by

D. C. Sutherland

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Forestry

School of Forestry

Lakehead University

May 24, 1984

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611709
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

Abstract

Sutherland, D.C. 1984. Effects of container volume and shape in the growth of black spruce (Picea mariana (Mill) B.S.P.) seedlings. Major Advisor: Professor R.J. Day.

Key Words: black spruce, container shape, container volume, field outplanting, greenhouse production, morphological characteristics, Picea mariana (Mill.) B.S.P., 5eedling growth, stock quality.

The objective of this thesis was to evaluate the growth of black spruce seedlings in containers with four soil volumes ($45,90,136,360 \mathrm{~cm}^{3}$) and at three diameter/depth shapes ($1: 2,1: 3,1: 4$). Seedling height, root collar diameter, top dry weight and root dry weight were measured after 16 weeks in the greenhouse and after one growing season in the field. Analyses of variance (ANOVA) and multiple linear regressions (MLR) were completed for each of the morphological characteristics and for the corresponding seedling quality indices. The ANOVAs and MLRs were used to evaluate seedling growth and quality in order to determine the optimum container volume and shape necessary for the production of high quality black spruce stock. The growth and quality of black spruce stock significantly increased with increasing container volume and with change in container shape from deep and narrow (1:4 diameter/depth ratio) to shallow and wide (1:2 diameter/ depth ratio). These changes were detected in the greenhouse production phase and became very evident after outplanting in the field.

To produce high quality black spruce seedlings for outplanting, the container volume should exceed $30 \mathrm{~cm}^{3}$ and the container shape should have a $1: 2$ diameter/depth ratio. Black spruce grown in 1:2 diameter/depth shaped containers that range from 80 to $180 \mathrm{~cm}^{3}$ in volume will be of high quality and have a total ory weight between 1.0 and 1.4 g after 16 weeks in a greenhouse. Black spruce grown in $1: 2$ diameter/depth shaped containers that range from 160 to $360 \mathrm{~cm}^{3}$ in volume will be of superior quality and have a total dry weight between 1.4 and 1.7 g after 16 weeks in a greenhouse.

TABLE OF CONTENTS

ABSTRACT ii
LIST OF TABLES
LIST OF FIGURES vii
ACKNOWLEDGEMENTS $x i i$
INTRODUCTION
LITERATURE REVIEW 4
White Spruce 5
Black Spruce 9
Other Spruces 10
Jack Pine 13
Other Pines 15
Douglas Fir 18
Hardwoods 20
Agricultural, Ornamental and Exotic Crops 22
Conclusions 23
MATERIALS AND METHODS 27
Greenhouse Production Phase 27
Field Outplanting Phase 39
RESULTS 48
Greenhouse Production Phase 48
Field Outplanting Phase 64
DISCUSSION 83
Greenhouse Production Fhase 83
Field Outplanting Fhase 88
Greenhouse and Outplanting Comparisons 92
Prediction of Optimum Container Volume and Shape 94
CONCLUSIONS 99
LITERATURE CITED 101
APPENDIX I - Latin Name Abbreviations 114
APPE NDIX II - MLR Patterns of Residuals for the Greenhouse and Field Data 116
APPENDIX III - SNK Test Results for the Greenhouse Data 119
APPE NDIX IV - The Growth Response in the Greenhouse at Each Container Volume and Depth 123
APPENDIX V - SNK Test Results for the Outplanting Data. 127
APPE NDIX VI - The Growth Response After Outplanting at Each Container Volume and Diameter 131
APPE NDIX VII - The Growth Response After Outplanting at Each Container Volume and Depth 135

LIST OF TABLES

Table 1. Types of containers used for tree seedling production and their abbreviated names, size and shape .

Table 2. The morphological characteristics of containerized white soruce seedings found in greenhouse and outplanting studies

Table 3. The morphologicai characteristics of containerized black spruce seedlings found in greenhouse and outplanting studies 11

Table 4. The morphological characteristics of containerized norway spruce seedlings found in greenhouse and outplanting studies

Table 5. The morphologial characteristics of containerized jack pine seedings found
in greenhouse and outblanting studies

Tatle 6. The morphological characteristics of other containerized pine seedings
found in greenhouse and outplanting studies 16
Table 7. The morphological characteristics of containerized Douglas fir seedhigs found in greenhouse and outplanting studies 21
Table 6. The morphological charactaristics of containerized hardwood seecings found in greenhouse and outplanting studies 2 :
Table 9. The morphological characteristics of containerized agricultural croos founc in greanhouse studies 24
Table 11. Dimensions of the 12 experimental containers and the abbreviated names of commercial containers of similar size and shape 30
Table 12. Summary of ANOVA probabilities for greenhouse data 50
Table 13. Summary of MLR probabilities for greenhouse data 50
Table 14. The best fitted regression equations for the greenhouse data. 51
Table 15. Summary of ANOVA probabilities for field data 68
Table 16. Summary of MLR probabilities for field data 68
Table 17. The best fitted regression equations for the field data 69
Table 13. The variances of the morphological characteristics of seedlings grownin the greenhouse and after outplanting95
Table 19. Existing specifications for the morphological characteristics of containerized black spruce after 16 weeks in a greenhouse 95
Table 20. Proposed merohological characteristics for superior containerized black spruce after a 16 week greenhouse production phase 96

LIST OF FIGURES

Page
Figure i. Container volume and diameter/deoth dimensions of the 12 container treatments 28
Figure 2. Side view showing 12 acrylic container treatments 27
Figure 3. Top view showing 12 acrylic container treatments. 27
Figure 4. Black nylon screen over the bottoms of the acrylic olastic tubing 33
Figure 5 . Container support stands in the greenhouse production phase 33
Figure b. Location of field outplanting study area 40
Figure 7. Soil profile at field outplanting site 42
Figure 8. Disc trench scarification at field outplanting site. 42
Figure 9. Flanting design of the 12 container treatments within each block 43
Figure 10. Elack spruce container seedling outplanted in disc trench 44
Figure 11. Average black seruce seedings grown in containers of four volumesand three shapes after 16 weeks in the greeninouse49
Figure 12. Mean height of black spruce seedlings grown in containers of 4 volumes
and 3 dimensions after 16 weeks in the greenhouse 54
Figure 13. Response surface for the estimated heights of black spruce seedingsthroughout the range of container treatments tested after 16 weeksin the greenhouse54

```
viij
```

Page

Figure 14. Mean root collar diameter of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse. 56

Figure 15. Response surface for the estimated root collar diameters of black spruce seedlings throughout the range of container treatments tested after 16 weeks in the greenhouse 56

Figure 16. Mean top dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse. 58

Figure 17. Response surface for the estimated top dry weights of black spruce seedlings throughout the range of container treatments tested after 16 weeks in the greenhouse 58

Figure 13. Mean root dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse. 60

Figure 19. Response surface for the estimated root dry weights of black spruce seedlings throughout the range of container treatments tested after 16 weeks in the greenhouse60

Figure 20. Mean total dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after 16 weaks in the greenhouse62

Figure 21. Response surface for the estimated total dry weights of black spruce seedlings throughout the range of container treatments tested after 16 weeks in the greenhouse 62

Figure 22. Mean seedling quality indices of black spruce grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse 65

Figure 23. Response surface for the estimated seeding quality indices of black spruce seedlings throughout the range of container treatments tested after 16 weeks in the greenhouse. 65

Figure 24. Average black spruce seedlings originally grown in containers of four volumes and three shapes after one growing season in the field. 66

Figure 25. Mean height of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after one growing season in the field. 71

Figure 26. Response surface for the estimated heights of black spruce seedlings throughout the range of container treatments tested after one growing season in the field . 7 .

Figure 27. Mean root collar diameter of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after one growing season in the field . . .

Figure 23. Response surface for the estimated root collar diameters of black spruce seedlings throughout the range of container treatments tested after one growing season in the field . 73

Figure 29. Mean top dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after one growing season in the field75

Figure 30. Response surface for the estimated top dry weights of black spruce seedlings throughout the range of container treatments tested after one growing season in the field . 75

Figure 31. Mean root dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after one growing season in the field. . . 78

Figure 32. Response surface for the estimated root dry weights of black sprufe seedlings throughout the range of container treatments tested after one growing season in the field . 76

Figure 33. Mean total dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after one growing season in the field . . . 60

Figure 34. Response surface of the estimated total dry weights of black spruce seedlings throughout the range of container treatments tested after one growing season in the field . 80

Figure 35. Mean seedling quality indices of black spruce grown in containers of 4 volumes and 3 dimensions after one growing season in the field82

Figure 36. Response surface of the estimated seeding quality indices of black spruce seedlings throughout the range of container treatments tested after one growing season in the field 82

Figure 37. Root system configuration of black spruce in small and large volume containers. 85

Figure 33. A comparison of the mean seedling quality indices of black spruce grown in the 12 container treatments after 16 weaks in the greenhouse and after one growing season in the field

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my major advisor, Professor R. J. Day for his guidance and inspiring support and for the use of his computer system. I am also grateful to Dr. G. Hazenberg and Dr. R. W. Tinus for their guidance, constructive criticism and review of the manuscript.

I am thankful to Ian H . Burgess for his technical assistance in the greenhouse, and to my fellow graduate students for their support throughout the course of its completion.

I am grateful to the Canadian Forestry Service and Lakehead University for providing financial support.

Finally, I wish to express my sincere appreciation to my wife Anne for typing this manuscript and for her understanding, patience, moral support and sacrifices she has made these past years.

INTRODUCTION

A great variety of containers have been manufactured over the past twenty years for tree seedling production (Table 1). At present Canadian nurseries are mainly using four types of containers, Spencer-Lemaire Bookplanters, Multipots, Japanese Paperpots. and Styroblocks. Each type of container can supply a range of volumes and shapes for specific greenhouse production and outplanting requirements. These containers range from 33 to $700 \mathrm{~cm}^{3}$ in volume and from $1: 2$ to $1: 7$ in diameter/depth dimension or shape Tadie 1).

Although there is such a wide variety of container volumes and shapes that may be selected for stock production, northern Ontario nurseries have opted to use smail containers with volumes that range from 40 to $70 \mathrm{~cm}^{3}$ and shapes that range from $1: 2$ to 1:3 in diameter/depth. Although these containers are economical to use, because more seedlings can be produced in a greenhouse, they do not provide sufficient growing space for proper seedling development in the greenhouse or produce adequately large seedings for field establishment. The selection of a small volume container may keep nursery and planting costs low but more consideration should be given to a higher quality seedlings and optimum field establishment (Tinus, 1981). By considering the biological requirements of a seedling, and not just the production costs, seedlings of superior quality can be produced which will minimize the final costs of establishing trees free to grow in the field.

In order to optimize container dimensions, nurserymen and silviculturists must understand how the volume and shape of a container affects tree seedling growth and

TABLE 1. Types of containers used for tree seedting production and their abbreviated

Type of Container	Name Aboreviation	Container Volume ($\mathrm{c} \mathrm{m}^{3}$)	Container Size			Container Shape Diam/Depth Ratio
			Diamete (cm)		$\begin{aligned} & \text { Depth } \\ & \text { (cm) } \end{aligned}$	
Ashphalt tube	A T	205	5.0	\times	10.0	1:2
Conwed						
-small	c-s	30	1.6	\times	15.0	1:9
-medium	c-m	74	2.5	\times	15.0	1:6
-large	C-L	294	5.0	\times	15.0	1:3
Fertil-oot						
-small	FP-S	180	9.0	\times	7.0	1:1
- large	FP-L	755	10.0	\times	18.0	1:2
Grow Block	G8	20	1.9	\times	9.0	1:5
Jiffy Petlet	JP-7	70	4.5	\times	7.0	1:2
Jiffy Pot						
-5?2	JP-522	33	3.5	*	5.1	1:2
-515	JP-515	61	4.7	\times	5.1	1:1
Japanese Paper Pot						
-313	JPP-313	75	3.0	${ }^{*}$	13.0	1:4
-315	Jpp-315	88	3.0	\times	15.2	1:5
-408	JPP-408	70	3.8	\times	7.6	1:?
-415	JPP-415	140	3.8	\times	15.2	1:4
-508	JPP-508	121	5.1	\times	7.6	1:2
-608	JPP-608	175	6.1	*	7.6	1:1
Multioot						
-1	MP-1	58	3.3	\times	9.0	1:3
-2	MP-2	67	3.3	\times	12.0	1:4
-4	MP-4	136	4.0	\times	16.4	1:4
Ontario Tube						
-small	OT-S	12	1.4	\times	7.7	1:6
-medium	OT-M	22	1.9	\times	7.7	1:4
-large	OT-L	62	3.2	\times	7.7	1:2
Peat Pot	pp	157	6.0	\times	8.0	1:1
Peat Stick	PS	45	3.0	\times	15.0	1:5
Spencer-Lemaire 40 1.4						
-Ferdinand	SL-F	40	2.1	\times	10.1	1:4
-Five	SL-5	55	2.5	\times	10.4	1:4
-Hills on -Tinus	SL-H	150	3.8	\times	12.7	1:3
-Suoer 45	SL-45	700	5.7	\times	25.0	1:4
Styroblock						
-2	STY-2	35	2.4	\times	11.0	1:5
$-2 A$	STY-2A	35	2.4	\times	11.0	1:5
-4	STY-4	60	3.0	\times	12.5	1:4
$-4 \mathrm{~A}$	STY-4A	58	2.8	x	13.5	1:5
-8	STY-8	115	3.8	\times	15.0	1:4
-20	STY-20	330	5.9	\times	15.0	1:3
Todd planter						
-100A	TP-100A	25	2.5	x	7.5	1:3
-150	TP-150	75	3.8	\times	12.5	1:3
-200	TP-200	75	5.0	\times	7.5	1:2
Tree Planter	trp-itw	107	2.5	\times	15.0	1:6
Tree Starter	TS	65	3.2	\times	12.5	1:4
Walter's Bullet						
-small	WB-S	20	2.0	\times	6.4	1:3
-targe	WB-L	36	2.0	\times	11.4	1:6

survival both in the greenhouse production phase and after field outplanting.

The purpose of this thesis was to evaluate the growth of black spruce (Ficea mariand (Mill.) B.S.P.) seedlings in containers with four volumes (45, 90, 180 and 360 cm^{3}) and at three diameter/depth shapes (1:2, 1:3, 1:4). Seedling height, root collar diameter, top dry weight and root dry weight were measured after 16 weeks in the greenhouse and after one growing season in the field. Analyses of variance (ANOVA) and multiple linear regressions (MLR) were completed for each of the morphological characteristics and for the corresponding seedling quality indices. The ANOVAS and MLRS were used to evaluate seedling growth and quality in order to determine the optimum container volume and shape necessary for the production of high quality black spruce stock.

In Ontario over 18 million black spruce container seedlings were shipped for planting in 1983 and the 1984 production targets are even greater (Tiemann, pers. comm., 11 May 84). The potential significance of improving the existing quality of black soruse container stock would be of great biological and economical importance.

LITERATURE REVIEW

In the past the growth and survival of container stock has been correlated with the single or combined effects of container diameter, depth, and volume. Most commonly these correlations have been made between growth and soil volume (Endean, 1972a; Van Eerden, 1974; Karlsson and Kovats, 1974). In several instances correlations were obtained between container diameter and depth without sufficient attention paid to the associated change in soil volume SSarratt, 1972b, 1972c; Davis and Whitcomb, 1975; Berger and Lysholm, 1978; Solberg, 1978). In the well designed research on this subject growth was correlated with change in diameter and depth in containers of constant volume (Endean and Carlson, 1975; Carlson and Endean, 1976; Biran and Ellias5af, 1960a).

This review will primarily address studies that have correlated the growth and survival of container nursery stock to container size and shape in the greenhouse production phase and after field outplanting.

For simplicity in review, the comprehensive literature on the effects of container size and shape on seedling growth are summarized in Tables 2 to 10 . Without this quantitative approach general trends found in the review tend to be misleading. The tables are divided by genera and species and information is given as follows:

1) Author and date of publication,
2) Type of container tested,
3) Container size and shape,
4) Seedling age and size at the end of the greenhouse production phase,
5) Seedling age, size and per cent survival after outplanting.

WHITE SPRUCE

White spruce (Picea glauca (Moench) Voss) has been more commonly studied than other species. A total of eleven reports have been published on the effect container volume and shape has had on the growth of white spruce (Table 2). However, the data collected is rather incomplete. Only a few publications incorporated the results of both greenhouse and field trials. Considerable data has been recorded in greenhouse experiments whereas only a minimal amount of data has been recorded in the fieid. The majority of researchers that did follow the progress of white spruce into the field only measured seedling height and per cent survival and did not measure dry weight. Height is a poor indicator of growth and although per cent survival does measure establishment well, it is not an indicator for growth.

Greenhouse Production Phase

The literature shows that there is considerable variation in all the moronological characteristics: height, root collar diameter and dry weight of white spruce between the various studies (Table 2). Seedling dry weights ranged from 0.05 g (Scarratt, 1972b) to 5.5 g (Scarratt, 1973) over a 12 and 18 week growth period. Heights also varied considerably from 1.2 cm (Scarratt, 1972b) to $22 \mathrm{~cm}(M \mathrm{MMinn}, 1981$) over a 12 and 16 week growth period. The 5 mall range of 4 to 6 weeks between the greenhouse growth periods could not possibly account for this variation. The growth environments and cultural treatments used in each study are probably more influential and may be responsible for

TABLE 2. The morphological characteristics of containerized white soruce seedlings found in greenhouse and outplanting studies.

Species ${ }^{1}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			Volume (cm^{3})	Diameter (cm)	Depth (cm)	Dimension (Diam/Depth)	Age (wks)	Ht. (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & (y r s) \end{aligned}$	Ht . (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Tıme } \\ & (y r s) \end{aligned}$	$\%$
PIg	$\begin{gathered} \text { Van Eerden } \\ 1971 \\ 1972 \end{gathered}$	OT-S	12	1.4	7.7	1:6	-	-	-	-	-	-	-	-	3	39
		OT-M	22	1.9	7.7	1:4	-	-	-	-	-	-	-	-	3	43
		WB-s	20	2.0	6.4	1:3	-	-	-	-	-	-	-	-	3	46
		WB-L	36	2.0	11.4	1:6	-	-	-	-	-	-	-	-	3	58
PIg	$\begin{aligned} & \text { Endean } \\ & 1972 b \end{aligned}$	OT	12	1.4	7.7	1:6	16	-	-	0.29	3	-	-	0.19	-	-
		C-M	74	2.5	15.0	1:6	16	-	\sim	0.24	3	-	-	0.12	-	-
PIg	$\begin{array}{r} \text { Scarratt } \\ 1972 b \end{array}$	$O T-M$OT-L	22	1.9	7.7	1:5	12	1.2	0.4	0.05	3	17.5	3.0	-	3	88
			62	3.2	7.7	1:2	12	5.9	4.5	0.23	3	23.5	4.4	-	3	98
PIg	$\begin{array}{r} \text { Scarratt } \\ 1972 \mathrm{C} \end{array}$	OT-S	12	1.4	7.7	1:6	16	7.0	1.7	0.19	-	-	-	-	-	-
		OT-M	22	1.9	7.7	1:4	16	7.5	1.8	0.22	-	-	-	-	-	-
		OT-L	62	3.2	7.7	1:2	16	10.5	2.0	0.38	-	-	-	-	-	-
PIg	$\begin{gathered} \text { Scarratt } \\ 1973 \end{gathered}$	OT-S	12	1.4	7.7	1:6	18	7.0	-	1.50	-	\checkmark	-	-	-	-
		OT+M	22	1.9	7.7	1:6	18	7.5	-	2.00	-	-	-	-	-	-
		OT-L	62	3.2	7.7	1:2	18	12.0	-	4.50	-	-	-	-	-	-
		Manuf.	157	5.1	7.7	1:2	18	13.5	-	5.50	-	-	-	-	-	-
PIg	Carlson \& Endean 1976	Manuf.	10	1.6	4.8	1:3	20	2.3	-	0.09	-	-	-	-	-	-
			33	2.4	7.2	1:3	20	4.0	-	0.18	-	-	-	-	-	-
			66	3.0	9.0	1:3	20	5.9	-	0.32	-	-	-	-	\sim	-
			131	3.8	11.4	1:3	20	7.9	-	0.45	-	\checkmark	-	-	-	-
			262	4.8	14.4	1:3	20	8.6	-	0.52	-	-	-	-	-	-
			524	6.1	18.3	1:3	20	8.8	-	0.54	-	-	-	-	-	-
PIg	Carlson \& Endean 1976	Manuf.	All	Volumes	-	1:1	20	-	-	0.39	-	-	-	-	-	-
			All	Volumes	-	1:3	20	-	-	0.31	-	-	-	-	-	-
			All	Volumes	-	1:6	20	-	-	0.26	-	-	-	-	-	-
PIg	$\begin{aligned} & \text { McMinn } \\ & 1978 \end{aligned}$	STY-2	35	2.4	11.0	1:5	-	\cdots	-	-	5	-	-	0.15	-	-
		STY-8	115	3.8	15.0	1:4	-	-	-	-	5	-	-	0.21	-	-
PIg	$\begin{gathered} \text { Van Eerden } \\ 1981 \end{gathered}$	STY-2A	35	2.4	11.0	1:5	16	13.0	2.3	1.20	-	-	-	-	-	-
		STY-4A	58	2.8	13.5	1:5	16	17.0	2.7	1.50	-	-	-	-	-	-
		STY-8	115	3.8	15.0	1:4	16	20.0	4.3	4.50	-	-	-	-	-	-
PIg	Walker 1981	STY-2	35	2.4	11.0	1:5	-	-	-	-	5	25.0	-	-	-	-
		SL-F	40	2.1	10.0	1:4	-	-	-	-	5	40.0	-	-	-	-
		SL-H	150	3.8	13.0	1:3	-	-	-	-	5	46.0	-	-	-	-
PIg	$\begin{array}{r} \text { Gardner } \\ 1981 \end{array}$	WB-S	20	2.0	6.4	1:3	12	10.0	1.9	0.80	5	35.0	-	-	5	95
		STY-2	35	2.4	11.0	1:5	12	16.0	2.0	0.99	5	39.0	-	-	5	91
PIg	$\begin{aligned} & \text { McMinn } \\ & 1981 \end{aligned}$	STY-2	35	2.4	11.0	1:5	16	16.0	-	0.80	2	28.0	-	-	2	91
		STY-4	60	3.0	12.5	1:4	16	20.0	-	1.50	2	35.0	-	-	2	96
		STY-8	115	3.8	15.7	$1: 4$	16	22.0	-	2.10	2	40.0	-	-	2	99

the variaijon. The container volume available for root development may be one environmental condition to consider.

Over the past ten years there has been a trend towards testing and using containers with larger volumes. Ten years ago, small volume containers were generally used (Table 2). This could be atributed to the popularity of the Ontario Tute of that time period. As time progressed researchers realized some of the limitations of small containers in the 10 to $30 \mathrm{~cm}^{3}$ range and began testing larger containers in the 60 to $520 \mathrm{~cm}^{3}$ range.

The growth of white spruce was severely restricted in small containers less than $30 \mathrm{~cm}^{3}$ in volume (Table 2). Because of this, $30 \mathrm{~cm}^{3} \mathrm{can}$ be considered to be the lower limit of volume for effective container size. In $30 \mathrm{~cm}^{3}$ containers seedling height, root collar diameter and dry weight were well below current minimum standards (Roller, 1977). All morphological characteristics increased as container volumes increased above this restrictive lower limit (Table 2). The only exception to this trend was found in a study by Endean (1972b) in which the seedling dry weight slightly decreased as the container volume was enlarged. Data presented in Table 2 show that seedling dry weight responded more to increases in container volume than height. Generally there was a 300 per cent increase in seedling dry weight when container volume tripled Scarratt, 1972b, 19725, 1973; Carlson and Endean, 1976; Van Eerden, 1961. Height and root collar diameter also increased by roughly 150 per cent when container volume tripled. Carlson and Endean (1976) concluded that the time to produce a specific volume white spruce seeding can be reduced from 20 to 15 weeks when the container volume was increased from 40 to $120 \mathrm{~cm}^{3}$.

Although there is a distinct trend for improved growth of white spruce seedling by increasing container volume, there are upper limits. In several studies seeding growth showed no significant improvement with further increases in container volume over 120 cm^{3} (Scarratt, 1973; Carlson and Endean, 1976).

There was only one study that assessed the relationship between seedling growth and container shape without including the influences from changes in container volume. Carlson and Endean (1976) found that seedling dry weight decreased when the shape of the container changed from a shallow, wide container (1:1 diameter/depth) to a deep, narrow container (1:6 diameter/depth) (Table 2).

Outplanting Phase

White spruce field results are more difficult to assess owing to the lack of data (Table 2). Only Endean (1972b) and McMinn (1978) recorded seedling dry weight. These two studies showed that their seedling dry weights were similar 3 to 5 years after outplanting. The height and per cent survival data also showed little variation.

All seedling heights and per cent survivals were still significantly different after five growing seasons. The height of seedlings grown in large volume containers remained twice as tall as those grown in smaller containers (McMinn, 1981; Walker, 1981).

None of the studies assessed the relationship between white spruce growth in the field and container shape without removing the influences from changes in container volume.

BLACK SPRUCE

Although black spruce (Ficea mariana (Mill.) B. S. P.) is one of the most important commercial species in Canada very few researchers have studied the effect container volume and shape has on its growth (Table 3). Of the two greenhouse studies only the work of Scarratt (1981) can be used to evaluate growth trends. In addition two field studies can also be constructively used.

Greenhouse Production Phase

Data variation and growth trends for black spruce are difficult to determine since there are only two documented reports (Roller, 1976; Scarratt, 1981). The seedling heights over time are quite different between studies. During a 16 week growth period Roller (1976) produced 5 to 3 cm trees whereas Scarratt (1981) produced trees that were more than twice as tall, 15 to 18 cm , under the same growing period and container volume range (Table 3). Evidently environmental conditions and cuitural treatments other than container volume and shape must have influenced the seedling growth.

Scarratt (1981) found that seedling height, root collar diameter and dry weight all increased with an increase in container volume from 70 to $121 \mathrm{cm3} \mathrm{~cm}$. His work may suggest that $121 \mathrm{~cm}^{3}$ be an upper volume limit since the next largest container volume ($175 \mathrm{~cm}^{3}$) produced substantially smaller seedlings. Scarratt does not explain the reason for this anomaly. An upper volume limit of $121 \mathrm{~cm}^{3}$ parallels the upper limits of $120 \mathrm{~cm}^{3}$ for white spruce (Table 2).

None of the studies assessed the relationship between the growth of black spruce in the greenhouse and container shape without removing the influences from changes
in container volume.

Outplanting Phase

Variation in the data given in Table 3 is hard to evaluate because there are only three studies. Each of these report on seedlings of a different age Roller, 1976, 1977; Scarratt, 1981).

The two studies reported by Roller (1976) and (1977) show poor growth trends with increasing container volume. All morphological characteristics generally increased slightly with increases in container volume (Table 3). The inconsistent growth of seedlings in the Jiffy Pot and Peat Pot containers are not explained but may be owing to surface evaporation, water retention problems or wicking. These porous walled containers may have dried out more rapidly than the others. Survival rates do not correlate with changes in container volume except for a weak positive trend to increase with increased volume (Scarratt, 1981).

None of the studies assessed the relationship between the growth of black spruce after outplanting and container shape without removing the influences from changes in container volume.

OTHER SPRUCES

Norway spruce (Picea abies (L.) Karst.) was the only other spruce studiec. It was examined by deChamps (1978) and Roller (1976) to assess the relationship between seedling growth and container volume (Table 4). In the greenhouse production phase Roller (1976) only measured height and deChamps (1978) did not make any measurements. However,

$\text { Spec res }{ }^{1}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			$\begin{aligned} & \text { Volume } \\ & \left(\mathrm{cm}^{3}\right) \end{aligned}$	Diameter (cm)	Depth (cm)	$\begin{aligned} & \text { Dimension } \\ & \text { (Diam/Depth) } \end{aligned}$	$\begin{gathered} \mathrm{Age} \\ (\mathrm{wks}) \end{gathered}$	$\begin{aligned} & \mathrm{Ht} . \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \mathrm{RCD} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & (\mathrm{yrs}) \end{aligned}$	$\begin{aligned} & \mathrm{Ht} . \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{q}) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{1 \mathrm{me}} \\ & (\mathrm{yrs}) \end{aligned}$	$\%$
PIm	$\begin{gathered} \text { Roller } \\ 1976 \end{gathered}$	STY-2	35	2.4	11.0	1:5	16	7.0	-	-	3	30.0	4.8	8.90	3	73
		MP-1	58	3.3	9.0	1:3	16	8.0	-	-	3	38.0	6.0	14.90	3	66
		JP-7	72	4.5	7.0	1:2	16	7.0	-	-	3	36.0	4.9	9.10	3	65
		STY-8	115	3.8	15.0	1:4	16	8.0	-	-	3	35.0	5.8	13.30	3	79
		PP-S	157	6.0	8.0	1:1	16	5.0	-	-	3	33.0	4.9	9.70	3	70
PIm	Roller 1977	STY-2	35	2.4	11.0	1:5	-	-	-	-	1	13.0	2.7	0.90	2	65
		SL-F	40	2.1	10.0	1:4	-	-	-	-	1	-	-	-	2	52
		MP-1	58	3.3	9.0	1:3	-	-	-	-	1	13.0	2.4	0.80	2	92
		STY-4	60	3.0	12.5	1:4	-	-	-	-	1	14.0	2.8	1.10	2	65
		JPP-408	70	3.8	7.6	1:2	-	-	-	-	1	19.0	2.3	0.90	2	80
		STY-8	115	3.8	15.0	1:4	-	-	-	-	1	16.0	3.5	1.60	2	69
PIm	$\begin{gathered} \text { Scarratt } \\ 1981 \end{gathered}$	JPP-408	70	3.8	7.6	1:2		15.0	2.9	1.42	-	-	-	-	3	91
		JPP-508	121	5.1	7.6	1:2		18.0	3.7	2.29	-	-	-	-	3	94
		JPP-608	175	6.1	7.6	1:1	16	16.0	3.6	1.63	-	-	-	-	3	95

TABLE 4. The morphological characteristics of containerized norway soruce seedtings found in greenhouse and outolanting studies.

Specres ${ }^{1}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			Volume (cm^{3})	$\begin{gathered} \text { Diameter } \\ (\mathrm{cm}) \end{gathered}$	Depth (cm)	Dimension (Diam/Depth)	Age (wks)	Ht. (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$		Ht . s) (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SOW } \\ & (\mathrm{g}) \end{aligned}$	Time (yrs)	$\%$
PIa	$\begin{gathered} \text { Roller } \\ 1976 \end{gathered}$	STY-2	35	2.4	11.0	1:5	16	5.6	-	-	3	28.0	5.3	7.10	3	73
		MP-1	58	3.3	9.0	1:3	16	4.8	-	-	3	28.0	5.0	9.40	3	66
		$J \mathrm{P}-7$	70	4.5	7.0	1:2	16	7.0	-	-	3	29.0	5.2	8.40	3	65
		STY-8	115	3.8	15.0	1:4	16	8.3	-	-	3	31.0	6.5	15.00	3	79
		PP	157	6.0	8.0	1:1	16	5.0	-	-	3	21.0	3.6	3.90	3	70
PIa	deChamos	FP-S	180	9.0	7.0	1:1	-	-	-	-	10	242.0	7.6	-	2	98
	1978	FP-L	755	10.0	18.0	1:2	-	-	-	-	10	283.0	9.4	-	2	96

[^0]both workers measured adequate information in the field trials.

Greenhouse Production Phase

Because of the lack of data the relationship between seedling height and container volume could only be assessed in Rollers (1976) work. Height generally increased with an increase in container volume up to $115 \mathrm{~cm}^{3}$ (Table 4). The next largest container volume, the Peat Pot container produced shorter trees.This may again be owing to surface evaporation, water retention problems or wicking as mentioned for black spruce.

None of the studies assessed the relationship between the growth of Norway spruce in the greenhouse and container shape without removing the influences from changes in container volume.

Outplanting Phase

After three growing seasons seedling height, root collar diameter and dry weight all improved with increases in container volume (Table 4). The dry weight doubled from 7 to 15 g with a container volume increase from 35 to $115 \mathrm{~cm}^{3}$ (Roller 1976). There were, however, no differences in per cent survival with changes in container volume.

None of the studies assessed the relationship between the growth of Norway spruce after outplanting and container shape without removing the influences from changes in container volume.

JACK PINE

Jack pine (Pinus banksiana Lamb.) has often been studied (Table 5). Six papers have attempted to evaluate the relationship between the growth of jack pine seedings and container volume. Equal emphasis has been placed on greenhouse and outplanting studies. Morphological attributes were adequately measured in all four greenhouse studies. The five field studies mainly recorded height and per cent survival. The best report was by Alm et al (1982) they also measured seedling dry weight. The data collected for jack pine was by far superior in quantity and quality over all other coniferous data.

Greenhouse Production Phase

The variation of jack pine growth data was considerable from worker to worker (Table 5).Seedling height varied from as low as 2 cm (Scarratt, 1972b) to as high as 22 cm (Scarratt, 1981) over a 12 and 16 week growth period. The most variation was for seedling dry weight which ranged from 0.04 g (Scarratt, 1972b) to 4.22 g (Scarratt, 1981) over the above mentioned growth periods. Some of this variation can be attributed to the four week difference between the growth periods, but most is probably related to environmental and cultural treatment differences. The principal influence may be from changes in container volume.

Container volumes ranging from 12 to $175 \mathrm{~cm}^{3}$ have been tested over the past ten years. Walker (1981) tested a container volume above this range but provided only limited data.

Jack pine growth was found to be restricted in small volume containers less than $30 \mathrm{~cm}^{3}$ (Table 5). This may again be considered the lower volume limit as it was
for white and black spruce. All morphological characteristics measured from seedlings grown in such small containers were below current minimum standards. Growth improved when container volumes were enlarged beyond this minimum volume limit. When container volume deubled from roughly 60 to $120 \mathrm{~cm}^{3}$ all morphological characteristics of the seedlings increased. The most substantial improvement was the 200 per cent increase in seedling dry weight (Scarratt, 1972b, 1973, 1981; Alm et al, 1982). Height and root collar diameter also significantly improved when container volume was increased except in a few cases when the container volume exceeded 90 to $120 \mathrm{~cm}^{3}$ (Scarratt, 1981; Alm et al, 1982.). No explanations were given for these anomalies.

None of the studies assessed the relationship between jack pine seedling growth in the greenhouse and container shape without removing the influences from changes in container volume.

Outplanting Phase

Jack pine seedling height and root collar diameter varied considerably after three growing seasons (Table 5). Heights varied from 41 cm (Alm et al, 1982) to 124 cm (Carlson and Nairn, 1977). The root collar diameters ranged from 9 mm (Alm et al, 1982) to 22 mm (Carlson and Nairn, 1977).

Jack pine grown in progressively larger containers maintained their superiority in volume after three growing seasons (Table 5). Seedling height and root collar diameter continued to improve as container volume increased in all studies except in one by Carlson and Nairn (1977). Their height results showed no trend for increased growth with increasing container volume and they do not explain this anomaly. Per cent survival couid
not be constructively used owing to high survival rates attained at all container volumes (Scarratt, 1972b, 1961).

None of the studies assessed the relationship between jack pine seedling growth after outplanting and container shape without removing the influences from changes in container volume.

OTHER PINES

Researchers have also studied the effects container volume and shace have on the growth of lodgepole pine (Finus contorta Dowg. var latifolia Engelmi, slash dine (Finue elliattii Engelm.), ponderosa pine (Finus pondercea Laws.), loblohy dine (Finus taeda L.i, red pine (Finus resincsa Ait.), and caribbean pine (Pinus caribaea Morelet) (Table 6). Although the data collected for these species was very inmated and incomolete there are some trends that should be noted.

Greenhouse Production Phase

Table 6 shows that there are lower limits of container volume for these dines especially for lodgepole dine. Container volumes below $30 \mathrm{~cm}^{3}$ restricted growth and produced substantially poor quality seedlings (Endean, 1972b. 1973; Endean and Carlson, 1975).

As container volumes increased above this lower velume limit there was a general trend for seedlings to produce more dry weight (Endean, 1973; Van Eerden, 1974.1978; Endean and Carison. 1975; Gardner, 1981.

TABLE S. The morohotogical characteristics of containerized jack pine seedlings found in greenhouse and outplanting studies.

$\text { Specres }{ }^{1}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			Volume (cm^{3})	$\begin{gathered} \text { Diameter } \\ (\mathrm{cm}) \end{gathered}$	Depth (cm)	Dimension (Diam/Depth)	Age (wks)	Ht. (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{gathered} \text { Age } \\ (y r s) \end{gathered}$	$\begin{gathered} H t \\ (\mathrm{~cm}) \end{gathered}$	RCD (mm)	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	Time (yrs)	$\%$
PNb	Scarratt	OT-M	22	1.9	7.7	1:4	12	-	5.1	0.04	3	56.0	10.0	-	3	99
	1972 b	OT-L	62	3.2	7.7	1:2	12	2.0	2.8	0.21	3	63.0	12.0	-	3	99
PNb	Scarratt	OT-S	12	1.4	7.7	1:6	18	10.0	-	0.15	-	-	-	-	-	-
	1973	OT-M	22	1.9	7.7	1:4	18	9.0	-	0.18	-	-	-	-	-	-
		OT-L	62	3.2	7.7	1:2	18	14.0	-	0.50	-	-	-	-	-	-
		Manuf.	157	5.1	7.7	1:2	18	22.0	-	1.40	-	-	-	-	-	-
PNb	Carlson \&	STY-2	35	2.4	11.0	1:5	-	-	-	-	31	102.0	19.0	\checkmark	-	-
	Nairn	JPP-213	33	2.0	13.0	1:7	-	-	-	-	3	89.0	18.0	-	-	-
	1977	JPP-408	70	3.8	7.6	1:2	-	-	-	-	31	124.0	22.0	-	-	-
		JPP-313	75	3.0	13.0	1:4	-	-	-	-	31	112.0	21.0	-	-	-
PNb	Scarratt	JPP-408	70	3.8	7.6	1:2	16	10.0	2.4	1.60	-	-	-	-	3	98
	1981	JPP-508	121	5.1	7.6	1:2	16	22.0	3.4	2.64	-	-	-	-	3	100
		JPP-608	175	6.1	7.6	$1: 1$	16	16.0	5.1	4.22	-	-	-	-	3	100
PNb	Walker	STY-2	35	2.4	11.0	1:5	-	-	-	-	51	110.0	-	-	-	-
	1981	SL-T	500	4.2	20.0	1:4	-	-	-	-	51	140.0	\rightarrow	-	-	-
PNb		OT-S	12	1.4	7.7	1:6	24	6.0	1.0	0.20	3	41.0		27.00		
	1982	STY-2	35	2.4	11.0	1:5	24	12.0	1.9	0.80	3	64.0	15.0	104.00	-	-
		SP-5	55	2.5	10.0	1:4	24	12.0	1.8	0.70	3	57.0	14.0	81.00	-	-
		JPP-315	88	3.0	15.0	1:5	24	17.0	1.9	0.80	3	54.0	13.0	76.00	-	-
		STY-8	115	3.8	15.0	1:4	24	11.0	2.3	1.20	3	64.0	14.0	101.00	-	-

$\text { Species }{ }^{\uparrow}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Qutplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			Volume (cm^{3})	Diameter (cm)	Depth (cm)	Dimension (Diam/Depth)	Age (wks)	Ht. (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	Age (yrs)	Ht . (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	Time (yrs)	$\%$
PNCa	Berger \&	Manuf.	287	4.9	15.2	1:3	32	29.0	3.6	-	2	152.0	-	-	1.5	69
	Lysholm		504	6.5	15.2	1:2	32	31.0	4.2	-	2	173.0	-	-	1.5	77
	1978		783	8.1	15.2	1:2	32	31.0	4.2	-	2	156.0	-	-	1.5	83
			1123	9.7	15.2	1:2	32	28.0	4.9	-	2	154.0	-	-	1.5	87
PNea	Solberg	Manuf.	80	3.2	10.0	1:3	16	22.0	-	-	1	37.0	-	-	1	60
	1978		121	3.2	15.0	1:5	16	21.0	-	-	1	37.0	-	-	1	60
			161	3.2	20.0	1:6	16	23.0	-	-	1	35.0	-	-	1	72
			189	4.9	10.0	1:2	16	20.0	-	-	1	38.0	-	-	1	80
			283	4.9	15.0	1:3	16	20.0	-	-	1	38.0	-	-	1	85
			377	4.9	20.0	1:4	16	20.0	-	-	1	37.0	-	-	1	82
			332	6.5	10.0	1:2	16	17.0	-	-	1	37.0	-	-	1	87
			498	6.5	15.0	1:2	16	17.0	-	-	1	36.0	-	-	1	88
			664	6.5	20.0	1:3	16	17.0	-	-	1	37.0	-	-	1	90
PNco	Endean	OT-S	12	1.4	7.7	1:6	16	-	-	0.69	3	-	-	0.30	-	-
	1972b	C-L	74	2.5	1.5	1:6	16	-	-	0.30	3	-	-	0.40	-	-
PNco	Endean		24	1.9	8.5	1:5	11	-	-	0.67	2	-	-	0.30	2	90
	1973	-tube -conical	37	-	8.9	-	11	-	-	2.04	2	-	-	1.40	2	92
PNco	Van Eerden	STY-2	35	2.4	11.0	1:5	14	14.0	3.1	1.20	-	-	-			
	1974	STY-8	145	3.8	15.0	1:4	14	13.0	3.7	2.40	-	-	-	-	-	-

[^1]| $\text { Spec }{ }^{1}{ }^{\uparrow}$ | Author \& Date | Container Type | Container Size \& Shape | | | | Greenhouse Phase | | | | Outplanting Phase | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | Seedling Age \& Size | | | | Seedling Age \& Size | | | | Survival | |
| | | | Volume (cm^{3}) | Diameter (cm) | Depth (cm) | Dimension (Diam/Depth) | Age (wks) | $\begin{aligned} & \mathrm{Ht} . \\ & (\mathrm{cm}) \end{aligned}$ | $\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$ | $\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$ | $\begin{gathered} \text { Age } \\ (y r s) \end{gathered}$ | Ht . (cm) | $\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$ | $\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$ | $\begin{aligned} & \text { Tıme } \\ & (y r s) \end{aligned}$ | $\%$ |
| PNco | Endean \& | Manuf. | 10 | - | - | 1:3 | 20 | - | - | 0.25 | - | - | - | - | - | - |
| | Carlson | | 23 | - | - | 1:3 | 20 | - | - | 0.54 | - | - | - | - | - | - |
| | 1975 | | 33 | - | - | 1:3 | 20 | - | - | 0.72 | - | - | - | - | - | - |
| | | | 66 | - | - | 1:3 | 20 | - | - | 1.22 | - | - | - | - | - | - |
| | | | 131 | - | - | 1:3 | 20 | - | - | 1.57 | - | - | - | - | - | - |
| | | | 262 | - | - | 1:3 | 20 | - | - | 2.06 | - | - | - | - | - | - |
| | | | | - | - | 1:3 | 20 | - | - | 2.44 | - | - | - | - | - | - |
| PNco | Endean \& | Manuf. | All | Volumes | - | 1:1 | 20 | - | - | 1.39 | - | - | - | - | - | |
| | carlson | | All | Volumes | - | 1:3 | 20 | - | - | 1.25 | - | - | - | - | | |
| | 1975 | | | Volumes | - | 1:6 | | - | - | 1.25 | - | - | - | - | | |
| PNCO | Walker | STY-2 | 35 | 2.4 | 11.0 | 1:5 | - | - | - | - | 5 | 30.0 | - | - | | |
| | 1981 | SL-F | 40 | 2.1 | 10.0 | 1:4 | - | - | - | - | 5 | 60.0 | | | | |
| | | SL-T | 150 | 3.8 | 13.0 | 1:3 | - | - | - | - | 5 | 70.0 | | - | - | - |
| PNCO | Gardner | WB | 30 | 2.0 | 11.4 | 1:6 | $\uparrow 2$ | 8.0 | 1.8 | 0.89 | 5 | 72.0 | - | - | 5 | 84 |
| | 1981 | STY-2 | 35 | 2.4 | 11.0 | 1:5 | 12 | 12.0 | 2.3 | 1.55 | 5 | 82.0 | - | - | 5 | 94 |
| PNe | Barnett \& | GB | 20 | 1.9 | 9.0 | 1:5 | - | - | - | - | 3 | 40.0 | - | - | 3 | 89 |
| | McGiluray | STY-2 | 35 | 2.4 | 11.0 | 1:5 | - | - | - | - | 3 | 43.0 | - | - | 3 | 98 |
| | 1981 | SL-F | 40 | 2.1 | 10.0 | 1:4 | - | - | - | - | 3 | 43.0 | - | - | 3 | 98 |
| | | PS | 45 | 3.0 | 15.0 | 1:5 | - | - | - | - | 3 | 52.0 | - | - | 3 | 100 |
| | | JPP-315 | 88 | 3.0 | 15.2 | 1:5 | - | - | - | - | 3 | 46.0 | - | - | 3 | 96 |
| PNp | | $S T-2$ | 35 | 2.4 | 11.0 | $1: 5$ | | 14.0 | | 1.20 | - | - | - | | - | - |
| | 1978 | $S T-8$ | 115 | 3.8 | 15.0 | $1: 4$ | 20 | 13.0 | 3.7 | 2.40 | - | - | - | - | | |
| PND | Hite | C-M | 74 | 2.5 | 15.0 | 1:6 | 32 | 25.0 | 9.1 | 1.80 | - | - | - | - | | |
| | 1978 | $C-L$ | 294 | 5.0 | 15.0 | 1:3 | 32 | 28.0 | 10.1 | 2.20 | - | - | - | - | - | $=$ |
| PNo | Van Eerden | OT-S | 12 | 1.4 | 7.7 | 1:6 | - | - | - | - | - | - | - | - | 3 | 59 |
| | 1971 | OT-M | 22 | 1.9 | 7.7 | 1:4 | - | - | - | - | - | - | - | - | 3 | 58 |
| | 1972 | WB-S | 20 | 2.0 | 6.4 | 1:3 | - | - | - | - | - | - | - | - | 3 | 72 |
| | | W8-L | 36 | 2.0 | 11.4 | 1:6 | - | - | - | - | - | - | - | - | 3 | 78 |
| PNr | Davidson \& | OT-S | 12 | 1.4 | 7.7 | 1:6 | - | - | - | - | 3 | 13.0 | - | - | 3 | 38 |
| | Sowa | $\mathrm{C}-\mathrm{S}$ | 30 | 1.6 | 15.0 | 1:9 | - | - | - | - | 3 | 20.0 | - | - | 3 | 20 |
| | 1974 | C-M | 74 | 2.5 | 15.0 | 1:6 | - | - | - | - | 3 | 21.0 | - | - | 3 | 45 |
| | | JP-7 | 70 | 4.5 | 7.0 | 1:2 | - | - | - | - | 3 | 21.0 | - | - | 3 | 73 |
| | | AT | 205 | 5.0 | 10.0 | 1:2 | - | - | - | - | 3 | 23.0 | - | - | 3 | 40 |
| | | PP | 157 | 6.0 | 8.0 | 1:1 | - | - | - | - | 3 | 27.0 | - | - | 3 | 78 |
| PNt | Barnett \& | TP-100A | 25 | 2.5 | 7.5 | 1:3 | 20 | - | - | 0.15 | 3 | 137.0 | - | - | 3 | 92 |
| | McGiluray | $T P-200$ | 75 | 5.0 | 7.5 | 1:2 | 20 | - | - | 0.39 | 3 | 165.0 | - | - | 3 | 94 |
| | 1981 | JPP-315 | 88 | 3.0 | 15.2 | 1:5 | 20 | - | - | 0.20 | 3 | 158.0 | - | - | 3 | 87 |
| PNt | Barnett \& | GB | 20 | 1.9 | 9.0 | 1:5 | 16 | 24.0 | - | 0.60 | 2 | 53.0 | - | - | 2 | 80 |
| | McGilvray | STY-4 | 60 | 3.0 | 12.5 | 1:4 | 16 | 24.0 | - | 0.83 | 2 | 53.0 | - | - | 2 | 94 |
| | 1981 | TS | 65 | 3.2 | 12.5 | 1:4 | 16 | 19.0 | - | 0.43 | 2 | 52.0 | - | - | 2 | 91 |
| | | TP-150 | 75 | 3.8 | 12.5 | 1:3 | 16 | 25.0 | - | 0.81 | 2 | 52.0 | - | - | 2 | 98 |
| | | JPP-315 | 88 | 3.0 | 15.0 | 1:5 | 16 | 22.0 | - | 0.55 | 2 | 48.0 | - | - | 2 | 89 |
| | | TrP-ITW | 107 | 2.5 | 15.0 | 1:6 | 16 | 21.0 | - | 0.67 | 2 | 52.0 | - | - | 2 | 91 |

[^2]No upper limits of container volume seem to exist except for caribbean pine which decreased in size when grown in containers over $60 \mathrm{~cm}^{3}$ (Solberg, 1978). No explanation was given.

Only Endean and Carlson (1975) studied the effects of container shape on the growth of lodgepole pine in the greenhouse without including the influences from change in container volume. They found no significant differences in dry weight when the container shape was altered.

Outplanting Phase

The discontinuous nature of the field data reported in the literature makes it hard to evaluate growth trends (Table 6). Only a few publications showed a positive correlation between container volume and the height of pine seedlings after outplanting (Davidson and Sowa, 1974; Karlsson and Kovats, 1974; Garoner, 1981; Walker, 1981).

None of the studies assessed the relationship between pine seedling growth after outplanting and container shape without removing the influences from changes in container volume.

DOUGLAS FIR

Container studies with Douglas fir (Fseudotsuga menziesii (Mirt.) Franco) have been as numerous as those with white spruce or jack pine. The data collected in greenhouse trials were more comprehensive than data collected after outplanting (Table 7).

Greenhouse Production Phase

Table 7 shows that morphological attributes varied greatly even with similar growth periods of 12 to 16 weeks. Heights varied from 9 cm (Gardner, 1981) to 39 cm (Hahn and Hutchison, 1978). Seedling dry weights varied the most from 8.5 g (Gardner, 1981) to 9.0 g (Karlsson and Kovats, 1974). It is probable that changes in container velume may be the principal cause of this variation.

In addition the growth of Douglas fir seedlings increased with container volume. All morphological attributes increased as container volume increased from 30 to $130 \mathrm{~cm}^{3}$ (Karlsson and Kovats, 1974; Hahn and Hutchison, 1978; Arnott, 1981; Gardner, 1991).

None of the studies assessed the relationship between Douglas fir seedling growth in the greenhouse and container shape without removing the influences from changes in container volume.

Outplanting Phase

Only Karlsson and Kovats (1974) and Gardner (1981) presented growth data that was correlated with changes in container volume (Table 7). Seedling height and per cent survival significantly increased with increases in container volume from 20 to $50 \mathrm{~cm}^{3}$. The remaining field studies could not be evaluated because of insufficient data.

None of the studies assessed the relationship between Douglas fir seedling growth after outplanting and container shape without removing the influences from changes in container volume.

HARDWOODS

In the last five years there has been a growing interest in determining a relationship between hardwood growth and container volume (Table 8). The quality of data collected in the greenhouse trials was sufficient to determine growth trends since most researchers included seedling dry weight measurements. Only seedling height and per cent survival were collected in field studies.

Greenhouse Production Phase

All hardwood studies, except one by Kellas and Edgar (1979), tested containers that were much larger than the containers used in coniferous experiments (Table 8).

Container volume may have as an important influence on the growth of hardwoods as it does on coniferous species (Table 3). All morphological attributes increased significantly as container volume increased (Kellas and Edgar, 1979; Funk et al, 1930; Ward et al, 1981). One exception to this trend occurred in a report by Elam et al (1981). They found no improvement on seedling height, root collar diameter or dry weight of a southern red oak (Quercus falcata var . pagodifolia Ell.) as container volume was increased from 500 to $1900 \mathrm{~cm}^{3}$.

None of the studies assessed the relationship between hardwood seedling growth in the greenhouse and container shape without removing the influences from changes in container volume.

TABLE 7. The morphological characteristics of containerized Doughas fir seedlings found in greenhouse and outplanting studies.

$\text { Species }{ }^{1}$	Author \& Date	Contalner Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seeding Age \& Size				Survival	
			Volume $\left(\mathrm{cm}^{3}\right)$	Diameter (cm)	Depth (cm)	Dimension (Diam/Depth)	Age (wks)	Ht . (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (yrs) } \end{aligned}$	Ht . (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{q}) \end{aligned}$	Time (yrs)	\because
PSm	Karlson \&	STY-2	35	2.4	11.0	1:5	16	10.0	1.5	2.50	2	23.0	30.5	-	1	65
	$\begin{gathered} \text { Kovats } \\ 1974 \end{gathered}$	STY-4	60	3.0	12.5	1:4	16	15.0	2.0	9.00	2	32.0	30.5	-	1	95
PS.m	Arnott 1974	WB-L	36	2.0	11.4	1:6					3	30.0			3	77
PSm	Hahn \&	MP-1	58	3.3	9.0	1:3	16	25.0	2.6	-		-	-	-	3	59
	Hutchison	MP-2	67	3.3	12.0	1:4	16	33.0	3.3	-		-	-	-	3	-
	1978	MP-4	136	4.0	16.4	1:4	16	39.0	4.2	-		-	-	-	3	76
PSm	Van Eerden	OT-S	12	1.4	7.7	1:6	-	-	-	-	-	-	-	-	3	51
	1971	OT-M	22	1.9	7.7	1:4	-	-	-	-	-	-	-	-	3	5
	1972	WB-S	20	2.0	6.4	1:3	-	-	-	-	-	-	-	-	3	76
		WB-L	36	2.0	19.4	1:6	-	-	-	-	-	-	-	-	3	58
PSm	Arnott	WB-L	36	2.0	11.4	1:6	16	11.0	-	0.80	5	45.0	-	-	5	78
	1981	STY	-		-	-	16	12.0	-	0.99	5	45.0	-	-	5	55
PSm	Gardner	WB-S	20	2.0	6.4	1:3	12	9.0	1.6	0.50	5	26.0	-	-	5	65
	1981	STY-2	35	2.4	11.0	1:5	12	19.0	2.1	1.30	5	37.0	-	-	5	80

TABLE 8. The morphological characteristics of containerized hardwood seedings found in areenhouse and outplanting studies.

Species ${ }^{1}$	Author \& Date	Contaıner Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			Volume (cm^{3})	Diameter (cm)	Depth (cm)	Dimension (Diam/Depth)	Age (wks)	Ht . (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	Age (yrs)	Ht. (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{q}) \end{aligned}$	Time (yrs)	$\%$
ACsc	Ward et al 1981	Manuf.	1000	-	-	-	20	21.0	3.4	6.10	-	-	-	-	-	-
			4500	-	-	-	20	105.0	6.2	34.00	-	-	-	-	-	-
			9000	-	-	-	20	135.0	6.4	41.60	-	-	-	-	-	-
EUr	 Edgar 1979	JP-522	33	3.5	5.1	1:2	32	5.8	-	-	1	104.0	-	-	1	75
		STY-2	35	2.4	11.0	1:5	32	5.6	-	-	1	139.0	-	-	1	73
		JP-515	61	4.7	5.1	1:1	32	7.6	-	-	1	136.0	-	-	1	85
		JPP-415.5	70	3.8	7.6	1:2	32	7.5	-	-	1	122.0	-	-	1	80
		STY-8	115	3.8	15.0	1:4	32	9.5	-	-	1	140.0	-	-	1	86
		JPP-415	140	3.8	15.2	1:4	32	11.6	-	-	1	137.0	-	-	1	87
$\cdots \sim n$	$\begin{aligned} & \text { Funk et al } \\ & 1980 \end{aligned}$	Manuf.	1150	13.0	8.7	1:1	-	-	-	7.00	-	-	-	-	-	-
			3450	10.0	61.0	1:6	-	-	-	16.60	-	$\stackrel{-}{\square}$	-	-	-	-
			10350	15.0	61.0	1:4		-		28.40	-	-	-	-	-	-
JUn	$\begin{aligned} & \text { Goodwin } \\ & \text { et al } \\ & 1981 \end{aligned}$	$\begin{aligned} & S L-T \\ & S L-45 \end{aligned}$	500	4.2	20.5	1:4		-	-	-	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 225.0 \\ & 201.0 \end{aligned}$	-	-	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	9083
			700	5.7	25.0	1:4										
	$\begin{aligned} & \text { Elam et al } \\ & 1981 \end{aligned}$	Manuf.	500	-	-	-	12	21.0	4.2	2.70	4	58.0	13.8	8 -	3	77
			900	"	-	\sim	12	22.0	4.3	3.10	4	80.0	19.8	8-	3	92
			1900	-	-	-	12	23.0	4.9	3.50	4	60.0	13.9	$9-$	3	77

[^3]
Outplanting Phase

There were no reports of significant improvements in seedling heights or per cent survival of hardwoods produced in different size containers (Table 3). It is possible that the rapid growth of hardwoods may override any influence of the original soil volume. This is not the case for coniferous species because of the slower root development.

Maximum limits of container volume appear to be present. The largest containers in several reports produced a smaller seedling after four growing seasons (Goodwin et al, 1981; Elam et al, 1981). No explanation was given in the literature.

None of the studies assessed the relationship between hardwood seedling growth after outplanting and container shape without removing the influences from changes in container volume.

AGRICULTURAL, ORNAMENTAL AND EXOTIC CROPS

The effects of container volume on plant growth was first investigated in agricultural crops in the early 1960's (Table 9). Twenty years later ornamental growers became interested in the influences of container volume and shape on plant growth. All studies measured only plant dry weight since height and root collar mesurements were not applicable to these species. No studies were continued from the greenhouse into field trials.

Greenhouse Production Phase

All agricultural crops tested were positively affected by container valume increases (Table 9). The plant dry weight significantly increased as the container volume increased (Baker and Woodruff, 1961; Larsen and Sutton, 1963; Cornforth, 1966; Kratky et al, 1982).

None of the studies assessed the relationship between seedling growth and container shape without removing the influences from changes in container volume.

Only two studies tested the effect container volume had on the dry weight of ornamental plants (Table 10). A growth trend was present in only one study by (Eiran and Elliassaf, 1960b). They found that as the container volume increased there was a significant increase in plant dry weight.

Another study by Biran and Elliassaf (1980a) tested the influences of container shape on growth while omitting any influences from container volume changes (Table 19). Biran and Elliassaf (1980 a) discovered that the growth and distribution of roots were drastically affected by container shape. The growth of shallow root system species was stimulated in shallow, wide containers but was restricted in deep, narrow containers. The growth of deep root system species behaved in a converse manner.

CONCLUSIONS

The literature shows that the data on the relationship between container volume and shape on seedling growth was very discontinuous because many authors did not incorporate the results of both greenhouse and field trials. Also many authors omitted

TABLE 9. The morphological characteristics of containerized agricultural crops found in greenhouse studies.

Specres ${ }^{\text {² }}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seedling Age \& Size				Seedling Age \& Size				Survival	
			Volume (cm^{3})	Diameter (cm)	Depth (cm)	$\begin{aligned} & \text { Dimension } \\ & \text { (Diam/Depth) } \end{aligned}$	Age (wks)	Ht. (cm)	$\begin{aligned} & \text { RCD } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (yrs) } \end{aligned}$	Ht. (cm)	$\begin{aligned} & \mathrm{RCD} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & \text { (g) } \end{aligned}$	$\begin{aligned} & T_{1 m e} \\ & (y \mathrm{ys}) \end{aligned}$	$\%$
BRp	$\begin{aligned} & \text { Kratky } \\ & \text { et al } \\ & 1982 \end{aligned}$	Manuf.	31	2.5	6.4	1:3	6	-	-	5.40	-	-	-	-	-	-
			71	3.7	6.4	1:2	6	-	-	9.10	-	-	-	-	-	-
			126	5.0	6.4	1:1	6	-	-	15.40	-	-	-	-	-	-
			283	7.5	6.4	1:1	6	-		30.10	-	-	-	-	-	-
AVs	$\begin{aligned} & \text { Cornforth } \\ & 1968 \end{aligned}$	Manuf.		-	-	-			-		-	-	-	-	-	-
			2780	-	-	-	6	-	-	6.10	-	-	-	-	-	-
			5560	-	-	-	6	-	-	7.40	-	-	-	-	-	-
LOD	Larsen \& Sutton 1963	Manuf.	664 1327	13.0	5.0	1:1	-	-	-	6.60 8.25	-	-	-	-	-	-
			1327	13.0	10.0	1:1	-	-		9.25	-	-	-	-	-	-
			2655	13.0	20.0	1:2					-			-	-	-
			5310	13.0	40.0	1:3	-	-		21.10	-	-	-	-	-	-
ZEm	Baker \& Woodruff 1962	Manuf.	500	-	-	-	5	-	-	39.00	-	-	-	-	-	-
			1000	-	-	-	5	-	-	66.00	-	-	-	-	-	-
			2000	-	-	-	5	-	-	79.00	-	-	-	-	-	-
			4000	-	-		5	-	-	110.00	-	-	-	-	-	-
			8000	-	-	-	5	-		130.00	-	-	-	-	-	-
			16000	-	-	-	5	-		155.00	-	-	-	-	-	-

TABLE 10. The morohological characteristics of containerized ornamental and exotic plants found in greenhouse studies.

Specres ${ }^{1}$	Author \& Date	Container Type	Container Size \& Shape				Greenhouse Phase				Outplanting Phase					
							Seeding Age \& Size				Seeding Age \& Size				Survival	
			Volume (cm ${ }^{3}$)	Diameter (cm)	$\begin{aligned} & \text { Depth } \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Dimension } \\ & \left(D_{1}\right. \text { am/Depth) } \end{aligned}$	Age (wks)	Ht . (cm)	$\begin{aligned} & \mathrm{RCD} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Age } \\ & \text { (yrs) } \end{aligned}$	$\begin{aligned} & \mathrm{Ht} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \mathrm{RCD} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { SDW } \\ & (\mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Time } \\ & \text { (yrs) } \end{aligned}$	$\%$
Dov	Biran \&	Manuf.	1000	-	-	-	34	-	-	231.00)	-	-	-	-	-
	Elliassaf		2500	-	-	-	34	-	-	441.00)	-	-	-	-	-
	1980b		10000	-	-	-	34	-	-	1386.00		-	-	-	-	-
${ }^{-T}$	Biran \&	Manuf.	21000	54.0	9.2	1:1	24	-	-	2944.00)	-	-	-	-	-
	Eliassaf		21000	28.5	33.0	1:1	24	-	-	2923.00		-	-	-	-	-
	1980a		21000	15.0	119.0	1:8	24	-		1878.00		-	-	-	-	
fir	Biran \&	Manuf.	5000	-	-	-	40	-	-	931.00	0	-	-	-	-	
	$\begin{aligned} & \text { Eliassaf } \\ & 19800 \end{aligned}$		21000				40	-	-	3365.00	0					
INv	Goodale \&	Manuf.	2245				32	-	-	103.00)	-	-	-	-	-
	Whitcomb		3245				32	-	-	104.00		-	-	-	-	-
	1980		4408				32	-	-	121.00	-	-	-	\sim	-	-
			5768	-	-	-	32	-	-	116.00		-	-	-	-	-
PT6		Manuf.									0		-			
	Eliassaf		2500	14.5	15.1	1:1	24	-	-	475.00	0	-	-	-	-	-
	1980a		2500	7.5	56.6	1:8	24	-	-	535.00		-	-	-	-	-
-Tl	Biran \&	Manuf.	1000	-	-	-	$\begin{aligned} & 43 \\ & 43 \end{aligned}$	-	-	$\begin{aligned} & 334.00 \\ & 526.00 \end{aligned}$	-	-	-	-	-	-
	$\begin{gathered} \text { Eliassaf } \\ 1980 \mathrm{~b} \end{gathered}$		2500													

${ }^{1}$ Note: Descriotion of species abbreviations in Aooendix I.
measurements of growth such as dry weight. These omissions make it difficult to assess the relationship between container volume and shape on seedling growth.

There was considerable variation in the growth data recorded for most species and especially for white spruce, black spruce, jack pine and Douglas fir. Most of this variation appears to be caused by differences in the growth environments and in the cultural treatments used in each study. The principal environmental factor influencirg growth appears to be the change in container volume.

In general, seedling growth during the greenhouse production phase increased with increasing container volume between lower and upper volume limits. For many species, such as white spruce, jack pine and lodgepole pine, seeding growth was restricted and was generally substandard in small container volumes less than $30 \mathrm{~cm}^{3}$ (Scarratt, 1972b, 19726, 1973; Endean, 1973; Endean and Carlson, 1975; Carlson and Endean, 1976; Gardner, 1981; Alm et al, 1982). Furuta (1976) describes this growth restriction as 'the pot-binding phenomenon'. Thus $30 \mathrm{~cm}^{3}$ may be considered to be the lower volume limit. Upper volume limits may also exist for white spruce, black spruce, jack pine and caribbean pine. The limits vary depending on the innate growth pattern of each species but generally ranged from 90 to $120 \mathrm{~cm}^{3}$ (Scarratt, 1973, 1981; Carlson and Endean, 1976; Alm et al, 1982; Solberg, 1978). The excess water not used by seedling growing in oversized containers may produce a water-logged environment that impairs aeration. This in turn reduces photosynthesis, translocation and growth (Kramer and Kozlowski, 1979: 168-229 ; Biran and Elliassaf, 1980a).

Only three studies attempted to evaluate the relationship between seeding growth and changes in container shape while removing influences from changes in container volume
(Endean and Carlson, 1975; Carlson and Endean, 1976; Biran and Elliassaf, 1980a). White spruce and a few ornamental species responded to container shape. In general, species with shallow root systems grew better in shallow, wide containers and species with deep root systems grew better in long, narrow containers. Restricting the natural configuration of a root system by mismatching the container shape may be detrimental to nutrient and water uptake and thus reduce growth.

Growth trends were more difficult to analyse in field trials since poor growth indicators such as height and per cent survival were mainly recorded. However, the literature did show that seedling growth after outplanting increased with an increase in container volume for white spruce, black spruce, norway spruce, jack pine, and Douglas fir SCarratt, 1972b; Roller, 1976, 1977; Karlsson and Kovats, 1974; Gardner, 1981; McMinn, 1981; Walker, 1981; Alm et al, 1982).

None of the outplanting studies attempted to assess the effect container shape had on seedling growth without removing the influences from change in container volume.

MATERIALS AND METHODS

GREENHOUSE PRODUCTION PHASE

Experimental Design

The greenhouse study was established as a 4×3 factorial experiment in a randomized complete-block design with sub-sampling (Steel and Torrie, 1960: 142-145). The 12 treatments were made up of containers of four volumes ($45,99,160,360 \mathrm{~cm}^{3}$) and three diameter/depth dimensions or shapes (1:2, 1:3, 1:4) for each of the volumes. The open circles in Figure 1 illustrate the distribution of container sizes and shapes. The treatments were replicated 4 times. Each of the 43 treatment-replication combinations was initially designed to contain 40 seedlings. Fifteen of these seedlings were samoled destructively in the greenhouse production phase.

Container Construction

The containers, used to grow the black spruce stock in, were manufactured from clear acrylic plastic tubing. The tubing size ranges needed in this study was only available in nine diameter sizes $(2.54 \mathrm{~cm}, 2.36 \mathrm{~cm}, 3.16 \mathrm{~cm}, 3.49 \mathrm{~cm}, 3.81 \mathrm{~cm}, 4.13 \mathrm{~cm}, 4.76 \mathrm{~cm}$, 5.40 cm and 6.03 cm$)$. With tubing in this size range, containers of four voiumes could be constructed at each of the three diameter/depth dimensions (Figures 2 and 3). The 12 container sizes did not quite match up with the line intercepts of size and shape owing to the limited sizes of tubing available (Figure 1). Table 11 gives the dimensions of the 12 experimental containers and the abbreviated names of commercial containers

Figure 1. Container volume and diameterfdepth dimensions of the 12 container treatments

Figure 2. Side view showing 12 acrylic container treatments

Figure 3. Top view showing 12 acrylic container treatments

TABLE 11. Dimensions of the 12 experimental containers and the abbreviated names of commercial containers of similar size and shape.			
Container Diameter / Depth Configuration			
Container	(cm / cm)		
($\mathrm{cm}{ }^{3}$)	$1: 2$	$1: 3$	$1: 4$
45	$3.18 / 5.80$	$2.86 / 7.10$	$2.54 / 9.00$
	JP-522	$\begin{aligned} & M P-1 \\ & O T-L \end{aligned}$	$\begin{aligned} & \text { SL-F, SL-5 } \\ & \text { STY-4, TS } \end{aligned}$
90	$3.81 / 7.90$	3.49 / 9.40	$3.18 / 11.40$
	$\begin{aligned} & J P P-408, \quad J P P-508 \\ & J P-7, T P-200 \end{aligned}$	TP-150	$\begin{aligned} & J P P-313, M P-2 \\ & S T Y-8 \end{aligned}$
180	$4.76 / 10.10$	$4.13 / 13.50$	$3.81 / 15.80$
	AT	SL-H	JPP-415, MP-4
360	$6.03 / 12.60$	$5.40 / 15.70$	$4.76 / 20.2$
	C-L	STY-20	SL-T

See Table 1 for commercial container description.

```
of similar size and shape.
```

After the tubing was cut to the proper lengths, a 12 cm square piece of black nylon screen was fitted over one end of each container and held secure with a heavy elastic band. The screening was used to contain the growing medium, provide proper drainage and air prune emerging roots (Figure 4).

Growing Medium

A growing medium of the following mixture was hand filled to within 1 cm of the top of each container.

1) Sunshine, horticultural peat moss - 60 per cent by volume.
2) Grace medium size horticultural vermiculite - 20 per cent by volume.
3) Grace horticultural perlite - 20 per cent by volume.

The following additives were then incorporated into the growing medium according to specifications recommended by the soils laboratory at Guelph University.

1) Calcium carbonate $-5.12 \mathrm{~g} / 1$
2) Superphosphate (0-50-8,Plant Products) - $1.12 \mathrm{~g} / 1$
3) Chelated trace elements (Plant Products) - $0.2 \mathrm{~g} \mathrm{~g} / 1$

Container Support Stands

Eight $1.2 \times 2.4 \mathrm{~m}$ sheets of 1.3 cm thick fir plywood were used to make the supports for the containers. Each of the four replications were randomly located in two
$1.2 \times 2.4 \mathrm{~m}$ plywood sheets. In each replication forty circular holes were cut out on 10 cm centres for each of the 12 treatments tested. An intra-tree distance of 10 cm ensured that all treatments were grown at the same spacing. The plywood sheets were raised off the greenhouse bench with 30 cm high supports. This allowed the containers to hang down below the plywood surface and it kept all containers at the same level, regardless of their depth (Figure 4). This ensured that the seedlings received the same light intensity during the growing phase(Figure 5).

The 12 container types, filled with growing medium, were then placed in their designated treatment-replications in groups of 40'5. A heavy elastic band was placed around the top edge of each container to prevent them from slipping down through the holes. Black polyethelene sheeting was stapled over the open sides of the stands to prevent light from hitting the container walls under the plywood sheets. This was necessary since the containers were clear and translucent, and direct light could heat up the growing medium, stimulate the growth of mould and affect root growth (Figure 5).

Environmental Conditions and Cultural Treatments.

Germination Phase

The growing medium in all containers was soaked with water and allowed to drain for 48 hours before the seed was sown. Black spruce seed from the Thunder Bay Forest Station was hand sown onto the growing medium of all 1,920 containers on February 4th, 1983. The containers were then watered regularly, and maintained fully moist lat.

Figure 4. Black nylon screen over the bottoms of the acrylic plastic tubing

Figure 5. Container support stands in the greenhouse production phase
or close to, field capacity) to prevent the seeds from drying out during germination. Clear polyethelene sheeting was placed over the tops of the containers to prevent moisture loss, increase moisture content and surface temperature.

The greenhouse temperature was maintained at $20^{\circ} \mathrm{C}$ day and $15^{\circ} \mathrm{C}$ night. The humidity level was raised to 00 per cent with the use of sprinkler hoses under the benches. The hoses automatically turned on five minutes every half hour during the day. At night they were turned off because the humidity was greater than 60 per cent between 8:00 p.m. and 6:00 a.m. A shade cloth with 50 per cent light transmission was strung up over the study to reduce the heat load under the polyethelene sheeting.

Two weeks after seeding, on February 19, 1983, germination was complete and only 10 per cent of the containers were empty. To make sure that all containers wers filled, extra seedlings from adjacent containers were hand transplanted into the empty ones.

Growth Phase

After the transplanting was complete, high intensity sodium lights 亿umiponic400 W) were turned on to maintain a 13 hour photoperiod and a continuous feed fertilization programme was started. The seedlings were watered continuously with 200 ppm (based on nitrogen) of Plant Products fertilizer 20-20-20. The leachate was measured at every watering with a salts meter (Plant Products Model DP-05) to make sure the salts in the growing medium ranged between 1000 to 1500 microhmos. If the salt readings fell below this range more fertilizer was applied and if the readings went above this range the seedlings were leached with pure water.

On March 30, 1983 extra seedlings were thinned out so that one seedling remained in each container. This was done before lateral root development was too extensi:e so that minimal damage occurred to the remaining seedlings. Twelve weeks after germination, on May 15th, 1983, the growth phase was complete and the seedlings were then hardened off in preparation for field outplanting.

Hardening Off Phase

On May 15 th, 1983 the artificial lighting was turned off and the greenhouse temperature was gradually cooled down over a period of two weeks to day and night temperatures respectively of $10^{\circ} \mathrm{C}$ and $6^{\circ} \mathrm{C}$. The fertilizer was changed to a high phosphorous fertilizer 15-30-15 at 200 ppm (based on nitrogen) to promote root development.

The seedlings to be used in the greenhouse and field trials were randomly chosen and tagged. Each tag had the tree number, treatment number and replication number on it for individual identification.

Measurement of Seedling Morphological Quality

Sixteen weeks after seeding, on May 27th, 1983, 15 seedlings were harvested from each of the 12 container size treatments in all four replications. Fhotographs were taken with a Canon AE 1 camera and macro-zoom lens of the following:

1) The experiment in the greenhouse,
2) An average height seedling from each of the twelve container treatments,
a) in the container,
b) out of the container with washed root systems.

Four attributes of the morphological quality of the seedlings were measured:

1) Height from the root collar to top of terminal shoot axis (cm),
2) Root collar diameter (mm),
3) Top dry weight (g),
4) Root dry weight (g).

The seedling heights were measured in cm to 0.1 cm accuracy with a ruler. The root collar diameters were measurd to a 0.1 mm accuracy with a caliper.

After the heights and root collar diameters were measured each seedling was carefully washed in water to remove the growing medium from the root system. Each seedling was cut in two at the root collar and the top and roots were placed in separate labelled paper bags. All bags were then dried in an oven at $65^{\circ} \mathrm{C}$ for 46 hours. The tops and roots were then weighed individually on an electronic digital balance Sartorius, Model MP1212). The weights were recorded in 9 to the nearest 0.001 g.

In addition, Dickson's Seedling Quality Index (Gix) equation was used to compute Qix values from the above morphological characteristics of each seeding (Dickson et. al, 1960).

Data Analyses

In order to test the hypotheses of no differences between the 12 container treatments, the variations in the data for each morphological characteristic and the quality index was independently analysed as a 3×4 factorial experiment in a randomized complete block design. If the analysis of variance (ANOVA) showed significant differences between the treatment means, Student-Newman-Keul tests were conducted to evaluate the sionificance of the differences between individual treatments (Steel and Torrie, 1960: 110-111).

Using the natural logarithmic transformation of container volume \mathcal{X}_{1}), container diameter (X_{2}), and container depth $\left(X_{3}\right)$ as independent variables, relationships were established between each of the following logarithmically transformed dependent variables:

1) Seedling height (Ht),
2) Root collar diameter (RCD),
3) Top dry weight (TDW),
4) Root dry weight (RDW),
5) Total dry weight (TOTDW),
6) Dickson's seedling quality index value (Gix),

The general form of the multiple linear regression (MLR) equation fitted was;

$$
\begin{equation*}
\operatorname{Ln} Y=a+b_{1} \operatorname{Ln} X_{1}-b_{2} X_{2}-b_{3} X_{3} \tag{1}
\end{equation*}
$$

where: $\operatorname{Ln} \mathrm{Y}=$ Natural logarithmic transformation of the morphological characteristics and Qix values
$\operatorname{Ln} X_{1}=$ Natural logarithmic transformation of container volume $\left(\mathrm{cm}^{3}\right)$ $x_{2}=$ Container diameter (cm)
$X_{3}=$ Container depth (cm)
Equation 1 was rewritten to solve for Y as follows:

$$
\begin{equation*}
Y=\frac{e^{a+b_{1}\left(\operatorname{Ln} X_{1}\right)}}{e^{b_{2}\left(x_{2}\right)+b_{3}\left(x_{3}\right)}} \tag{2}
\end{equation*}
$$

Since the patterns of residuals in all the greenhouse data were abnormal, the Y values were transformed logarithmically to produce normal patterns of residuals in order to satisfy the assumptions underlying multiple regression models (Appendix II).

This general form of the MLR equation was used to determine the best estimate for the population means. The estimates were adjusted by a method described by Baskerville (1971) to remove a systematic error produced from logarithmic transformations. Student's tests were conducted on the standardized regression b coefficients in the MLR equations to evaluate the effects each varible had on the Y values.

The regression equations were used to construct response surfaces. However these equations produced four dimensional arrays which were impossible to illustrate. Therefore
the varibles container diameter $\left(X_{2}\right)$ and depth $\left(X_{3}\right)$ were treated as a ratio and three dimensional response surfaces were constructed. These response surfaces helped to determine the optimum range of container size and shapes necessary to produce high quality black spruce container seedlings in the greenhouse.

FIELD OUTPLANTING PHASE

Study Area

Location and Climate

The field outplanting site was located on Abitibi-Price private land, block (3, 120 km northwest of Thunder Bay near Raith, Ontario (Figure 6). The planting site was within the B9 Section of the Boreal Forest Region (Rowe, 1972) at latitude 4355 N , longitude $8955^{\prime} \mathrm{W}$.

The mean growing season length is 150 days (based on a mean monthly temperature above $5^{\circ} \mathrm{C}$) and the mean annual precipitation is 750 mm , with 407 mm falling during the growing season (Environ. Can., 1980).

Topography and Soil Characteristics

The area is a typical sandy outwash plain. The soil is composed of waterlain sands, grits and gravels and is greater than one metre in depth. The planting site was a flat, terraced inactive flood plain with inter-banded stratified materials (Zoltai,1965). Well rounded water lapped boulders were found throughout the soil profile (Figure 7).

Figure ó. Location of field outolantina study area.

Experimental Desion

The field study was established as a 4×3 factorial experiment in a randomized complete-block design with sub sampling (Steel and Torrie, 1960: 142-145). The 12 treatments were made up of containers of four volumes $\left(45,90,180,360 \mathrm{~cm}^{3}\right)$ and three diameter/depth configurations $(1: 2,1: 3,1: 4)$ for each of the volumes. The treatments were replicated three times. Each of the 36 treatment-replication combinations initialiy contained 12 seedlings.

Plantation Establishment

The planting site was site prepared with a TTS Disc Trencher MMyles, 197e; Smith, 1900) in 1982. In the spring of 1983 three 0.72 ha blocks were randomly located on the planting site (Figure 3). Each block was $24 \times 30 \mathrm{~m}$ in size and was composed of 12 randomly located treatment plots which were staked at the corners. Each treatment plot was $6 \times 10 \mathrm{~m}$ in size and contained three TTS trenches (Figure 7).

On June 19 th, 1983 the seedlings produced in the greenhouse trial which had been tagged for field planting, were measured for initial field height and root collar diameters in the lab. In the field, the acrylic plastic containers were removed before the seedlings were planted on the plots with tree planting shovels. Within each treatment block seedlings were planted two metres apart. Care was taken in properly selecting each microsite and in repacking the soil around each seedling's roots (Figure 10).

Figure 7. Soil profile at field outplanting site

Figure 8. Disc trench scarification at field outplanting site

Figure 9. Planting design of the 12 container treatments within each block.

Figure 10. Black spruce container seedling outolanted in disc trench

Measurement of Seedling Morphological Quality

On September 23rd, 1983, twelve seedlings were harvested from each of the 12 container size treatments in all three replications. A spade was used to lift the seedlings carefully without damaging the root systems. Excess soil and other roots were carefully removed from the seedlings root systems at the planting site. Of the 432 seedings outplanted, 25 were either severely damaged or killed by grasshoppers (Comnula pellucida). These seedlings were omitted from the study. The surviving seedings of each treatment were packed into plastic bags and transported to a cooler where they were stored at $5^{\circ} \mathrm{C}$ before measurements were taken.

Photographs were taken with a Canon AE1 camera and macro-zoom lens of the:

1) Plantation site,
2) Soil profile,
3) Seedlings planted,
4) An average height seedling for each of the twelve container treatments,
a) with unwashed root systems,
b) with washed root systems.

Four attributes of morphological quality of the seedlings were measured:

1) Height from the root collar to top of terminal leader (cm),
2) Root collar diameter (mm),
3) Top dry weight (g),
4) Root dry weight (g).

The seedling heights were measured in cm to 0.1 cm accuracy with a ruler. The root collar diameters were measured to 9.1 mm accuracy with a caliper.

After the heights and root collar diameters were measured each seedling was carefully washed in water to remove the growing medium, soil and other roots from the seedlings root systems. Each seedling was cut in two, at the root collar and the top and roots were placed in separate labelled paper bags. All bags were then dried in an oven at $65^{\circ} \mathrm{C}$ for 48 hours. The tops and roots were then weighed individually on an electronic digital balance (Sartorius, Model MP1212). The weights were recorded ing to the nearest 0.001 g.

A method developed by Yates (1933) was used to compute estimates of height, root collar diameter, top, root and total gry weight of the 25 missing seedings. These estimates were incorporated into further data analyses (Steel and Torrie, 1900: 139-141).

In addition, Dickson's Seedling Quality Index (Qix) equation was used to compute Qix values from the above morphological characteristics of each seedling (Dickson et al, 1960).

$$
\text { Qix }=\frac{\text { Seedling total dry weight (} \mathrm{g})}{\frac{\text { Height (cm) }}{\text { Root collar diameter (mm) }}+\frac{\text { Top dry weight (} \mathrm{g})}{\text { Root dry weight (g) }}}
$$

Data Analyses

In the outplanting phase, the hypothesis of no differences between treatments was tested by making use of the variable initial field height x root collar diameter
squared (ie: $X=H t \times R C D 2$) as covariate. Again, the variation of each morphological characteristic and quality index (Qix) was analysed as a 4×3 factorial experiment in a randomized complete-block design with X as the covariate and with sub sampling. If the analyses of covariance (ANOCA) did not increase the accuracy of the experiment over analyses of Variance (ANOVA), as described by Finney (1946), then the results of the ANOCAs were discarded in favour of the ANOVAs. If the ANOCAs or ANOVAs showed that there were significant differences between the treatment means, Student-NewmanKeul tests were conducted to evaluate the significance of the differences between individual treatments (Steel and Torrie, 1960: 110-111).

Using the natural logarithmic transformation of container volume $\left(X_{1}\right)$, container diameter (X_{2}), and container depth (X_{3}) as independent variables, relationships were established between each of the following logarithmically transformed dependent variables:

1) Seedling height (Ht),
2) Root collar diameter (RCD),
3) Top dry weight (TDW),
4) Root dry weight (RDW),
5) Total dry weight (TOTDW),
6) Dicksons seedling quality index value (Qix),

The general form of the MLR equation fitted is equation (1) given on page 36. The purpose of fitting this function for the six dependent variables obtained from the outplanting trial was the same as for the greenhouse trial.

RESULTS

GREENHOUSE PRODUCTION PHASE

Analyses of variance (ANOVA), Student-Newman-Keul (SNK) tests were conducted and Multiple Linear Regressions (MLR) equations were fitted for all morphological characteristics and seedling quality indices after 16 weeks in the greenhouse. The average black spruce seedling grown in the 12 container treatments are shown in Figure 11. From the analyses the following three general trends in the greenhouse data were observed:

1) The ANOVAs showed that there were highly significant differences ($P^{1} 0.001$) between the seedlings grown in the 12 container treatments and that the main effect of container volume exclusively influenced seediing growth (Table 12).
2) The SNK tests also showed that the differences in seeding growth were lergely caused by the influence of container volume. Container dimension had no influence on the seedlings. The SNK tests showed that there was more variation in dry weight than in height and root collar diameters (Appendix III).
3) The MLRs showed that the differences in seedling growth in the oreentiouse were caused by the influence of container volume and depth (Table 13). The MLR equations for the morphological characteristics and Qik values are presented in Table 14.
${ }^{1}$ Note: The probability of F (Variance ratio) being greater than the calculated \bar{F} is less than 1 chances in $1,000 . \quad(P(F) F C)<\theta .0 \theta 1)$

Figure 11. Average black spruce seedlings grown in
containers of four volumes and three shapes after 16 weeks in the greenhouse.

Note: the background grid lines are 5 cm apart.

TABLE 12. Summary of ANOVA probabilities for greenhouse data.

Source of Variation

Morohological Characteristic		Container Volume	Container Dimension	Container
	Treatment			Volume x Dimension
Height	**	**	NSD	NSD
Root Collar Diameter.	**	**	NS D	NSD
Top Dry Weight	***	***	NSD	NSD
Root Dry Weight	***	***	NSD	NS D
Total Dry Weight	***	***	NSD	NSD
Q ix	***	***	NSD	NSD

TABLE 13. Summary of MLR probabilities for greenhouse data.

Morohological Characteristic	Variables in the Equation		
	Container Volume	Container Diameter	Container Depth
Height	***	NS D	***
Root Collar Diameter	*	NSD	*
Top Dry Weight	***	NSD	***
Root Dry Weight	**	NSD	NSD
Total Dry Weight	***	NSD	**
Q ix	**	NSD	NSD
Note: *** $=P(F>F C)<0.001$			
** $=0.01>P(F>F C)>0.001$			
* $=0.05>P(F>F C)>0.01$			
$N S D=$ No significant difference			

Equation Number	Equation	R^{2}	$P(F>F C)^{2}$
1	$H t=\underline{e}^{1.82934+0.26338}$ (Ln Vol.)	0.15	<0.0001
	$e^{0.05191}($ Diam. $)+0.02281($ Depth)		
	RCD $=\underline{e^{0.55796+0.14243 ~(L n ~ V o l .) ~}}$	0.15	<0.0001
	$e^{0.00017(\text { Diam. })+0.01395(\text { Depth }) ~}$		
	$T D W=\underline{e}^{-2.05292+0.66221 ~(L n ~ V o l .) ~}$	0.26	<0.0001
	$e^{0.14579(D i a m .)}+0.05248(\text { Depth) }$		
	$R D W=\mathrm{e}^{-3.23908+0.49233}$ (Ln Vol.)	0.26	<0.0001
	$e^{0.08735(\text { Diam.) }+0.01101 \text { (Depth) }}$		
	TOTDW $=\underline{\mathrm{e}^{-1.78129+0.62290(L n ~ V o l .) ~}}$	0.26	<0.0001
	$e^{0.13207(D i a m .)}+0.04336 \text { (Depth) }$		
	$Q i x=\underline{e^{3.75545}+0.49666 \text { (Ln Vol.) }}$	0.27	<0.0001
	$e^{0.08525(D i a m .) ~}+0.02112$ (Depth)		

1 Note: The coefficient of determination being the per centage of variation in Y attributable to the combined effect of container volume, diameter and depth
2
Note: The probability of (variance ratio) being greater than the calculated F is less than 1 chance in 10,000.

All MLR equations had coefficients of deterimation $\left(\mathbb{R}^{2}\right)$ between 0.15 and 0.27 and had goodness of fit values (P) less than 0.0001 (Table 14).The MLF analyses showed that all estimated response surfaces produced by the MLR equations were flat, positively sloped planes.

Height

The ANOVA showed that there were signficant differences (0.01>P>0.001) between mean heights of the seedlings grown in the 12 container treatments and that the heights were exclusively influenced by container volume (Table 12). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 12). The following differences between treatment means were found (Appendix III):

1) All seedlings grown in $45 \mathrm{~cm}^{3}$ volume containers were significantly (0.05>P>0.81) shorter than those grown in the larger volume containers.
2) No significant differences (P)0.05) were found between seedlings grown in 90, 130 and $360 \mathrm{~cm}^{3}$ volume containers.
3) When the influence of container volume was removed no significant differences ($\mathrm{P}>0.05$) were found between seedings grown at the three container cimensions.

MLR equation (1) in Table 14 best fitted the seedling height data in the greenhouse trial. The Student's t test of the standardized b-coefficients in MLR equation (1) showed the following points (Table 13 and Appendix IV).

1) Seedling height significantly ($\mathrm{P}<0.001$) increased with increased container volume.
2) When the influence of container volume was removed, seedling height significantly ($\mathrm{P}<0.001$) decreased with increased container depth.
3) Container diameter had no effect on seedling height.

The response surface of the estimated seedling heights produced throughout the range of container treatments is illustrated in Figure 13.

Root Collar Diameter

The ANOVA showed that there were significant differences ($0.01>\mathrm{P}>0.001$) between the mean root collar diameters of the seedlings grown in the 12 container treatments and that the root collar diameters were exelusively influenced by container volume. (Table 12). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 14). The following differences between treatment means were found (Appendix III):

1) All seedlings grown in $360 \mathrm{~cm}^{3}$ volume containers had significantly (0.05$) \mathrm{P}>0.01$) larger root collar diameters than those grown in the smaller volume containers.
2) No significant differences ($\mathrm{P}>0,05$) were found between the seedlings grown in 45,90 and $180 \mathrm{~cm}^{3}$ volume containers.
3) When the influence of container volume was removed no significant differences ($\mathrm{P}>0.05$) were found between seedlings grown at the three container dimensions.

MLR equation (2) in Table 14 best fitted the seedling root collar diameter data in the greenhouse. The Student's tests of the standardized b-coefficients in MLR equation (2) showed the following points (Table 13 and Appendix IV).

Figure 12: Mean height of black spruce seedlings grown in
containers of 4 volumes and 3 dimensions after 16
weeks in the greenhouse.

1) Seedling root collar diameter significantly ($0.05>P>0.01$) increased with increased container volume.
2) When the influence of container volume was removed, saeding root collar diameter significantly (0.05>P>0.01) decreased with increased container depth.
3) Container diameter had no effect on seedling root collar diameter.

The response surface of estimated seedling root collar diameters produced throughout the range of container treatments is illustrated in Figure 15.

Top Dry Weight

The ANOVA showed that there were significant differences ($\mathrm{P}<0.001$) between the mean top dry weights of the seedlings grown in the 12 container treatments and that top dry weights were exclusively influenced by container volume (Table 12). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 16). The following differences between treatment means were found (Appendix III):

1) All seedings grown in $45 \mathrm{~cm}^{3}$ volume containers had significantly ($0.01 \mathrm{P} \% 0.001$) less top dry weight than those grown in the larger volume containers.
2) All seedings grown in $360 \mathrm{~cm}^{3}$ volume containers had significantly (0.05$) \mathrm{P} \times 0.01$) more top dry weight than those grown in the smaller volume containers.
3) No significant differences ($\mathrm{P}>0.05$) were found between the seedlings grown in 90 and $180 \mathrm{~cm}^{3}$ volume containers.
4) When the influence of container volume was removed, no significant differences

(P>0.05) were found between seedlings grown at the three container dimensions.

MLR equation (3) in Table 14 best fitted the seedling top dry weight data in the greenhouse trial. The Student's t test of the standardized b-ccefficients in MLR equation (3) showed the following points (Table 13 and Appendix IV).

1) Seedling top dry weight significantly ($\mathrm{P}<0.001$) increased with increased container volume.
2) When the influence of container volume was removed, seedling top dry weight significantly ($\mathrm{P}<0.001$) decreased with increased container depth.
3) Container diameter had no effect on seedling top dry weight.

The response surface of the estimated seedling top dry weights produced throughout the range of container treatments is illustrated in Figure 17.

Root Dry Weiaht

The ANOVA showed that there were significant differences ($P<0.001$) between the mean root dry weights of the seedlings grown in the 12 container treatments and that the root dry weights were exclusively influenced by container volume (Table 12). The treatment means and $5 N K$ test results are presented on a three-dimensional bar graph (Figure 16). The following differences between treatment means were found (Appendix III):

1) All seedlings grown in $45 \mathrm{~cm}^{3}$ volume containers had significantiy ($0.01>P>0.001$) less root dry weight than those grown in the larger volume containers.
2) All seedlings grown in $360 \mathrm{~cm}^{3}$ volume containers had significantly

(0.01>P>0.001) more root dry weight than those grown in the smaller volume containers.
3) No significant differences ($\mathrm{P}>0.05$) were found between seedlings grown in 90 and $180 \mathrm{~cm}^{3}$ volume containers.
4) When the influence of container volume was removed no significant differences (P>0.05) were found between seedlings grown at the three container dimensions.

MLR equation (4) in Table 14 best fitted the seedling root dry weight data in the greenhouse trial. The Student's test of the standardized b-coefficients in MLR equation (4) showed the following points (Table 13 and Appendix IV).

1) Seedling root dry weight significantiy (0.01)P) 0.001) increased with increased container volume.
2) When the influence of container volume was removed, seedling root dry weight was not affected by container diameter or depth.

The response surface of the estimated seedling root dry weights produced throughout the range of container treatments is illustrated in Figure 19).

Total Dry Weight

The ANOVA showed that there were significant differences ($\mathrm{P}<0,001$) between the mean total dry weights of the seedlings grown in the 12 container treatments and that the total dry weights were exclusively influenced by container volume (Table 12). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 20). The following differences between treatment means were found

Figure 18: Mean root dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse.

Note: Treatment means designated with the same letters are not
${ }^{2}$ Note: Main effects joined by a line are not significantly different ($P=0.05$)
(Appendix III):

1) All seedlings grown in $45 \mathrm{~cm}^{3}$ volume containers had significantly ($0.05>\mathrm{P}>0.01$) less dry weight than those grown in the larger voiume containers.
2) All seedlings grown in $3606 \mathrm{~m}^{3}$ volume containers had significantly $(0.01>P>0.001)$ more dry weight than those grown in the smaller volume containers.
3) No significant differences ($\mathrm{P}>0.85$) were found between seedings grown in 90 and $180 \mathrm{~cm}^{3}$ volume containers.
4) When the influence of container volume was removed no significant differences (P>0.05) were found between seedlings grown at the three container dimensions.

MLR equation (5) in Table 14 best fitted the seedling total dry weight data in the greenhouse trial. The Student's test of the standardized b-coefficiente in MLR equation (5) showed the following points (Table 13 and Appendix IV).

1) Seedling total dry weight significantly ($\mathrm{P}<0.001$) increased with increased container volume.
2) When the influence of container volume was removed, seedling total dry weight significantly ($0.01>P>0.001$) decreased with increased container depth.
3) Container diameter had no effect on seedling total dry weight.

The response surface of the estimated seedling total dry weights produced throughout the range of container treatments is illustrated in Figure 21)

Figure 20: Mean total dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse.

Note: Treatment means designated with the same letters are not significantly different ($P=0.05$)
($P=0.05$)

Seedling Quality Index

The ANOVA showed that there were significant differences ($\mathrm{P}<0.001$) between the mean seedling quality indices (Gix) of seedlings grown in the 12 container treatments and that the Qix values were exclusively influenced by container volume (Table 12). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 22). The following differences between treatment means were found (Appendix III):

1) All seedings grown in $45 \mathrm{~cm}^{3}$ volume containers had significantly ($0.05 \times \mathrm{P} \geqslant 0.81$) lower Qix values than those grown in the larger volume containers.
2) All seedlings grown in $360 \mathrm{~cm}^{3}$ volume containers had significantly (0.01>P>0.001) higher Gix values than those grown in the smaller volume containers.
3) No significant diffferences ($\mathrm{P}>0.05$) were found between seedlings grown in 90 and $180 \mathrm{~cm}^{3}$ volume containers.
4) When the influence of container volume was removed no significant differences (P>0.05) were found between seedlings grown at the three container dimensions.

MLR equation (6) in Table 14 best fitted the Qix data in the greenhouse trial. The Student's t test of the standardized b-coefficients in MLR equation (6) showed the following points (Table 13 and Appendix IV).

1) Seedling Qix significantly (0.01)P>0.001) increased with increased container volume.
2) When the influence of container volume was removed, seedling Qix was not
affected by container diameter or depth.

The response surface of the estimated Qix values produced throughout the range of container treatments is illustrated in Figure 23.

FIELD OUTPLANTING PHASE

Analyses of covariance (ANOCA) or analyses of variance (ANOVA), Student-Newman-Keul (SNK) tests and Multiple Linear Regressions (MLR) were carried out for all morphological characteristics and seedling quality indices (Qix) after one growing season in the field. Since the seedlings were removed from the containers before being planted, container volume and shape mentioned throughout the field outplanting phase are the original volumes and shapes of root plugs formed by the containers used in the greenhouse production phase. The average black spruce seedling grown in the 12 container treatments and outplanted for one growing seasom in the field are shown in Figure 24. The ANOCAs or ANOVAs, SNK tests and MLRs showed the following three general trends in the field data:

1) The ANOCAs or ANOVAs showed that there were highly significant differences ($\mathrm{P}<0.001$) between the seedlings grown in the 12 container treatments. Both main effects of container volume and dimension significantly (P (0.001) influenced seedling growth (Table 15).
2) The SNK tests also showed that the differences in seedling growth were caused by the influences of container volume and dimension. Exceptions to this trend were that container shape did not influence seedling height and root collar diameters. The $S N K$ tests showed that there was more variation in dry weight

[^4]

Figure 24. Average black spruce seedlings originally grown in containers of four volumes and three shapes after one growing season in the field.

```
Note: the background grid lines are 5 cm apart.
```

than in height and root collar diameters (Appendix V).
3) The MLRs showed that the differences in seedling growth in the field were caused by the influences of container volume, diameter and depth (Table 16). The MLR equations for the morphological characteristics and Gix values are illustrated in Table 17.

All MLR equations had coefficients of determination $\left\langle R^{2}\right.$) between 0.35 and 0.50 and had goodness of fit values (P) less than 0.0001 (Table 17). The MLR analyses showed that all estimated response surfaces produced by the MLR equations were curved, positively sloped planes.

Height

The ANOCA showed that there were significant differences $(P<0.001)$ between the mean heights of the seedlings grown in the 12 container treatments and that the heights were influenced by both container volume and shape (Table 15). The treatment means and SNK test results are presented on a three-dimensional bar graph iFigure 25). The following differences between treatment means were found (Appendi: V):

1) All seedlings grown in $45 \mathrm{~cm}^{3}$ volume containers were significantly ($P>0.001$) shorter than those grown in the larger volume containers.
2) No significant differences ($\mathrm{P}>0.05$) were found between seedlings grown in 90 . 180 and $360 \mathrm{~cm}^{3}$ volume containers.
3) When the influence of container volume was removed no significant differences (P)0.05) were found between seedlings grown at the three container shapes.

TABLE 15. Summary of ANOVA probabilities for field data

Morohological Characteristic	Source of Variation			
	Treatment	Container Volume	Container Dimension	Container Volume x Dimension
Height	***	***	***	NSD
Root Collar Diameter	***	***	\star	NS D
Too Dry Weight	***	***	***	*
Root Dry Weight	***	***	***	NSD
Total Dry Weiaht	***	***	***	*
Qix	***	***	***	NS D
Note: ${ }^{\text {at* }}=P(F>F C)<0.001$				
** $=0.01>P(F>F C)>0.001$				
$\star=0.05>P(F 2 F C)>0.01$				
NSD $=$ No significant difference				

TABLE 16. Summary of MLR probabilities for field data

Moroholoaical Characteristic	Variables in the Equation		
	Container volume	Container Diameter	$\begin{gathered} \text { Container } \\ \text { Depth } \end{gathered}$
Height	***	***	***
Root Collar Diameter	**	NSD	*
Top Dry weight	***	***	***
Root Dry Weight	***	*	***
Total Dry Weight	***	***	***
Q i X	***	NSD	***

Note: $\quad \star \star \star=P(F>F C)<0.001$
** $=0.01>P(F>F C)>0.01$
$\star=0.05>P(F>F C)>0.01$
NSD $=$ No significant difference

TABLE 17. The best fitted regressian equations for the field data.

Equation Number	Equation	R^{2}	$P(F>F C)^{2}$
1	$H t=e^{1.13587}+0.77666$ (Ln Vol.)	0.42	<0.0001
	$e^{0.24823(D i a m .) ~}+0.06620$ (Depth)		
	$R C D=\underline{e^{0.44750}+0.27641}$ (Ln Vol.)	0.36	<0.0001
	$e^{0.02968(D i a m .) ~}+0.01960$ (Depth)		
	$T D W=\underline{e^{-2.64381}+1.30855 \text { (Ln Vol.) }}$	0.50	<0.0001
	$e^{0.35485(D i a m .)}+0.10407 \text { (Deoth) }$		
	$R D W=\frac{e^{-2.78823+1.15889 ~(L n ~ V o L .) ~}}{}$	0.35	<0.0001
	$e^{0.030883(\text { Diam. })}+0.09495(\text { Depth })$		
	TOTOW $=\mathrm{e}^{-1.94163+1.23441}$ (Ln VOL.)	0.48	<0.0001
	$e^{0.32923(D i a m .)}+0.09877 \text { (Depth) }$		
	$Q_{i x}=\underline{e}^{-3.17366+0.88396}$ (Ln Vol.)	0.36	< 0.0001
	$e^{0.20482(D i a m .) ~+~ 0.06723 ~(D e p t h) ~}$		

1
Note: The coefficient of determination being the der centage of variation in Y attributable to the combined effect of container volume, diameter and depth
2
Note: The orobability of f (variance ratio) being qreater than the calculated F is less than 1 chance in 10,000.

MLR equation (1) in Table 17 best fitted the seeding height data in the field trial. The Student's t test of the standardized b-coefficients in MLR equation (1) showed the following points (Table 16, Appendix VI and VII).

1) Seedling height significantly (P (0.001) increased with increased container volume.
2) When the influence of container volume was removed, seedling height:
a) significantly ($\mathrm{P}<0.001$) increased with increased container diameter,
b) significantly ($\mathrm{P}(0.001$) decreased with increased container depth.

The response surface of the estimated seeding heights produced throughout the range of container treatments is illustrated in Figure 26.

Root Collar Diameter

The ANOVAs showed that there were significant differences ($\mathrm{P}<0.001$) between the mean root collar diameters of the seedings grown in the 12 container treatments and that the root collar diameters were influenced by both container volume and shape (Table 15). The treatment means and SNK test results are presented on a threedimensional bar graph (Figure 27). The following differences between treatment means were found (Appendix V):

1) All seedlings grown in $45 \mathrm{~cm}^{3}$ volume containers had significantly ($\mathrm{P} \geqslant 0.001$) smaller root collar diameters than those grown in the larger volume containers.
2) All seedings grown in $360 \mathrm{~cm}^{3}$ volume containers had signiticantly ($\mathrm{F} \times 0.001$) larger root collar diameters than those grown in the smaller volume containers.

[^5]3) No significant differences (Py0.05) were found between seedlings grown in 90 and $180 \mathrm{~cm}^{3}$ volume containers.
4) When the influence of container volume was removed no significant differences (P>0.05) were found between seedlings grown at the three container shapes.

MLR equation (2) in Table 17 best fitted the sedling root collar diameter data in the field trial. The Student's test of the standardized b-coefficients in MLR equation (2) showed the following points (Table 16, Appendix VI and VII).

1) Seedling root collar diameter significantly ($0.01>\mathrm{P}>0.001$) increased with increased container volume.
2) When the influence of container volume was removed, seedling root collar diameter:
a) did not significantly ($P<0.05$) increase with increased container diameter,
b) significantly (0.05>P>0.01) decreased with increased container depth.

The response surface of the estimated seedling root collar diameters produced througnout the range of container treatments is illustrated in Figure 28.

Top Dry Weight

The ANOVA showed that there were significant differences ($\mathrm{P}<0.001$) between the mean top dry weights of the seedlings grown in the 12 container treatments and that the top dry weights were influenced by container volume, shape and their interactions (Table 15). The treatment means and SNK test results are presented on a threedimensional bar graph (Figure 29). The following differences between treatment means

were found (Appendix V):

1) All seedlings grown in the four container volumes were significantly different (P>0.001) and significantly increased in top dry weight with increases in container volume.
2) When the influene of container volume was removed seedlings grown at the 1:2 container shape were significantly heavier (0.01)P>0.001) than the seedlings grown at the $1: 3$ and $1: 4$ container shapes.
3) No significant differences ($P>0.85$) were found between seedings grown at the 1:3 and 1:4 container shapes.

MLR equation (3) in Table 17 best fitted the seedling top dry weight datain the field trial. The Student's t test of the standardized b-coefficients in MLR equation (3) showed the following points (Table 16, Appendix VI and VII).

1) Seedling top dry weight significantly ($\mathrm{P}<0.001$) increased with increased container volume.
2) When the influence of container volume was removed, seedling top dry weight:
a) significantly $(P<0.001)$ increased with increased container diameter,
b) significantly ($\mathrm{P}<0.001$) decreased with increased container depth.

The response surface of the estimated seedling top dry weights produced throughout the range of container treatments is illustrated in Figure 36.

Root Dry Weight

The ANOVA showed that there were significant differences $(P<0.001)$ between the mean root dry weights of the seedlings grown in the 12 container treatments and that the root dry weights were influenced by both container volume and shape (Table 15). The treatment means and SNK test results are presented on a tinree-dimensional bar graph (Figure 31). The following differences between treatment means were found (Appendix V):

1) All seedings grown in the four container volumes were significantly different (0.05)P>0.01) and significantly increased in root dry weight with increases in container volume.
2) When the influence of container volume was removed seedlings grown at the 1:2 container shape were significantly heavier ($0.01>P>0.001$) than those grown at the 1:3 and 1:4 container shapes.
3) No significant differences ($\mathrm{P}>0.05$) were found between seedlings grown at the 1:3 and 1:4 container shapes.

MLR equation (4) in Table 17 best fitted the seedling root dry weight data in the field trial. The Student's t test of the standardized b-coefficients in MLR equation (4) showed the following points (Table 16, Appendix VI and VII).

1) Seedling root dry weight significantly ($P<\theta .001$) increased with increased container volume.
2) When the influence of container volume was removed, seeding root dry weight:
a) significantly ($0.05>P>0.01$) increased with increased container diameter,
b) significantly ($\mathrm{P}<0.001$) decreased with increased container depth.

The response surface of the estimated seedling root dry weights produced throughout the range of container treatments is illustrated in Figure 32.

Total Dry Weight

The ANOVA showed that there were significant differences $(P<0.001)$ between the mean total dry weights of the seedings grown in the 12 container treatments and that the total dry weights were influenced by container volume, shape and their interactions (Table 15). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 33). The following differences between treatment means were found (Appendix V):

1) All seedlings grown in the four container volumes were significantly different $(P<\theta .001)$ and significantly increased in dry weight with increases in container volume.
2) When the influence of container volume was removed seedings grown at the 1:2 contaimer shape were significantly heavier ($0.01>\mathrm{P}>0.001$) than those grown at the $1: 3$ and $1: 4$ container shapes.
3) No significant differences ($\mathrm{P} \geqslant 0.05$) were found between seedlings grown at the 1:3 and 1:4 container shapes.

MLR equation (5) in Table 17 best fitted the seedling total dry weight data in the field trial. The Student's thest of the standardized b-coefficients in MLR equation (5) showed the following points (Table 16, Appendix VI and VII).

1) Seedling total dry weight significantly $(P<0.001)$ increased with increased container volume.
2) When the influence of container volume was removed, seedling total dry weight:
a) significantly ($\mathrm{P}<0.001$) increased with increased container diameter,
b) significantly ($\mathrm{P}<0.001$) decreased with increased container depth.

The response surface of the estimated seedling total dry weights produced throughout the range of container treatments is illustrated in Figure 34.

Seedling Quality Inde:

The ANOVA showed that there were significant differences ($\mathcal{P}<0.001$) between the mean seedling quality indices (Qix) of seedlings grown in the 12 container treatments and that the $Q . i \%$ values were influenced by both container volume and shape (Table 15). The treatment means and SNK test results are presented on a three-dimensional bar graph (Figure 35). The following differences between treatment means were found (Appendix V):

1) All seedlings grown in the four container volumes were significantly different ($0.05>P>0.01$) and the Qix values increased significantly with increases in container volume.
2) When the influence of container volume was removed, seedlings grown at the 1:2 container shape had significantly ($0.05>P>0.01$) higher Gix values than those grown at the $1: 3$ and $1: 4$ container shapes.
3) No significant differences (P) 0.05) were found between seedlings grown at the

Figure 33: Mean total dry weight of black spruce seedlings grown in containers of 4 volumes and 3 dimensions

Note: Main effects joined by a line are not significantly different
$(P=0.05)$

1:3 and 1:4 container shapes.

MLR equation (6) in Table 17 best fitted the seeding quality index data in the field trial. The Student's t test of the standardized b-coefficients in MLR equation (6) showed the following points (Table 16, Appendix VI and VII).

1) Seedling Qix significantly ($P<0.001$) increased with increased container volume.
2) When the influence of container volume was removed, seedling Gix significantly ($P<0.001$) decreased with increased container depth.
3) Container diameter had no effect on Qix.

The response surface of the estimated Qix values produced throughout the range of container treatments is illustrated in Figure 36.

DISCUSSION

GREENHOUSE PRODUCTION PHASE

Effects of Container Volume

At the end of the greenhouse production phase the ANOVAs showed that the height, root collar diameter, top, root and total dry weight and the quality index (Qix) of black spruce container stock were significantly influenced by container volume (Table 12). The Student's t tests of the standardized b-coefficients in the MLR equations (Table 14) also showed that these characteristics and Qix values of black spruce container stock were significantly influenced by container volume (Table 13).

All morphological characteristics and Qix values generally increased significantly with increasing container volume (Figure 11 and Appendix III). These results concur with numerous reports of other tree species and most closely with those of Scarratt (1981) who also found that black spruce increased in size with increasing container volume during the greenhouse production phase.

The ANOVA and MLR results in this study suggest the following points.

1) Black spruce should not be grown in containers of less than $90 \mathrm{~cm}^{3}$.
2) Black spruce should be grown in containers that range in volume from 98 and $360 \mathrm{~cm}^{3}$. The decision to use a certain size of container in this volume range will depend on a) the stock size and quality desired, b) production schedules and c) production budgets.

Lateral root deformation and/or soil moisture may be two possible reasons why container volume has affected the growth of black spruce in the greenhouse.

Lateral Root Deformation

Containers provide a finite growing space for root development during the greenhouse production phase. This physical restriction on root development lespecially lateral root development) of black spruce may limit seedling growth.

In almost all container types, lateral root growth is impeded by the container wall. Once a root makes contact with the container wall, it abruptly changes direction and grows vertically downward along it. Lateral root deformation of this type is called the 'pot-binding phenomenon' by Furuta (1976) and has been well documented by Biran and Eliassaf (1980a), Bohm (1979), de Champs (1978), Ferdinand (1972) and Tinus (1978).

The sharp bends or kinks formed in the lateral roots, at the point of contact with the container wall, may cause physical weakness in the roots and restrict the uptake of water and nutrients and the translocation of food (Harris, 1967). It seems reasonable to hypothesize that the radial distance the deformation is from the seedling stem may influence the efficiency of the root system. Because container radius is a function of container volume the redirection of roots growing laterally occurs early in smail volume containers. Deformed root systems may be less efficient because: 1) more of the root system is restricted below the points of deformation, and 2) fewer sinker roots would be allowed to develop (Figure 37). This hypothesis concurs with the results of many studies which showed that mutrient uptake increased with an increase in container volume (Baker and Woodruff, 1962; Bohm, 1979; Cornforth, 1968; Hay and Woods, 1978; Larsen

$\begin{aligned} & \text { Figure } 37 . \text { Root system configurations of black spruce } \\ & \text { in smatl and large volume containers. }\end{aligned}$
and Sutton, 1963; Russell and Newbould, 1963; Stevenson, 1970). As black spruce seedlings principally develop lateral roots with small sinker roots (Schulta, 1969), their growth may be severely hampered by the restriction of lateral roots when they are grown in small volume and diameter containers.

Soil Moisture

A container of a given volume can physically only hold a finite quantity of soil moisture at one time in the greenhouse production phase (Day and Skoupy, 1971). If the volume of the container is too small, soil moisture may become limited when transpiration rates are high. This may hamper photosynthetic rate and seedling growth if drought conditions occur too frequently or for extended periods Sutton, 1969; Zavitkovsiki and Ferrell, 1968). This hypothesis concurs with the results of this study and of Krathy et al (1982) and Van Eerden (1974).

Effects of Container Shape

At the end of the greenhouse production phase the ANOVAs showed that the height, root collar diameter, top, root and total dry weight and quality index (Qix) of black spruce container stock were not significantly influenced by container shape TTable 12). These results concur with the results of Carlson and Endean (1976), Endean and Carlson (1975) and Scarratt (1972a) who found no significant differences in the growth of seedlings in different container shapes. Although there were no significant differences, all the morphological characteristics and Qix values of black spruce generally increased as container shape changed from a deep, narrow (1:4) container to a shallow, wide (1:2)
container. An exception to this general trend was found with the three shapes of 45 cm3 containers. Black spruce grew best in the tall, narrow (1:4) containers and growth decreased with change in container shape from $1: 3$ to 1:2 (Figure 11, Appendix III and IV.

The Student's t tests of the standardized b-coefficients in the MLR equations (Table 14) showed that the height, root collar diameter, top and total dry weights of black spruce seedlings were significantly influenced by container depth but were not influenced by container diameter (Table 13). At each container volume in the 90 to 360 cm^{3} range, all morphological characteristics and Qix values decreased with increasing container depth. The reverse trend occurred in the $45 \mathrm{~cm}^{3}$ containers (Appendix IV).

The differences in the significance of container shape in the ANOVAs and MLRs can be explained as follows. In the MLRs container diameter and depth were treated as separate factors and container depth significantly influenced seedling growth. However, in the ANOVAs container diameter and depth were treated as a ratio. No significant differences were found because the ratio masked the influence of container depth.

The ANOVA and MLR results in this study suggest the following points.

1) Black spruce should be grown in a container shape that approaches its natural rooting pattern. A shallow, wide container may minimize the influences of lateral root deformation. Deep, narrow containers should be avoided.
2) Black spruce should not be grown in containers less than $90 \mathrm{~cm}^{3}$ with a $1: 2$ diameter/depth shape because the container depth may be too short for proper root and subsequent shoot development. This concurs with Boudoux (1972) who
suggested that the minimum container depth for growing black spruce be at least 7 cm.
3) The ANOVAs might have shown significant differences if the greenhouse production phase had been extended beyond 16 weeks or if the seedlings were held for an extended period before being outplanted.

FIELD OUTPLANTING PHASE

Effects of Container Volume

After one growing season in the field the ANOVAs and ANOCAs showed that the height, root collar diameter, top, root and total dry weight and the quality index (Qix) of black spruce container stock were significantly influenced by the original container volume (Table 15). The Student's t tests of the standardized b-coefficients in the MLR equations (Table 17) also showed that these morphological characteristics and Qix values of black spruce container stock were significantly influenced by container volume (Table 16).

All morphological characteristics and Qix values generally increased significantly with increasing container volume after one growing season in the field (Figure 24 and Appendix V). These results concur with numerous reports of other tree species but have not been well presented for black spruce in the past (Table 3).

The ANOVA, ANOCA and MLR results of this study suggest the following points.

1) Seedlings with root plugs of less than $90 \mathrm{~cm}^{3}$ should not be outplanted in
the field. This small container stock suffered from reduction in growth in the greenhouse, and continued to suffer from it after outplanting. Such slow development in the field would be quite hazardous especially where heavy vegetative competition is present.
2) Seedlings with root plug volumes greater than $90 \mathrm{~cm}^{3}$ may be outplanted because they grow significantly better in the field. The decision to use seedlings with 130 and $360 \mathrm{~cm}^{3}$ root plugs will depend on the nature of the site and site preparation and on the cost of establishing container stock.
3) Additional morphological characteristics, such as dry weight, must be measured along with height and root collar diameter in order to evaluate outplant performance properly. Height and root collar diameter alone does not estimate seedling size and quality accurately.

Lateral root deformation and soil moisture may again be two possible reasons why root plug volume has affected the growth of black spruce after outplanting.

Lateral Root Deformation

The lateral root deformation, produced in the greenhouse production phase, was still present after one growing season in the field (Figure 24). Because of this, the restriction of the uptake of water and nutrients and the translocation of food reported by Harris (1967) may have continued after outplanting.

It is well known that seedling root deformities developed in containers have persisted for many years after outplanting (Arnott, 1972; deChamps, 1978; Grene, 1978).

These root deformities not only have persisted but have continued to affect seeding growth adversely for many years (Bergman et al, 1976; Rudolf, 1939; Stefansson, 1978).

Soil Moisture

Although the stock was removed from the containers before being planted, soil moisture conditions in the root plug may have been considerably different from that of the field soil. In this study the black spruce seedlings exploited the growing medium rather than the field soil and most of the roots were still growing within the plug at the end of the first growing season (Figure 24). These results concur with Endean (1972b) who found that white spruce did not extend many roots outside the container plug during the first year. Since the growing medium usually contains a high proportion of peat it can hold up to ten times its weight in moisture (Carlson, 1983; Klougard and Olsen, 1969; Tinus and McDonald, 1979). Rainfall would be more readily absorbed and retained longer in the growing medium than in the field soil. This would make conditions in a plug more favourable for root development throughout the growing season.

This hypothesis concurs with the results of many authors who found that seedlings with larger root plugs were generally more successful in establishing after outplanting, especially in poor site conditions (Davidson and Sowa, 1974; Karlsson and Kovats, 1974; Kellas and Edgar, 1979; McMinn, 1978, 1981; Scarratt, 1981; Solberg, 1978; Walker, i981). Once seedlings have passed the eritical establishment period, this soil moisture influence will eventually decline as the root systems exploit more of the surrounding soil.

Effects of Container Shape

The ANOVAs, ANOCAs and MLRs showed that the influence of container shape on the growth of black spruce was more pronounced at the end of the first growing season than at the end of the greenhouse production phase. After one growing season in the field the ANOVAs and ANOCAs showed that the height, root coilar diameter, top, root and total dry weights and quality index ($Q i x$) of black spruce container stock were significantly influenced by the shape of the root plug (Table 15). Seedlings with shallow, wide (1:2) root plugs grew significantly better than those with $1: 3$ or 1:4 shaped root plugs (Figure 24 and Appendix V).

The Student's t tests of the standardized b-coefficients in the MLR equations (Table 17) also showed these morphological characteristics and Qix values of black spruce container stock were significantly influenced by container diameter and depth (Table 16). At each container volume, all morphological characteristics and Qix values increased as container diameter increased (Appendix VI) and as container depth decreased (Appendix VII).

The ANOVA, ANOCA and MLR results of this study suggest the following points.

1) Black spruce seedlings should be grown for outplanting with shallow, wide root plugs that conform to the natural rooting pattern of this species.
2) Height and root collar measurements alone are not satisfactory for the evaluation of seedling outplant performance.

Lateral root deformation appears to explain why root plug shape affects the growth of black spruce after outplanting. Many authorities have stated that black spruce
is a predominantly shallow rooted tree species with strongly developed lateral roots (Fowells, 1965; Harlow and Harrar, 1966; Preston, 1966). Because of its lateral rooting habit, black spruce appears to grow better in a container that allows for greater horizontal root development and less root deformation. The shallow, wide (1:2) shaped container seems to meet these objectives because root deformation was low and seedling growth was superior after one growing season in the field (Figure 24). This hypotnesis concurs with the result of Biran and Eliassaf (1980a) who found that the growth of several species was stimulated when the shape of the container was matched with the natural root pattern of these species. They also found that mismatching container shape and root patterns retarded seedling growth.

GREENHOUSE AND OUTPLANTING COMPARISONS

Similarities

The growth results of the greenhouse production and outplanting phases showed that all morphological characteristics of black spruce were significantly influenced by container volume and shape. However the influence of container shape was less pronounced at the end of the greenhouse production phase.

Differences

1)The variance of each of the morphological characteristics was significantly (P<0.001) smaller at the end of the greenhouse production phase than after one growing season in the field (Table 18). The differences in the variances may have occurred because
a) the larger containers in the greenhouse were able to supply all growth requirements uniformly and were probably not fully utilized by the seedling, and b) there was greater variation in the environmental conditions in the field such as moisture, nutrients, shading and root competition from surrounding vegetation.
2) The seedling quality indices fell into three well defined groups which were easier to classify after one growing season in the field (Figure 38). The seedling quality indices after the greenhouse production phase were in less well defined groups and were more difficult to separate into classes. This is an important reason why greenhouse container studies should be carried on into the field to evaluate fully the effects of container volume and shape on seedling growth. Of all the container studies cited in the literature review only 60 per cent had been carried on into the field.
3)The top/root dry weight ratios were considerably different for seedlings grown in the greenhouse and after outplanting. Regardless of container volume or shape, the top/root ratio for seedlings in the greenhouse averaged 4:1, whereas those in the field averaged 2:1. Thus black spruce directs more energy into the production of roots during the first growing season after outplanting than in the optimal environment of the greenhouse. It has been well emphasized that seedling development and survival depends principally on the ability to produce new roots immediately after outplanting (Brik and van den Driessche, 1974; Kramer, 1960; Sutton, 1974, 1980; Tinus, 1974). Therefore it is extremely important to use a container system in the greenhouse production phased that does not inhibit root development in the field.

PREDICTION OF OPTIMOM CONTAINER VOLUME AND SHAPE

In order to predict an optimum container volume and shape for the production of black spruce it is essential to know what seedling quality standaros are desired. Although there have been numerous reports on the stock quality of bareroot seedlings and other containerized seedlings, only Scarratt and Feese (1976); Roller (1976) and Hallet (1980) have attempted to quantify stock quality for containerized black spruce (Table 19). The results of this study suggest that their proposed morohological size classes either omit important characteristics or include seedling stock that is too small for successful growth after outplanting.

The stock quality standards given in Table 20 are proposed to evaluate the quality of black spruce at the end of a 16 week greenhouse production phase. These 'sb-1' and 'Sb-2' standards have been devised by 1) selecting the top two classes (A and B) of black spruce stock that had grown exceptionally well after one growing season in the field (Figure 38), and 2) using the mean morphological characteristics of these two classes of seedlings after 16 weeks in the greenhouse as the proposed standards (Table 20).

The range of morphological characteristics of the '5b-1' and '5b-2' stock in Table 20 were plotted on the estimated response surfaces (Figures $13,15,17,17,24,23$) to determine the optimum container volume range at a $1: 2$ container shape necessary in producing this high quality 'Sb-1' and 'Sb-2' black spruce container stock.

The following ootimum container volume ranges are summarized as follows.

1) A container volume range between 180 and $360 \mathrm{~cm}^{3}$, at a $1: 2$ diameter/depth container shape, will produce containerized black soruce stock in the 'Sb-1'

TABLE 18. The variances of the morphological characteristics of seedlings grown in the greenhouse and after outplanting.

Morphological Characteristic	Greenhouse Phase	Outplanting Phase	$\stackrel{\text { F }}{\text { Ratio }}$		0.005
Height	9.302	31.822	3.42	***	1.00
Root Collar Diameter	0.294	0.743	2.53	***	1.00
Tod Dry Weight	0.161	2.158	13.40	***	1.00
Root Dry Weight	0.016	0.766	47.88	***	1.00
Total Dry weight	0.265	5.055	19.07	***	1.00
Qix	0.004	0.084	21.00	***	1.00

```
Note: *** = P(F>FC)<0.001
```

TABLE 19. Existing specifications for the morphological characteristics of containerized black spruce after 16 weeks in a greenhouse.

Morphological Characteristic	CONTAINER STOCK SIZE ${ }^{1}$		
	SMALL	MEDIUM	LARGE
Height (cm)	7.5-15.0	15.1-20.0	$20.1-25.0$
Root Collar Diameter (mm)	$1.0-1.5$	$1.6-2.0$	$2.1-3.0$
```Top/ROOt Dry Weight Ratio```	6:1-3:1	$6: 1-3: 1$	$6: 1-3.1$
Total Dry Weight (g)	$0.35-0.75$	$0.76-1.20$	$1: 21-1.50$
Dickson's Seedling Quality Index	$0.03-0.06$	$0.07-0.10$	$0.11-0.15$

1
Note: Specification guidelines from Scarratt, J.B. and K. H. Reese (1976), Roller, K.L. (1976) and Hallett, R.D. (1980).

TABLE 20. Proposed morphological characteristics for superior containerized black spruce after a 16 week greenhouse production phase.

Morphological Characteristic	Container Stock Size					
	sb-2			sb-1		
Height (cm)	13.0	-	15.0	15.1	-	20.0
Root Collar   Diameter (mm)	2.5		3.0	3.1		3.5
Top/Root Dry Weight Ratio	3.51	-	4.00	3.00	-	3.50
Top Dry Weight (g)	0.70		1.10	0.90	-	1.20
Root Dry Weight (g)	0.30			0.50		
Total Dry Weight (g)	1.00	-	1.40	1.41		1.70
Root Plug Shape (Diam/Depth)	1:2			1:2		
Dickson's Seedling Quality Index (Qix)	0.13		0.19	0.20		0.25

## size class.

2) A container volume range between 80 and $180 \mathrm{~cm}^{3}$, at a $1: 2$ diameter/depth container shape, will produce containerized black spruce stock in the ' $\mathrm{Sb}-\mathbf{2}^{\prime}$ size class.

Even though the results of this study are based on a single production run in the greenhouse and a single growing season in the field, the very strong significance of the differences in the seedling quality classes (Figure 36 ) indicate that these results will be duplicated in future studies. It is possible to produce black spruce container stock of high quality which will continue to perform well after field outplanting.

## Legend

$\square$ Field outplanting phase
$\square$ Greenhouse production phase


CONTAINER TREATMENT

Figure 38. A comoarison of the mean seedling quality indices of black spruce grown in the 1 ? container treatments after 16 weeks in the greenhouse and after one growing season in the field.

## CONCLUSIONS

Container volume and shape are two environmental factors that should not be overlooked when growing containerized black spruce. Both factors have an important influence on seedling growth and stock quality in the greenhouse production phase and on subsequent establishment and growth after outplanting. The following main conclusions have been drawn from the results of this research:

1) Container volume has a strong influence on the morphological quality of black spruce in the greenhouse and after outplanting.
a) Black spruce should never be grown in or outplanted from containers of less than $30 \mathrm{~cm}^{3}$ since this limited volume is detrimental to seedling growth.
b) Black spruce should be grown in containers that range from 80 to 180 $\mathrm{cm}^{3}$ in volume if high quality ('Sb-2' size) stock is to be produced (Table 20).
c) Black spruce should be grown in containers that range from 180 to 360 $\mathrm{cm}^{3}$ in volume if superior quality ('Sb-1' size) stock is to be produced (Table 20).
2) Container shape also influences the morphological quality of black spruce both in the greenhouse production phase and after outplanting.
a) The container shape should be shallow and wide, close to a 1:2 diameter/ depth ratio, in order to match the natural widespread rooting pattern of black spruce.
b) Deep, narrow containers having a 1:3 or 1:4 diameter/depth ratio should be avoided.
3) The proposed morphological standards for containerized black soruce (Table 20) should be provisionally adopted until they are improved. Superior guality seedlings in the 5b-1 and Sb-2 classes defined in these standards may be more difficult to produce in the greenhouse but will improve the establishment and growth of black spruce trees free to grow in the field.

## LITERATURE CITED

Alm, A., D. Olsen, and M. Lacky. 1982. Comparisons after planting of jack pine grown for varying time periods in different container systems. Minnesota For. Res. Notes. No.279. 4 pp.

Armson, K.A. and V. Sadreika. 1974. Forest tree nursery soil management and related practices. Ont. Min. Nat. Res. Tech. Bull.

Arnott, J.T. 1972. Influences affecting container seedling performance on Vancouver Island, British Columbia. Pp. 84-91 In Waldron, R.M., ed. Proceedings of a Workshop on Container Planting in Canada. Dept. Environ., Can. For. Serv., Ottawa, Ont. Inf. Rep. DPC-X-2. 168 pp.

Arnott, J.T. 1981. Survival and growth of bullet, styroplug and bareroot seedings on mid-elevation sites in coastal British Columbia. For.Chron. 57 (2):147-149.

Baker, D.E. and C.M. Woodruff. 1962. Influences of volume of soil per plant upon growth and uptake of phosphorus by corn from soils treated with different amounts of phosphorus. Soil Sci. 94:409-412.

Barnett, J.P. and J.M. McGilvray. 1981. Container planting systems for the south. U.S. Dep. Agric. For. Serv., South. For. Exp. Stn., New Orleans, La. Res. Fap. S0167.10 pp.

Baskerville, G.L. 1971. Use of logarithmic regression in the estimation of plant biomass. Car. J. For. Res. 2:49-53.

Berger, T.J. and G. Lysholm. 1978. Tube diameter and age of seedings. Two nursery
and field experiments: Pinus Caribaea. Uganda Dept. Silv., Agric. Univ. of Norway, 1432 AS-NLH, Norway. Tech. Rep. No.13. 24 pp.

Bergman, F., S. Lic, M.O. Domsjo and B. Haggstrom, Skogssfyrelsen. 1976. Some important facts considering planting with rooted forest plants. For. Chron. Vol. 52 (6) 266-273.

Biran, I. and A. Elliassaf. 1980a. The effect of container shape on the development of roots and canopy of woody plants. Scientia Hortic., 12:183-193.

Biran, I. and A. Elliassaf. 1980b. The effect of container size and aeration concitions on growth of roots and canopy of woody plants. Scientia Horti. 12(4):3e5-394.

Bohm, W. 1979. Methods of studying root systems. Ecological Studies 33, Soringer-Verlac, New York 188 p.

Boudoux, M.E. 1972. Optimum container size for black spruce. In Waldron, R.M., ed. Proceedings of a Workshop on Container Planting in Canada. Dept. Environ., Can. For. Serv., Ottawa, Ont. Inf. Rep. DPC-X-2. 168 pp.

Brix, H., and R. van den Driessche. 1974. Mineral nutrition of container-grown tree seedings. Pg. 77-84 In Tinus, R.W., W.I. Stein and W.E. Balmer, ed. Proc. N. Amer. Cont. For. Tree Seedling Symp. Great Plains Agric. Comm. Publ. s8. 458 pp.

Carlson, L.W. 1983. Guidelines for rearing containerized conifer seedings with Prairie Provinces. Nor, For. Res. Cent., Can. For. Serv. Envir. Canada. Inf. Rep. NOR-$\mathrm{x}-214 \mathrm{E} .66 \mathrm{pp}$.

Carlson, L.W. and F. Endean. 1976. The effect of rooting volume and container configuration on the early growth of white spruce seedlings. Can. J. For. Res.

6:221-224.

Carlson, L.W. and L.D. Nairn. 1977. Root deformities in some container grown jack pine in southern Manitoba. For. Chron., 53(3):147-150.

Cornforth, I.S. 1968. Relationships between soil volume used by roots and nutrient accessibility. J. Soil Sci. Vol. 19:291-301.

Davidson, W.H. and E.A.Sowa. 1974. Container-grown seedlings show Dotential for afforestation of Pennsylvania coal-mine spoils. Tree Plant. Notes, Vol.25(4):6-9.

Davis, R.E. and C.E. Whitcomb. 1975. Effects of propagation container size on development of high quality seedlings. Agric. Exp. Stn., Oklahoma St. Univ., Stillwater, J. Articie No. 3005:448-453.

Day, R.J. and J. Skoupy. 1971. Moisture storage capacity and post planting patterns of moisture movement from seedling containers. Can. J. For. Res.Vol. , No.3. p. 151-158.
deChamos, J. 1978. Influence of various containers on the root form of some conifers in France. Pp. 119-141 In Van Eercen, E. and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium. B.C. Min, For./Can. For, Serv., Joint Rep. No. 3.357 pp.

Dickson, A., A.L. Leaf and J.F. Hosner. 1969. Guality appraisal of white sorucs and white pine seedling stock in nurseries. For. Chron. 36:10-13.

Elam, W.W., J.D. Hodges, and D.J. Moorhead. 1981. Production of containerized southern red oaks and their performance after outplanting. Pg. 69-76. In Guildin, R.W. and J.P. Barnett ed., Proc. S. Cent. For. Tree Sdlg. Conf., U.S. Dept. Agric., For.

Serv., S.For. Exp. Stn., New Orleans, Louisiana, Gen. Tech. Rep. S0-37, 156 pp.
Endean, F. 1972a. Container planting program at the Northern Forest Research Centre. Pp. 26-26 In Waldron, R.M., ed. Proceedings of a Workshod on Container Planting in Canada. Dept. Environ., Can. For. Serv., Ottawa, Ont. Inf. Red. DFC-X-2. 168 pp.

Endean, F. 1972b. Assessment of different types of containers for growing seedings in Alberta. Pp. 119-128 In Waldron, R.M., ed. Proceedings of a Workshop on Container Planting in Canada. Dept. Environ., Can. For. Serv., Ottawa, Ont. Inf. Fep. DPC-X-2. 168 pp.

Endean, F. 1973. Conical container improves seeding growth on dry sites. Tree Pl. Notes. 24:26-29.

Endean, F. and L.W. Carlson. 1975. The effects of rooting volume on the early growth of lodgepole pine seedings. Can. J. For. Res. 5:55-60.

Environ. Can. 1980. Canadian climate normals 1951-1980, temperature and precipitation Environ. Can., Atmospheric Environ. Serv. pp.

Ferdinand,. I.S. 1972. Container planting program at North Western Pulo and Power Lid. In Waleron, R.M. ed. Proceedings of a Workshop on Container Planting In Canada. Dedt. Envited States. U.S. Dept. Agric. For. Serv., Agric. Handeook No.271, 762 pp.

Finney, D.T. 1946. Standard errors of yields adjusted for regression on an independent measurement. Biom. Bull. 2:53-55.

Fowells, H.A. 1965. Silvics of the forest trees of the United States. U.S. Deot. Agric.

For. Serv., Agric. Handbook No.271, 762 pp.

Funk, D.T., P.L. Roth and C.K. Celmer. 1980. The influence of container type and potting medium on growth of black walnut seedlings. U.S. Dept. Agric. For. Sery., N. Cent. For. Exp. Stn., St. Paul, Mn. Res. Note. NC No. 253.4 po.

Furuta, T. 1976. Environmental plant production and marketing. Cox, Arcadia, CA. 5-27 pp.

Gardner, A.C. 1981. Field performance of containerized seedings in interior British Columbia. Pp. 299-306 In Scarratt, J.B., C. Glerum and C.A. Plexman, ed. Proceedings of the Canadian Containerized Tree Seedling Symposium. Dedt. Enviro., Can. For. Serv., Sault Ste. Marie, Ont. COJFRC Symp. Proc. 0-P-10. 460 pp.

Goodale, T.W. and C.E. Whitcomb. 1980. Producing woody ornamental shrubs in containers, influence of fertility level and container size. Ornamentals South, 2(2):10-13.

Goodwin, O.C., D.L. Brenneman and W.G. Boyette. 1981. Container seedling survival and growth: Pine and hardwood in north Carolina. Pg. 125-131 In Guildin, R.W. and J.P. Barnett ed., Proc. S. Cent. For. Tree Sdlg. Conf., U.S. Dept. Agric., For. Serv., S. For. Exp. Stn., New Orleans, Louisiana, Gen. Tech. Red. 50-37. 156 dp .

Grene, 5. 1978. Root deformities reduce root growth and stability. Po.150-is5. In Van Eerden, E. and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium, B.C. Min. For./Can. For. Serv., Joint Rep. No.3, 357 pp.

Hann, P. and 5. Hutchison. 1978. Root form of planted trees and their performance. Pp. 235-245 In Van Eerden, E. and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium. B.C. Min. For./Can. For. Serv., Joint Red. No. B .

357 pD.

Hallett, R.D. 1980. Nursery practices for production of black spruce. Can. For. Sery. Maritimes For. Res. Cent. Tech. Note No.13. 7 pp.

Harlow, W.M. and E.S. Harrar. 1968. Textbook of dendrology. Fifth ed. MeGraw-Hill Book Co., New York. 512 pp.

Harris, R.W. 1967. Factors influencing root development of container-grown trees. Pp. 304-314. In International Shade Tree Conference, 43rd Proc. 383 pe.

Hay, R.i. and F.W. Woods. 1978. Carbohydrate relationships in root systems of planted loblolly pine seedlings. In Van Eerden, E., and J. Kinghorn, ed. Procsedings of the Root Form of Flanted Trees Symposium, B.C. Min. For./Can. For. Serv., Joint Rep. No.3. 357 pp.

Hite, W.A. 1978. The root form of planted trees in the northern Rockies --- are the concerns econimically justified? Pp. 157-161 In Van Eerden, E., and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium. B.C. Min. For./Can. For. Serv., Joint Rep. No.B. 357 pp.

Karlsson, I. and M. Kovats. 1974. Effects of rooting medium, container size, cover and planting time on container-grown douglas fir seedlings. B.C. For. Gerv. Res. Netes No.69. 20 pp.

Kellas, J.D., and J.G. Edgar. 1979. Effects of sowing time and container type on height growth and survival of seedlings of Eucalyptus regnans. Can. J. For. Fes. $9(4): 478-483$.

Khahil, M.A.K. 1975. Genetic variation in black spruce (Ficea mariana (Mill B.S.P.) in

Newfoundland. Silv. Genet. 24(4):83-96.

Klougard, A. and O. Bagge Olsen. 1969. Substratum for container grown plants. Acta Hortic. 15:21-26.

Kramer, P.J. 1960. Forest tree physiology. Pp. 91-156 In Proc. Special Field Inst. in For. Biol. For. School, North Carolina.

Kramer, P.J. and T.T. Kozlowski. 1979. Physiology of woody Dlants. Academic Press. New York. 311 pp.

Kratky, B.A., J.K. Wang and K. Kobojiri. 1982. Effects of container size, transplant age and plant spacing on chinese cabbage. J. Amer. Soc. Hort. Sci. 107(2):345-347.

Larson, P.R. 1974. The upper limit of seedling growth. Pg. 62-76 In Tinus, R.W., W.I. Stein and W.E. Balmer, ed. Proc. N. Amer. Cont. For. Tree Seedling Symp. Great Plains Agric. Comm. Publ. 68.458 pp.

Larsen, 5. and C.D. Sutton. 1963. The influence of soil volume on the absorption of soil phosphorus by plants and on the determination of Labile soil phosphorus. Flant and Soil 18(1):77-34.

McMinn, R.G. 1978. Root development of white spruce and lodgepole pine seedings following outplanting. Pp. 186-190 In Van Eerden, E. and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium. B.C. Min. For./Can. For. Serv., Joint Rep. No.3. 357 po.

McMinn, R.G. 1981. Size of container-grown seedlings should be matched to site conditions. Pp. 307-312 In Scarratt, J.B., C. Glerum and C.A. Plexman, ed. Froceedings of the Canadian Containerized Tree Seeding Symposium. Dept. Environ. Can. For.

Serv., Sault Ste. Marie, Ont. COJFRC Symp. Proc. O-P-10. 460 pp.

Morgenstern. E.K. 1973. Heritability and genetic gain for height growth in a nursery experiment with black spruce. Pet. For. Exp. Stat. Chalk River, Ont. INFD Report PS-X-44.

Myles. D.V. 1978. A compendium of silvicultural equipment. For. Man. Inst., info. Feoort FMR-X-115. Ottawa, Ont.

Preston, R.J. 1966. North American Trees. First M.I.T. Press paperback ed., Cambricge, Mass. 395 pp.

Roller, K.J. 1976. Field performance of container-grown norway serute seedlings. Car. For. Serv., Maritime For. Res. Cent., Fred., New Erunswick. Inf. Rep. M-X-64. 17 pp.

Roller, K.J. 1977. Suggested minimum standards for containerized seedings in Nova Scotia. Maritimes For. Res. Cent., Fred., New Brunswick. Inf. Rep. M-X-69. 18 po.

Rowe, J.S. 1972. Forest regions of Canada. Can. For. Serv., Ottawa, Ont. Puel. No. 1300.

Rudolf, P.O. 1939. Why forest plantations foil. J. For., 37:377-383.

Russell, R.S. and P. Newbould. 1963. The pattern of nutrient uptake in root systems. Fp. 148-169 In Whittington, W.J., ed. Proc. Foot Growth. Univ. Nottingham. New York Flenum Press. 450 pp.

Scarratt, J.B. 1972a. Container size affects dimensions of white spruce, jack pine planting stock. Tree Plant. Notes, 23(4):21-25.

Scarratt, J.B. 1972b. Tuied Eeeding research in northern Ontario. Pp. 129-141 In Waldron,
R.M., ed. Proceedings of a Workshop on Container Planting in Canada. Dept. Environ., Can. For. Serv., Ottawa, Ont. Inf. Rep. DPC-X-2. 168 pp.

Scarratt, J.B. 1972c. Effect of tube diameter and spacing on the size of tubed seediing planting stock. Can. For. Serv., Sault Ste. Marie, Ont. Inf. Rep. 0-X-170. 16 og.

Scarratt, J.B. 1973. Containerized seedlings relation between container size and production period. Can. For. Serv., Bi-Mon. Res. Notes 29(1):4-6́.

Scarratt, J.B. 1981. Container stock specifications for northern Ontario. Po. 343-354 In Scarratt, J.B., C. Glerum and C.A. Plexman, ed. Proceedings of the Canadian Containerized Tree Seedling Symposium. Dept. Environ., Can. For. Sery., Sault Ste. Marie, Ont. COJFRC Symp. Proc. O-P-10. 460 pp.

Scarratt, J.B. and K.H. Reese. 1976. Objectives and criteria for planting stack procuction in Ontario Great Lakes For. Res. Cent., Info. Rep. O-X-253. 17 pp.

Schultz, J.D. 1959. The vertical rooting habit in black spruce, white spruce and balsam fir. Ph.D. thesis. Univ. Michigan, Ann Arbor, Mich. USA 182 pp.

Smith, C.R. 1980. Silvicultural equipment reference catalogue for southern Ontario. Ont. Min. Nat. Res. Publ.

Solberg, K.H. 1975. Tube size and plant age. Nursery and field experiments. Pinus caribaea and Pinus oocarpa. Tanzania Dept. Silv., Agric., Univ. of Norwa; 1432 AS-NLH, Norway. Tech Rep. No.10. 34 pp.

Steel, G.D. and J.H. Torrie. 1960. Principles and procedures of statistics with soecial reference to the biological sciences. McGraw-Hill Book Co.Inc., New York. 481 Do.

Stefanson, E. 197e. Root quality of pine plantations established with seedings grown in multipots. Pp. 114-115. In Van Eerden, E. and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium. B.C. Min. For./Can. For. Serv., Joint Rep. No.s. 357 pp.

Stevenson, D.S. 1970. Soil volume and fertilizer effects on growth and nutrient contents of sunflower plants. Can. J. Scil Sci. 50(3):353-360.

Sutton, R.F. 1969. Form and development of conifer root systems. Commonw. For. Bur., Oxford, Eng. Tech. Commun. No.7. 131 pp.

Sutton, R.F. 1974. Problems and approaches in biological research related to mechanized reforestation. For. Chron. 50:22-26.

Sutton, F.F. 1980. Planting stock quality, root growth capacity, and field performance of three boreal conifers. N.Z.J. For. Sci. 10(1):54-71.

Tinus, R.W. 1974. Characteristics of seedings with high survival potential. Pp. 276-292 In Tinus, R.W., W.I. Stein and W.E. Balmer, ed. Proc. N. Amer. Cont. For. Tree


Tinus, R.W. 1976. Root System Configuration is Important to Long Tree Life. Rocky Mountain Forest and Range Exp. Stn., U.S. Forest Serv. Shelterhelt Lab. Eottineau, North Dakota.

Tinus, R.W. 1981. Environmental control of seedling physiology. In Scarratt, J.B., C. Glerum and C.A. Plexman, ed. Proceedings of the Canadian Containerized Tree Seeding Symposium. Dept. Enviro., Can. For. Serv., Sault Ste. Marie, Ont. COUFRC Symp. Proc. 0-P-10. 400 pp.

Tinus, R.W. and S.E. McDonald. 1979. How to grow tree seedlings in containers in greenhouses. Rocky Mtn. For. and Rang. Exp. Stn.,USDA For. Serv., Gen. Tech. Rep. RM-60.

Van Eerden, E. 1971. Influences affecting container seedling performance near Frince George, B.C. Unpublished report. 10 p.

Van Eerden, E. 1972. Influences affecting container seeding performance near Frince George, B.C. Pp. 92-100 In Waldron,R.M., ed. Proceedings of a Workstod on Container Planting in Canada. Dept. Environ., Can. For. Sery., Ottawa, Ont. Inf. Fep. DPC-X-2. 168 pp.

Van Eerden, E. 1974. Growing season production of western conifers. Pp. 93-103 in Tinus, R.W., W.I. Stein and W.E. Balmer, ed. Proceedings of the North American Container Forest Tree Seedling Symposium. Great Plains Agric. Coun. Publ. 6e. 458 pD.

Van Eerden, E. 1978. Roots of planted trees in central British Columbia. Pp. 201-208 In Van Eerden, E. and J. Kinghorn, ed. Proceedings of the Root Form of Planted Trees Symposium. B.C. Min. For./Can. For. Serv., Joint Rep. No.Z, 357 pe.

Van Eerden, E. 1981. The fundamentals of container seediing production. Pp. 83-90 In Scarratt, J.B., C. Glerum and C.A. Plexman, ed. Froceedings of the Canadian Containerized Tree Seedling Symposium, Dept. Environ. Can. For. Serv., Saut Ste. Marie, Ont. COJFRC Symp. Proc. 0-P-10. 460 pD.

Walker, N.R. 1981. Larger cavity size and longer rearing time improve container seeding field performance. Dept. Environ., Can. For. Sery., N. For. Res. Cent., Res. Note No.6. 2 pog.

## 112

Ward, T.M., J.R. Donnelly and C.M. Carl, Jr. 198!. The effects of container and media on sugar maple seedling growth. Tree Pl. Notes No.15. 3 pp .

Yates,F. 1933. The analysis of replicated experiments when the field results are incomplete. Empire J. Exp. Agr. Vol. 1:129-142

Zavitkovski, J. and W.K. Ferrell. 1953. Effect of drought upon rates of photosynthesis, respiration, and transpiration of seedlings of two ecotypes of Douglas-fir. Bot. Gaz. 129:346-350.

Zoltai, S.C. 1965. Glacial features of the Quetico-Nipigon area, Ontario. Ont. Dept. Lards For. 269 pD.

113

APPENDICES

114

## APPENDIX I

Latin Name Abbreviations

Latin name	Abbreviation	Common name
Acer saccharum March.	ACsc	Sugar maple
Avena sativa	$A \vee s$	Oats
Brassica pekinensis Rupr.	BRD	Chinese cabbage
Dodonea viscosa Jacq.	DOV	Varnish leaf
Eucalyptus regnans F. Muell.	EUr	Eucalyotus
Ficus retusa L.	FIr	Indian fig
Juglans nigraL.	JUn	Black walnut
Juniperus virgininana L. Hetzii	JNv	Hetz blue juniper
Lolium perene	LOp	Ryegrass
Picea abies (L.) Karst	PIa	Norway soruce
Picea glauca (Moench) Voss	PIg	White spruce
Picea mariana (Mill.) B.S.P.	PIm	Black spruce
Pinus banksiana Lamb.	PNb	Jack pine
Pinus caribaea Morelet	PNCa	Caribbean oine
Pinus contorta Doug. var Zatiforia Engelm.	PNco	Lodgepole pine
Pinus elriottii Engelm.	PNe	Slash pine
Pinus ponderosa Laws.	PNo	Ponderosa pine
Pinus resinosa Ait.	PNr	Red pine
Pinus taeda L.	PNt	Loblolly pine
Pseudotsuga menziesii (Mirb.) Franco	PSm	Douglas fir
Pistacia lentiscus	PTL	Pistachio
Quercus falcata   var. pagodifolia Ell.	Qf	Southern red oak
Zea maize L.	ZEm	Corn

116

## APPENDIX II

MLR Patterns of Residuals
For the Greenhouse and Field Data


Figure II-1. Abnormal pattern of standardized residuals for the greenhouse total dry weight data.


Figure II-2. Normal oattern of standardized residuals for the transformed greenhouse total dry weight data.


Figure II-3. Abnormal Dattern of standardized residuals for the field total dry weight data.


Figure II-4. Normal nattern of standardized residuals for the transformed field total dry weight data.

119

```
 APPENDIX III
 SNK Test Results
For the Greenhouse Data
```

TABLE III-1. Interaction table showing the treatment means for seedling height (cm) and SNK test results after 16 weeks in the greenhouse.

Container Dimension	Container Volume (cm3)						
(Diam./Depth)	45	90	180	360	$\bar{x}$	$P=0.05$	$P=0.01$
1:2	11.4	15.0	15.2	17.0	14.7		
1:3	12.5	14.4	13.1	15.4	13.9		
1:4	13.1	13.6	14.3	14.6	13.9	]	]
$\bar{\chi}$	12.4	14.3	14.2	15.7			
$P=0.05$			-	-			
$\mathrm{P}=0.01$							

TABLE III-2. Interaction table showing the treatment means for seedling root collar diameter (mm) and SNK test results after 16 weeks in the greenhouse.

Container Dimension (Diam./Depth)	$\begin{gathered} \text { Container Volume } \\ (\mathrm{cm}) \end{gathered}$				$\bar{\chi}$	$P=0.05$	$P=0.01$
	45	90	180	360			
1:2	2.5	3.2	3.3	3.3	3.1		T
1:3	2.8	2.9	2.8	3.3	3.0		
1:4	2.7	2.8	2.9	3.2	2.9	1	]
$\bar{x}$	2.7	3.0	3.0	3.3			
$\mathrm{P}=0.05$			-				
$\mathrm{P}=0.01$			-				

Note: Treatment means joined by a line are not significantly different.

A * indicates significant differences between treatment means at the corresponding level of $P$.

TABLE III－3．Interaction table showing the treatment means for seedling top dry weight（g）and SNK test results after 16 weeks in the greenhouse．

Container   Dimension	Container Volume （cm3）						
（Diam．／Depth）	45	90	180	360	$\bar{x}$	$P=0.05$	$P=0.01$
1：2	0.57	1.11	1.21	1.37	1.07		
1：3	0.76	0.92	0.93	1.29	0.98		
$1: 4$	0.80	0.85	0.94	1.11	0.93	」	」
$\bar{x}$	0.71	0.96	1.03	1.26			
$P=0.05$		L					
$P=0.01$		$L$					

TABLE III－4．Interaction table showing the treatment means for seedling root dry weight（g）and SNK test results after 16 weeks in the greenhouse．

Container Dimension	Container Volume （ $\mathrm{cm}{ }^{3}$ ）						
（Diam．／Depth）	45	90	180	360	$\bar{x}$	$P=0.05$	$\mathrm{P}=0.01$
1：2	0.13	0.26	0.31	0.38	0.27		
1：3	0.20	0.25	0.25	0.38	0.27		
1：4	0.23	0.23	0.28	0.36	0.28	」	］
$\bar{x}$	0.19	0.25	0.28	0.37			
$\mathrm{P}=0.05$			－				
$P=0.01$		$\llcorner$					

Note：Treatment means joined by a line are not significantly different．

A＊indicates significant differences between treatment means at the corresponding level of $P$ ．

TABLE III-5.Interaction table showing the treatment means for seedling total dry weight (g) and SNK test results after 16 weeks in the greenhouse.

Container   Dimension	Container Volume ( $\mathrm{cm}^{3}$ )						
(Diam./Depth)	45	90	180	360	$\bar{\chi}$	$P=0.05$	$P=0.01$
1:2	0.70	1.36	1.51	1.74	1.33		
1:3	0.97	1.16	1.18	1.67	1.25		
1:4	1.02	1.08	1.22	1.47	1.20	」	]
$\bar{x}$	0.90	1.20	1.30	1.63	1.26		
$\mathrm{P}=0.05$			-				
$P=0.01$		-					

TABLE III-6Interaction table showing the treatment means for seedling quality index (Qix) and SNK test results after 16 weeks in the greenhouse.

Container Dimension	Container Volume$\left.(\mathrm{cm})^{3}\right)$						
CDiam./Depth	45	90	180	360	$\bar{x}$	$P=0.05$	$P=0.01$
1:2	0.08	0.15	0.17	0.20	0.15		7
1:3	0.11	0.13	0.14	0.20	0.15		
1:4	0.12	0.13	0.15	0.19	0.15	」	1
$\bar{\chi}$	0.10	0.14	0.15	0.20			
$\mathrm{P}=0.05$		,					
$\mathrm{P}=0.01$							

Note: Treatment means joined by a line are not significantly different.
A * indicates significant differences between treatment means at the corresponding level of $P$.

## APPENDIX IV

The Growth Response in the Greenhouse at Each Container Volume and Depth

TABLE IV-1. The growth response of seedling height in cm at each container volume and depth.

$\begin{aligned} & \text { Container } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume ( $\mathrm{cm}{ }^{3}$ )			
	45	90	180	360
$5.8{ }^{2}$	11.4			
7.1	12.5			
7.9				
9.0	$13.1 \downarrow$	14.3		
9.4		14.3		
10.1			$15.2 \uparrow$	
11.4		13.6		
12.6				
13.5			13.1	15.4
15.7 15.8			14.3	15.4
$20.2 \downarrow$				14.6

TABLE IV-2. The growth response of seedling root collar, diameter in mm at each container volume and depth.

$\begin{aligned} & \text { Contajner } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume ( $\mathrm{cm} \mathrm{m}^{3}$ )			
	45	90	180	360
$5.81^{2}$				
7.1	$2.8 x$			
7.9		3.2		
9.0	2.7			
9.4		2.9		
10.1			$3.2 \uparrow$	
11.4		2.8		
12.6				
13.5			2.8	3.3
15.7			-8	3.3
15.8 20.2			2.8	3.1

${ }^{1}$ Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows

TABLE IV-3. The growth response of seedling top dry weight in $g$ at each container volume and depth.

ContajnerDepth (cm)	Container Volume ( cm 3 )			
	45	90	180	360
$\left.5.8\right\|^{2}$	0.57			
7.1	0.76			
7.9		$1.11 \uparrow$		
9.0	$0.80 \downarrow$			
9.4		0.92		
10.1		. 8	$1.21 \uparrow$	
11.4		0.85		
12.6				
13.5			0.93	1.39
15.7				1.29
15.8 20.2			0.94	$1.11$

TABLE IV-4. The growth response of seedling root dry weight in $g$ at each container volume and depth.

$\begin{aligned} & \text { Container } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume ( cm 3 )			
	45	90	180	360
$5.81{ }^{2}$	0.13			
7.1	0.20			
7.9		$0.26 \uparrow$		
9.0	$0.23 \downarrow$			
9.4		0.25		
10.1		.	$0.31 \uparrow$	
11.4		0.23		
12.6				$0.38 \uparrow$
13.5			0.25	0.38
15.7				0.38
15.8 20.2			0.28	0.36

[^6]TABLE IV -5. The growth response of seedling total dry weight in $g$ at each container volume and depth.


TABLE IV -6. The growth response of seedling quality index at each container volume and depth.

${ }^{1}$ Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows

```
 APPENDIX V
 SNK Test Results
 For the Outplanting Data
```

TABLE V－1．Interaction table showing the treatment means for seedling height（cm）and SNK test results after one growing season in the field．

Container Dimension	Container Volume （cm ${ }^{3}$ ）						
（Diam．／Depth）	45	90	180	360	$\bar{x}$	$P=0.05$	$P=0.01$
1：2	21.1	23.1	25.3	27.0	24.1		7
1：3	20.2	25.2	24.9	24.6	23.7		
1：4	19.7	23.0	23.7	24.0	22.6	－	」
$\bar{x}$	20.3	23.7	24.6	25.2			
$P=0.05$				－			
$P=0.01$			，	－			

TABLE $V$－2．Interaction table showing the treatment means for seedling root collar diameter（mm）and SNK test results after one growing season in the field．

Container Dimension	Container Volume （ $\mathrm{cm}{ }^{3}$ ）						
（Diam．／Depth）	45	90	180	360	$\bar{x}$	$P=0.05$	$P=0.01$
1：2	3.4	4.5	4.6	5.3	4.4		7
1：3	3.5	4.3	4.2	4.8	4.2		
1：4	3.7	3.7	4.3	4.8	4.1	」	」
$\bar{x}$	3.5	4.2	4.4	5.0			
$\mathrm{P}=0.05$		$\llcorner$					
$P=0.01$		$\llcorner$	ـ				

Note：Treatment means joined by a line are not significantly different．

A＊indicates significant differences between treatment means at the corresponding level of $P$ ．

TABLE $V$-3. Interaction table showing the treatment means for seedling top dry weight (g) and SNK test results after one growing season in the field.

Container   Dimension	$\begin{gathered} \text { Container Volume } \\ (c m 3) \end{gathered}$						
(Diam./Depth)	45	90	180	360	$\bar{\chi}$	$P=0.05$	$P=0.01$
1:2	1.69	3.24	4.20	5.00	3.53	*	*
1:3	1.73	3.13	3.03	4.18	3.02		]
1:4	1.69	2.36	3.17	3.79	2.75	-	]
$\bar{\chi}$	1.70	2.91	3.47	4.32			
$P=0.05$		*					
$P=0.01$		$\star$					

TABLE $V$-4. Interaction table showing the treatment means for seedling root dry weight (g) and SNK test results after one growing season in the field.

Container Dimension	Container Volume ( $\mathrm{cm}{ }^{3}$ )						
(Diam./Depth)	45	90	180	360	$\bar{\chi}$	$P=0.05$	$P=0.01$
1:2	1.03	1.80	2.18	2.80	1.95	*	*
1:3	1.02	1.71	1.66	2.14	1.63	7	$\cdots$
1:4	1.04	1.43	1.77	1.96	1.55	」	-
$\bar{x}$	1.03	1.65	1.87	2.30			
$\mathrm{P}=0.05$		*					
$\mathrm{P}=0.01$		*	- -				

Note: Treatment means joined by a line are not significantly different.

A * indicates significant differences between treatment means at the corresponding level of $P$.

TABLE $V$-5. Interaction table showing the treatment means for seedling total dry weight (g) and SNK test results after one growing season in the field.

Container Dimension	Container Volume (cm3)						
(Diam./Depth)	45	90	180	360	$\bar{x}$	$P=0.05$	$P=0.01$
1:2	2.73	5.04	6.38	7.80	5.49	*	*
1:3	2.75	4.84	4.69	6.32	4.65	7	]
1:4	2.73	3.79	4.95	5.75	4.31	]	]
$\bar{x}$	2.74	4.56	5.34	6.62			
$P=0.05$		*					
$P=0.01$		*					

TABLE $V$-6. Interaction table showing the treatment means for seedling quality index ( $Q i x$ ) and $S N K$ test results after one growing season in the field.

Container Dimension	Container Volume (cm3)						
(Diam./Depth)	45	90	180	360	$\bar{\chi}$	$P=0.05$	$P=0.01$
1:2	0.41	0.65	0.82	0.92	0.70	*	
1:3	0.41	0.65	0.62	0.82	0.63		7
1:4	0.40	0.51	0.64	0.80	0.59	-	1
$\bar{x}$	0.41	0.60	0.69	0.85			
$\mathrm{P}=0.05$							
$P=0.01$		$\llcorner$	-				

Note: Treatment means joined by a line are not significantly different.

A * indicates significant differences between treatment means at the corresponding level of $P$.

```
APPENDIX VI
 The Growth Response After
Outplanting at Each Container
 Volume and Diameter
```

TABLE VI-1. The growth response of seedling height in cm at each container volume and diameter.

Contajner   Diameter ${ }^{1}$   (cm)	Container Volume (cm ${ }^{3}$ )			
	45	90	180	360
$2.54{ }^{2}$	19.7			
2.86	20.2			
3.18	$21.1 \downarrow$	23.01		
3.49		25.2 X		
3.81		23.11	23.7	
4.13			24.9	
4.76			$25.3 \downarrow$	24.0
5.40				24.6
$6.03 \downarrow$				$27.0 \downarrow$

TABLE VI-2. The growth response of seedling root collar diameter in mm at each container volume and diameter.

Container   Diameter ${ }^{1}$   (cm)	Container Volume (cm3)			
	45	90	180	360
$2.54{ }^{2}$	$3.7 \uparrow$			
2.86	3.5			
3.18	3.4	3.7		
3.49		4.3		
3.81		$4.5 \downarrow$		
4.13			4.2	
4.76			$4.6 \downarrow$	4.8
5.40				$4.8$
$6.03 \vee$				$5.3 \downarrow$

${ }^{1}$ Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows

TABLE VI-3. The growth response of seedling top dry weight in $g$ at each container volume and diameter.


TABLE IV-4. The growth response of seedling root dry weight in $g$ at each container volume and diameter.

Container Diameter 1 (cm)	Container Volume (cm3)			
	45	90	180	360
2.54 2	$1.04 \uparrow$			
2.86	1.02			
3.18	1.03	1.431		
3.49		1.71		
3.81		$1.80 \downarrow$	1.77	
4.13			1.66	
4.76			$2.18 \downarrow$	1.96
5.40				2.14
6.03 v				$2.80 \downarrow$

1Note: See table 11 for corresponding container treatments 2Note: An increase is in the direction of the arrows

TABLE VI-5. The growth response of seedling total dry weight in g at each container volume and diameter.


TABLE VI-6. The growth response of seedling quality index at each container volume and diameter.

Container   Diameter 1 (cm)	Container Volume ( $\mathrm{cm}{ }^{3}$ )			
	45	90	180	360
$2.54{ }^{2}$	0.40			
2.86	0.41			
3.18	$0.41 \downarrow$	0.51		
3.49		0.65		
3.81		$0.65 \downarrow$	0.64	
4.13			0.62	
4.76			$0.82 \downarrow$	0.80
5.40				0.82
$6.03 \downarrow$				$0.92 \downarrow$

${ }^{1}$ Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows

## APPENDIX VII

The Growth Response After Outplanting at Each Container Volume and Depth

TABLE VII-1. The growth response of seedling height in cm at each container volume and depth.

$\begin{aligned} & \text { Container } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	$\begin{gathered} \text { Container Volume } \\ \left(\mathrm{cm}^{3}\right) \end{gathered}$			
	45	90	180	360
$5.8 \mathrm{~T}^{2}$	$21.1 \uparrow$			
7.1	20.2			
7.9		23.1		
9.0	19.7			
9.4		$25.2 x$		
10.1			$25.3 \uparrow$	
11.4			-	
12.6				
13.5			24.9	27.01
15.7			23.7	24.6
15.8 20.2			23.7	$24.0$

TABLE VII-2. The growth response of seedling root collar diameter in mm at each container volume and depth.

$\begin{aligned} & \text { Container } \\ & \text { Depth1 } \\ & (\mathrm{cm}) \end{aligned}$	Container Volume (cm3)			
	45	90	180	360
$\left.5.8\right\|^{2}$	3.4			
7.1	3.5			
7.9		$4.5 \uparrow$		
9.0	$3.7 \downarrow$			
9.4		4.3		
10.1			$4.6 \uparrow$	
11.4		3.7		
12.6				$5.3 \uparrow$
13.5				.
15.7			.	4.8
15.8			4.3	
$20.2 \downarrow$				4.8

${ }^{1}$ Note: See table 11 for corresponding container treatments
${ }^{2}$ Note: An increase is in the direction of the arrows

TABLE VII-3. The growth response of seedling top dry weight in $g$ at each container volume and depth.

$\begin{aligned} & \text { Contajner } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume ( $\mathrm{cm}{ }^{3}$ )			
	45	90	180	360
$5.81^{2}$	1.69			
7.1	$1.73 X$			
7.9		$3.24 \uparrow$		
9.0	1.69			
9.4		3.13		
10.1			$4.20 \wedge$	
11.4		2.36		
12.6				$5.00 \uparrow$
13.5			3.03	4.18
15.7			3.17	4.18
15.8 20.2			3.17	3.79

TABLE VII-4. The growth response of seedling root dry weight in $g$ at each container volume and depth.

$\begin{aligned} & \text { Container } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume ( $\mathrm{cm}{ }^{3}$ )			
	45	90	180	360
$\left.5.8\right\|^{2}$	1.03			
7.1	1.02			
7.9		$1.80 \uparrow$		
9.0	$1.04 \downarrow$			
9.4		1.71		
10.1			$2.18 \uparrow$	
11.4		1.43		
12.6				$2.80 \uparrow$
13.5			1.66	
15.7				2.14
15.8			1.77	1.96
$20.2 \downarrow$				1.96

[^7]TABLE VII-5. The growth response of seedling total dry weight in $g$ at each container volume and depth.

$\begin{aligned} & \text { Contajner } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume$\left(c m^{3}\right)$			
	45	90	180	360
$\left.5.8\right\|^{2}$	2.731			
7.1	2.75			
7.9		5.041		
9.0	2.73			
9.4		4.84		
10.1			$6.38 \wedge$	
11.4		3.79		
12.6				$7.80 \uparrow$
13.5			4.69	
15.7				6.32
15.8			4.95	
$20.2 \downarrow$				5.75

TABLE VII-6. The growth response of seedling quality index (Qix) at each container volume and depth.

$\begin{aligned} & \text { Container } \\ & \text { Depth1 } \\ & \text { (cm) } \end{aligned}$	Container Volume ( cm 3 )			
	45	90	180	360
$\left.5.8\right\|^{2}$	0.411			
7.1	0.41			
7.9		$0.65 \uparrow$		
9.0	0.40			
9.4		0.65		
10.1			$0.82 \wedge$	
11.4		0.51		
12.6				$0.92 \uparrow$
13.5			0.62	- 82
15.7			0.64	0.82
15.8 20.2			0.64	0.80

${ }^{1}$ Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows


[^0]:    Note: Description of species abbreviations in Aopendix I.

[^1]:    Note: Description of species abbreviations in Anpendix I.

[^2]:    ${ }^{1}$ Note: Description of species abbreviations in Appendix I.

[^3]:    ${ }^{1}$ Note: Description of species abbreviations in Apoendix $\{$.

[^4]:    Figure 22: Mean seedling quality indices of black spruce grown in containers of 4 volumes and 3 dimensions after 16 weeks in the greenhouse.
    'Note: Treatment means designated with the same letters are not significantly different ( $P=0.05$ )

    Note: Main effects joined by a line are not significantly different
    $(P=0.05)$

[^5]:    Figure 25: Mean height of black spruce seedlings grown in
    'Note: Treatment means designated with the same letters are not
    significantly different $(P=0.05)$
    'Note: Main effects joined by a line are not significantly different
    $(P=0.05)$

[^6]:    ${ }^{1}$ Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows

[^7]:    1Note: See table 11 for corresponding container treatments ${ }^{2}$ Note: An increase is in the direction of the arrows

