26.2 27.1 25.6	23.6 24.2 24.4 24.6 23.5	4.858 4.954 5.013 5.007 4.906	5.177 5.325 5.399 5.497 5.347	1.07 1.07 1.08 1.10	184 185 185 185 185 187 188 188	54.5 55.5 56.2 56.1 55.0

•

Total Test time (min:sec)	16:00
Total Number of Revolutions	9,380
Maximum Workload (Kp)	3.50
Average Stroke Rate (stks min ⁻¹)	27
Total Power Output (Kpm)	22,367
$\dot{v}0_2 \max(L \min^{-1})$	5.013
VO_2 max ml Kg ⁻¹ min ⁻¹	56.2
Maximum Heart Rate (bts:min ⁻¹)	188
AT % of ÝO ₂ max (L·min ⁻¹)	89.2%
Time at AT	9:15
Workload at AT	2.50
Revolutions at AT	5,385
Power Output at AT	10,825
¥0 ₂ L·min ^{−1} at AŢ	4.471
YO ₂ ml·Kg ⁻¹ ·min ⁻¹ at AT	50.1
Heart Rate at AT	175

Pre-Training Test Raw Data of Subject 7

Time	Revs	St. Rt.	^{/Υ} E	FEO ₂	FECO ₂	ΫE	ΫE	Ϋ0 ₂	YCO ₂	RER	Heart	Ϋ02
min:sec	No/min	min	BTPS L/mi	n	in the second	02 L/L	CO ₂ L/L	STPD L/min	STPD L/min		Rate Bts/min	m1/Kg /min
		WORK	LOAD	1, 1	i.50 Kp							
0:15			41.7	0.1659	0.0432	28.2	28.7	1.479	1.455	0.98	116	16.6
0:30 0:45	320	27	39.1 55.1	0.1572	0.0457	22.8	3 27.1	1.712	1.443	0.84	117 123	19.2
1:00	630	27	54.1	0 1 40 1	0.0514	10.5	> 240	2 2 2 2	2220	0 00	129	27.2
1:15 1:30 1:45	310	27	69.6 69.9	0.1401	0.0310	13.2	. 24.0	5.524	2.000	0.00	130	57.2
2:00	620	27	71.6	0.1532	0.0514	21.4	4 24.1	3.348	2.975	0.89	132	37.5
		WORK	LOAD	2,	1.75 Kp,	char	nged at	2:00 mi	nutes			
2:15 2:30	305	27	70.8 72.4	0 1521	0.0572	21.1	22.2	2 2 7 7 7	7 061	0.01	131 133 136	779
2:45 3:00 3:15	610	27	71.4	0.1521	0.0552	21.1	23.2	. J.JłZ	5.001	0.91	130 139 139	57.0
3:30 3:45	310	27	70.7 75.5	0.1492	0.0549	20.0) 22.5	3.438	3.051	0.89	138 139	38.5
4:00	610	27	75.6								138	
		WORK	LOAD	3,	2.00 Kp,	cha	nged at	: 4:00 m	inutes			
4:15 4:30 4:45	300	28	79.4 75.1 80.4	0.1513	0.0549	20.9	22.5	3.801	3.526	0.93	143 143 143	42.6
5:00 5.15	600	28	80.1 80.6	0.1530	0.0543	21.6	5 22.8	3.713	3.519	0.95	144 146	41.6
5:30 5:45	300	28	81.5 86.1	0.1544	0.0532	2.22	23.2	3.883	3.707	0.95	147 148	43.5
6:00	600	28	86.1								149	
		WORKI	LOAD	4,	2.25 Kp,	cha	nged at	6:00 m	inutes			
6:15 6:30 6:45	305	28	85.9 84.9 82.8	0.1527	0.0549	21.5	5 22.5	3.911	3.738	0.96	149 150 149	43.8
7:00	605	28	84.4 87 7	0 1527	0.05.47	21 /	1 77 9	4071	7 976	0.04	149 150	A5 6
7:30 7:45	300	29	90.8 89.4	0.1527	0.0043	21.5	τ <u>ζ</u> ζ.Ο	9.071	3.030	0.94	152 154	40.0
8:00	600	29	90.7	0.1530	0.0547	21.7	22.6	4.189	4.011	=0,96	154	46.9

		WOR	KLOAD	5,	2.50 Kp,	chanç	jed at	8:00 m	inutes			
8:15 8:30 8:45	305	29	92.1 91.9 88.3	0.1512	0.0564	21.0	21.9	4.168	3.988	0.96	155 155 156	46.7
9:00 9:15	605	29	88.9 90.3								156 155	
9:30 9:45	300 600	29 20	91.2 95.7	0. 1506 0.1517	0.0584 0.0572	20.9 2 21.3 2	21.2 21.6	4.367 4.495	4.309 4.424	0.99 0.98	157 158	48.9 - 50.3
10.00	000	27	20.1								150	
		WURI	KLUAD	б,	2.75 Kp,	cnang	ed at	10:00 n	ninutes			
10:15 10:30 10:45	300	30	93.3 90.9 96.2	0.1493	0.0596	20.4 2	20.7	4.453	4.380	0.98	158 157 159	49.9
11:00	600	30	98.1	0 1536	0.0565	21.1	71 Q	4 6 8 1	4 741	1.01	161	524
11:30 11:45	305	30	106.8	0.1537	0.0563	22.3	21.9	4.820	4.870	1.01	163 165	54.0
12:00	610	30	112.1								166	
		WORI	KLOAD	7,	3.00 Kp,	chang	ed at	12:00 n	ninutes			
12:15 12:30 12:45	300	30	107.7 116.9 113.3	0.1536 0.1554	0.0567 0.0550	22.1 22.9	21.8 22.5	4.861 5.110	4.936 5.196	1.02 1.02	166 168 168	54.4 57.2
13:00 13:15	600	30 70	117.5	0.1560	0.0553	23.3	22.3	5.040	5.252	1.04	168 169	56.4
13:30	30 0	50	122.0	0.1002	0.0040	23.3 4	22.5	5.252	0.410	1.04	170	0.00
14:00	600	30	122.2								170	
		WORI	KLOAD	8,	3.50 Kp,	chang	ed at	14:00 n	ni nutes			
14:15 14:30 14:45	300	30	134.8 128.5 135.6	0.1579 0.1569	0.0541 0.0550	24.2 23.8	22.8 22.5	5.566 5.408	5.899 5.721	1.06 1.06	173 173 174	62.3 60.6
15:00 15:15	600	30	140.8 143.8	0.1590 0.1598	0.0531 0.0525	24.8 25.2	23.3 23.6	5.678 5.709	6.043 6.103	1.06 1.07	175 175	63.6 **63.9
15:30 15:45	300	30	147.0	0 1588	0.0535	247 3	23.1	5 6 3 3	6 029	1 07	176	63.1
16:00	600	30	147.7	0.1593	0.0535	25.0	23.1	5.908	6.397	1.08	178	66.2
		WORK	LOAD	9,	3.75 Kp,	change	ed at i	16:00 m	inutes			
16:15 16:30	300	30	149.2 158.0	0.1568 0.1626	0.0557 0.0495	23.7 26.7	22.2 25.0	6.287 5.916	6.718 6.320	1.07 1.07	178 178	70.4 66.3
16:45 17:00	590	30	163.2 167.9	0.1631 0.1640	0.0492 0.0475	27.1 2 27.5 2	25.2 26.0	6.032 6.118	6.487 6.449	1.08 1.05	179 180	67.6 68.5

.

Total Test time (min:sec)	17:00
Total Number of Revolutions	10,280
Maximum Workload (Kp)	3.75
Average Stroke Rate (stks min ⁻¹)	29
Total Power Output (Kpm)	25,474
$VO_2 \max(L \min^{-1})$	6.287
$\dot{V}O_2$ max ml·Kg ⁻¹ ·min ⁻¹	70.4
Maximum Heart Rate (bts;min ⁻¹)	180
AT % of ¥02 max (L·min ^{−1})	81.3%
Time at AT	12:30
Workload at AT	3.00
Revolutions at AT	7,590
Power Output at AT	16,362
VO ₂ L·min ⁻¹ at AT	5.110
ÝO2 ml·Kg ⁻¹ ·min ⁻¹ at AT	57.2
Heart Rate at AT	168

Post-Training Test Raw Data of Subject 7

Time min:sec	Revs c No/min	St. Rt. min	^{/ Ÿ} E BTPS	FEO ₂	FEC02	^ў Е 02	Ϋ _E CO ₂	ÝO ₂ STPD	ÝCO ₂ STPD	RER	Heart Rate	ÝO ₂ m1/Kg
			L7 mi	11		L/L	L/L				0(3711111	/ 111/1
		WORK	(LOAD	1,	1.50 Kp							
0:15 0:30 0:45	315	26	28.7 33.4 55.1	0.1623 0.1509	0.0355 0.0403	25.0 19.9) 35.7 9 31.4	1.147 1.680	0.805 1.062	0.70 0.63	110 122 128	13.0 19.0
1:00 1:15 1:30	615 305	26 27	58.8 67.0 65.7	0.1478	0.0462	19.1	27.3	3.499	2.450	0.70	130 130 131	39.6
1:45 2:00	605	27	63.7 63.9	0.1459	0.0500	18.1	7 25.3	3.414	2.527	0.74	132 134	38.6
		WORK	LOAD	2,	1.75 Kp,	chai	nged at	2:00 mi	nutes			
2:15 2:30 2:45	300	27	65.6 57.8 54.6	0 1397	በ በ547	17 1	1 23 1	3 197	2 364	በ 74	134 135 136	36.2
3:00 3:15	600	27	63.5 58.9	0.1071	0.0041		. 20.1	5.171	2.004	0.14	140 140	
3:30 3:45 4:00	305 605	27 27	67.3 66.5 65.7	0.1452	0.0527	18.7	7 24.0	3.598	2.808	0.78	140 140 141	40.7
		WORK	LOAD	3,	2.00 Kp,	cha	nged at	4:00 m	inutes			
4:15 4:30 4:45	300	27	66.0 69.1 69.7	0.1457	0.0534	18.9	9 23.6	3.487	2.793	0.80	1 42 1 44 1 43	39.4
5:00 5:15	600	27	67.5 68.1	0.1454	0.0533	18.8	3 23.7	3.591	2.848	0.79	1 43 1 46	40.6
5:30 5:45 6:00	300 600	27 27	70.6 70.2 74.7	0.1444	0.0554	18.6	5 22.8	3.775	3.084	0.82	1 45 1 45 1 44	42.7
		WORK	LŪAD	4,	2.25 Kp,	cha	nged at	6:00 m	inutes			
6:15 6:30 6:45	300	28	76.3 75.6 74.8	0.1462	0.0546	19.2	2 23.1	3.940	3.267	0.83	1 45 1 48 1 49	44.6
7:00	600	28	81.2		من سو بنو رم				* ***		151	
7:15 7:30 7:45	295	28	75.9 78.3 78.8	0.1460	0.0555	19.2	2 22.7	3.954	3.336	U.84	151 151 152	44.7
8:00	595	28	80.5	0.1450	0.0566	18.9	22.3	4.253	3.603	0.85	151	48.1

		WORK	LOAD	5,	2.50 Kp,	chang	ed at 8	3:00 miı	nutes			
8:15			80.9								152	
8:30	300	28	81.7								153	
8:45			87.7	0.1468	0.0560	19.5	22.6	4.487	3.888	0.87	154	50.8
9:00	600	28	87.4	0.1464	0.0564	19.4	22.4	4.499	3.905	0.87	156	50.9
9:15			85.3								157	
9:30	300	28	93.5								158	
9:45			96.6	0.1494	0.0541	20.4	23.4	4.732	4.137	0.87	159	53.5
10:00	605	28	98.9	0.1504	0.0532	20.8	23.8	4.759	4.162	0.87	159	53.8
		WORI	KLOAD	6,	2.75 Kp,	chan	ged at	10:00 m	ninutes			
10:15			98.7								160	
10:30	300	28	97.6								160	
10:45			100.2	0.1505	0.0531	20.8	23.8	4.816	4.216	0.88	161	54.5
11:00	595	28	96.9	0.1488	0.0545	20.2	23.2	4.796	4.185	0.87	161	54.3
11:15			97.9								163	
11:30	305	28	101.3								165	
11:45			104.1	0.1501	0.0548	20.8	23.1	5.011	4.513	0.90	166	56.7
12:00	610	28	103.3	0.1501	0.0545	20.7	23.2	4.980	4.454	0.89	167	56.3
		WOR	KLOAD	7,	3.00 Kp	, chai	nged at	12:00	minutes			
12:15			106.0								167	
12:30	300	28	105.2								167	
12:45			107.6	0.1507	0.0541	21.0	23.3	5.130	4.609	0.90	168	58.0
13:00	600	28	112.4	0.1512	0.0532	21.1	23.7	5.326	4.737	0.89	168	60.3
13:15			108.6								170	
13:30	305	28	110.2								169	
13:45			112.3	0.1507	0.0547	21.0	23.1	5.338	4.869	0.91	169	60.4
14:00	605	28	118.6	0.1519	0.0537	21.5	23.5	5.518	5.041	0.91	171	62.4
		WOR	KLOAD	8,	3.50 Kp	, chai	nged at	14:00	minutes			
14:15			121.0								171	
14:30	305	28	128.1								173	
14:45			129.9	0.1541	0.0518	22.4	24.4	5.812	5.327	0.92	174	65.8
15:00	595	29	131.0	0.1539	0.0526	22.3	24.0	5.861	5.458	0.93	173	66.3
15:15			135.1								173	
15:30	305	29	130.9	0.1537	0.0535	22.3	23.6	5.864	5.542	0.95	176	66.3
15:45			136.5	0.1548	0.0529	22.8	23.9	5.982	5.720	0.96	175	67.7
16.00	615	29	136.8								176	

		WOR	KLOAD	9,	3.75 Kp	, chai	nged at	16:00	minutes			
16:15			145.6								176	
16:30	310	30	140.8	0.1560	0.0515	23.3	24.5	6.039	5.741	0.95	177	68.3
16:45			139.5	0.1548	0.0529	22.9	23.9	6.107	5.845	0.96	177	69.1
17:00	610	30	146.3								179	
17:15			146.7								178	
17:30	305	31	146.7	0.1565	0.0509	23.6	24.8	6.226	5.910	0.95	180	70.4
17:45			156.7	0.1573	0.0506	23.9	25.0	6.546	6.279	0.96	180	74.11
18:00	610	31	160.6								180	
18:15			170.2	0.1605	0.0476	25.6	26.5	6.658	6.413	0.96	181	75.3
18:30	310	31	171.7	0.1610	0.0477	25.9	26.5	6.637	6.485	0.98	182	75.1
18:45			166.7	0.1611	0.0478	25.9	26.4	6.425	6.305	0.98	183	72.7
19:00	615	32	169.3							1.03	183	

Total Test time (min:sec)	19:00
Total Number of Revolutions	11,480
Maximum Workload (Kp)	3.75
Average Stroke Rate (stks min ⁻¹)	28
Total Power Output (Kpm)	29,627
$\dot{Y}O_2 \max(L \min^{-1})$	6.658
VO_2 max ml·Kg ⁻¹ ·min ⁻¹	75.3
Maximum Heart Rate (bts:min ⁻¹)	183
AT % of ŸO₂ max (L·min ⁻¹)	87.3%
Time at AT	14:45
Workload at AT	3.50
Revolutions at AT	8,740
Power Output at AT	22,138
ÝO ₂ L·min ⁻¹ at AT	5.812
VO2 ml·Kg=1·min=1 at AT	65.8
Heart Rate 🛛 at AT	174

APPENDIX B

TRAINING PROGRAMS

TRAINING PROGRAM OF SUBJECT 1

PERIOD: Week 1 to 2.

<u>DAY 1</u> :	a)	15 min warm-up
	b)	40 min Steady State Rowing (St. St. R.)
		i Workload (WL.) 2.00 Kp
		ii Target Heart Rate (T.H.R.):
		145-150 bts·min ⁻¹
		iii Stroke Rate (St. Rt.): 25-26 Stks:min ⁻¹
	c)	Warm-down & Stretch
<u>DAY 2</u> :	a)	15 min warm-up
	b)	3x (5 x 40 Stks ON/20 Stks OFF)
		i WL.: 2.25 Kp
		ii T.H.R.: 175-180
		iii St. Rt.: 30-32
	c)	Warm-down & Stretch
<u>DAY 3</u> :	ð)	15 min warm-up
	b)	20 min St. St. R
		i WL.: 2.00 Kp
		ii T.H.R.: 150
		iii St. Rt.: 26-27
	c)	3 x 5 min ON/4 min OFF
		i – WL.: 2.25 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 27-29

d) Warm-down & stretch

PERIOD: Week 3 to 4.

- DAY 1:
- a) 15 min Warm-up
- b) 2x (5 x 2 min ON/ 2 min OFF)
 - 8-10 min Light between sets
 - i WL.: 2.50 Kp
 - ii T.H.R.: 177-185
 - iii St. Rt.: 28-32
- c) Warm down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.00 Kp
 - ii T.H.R.: 145-150
 - c) Warm down & Stretch
- <u>DAY 3</u>:
- a) 15 min Warm-up
- b) 3 x 5 ON/8 min OFF
 - i WL.: 2.25 Kp
 - ii T.H.R.: 177-182
- c) Warm down & Stretch

PERIOD: Week 5 to 6

<u>DAY 1:</u>

- a) 15 min warm-up
- b) 3 x 5 0N/10 min Light now
 - i WL.: 2.25 Kp
 - ii T.H.R.: 178-182
 - iii St. Rt.: 28-30
- c) Warm down & Stretch

<u>DAY 2</u>:

a) 15 min warm-up

b) PYRAMID

- 2x (3 min, 2 min, 1 min, 2 min, 3 min) ON/15 min OFF
- i WL.: 2.25 Kp
- ii T.H.R. 180-185
- iii St. Rt. 29-31
- c) Warm down & Stretch
- <u>DAY 3</u>: a) 1
- a) 15 min Warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.00 Kp
 - ii T.H.R.: 145-150
 - iii St. Rt.: 25-26
 - c) Warm down & Stretch

PERIOD: Week 7 to 8

<u>DAY 1</u> :	a)	15 min warm-up
	b)	7 x 3 min ON/5 min OFF
		i WL.: 2.25
		ii T.H.R.: 175-180
		iii St. Rt.: 29-30
	c)	Warm down & Stretch
DAY 2:	a)	15 min warm-up
	b)	30 min St. St. R.
		i WL.: 2.00 Kp
		ii T.H.R.: 145-150
		iii St. Rt.: 26-27
	c)	Warm down & Stretch
<u>DAY 3</u> :	a)	15 min Warm-up
	b)	8x (3 min ON/4 min OFF)
		i WL.: 2.25 Kp
		ii T.H.R.: 178-182

- iii St. Rt.: 28-30
- c) Warm down & Stretch

TRAINING PROGRAM OF SUBJECT 2

PERIOD: Week 1 to 2

<u>DAY 1</u> :	a)	15 min warm-up
	b)	25 min St. St. R.
		i WL.: 1.75 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 26-27
	c)	Warm-down & Stretch
<u>DAY 2</u> :	a)	15 min Warm-up
	b)	4 x 4 0N/6 min 0FF
		i WL.: 2.00 Kp
		ii T.H.R.: 185-190
		ii St. Rt.: 29-31
	c)	Warm-down & Stretch
DAY 3:	a)	15 min warm-up
	b)	30 min St. St. R.
		i – WL.: 1.75 Kp
		ii T.H.R.: 165-170

- iii St. Rt.: 26-27
- c) Warm-down & Stretch
- <u>DAY 1</u>:
- a) 15 min warm-up
- b) 3 x 8 min ON/6 min OFF
 - i WL.: 1.75 Kp
 - ii T.H.R.: 168-175
 - iii St. Rt.: 27-29
- c) Warm-Down & Stretch

- a) 15 min Warm-up
- b) 4 x 6 min ON/6 min OFF
 - i WL.: 175 Kp
 - ii T.H.R.: 178-185
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min Warm-up
- b) 30 min St. st. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 168-172
 - iii St. Rt.: 26-27
- c) Warm-down & Stretch

- <u>DAY 1</u>:"
- a) 15 min warm-up
- b) 5 x 2 min ON/3 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

- a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 160-165
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) $5 \times 4 \min ON/4 \min OFF$
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch

PERIOD: 7 to 8

<u>DAY 1</u>:

a) 15 min warm-up

- b) 6 x 3 0N/4 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 185-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

- a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 165-170
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 9 x 2 min ON/3 min OFF
 - i WL.: 2.25 Kp
 - ii T.H.R.: 186-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

PERIOD: Week 1 to 2

<u>DAY 1</u> :	გ)	15 min warm-up
	b)	8 x 2 min ON/2 min OFF
		i – WL.: 2.50 Kp
		ii T.H.R.: 168-175
		iiSt.Rt.: 27-29
	c)	Warm-down & Stretch
<u>DAY 2</u> :	a)	15 min warm-up
	b)	30 min St. St. R.
		i WL.: 2.00 Kp
		ii T.H.R.: 152-156
		iii St. Rt.: 26-27
	c)	Warm-down & Stretch
<u>DAY 3</u> :	a)	15 min warm-up
	b)	4 x 5 min ON/5 min OFF
		i WL.: 2.75
		ii T.H.R.: 175-178

iii St. Rt.: 28-30

- DAY 1: a) 15 min warm-up
 - b) 7 x 3 ON/3 min OFF
 - i WL.: 2.50 Kp
 - ii T.H.R.:175-180
 - iii St. Rt.: 28-30
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.00 Kp
 - ii T.H.R.: 152-156
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) PYRAMID
 - 2x (2 min ON, 2 min OFF, 3 min ON, 3 min OFF, 4 min ON, 4 min OFF, 3 min ON, 3 min OFF, 2 min ON, 2 min OFF 10-12 min Light Rowing
 - i LD.: 2.50 Kp
 - ii T.H.R.: 175-180
 - iii St. Rt.: 3032
- c) Warm-down & Stretch

- DAY 1: a) 15 min warm-up
 - b) 7 x 3 min ON/5 min Light_Rowing
 - i WL.: 2.50 Kp
 - ii T.H.R.: 175-185
 - iii St. Rt.: 30-32
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.00 Kp
 - ii T.H.R.: 152-156
 - iii St. Rt.: 26-27 *
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 10 x 2 min 0N/3.5 min 0FF
 - i WL.: 2.75 Kp
 - ii T.H.R.: 178-185
 - iii St. Rt.: 31-33
- c) Warm-down & Stretch

- <u>DAY 1</u>:
- a) 15 min warm-up
 - b) 4 x 5 0N/5 min OFF
 - i WL.: 2.50
 - ii T.H.R.: 174-180
 - iii St. Rt.: 29-31
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.25 Kp
 - iiT.H.R.: 152-156
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 3 x 8 min ON/6 min OFF
 - i WL.: 2.50 Kp
 - ii T.H.R.: 178-186
 - iii St. Rt.: 29-30
- c) Warm-down & Stretch

PERIOD: Week 1 to 2

<u>DAY 1</u> :	a)	15 min Warm-up
	b)	25 min St. St. R.
		i WL.: 1.75 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 26-27
	c)	Warm-down & Stretch
DAY 2:	a)	15 min Warm-up
	b)	4 x 4 ON/6 min OFF
		i WL.: 2.00 Kp
		ii T.H.R.: 185-190
		ii St. Rt.: 29-31
	c)	Warm-down & Stretch
DAY 3:	a)	15 min Warm-up
	b)	30 min St. St. R.
		i – WL.: 1.75 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 26-27

c) Warm-down & Stretch

- DAY 1: a) 15 min warm-up
 - b) 3 x 8 min ON/6 min OFF
 - i WL.: 1.75 Kp
 - ii T.H.R.: 168-175
 - iii St. Rt.: 27-29
 - c) Warm-Down & Stretch
- <u>DAY 2</u>:
- a) 15 min warm-up
- b) 4 x 6 min ON/6 min OFF
 - i WL.: 175 Kp
 - ii T.H.R.: 178-185
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch

- a) 15 min warm-up
- b) 30 min St. st. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 168-172
 - iii St. Rt.: 26-27
- c) Warm-down & Stretch

- DAY 1: a) 15 min warm-up
 - b) 5 x 2 min ON/3 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 30-32
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 160-165
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch

- a) 15 min warm-up
- b) 5 x 4 min ON/4 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch

PERIOD: 7 to 8

- DAY 1: a) 15 min warm-up
 - b) 6 x 3 ON/4 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 185-190
 - iii St. Rt.: 3032
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 165-170
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch

- a) 15 min warm-up
- b) 9 x 2 min ON/3 min OFF
 - i WL.: 2.25 Kp
 - ii T.H.R.: 186-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

PERIOD: Week 1 to 2

<u>DAY 1</u> :	a)	15 min warm-up
	b)	25 min St. St. R.
		i – WL.: 1.75 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 26-27
	c)	Warm-down & Stretch
<u>DAY 2</u> :	a)	15 min warm-up
	b)	4 x 4 ON/6 min OFF
		i WL.: 2.00 Kp
		ii T.H.R.: 185-190
		ii St. Rt.: 29-31
	c)	Warm-down & Stretch
<u>DAY 3</u> :	a)	15 min warm-up
	b)	30 min St. St. R.
		i – WL.: 1.75 Kp
		ii "T.H.R.: 165-170
		iii St. Rt.: 26-27

c) Warm-down & Stretch

<u>DAY 1</u> :	a)	15 min warm-up
	b)	3 x 8 min ON/6 min OFF
		i – WL.: 1.75 Kp
		ii T.H.R.: 168-175
		iii St. Rt.: 27-29
	c)	Warm-Down & Stretch
<u>DAY 2</u> :	a)	15 min warm-up
	b)	4 x 6 min ON/6 min OFF
		i WL.: 175 Kp
		ii T.H.R.: 178-185
		iii St. Rt.: 29-31
	c)	Warm-down & Stretch
<u>DAY 3</u> :	a)	15 min warm-up
	b)	30 min St. st. R.
		i – WL.: 1.75 Kp
		ii T.H.R.: 168-172

- iii St. Rt.: 26-27
- c) Warm-down & Stretch

- <u>DAY 1</u>:
- a) 15 min warm-up
- b) 5 x 2 min ON/3 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

- a) 15 min warm-up
- b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 160-165
 - iii St. Rt.: 26-27
- c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 5 x 4 min ON/4 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch

PERIOD: 7 to 8

- <u>DAY 1</u>: a) 15
 - a) 15 min warm-up
 - b) 6 x 3 ON/4 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 185-190
 - iii St. Rt.: 30-32
 - c) Warm-down & Stretch

- a) 15 min warm-up
- b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 165-170
 - iii St. Rt.: 26-27
- c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 9 x 2 min ON/3 min OFF
 - i WL.: 2.25 Kp
 - ii T.H.R.: 186-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

PERIOD: Week 1 to 2

<u>DAY 1</u> :	a)	15 min Warm-up
	b)	25 min St. St. R.
		i – WL.: 1.75 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 26-27
	c)	Warm-down & Stretch
<u>DAY 2</u> :	a)	15 min Warm-up
	b)	4 x 4 0N/6 min 0FF
		i WL.: 2.00 Kp
		ii T.H.R.: 185-190
		ii St. Rt.: 29-31
	c)	Warm-down & Stretch
<u>DAY 3</u> :	a)	15 min Warm-up
	b)	30 min St. St. R.
		i WL.: 1.75 Kp
		ii T.H.R.: 165-170
		iii St. Rt.: 26-27

c) Warm-down & Stretch

- <u>DAY 1</u>:
- a) 15 min Warm-up
- b) 3 x 8 min ON/6 min OFF
 - i WL.: 1.75 Kp
 - ii T.H.R.: 168-175
 - iii St. Rt.: 27-29
- c) Warm-Down & Stretch

- a) 15 min Warm-up
- b) 4 x 6 min ON/6 min OFF
 - i WL.: 175 Kp
 - ii T.H.R.: 178-185
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch
- <u>DAY 3</u>: a)
- a) 15 min Warm-up
 - b) 30 min St. st. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 168-172
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch

D	Å	Y	1	:
_	-			

- a) 15 min warm-up
 - b) 5 x 2 min ON/3 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 30-32
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - ii T.H.R.: 160-165
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 5 x 4 min ON/4 min OFF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 180-190
 - iii St. Rt.: 29-31
- c) Warm-down & Stretch

<u>DAY 1:</u>

- a) 15 min warm-up
 - b) 6 x 3 0N/4 min 0FF
 - i WL.: 2.00 Kp
 - ii T.H.R.: 185-190
 - iii St. Rt.: 3032
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 1.75 Kp
 - 11 T.H.R.: 165-170
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) 9 x 2 min ON/3 min OFF
 - i WL.: 2.25 Kp
 - ii T.H.R.: 186-190
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

PERIOD: Week 1 to 2

DAY 1: a) 15 min warm-up b) $8 \times 2 \min ON/2 \min OFF$ i WL.: 3.00 Kp ii T.H.R.: 168-175 iiSt.Rt.: 27-29 c) Warm-down & Stretch DAY 2: a) 15 min warm-up b) 30 min St. St. R. i WL.: 2.50 Kp ii T.H.R.: 152-156 iii St. Rt.: 26-27 c) Warm-down & Stretch a) 15 min warm-up DAY 3: b) 4 x 5 min ON/5 min OFF i WL: 2.75 ii T.H.R.: 175-178 iii St. Rt.: 28-30 c) Warm-down & Stretch

- DAY 1: a) 15 min warm-up
 - b) 7 x 3 ON/3 min OFF
 - i WL.: 2.75 Kp
 - ii T.H.R.: 175-180
 - iii St. Rt.: 28-30
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.50 Kp
 - ii T.H.R.: 152-156
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- <u>DAY 3</u>:
- a) 15 min warm-up
- b) PYRAMID
 - 2x (2 min ON, 2 min OFF, 3 min ON, 3 min OFF, 4 min ON, 4 min OFF, 3 min ON, 3 min OFF, 2 min ON, 2 min OFF 10-12 min Light Rowing
 - i LD.: 2.75 Kp
 - ii T.H.R.: 175-180
 - iii St. Rt.: 30-32
- c) Warm-down & Stretch

<u>DAY 1</u> :	a)	15 min warm-up
	b)	7 x 3 min ON/5 min Light Rowing
		i WL.: 3.25
		ii T.H.R.: 175-185
		iii St. Rt.: 30-32
	c)	Warm-down & Stretch
<u>DAY 2</u> :	a)	15 min warm-up
	b)	30 min St. St. R.
		i WL.: 2.50 Kp
		ii T.H.R.: 152-156
		iii St. Rt.: 26-27
	c)	Warm-down & Stretch
<u>DAY 3</u> :	a)	15 min warm-up
	b)	10 x 2 min ON/3.5 min OFF
		i WL.: 3.50 Kp
		ii T.H.R.: 178-185
		iii St. Rt.: 31-33
	c)	Warm-down & Stretch

- <u>DAY 1</u>:
- a) 15 min warm-up
 - b) 4 x 5 0N/5 min 0FF
 - i WL.: 3.00 Kp
 - ii T.H.R.: 174-180
 - iii St. Rt.: 29-31
 - c) Warm-down & Stretch
- DAY 2: a) 15 min warm-up
 - b) 30 min St. St. R.
 - i WL.: 2.50 Kp
 - iiT.H.R.: 152-156
 - iii St. Rt.: 26-27
 - c) Warm-down & Stretch
- DAY 3:
- a) 15 min warm-up
- b) 3 x 8 min ON/6 min OFF
 - i WL.: 3.25 Kp
 - ii T.H.R.: 178-186
 - iii St. Rt.: 29-30
- c) Warm-down & Stretch