COMPETITION TRIALS OF
 pintis banksiana And populus trehuloides

UNDER A RANGE OF PRDPORTIONS AND DENSITIES

By
David M. Morris (C)

```
A Graduate Thesis Submitted
in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Forestry
```

Lakehead University
School of Forestry
April 1986
\qquad
Mejor Advisor
\qquad
Committee Member

Committee Member

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10611736
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a ēté accordēe à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se rēserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation ecrite.

COMMENTS

Najor Advisor (Dr Fin En Farmer):

Committee Member (Dr. ド, M. Erotan):

ABSTRACT

Morris, D.M. 198s. Competition trials of Pinus banksiana and Populus tremuloides under a range of proportions and densities. 12Gpp. Advisor: Dr. R.E. Farmer.
Key Words: Competition trials. Feplacement series: Piness banksiana, Populus tremuloides.

This study was the first study designed specifically to analyae the competitive effects of density and species mixture for both pinus banksiana and populus tremuloides seedlinge during the initial stages of growth and development. To this end, replacement series experiments with jacti pine and trembling aspen seedlings were used in both a greanhouse and field study: In a 12 -weet: greenhouse pot study species ratios of 100/0, $75 / 25,50 / 50,25 / 75$ and $\% 100$ were planted at densities of $729,2,844$, and $10,00 \mathrm{plants} / \mathrm{m}^{2}$ " In a field
 494, and 2,500 plants $/ \mathrm{m}^{2}$ " This field test will be contimued for a perion af three to four growing seasons.

In the greenhouse study, jacl: pine assumed a dominant role at the highest density (10.0日0 plants/m ${ }^{2}$) as the density was lowered, trembling aspen gained dominance over the pine in the mixtures. This relationship was reflected in relative crowding coefficients, as well as in replacement Eeries diagrams for reletive vield. Alson it was determined thet an adjustment in allocation of biomass with respect to the dominant competitor occurred. Trembling aspen increaced its percentage biomess allocated to leat weight, when jact: pine was the domimamt competitorn However, the aspen seedlings allocated a greater percentage to stem wejght in respmase to aspen assuming the dominamt role. A finel observation included the lowering of aspen survivel es the percentage of aspen in mixture increased. Increased density further accentuated this relationship. Jack pine survival wes consistently high across the ramge of treatments.

From the preliminary measurements carried out on the field trialy it was found that both aspen height growth and crown development were affected by species composition. In generaly as the percentage of aspen decreased at a given density, both height and crown volume increased. Furthermores both height growth end crown volume for jack pine decreased, as density decreased. The ceuse for this response to density was releted to the intluence of envirommental factors.

TABLE OF CONTENTS

Fage
ABSTRACT i. i
LIST OF TABLES vi
LIST OF FIGURES vi.i.i
ACKNOWLEDGEMENTS $x i$
INTRODUCTION 1
LITERATURE REVIEW 4
Experimental Design 4
Density Experiments with Single Species 5
Froduction Fotential 5
Emergence Date 7
Fesource Allocation 8
Species Mixture Experiments 9
Froduction Fotential 9
Fesource Allocation 10
Flastic Growth Fatterns and Mortality 11
Flant Associations 11
Shrub Establit Ehment 12
Experiments Combining Density and Species Mixture 15
Froduction Fotential 15
Timing of Growth 15
Fesource Allowation 16
Flastic Growth Fesponse and Mortality 16
Flant Associations 17
Competition Experiments Incorporating Environmentai or Genetic Variables 18
Environmental Influences 18
Genetic Influences 19
Competition Experiments dealing with Forest Trees 20
Fesource Allocation 20
Stand Development 2
Effect of thinning 2
Effect of Diameter by Competitors 3
Genetic Felationships 24
Competition Model. 5 25
Jack Fine Ontogeny 28
Trembling Aspen Ontogeny 99
Present State of Knowledge \because
METHODS AND MATERIALS E2
Greenhouse Study 区
Experimental Design 区
Establishment of Experiment 34
Measurement of Experimental Fesultc 3
Analysis Ef Experimentel Fesults $\because 7$
Field Study 38
Experimental Design 88
Establishment of the Experiment 40
Measurement of Experimentel EeEults 42
Analysis of Experimentel Fiesults 42
RESULTS 44
Greenhouse Study 44
Field Study 72
DISCUSSION 84
Greenhouse Study 85
Hierarchy of Eesource Exploitation 85
Explanation for Shifting Dominance Fattern 89
Allocation of Fesources 89
Mortality 91
Yield Components 93
Field Study 93
Ecological Significance 96
Variation Within Measured Farameters 96
Competitive Exclusion Firinciple 99
An Inference Concerning Genetic Variability 100
Limited Fortion of Ontogeny Studied 101
CONCLUSIONS 103
Greenhouse Study 103
Field Study 104
LITERATURE CITED 105

APPENDIX 1. Experimental Design for greenhouse study.
APPENDIX 2. Simple Correlations Between Growth Parameters for Greenhouse Study.

APPENDIX 3. Layout for a single block in field study. 117 APPENDIX 4. Experimental design for field study. 118 APPENDIX 5. Soil description for field study area. 120

APPENDIX 6. Weekly height growth data for greenhouse study.

APPENDIX 7. Weekly crown volume data for greenhouse study.

APPENDIX 8. Weekly height growth data for field study. 123
APPENDIX 9. Weekly crown volume growth for field study. 125

LIST OF TABLES

Fage
Table 1. Treatment combinations for the greenhouse study. उ239Table 2. Treatment combinations for the field study.
Table 3 Ar Athmetir mean of survival percentage bydensity and species mixture for greenhousestudy"44
Table 4. Analysis of variance for survival percent after an arc sine transformation.
Table 5 . Fesults of a comparison of density treetmente for average survival percent using Tukey"s procedure.
Table $\theta_{\text {. }}$ Fesults of a comparison of species mixture treatments for average survival percent using Tukey" $=$ procedure.
Table 7 . Analysis of variance for total height at harvest in greenhouse study.
Table 8. Fiesults of a comparison of density treatments for average final height using Tubey"e procedure.
Table 9 . Analysis of variance for final crown volume in the greenhouse study.
Table 10. Fesults of a comparison of density treatments for average final crown volume using Tukeys procedure.
Table 11. Arithmetic mean and coefficients of variation for total biomass by density and species mixture for greenhouse study.
Table le. Analysis of variance for individual plant biomass at harvest.
Table 1Z. Fesults of a comparison of density treatments for average plant tiomase using Turey's procedure.
Table 14. Fesults of a comparison of species composition treatments for average plant biomess using Tukey"s procedure.
Table 15 , Arithmetic mean and coefficients of variation for leaf weight,total weight ratios by density and species mixture for greenhouse study* 64
Table 1b. Analysis of varience for leaf weight/total weight ratios after an arc sine transformation. 65
Table 17. Fesmits of a comparisom of density treatments for aver age leaf weight/totel weight ratios using Tultey' 5 procedure. $\epsilon 6$
Table 1B. Arithmetic mean biomess yield and total youd (in parantheses) for greenhouse study. 67
Table 19. Fielative yield for greenhouse studyn 68
Table FO. Felative Growding Coefficients of trembling aspen with jack pine for greenhouse study.
Table 21. Analysis of varisnce of final height at the end of the first growing seesom in the field study
Table sze Fiesults of a comparison of density treatments for aver age final height using Turey"e procedure.
Tatle $2 \boldsymbol{x}$ Fesults of a comparison of Epecies mixture treatments for average final height using Tutey" \leftrightarrows proceduren
Table 24n Analysis of variamee of final crown volume at the end of the first growing season for field study.82
Table 2Ex Fesults of a comparison of density treatments for average final Erown volume using Tutey's proceduren
Table 2́n Fesults of a momparison of species mixture treatments for average crown volume using Tucey" $=$ procedure.85
Table 27. Summary of coefficients of variation for individual plent biomess from greenhouse study daten

LIST OF FIGURES

Fage

Figure 1. Flenting design for the $75 / 25$ (25/75) mixture.3

Figure 2. Flanting design for the 5o/so mixture. $\Xi 4$

Figure $\underset{\sim}{Z}$ A graphical representation of the interaction between density and species mixture on trembling aspen survival in greenhouse study.48

Figure 4. Height growth comparisoms over time for greenhouse study.
$50-51$

Figure Gi Crown volume accumulation over time for greenhouse study.
$54-55$

Figure \quad. A graphical representation of the interection between density and species mixture on jeck pine final crown volume in greenhouse study.

Figure 7 . A graphical represntation of the interaction between density and species mixture on ject: pine biomase for greenhouse study.6Ξ

Figure $\varepsilon_{n} \quad$ Fieplacement Eeries diagrems expressing relative yield for three densitites in greemhouse study.69

Figure Fn Height gromth comparisoms over time for $^{\text {for }}$ field studyn
$75-75$

Figure 10. A graphical represntation of the interection between density and species mixture on jact: pine height for field study.77

Figure 11. Crown volume accumuletion over time for $^{\text {Fig }}$ field study.

ACKNOWLEDGEMENTS

Abstract

I would like to extend my gratitude to the Canadian Forestry Service (CFS), whose financial support (in both a scholarship and block grant funds) made it possible for me to carry out my graduate worl: at Latehead University.

Further thanks must go to Dr. FiE. Farmer for his support and guidance during the duration of this project.

Finally, I would like to ackownledge the help from a corps of volunteers, which was given during the summer of 1984: The most diligent members of this elite group included Ted Wood, Clifford Fartridgeg and Arlene Fartridgen This aid was essential in the establishment and maintenance of the field study.

COMPETITION TRIALS OF
 PINUS BANKSIANA AND POPULUS TRENULOIDES
 UNDER A RANGE OF
 PROPORTIONS AND DENSITIES

By

David M. Morris

INTRODUCTION

In northwestern Ontariog the relationship between jack pine (Pinas banksiana Lamb.) and trembling aspen (Populas tremuloides Michon) in early stand development is of special importance. Both species are comon and they occupy an overlapping niche. Therefore, this mixture frequently occurs in both natural stands and plantations. Turkingtong et al (1977) identified that strong competitive interactions occur between plants with similar site requirements, hindering or preventing their coexistencen Insight into the mode of competition between these two tree species will permit forest managers to prescribe timely, efficient silvicultural treatments to ensure the desired management objectives.

The essential qualities that determine the ecology of a species can only be detected by studying the reaction of individuals of that Epecies to their neighbours (Harper 1964). Gince plants are immobile, they are forced to live in the same lateral relationship with their neighbours throughout their life. A plant may respond to this close proximity of
neighbours by failume of seeds to germinaten deatha or survival with a plastic development (Harper 1764t).

Competitive pressures from meighboure are comtimuousn and where envirommental condjtions are relatively homogeneouss are the principal factore directing community change within a forest stand. The hardships imposed by neighbouring plants include shortage of such environmental resources as light. water, and nutrients (Donald 1963). When the neighoourimg plants are of the same species, the problems of autotoxicity (Trembath and Harper 197s) a and greater susceptibility to Epidemic disease (Gibson 19GE) must also be considered.

Essentially Eimilar effects are foumd in mixed plant commumities, Fieduced plant yjeldy as compared to yields from monocultures, may be ceused by competition for environmental resources \quad However, it could also be due to an allelopathic effect (hessey 1925) or to the presenoe ot neighbours promoting disemse incidence (Chamblee tgse) or lodging (Frobst 1957)

A common objective of forest management is to produce Large quantities of quality timber in the shortest time possible. This practices in parta includes being able to Eontrol and manipulate the effects of intram and interspecific competition. Although many eftecte of competition can be identifiedg we do not fully understand its mechanism. Moreover, the complexity of interacting factors male it difficult to separate the components of competition eftects. The mejor measumatale effects of competition on forest treas
include" (1) increese in mortelitys (a) reduction of total biomass! and (x) modification of treeform.

In the boread. foresta jact: pine $i=$ concidered an
important tree species by forest managers (kebaems and firby 1956) \quad Trembling aspem: however: is classed as a major Gompetitor of jack pine in this forest region (shirley lq4i). Therefore, the inclusion of trembling aspen on mamaged jact: pine sites poses a serious threat to an increased yield of desired ject pine products. Furthermores the eftects of competition mey be most severe on juvenile plantsy Eince it is during this early stage of rapid development that the greatest demands are being made upon the essential fectors in the enviromment.

The purpose of the present study was to investigate the effects of competition on jact: pine and trembling aspen Eededings during the initial stages of plant development. n More specifically, this research attempted to illustrete changes in plant vigour as releted to chamges in density and species composition. Therefore: this Etudy concentrated mainly on mortality and biomass changes. These meastrable effects of competition are good incicators of plant vigour (Silvertown 1982). To this end, the present study used both a randomized complete block design (greenhouse trial) and a Eplit-plot design (field trial) in order to examine the effects of both density and Eperies compositon in a mixture of young tremtinimg aspen and ject: pinen

LITERATURE REVIEW

Attempts to study the phenomena of coexistence on a local Ecale have resulted in extensive theoretical and empirical studies relating to competition and niche (werner 197¢). This chapter examines the existing literatume on plant competition. Most studies have concentrated on the following important attributes of agronomic plent development:
(l) procluction potential,
(2) Emergence date sor timing of rapid growth)?
(3) resource allocation!
(4) plastic growth response. and
(5) morteait.y.

Other contributions have come from the arees of computer-modelling, especially with regards to forest trees. and relationships in matural plant associations.

Experimental Design

Two contrasting experimental designs have been used to investigate the effects of meighbouring plante (Trenbath and Harper 197g). In one desjgn an "indicator Epecies" is sown at the same density, whetmer in momoculture or in mixture. Mixtures are produced experimentally by the addition of plants of ather species to stands of the "indicetor Epeties". The major proviem associated with this additive design is that the

Effects due to a rhange of the neighbours" genotype are confounded with effects due to a difference in densjtyn

In the second design, monocultures and mixtures are sown at the same overall density. The mixtures are produced by substituting plants of a monoculture with plants of another genotype. Varying degrees of substitution produce a range of mixtures with varied proportionse Such an experiment is called "a replacement series" (dewit 1960). FeGiluhrist and Trenbath (1.771), in thejr paper which reviewed techmiques used to anely ye competition experimentsy supported the use of this type of experimental design. Harper (1977) claims thet this $i s$ the most informative design on interspecific competition since the density effects which confound the interpretation of additive experiments are ruled out, leaving only the effects of species" proportions (Herper 1.777).

Density Experiments with Single Species

Froduction Fotential

Two major agronomic studies concentrated on this area of Competition research. Hodgson and Elactiman (JgEs) studied the competitive effects of varying density on the development of UiGia fata in a series of multifactorial experiments where the spacing both between and within rows was simultaneously altered.

The other study was carried out by Liddle, et al
(198). "The authors attempted to determine the effects of size and shape of available growing space, and the size and pronimity of neighbouring planten upon the growth of individual plants in populations of festuca mubra over a ten month period.

The mejor results from the above two studies were:
(1) as density increases, the number of fruits per plant and the extent of branching falls progressively (Hodgson and Elackman 1956),
(2) production performance of individual plants becomes increasingly positively correlated with available growing space as growth proceeds (Liddles et al 198.2), and
(3) a significant positive correlation also emerges between the mean distance of a plant to its immediate neighbour and its performance (Liddle, et al 1982).

Tating a more progressive approach. Weiner (1982) built a simple model to estimate reproductive potential based upon the number: distance, and species of neighbours. The model. for two speciess is:

Fmax

$$
F t_{1}=N_{1} \times \frac{1-C_{1} \times\left(N_{1}-1\right)+C_{2} \times N_{2}}{1-1}
$$

wherea Ft_{1} - total seed production of species \# $\mathrm{I}_{\text {, }}$

$$
\begin{aligned}
\text { Fmax - } & \text { is the reproductive output in the } \\
& \text { absence of competition for species \# } 13 \\
N_{1} \text { - number of individuals of species } & \\
& \text { per unjt aree. }
\end{aligned}
$$

$$
\begin{aligned}
N_{2}- & \text { number of individuels of species } \# 2 \\
& \text { per unit area, } \\
\mathrm{C}_{1}- & \text { a constant expressing the effect of an } \\
& \text { individual of species } \# \text {, and } \\
\mathrm{C}_{2}- & \text { a constant expressing the effect of an } \\
& \text { individual of species \# 2. }
\end{aligned}
$$

The effect of increasing competition, in the model, is to reduce seed production in a "hyperbolic fashion", and the contribution of each individual to this effect is in inverse proportion to the square of its distance from the test individual. This distance factor was incorporated in the constants within the above equation.

The model was tested on populations of two annual knotweeds. A least squares fit of the model accounted for over 80 \% of the variance in seed production.

Emergence oate

In attempte to verify the existence of a " 3 pewer law of Eelf-thinning", White and Harper (1970) concluded that the cause of the thinning phenomenon in plant populations is that differential growth rates occur among its members. This relationship leads to a development of a pattern of dominance and suppression. The smallest plants eventually dien thereby leaving additional space and nutrients for the larger, vigorously growing plants.

In a later study, Foss and Harper (1972) observed that during the emergence of a monospecific seediing populetion a
dominance hierarchy was established. This hierarchy severely intiuenced the future development of each individual. This conclusion was determined from a series of experiments, with Dactylis glomerata at high densities.

In a more recent experiment. Fowler (1984) found that individuals which germinated early were on average larger than those that germinated late, and had more flowers.

Fesource allocation

In a study by Snell and Eurch (1975), two major questions were addressed"
(1) does a plant"s pattern of resource allocation respond to varying levels of intraspecific competition and nutrient availability, and
(2) how does increased intrespecific competition and decreased nutrient levels affect net reproductive effort?

The authors found that the pattern of resource allocetion in chamaesyce hirta was significantly affected by both density and nutrient availability, Furthermores increased intraspecific competition and decreased nutrient levele produced decreases in the proportion of total plant energy allocated to reproductive tissues in all units tested. The following generalizations were made. As competition increased"
(1) reproductive biomass increased,
(2) leaf weight decreased.
(3) stem weight increasedy and
(4) root weight increased.

Species Mixture Experiments

Another group of researchers has designed experiments that attempt to identify specific growth responses to changes in species compositiom of wlosely related herbaceous species.

Froduction Fotentiel

A common result found in experiments dealing tith the relationship between species mixture and proctuction potential Wes that one species attained a dominant position in the stand, and therefore Eeverely hampered the production of the suppressed species. However, ditferent developmental strategies were discovered.

Lee (1960), usimg tho barley verieties (Atles 46 - a stromg competitor: Vaughri - a weak competitory a determined that super ior root development in At as 46 allowed this variety to efficiently gather mutriente from a fairly limited area of the soil masen As a results the vaughn veriety was placed under stress when both species were dependent upon the same soil area for water and nutrients. In studies dealimg with mixed rice populationsg it was ohserved that light was a major factor for which eompetition orcurs ajennings and aquinto 196B) " Furthermorey the weaver competitors (vegetatively Emally erecty sturdy rice varieties?
consistently have higher yields than their highly competitive counterparts when in pure stands (Jennings and dejesus 196e). This relationship is due to the intense competition occurring between neighbouring plants of the strong competitor variety. Scarisbrick and Ivrins (1770) found that light intensity was also the major limiting factor for British pasture grasses. From the results of greenhouse experiments, the authors theorized that increased daylength would have enhanced the competitive ability of ribgrass in mixture. Ribgress was dremetically suppressed by intense competition exerted by ryegrass and clover.

In a slightly different approach, Fabinowitz, et ai
(1984) determined that sparse species of prairie gresses were generally strong competitors. Therefore, these grass species were rare due to another undetermined factor. Their study was a greenhouse debit replacement series experiment spanning 5 15 monthe.

Eesource Allocation

A significant study on this topic was carried out by Turtington (19g马b). He attempted to illustrate how a plant allocates its available resources on a seasonal besis and how this pattern ©an be altered in the presence of different neighbouring species.

Over a range of different neighbours: 7 mifoliam repens reeponded quite differemtly in terms of leat and
flower flukes, stolon extension rates, final population sizes, and final dry weight. Turkington (1988b) stressed, however, that any particuler response is neither "better" nor "worse" than any other. In all treatmentsy the clover was able to persist and displayed an array of responses to different environments.

Flastic Growth Fesponse and Mortality

Coot: (1965) grew populations of Eschschotzza (adifornice (California poppy) on soils which they do and do not occur naturally. E.californica and Apena fatue were grown singly and together, in different proportionsy on an artifical slope with a constant water table. When grown alone, poppies survived in greater numbers and flowered closer to the bottom of the slope than when grown competing with A. faruan They responded more plasticly to intraspecific than to interspecifice competition. However, mortality was higher in response to interspecific competition. Cook (1955) concluded that there also seemed to be a certain degree of "genetic specialization" in relation to edaphic conditions.

Flant Assaciations

Turtington and others examined some of the complexities of gpecies relationships in communties where several legumes and several gresses are common. In their first report.
(Turkingtony et ai 1977) demonstrated that different legumes formed consistent relationships with different grass species. Each legume was strongly associated with a particular combination of grass species. The authors suggested that each legume-grass combination is selected through the ability of the combination to utilize the soil environment more efficiently then random combinations of species.

The most striking result from the second study by Turkington (1979) was that the number of survivors (7. repens and m^{\prime} sation and the dry weight (T. repens) was greatest when the species were transplanted back into swards of the grass species from which they had been sampled.

The above relationship was further strengthened by an indepth study by Turkington and Harper (1979). The most remarkable feature to emerge from this experiment was the strength of the interewtion between site and clover "type" in the field, and between grass-associate and clover "type" in the sown plots. Each clover "type" performed best when grown in the site from which it had originally been sampleds or in association with the grass species that dominated that siter This feature is known as the "Frincipal Diagonel Effect". Turkington and Harper (1979) felt that this relationship points to a finer and more subtie specialization of organisms to the environment than had previously been recognized within plant communities.
In the final study of the series. Turkington (198.3)
attempted to influence the patterme of dry matter distribution for two genotypes of $T_{\text {. Fepens by altering }}$ their competitors.

Both genotypes responded to increasing percentages of unfamiliar neighbours by producing more inflorescences and by distributing proportionately more dry matter to inflorescence production.

Shrub Establishment

Serious attempts have been made to restore perennial grasses to rangelande, as well as shrubs to winter game ranges. The purpose of several studies have been, therefore, to gain an understanding of the basic factors controlling competition between the desired and undesired plant species. Schultay et al (1955) found that there was a direct correletion between the amount of herbeceous vegetation. especidily grasees, and the number and vigour of brush seedlings when the two kinds of plante were growing together. Brush seedling mortality was correlated with grass density. It was felt that although competition for mutrients. light. and space occurs: the availability of soil moisture is the most striking factor influencing Eeedling survival.

Holmgren (lf5e) dealt with the influence of annual weeds on Establishment, growth rate, and survivel of artificelly seeded bitterbrush (Purshia tridentzte). A variety of "key" aspecte of the competitive effect of annuale were
revealed. These aspects were:
(1) In cheatgrass stands, few bitterbrush seedinge were able to survive the first summer. The competitive effect of cheatgrass generally becomes manifest early in the growing season, coinciding with its period of rapid growth.
(2) Bitterbrush seedlings are better able to compete with broad-leaved, summer--annual weeds than with cheatgrass. The competitive effect of broad leaved annuads becomes manifest later in the first growing season, coinciding again with their period of rapid growth. Thereforeg die-off of bitterbrush seedlings takes two to three yearsu
(3) Bitterbrush seedinge that grow their first season in freedom from competing weeds are vigorous. Subsequent invasion of weeds results in only neglible or no mortality, but it causes a slowing up in the growth rate of bitterbrush.

Litavy et al (1963) identified similar relationships, as above, in their worl: in the Mediterranean hill region of Greecen They were looking specifically at Poteriam spinosum: the most common shrut in the Nediterranean region: and avena sterifis! the leading amual..

It has been determined that annual grasses outcompete shrub seedlings by extending their roots more rapidly during the winter: thus gaining control of the site before the shrub seeding become estatiished. The early maturation of annuas depletes the stored moisture supply prior to the needs of shrubs (Harris 1967). The above relationship was largely determined from a study between Bromus tectorum European cheatgrass and Agropyron spiratum.

Experiments Combining Density and Species Mixture

A few researchers have noted that interactions between density and species mixture can have a pronounced effect on productivity, The important findings from this group of experimente are summerized in the following section.

Froduction Fotential

Freliminary results in this eree are as follows"
(1) a dominant species can be expected to suppress a weat competitor in all mixtures at all but the lowest dencities (Elack 1960 - womting with fimifoliam pratense and Medicago sativa), and
(2) mixtures tencted to yield more than the mean yielde of their two components and tended to have a greater concistency of performance (England 1968 - working with two coctsfoot and two ryegrase varieties).

Timing of Grouth

Buttery and Lambert (1965) examined the growth and productivity of Giycemia maxima and phomgmites communzs in a primary fen in which "A" was known to have succeeded "E""

Where G maxima showed maximum growth, P. commanis was completely suppressed. The success of e. maxima over ρ. communis under such conditions appeered to be due to its repid production of an extremely dense sward
in spring: betore the P, commanis shoots could develop. Where "ome reduction in G. maxime growth occurred, P. -ommanis shoots penetrated the sward and increasingly intercepted the availeble light: Therefore, Focommanis Was a Eerious competitor to G maxima only after a marlesed reduction in θ maxime productivity.

Fesource Allocation

Fobson (196日) sthdied the lite histories ot all s. 170 tall fescue tillers grown in large potsfrom Apria latato July 79 © 4 Gompetition for light and nutrients in meyn ceused many tillers to die. However, the surviving plants did not Vary greatly in sizen Fobson theorized that a tiller in a Favoured positions produming exGess substratesy utilized these substrates to expand daughter tillers. Thus, ahile a single favourably plamed tiller might mot dominate a plant in the semse that it would grow mumh 1 arger than ala other tiller: it might dominate in the sense that its offeprimg would become more numerous than those of less favourably place tillersa

Flastic Growth Fiespomse and Mortality

Marshall and Jain (1967) found that density induced greater mortality and a strifing plastic reduction in the size and reproductive potential of both arene fatua and Arena barbeta. Furthermores the weaker competitor (A.

Abstract

bambate) had relatively greater mortality and plastic growth responsese It was postulated that although co-existence between these two species could occurg the percentage of A. bartata expected at equilibrium yaried from approximately 30% at the lowest density to 1 ess than 10% at the highest density. This significantly lower percent composition of the weaker competitor illustrates a strong interaction between increasing density and species mixture with the intensity of competition from the dominant speries. In a different approech. Mack and Harper (1977) determined the effects of neighbours are not diffused through a populstion. but involve rather precise, quantifiable local interactions. They also noted that 69% of the variation in individual plant weight can be accounted for by the size and distancen as well as the pattern of distribution of neighbours.

Elant Assomiations

In a general Eurvey paper, Turkington and Cavers (1979) showed that the presence of grasses slowed down the rate of clump formation in legumes and hindered the rate of development of associations.

In a more in-depth studys Turkington and Harper (1979b) found that F fepens avoids the interspecific interference of clumped species and has a low frequency of intraspecific contacten Turkington and Hamper (1979b) genersidzed that for

Abstract

any spewies where intraspecific competition is weater than interspeciric eftects. survivorship would be greater in Elumps. If intraEpecifir competition iEgreatera it would "pay" to wander تnd explore.

Competition Experiments Incorporating Environmental or Genetic Variables

Although these types of factors are not being considered in the present studys \quad felt it wes important to realize that significant competition studies incorporetimg these factors Have been carried out. The effects of the environment must be considered when interpreting results of any field study and a 11 owances for genetic variability must take place to avoid comfoumding their effects with the measured factors.

Envirmmentel Intluences

An early Experiment wes designed by Snaydon (1peg witich Looked at the jnthuence of competition between contrasting populations of 7 mifoliam mepens on contrasting soils. A greenlouse pot study was established where populations from each soil type were grown seperste or mixed. on each of the two Eoils (acid and calcareous).

It was determined that the abilijty of the "walcareous" populations to utilize irong megnesium, and potassium at low concentrations gave them a shight competitive advantege over the "exid" popul ations.

A more recent study by Lee and Carvers (17B1) examined the effecte of shade on growthy developmenty and resource allocation patterns of three species of foxteils (setaria) \quad It was illustrated that the three species demonstrated morphological adaptatione to the shading treetments imposed (71\%, 41\% and 19% of full sunlight) as千O110ws:
(1) stem elongation occurred with increased shades
(2) Leaf area became relatively greater with reduced light intensity because the biomass alloceted to I. eves was used to produce larges thin leaves: rather than smaller, heavier ones.
(3) recluction in reproductive effort occurred in response to reduced light! and
(4) an increased percentege of biomass was alloceted to leaves - with a corpesponding drop in stem biomassas shade was increased.

Genetic influences

An extensive study of the interactions between various genotypes in four varieties of barleyg four varjeties of wheat, and eight barley genotypes which had survived up to 18 generations of mutual selection in a heterogeneous population Wes merried out by mllerd end Adems (1969). The authors concluded thet matural selection appeared topreserve genotypes which interact synergistically.
 Trifoliam repens by statimg thet the measumed characters (ie: 1 שef productiong finel dry weight, flower production)
were subject to some degree of genetic control and modified to varying extents by the environment.

Competition Experiments Dealing with Forest Trees

Studies on the effects of density on forest trees have a long history. Evert's (1973) annotated bibliography lists 388 citations covering the period from about 19E0 to 1971. The following section reviews 15 important studies which help to trace the historical development of forest competition experiments.

Eesource Allocation

Most studies on resource allocation have dealt with meture forest stands. Eorman (1.965), working with suppressed white pine ipinus rorobus) trees identified an important ecologicel phenomene. He found thet, although food and growth regulators moving to the roots failed to stimulate the cambium to produre secondary xylem, they were sufficient to produce primary root growth and possibly secondary phloem. Therefores in suppressed trees the investment of a higher and higher proportion of the decreasing energy supply is directed into tissues that require annual renewal. The net effect is to prolong the survival of the individual.

Baskerville (1965) studied resource allocation in sB to 45 year-old belsam fir stands. He looked at the distribution
of dry metter in the above-ground tree componemts: fol iages Gones, stem woody stem barty branch woody brench barba and dead branches, As with Eormen (1965), Eeskerville identified an unique adaptation of suppressed trees toprolong their aife through greater efficiency in energy production. In general, trees with Emall crowns produred more tissue per pound of foliage than trees with large crowns. Easkerville (ags) hypothesized three explamations for this phenomenom:
(1) Emall crowned trees have a low light saturation point of photosynthesis.
(2) small crowned trees heve a high proportion of shede needles in suppreseed crownes and
(B) the favourable distribution of dry metter among tree components in smell trees.

Morris (198s), dealjng with juvenile seedlings,
illustrated the competition effects of density and species mixture on a suppressed tree species. As overall density increased and species composition of the suppressed tres species decreasedy the following effects occurred"
(1) reduced growth rates.
(2) increased mortelity and
(3) an adjustment to a lower leaf weight/total weight retion

The species used in this greenhouse experiment were popalas tmemaloides (dominant species) and popaias

Stend Development

The trees in juveniley natural stands are distributed more or less at random, as a result of the random dispersel of seeds. However, this reletionship is species dependent. As the stand matures, there $i s$ a 51 ight tendency toward a more uniform spacing as competition jncreases and urisuccessful competitors are removed from the stand (Cooper 1761).

Laessle (1765), wortimg in matural stands of sand pine. subtantiated Eooper"s (196l) findings" Laessle showed that stends under ze years old were either clumped or essentielly randomly distributed. Stands older than $2 \boldsymbol{y}$ years of age showed significant to highly significant movement towerd regular Epacing.

The above reletionship was tested in plentetions of picea situbeosis by Ford (1975) \quad Three major conclusions were determined from this study"
(d) the establishment ar locel hierarches oceurred during the seedling phese, when relative growth rate (FGF) was limearly felated to plarit weight:
(2) the development of a djstinct upper canopy of arge plants occurped which were evenly distributed in Fpace and had similar maximel FGF"Es and
(a) there was stability in the upper canopys but mortality af smell plants did occur.

The reletionship of docel hierarchies, discuseed by ford (1775), wes studied in more detail by Mollerg zt al
(1976) \quad They found that monn after a Etand of woody plants becomes established the size-frequency distribution is a
negatively skewed, bell-shaped curve. This distribution subsequently becomes positively stewed and is meximum just before suppressed trees begin to die. Eventually the distribution approaches normality efter substantial thimning occurs.

Effect of Thinning

Staebler (1956) studied the effect of a controlled release on the growth of individual Douglaswir trees. He found that a thinning program which removed the chiet competitor of a selected crop tree martedly increased the growth of that tree. Additional. but much smaller increases in growth, were obtained by the removal of two to three competitors.

Effect on Dianeter by Competitorc

Stenever (1903) carried out a study to assess competition in a white spruce-trembling aspen stand. The purpose of the investigation was to determine how the diameter increment of individual white epruce trees was influenced by the proximity of surrounding trees.

Easal area summation gave the best correlation with diameter increment: as 55\% of the variance in diameter increment was accounted for by the besel aree of surrounding trees mithin a ten foot radius. An additional 21% of the

Abstract

variation was accounted for by including trees within a 15 foot radius.

Genetic Felationships

An interesting reletionship was illustrated by Salai and Mukaide (1967) with their work in standing forests of Cmyptomeria japonica. f.t was found, by partitioning the phenotypic variance or covariance into genetics environmental, and competitional componentsy that in the clonal forests both the genetic: and competitionel variances were statistically zero (ie: trees in a clone are isogenic and they do not compete with each other). In seed-propagated forests, however, competitional variance proved to be considerably large.

This relationship was also identified by Tauer (1975, who investigated the intergenotypic competition in black cottonwood grown under greenhouse conditions. However, the author did warn thats unlite annuel cropsy trees mey pequire severel years of growth before their find competitive relationships are concretely established.

One area of competition research with forest trees which has had extensive development. i.s with the building of competition models. In generely these models attempt to predict the growth of a subject tree in response to competition from neighbouring trees.

Opie (1968) presented one of the first models to predict individual tree growtlm based upon the concept of "zones of influence". The ame of influemce of a tree was defined as the total area over which the tree may at present obtain or compete for site factors: Therefore a maximal ammewoud be the area that could be occupiect by a trea when urnectricted by competition.

The model is as follows:

$$
\begin{equation*}
S=\left(E A F / A_{i}\right) \quad \therefore \quad\left(A_{i} \times i\right) \tag{2}
\end{equation*}
$$

```
where: S - biacal area den=ity (square temt per
    acre):
BAF - basal area factor:
    A; - the area Eovered by parts of "i"
        circles.
```

This model places a weighting on competitors - the smallest competitor contributes less to the estimate than does the 1 arge competitor, regardless of the distance to the subject tree.

Eelle (1971) advanced a mew hypothesis regarding
intermtree competitiom: and the hypothesis was defined as a mathematical modeln The model represented competitive interaction between individuel trees. It consisted of two besic: componemts:
(1) the influence zome of each tree (which is a function of its Eize), and
(2) the amount and nature of interactiom (which depends on the distance between and relative size of the competing tree and its competitors and also an a power of relative tree sizes).

Bel. a (1971) felt that. the model's sensitivity to parameter ehanges indicated that both components were equal ly important in describing the competjeion effect. Competition indicies: of this modeln accounted for approximately 57% of the variance in diameter increment..

In 1976, Daniels presented a model modified from Hegyi s inder (1974). The model was:

$$
\begin{equation*}
\left.C I_{i}=\quad=\quad D_{j} / D_{i}\right) \quad \operatorname{DTST} .{ }_{i j} \tag{array}
\end{equation*}
$$

where" CI; - competition index of Eubject tree "i". D_{i} - dbh of tree "i"y and DISTij - distance between tree "i" an competitor "j"

Daniels (1776) defined "n" to include all trees within a Z.Om (lo ft) radius of the subject tree. Howevera "M" was changed so that competitore were choosen hased on their siae and distames from the subject tree - meighboure having influemce wircles intersectimg the subject tres were included
as competitors.
In a recent study, weiner (1984) added an additional veriable of neighbour size (Si). This new model measures interference on a subject tree, as follows:

$$
\begin{equation*}
w=k \times s_{i} /\left(d_{i}^{2}\right) \tag{4}
\end{equation*}
$$

```
where: w - interferences
    k - the effect of a neighbour (as expressed
                as a conctant),
si - size of the ith neighbourg and
di - distance to the ith neighbour"
```

The model was tested with data from a 2 -year olds even-aged stand of finas migida. The total size of the neighbours within two metres of a subject tree was shown to clearly be the most important factor in determining the differences in individual growth retes.

Jack Fine Ontogeny

Panus bankisizna（jact：pine）is a short－liveds
smal．- tomedium coniferous forest treen In gemeral；jact：pine is foumd on burned areas where there is little severe plent competitiom and where soil is acid and has very good drainage and aeration（ドaufman 1945）．

Natural stands of jact：pine are confined largely to soils of the podzol regi on：melanized samds，podaolic sanden sandy podzols，and the gley－podzolic sands（Wilden et al 194？）． Ject pine grows most mommonly on level to gently rolling send Flains，usually of glacial outwmshn fluvialy or lacustrine origin（Eyre and LeEarron 1944）．It also occurs on estere， sand dunes，roct：outcrops，and bald rock ridges（Fieup 194o）．

In the boreal forest region the most wommon associates of jact pine are populas tremuloidesn Betula papyriferan Físem marianan and sometimes fices gheute and
 most intolerant trees in the region（Graham 1954）：In Ontarjo， 10 species have been arranged in descending order of tolerance from Abita halsameay the most toleranty to Prunds pensyluandian the least tolerant：Jack pine is ranked 13 －$]$ ese tolerant than Pinas mesinosa but more tolerant tham populas trembloides Morton and Eedell 1ヶ60）：Furthermore，it has been found that jact pine is more tolerant in the seeding stage（Betes and Foeser 192e）Young ject pine seedlinge cen exist in light as lom as an peresnt
of full sunlight, Howeverg more light is required for establishment (Shirley 1945).

In generaly jact pine is clasced as a pioneer species on burns or other exposed sandy sites. However, in the absence of fire or other catastrophes. jack pine tends to give way to other more tolerant or faster-growing species, except on the poorest, driest sites where it may long persist and form an edephic elimax (Mose 1953: Kabzems and Kirby 1956).

Trembling Aspen Ontogeny

Popalus tremaloides (trembling aspen) isa
small-to-medium; fast-growing, and generally short-lived deciduous tree. Trembling aspen grows on a great variety of soils ranging from shallow rocty soils and loamy sands to heavy clays. However: better growth and development oceur on soils that have developed from e gray glacial drift rich in 1ime (Stoeckler 194e). In addition to having an abundance of 1. ime, the best aspen soils are usuelly porous, loamy, and humic (Zehngreff 1947).

Trembling aspen grows with a large number of trees and shruts over its extensive range. In the boreal foresty trembling aspen is found most commonly with pinus banksianay ficea marianay Betula papyriferay and phrea giauca.

Ripe trembling aspen seed are not dormants and natural germinetion occurs within a dey or two atter dispereal it a
suitably moist seedbed is reached (Feust 19.E). The primary root of seedlings hes very slow growth for several daysu and during this critical period the young germinate depends upon a brush of long delicete hairs to perform the absorptive functions (Moss 1958)" These hairs are effective only if the surface soil is moist.

Trembling aspen more commonly reproduces by means of root suckers. much less commonly by root collar sprouts, and occesionally by stump sprouts (Sandberg and Schneider 195s). In general, the number of suckers produced is proportional to the degree of a cutting, with the greatest number arising after a complete clear cut (Zehngraff 1949).

Trembling aspen is rated as very intolerant. a charecteristic it retaine throughout its 1 ife (Bater 1949). It has been classed as an aggressive pioneer speries and reediny colomizes burne (Shirley 1941).

Present State of Knowledge

Fractically all of the work on the competition effects of density on forest trees has dealt with the problems of plantation spacing and modeling growth under various levels of density. Furthermore, those studies which have looked at natural stands dealt mainly with mature stands. Therefores most densities studied to date are much lower than those of juvenile seediing populations, and published results (reviewed by Evert 1971) heve limited applicetion to the design of a
study sum as the present onen

Formal studies \quad gf gecies mixes are even more rare than Ecologically oriented seedlimg density studies in forest treesn Most of the information on species interactions mas stemmed from observation in natural systems.

Jact: pine and trembling aspen are both clessed as intolerant, pioneer gpecies which readily colomiae aimilar djeturbances (is" burney clear cuts) " Due to this close associationg jt would be experted that these two species often compete with each other in neturen The present study is the first such wort to look specificelly at the competitive relationships between jacl: pine and trembling aspen. The experiment is an extension of wort: initieted by Morris (lqge), as previously cited.

METHODS AND MATERIALS

Greenhouse Study

Experimental Wesign

Abstract

A randomized complete block design was used for a greenhouse trial involving three density levels and five species mixtures in a "replecement series". A total of 15 treatment combinations were included in each of five blocts. These combinations are outlined in Table 1.

Table 1. Treatment combinations for the greenhouse study.

Treatment Gomb.	$\frac{S p}{A t}$	Comp. $F_{j} ;$	Density ($\mathrm{cm}^{2} / \mathrm{plant}$)	Gensity (plent/m ${ }^{2}$)	Eor-der rows
1	100	\%	1.00	10,000	\pm
2	75	5			
3	50	50			
4	25	75			
5	O	100			
6	100	0	3. 52	2.844	2
7	75	25			
8	50	50			
9	25	75			
10	O	100			
11	100	o	13.71	729	
12	75	25			
12	50	50			
14	25	75			
15	0	1.00			

The principal reason for the use of such high densities in the greenhouse study was to ensure that edequate competition between neighbouring plants in all treatments occurred during the 12 weet growing period. This intense competition accentuated the effects on plant development of the significant factors.

The plants located within the border rows were not inclucled in any analysis.

There are several possible ways that the plants could be arranged to produce the desired mixtures. A systematic layout, as illustrated in Figure 1 and 2 was selected in order to maintein a high level of intercpecific competition within the various mixtures.

0	0	0	0	0	0	
x	0	0	0	0	0	$x-\cdots$ species A
0	0	x	0	x	0	$0-\operatorname{secies} E$
x	0	0	0	0	0	x
0	0	0	0	0	0	

Figure 1 " Flanting design for the $75 / 25$ (25/75) mixture.

0	x	0	x	0	x	
x	0	x	0	x	0	$x-$ species A
0	x	0	x	0	x	$0-$ species B
x	0	x	0	x	0	
0	x	0	x	0	x	

Figure 2. Flanting design for the $50 / 50$ mixturen

The linear model and analysis of variance table for this experimental design are outijned in fppendix 1. The design allows for the testing of both main effects (density and species mixtures and their interactionn

Establishment of Experiment

In the spring of 190 a , seeds from 10 trembling aspen trees were collected near Thunder Eay, Ontarion A local jact: Fine seed source (northern Ontario): which included numerous open-pollinated families, was obtained in the spring of 1964 . Al. 1 the seed of each species was mixed prior to sowing

A total of 75 containers (50-20cm diameter plastic potes $25-34 c m$ diameter pots) were filled with a sphagnum peat moss - vermiculite soil misture (60\% peat / 4\%\% Vermiculite by weight) in early June, 1984. The larger pots were needed to adequately accomodate the lowest dencity level (729plants/m²).

On June 19, 1984: several seeds were sown; at each premetermined locationg in the prepared containers as dictated by treatments. These containers were then placed in mist chambers for six days. An additional period of three weets was needed to thin seeded locations and transplant healthy plants into locations where all germinants had died. There was 100% occupancy at the initiation of periodic meesurements on July 21, 1984. Containers were watered as required and given weeldy fertilizer applications of 20N-20F-20F, at 100 parts per millionn

A serious leaf and shoot blight (Fusisladium spp.) was detected on the trembling aspen in mid-July. Bi-weekly spraying of Eenlate and Manzate, alternately, (at a concentration of 1.0 g/l) controlled the bacterial disease. This situation was further complicated by the presence of rect-spider mites on the aspen. Weekly spray treatments of Felthane (at a concentration of $2.5 \mathrm{ml} / \mathrm{gal}$) controlled the effect of the mites. Although the mejority of the plants survived the onslaught of the bacterial infection and the parasitic activity, reductions in growth rate were noted during weels si\% through eight of the study.

Measurement of Experimental Fesults

Turkington (1983) illustrated that periodic growth measurements could provide additional information concerning the sequence of events in time. Various treatments may be the
same size at harvest, but they may have achieved this by guite different means. Therefore, three plants per species per treatment combination per block were randomly selected for the following periodic growth measurements:
(a) total height (em),
(b) two measurements of crown diameter (cm) - at the widest diameter and at a right angle to the first measurement, and
(c) crown hejght - from the uppermost tip of new growth to lowest living leaf (cm).

Ey combining the crown measurements! a value for crown volume (cm^{3}) was obtained using the following formulae:

$$
\begin{equation*}
v=\Pi r^{2} h \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where: } v \text { - volume (cm), } \\
& \qquad \begin{aligned}
& r^{2} \text { - the square of crown radius (cm), } \\
& n-\text { crown height (cm). } \\
&\Pi \text {-constant (} 31415920) .
\end{aligned}
\end{aligned}
$$

It should be noted that variations from the cylindrical crown volume calculated may differ from actual crown forms for both species. Therefore, the values used in any anelysis must be considered as relative values rather than absolute values.

Flants were allowed to grow for a period of 12 weets and were harvested on Sept. 10, 1984. At this time, six randomly selected plants per species were harvested from each container. Above-ground parts of the plants were placed,
individually, in paper bege and dried at loo degrees celcius for 24 hours: The survival percentege was determined for each pot at harvest. ory weights for shoot and leeves of individual. plants were determined in mil.ligramsn

Flot means were then computeds by speciesy for the

following:

(a) mean oven dry weight/plant (ing):
(b) Leaf wejght/tota] weight ratio (\%),
(c) Survivel (\%), and
(d) biomass production per unit area (g/m').

Analveis of Experimental Fezults

Felative yield idewit 1900) components were computed from biomass per unjt area and Felative Cirowding Cofitioients (dewit and van den Eergh 1965) from data on mean biomass per plant. Fielative yield velues were then presented in replacement series diagrams, as discussed by Harper (1977).

The analysis of variance was used to evaluate the effecte of density and species mixture on jacl: pine and trembling aspeng independently. The following growth parameters were tested:
(a) Eurvivel. (\%);
(b) oven dry weight (mg)!
(ㄷ) final height (cm),
(d) crown volume (cm $)$ and
(e) 1 (af wejght; total weight ratio (\%)

Simple correlations between the growth parameters analyaed are presented in Appendix 2.

Tukey"s procedure was used to determine whether statistical differences between treatment means occurred. Graphical comparisons were made to visually identify the significant variations in growth patterns effected by density and species mixture.

Field Study

Experimental Design

A split-plot design which included six replications of five density levels (main plots) and five species mixtures (sub-plots) was used in the field trial. The 25 treetment combinations are outlined in Table 2

As in the greenhouse test, the species in the mixtures were systematically located within sub-plots. A leyout for one replication (block) is illustrated in Appendix $\underset{\sim}{*}$ All species mixes within each density level were located together. This design not only aids in planting and measuring but also minimizes the border effects from the surrounding plots.

The linear model and analysis of variance table for this experimental design are outlined in Appendix 4 . The desigm allows for testing of both main effects idensity and epecies
misture) and their inter action.

Table 2. Treatment combinations for the field study.

Treet. Comb.	$\operatorname{Sp}_{\text {At }} \mathrm{F}$	$\begin{gathered} \text { Mixture } \\ \text { Fj* } \end{gathered}$	\# of plants per plot	$\begin{gathered} \text { Density } \\ \left(c^{2} y\right. \\ \text { plant } \end{gathered}$	Density ©plants/ m^{2})	\# \square^{f} border rows
1	100	0	144	4.00	2,500	4
2	75	25				
S	50	50				
4	25	75				
5	o	100				
6	100	o	144	20.25	494	4
7	75	25				
8	5	50				
9	25	75				
10	O	100				
11	100	0	121	49.00	204	3
12	75	25				
13	50	50				
14.	25	75				
15	O	100				
16	100	0	100	121.00	es	
17	75	25				
18	50	50				
19	E	75				
20	O	100				
21	100	\%	100	576.00	17	2
22	75	25				
23	50	50				
24	25	75				
25	0	100				

Establis shment of the Experiment

The seed source for this portion of the project was the same as that for the greenhouse study. On April 16. 1984, 125 trays of the Emall Spencer-Lemaire containers ("Ferdinand") were seeded to jack pine and placed in mist chambers for five days. On April 25,1984 another 125 trays were seeded to trembling aspen and placed in mist chambers for five days. The later seeding of aspen was neceseary in order to ensure that the height of all seedlings was relatively similar at time of out-planting.

Al. t trays were thinned to one plant per compartment during the first weet of May, 1984. Trays were moved into a shade-house on June 4 : 1984 (7 weeks after sowing). Two weeks later they were placed in full sunlight.

The selected test area (epprowimately $1000 \mathrm{~m}^{2}$) $\mathrm{i}=\mathrm{m}$ loceted in Thunder Eay, Ontario on Ladehead University property near the school of Forestry's nursery and adjacent to a larger test site prepared for provenance tests. A preliminary soil analysis was carried out in the fall of 1983 in order to determine the suitability of the site. The soil description is given in appendix 5. There was no epparent moisture gradient: hard pan, or other feetures which might detract from the area as a test site.

The area was sprayed with Glyphosate (Foundup) on May ae, 1984 and subsequent dead vegetetion was removed from the site. A private eontractor plowed and disked the area in mid-3une.
as for an agricultural crop. The area was further worked with a roto-tiller and rake before planting commenced on June 22, 1994.

Flanting of the si\% replications took a total of two and one-half weeks. Additional trees were used as replacements for those seedlings that were unsuccessfully transplanted. Complete weed control was accomplished, manually, during the entire growing season - a total of three sets of weedings were required.

The occurence of a leaf and shoot blight on the aspen (Fusicledium sppn) near the end of July made it necessary to spray benlate and manzate (at a concentration of $1.0 \mathrm{~g} / \mathrm{l}$), alternately, until the end of August. Weekly sanitation (removal of severely infected leaves) was carried out to recluce the spread rate of the bacterial infection.

Fopulations of woolly aphids on the aspen were erradicated by spraying malathion (at a concentration of 5 m]./gal) on July Son 1984.

Kelthane (at a concentration of $2.5 \mathrm{ml} / \mathrm{gal}$) was sprayed in mid-August to combat the presence of red-spider mites on the aspen.

The plots were watered when required (during a dry period in July and early August), using a Wajax fire pump and a sprinkler system. The seedlings were given an initial fertilizer treatment, after planting, at 200 parts fer million of 20N-20f-20K. On July Bo, 1984, the plots were fertilized with amonium nitrate (at a rate of 200 kg/hay and super
phosphate (at a rate of 10 tag/ha).

Measurement of Experimental Fiesulte

Abstract

Four plants per species per treatment eombination per bloct: were randomly selected, excluding border plantsy for periodje growth measurements: The first measurement was taken five weet:s after planting and continued for eight and onewalf weet: (5ept. 19,1984). Measurments recorded included: (a) total height (cm): (b) two measurements of crown diameter - at the widest diameter and at a right angle to the first measurement (cm), and (c) crown height - from the uppermost tip of new growth to the lowest living leaf (c:m).

Crown volume data were then colculated, as in the greenhouse study (see function [5]).

Anelysjs of Experimentel Fesults

An analysis of variance was used to evaluate effects of density and species mixture on jack pine and trembling aspen, independently The following first season growth parameters Were tested:
(a) totel height (cm), and
(b) arown volume (am $)$.

Since the field triel will be continued for three to four growing eeasons before hervesting, no biomass data were

```
available for analysis
    Tukey"s procedure wes used to determine whether
statistical differences between treatment means octurred.
Graphical comparisons were made to visually identify the
significant variations in growth patterns effected by density
and species mixture.
```


RESULTS

Greenhouse study

Height and erown volume data were taben periodically
during the 12 weet: experiment. These data have been summarized in Appendices o and 7 ? respectively The standard deviations of the means for each treatment have been tabulated and are presented in these appendices.

At the time of harvests survivel percentage was determined and is presented in Table $\underset{\sim}{\text { an }}$

Table $\underset{\text { Ti Arithmetic mean of survival percentage by dencity and }}{ }$ species mixture for greenhouse study.

It Ean be seen that jact pine Eurvival was only minimelly affected by increased density iTable 4). Only at the highest

there any drop in survival.
The survival of trembling aspeng however, was found to be greatly affected by density and species mixture (Table 4). The lowest survival occurred in the looAt/ofj mixture. The survival percentage increased as the aspen percentage decreased, peafing at the 25At/75F'j mixture. Furthermore, a pronounced increase in survival occurred at the lowest density (729 plants $/ \mathrm{m}^{2}$). Figure 3 gives additional information on the interacting effect density and species mixture had on tremblimg aspen survival.

Table 4. Analysis of variance for survival percent after an arc sine transformation.
trembling aspen:

Source of Varjation	Degrees of Freedom	Sum of Squares	Mean Square	F
$\begin{gathered} \text { Block } \\ \delta \end{gathered}$	4	4.49.34		
	0			
Density		9257.10^{-}	4613.55	$26.91 * *$
Eloct-Density	8	1372.79	171.60	
Sp. Comp.	3	4271.32	1423.77	17.72**
Elock-Sp.Comp.	. 12	964.13	80. 34	
Density-Sp.Comp.	mp. 6	2885.13	480.52	2.5\%*
E]ock-DensitySp. Comp.	- 24	3904.15	162.67	
Exp. Error	0			

jack pine:

Table S. Fesults of a comparison of density treatments for average survival percent using Tukey"s procedure.

Species	Density (plants per m^{2})	Average Survival. Fercent	Means contrasted at:	
			$\mathrm{p}=.05$	$\mathrm{P}=.01$
		ロ. \%		
Aspen	10,000	81.69	a	a
	2,844	90.96	a	a
	729	99.58	b	b
Jact pine	10,000	98.97	=	a
	2,844	99.89	a	a
	729	100.00	\square	a

* - Means spanned by the same letter (anb) are not significantly different at the specified confidence level.

Table on Fesults of a comparison of species mixture treatments for average survival percent using Tukey"s procedure.

species	Species Composition	Average Survival. Fercent	Weans contrasted at:		
			$p=.05$	$p=$	${ }^{.01}$
		.			
Aspen	100	82.38	a	a	
	75	92.08	b	a	3 b
	50	95.31	b: c		b
	25	97.93	c		\square

FACTOR A (DENSITY)
10,000
PLANTS $/ M^{2}$
2,844
PLANTS $/ M^{2}$
729
PLANTS/M ${ }^{2}$

Figure $\underset{\sim}{ }$ \& graphicel representetion of the interaction between density and species mixture on trembling aspen survivel in greenhouse study.

Figure 4 includes three graphs which illustrate variation in height growth due to density changes and species mixtures. The data used for the construction of these graphs are found in Appendix $6:$

The most apparent effect illustrated in Figure 4 is the height suppression caused by increasing density. This effect occurred in both trembling aspen and jack fine. and was found to be highly significant (Table 7).

Figure 5 includes three graphs which illustrate variation in corown volume accumulationg as related to changes in density and species mixtures. The deta used for the construction of these graphs are found in Appendix 7.

As with final height. final. crown volume was also highly significantly affected by density changes (Table 9, 10). Figure 6 provides an additional lool at the interacting effect of density and species mixture on final crown volume.

Figure 4e. Height growth comparisons over time at a density of $10,000 \mathrm{plants} / \mathrm{m}^{2}$ for greenhouse study.

Figure 4b. Height growth comparisons over time at a density of 2, e44 plants $/ m^{2}$ for greenhouse study.

LEGEND		
At :	$100 / 0$	-
	$75 / 25$	$-\infty$
	$50 / 50$	$-\infty$
	$25 / 75$	$-\infty$
	$75 / 25$	$-0-$
	$50 / 50$	$-\cdots-$
	$25 / 75$	$-\cdots-$
	$0 / 100$	$-\cdots-$

Figure 4c. Height growth comparisons over time at a density of 729 plante $/ \mathrm{m}^{2}$ for greenhouse study.

Table 7. Analysis of variance for total height at harvest in greenhouse study.

Trembling aspen:

jack pine:

Source of	Degrees of	Sum of	Mean	F
Variation	Freedom	Squares	Square	

Elock	4	0.95		
-		- -	- --	$11.82 * *$
Density	2	25.40	11.70	
Eloct-Density	8	7.89	0.79	<1
Sp.Comp.	3	4.88	1.6.	
Elock-Sp.Comp.	12	25.58	2.13	1.87
Density-SpaComp.	6	15.70	2.62	
Elock-DensitySp. Comp.	24	35.64	1.40	
Exp. Error	0			

Table 8 summarizes Tutey"s procedure, which was used to determine whether the mean heights were statistically effected by the density treatments.

Table \quad. Fesults of a comparison of density treatments for average final height using Tutey"s procedure.

Species	Density (plants per m^{2})	Average Finel Height	* Means Contrasted at:*		
			$p=.05$	$\mathrm{P}=$. 01
		... Cm .			
Aspen	10,000	6.84	a	a	
	2,844	14.84	a	a	
	727	35. 56	b	\square	
Jack Fine	10,000	7.81	a	a	,
	2,844	7.90	a	a	
	729	9.18	\square	b	

Figure Gan Crown volume accumulation over time at a density of $10,000 \mathrm{plants} / \mathrm{m}^{3}$ for greenhouse study.

Figure sb. Crown volume accumulation over time at a deneity of 2, 844 plants $/ \mathrm{m}^{3}$ for greenhouse study.

Figure se. Crown volume accumulation over time at a density of 729 plants $/ \mathrm{m}^{3}$ for greenhouse stury.

Table 9 " Anelysis of variance for final crown volume in greenhouse study.
trembling aspen:

jack pine:

Table 10. Fesults of a comparison of density treatments for average final crown volume using Tuley"

[^0]

Figure En A graphicel representation of the interaction between $^{\text {an }}$ dencity and species mixture on ject pine final wrown volume in greenhouse study.

Average plant weights for the corresponding treatments Mave been summarized in Table 11. These values were obtained from destructively sampling six plants for each species for all treatment combinations and all replications.

Table 12 presents the analysis of variance for individual plent biomass and Table 13 summarizes Tukey's procedure which was used to contrast the effects of the various treatments. Figure 7 gives an illustrated look at the interacting effect. of density and species mixture on jack pine biomass.

Table 11. Arithmetic mean and coefficients of variation for total biomass by species mixture and density for greenhouse study.

$\begin{gathered} \text { Density } \\ \text { (plants } \\ \text { per } \\ \mathrm{m}^{2} \text {) } \end{gathered}$	100% Aspen Jact: Fine	Spec $75 / 25$ Aspen Jack: Fine		$\text { ies Composition } 2$				\%/100	$\begin{aligned} & 90 \\ & \text { Jack: } \\ & \text { Fine } \end{aligned}$
	mg								
10,000	47	45	50	15	40	16	39		57
	(1.36)*	(151)	(36)	(120)	(53)	(119)	(67)		(60)
2,644	301.	203	67	265	61	271	61		91
	(145)	(127)	(36)	(146)	(48)	(75)	(43)		(56)
729	726	927	86	1188	92	1450	130		225
	(91) -	(95)	(29)	(82)	(39)	(115)	(35)	-	(32)

Table 2 an Analysis of variance for individual plant biomass at harvest.
trembling aspen:

jact: pine"

Source of	Degreese of	Sum of	Mean	Freedom
Variation	Squares	Squate		

Table 13. Fesults of a comparison of density treatments for average plant biomess using Tutey"s procedure.

	Density (plants Species	Average Plart
m^{2})	Biomass	

.... mg .".".

Aspen	10,000	30.83	a	a
	2,844	257.78	a	a
	729	1049.30	b	b
Jack pine	10,000		40.23	a
	2,844	69.86	b	a
	729	132.84	c	b

[^1]Table 14. Fesults of a comparison of species composition treatments for average plant biomass using Tukey"s procedure.

Species	Species Composition	Average F'] ant: Ei omass	* Means contrasted at:a	
			$p=.05$	$p=.01$

Jact: pine	50	64.21	a
	25	67.3\%	a
	75	75.11	a
	100	117.25	b

[^2]

2, 844
PLANTS/M ${ }^{2}$

729
PLANTS/M ${ }^{2}$

Figure 7 . A graphicel representation of the interection between density and species mixture on jack pine biomass for greenhouse study.

Table 15 summarizes the calculated leef weight/total weight retios, as percentages.

Table 15. Arithmetic mean and coefficients of variation for leaf weight/total weight ratios by density and species mixture for greenhouse study.

```Density plants per m}\mp@subsup{}{}{2```	100/0	Species Composition						$0 / 100$	
	Aspen Jact: Fine	Aspen	Jack:   Fine	Aspen	Jack:   Fine	Aspen	Jact:   Fine	Asper	$\begin{aligned} & \text { Jack } \\ & \text { Fine } \end{aligned}$
		" ${ }^{\text {" }}$	...	\%	"				" ${ }^{\text {" }}$
10,000	75	$7 \pm$	78	74	78	70	78		79
	(12)*	(8)	(6)	(9)	(4)	(9)	(5)		(5)
2,844	70	72	78	70	77	71.	78		78
	(10)	(13)	(4)	(11)	(4)	(9)	(5)		(4)
729	69	69	82	68	82	71	E2		81
	(6) --	(8)	(4)	(7)	(5)	(7)	(4)	-	(4)

Table lo. Analysis of variance for leaf weightrotal weight ratios after an arc sine transformation.
trembling aspen:

Gource of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F
Bloct	4	16303		
$\delta$	0			
- - - - - - - - - - - -				
Density	2	94.20	47.10	4.50*
Block-Density	8	83.79	10.47	
Sp.comp.	3	1.59	$9_{5} 5$	$<1$
Elock-Sp.comp.	. 12	67.46	5.62	
Elock-Density-				
Exp. Error	O			
TOTAL	59	696.11		

jact pine:

Source of	Degrees of	Sum of	Mean	F
Variation	Freedom	Squares	Square	



Table 17 . Fesults of a comparison of density treatinents for averege leaf weight/total weight ratios using Tukey"s procedure.

Species	```Densit.y plants per m2)```	Leaf	Average wt. Total wt. Fatio	Means contrasted at:	
				$p=.05$	$p=.01$
		.	. \% . - . - . .		
Aspen	10,000		73.09	a	a
	2,844		70.62	a, b	a
	729		69.40	$b$	a
Jack pine	10,000		77.80	$a$	e
	2,844		78. 11	a	e
	729		81.85	$b$	$b$

*     - Means spanned by the same letter (a,b) are not significantly different at the sperified confidence level.

The values from Table 3 and Table 11 were incorporated in the following equation to calculate mean biomass yield for each treatment combination:

$$
Y=W_{t} \times D_{i} \times S_{u} \times \bar{C}
$$

$$
\begin{aligned}
& \text { where: } y \text { - yield (g/m), } \\
& \qquad \begin{aligned}
W_{f}- & \text { average individual plant weight for } \\
& \text { a particular treatment ( } g \text { ), } \\
D_{i}- & \left.i n i t i a l \text { density (plants } / m^{2}\right), \\
S_{u}- & \text { survival (\%), } \\
C & - \text { composition percentage in mixture. }
\end{aligned}
\end{aligned}
$$

These data have been summarized in Table 18 . Using the
values in Table le, relative yield components (Table 17) were determined, as follows:

[.7]
where" $Y_{r}$ - relative yield

$$
\begin{aligned}
& Y_{m}-\text { yield in mixture }\left(g / m^{2}\right) \\
& \text { of one species } \\
& Y_{t}-\text { yield in pures stand }\left(g / m^{2}\right) \\
& \text { of same species }
\end{aligned}
$$

Table 18. Arithmetic mean biomass yield and total yield fin paranthesess) for greenhouse study.

```Density <plants per m}\mp@subsup{}{}{2```	Species Composition				
	100/0	75/25	50/50	25/75	$0 / 100$
	Aspen Jack Fine	Aspen Jack Fine	Aspen Jact: Fine	Aspen Jack Fine	Aspen Jack Fine
	$9 / m^{2}$				
10,000	$387-$	$274(391)^{117}$	67197	$36 \quad 287$	$-\quad 364$
	$(857$		(206)	(223)	(364)
2,844	$\begin{gathered} 628 \\ (628) \end{gathered}$	368 48	$\mathrm{SF}_{(424)} 85$	$19 \% 128$	- 259
		(416)		(321)	(259)
729	${ }_{(508)}$	16	42534	71	- 164
		(510)	(459)	(355)	(164)

* - totel yield obtained by combining both species.

Table 19. Felative yield for greenhouse study.

```Density (plants per m}\mp@subsup{}{}{2```	Species Composition								
	100\%	75/25		$50 / 50$		25175		$0 / 1.00$	
	Aspen Jact: Fine	Aspen	Jact:   Fine	Aspen	Jaに!   Fine	Aspen	Jack   Fine	Aspen	Jack   Fine
10,000	1.00	0.81	0.32	0.20	0.55	0.11	0.79		1.00
2,844	1.00	0.59	0.19	0.54	O. 5	0.31	0.49		1.00
729	1.00 -	0.97	0.10	O. 84	0.21	0.52	0.43	-	1.00

Figure 8 is a series of three replacement series diagrams which express relative yiela. The significance of relative yield components in a competition experiment have already been discussed. Data for the construction of the relative yield diagrams were obtained from Table 19.




Figure $\quad$. Feplacement Eeries diagrams expressing relative yield for three densities in greemhouse stury

```
A species that is productive in a pure stand may be an ineffective competitor. A formal measure of the aggreseiveness of one species towards anothery the "Felstive Crowding Coefficient": can be derived from the results of a replacement series experiment (dewit and van den Eergh 1965):
```

$$
\begin{aligned}
& \operatorname{RCC}=\frac{Y M_{i} / Y M_{j}}{Y F_{i} / Y F_{j}} \\
& \text { [8] } \\
& \text { Where: FCC - relative crowding coefficient } \\
& \text { of trembling aspen with jacl: pine } \\
& \begin{aligned}
Y M_{i}- & \text { mean yield per plant of trembling } \\
& \text { aspen in mixture }
\end{aligned} \\
& \begin{aligned}
& Y M \text { - mean vield per plant of jack pine } \\
& \text { in mixture }
\end{aligned} \\
& Y F_{i} \text { - mean yield per plant of trembling } \\
& \text { aspen in pure stand } \\
& \begin{array}{c}
\text { YFi - mean yield per plant of jack pine } \\
\text { in pure stand }
\end{array} \\
& \text { Felative Crowding Coefficiente of trembling aspen with } \\
& \text { jack pine can be found in Table 20. }
\end{aligned}
$$

Table 20. Felative Crowding Coefficients of trembling aspen with jack pine for greenhouse study.

\begin{tabular}{|c|c|c|c|}
\hline ```
Deneity
Plants
per
m}\mp@subsup{}{}{2

``` & 75
Aspen

Finek
Jack & ```
Species Composition
 50 / 50
 Aspen Jacl:
 Fine
``` & \(25 / 75\)
Aspen \begin{tabular}{c} 
Jack \\
Fine
\end{tabular} \\
\hline 10,000 & 0.71 & 0.30 & 0.32 \\
\hline 2,844 & 0.92 & 1.31 & 1.34 \\
\hline 729 & . 3.4 & 4.00 & E. 46 \\
\hline
\end{tabular}

\section*{Field Study}

Height and crown volume date were taken three weets after all blocts had been planted and continued until all shoot elongation had ceased (approximately nime additional weeks). These data have been summarized in Appendices 8 and 9 , respectively, The standard deviations of the means for each treatment have been tabulated and are also presented in these appendices.

Figure 9 includes five graphs which illustrate variation in height growth due to density changes and species mixtures. The data used for the construction of these graphs are found in Appendi: \(E_{n}\)

*July 27/84
** Sept 19/84

Figure qa. Height growth comparisons over time at a density of 2,500 plants \(/ \mathrm{m}^{2}\) for field study.


Figure 9b. Height growth comparisons over time at a density of 494 plants \(/ \mathrm{m}^{2}\) for field study.


Figure 9 c. Height growth comparisons over time at a density of 204 plants \(/ m^{2}\) for field study.


Figure gd. Height growth comparisons over time at a density of BS plants \(/ m^{2}\) for field study.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{LEGEND} \\
\hline \multirow[t]{4}{*}{At：} & 180／0 & \\
\hline & 75／25 & －0－ \\
\hline & 50／58 & － \\
\hline & 25／75 & \(\cdots\) \\
\hline \multirow[t]{4}{*}{\(\mathrm{P}_{\mathrm{j}}\) ：} & 75／25 & －－－ \\
\hline & 50／50 & ーメー \\
\hline & 25／75 & －＊－ \\
\hline & 0／100 & －－－ \\
\hline
\end{tabular}

Figure ge．Height growth comparisons over time at a density of 17 plants \(/ m^{2}\) for field study．

Table 21. Analysis of variance of final height at the end of the first growing season for field study.
trembling aspen"

jack pine:


Table 21 presents the anelysis of variance associated with the height growth for both species. It can be seen that
density has little effect on the height growth of trembling aspen. However, jack pine height growth was highly significantly affected by density. Figure 10 illustrates the interacting effect density and species mixture had on jack: pine height.


Figure 1o. A graphicel representation of the interaction between density and species mixture on jack pine meight for field study.

Table 22. Fesults of a comparison of density treatments for average final height using Tukey"s procedure.

* - Means spanned by the same letter (a,b) are not significantly different at the sperified confidence level.

Figure 11 includes five graphs which illustrate varietion in croun volume accumulation due to density changes and species mixtures. The deta used for the construction of these
graphe are found in Appendis 8 .

*July 27/84
** Aug. 21/84
Figure lla, Crown volume accumulation over time at a density of 2.500 plante/m \({ }^{3}\) for field Etudy.


Figure lit. Crown volume accumulation over time at a density of 494 plents \(/ \mathrm{m}^{3}\) for field study.


Figure 11c. Crown volume accumulation over time at a density of 204 plants \(/ \mathrm{m}^{3}\) for field study.


Figure Itdn Crom volume accumulation over time at a density of日S plants/m for field study.

\begin{tabular}{|rr|}
\hline \multicolumn{2}{|c|}{ LEGEND } \\
\hline At : \(100 / 0\) & - \\
\(75 / 25\) & \(-\infty\) \\
\(50 / 50\) & - \\
\(25 / 75\) & - \\
Pj : \(75 / 25\) & \(-\infty-\) \\
\(50 / 50\) & \(- \pm-\) \\
\(25 / 75\) & \(-\infty-\) \\
\(0 / 100\) & -- \\
\hline
\end{tabular}

Figure 1le. Crown volume accumulation over time at a density of 17 plente/m \({ }^{3}\) for field Etudy.

Teble 24. Analysis of variance of final crown volume at the end of the first growing season for field study.
trembling aspen:

jack pine:


Table 2s. Fesults of a comparison of deneity treatments for average final crown volume using Tukey"s procedure.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Speriew} & Density (plantㄷ & \multirow[t]{3}{*}{\begin{tabular}{l}
Average \\
Final \\
Crown \\
Volume
\end{tabular}} & \multicolumn{3}{|l|}{*Veans contrasted at:} \\
\hline & per & & & & , \\
\hline & \(\mathrm{m}^{2}\) ) & & \(p=.05\) & \(p=\) & .01 \\
\hline
\end{tabular}

* - Means spanned by the same letter (a,b) are not significantly different at the specified confidence level.

Table 26. Fesults of a comparison of speries mi*ture treatments for average final crown volume using Tukey"s procedure.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[t]{2}{*}{Species Composition} & \multirow[t]{2}{*}{\begin{tabular}{l}
Average \\
Final \\
Crown \\
Volume
\end{tabular}} & \multicolumn{2}{|l|}{Means contrasted at:} \\
\hline & & & \(F=.05\) & \(\mathrm{P}=.01\) \\
\hline & ... \% ... & . \(\mathrm{cm}^{3}\) & & \\
\hline \multirow[t]{4}{*}{Aspen} & 75 & 5294 & a & a \\
\hline & 100 & 5832 & \(a, b\) & a \\
\hline & 50 & 7473 & a. b & a \\
\hline & 25 & 8171 & b & a \\
\hline
\end{tabular}
* -- Weans spanned by the same letter a, a) are nat significantly different at the specified confidence level.

\section*{DISCUSSION}

To dater only a limited number of studies have addressed the competitive nature of jack pine or trembling aspen. The majority of studies on jack pine competition deal with plantation spacings and the effects of various thinning regimes Schantz-Hansen 1931, Eyre and LeEarron 1944; Guilley and Westing 1956, and Horton and Eedell 1960). The bulk of wort done on trembling aspen has come from the Leve statesn These studies, againg have concentreted on silvicultural techniques used to increase production of natural stands Sittredge and Gervorkiantz 1929. Shirley 1941, Zehngraff 1947, and Gervorkiantz 1956): Therefores it is significant to note at this time that the present study is the first such study to look specifically et the competitive nature of both jack pine and trembling aspen seedlings during the initial stages of growth and development.

The greenhouse portion of the present study serves as the major basis for this discussion. The reason for this is that it has been completed. The use of biomass data \(i s\) essential in identifying "Eey" competitive effects and relationships. Furthermore, the relative growth rates of the seedlings in the greenhouse study were substantially higher than those of the field study, thereby amplifying the effecte of competition in a reletively short period of timen

The slower growth rates coupled with much lower
densities, in the field study, resulted in minimal significent effects after the first year of growth. Destructive sampling will not be done until the third or fourth growing semson. Although concrete conclusions moncerning competitive effects between trembling aspen amd jack pine, jn the field, eanmot be made at this time, various trends will be discusseci.

It has beem noted (Appendix 2 ) that relatively high correlations between the following measured growth parameters in the greenhouse study existed:
(1) total height verstis crown volume (trembling aspen)?
(2) total height vereus crown volume (jarb pine) and
(3) oven dry weight versus leaf whofotel whe retio (jack pine).

The assumption of independence betofeen these variables im the univariate approach to the amalysisused in this study can be argued as incorrect: Therefore, some readers may wish to amalye the dete using multivariate techmiques.

\section*{Greenhouse Study}

Hiererchy of Fesource Exploitetjon

White and Harper (1970) stated thet within any community a "hjerarchy of resource exploitation" is established, which results in differential growth rates among its members. Fl. wnts at the bottom of this hierarchy are referred to as "suppressed": and those at the top are chassed as "dominant"

In mixtures of species, resources are usually unequally divided between species so that one of them is over-represented among the dominants (Bezzaz and Harper 1976).

In the present study, the existance of such a hierarchy was established between trembling aspen and jack pine. However the species which took on the dominant role was dependent on density. At the highest density level (10,000 plants \(\left./ \mathrm{m}^{2}\right)_{\mathrm{g}}\) jack pine assumed the dominant role. Once the density was lowered, trembling aspen gained dominance over the pine seedlinge in the mistures.

Table 10 illustrates this changing role of dominancen With density at the highest level, the jact pine seedings were able to produce slightly larger crowns than those for trembling aspen (approximately \(130 \mathrm{~cm}^{3} / \mathrm{plant}\) ). Once the density was lowered, aspen crowns increased exponentially: whereas only minimal increases occurred for the jack pine crowns, mainly in the pure stands of jacts pine. In the lower densities, the aspen competed mainly with other aspen seedlings for growing speace. Therefore only aspen in the 2SAt/75Fj mixture were able to aquire a large crown volume at this density level (729 plants/m²).

Although the effect of species mixture did not show up as significant in the analysis of variance (Table 7) some important trends can be identified from Figure \(4^{4}\) In the highest density, the jact pine actually toot a dominant role in mixture and probably Eaused the reduced aspen height growth in ell the mixes. Howeverg at the lowest density, the
availability of initial growing space allowed the aspen to overtop the jack pine. This espen dominance redured the growth of the pine, relative to the height of the pine seedlings in a pure stand of equal density.

The effect of developing dominance in growth was cumulative, since once an advantage was gained it progressively increased. This progressive increase was i11 ustrated in Figure 4 and 5 , which show increased separation between the two species as time progressed.

It must be noted that density had a pronounced effect on individual plant biomess. for both species. At the highest density: individual jack pine seedlings had greater dry weights than did the trembling aspen (Table 13). Once the density was lowered, the aspen seedlings were able to suppress the jeck pine and produced increasingly greater individual. biomassu Gnly in pure stande did the jact pine seedinge attain appreciable biomass (Table 14). Furthermores individual espen seedlings produced less biomass as the percentage of aspen decreased at the highest density (Table 11). The reverse was true at the lowest density. At this density, aspen seedlings produced greater biomass as the percentage of aspen decreased (Table 11). This relationship demonstrates a shift in the main competitor. At the highest density, aspen is mainly competing with jack pine seedlings. However: at the lower density aspen is primarily competing with other aspen seedlings.
in Table 19 (Felative Yield). At the highest density. aspen's relative yield dropped off significantly from 1.00 at \(100 \% A t / 0 \% F j\) to 0.11 at 2S\%At/75\%Fj as the jack pine percentage increased. Jact pine yield dropped off more Elowly, ranging from 1. 00 at \(0 \% A t / 100 \% \mathrm{Fj}\) to 0.32 at \(75 \% A t / 25 \% \mathrm{Fj}\) as its percentage declined toward zero. Once the density was lowered, the aspen took on a more dominant role. This feature is apparent as relative yield curves for aspen become convex (Figure 8). The reason for this change in relative yield trend is that a shift in dominance occurred. At the highest density, jack pine was the dominant species at the lower densities aspen assumed this dominant role.

\section*{Explanation for Shifting Dominance Fattern}

The sbove mentioned shift in aggressiveness of the two species can be better illustrated using relative crobding coefficients.

Table eo illustrates the dramatic change in relative crowding coefficients for aspen as density was changed. The value below 1 "oo demonstrates that jact pine was dominant at 10,000 plants/m whereas at \(729 \mathrm{plants} / \mathrm{m}^{2}\) the value was greater than \(\mathbf{Z}\).00, demonstrating a reversel of dominance. A value of 1.00 is considered to be a neutral position. Harper (1961) also determined that there was a shift of competitive ability with ehanging deneityn

In general. trembling aspen has the ability to accumulate
biomass at a far superior rate than jack pine. Therefores the following question must be reised: why does jack pine remain dominant at the highest density?

The above question can be answered by looking at the germination phase of the experiment. Under greenhouse conditionsy trembling aspen germinates one to two days after dissemination (Faust 1936). Jact: pines given the same greenhouse conditions, takes up to two weeks to germinate (Fraser 1959). However the young germinants quickly stand erect and are approximately Bomm tall. Initial growth of the aspen germinants is relatively slow, and they are only 5 10 mm tell after the jack pine have germinated. In the highest density, the jack pine formed a closed canopy immediately after germination. This crown closure severely hampered the development of the overtopped aspen seedlings. Howevers it must be noted that sufficient densities to form this closed canopy almost never occur in mature.

At the lower densities, complete canopy closure by the jact pine did not occury allowing the aspen to develop at a much faster rate. The aspen quickly overtopped the elower developing pine seedings and became the dominant speciesu

\section*{Allocation of fiesources}

The way an organism allocates the quantity of imited amounts of resources to growth, maintenance, and reproduction, as well as the timing of these allocations will affect jts
fitness (Snell and Eurch 1975): Harper (1977) points out that a density-stressed individual is not simply a miniature version of its vigorous low-density counterpart. ouring the grouth of plants under density stress the allocation of assimilates between different structures becomes proportionately altered. Ggden (1970) described suppressed plante as long: slender and etiolated with a relatively increased proportion of mon-photosynthetic to photosynthetie tissue (ien stem to leaf) " Harper (1977) explained that many of the weaker individuals in a population extend their foliage to the top of the canopy but do this by means of long: spindly stems and a proportiontely greater respiratory burden. Their net assimilation rate may therefore be enpected to be lower than that of the dominant plants in the canopy (white and Harper 1970)"

The above-mentioned reletionships have come from studies dealing with pume stands of a given speciesu In mixed standsy the growth patterns of the species in question may very greatly from eamh other. This variation in growth may cause a shift in the dominant competitor and thereby alter the expected allocation of resources for a given species. This feature was in lustrated in the present: study as trembling appen Eemdings adjusted their biomass allociation with respect to the dominant competitor. At the highest density (ioyoo plants/m \({ }^{2}\), jact pine seedlings dominated the various treatments. As a resulty trembling aspen seedlings expancged their moowns laterelly rather than vertieallyo Thie growth
pattern resulted in an increase in their percentage biomass allocated to leaf weight. At the lowest density 1729 plants/m² ), aspen was mainly competing with other aspen seedlings.

Therefore, in order to overtop neighbouring aspeng individual aspen seedlings allocated a larger percentage of biomass into stem weight (ie: lower LW/TW ratio). This adjustment in resource aliocation \(i s\) illustrated in Table 15 and Teble 17.

A reverse response occurred in jack pine. As the dominant competitor in the highest density, the jack pine seedlings were forced to compete with other pines. This intraspecific competition resulted in a shift to a greater percentage of biomass being allocated to stem weight. At the lowest density, jack pine took on the role of an understory species. Thereforeg the pine seedlings increased the percentage of leaf weight in order to capture as much light as possible (Table 15 and Table 17).

Mortality

Individuals can Euffer greater competition from Eonsperifics than from plants of the other species. In such a situation the total competitive effects suffered by a population \(i s\) relatively small when a species is the minority component in a mixture. However: the overall competitive effects increase directly with a corresponding increase in frequency of the species in the mixture. This phenomenon is known as "frequency-dependent interference" Harper and

FeNaughton 1962).
The best example of this phenomenong from the present study, is found in Table \(\overline{3}\) (trembling aspen survival). It can be seen that the survival of aspen is not only reduced by higher density, but also by species composition (Table 4). As the percentage of aspen in the mixture increased, the survival. decreased significantly The lowest survival occurred in the 100At/ofj mixture. Increased density accentuated this relationship. A contributor to this mortality of aspen, other than direct competitions was the presence of a leaf and shoot blight (fusicladium spp.) \({ }^{\text {b }}\) This bacterial disease rapidly spreads as contact with other aspen seedlings increasesu Thereforeg at the highest density ( \(10,000 \mathrm{plants} / \mathrm{m}^{2}\) ) and highest aspen composition (100At/oF'j) the blight was most severen Although the blight may not have directly caused the death of the espen seedlings, reduced vigour led to increased competitive effects and eventually mortality of several infected seedlings.

The jact pine seedlings were not affected by any pathogens. In general, jack pine survival was relatively stable (Table 5). Only at the highest density (10,000 plants/m \({ }^{2}\) and in the lowest jack pine percent composition (75At/25Fj) was there any drop in survival.

\section*{Yield Components}

Whittingtom and 0 Erien (1968) noted that in mixtures the intraspecific competition of the better competitor wes 1essened and it grew more rapidly than in pure stands. Therefore, the mixture should out-yield the highest yielding of the comparative pure plots.

In the present studys although an increase in individual plant weight of the main competitor can be noted (Table 1 ), an increase in totel production within the mixtures does mot oomur. The replacement Eeries diagrams of relative yield (Figure E) clearly illustrate that the total relative yield curve has a concave appearance. The shape demonstrates an antegonistic relationship between the two species. As the density is lowered, this relationship became less pronounced the curve tool: on a more linear shape.

It should be noted that this study dealt with forest tree species, which have 1 omg 1 ife mpans. It is therefore possible that a change in shape of the relative yield curves could ocour during different phases of these species" ontogenyn

\section*{Field Study}

In general. aspen height growth wes not significantly affected by density It is felt that the higher densities as well as the wider renge of densities used in the greentouse

field study (2, 5oo plants/m to \(17 \mathrm{plants} / \mathrm{m}^{2}\) ) caused immediate crown closure. Therefore immediates intense competition among neighbouring plants accentuated the effect of density on height growth. In the field study, plants were "free-tomorou" for a greater proportion of the growing season. Once crown closure is achieved and the competition anong neighbouring plants intensifies, density should become a significant factor influencing height growth.

It should be noted, however: that species mixture did have a pronounced affect on height growth (Figure 9 and Tables 21 \& 23). As the percentage of aspen decreased, height growth tended to increase. A similar relationship was evidenced in crown development for the aspen transplante iFigure 11 and Tables 24826 . Therefore, larger crowns were a result as the percentage of aspen decreased in the mixtures.

Furthermore, density affected the acoumulation of orown volume (Tables 24 \& 25). At the highest density (z. \(500 \mathrm{plants} / \mathrm{m}^{2}\) ), crown closure occurred at time of planting thereby drestically reducing the ability of the aspen to expand their crowns. Crown expansion increased exponentially as the density was lowered to \(17 \mathrm{plants} / \mathrm{m}^{2}\) and the aspen fully occuppied the site.

A reverse response, to what was anticipated, occurred in the growth of jack pine. As density decreased, jack pime height growth and crown volume accumulation also decreased Cheight - Figure 9 and Tables 21822 crown volume - Figure 11 and Tables 24825 . The reason for this reversed response
may heve been related to the influence of the environment: The pine transplants had relatively weat stems with lush needle development. At the highest densities, a form of "mutuldism" occurred as stems were supported by the tightly-packed seedlings. This relationship reduced the determental effects of wind. At the lower densities. the pine transplants were greatly affected by the wind anci accompanying higher tranepiration rates, causing early bud set and reduced overall growth.

It \(j s\) felt that once the pine transplants become Established and competition at the higher density levels increases, the reversed growth response to density will be nullified. Similar responses to those found in the greenhouse study should occur at the highest density and move through to the lowest density in a systematic fashion.

Milthorpe (1961) considered that any deficiency of soil water or nutrients would cause the accelerated suppression of the subordinate. Similar-ly, Trenbeth and Harper (lf7\%) suggested that the development of a slight deficiency of soil factors where competition for light was already occurring caused an approximately 4 -fold increase in the depression shown by a series of subordinates. At present; the deta from the field study does not support the above influence of the environment. However, the environment may begin to play a more important role in increasing the competitive effects between the two species during the next few growing seasons.

\section*{Ecological Significance}

Yariation Within Measured Farameters

Eefore the ecological significance of the results can be addressed, the problem of wide variations between individuels within a treatment must be considered. This problem of wide veriation within treatments tends to be a common problem with competition experiments. Mead (1960), in his attempte to develop a competition model which effectively estimates the magnitude of competition effects between neighbours steted that "although the results obtained are of considerable interesta the variation within treatment means is extremely high." A series of Tables (Appendix \(\theta_{9} 7,8,8\) ) have included the standerd deviations aseociated with height grouth and crown volume accumulation for both the greenhouse and field studies Tables 11 v 15 have included the coefficients of variation for total biomass and leat wt. fotel wt. ratios, respectively" Important Eoncerns over the magnitude of the variances are noted belown
(1) Variation in the greenhouse study was greater than that found for the field study (compare Appendices 687 with Appendices 8 \% 9).
(2) Variation in plant biomass was greater in the pure stande than in the mixtures for greenhouse study (Table 11).
( 3 ) Greater variation occurred in trembling aspen grouth than occurred in jact pine SGreenhouse
 Etudy - Appendices 8 ? 9 )
(4) Variation in crown volume was greater than any other measured parameter, especially in the greenhouse study.
(5) Eloct: variation wes low and not considered as a serious problem in the anelyses.

Experiments have demonstrated that divergence of relative growth rates do orchir between early and late emerging individuals En E l y emergers contimual y increase their abjifty to capture resources at the expense of the leter emergers, and in doing so incuease their physicel zome of influence. This appears to be the mechanism by which the distribution of plant weights within a population becomes skewed as the population growsy before self-thinning (Fioss and Harper 1972): Since, in the presert study relative growth retes for the greenhouse study far exceed those of the field studyg the variation within the treatments would also be Eapected to be murn 1 arger.

Allard (1961) presented evidence that the biomass of individual plante in mixtures vary less then those in pure stands: Allard and Eradshaw (19今4) have called this effect "population buffering" and compared itseffects to those of buffering of the individual genotype due to heterozygosity. In the present study, this "population buffering" is aell illustrated in Table \(11 . \quad\) A Eummary of this relationship can be found in Table 27 .

Table 27. Summary of coefficients of variation for individual plant biomass from greenhouse study data.


Sakai (1961) has pointed out that the growth of plants can be influenced by their neighbours in three distinct ways:
(1) the effect of density - limiting space and nutrjtion for a plant.
(2) intragenotypic competition - some plants within one genotype mey outgrow their neighboure because of adventeges geined through chance environmental factors, and
(3) intergenotypic competition - differential growth of unlike genotypes due to the inherent differences between them.

In contrast to crop plants, intergenotypic competition in forest trees has been studied only to a minor degree (Adems 1980). Fesults of these investigations concur with the general conclusions reached in crop plante and indicate that intergenotypic competition cen have quite significent effects on the growth of trees at the seeding stage (eg: Tauer 1975). Tauer (1975) found wide varietions in growth of black cottonmod seedlings. Therefore, it would sem reasonable to
expect that this characteristic would be present in trembling aspen.

The excessively lerge variations associated with the crown volume parameter can probably be attributed to the serious infection of fasichadiom spp. saspen leat and shoot blaght).

\section*{Competitive ExElusion Frinciple}

Where two species in estable environment share the seme nicher with an iclentical factores limiting population growthy the two species will compete severelyo This competition will virtually always lead to the exclusion of one species. This comclusion is tnown as the "competitive exclusion principle"
 Etands of jact: pine are almost exclusively of fire originn

 stage that the jack pine may exclude the invasion of the site by trembling aspen or other pioneer species. This feature was i 1 lustreted in the greenhouse study which showed thet ject: pine can be a dominant competitor at extremely high densitiesn Unfortumatelyg the density level where jact: pine dominated (to, ou plants/m) almost never occur in nature. The reason for this \(i=\) a combination of a lact: of a homogeneous germination bed and lower germination percent due to poorer envirommentel conditions. Thereforen me would
heve to expect invasion of aspen pockets even in an area with escellent natural regeneration of jact: pine.

Cook (1965) felt that intraspecific competition was mainly characterized by plastic response or depauperationg while interspecific competition mainly resulted in mortality. Therefore a young stand of jack pine would have reduced growthg but show only minimal self-thinning. Howevery if an extremely hot slash fire reduced the number of jack pine germinants: aspen would almost assuredly invade the siten Duickly and effectively, the aspen would overtop the pine ceedlinge and eventually reduce the pine percentage in the stend by way of direct mortelity.

An Inference Concerning Genetic Variability

It is felt, among ecologists, that explanetions of the beheviour of plents and animals must come ultimately from consideration of the evolutionary forces that have determined fitness (Turkington and Harper 1979).

Lee (1960) felt that the role of intraspecific competition in natural selection is in the moulding of the gene pool in the direction of conditioning greater adeptebility" MeNaughton and Wolf (1970) asserted that increased intraspecific competition by the more abundent Epecies of a pair will produce in it greater genetic differentiation, while the less abundant species will tend toward genetic uniformity due to more interspecific
competition.
Although it is highly speculative, the high genetic Variability of trembling aspen - as suggested by high variance in the measured growth parameters of this project - may be directly related to its intense competitive nature. Jact: pine, which is generally a weaker competitor than aspeng tends to illustrate a pattern of genetic uniformityn

\section*{Limited Fortion of Ontogeny Studied}

Critical work on competitive mechanisms deal either with the situation in short-lived crops established under largely artifical conditions, or else with the processes at wort in short-term experimentel cultures of the competing plants. Experimental studies with individuel populations or simple combinations of species are effective for elucidating elementary processes within the community. However: the problems of extrapolating from these to the whole community are formidable, if not insurmountable (MacIntosh 1970).

Ford (1775) warned that investigations restricted to a few years can study only a limited section of the complete cycle of the forest crop. Felationships established at one point in time may not remain stable throughout the life history of the population. Therefore, the relationshipe identified in this study may not remein the same through the life history of these two species. It is hoped that by extending the field study over three to four growing seasons,
any shift in the major relationships dealing with the competitive nature of these two tree species will be identified.

It must also be noted that the relationships determined in this study using trembling aspen seedlings would differ greatly when using aspen regeneration of sucker origin. Aspen surkers rely on a pre-existing, mature root syetem for resources during the early stages of development. Therefore, height growth would be far more rapid and the effect from competition of neighbours much less for an aspen sucker than those of an aspen seedling in a similar situation.

A final point that must be noted \(i s\) that the results from the field study may differ on another soil type. Each species may react differently when located on other sites, thereby altering the competitive nature of the species in question.

\section*{CONCLUSIONS}

The present study was the first study designed specifically to analyze the competitive effects of both trembling aspen and jack pine seedlings. The effects of both density and epecies mixture were examined using replacement series experiments in a greenhouse as well as a field study. The significent responses to the various treatments are summarized below.

\section*{Greenhouse Study}
(1) A "hierarchy of resource exploitation" was established. However the species which took on the dominant role was dependent on density. At the highest density level (10,0oo plants/m \({ }^{2}\), jact pine assumed the dominant role. Once the density was lowered, trembling aspen gained dominance. The relative crowding coefficients clearly demonstrated this shift in dominance with changing density.
(2) Trembling aspen seedlings adjusted their biomass allocation with respect to the dominant competitor: as follows:
(a) when jact: pine was the main competitor, aspen increased the percentage biomass allocated to leaf weight, and
(b) when aspen wes the main competitor aspen increased the percentage biomass allocated to stem weight.

The reverse response occurred in the jack pine seedlings.
(3) The phenomenon known as "frequency-dependent interference" was illustrated best by the survival data for trembling aspen. In general., as the percentage of aspen in misture increased at a given density, survival decreased. Increased density further accentuated this reletionship.

\section*{Field Study}
(1) In generaly aspen hejght growth was not significantly affected by density. However as the percentage of aspen decreased at a given density, height growth tended to increasen

A similar relationship was evidenced in crown development for the aspen transplants. Furthermore. high density tended to drastically reduce the ability of the aspen to expand their crowns.
(2) Both height growth and crown volume accumulation for jact: pine decreased, as density decreased. The cause for this reversed response to density wes related to the influence of environmental factors (ie" wind)"

\section*{LITERATURE CITED}

Adems. W. T. 1\%e日. Intergenotypic competition in forest trees. Froc. oth Nor. Amer. For" Bio. Workshop. pp. \(1-14\).

Allard. F. W. 1961. Felationship between genetic diversity and consistency of performance in different environments. Crop Sci. 1: \(127-13 \mathrm{E}\)
and J. Adams. 1969. Fopulation studies in predominantly self-pollinating species. XIII. Intergenotypic competition and population structure in barely and wheat. Am. Nat. 10s: 621-64日.
and A.D. Eredshaw. 1964. Implications of genotypeenvironmental interactions in applied plant breeding. Crop Sci: 4: 50S - 508.

Baker: F.S. 1949. A revised tolerance table. J. For. 47: 179-181.
Easkerville, G.L. 196s. Drymatter production in immature Dalsam fir stands. For. Sci. Fonog. 9. 42pp.

Bates. Cog. and J. Foeserg Jr, 1928. Light intensities required for growth of coniferous seedinggs. Am. J. Bot. 15: 185 174.
 weight and numbere in mixed populatione of sinapis aita (L) Fabent and bepidium satiwum Ln J. Appl. Ecol. 13: 211-216.

Gellag InE. 1971. A new competition model for individual trees. For" Sci. 17: 364-372.

Black, J.N. 1960. An assessment of the role of planting density in competition between red clover (Trifoliam pratense Ln) and lucerne (medicago satiua L.) in the early vegetative stage. Oikos 11: 20-42.

Bormany F. \({ }^{\prime} H\). 1965. Changes in the growth pattern of white pine trees undergoing suppression. Ecology 46: 269-277n

Buttery, BuFa and J.M. Lambert. 1765 . Competition between by yeria maxima and phyagmiter commanis in the region of Suringham Eroad. I. The competition mechaniEn. J. Ecol. ET: 16ד 181.

Chamblee, D. 5 . 1958. Some above- and below-wround relationships of an alfalfa - orchard grass mixture. Agronn J. 5o: \(434-437\)

Cookn S.A. 1965. Fopulation regulation of Eschschoixia californica by competition and edaphic: conditione. J.Ecol. 5s: 759 769.

Cooper. C.F. 1961. Fattern in Fonderosa pine forests. Ecology 42: 493-497n

Daniels, FaF. 1975. Simple competition indices and their correlation with annual loblolly pine tree growth. For Sci. 22: 454 456.

Donaldg C.M. 1968. Competition among crop and pasture plants. Adv. Agron. 15: 1 - 118.

England: \(F_{n}\) 1768. Competition in mixtures of herbage gresses. J. Appl. Ecol. 5: 227-242.

Evert. F. 1973. Annotated bibliography on initial tree Epacing. For. Ser. Inf. Fep. FMF-X-50. 149pp.

Eyre, F.H. and Fik. LeBarron. 1944. Management of jact: pine in the Lake States. U. S. Dept. Agr. Tech. Eul. Ess. bopp.

Faustr MaE 19Xb. Germination of populus grandioentata and populas themaloides with particular reference to oxygen consumption. Bot. Gas. 77" 808 -821.

Ford. E.D. \(1975 . \quad\) Competition and stand structure in some evenaged plant monocultures. J. Ecol. os. 311 - SBZ.

Fowlef: N. Lu 1964 . The role of germination deteg spatial arrangements and neighboumhood effects in competitive interactions in kinamn J. Ecol. 72. 307- Sib.

Fraser. J.W. 1959. The effect of sunlight on the germination and early growth of jack pine and red pinen Canaden oept. No. Aff. and Natl. Fess. Forestry Eranch. Forest Res. Divn Tech. Note 71. 6pp.

Gause, C"F. 19®4. The struggle for existence. Williams and Wilkins, Ealtimoren उ5lpp.

Gevorkientas S.F. 1956 . Site index curves for aspen in the lake States. Un. For. Serv. Lakes States For. Exp. Sta. Tech. Note 464. 2pp.

Gibson. J.A.S. 195s. Souing density and dampingoff in pine Seedlinge. E. Afr. Agric. J. 2i: 1EE - 18g.

Graham, S.An 1954. Scoring tolerance of forest trees. Mich. Univ. School Nat. Fes. Mich. Forestry 4 . 2pp.

Guilkey, Fiti and A.H. Westing. 1956. Effecte of initial Epacing on the development of young jack: pine in northern Lower Michigan. Mich. Acad. Scin. Arts and Letters Fapers 4i: 45-50.

Harper, J. L. 1761. Approaches to the study of plant competition. Soc. Exp. Biol. Symp. 15: 1 - 37.
. 1964. The nature and consequence of interference amongst plants. Froc. XI Int. Congr. Genet. The Hague. pp. 465 482.
. 1964b. The individual in the population. J. Ecol. 52 (supp1.): 149-158.
" 1977. Fopulation biology of plants. Academic Fress. London. England. 892pp.
and I.H. FcNaughton. 1962. The comparative biology of closely related species living in the same area: VII. Interference between individuals in pure and mixed populations of Paparer spp. New Fhytol. 61: 1.75-188.

Herrisy Gan 1967. Some competitive relationships between Agropyron spicatum and Bromus tectorum. Ecol Monogr" 37" 89-111.

Hegyi, F. 1974. A simulation model for managing jact pine stancle. In Growth Models for Tree and Stend Simulation. Foyal College of Forestry, Stockholm. Swedenn pp. 74-90.

Hodgeong GnL and Blackman. 1956. An analysis of the influence of plant density on the growth of Vicia faba. I. Tine influence of plant density on the pattern of development. J. Exp. Eot. 7: 147-165.

Holmgren, F.C. 1756. Competition between annuals and young bitterbrush (Pamshia tridentata) in Tdaho. Ecology \(37: 370-377 n\)

Horton, ki.W. and G.H.D. Eedell. 1960. White and red pine ecology, silviculture, and management. Can. Dept. No. Aff. and Nati. Fes. For. Branch Eul. 124. 1g3pp.
 rice. III. The mechanism of competition among phenotypes. Evolution 22: 529-542.
and I. dejesus, Jr" 1968. Studies on competition in rice. In Competition in mixtures of verieties. Evolution 2e. 119 124.

Kabzems, An and C.L. Kirby. 1956. The growth and yield of jack pine in Saskatchewan. Saskatchewan Dept. Nat. Fes. For. Branch Terh. Eul. 2. 6Sppa

Kaufman. C.Mn 1945. Foot growth of jack pine on several sites in the Cloquet Forest, Minnesoten Ecology 20: \(10-23\).

Kittredge, J.J. and S.F. Gervorkiantz. 1929. Forest possibilities of aspen lands in the Lake States. Minn. Agr. Exp. Sta. Tech. Eul. 60. 84pp.

Laessleg A.M. Spacing and competition in natural stands of sand pinen Ecology 46: 65-72.

Lee. J.A. 1960. A study of plant competition in relation to development. Evolution 14: 18-28.

Lee, \(\mathrm{S}_{\mathrm{M}} \mathrm{M}\). and \(\mathrm{F} . \mathrm{B}\). Cavers. 1981 . The effects of shade on growth, development, and resource allocation patterns of three species of foxtail (Eetaria). Can. I. Bota 59a 17761786.
 dynamics and neighbourhood effects in establishing swards of Festuca mubran Dikos 38: 52 -- 59.

Litav, M. Gn Kuperniky and G. Drshan. 1963. The role of competition as a factor in determining the distribution of dwarf shrub communities in the Mediterrnean territory of Israel. J. Ecol. E1: 467-480.

Mack, F.N. and J.L. Harper. 1977. Interference in dune anmuls: spatial pattern and neighbourhood effects. J. Ecol. b5u" \(345-36\)

Marshall, D.Fin and S.K. Jain. 1969. Interference in pure and mixed populations of AYEna fatue and GYena barbata. J. Ecol. 57: 251-270.

Massey, A.B. 1925. Antagonism of the welnuts fuglans nigra and fuglans cinemie) in certain plant associations. Fhytopathology 15: 77: - 784.

McGilchrist, \(C, A\) and E.F. Trenbath. 1971. A revised analysis of plant competition experiments. Eiometrics 27: 659-671.

McIntosh, FiF. 1970. Community, competitiong and adeptation. Q. Fev. Bioln 45: 259 - 280.

MoNaughton, S.J. and L. L. Wolf. 1970 . Dominance and the niche in ecologicel EyEtems. Science 167: 131-1.9.

Mead. F. 1968. Feasurement of competition between individual plants in a populationn J. Ecol. 56: 35 - 45.

Milthorpen \(F_{n}\) L. 1961 . The nature and analysis of competition between plants of different species. In F.L. Milthorpe (ed.), Mechanisms in Eiological Competition. Symp. Soc. Exp. Eioln 15: 30 - 355.

Mohlerg C.Lng Fin. Martss and D.G. Sprugeln 1978. Stand structure and allometry of trees during self-thinning of pure stands. J. Ecol. 66: 599-614.

Morris. D.M. 1983. Competition trials of popalas tremaloides and Populus talsamifera using a Nelder"s design and a replacement series. EnSc.F. thesis, Lekehead University. 82pp.

Mossa E.H. 19SB. Longevity of seed and establishment of seedlings in species of Populus. Eot. Gaz. 97 : 5a9 - 542.
" 195s. Forest communities in momthmestern Albertan Cana
3. Bot. 31: 212-252.

Ogdeng J. 1970. Flant population structure and productivity. Froc. N.Z. Ecol. Soc. 17: 1.9.

Opies J.E. 1968. Fredictability of individual tree growth using various definitions of competing basal arean for. Scin 14: \(\because 14-323\)

Frobst, A.H. 1957. Ferformance of variety blends in soybeansu Agron. J. 45: 148-150.

Fabinowitzy \(D\), and J.K. Fapp, and F.M. Dixon. 1984. Competitive abilities of sparse grass species: means of persistence or cause of abundance. Ecology 6s: 1144-1154.

Faup. H.M. 1946. Fhytogeographic studies in the Athabasta - Great Slave Lake Fegion, II. Arnold Arboretum Journ 27: 1 - 85.

Fobson. M.J. 1968. The changing tiller production of spaced plants of S. 170 tall fescue (Festuca arundinacea). J. Appl. Ecol. E: \(575-590\).

Foss. M. A. and J.L. Harper. 1772. Occupation of biological space during seedling establishment. J. Ecol. 6o: \(77-88\).

Sakai, K.I. 1961. Competitive ability in plants: fts inheritance and some related problems. Symp. Soc. Exp. Eiol. 15: 245-26.
and H. Mutaide. 1967. Estimetion of geneticg environmentaly, and competitional variances in standing forests. Silvae Genet. 16: 149-152.

Sakai, KıIn, H. Mukaiden and K. Tomita, 1968. Intraspecific competition in forest trees. Silvae Genet. 17: 1 - 5.

Sandberg: D. and A.E. Schneider. 1953. The regeneration of aspen by suckering. Minn. Univ. Forestry Note 24. Epp.

Scarisbrick, D.H. and J.D. Ivrine. 1970. Some aspects of competition between pasture species: The effect of environment and defoliation. J. Appl. Ecoln 7: 417-42e.

Schantz-Hansen, T. 1931. Some results of thinning 27-year-old jack: pine. J. For . 29: 544-550.

Shirley, H.L. 1941. Festoring conifers to aspen lands in the Lake States. U.S. Dept. Agr. Tech. Eul. 76. . Joppa
. 1945. Feproduction of upland conifers in the Lake States as affected by root competition and light. Am. Midl. Nat. 35: 537-612.

Schultz, A.M., J.L. Launchbaugh, and H. H. Eiswell. 195S. Felationship between grass density and brush seedling survival. Ecology 36: 226-238.

Silvertown. J.W. 1982. Introduction to plant population ecology. Longman Inc., New York: 209pp.

Snaydong R.W. 1962. The growth and competitive ability of contrasting populations of Trifolium repens L . on calcareous and acid soils. J. Ecol. 50: 4\%9-447.

Snell. T.W. and D. G. Eurch. 1975. The effecte of density on resource partitioning in Chamaesyce himta (Euphombiacese). Ecology 56: 742-746.

Staeblerg G.f. 1956. Effect of controlled release on growth of individual Douglas-fir trees. J. For. 54: 567-568.

Steneter, Gn. A. and J.M. Jarvis. 1963 . A preliminary Etudy ro assess competition in a white sprure - trembling aspen stand For. Chron. 39: 334-33.

Stoeckler, J.H. 1948. The growth of quaking aspen as affected by soil properties and fire. J. For. 46: 727-737.

Tauer, C.G. 1975. Competition between selected black cottonwod genotypes. Sivae Genet. 24: 44-49.

Trenbath, E.Fin and J.L. Harpern 197E. Neighbour effects in the Genus Awenen I. Comparison of crop epecies. I. Appl. Ecol. 1o: \(379-400\).

Turkingtong F. 1.979. Neighbour relationships in grass - legume communities. IV. Fine scale biotic differentiation. Can. J. Eot. 57: 2711-2716.
- 1983. Flasticity in growth and patterns of dry matter distribution of two genotypes of Trifolium repens grown in different environments of neighbours. Can. J. Eot. 6i: \(2186-2194\).
- 190Bb. Leaf and flower demography of trifolium repens L. I. Growth in mixture with gracses. New Fhytol. 9 s . \(597-616\).
" 198Bc. Leaf and flower demography of Trifolium mepens L. II. Locally differentiated populations. New Fhytol. 9 : \(6.7-631\).
and F.E. Cavers. 1979. Neighbour relationships in grass legume communities. III. Development of pattern and association in artificel communities" Can. I. Eot. 57" 2704 2710.
? Fig. Cavers, and \(L\). W. Aarssen. 1977. Neightour reletionships in grass - legume communities. In Interspecific contracts in four grassland communities near Londons Ontario. Can. J. Bot. 55: 2701-2711.
and J.L. Harper. 1979, The growth, distributiong and neighbour relationshipe of Trifolium mepens in a permanent pasture. II. Inter- and interspecific contect. Ju Ecol. 67 . \(219-200^{\circ}\)
and J.L. Herpern 19790. The growth. distributiong and neighbour relationehips of 7 rifolium repens in a permanent pasture. IU. Fine-scale biotic differentiation. J. Ecol. 67" 245 -- 254.

Weiners In 1982. A neighbourhood model of anual plant interference. Ecology 63" 1237-1241.
" 1984, Neighbourhood interference amonget finus rigida individuals. J. Ecol. \(72: 183-195\).

Werner, FnAn 197? Ecology of comoccurring similar plants, with emphasis on the recruitment period of the life cycleu In Aarsseng L."W., F . Turkington, and F.E. Cavers. Neighbour relationships in grass - legume communities. fI. Temporal stability and community evolution. Can. J. Bot. 57: 26952703.

Whiteg I. and InL. Harper. 1970. Correlated changes in plant size and number in plant populations. J. Ecol. 58: 467-485.

Whittingtong W. J. and T.A. \(\mathrm{O}^{\prime}\) Erien. 1968. A comparison of yields from plots sown with a single species or a mixture of grese species. J. Appl. Ecol. 5: 209-213.

Wildeg SnAng Fng. Wilson, and D.F. White. 1949n Soile of Wisconsin in reletion to silviculture. Wis. Conserv. Dept. Fub. 525 549.171 pp.

Wit. \(\mathrm{C}, \mathrm{T}, \mathrm{de}\). 1960. On competition. Versi. landbouwt: Onderz. Fijksiandt Froefstn. \(66(B): 1-82\).
and I.Fig Van deng Eergh. 1965. Competition between herbage plante. Neth. J. Agric. Sci. 13: 212-221.

Zehngreff, Fi 1947n Fossibilities of managing aspen. U.S. For" Serv. Late States For. Exp. Sta. Aspen Fpt. 21. 2spp.
"1949. Aspen as a forest crop in the Late States. I. For. 47: 555 -565.

APPENDICES

\section*{APPENDIX 1}

Experimental Design for Greenhouse Study

Linear Model:
\[
\begin{aligned}
& Y_{i j k I m}=M+E_{i}+\delta_{(i) j}+D_{k}+E D_{i k}+S_{l}+E S_{i l}+D S_{k I} \\
& +E D S_{i k l}+E_{(i j k l) m} \\
& \dot{1}=1,2, \ldots, 5 \quad j=1 \quad 1=1,2,3 \quad 1=1,2, \ldots, 4 \quad m=1
\end{aligned}
\]
```

where: Y - measured parameter
M - overall mean
Ai - the effect of the $i^{\text {th }}$ block
$\delta_{(i) j}-$ restriction of all treatments in $i^{\text {th }}$ block
D_{k} - the effect of the $k^{\text {th }}$ density
BOink - the effect of the 2-way interaction between
the $i^{\text {th }}$ block and the k th density
Sp - the effect of the $1^{\text {th }}$ species mixture
ESil - the effect of the 2 -way interaction between
the th block and the $1^{\text {th }}$ species mixture

```

```

EDS - the effect of the sway interaction between the
mixture
E - experimental error

```

ANOVA tatole for the linear model:


TOTAL

\section*{APPENDIX 2}

\section*{Simple Correlations Between Growth Parameters for Greenhouse Study}

```

* -.. these messurements were taken from a secomd set of
randomly selected seedlinge

```

Note" Correlations between growth parameters for the field study were not appliceble as final measurements used in the anelysis of varience were not taten during similar wetts.

\section*{APPENDIX 3}

Layout for a single block in field study
2,500
plants \(/ m^{2}\)
4.54
plants/m \({ }^{2}\)

20
plants/m \({ }^{2}\)

83
plants/in \({ }^{2}\)
17
plant \(\equiv / m^{2}\)


Note: The individual plot sizes will increase from the highest density to the lowest densities.

\section*{APPENDIX 4}

\section*{Experimental design for field study}

Linear Model:
\[
\begin{aligned}
& Y_{i j k \mid m n}=M+E_{i}+\delta(i) j+D_{k}+E D_{i k}+\psi_{(i j k) l}+S_{m}+ \\
& E S_{i m}+D S_{k m}+E D S_{i k m}+E_{(i j k \mid m) n} \\
& i=1,2, \ldots, 6 \quad j=1 \quad k=1,2, \ldots, 5 \quad 1=1 \quad m=1,2,3,4 \\
& n=1 \\
& \text { where: } Y \text { - measured parameter } \\
& \text { M - overall mean } \\
& E_{i} \text { - the effect of the } i^{\text {th }} \text { block } \\
& \delta_{(i) j} \text { - restriction of all treatments in the with block } \\
& D_{k} \text { - the effect of the } k \text { th density } \\
& \begin{array}{l}
B D_{i k} \text { - the effect of the 2-way interaction between } \\
\text { the with block and the forth density }
\end{array}
\end{aligned}
\]

> density together:
> \(S_{m}\) - the effect of the \(\mathrm{m}^{\text {th }}\) species mixture Sim - the effect of the 2 -way interaction between the \(i^{\text {th }}\) block and the \(\mathrm{m}^{\text {th }}\) species mixture
> DSt km - the effect of the 2-way interaction between the fth density and the ot species mixture
> EDSikm - the effect of the \(\underset{\text { Gray }}{ }\) interaction between the \(i^{\text {th }}\) bloctig th density and math species mixture
> E - experimental error
```

ANOUA table for the linear model:

```


\section*{APPENDIX 5}

Soil description for field study area
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample NO. & Horizon & pH & \% Sand & \% Si. 1 t & \% C1ay & \[
\begin{gathered}
\text { Textural } \\
\text { clese }
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{1} & \(\Leftrightarrow\) & 6.0 & 4.4.4 & 55, & 20.4 & 1 ¢am \\
\hline & E & 5.2 & 40.8 & 39:2 & 20.0 & 1.am \\
\hline & C & 6.4 & 5.6 & 49:4 & 15.0 & 10 mm \\
\hline \multirow[t]{3}{*}{2} & A & 6. & 19.6 & 59.2 & 21.2 & silt 1 omm \\
\hline & E & 6.2 & 11.6 & 69.2 & 19.2 & cilt 1 omm \\
\hline & C & 6.7 & 2.8 & 80.2 & 17:0 & silt 1 oam \\
\hline \multirow[t]{3}{*}{\(\pm\)} & A & 6.1 & 27n 2 & 50.0 & 22.8 & =i1t 1 Oam \\
\hline & E & 6.6 & 27.2 & 520 & \%. O & silt 10 mm \\
\hline & C & 6.5 & 0.0 & 83.0 & 17.0 & silt lomm \\
\hline
\end{tabular}

\section*{APPENDIX 6}

Weekly height growth data for greenhouse study
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Density (plants per \(m^{2}\) )} & \multirow[t]{2}{*}{Sp. Comp:} & \multicolumn{8}{|c|}{TIME (weeks)} \\
\hline & & Aspen & \begin{tabular}{l}
Jack \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
Jeck \\
Fine
\end{tabular} & Aspen & Jack Fine & Aspen & \begin{tabular}{l}
Jack \\
Fine
\end{tabular} \\
\hline \multirow[t]{10}{*}{10,000} & \(100 / 0\) & 1.6 & & 6.5 & & 8.9 & - & 10.2 & - \\
\hline & & \((0.4) *\) & & (3.7) & & (5.7) & & (6.6) & \\
\hline & 75/25 & 1.7 & E.6 & 5.7 & 6.0 & 7.4 & 6.4 & 8.9 & 6.8 \\
\hline & & (0, 3) & (0,4) & (2,7) & ( 1,5 ) & (3.3) & (1.5) & (4.7) & (1,5) \\
\hline & \(50 / 50\) & 1.6 & 4.0 & 4.0 & 7.2 & 5.2 & ¢.2 & 5.6 & 7.0 \\
\hline & & (0, 3) & (0, 3 ) & (1,7) & (1.0) & (2.1) & (1.0) & (2,5) & ( 1.0\()\) \\
\hline & 25/75 & 1.5 &  & S. 6 & 6.7 & 3,8 & 7.4 & 3.4 & 8.0 \\
\hline & & (0. 3 ) & (0.6) & (2.2) & (1.8) & (2.7) & (2.2) & (2.0) & (2.4) \\
\hline & \(0 / 100\) & & S. 5 & & 6.2 & & 6.2 & & 7.9 \\
\hline & & & (0.4) & & (1,5) & & (1.4) & & (2.2) \\
\hline \multirow[t]{10}{*}{2,844} & 10\%/0 & 2.4 & & 12.5 & & 14.8 & & 16.6 & \\
\hline & & (0.7) & & (7.0) & & (7, 4) & & (9,0) & \\
\hline & 75/25 & \[
2 n 2
\] & \[
4.0
\] & \[
9.4
\] & \[
6.9
\] & 10.4 & \[
7 n 4
\] & \[
12.2
\] & 7.8 \\
\hline & & \[
(0,4)
\] & \[
(0,4)
\] & \[
(6,3)
\] & \[
(0.6)
\] & \[
(8,1)
\] & \[
(0.9)
\] & \[
(9.8)
\] & (1.1) \\
\hline & \(50 / 50\) & 1.7 & 3.6 & 9:4 & 6.5 & 11.2 & 7.0 & 12.5 & 7:4 \\
\hline & & (0.5) & (0.6) & (4.7) & (1, 3) & ( 6,3 ) & (1.6) & (7.1) & (1.6) \\
\hline & 25/75 & 2.3 & 3. 8 & 12.4 & 7.1. & 15.1 & 7.7 & 13.2 & 8. 4 \\
\hline & & (0,5) & (0,5) & (5,6) & (1,2) & (7n6) & (1.6) & (10.7) & (2.0) \\
\hline & \%/100 & - & उ. 8 & - & 7.6 & - & 8.7 & - & 10.2 \\
\hline & & & \[
(0,5)
\] & & (1.2) & & (1.5) & & \[
(2.0)
\] \\
\hline \multirow[t]{10}{*}{729} & \(100 / 0\) & 3.8 & & 20.0 & & 26.6 & & 55.5 & \\
\hline & & (1, 1) & & (5,1) & & (7,5) & & (11.4) & \\
\hline & \(75 / 25\) & B. 4 & 4:1 & 18.2 & 7.2 & 28.0 & 8.3 & 31.7 & 8.7 \\
\hline & & (0.7) & (0,4) & (5,5) & (1.2) & (6.9) & (1.3) & (11.3) & (1.3) \\
\hline & \(50 / 50\) & 30 & 4.0 & 21.2 & 6.7 & 26.3 & 7.8 & 35.8 & e.6 \\
\hline & & (0.8) & (0.4) & (6.7) & (0.9) & (7.7) & (1.0) & (14.9) & (1:1) \\
\hline & 25/75 & 2.8 & 4.2 & 19.0 & 8.9 & 26.1 & 9.4 & 18.4 & 10.6 \\
\hline & & (0.7) & (0.5) & (8,5) & (0.9) & (10.9) & (1.3) & (15.0) & (1.4) \\
\hline & \(0 / 100\) & - & 4.1 & - & 8, 3 & - & 9.7 & - & 12.0 \\
\hline & & & (0.3) & & (1,3) & & (1.2) & & (1.8) \\
\hline
\end{tabular}
* - numbers in parantheses are standerd deviations.

\section*{APPENDIX 7}

Weekly crown volume data for greenhouse study
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Density (plants per \(m^{2}\) )} & \multirow[t]{2}{*}{Sp. Comp.} & \multicolumn{2}{|r|}{4.5} & \multicolumn{4}{|c|}{TIME (weels) \({ }_{1}\)} & \multicolumn{2}{|r|}{12} \\
\hline & & Aspen & \begin{tabular}{l}
Jack: \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
Jack \\
Fine
\end{tabular} & Aspen & Jack Fine & Aspen & \begin{tabular}{l}
Jack: \\
Fine
\end{tabular} \\
\hline \multirow[t]{10}{*}{10,000} & 100/0 & 2 & - & 205 & & 269 & -. & 22 & - \\
\hline & & (1)* & & (272) & & (365) & & (230) & \\
\hline & 75/25 & 1 & 11 & 56 & 65 & 165 & 83 & 247 & 96 \\
\hline & & (1) & (6) & (54) & (40) & (186) & (61) & (328) & (65) \\
\hline & 50/50 & 1 & 14 & 25 & 95 & 37 & 137 & 39 & 181 \\
\hline & & (1) & (5) & (27) & (4.1) & (45) & (56) & (46) & (68) \\
\hline & \(25 / 75\) & 1 & \[
12
\] & \[
25
\] & \[
72
\] & \[
40
\] & \[
102
\] & \[
15
\] & 126 \\
\hline & & (1) & (6) & \[
(37)
\] & \[
(45)
\] & \[
(23)
\] & \[
(78)
\] & (20) & (84) \\
\hline & \(0 / 100\) & - & 8 & - & 51 & - & 68 & - & 121 \\
\hline & & & (4) & & (46) & & (56) & & (122) \\
\hline \multirow[t]{10}{*}{\(2,84.4\)} & \(100 / 0\) & 11 & & 758 & & 923 & & 1215 & \\
\hline & & (7) & & (782) & & (951) & & (1255) & \\
\hline & 75/25 & 6 & 19 & 506 & 118 & 595 & 143 & 779 & 159 \\
\hline & & (5) & (10) & (774) & (35) & (943) & (57) & (1233) & (63) \\
\hline & \(50 / 50\) & 11 & 15 & 389 & 102 & 54.8 & 128 & 651 & 138 \\
\hline & & (10) & (8) & (399) & (64) & (603) & (78) & (689) & (80) \\
\hline & 25/75 & \[
18
\] & & & & & & & 169 \\
\hline & & \[
(12)
\] & (7) & \[
(1101)
\] & \[
(47)
\] & \[
(2057)
\] & (71) & \[
(2563)
\] & (87) \\
\hline & \(0 / 100\) & - & 15 & - & 136 & -- & 208 & - & 275 \\
\hline & & & (8) & & (6i) & & (118) & & (1.47) \\
\hline \multirow[t]{10}{*}{729} & 100\% & 77 & & 2944 & & 5872 & & 7971 & \\
\hline & & (56) & & (1148) & & (3095) & & \[
(5560)
\] & \\
\hline & 75/25 & \[
66
\] & 22 & 2462 & & \[
3967
\] & \[
252
\] & \[
6644
\] & 251 \\
\hline & & \[
(36)
\] & (5) & (1783) & (59) & \[
(2761)
\] & \[
(90)
\] & \[
(5546)
\] & (109) \\
\hline & \(50 / 50\) & 37 & 22 & 2934 & 168 & 469 & 207 & 7569 & 243 \\
\hline & & (32) & (12) & (2731) & (42) & (4626) & (45) & (8544) & (56) \\
\hline & 25/75 & 52 & 27 & 4473 & 212 & 7246 & 278 & 15220 & 351. \\
\hline & & (29) & (8) & (4359) & (67) & (7129) & (71) & (15047) & (97) \\
\hline & \(0 / 100\) & - & \[
26
\] & ( & & ( & 320 & - & 501 \\
\hline & & & (9) & & \[
(77)
\] & & (92) & & (149) \\
\hline
\end{tabular}

\footnotetext{
* - numbers in parentheses are standerd deviations
}

\section*{APPENDIX 8 \\ Weekly height growth data for field study}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ```
Density
    pplants
    per
    m}\mp@subsup{}{}{2
``` & Sp. Comp. & Aspen & \begin{tabular}{l}
\(5 *\) \\
Jact: \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
Jack: \\
Fine
\end{tabular} & \begin{tabular}{l}
TIME (\\
Aspen
\end{tabular} & \[
\begin{aligned}
& \text { weets } \\
& \begin{array}{l}
\text { Jact: } \\
\text { Fine }
\end{array}
\end{aligned}
\] & Aspen & \begin{tabular}{l}
Iact: \\
Fine
\end{tabular} & \[
\begin{array}{r}
1 \\
\text { Aspen }
\end{array}
\] & Jack Fine \\
\hline \multirow[t]{5}{*}{2,500} & 100\%0 & \[
\begin{aligned}
& 22 \\
& 5
\end{aligned}
\] & ** & \[
\begin{aligned}
& 25 \\
& (7)
\end{aligned}
\] & & \[
\begin{aligned}
& 27 \\
& (9)
\end{aligned}
\] & & \[
\frac{31}{(3)}
\] & - & \[
\frac{31}{18}
\] & - \\
\hline & 75/25 & \[
\begin{aligned}
& 23 \\
& (7)
\end{aligned}
\] & \[
\begin{gathered}
7 \\
(1)
\end{gathered}
\] & \[
\begin{gathered}
26 \\
(10)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
29 \\
(12)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
2
\end{gathered}
\] & \[
\frac{31}{(15)}
\] & \[
\begin{gathered}
8 \\
(2)
\end{gathered}
\] & \[
\frac{31}{(15)}
\] & \[
\begin{gathered}
8 \\
(2)
\end{gathered}
\] \\
\hline & \(50 / 50\) & 24
\((4)\) & \[
\begin{aligned}
& 9 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& (6)
\end{aligned}
\] & \[
\begin{gathered}
9 \\
6
\end{gathered}
\] & \[
\begin{aligned}
& 34 \\
& (8)
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 3
\end{aligned}
\] & \[
\begin{gathered}
40 \\
(13)
\end{gathered}
\] & \[
\begin{aligned}
& 10 \\
& 2
\end{aligned}
\] & \[
\begin{gathered}
40 \\
(13)
\end{gathered}
\] & \[
\begin{aligned}
& 10 \\
& (2)
\end{aligned}
\] \\
\hline & 25/75 & \[
21
\] & \[
\begin{aligned}
& 10 \\
& (2)
\end{aligned}
\] & \[
27
\] & \[
12
\] & \[
\begin{gathered}
36 \\
77
\end{gathered}
\] & \[
12
\] & \[
\begin{gathered}
41 \\
(11)
\end{gathered}
\] & \[
12
\] & \[
\begin{gathered}
41 \\
(12)
\end{gathered}
\] & \[
\frac{12}{3}
\] \\
\hline & \(0 / 100\) & - & \[
\begin{aligned}
& 10 \\
& (1)
\end{aligned}
\] & - & \[
\begin{aligned}
& 13 \\
& 6
\end{aligned}
\] & --. & \[
\begin{aligned}
& 14 \\
& (2)
\end{aligned}
\] & - & \[
\begin{aligned}
& 15 \\
& (2)
\end{aligned}
\] & -- & \[
\begin{aligned}
& 15 \\
& 2)
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{494} & \(1.00 / 0\) & \[
22
\] & & \[
\frac{28}{5}
\] & & \[
\begin{aligned}
& 35 \\
& (7)
\end{aligned}
\] & & \[
\begin{gathered}
40 \\
(13
\end{gathered}
\] & & \[
\begin{gathered}
41 \\
(13)
\end{gathered}
\] & \\
\hline & 75/25 & \[
17
\] & \[
\begin{gathered}
9 \\
(1)
\end{gathered}
\] & \[
\begin{gathered}
23 \\
6
\end{gathered}
\] & \[
\begin{aligned}
& 10 \\
& 2
\end{aligned}
\] & \[
\begin{aligned}
& 27 \\
& (8)
\end{aligned}
\] & \[
\frac{12}{2}
\] & \[
\begin{gathered}
34 \\
(13)
\end{gathered}
\] & \[
12
\] & \[
\begin{array}{r}
34 \\
(18)
\end{array}
\] & \[
\begin{aligned}
& 12 \\
& 2
\end{aligned}
\] \\
\hline & 50\%EO & \[
\begin{aligned}
& 20 \\
& (4)
\end{aligned}
\] & \[
\begin{gathered}
8 \\
(1)
\end{gathered}
\] & \[
27
\] & \[
\begin{aligned}
& 10 \\
& 2
\end{aligned}
\] & \[
\begin{gathered}
34 \\
6
\end{gathered}
\] & \[
11
\] & \[
\begin{gathered}
46 \\
11 .
\end{gathered}
\] & \[
\begin{aligned}
& 11 \\
& 2
\end{aligned}
\] & \[
\begin{gathered}
46 \\
(12)
\end{gathered}
\] & \[
\begin{aligned}
& 11 \\
& (2)
\end{aligned}
\] \\
\hline & 25/75 & \[
\begin{gathered}
20 \\
(0)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
(1)
\end{gathered}
\] & \[
28
\] & \[
\begin{aligned}
& 10 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 22 \\
& (6)
\end{aligned}
\] & \[
\frac{11}{2}
\] & \[
\begin{gathered}
44 \\
(10)
\end{gathered}
\] & \[
\frac{12}{2}
\] & \[
\begin{gathered}
47 \\
(42)
\end{gathered}
\] & \[
\frac{12}{2}
\] \\
\hline & \(0 / 100\) & - & \[
\begin{gathered}
8 \\
(1)
\end{gathered}
\] & - & \[
\begin{gathered}
10 \\
1
\end{gathered}
\] & --- & \[
\begin{aligned}
& 10 \\
& (1)
\end{aligned}
\] & - & \[
\frac{11}{(2)}
\] & \(\cdots\) & \[
\frac{11}{2}
\] \\
\hline \multirow[t]{7}{*}{204} & \(100 / 0\) & \[
\begin{aligned}
& 19 \\
& (4)
\end{aligned}
\] & & \[
\begin{aligned}
& 24 \\
& (7)
\end{aligned}
\] & & \[
\begin{gathered}
29 \\
(9)
\end{gathered}
\] & & \[
\frac{35}{(11)}
\] & & \[
\begin{gathered}
85 \\
(11)
\end{gathered}
\] & \\
\hline & \(75 / 25\) & \[
18
\] & \[
\begin{gathered}
8 \\
(1)
\end{gathered}
\] & \[
\begin{aligned}
& 24 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
27 \\
(6)
\end{gathered}
\] & \[
\frac{11}{2}
\] & \[
\frac{36}{12}
\] & \[
\begin{aligned}
& 11 \\
& (2)
\end{aligned}
\] & \[
\begin{gathered}
66 \\
(3)
\end{gathered}
\] & \[
\begin{aligned}
& 11 \\
& (2)
\end{aligned}
\] \\
\hline & \(50 / 50\) & \[
21
\] & \[
\begin{gathered}
\varepsilon \\
(1)
\end{gathered}
\] & \[
\begin{gathered}
27 \\
(4)
\end{gathered}
\] & \[
\begin{aligned}
& 9 \\
& 2
\end{aligned}
\] & \[
\begin{array}{r}
35 \\
5
\end{array}
\] & \[
\begin{aligned}
& 10 \\
& (2)
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& (7)
\end{aligned}
\] & \[
\frac{11}{(3)}
\] & \[
\begin{aligned}
& 4 e \\
& (8)
\end{aligned}
\] & \[
\frac{11}{3}
\] \\
\hline & \multirow[t]{2}{*}{25/75} & 17 & 7 & 26 & 9 & 32 & 10 & 43 & 10 & 45 & 10 \\
\hline & & (3) & (1) & (4) & (1) & (4) & (1) & (7) & (1) & (B) & (1) \\
\hline & \multirow[t]{2}{*}{\(0 / 100\)} & - & 7 & \(\cdots\) & 9 & - & 10 & - & 11 & - & 11. \\
\hline & & & (1) & & (2) & & (2) & & (2) & & (2) \\
\hline
\end{tabular}

\footnotetext{
* - first mescurement was taten on July 17 thy 5 weeks after planting commenced.
* - numbers in parentheses are standard devietione.
." Cont"d
}

AFFENOIX \(B\) (eont* \(d\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ```
Density
 (plants
 per
 m}\mp@subsup{}{}{2
``` & Sp. Comp. & Aspen & \begin{tabular}{l}
Jack: \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
Jact: \\
Fine
\end{tabular} & TINE Aspen & \[
\begin{aligned}
& \text { feelss) } \\
& 8 \\
& \text { Jact: } \\
& \text { Fine }
\end{aligned}
\] & Aspen & \begin{tabular}{l}
Jact: \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
Jack: \\
Fine
\end{tabular} \\
\hline \multirow[t]{10}{*}{83} & \multirow[t]{2}{*}{100/0} & 18 & \multirow[t]{2}{*}{-} & \multicolumn{2}{|l|}{24} & \multicolumn{2}{|l|}{28} & 38 & \multirow[t]{2}{*}{-} & 39 & - \\
\hline & & (3) & & \multicolumn{2}{|l|}{(7)} & \multicolumn{2}{|l|}{(8)} & (12) & & \multicolumn{2}{|l|}{(13)} \\
\hline & \multirow[t]{2}{*}{\(75 / 25\)} & 20 & 8 & 26 & 9 & 30 & 9 & 40 & 9 & 41 & 9 \\
\hline & & (3) & (1) & (5) & (1) & (6) & (2) & (9) & (2) & (10) & (2) \\
\hline & \multirow[t]{2}{*}{50/50} & 19 & 7 & 24 & 9 & 29 & 9 & 39 & 9 & 41 & 9 \\
\hline & & (2) & (1) & (3) & (1) & (4) & (1) & (9) & (1) & (10) & (1) \\
\hline & \multirow[t]{2}{*}{\(25 / 75\)} & 19 & 7 & 25 & 9 & 30 & 9 & 39 & 9 & 41 & 9 \\
\hline & & (4) & (1) & (7) & (2) & (7) & (2) & (9) & (2) & (10) & (2) \\
\hline & \multirow[t]{2}{*}{\(0 / 100\)} & \multirow[t]{2}{*}{-} & 8 & \multirow[t]{2}{*}{-} & 10 & \multirow[t]{2}{*}{-} & 10 & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 11 \\
& (2)
\end{aligned}
\]} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 11 \\
& (2)
\end{aligned}
\]} \\
\hline & & & (1) & & (1) & & (2) & & & & \\
\hline \multirow[t]{10}{*}{17} & \multirow[t]{2}{*}{\(100 \% 0\)} & \multicolumn{2}{|l|}{18} & \multicolumn{2}{|l|}{25} & \multicolumn{2}{|l|}{29} & \multicolumn{2}{|l|}{40} & \multicolumn{2}{|l|}{42} \\
\hline & & \multicolumn{2}{|l|}{(5)} & \multicolumn{2}{|l|}{(6)} & \multicolumn{2}{|l|}{(7)} & \multicolumn{2}{|l|}{(11)} & \multicolumn{2}{|l|}{(12)} \\
\hline & \multirow[t]{2}{*}{75/25} & 17 & 7 & 23 & 7 & 28 & 8 & 38 & 日 & 39 & 8 \\
\hline & & (3) & (1) & (5) & (1) & (7) & (1) & (10) & (1) & (12) & (1) \\
\hline & \multirow[t]{2}{*}{\(50 / 50\)} & 1.9 & 6 & 27 & 8 & 3 & 7 & 42 & 8 & 44 & 8 \\
\hline & & (4) & (1) & (7) & (1) & (8) & (1) & (12) & (1) & (13) & (1) \\
\hline & \multirow[t]{2}{*}{\(25 / 75\)} & 21 & 7 & 30 & 8 & 55 & 9 & 46 & 7 & 47 & 9 \\
\hline & & (5) & (1) & (7) & (1) & (9) & (1) & (12) & (2) & (13) & (2) \\
\hline & \multirow[t]{2}{*}{\(0 / 100\)} & \multirow[t]{2}{*}{-} & 6 & \multirow[t]{2}{*}{--} & 7 & \multirow[t]{2}{*}{-} & 7 & \multirow[t]{2}{*}{-} & 7 & \multirow[t]{2}{*}{-} & 7 \\
\hline & & & (1) & & (1) & & (1) & & (1) & & (1) \\
\hline
\end{tabular}

\section*{APPENDIX 9}

\section*{Weekly crown volume growth for field study}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{```
Density
(plants
    per
    m}\mp@subsup{}{}{2
```} & \multirow[t]{3}{*}{Sp. Comp.} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{5}} & \multicolumn{4}{|c|}{TIME (weeks)} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{10}} \\
\hline & & & & & 7 & & 8 & & \\
\hline & & Aspen & Jack Fine & Aspen & \begin{tabular}{l}
Jack \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
Jact: \\
Fine
\end{tabular} & Aspen & \[
\begin{aligned}
& \text { Jack } \\
& \text { Fine }
\end{aligned}
\] \\
\hline \multirow[t]{10}{*}{2,500} & \(100 / 0\) & 916 & & 1069 & - & 1336 & & 1554 & - \\
\hline & & (347)* & & (698) & & (940) & & (1516) & \\
\hline & \(75 / 25\) & 1141 & 183 & 121.9 & 181 & 1674 & 161 & 1865 & 160 \\
\hline & & (584) & (59) & (780) & (61) & (1206) & (60) & (1647) & (61) \\
\hline & \(50 / 50\) & 1.107 & 208 & 1961 & 229 & 2421 & 194 & 3601 & 222 \\
\hline & & (367) & (43) & (826) & (82) & (1310) & (73) & (2505) & (84) \\
\hline & 25/75 & 1.050 & 2 5 4 & 1722 & 285 & 3097 & 246 & 4676 & 245 \\
\hline & & (444) & (62) & (885) & (96) & (1465) & (91) & (2819) & (88) \\
\hline & \(0 / 100\) & - & 18. & --- & 268 & - & 246 & - & 316 \\
\hline & O. 100 & & (50) & & (80) & & (74) & & (108) \\
\hline \multirow[t]{10}{*}{494} & \(100 / 0\) & 1340 & & 2254 & & 2857 & & 5175 & \\
\hline & & (518) & & (965) & & (1344) & & (3591) & \\
\hline & \(75 / 25\) & 925 & 245 & 1552 & \(\pm 41\) & 1989 & 383 & 39.37 & 423 \\
\hline & & (497) & (46) & (900) & (97) & (1598) & (123) & (3260) & (164) \\
\hline & \(50 / 50\) & 1137 & 224 & 2040 & 293 & See1. & S3S & 8S22 & 368 \\
\hline & & (428) & (59) & (952) & (79) & (1805) & (111) & (4245) & (153) \\
\hline & 25/75 & 1208 & 2 S 1 & 1987 & 298 & S684 & 320 & 9660 & 389 \\
\hline & & (436) & (61) & (966) & (64) & (1928) & (88) & (4418) & (132) \\
\hline & \(0 / 100\) & - & 357 & - & 255 & - & 248 & -- & 356 \\
\hline & -1.100 & & (60) & & (61) & & (6.4) & & (157) \\
\hline \multirow[t]{10}{*}{204} & \(100 / 0\) & 1023 & & 1512 & & 4011 & & 43.39 & \\
\hline & & (5s8) & & (727) & & (1292) & & (2443) & \\
\hline & 75/25 & 985 & 226 & 1455 & 31 & 2648 & 398 & 5856 & 448 \\
\hline & & (849) & (75) & (604) & (105) & (154.3) & (161) & (4005) & (219) \\
\hline & \(50 / 50\) & 1238 & 300 & 2146 & 279 & 1219 & 312 & 7784 & 345 \\
\hline & & (483) & (62) & (724) & (61) & (726) & (97) & (2889) & (163) \\
\hline & 25/75 & 2458 & 248 & 1925 & 305 & צ470 & 329 & 9697 & 559 \\
\hline & & (330) & (63) & (516) & (78) & (1229) & (104) & (32®7) & (113) \\
\hline & \(0 / 100\) & - & 212 & - & 306 & - & \(3 \times 4\) & - & 426 \\
\hline & & & (72) & & (99) & & (126) & & (189) \\
\hline
\end{tabular}

\footnotetext{
* - numbers in parentheses are standard deviations
}
.. . . Cont "d

AFFENDIX 9 (cont'd):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ```
Density
(plants
 per
 m}\mp@subsup{}{}{2}\mathrm{)
``` & Sp. Comp. & Aspen & \begin{tabular}{l}
Jack \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
TIME \\
Jack: \\
Fine
\end{tabular} & Aeeks) & \begin{tabular}{l}
Jact: \\
Fine
\end{tabular} & Aspen & \begin{tabular}{l}
10 \\
Jack: \\
Fine
\end{tabular} \\
\hline \multirow[t]{10}{*}{83} & 100/0 & 1120 & -- & 2675 & & 8758 & & 7594 & - \\
\hline & & (463) & & (1906) & & (2432) & & (4619) & \\
\hline & \(75 / 25\) & 1461 & \(2 \mathrm{S5}\) & 2259 & 291 & 8672 & 274 & 7283 & 278 \\
\hline & & (476) & (93) & (916) & (98) & (1846) & (97) & (274.5) & (102) \\
\hline & \(50 / 50\) & 1302 & 211 & 2062 & 267 & 3146 & 285 & 7785 & 297 \\
\hline & & (581) & (53) & (6.30) & (65) & (114.5) & (77) & (3545) & (97) \\
\hline & 25/75 & 1119 & 224 & 1874 & 281. & 3106 & 296 & 7310 & 332 \\
\hline & & (482) & (61) & (1050) & (82) & (1613) & (94.) & (3595) & (147) \\
\hline & \(0 / 100\) & - & 256 & - & 348 & - & 890 & - & 446 \\
\hline & & & (55) & & (101) & & (141) & & (215) \\
\hline \multirow[t]{10}{*}{17} & 100/0 & 1086 & & 2171 & - & 3886 & & 10697 & \\
\hline & & (529) & & (1184) & & (1998) & & (6041) & \\
\hline & 75/25 & 1002 & 173 & 1.890 & 205 & 4782 & 218 & 7575 & 248 \\
\hline & & (417) & (48) & (1058) & (47) & (1241) & (58) & (3232) & (109) \\
\hline & 50/50 & 1322 & 176 & 2611 & 220 & 4374 & 212 & 9813 & 239 \\
\hline & & (612) & (43) & (1470) & (84) & (24.42) & (77) & (6167) & (106) \\
\hline & \(25 / 75\) & 1504 & 256 & 2948 & 282 & 4820 & 286 & 9812 & 319 \\
\hline & & (586) & (80) & (1289) & (65) & (24.80) & (99) & (5717) & (142) \\
\hline & \(0 / 100\) & - & 180 & - & 174 & - & 184 & - & 203 \\
\hline & & & (47) & & (49) & & (54) & & (87) \\
\hline
\end{tabular}```


[^0]:    *     - Means spanned by the same letter (a,b) are not significantly different at the specified confidence level.

[^1]:    *     - Means spanned by the same letter (apbac) are not significantly different at the specified confidence level.

[^2]:    *     - Means spanned by the same leteer (asb) are not significantly different at the specified confidence level.

