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ABSTRACT 

The McKellar Harbour Sequence is located on the shore of Lake Superior approximately 

40 km west of the town of Marathon, Ontario. The Sequence was examined in detail 

through stratigraphic and geochemical investigations in order to determine the depositional 

environment and provenance of these rocks. 

Four subsequences were identified in the McKellar Harbour Sequence, consistent with the 

facies associated with a distal submarine ramp environment. The Sequence shows 

thickening and coarsening upward trends, indicative of progradation of the ramp onto the 

basin floor. This indicates that the rocks of the McKellar Harbour Sequence are the distal 

equivalents of the proximal submarine ramp facies identified in the Beardmore-Geraldton 

and Quetico terranes to the north of the study area. Sedimentary strata from other potential 

source regions did not exhibit the characteristic features of a submarine ramp, and were 

likely deposited through different processes. Insufficient data were collected to determine 

the depositional environment for these units. 

Geochemical analyses indicate that the rocks of the McKellar Harbour Sequence have 

immobile element chemistry that is very similar to that of the Beard more-Geraldton and 

Quetico terranes, and that a continuum of deposition from north to south is present. 

Sediments generated in the Beard more-Geraldton terrane were transported to small basins 

associated with the Schreiber-Hemlo volcanic island system by a submarine ramp. 



ACKNOWLEDGEMENTS 

1 would like to thank Dr. Phil Fralick for his support and patience in the completion of this 

project, which was partially funded by the Centre for Northern Studies and NSERC. Reino 

Viitala and Anne Hammond prepared the thin sections and Elenor Jensen assisted with the 

analyses. 

Trow Consulting Engineers Ltd. provided drafting supplies, time, a regular paycheck and 

a career. 

Most of the credit should, however, go to my wife Christina and daughter Leslie who 

inspired me to finish despite the commitments of fatherhood and a full-time job. This 

manuscript is dedicated to you both, without whom it would never have been completed. 



TABLE OF CONTENTS 

1.0 INTRODUCTION   1 
1.1 Purpose   1 
1.2 Location and Access   1 
1.3 Previous Geological Work  3 

2.0 GENERAL GEOLOGY   5 
2.1 Introduction  5 
2.2 Schreiber - Winston Lake Region   5 
2.3 Jackfish-Middleton Region   5 
2.4 Heron Bay - Hemlo Region  7 
2.5 Structural Geology  9 

2.5.1 Schreiber - Winston Lake Region   9 
2.5.2 Jackfish - Middleton Area  9 
2.5.3 Heron Bay - Hemlo Area  12 

2.6 Metamorphism 12 
2.6.1 Schreiber - Winston Lake 12 
2.6.2 Jackfish - Middleton 12 
2.6.3 Heron Bay - Hemlo  12 

3.0 LITHOFACIES ASSOCIATIONS - STUDY AREA  14 
3.1 Introduction 14 
3.2 Jackfish - Middleton Region  14 

3.2.1 Jackfish Area 15 
3.2.2 McKellar Harbour Area 18 

Coarse-Grained Lithologies 18 
Medium-Grained Lithologies 18 
Fine-Grained Lithologies 19 

3.2.3 Sequence Organization  20 
Type 1 Subsequence 20 
Type 2 Subsequence  23 
Type 3 Subsequence 26 
Type 4 Subsequence 26 

4.0 LiTHOFACIES ASSOCIATIONS - POSSIBLE SOURCE AREAS 31 
4.1 Quetico Subprovince  31 
4.2 Schreiber- Winston Lake Region 32 
4.3 Heron Bay - Hemlo Region 34 

4.3.1 Coarse-Grained Lithologies 34 
Amwri Lake Area 34 
Hemlo Area 38 

4.3.2 Sandstone  39 
4.3.3 Siltstone 39 
4.3.4 Chemical Sedimentary Rocks 40 

iii 



4.3.5 Volcanic Rocks  41 
Pukaskwa Area  41 
Lake Superior Area 44 

5.0 DEPOSITIONAL ENVIRONMENTS 46 
5.1 Introduction 46 

5.2 Sediment Gravity Flows  46 
5.2.1 Jackfish - Middleton Region 48 

5.3 Possible Source Areas 51 
5.3.1 Schreiber-Winston Lake Region  51 
5.3.2 Lake Superior Area  52 
5.3.3 Pukaskwa Area 52 
5.3.4 Hemlo Area 53 
5.3.5 Amwri Lake Area 53 

6.0 DEPOSITIONAL SYSTEMS 55 
6.1 Introduction  55 
6.2 Winston Lake Area 55 
6.3 McKeliar Harbour Area 55 
6.4 Heron Bay - Hemlo Area 56 

7.0 PROVENANCE  57 
7.1 Introduction 57 
7.2 Conglomerate Provenance  57 

7.3 Sandstone Provenance 58 
7.3.1 Introduction 58 
7.3.2 Sandstone Provenance - Geochemical Techniques 59 
7.3.3 Application of the Technique to the Study Area  64 
7.3.4 Geochemical Interpretation 66 

8.0 DISCUSSION AND CONCLUSIONS  ... 70 

REFERENCES   ... 73 

APPENDIX A - GHIBAUDO’S FACIES CLASSIFICATION ... ... 87 

APPENDIX B - McKELLAR HARBOUR SECTION .... . . 89 

APPENDIX C - METHODOLOGIES AND DATA SET . . . . 101 
IV 



List of Attachments 

FIGURE 1: Study Area and General Geology  .3 

FIGURE 2. Geology of the Heron Bay - Hemlo Region . . . . 12 

FIGURE 3. Schnieders' (1987) Study Areas. . . . 16 

FIGURE 4. Steel River Section 1 . . . ... 23 

FIGURE 5: Steel River Section 2 . . . . . 24 

FIGURE 6: Type 1 Subsequence   . . 30 

PHOTOGRAPH 1: Type 1 Subsequence ... ... 31 

FIGURE 7: Type 2 Subsequence   ... 34 

PHOTOGRAPH 2: Type 2 Subsequence . . ... 35 

FIGURE 8; Type 3 Subsequence   ... 38 

PHOTOGRAPH 3: Type 3 Subsequence ... ... 39 

FIGURE 9; Type 4 Subsequence   ... 40 

PHOTOGRAPH 4: Type 4 Subsequence  ... 41 

FIGURE 10: Table 1- Sequence Organization . ... 42 

FIGURE 11: Winston Lake Section  ... 46 

FIGURE 12: The Heron Bay - Hemlo Region . . . . 49 

FIGURE 13: Pukaskwa Section 1   ... 60 

FIGURE 14: Pukaskwa Section 2   ... 61 

FIGURE 15: Lake Superior Section  ... 63 

FIGURE 16: Comparison between fan and ramp depositional systems ... ... 69 

V 



FIGURE 17: Theoretical sketches illustrating the use of scattergrams in determining 

element mobility    . . 86 

FIGURE 18: Theoretical sketches illustrating the use of SiOg plots in determining element 

mobility  . . 89 

FIGURE 19: Immobile Element Ratios . . . . 94 

FIGURE 20: Immobile Element Ratios   . . 95 

FIGURE 21: Paleoenvironmental Reconstruction . . . 97 

FIGURE B-1: Legend for Stratigraphic Sections . .  116 

FIGURE B-2: McKellar Harbour Section ... .. 117-126 

TABLE C-1: Geochemical Data 1  129 

FIGURE C-1: General Geology and Sample Locations - McKellar Harbour 130 

TABLE C-2: Geochemical Data 2   ... 131 

FIGURE C-2: Heron Bay-Hemlo Sample Locations  ... 132 

FIGURE C-3: Sample Locations - Beardmore-Geraidton   134 

APPENDIX D - DETERMINATION OF ELEMENT MOBILITY 136-172 

VI 



1.0 INTRODUCTION 

1.1 Purpose 

This study is an attempt to establish the origin of the Late Archean metasedimentary 

rocks in the Jackfish-Middleton area through lithostratigraphic interpretation, provenance 

studies, and paleoenvironmental reconstruction. The study area has received little attention 

of this sort, with most previous work focusing on the nature of the gold mineralization at 

Hemlo. Within the study area there are several good exposures of sedimentary rock that 

contain information on the lithofacies present. Using lithofacies associations, the 

depositional environments for these specific locations can be determined. The best 

exposure of sedimentary strata in the study area lies on the shores of McKellar Harbour. 

This sequence provides an excellent opportunity to perform both provenance studies and 

compilation of data for paleoenvironmental interpretation. To gain a regional perspective, 

it is necessary to acquire sedimentological and geochemical data from any possible source 

areas that may have provided sediment to the McKellar Harbour Sequence. One possible 

source area (the Quetico Subprovince) has a substantial data base. Additional sedimentary 

exposures in the Winston Lake, Schreiber, Lake Superior, Pukaskwa, Hemlo, and Amwri 

Lake areas were examined as part of this study. The depositional environments and 

geochemical signatures of the various regions can then be compared in order to develop 

a regional reconstruction of depositional environments, providing an overview of the tectonic 

processes at work during the time of deposition. This type of study has not been attempted 

in the area as yet, and will yield significant information regarding the history of the region. 



1.2 Location and Access 

The study area is located within the District of Thunder Bay, between the town of 

Schreiber to the west, and White Lake Provincial Park to the east (Figure 1). The rocks 

within the study area consist of metavolcanic and metasedimentary supracrustal units in the 

Wawa Subprovince of the Superior Province, Canadian Shield. The area has been 

subdivided into smaller regions (Schreiber -Winston Lake, Jackfish - Middleton, and Heron 

Bay - Hemlo) to ease discussion (Figure 1). Access is gained primarily by Highway 17 (the 

Trans-Canada Highway, Lake Superior Route) which traverses east-west through the area. 

Several smaller dirt roads, and the Whitesand-Winston Road provide additional access off 

this main route The C.P.R. railway tracks also provide good access to the shore of Lake 

Superior at several points, and a boat launch can be used at Neys Provincial Park to enable 

water access to the McKellar Harbour area. 
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Figure 1: Study Area and General Geology 
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Due to the complexities introduced through metamorphism and deformation, 

interpretation of the data was made with caution. Deformation can produce features that 

are quite similar to primary sedimentary features, in addition to obliterating or complicating 

existing primary sedimentary structures. Thus, this study concentrates on the description 

and interpretation of small scale (i.e. individual lithofacies) observations, and lithofacies 

associations. Where possible, relatively less-deformed rocks were used to give insight into 

the understanding of more deformed rocks. For instance, in the McKellar Harbour section 

there was evidence deformation had occurred, causing the vertical attitudes of the units and 

the rare presence of minor Z type folds (or kinks) in some beds, but there were no bedding 

reversals or outcrop scale folded (i.e. synforms or antiforms) structures in over 850 m of 

section. These rocks would classify as "less-deformed" for the purposes of this discussion. 

1.3 Previous Geological Work 

The eastern portion of the study area received little attention prior to the discovery of 

gold in the Hemlo camp. Reconnaissance mapping was conducted by the Ontario 

Department of Mines (ODM) (now the Ontario Geological Survey (OGS)) in 1931 and 1932 

by J.E. Thomson (Thomson 1931, 1933). Discovery of gold mineralization in what is now 

the Hemlo Camp, prompted mapping by M.W. Bartley and T.W. Page in 1947 for the Lake 

Superior Mining Corporation Ltd. (Page, 1947). These two workers continued mapping 

during the early 1950’sforthe Department of Industrial Development of the Canadian Pacific 
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Railway (Bartley and Page, 1957, 1958). V.G. Milne of the ODM mapped the Cirrus Lake- 

Bamoos Lake Area north of Marathon in 1963, and the Black River Area to the east in 1964, 

1965 (Milne, 1968). The Heron Bay and Hemlo Areas were mapped by T.L. Muir of the 

OGS in 1977 and 1978, respectively (Muir, 1982a,b). Muir conducted a more detailed 

examination of the structure and stratigraphy of the Hemlo Camp in 1983 (Muir, 1984). Muir 

also produced detailed lithological and structural maps of the Hemlo Camp in 1990 and 

1991. G.M. Siragussa of the OGS mapped to the east of Muir in 1983 (Siragussa, 1984a, 

b), and continued mapping to the east and northeast of the Camp in 1984 and 1985 

(Siragussa, 1985a,b). Mann (1986) examined the lithostratigraphy of the Moose Lake 

Formation. Pan and Fleet (1989) conducted a study of the metamorphic petrology and gold 

mineralization of the White River gold prospect and examined the Cr-rich silicates of the 

Hemlo area. These workers also studied much of the geochemistry, alteration and 

metamorphism of the Hemlo camp. Pan (1990) also completed a Ph.D. thesis studying the 

metamorphic petrology and gold mineralization in the Camp. Pan, Fleet, and Stone (1991) 

looked at the calc-silicate alteration in the Hemlo deposit, the geochemistry of 

metasedimentary rocks in the Hemlo-Heron Bay greenstone belt, and skarn mineralization 

at the White River property in the Hemlo area. Corfu and Muir (1989) determined U-Pb 

ages in the Hemlo Camp. 
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The area to the west of the Coldwell Alkalic Complex (the Schreiber-Middleton Region) 

has received comparatively little attention. The Jackfish-Middleton Area was mapped at a 

scale of 1:31,680 by Walker (1967). The Big Duck Lake Area (Winston Lake Area) was 

mapped by Pye (1967). The Winston Lake VMS deposit was the subject of a paper by 

Balint et. al. (1986). Iron formations and associated rocks of the Lower Steel River - Little 

Steel lake area were the subject of a M.Sc. thesis by Schnieders (1987). Carter (1988) 

described the geology of the Schreiber - Terrace Bay Area. An occurrence of sulphide- 

facies iron formation southeast of Schreiber (the Morley Occurrence) was the subject of a 

study by Fralick et al (1989). The area was also given an overview in a field trip guide by 

Fralick and Barret, (1991), and the tectono-stratigraphic synthesis is discussed in Erickson, 

Krapez and Fralick (1994, in press). 
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2.0 GENERAL GEOLOGY 

2.1 introduction 

The study area is bounded by rocks of the Quetico Subprovince to the north, and by 

rocks of the Pukaskwa Gneissic Complex to the south. The area is also effectively bisected 

by rocks of the Coldwell Alkalic Complex. The geologic discussions will deal with the rocks 

of the Schreiber - Winston Lake Region, Jackfish - Middleton Region, and the Heron Bay - 

Hemlo Region separately {refer to Figure 1 for the location of these regions within the study 

area). Most rocks in the study area have been subjected to at least greenschist facies 

metamorphism, thus to reduce repetitive usage, the prefix "meta" will be dropped and the 

lithologies described with their original nomenclature. 

2.2 Schreiber - Winston Lake Region 

The Winston Lake region consists of mainly mafic volcanic rocks in the southern portion. 

Intermediate to felsic volcanic rocks intercalated with sedimentary rocks occur interlayered 

with mafic flows in the north (Pye, 1967, Carter 1988), particularly in the vicinity of the 

Winston Lake Mine. Felsic Volcanic rocks associated with the Winston Lake Mine have 

been dated at 2723+/-2Ma (Schandl et al., 1991). The volcanic rocks have been intruded 

by granitic rocks of the Crossman Lake Bathoiith in the north, the Whitesand Lake Batholith 

to the west, and the Terrace Bay Batholith to the southeast. Rocks of the mine area are 

also intruded by a gabbroic sill. 
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The Schreiber - Terrace Bay Area is underlain by two cycles of volcanic rocks separated 

by sulphide-facies iron formation (Carter, 1988). The southern series of rocks is dominated 

by pillowed mafic flows, pillowed andesitic flows, and lesser amounts of rhyolite. This 

2000m thick sequence gives way to 242m of felsic tuff and lapilli tuff, followed by 120m of 

iron formation (Carter, 1988). To the east, rocks below the iron formation marker horizon 

consist of a 3900m thick structureless package of intermediate calc-alkalic pyroclastic rocks. 

Above the iron formation, which Carter (1988) interprets as the top of the lower sequence, 

there occurs a 5230m thick sequence of iron-rich, pillowed tholeiitic mafic volcanic flows 

that are interlayered with thin units of clastic and chemical sedimentary rocks, as well as 

relatively thin (60m) andesitic and rhyolitic units. Overall, in the Schreiber - Winston Lake 

Area, the volcanic assemblages make up a much larger proportion of the rocks present 

than do the sedimentary rocks. 

2.3 Jackfish-Middleton Region 

The Jackfish - Middleton region is underlain by Archean supracrustal rocks consisting 

of a volcanic-sedimentary sequence that has been intruded by granitic to syenitic plutons, 

as well as mafic to ultramafic dikes and sills (Schnieders, 1987). Volcanic rocks include 

massive to pillowed mafic flows, and intermediate to felsic tuffs and pyroclastic rocks. 

Sedimentary rocks consist predominantly of graded turbidites with minor conglomerate and 

iron formation (Schnieders, 1987, Walker, 1967). Sedimentary rocks, although not 

dominating the sequence in this area, make up a substantially larger portion of the overall 

succession than in the Schreiber - Winston Lake Area. 

8 



Mafic intrusions include gabbroic and dioritic with minor ultramafic sills, dikes, and 

stocks (Schnieders, 1987). The relationship of these rocks to the host volcanic/sedimentary 

sequence (i.e. feeders, sub-volcanic intrusions, coarse-grained flows, etc.) is unknown 

(Walker, 1967). 

The Paleoproterozoic Animikie Group (including the Gunflint and Rove Formations) 

overlies the Archean supracrustal rocks and consists of conglomerate, greywacke, algal 

chert, iron and dolomitic chert-carbonates ("Superior-Type" iron formation, [Schnieders, 

1987]) black pyritic shale, argillite, tuff, and minor basalt. 

The Sibley Group (consisting of the Pass Lake, Rossport, and Kama Hill Formations) 

represents Mesoproterozoic sedimentary rocks (conglomerate, sandstone, dolomite, chert, 

and mudstone) that disconformably overlie the shales of the Animikie Group. Keweenawan 

rocks consist of diabase, gabbro, peridotite, and the Osier Group volcanic rocks (tholeiitic 

basalts with minor rhyolite and interflow conglomerate). The Coldwell Alkalic Complex is 

a Late Precambrian intrusive that forms the eastern boundary of the Schreiber-Middleton 

area. Other intrusive rocks of the Late Precambrian that occur within the study area include 

the Prairie Lake Carbonatite and mafic to felsic dikes (geology summarized by Schnieders, 

1987). 
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2.4 Heron Bav - Hemlo Region 

The Hemlo region is underlain by supracrustal rocks that have been interpreted as part 

of the Schreiber-White River section of the Wawa Subprovince, Superior Province. These 

rocks are Late Archean in age (2800-2600 Ma; Corfu and Muir, 1989a,b), have been 

intruded by the Proterozoic Coldwell Alkalic Complex to the west, and other granitic bodies. 

The Gowan Lake Pluton in the vicinity of the Hemlo Mining Camp is 2678-f-/-2 Ma B.P. 

(Corfu and Muir, 1989). 

The metavolcanic rocks of this portion of the greenstone terrane have been subdivided 

into two major groups based on geochemical analysis and location (Muir 1982a,b): The 

Playter Harbour Group lies to the south (Figures 2, 2A) and consists of massive and 

pillowed tholeiitic basalt flows (locally variolitic) with minor intercalations of intermediate to 

felsic pyroclastic rocks and siltstone units. Thin interflow units of chert, amphibolite and 

magnetite iron formation plus graphitic mudstone with pyrite, pyrrhotite, and chalcopyrite 

are also present (Muir, 1982a, b). The Heron Bay Group lies to the north of the Plater 

Harbour sequence and consists of the bulk of the supracrustal rocks in the Hemlo-Heron 

Bay greenstone terrane. These rocks host the gold deposits of the Hemlo Camp and 

consist of mainly dacitic with minor rhyolitic, calc-alkalic pyroclastic rocks with some calc- 

alkalic and basaltic, pyroclastic rocks, and minor tholeiitic basalt flows (Muir, 1982a,b). Muir 

(ibid) has identified a lateral facies transition within the Heron Bay Group as follows: coarse 

pyroclastic breccia occurs in the vicinity of Heron Bay, with blocks measuring up to 2 m in 
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diameter. Fragment size decreases gradually to the east, with lapilli tuff and tuff 

dominating. East of Rous Lake, volcaniclastic sedimentary rocks become increasingly more 

prevalent, and to the east of the mine sites clastic sedimentary rocks (wacke and siltstone) 

predominate. This facies transition indicates the presence of a volcanic centre to the west 

in the vicinity of Heron Bay, and another possible minor centre in the area of the mining 

camp. Siragusa (1984) suggests the presence of another centre further to the east, where 

coarse pyroclastic rocks are found associated with pebbly arenite, which passes laterally 

to fine-grained sedimentary rocks to the west. 

A fourth volcanic centre has been identified by Milne (1968) to exist north of the Musher 

Lake pluton. This is based on the apparently continuous sequence (from north to south) 

of mafic pillowed volcanic rocks, silicic pyroclastic rocks with minor intercalated mafic flows, 

conglomeratic sedimentary rocks, and then finer-grained sedimentary rocks. 
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Mafic and uitramafic intrusive rocks (gabbro, peridotite, and pyroxenite) have been 

emplaced into the volcanic and sedimentary rocks, and are located primarily in the Playter 

Harbour Group, and in the northern portions of the Hemlo region (Milne, 1968, Muir, 

1982a,b). Some may have been comagmatic with the host mafic volcanic rocks (Muir, 

1982a). 

Several granitic bodies have also intruded the supracrustal assemblage. These form 

a series of hornblende-biotite granodiorite intrusions (Milne, 1968, Muir 1982a) and include 

the Heron Bay Pluton to the southwest, the Cedar Lake Pluton and Cedar Lake Stock in the 

centre, and the Mosher Lake Pluton to the north. Surrounding the supracrustal rocks are 

granitic gneiss of the Gowan Lake Pluton to the north, a portion of the Quetico 

Metasedimentary Belt (consisting primarily of quartz monzonite, Milne, 1968), the White 

Lake Gneissic Complex to the east, and the Pukaskwa Gneissic Complex to the south. The 

White Lake Gneissic Complex and Pukaskwa Gneissic Complex both consist of 

trondjhemite, granodiorite, and minor quartz monzonite (Muir, 1982a,b). 

Feldspar porphyry dikes and sills are common locally, within both the volcanic and 

sedimentary rocks, some of which may be synvolcanic, and some related to the younger 

granitic intrusions (Muir, 1982a,b, Siragusa, 1984). 

Two, and possibly more ages of Archean diabase dikes are present throughout the 

Heron Bay-Hemlo region, intruding all previously mentioned rock types, and occasionally 

each other (Muir, 1982a,b). Proterozoic diabase dikes are also present, as is lamprophyre, 

again cross-cutting all lithologies (Muir, 1982a,b). 
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2.5 Structural Geology 

2.5.1 Schreiber - Winston Lake Region 

The structural geology of the Big Duck Lake Area was discussed by Pye (1964). Pye 

describes the rocks as striking east-northeast in the east, with steep (60-90°) northerly dips. 

This strike changes to west near Big Duck Lake, and to the northwest in the Winston Lake 

Area. As the strike changes, the dips of beds were observed to flatten to 35-60° to the 

northeast. Pye (1964) interprets this as representing a possible syncline, or as being the 

result of crossfolding, but did not undertake a detailed structural study. 

The structure of the Schreiber - Terrace Bay Area has been described by Carter (1988). 

The upper (Cycle II) volcanic/sedimentary assemblage in the Schreiber -Terrace Bay Area 

has been folded about east-southeasterly plunging axes (Carter, 1988), while the southern 

(lower Cycle I) volcanic sequence is homoclinal in nature. Deformation has produced a 

regional fabric that is generally parallel to the lithological trends, but is observed to "wrap 

around" the granitic intrusions locally. The rocks of this area have also been cut by faults 

that generally trend to the northwest. 
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2.5.2 Jackfish - Middleton Area 

Walker (1967) based on reconnaissance scale mapping, found no reliable marker 

horizons, and iron formations to only represent the general structure locally . These 

formations were not continuous nor distinctive enough to use as markers. Walker (1967) 

also reports a northeast to east structural trend between Jackfish and Middleton that 

changes to a northwest trend between Santoy Lake and the Aguasabon River. In addition 

to this trend, he found easterly trending isoclinal folds, with sub-horizontal fold axes. In the 

Bottle Point and Kingdom Area, Walker (1967) suggests that the volcanic rocks overlie the 

sedimentary rocks based on local top indicators. Walker also identified an easterly 

plunging anticline in the mafic pillowed volcanic rocks between Jackfish Bay and the lower 

Steel River. This structure is upright south of Jackfish, and is overturned to 60° to the south 

east of Little Santoy Lake. 

Schnieders (1987) undertook a more detailed but more localized examination of the 

structure in this area. He examined in detail the structural elements in four areas; Kingdom, 

Lawson Island, Steel River, and Blackfox (Figure 3). Schnieders concluded that the rocks 

of his study area were subjected to two separate folding events, or a complex progressive 

deformation during one event. The presence of structural facing reversals, and younging 

direction reversals indicates a more complex structural setting than that envisioned by 

Walker (1967). Schnieders (1987) shows that, in the Kingdom Area, the volcanic rocks lie 

stratigraphically below the sedimentary rocks, and that the iron formation marks the 

transition from active volcanism to turbiditic sedimentation. 
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FIGURE 3. Schnieders’ (1987) Study Areas. 
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2.5.3 Heron Bay - Hemlo Area 

The structure of the Hemlo region has been examined by many workers. Patterson 

(1984) and Quartermane (1985) describe the large-scale structure as a synform with granitic 

intrusions along the fold axis. West and South of the Cedar Lake Pluton, rock lithologies 

strike generally E-W to ESE-WNW and are observed to dip moderately to subvertically to 

the north (Muir 1982b, Siragusa, 1984a,b). North of the Cedar Lake Pluton, the rocks strike 

NW-SE and dip subvertically or steeply to the southwest (Milne, 1968, Siragusa 1984a,b). 

This led Siragusa (1984a) to conclude that the rocks surrounding the Cedar Lake Pluton 

are downward converging structures, and were likely joined before the emplacement of the 

Cedar Lake Pluton; further work (Siragusa, 1984a) indicates that the two "belts" (one to the 

north, one to the west and south of the Cedar Lake Pluton) may be the limbs of a fold 

around the Cedar Lake Pluton, with the closure intruded by pegmatitic granite in the 

Bremner River area. The Hemlo region was subjected to polyphase deformation, or at least 

a very complex progressive deformation as indicated by the presence of up to three 

structural fabrics (Muir, 1985). 

2.6 Metamorphism 

2.6.1 Schreiber - Winston Lake 

In the Winston Lake Area, the rocks have been subjected to a relatively high grade of 

metamorphism. Garnet-hornblende-biotite assemblages occur in the vicinity of the Winston 

Lake Mine, and within 1600m of the Quetico-Abitibi subprovince boundary throughout the 

Big Duck Lake Area, suggesting that this amphibolite-facies metamorphism is related to 
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the subprovince boundary (Carter, 1988). 

2.6.2 Jackfish - Middleton 

The rocks of this area have generally been subjected to greenschist facies 

metamorphism (Walker, 1967) with corresponding local increases adjacent to intrusions. 

The contact aureole of the Coldwell Alkalic Complex was found by Walker (1967) to extend 

to 1.6 km (1 mile) from the contact with the intrusion in the Dead Horse Creek area. This 

aureole shows an increase in grade from the regional metamorphic grade to upper 

amphibolite facies. 

2.6.3 Heron Bay - Hemlo 

Generally, the regional metamorphic grade is thought to be of low greenschist facies 

(Muir, 1982 a,b). This assumption is based on the metamorphic grade of a large variolitic 

mafic volcanic unit north of Heron Bay that is relatively removed from the influence of any 

of the large intrusive bodies in the region which increase the local metamorphic grade. 

Contact metamorphism reaches upper amphibolite facies , and the effects of contact 

metamorphism can extend up to 1.7 km from the larger plutons (i.e. the Coldwell Alkalic 

Complex) (Muir, 1982b). The regional metamorphism affects all rock types except the Late 

Precambrian alkalic intrusive rocks, and possibly the Middle Precambrian diabase dikes 

(Muir 1982b). Smaller mafic to ultramafic intrusions also can increase the local 

metamorphic grade to lower amphibolite facies (Muir 1982b). Muir (1982a) has defined the 
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regional metamorphic conditions as 3 to 3.4 kbars and 510 to 530 °C based on the 

mineralogy of a pelitic schist. Quartermain (1985) puts the conditions at 5 kbar and 600 °C 

based on the mineralogy of a pelite near the mining camp. 

To the east of the Hemlo Camp, Siragusa (1983, 1984a,b) found the supracrustal 

sequence to have been subjected to amphibolite grade regional metamorphism, with local 

contact metamorphic aureoles adjacent to intrusive bodies. Siragusa (ibid) also found 

silicification along fractures and joints, particularly in the sediments proximal to the large 

granitic intrusions (i.e. the Cedar Lake Pluton). Milne (1967) found the rocks to the 

northwest of Hemlo (the Cirrus Lake - Bamoos Lake area) to have been subjected to 

hornblende-hornfels metamorphism or phases intermediate between hornblende-hornfels 

and almandine-amphibolite. Milne (1967) also noted retrograde effects in the presence of 

sericitization of andalusite, or sericitization and sausseritization of feldspar in amphibolite 

rocks. 

To the northeast, (Black River Area) Milne found almandine-amphibolite grade 

metamorphism, along with retrograde effects. 

The supracrustal rocks of the Heron Bay - Hemlo region can therefore be said to have 

been subjected to an average metamorphic grade of lower to middle amphibolite facies, 

with local increases or decreases in grade due to the proximity or distance to intrusive 

bodies, and retrograde metamorphism from amphibolite facies to greenschist facies 

appears to be relatively common. 
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3.0 LITHOFACIES ASSOCIATIONS - STUDY AREA 

3.1 Introduction 

In this section, sedimentary rocks of the Jackfish-Middleton region are described first, 

as they form the units whose depositional environments and provenance are being 

investigated. Sedimentary sequences in the surrounding areas are then described under 

the heading “Possible Source Areas”, as a regional context is required for proper 

environmental and provenance reconstruction. 

The following lithologies were recognized in the region: 

1. Conglomeratic/Pyroclastic Rocks 

2. Sandstone 

3. Siltstone 

4. Mudstone/Shale (including graphitic shale) 

5. Chemical Sedimentary Rocks 

a. iron formation 

b. calc-silicate units 

c. barite horizons 

6. Associated Volcanic Rocks 

a. mafic volcanic rocks 

b. intermediate to felsic volcanic rocks 
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The lithofacies will be discussed in terms of field and petrographic microscope 

examination. Where one or more of these lithofacies is not present for a specific area, it 

will be omitted from discussion. The Conglomeratic/Pyroclastic lithology is a broad 

classification that will be more clearly defined as the rocks from each area are described. 

Due to the effects of metamorphic recrystallisation and/or grain size reduction, with some 

rocks (the sandstone, siltstone, or mudstone lithofacies) nomencalture has been assigned 

through field observation, lithofacies association, and geochemical evidence rather than 

strictly by grain size. The inclusion of the volcanic rocks in the discussion of the 

sedimentary rocks is necessary due to the close association (particularly of the intermediate 

to felsic pyroclastic units which are often interstratified with the sedimentary units) of these 

two rock types. The correct interpretation of the depositional system requires that the 

relationship between the volcanic and sedimentary rocks be fully understood. 

Ghibaudo (1992) has developed a classification system for subaqueous sediment 

gravity flows that allows more descriptive detail to be included in the nomenclature. When 

describing the sedimentary rocks in the study area formed by subaqueous processes, this 

classification system will be used in conjunction with that of Bouma (1962). The names and 

letter codes of Ghibaudo’s classification system are presented in Appendix A. 
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3.2 Jackfish - Middleton Region 

The Jackfish - Middleton Region has been divided into the Jackfish Area, which was 

examined by Schnieders (1987), and the McKeilar Harbour Area which was examined as 

part of this study. The general geology of and sample locations in the McKeilar Harbour 

Area are illustrated on Figure 4. 

3.2.1 Jackfish Area 

At the Steel River bridge on Highway 17, Schnieders (1987) describes turbiditic 

sandstones ranging from "ABCBCD and ABCBCDE (near complete turbidites, Bouma, 1967) 

to AE, (proximal) CDE, and BDE (medial-distal), and DE (distal-pelagic) types". These have 

been interpreted as representing deposition in channels (AE and AA turbidites), and on fan 

lobes (ABODE turbidites) of the submarine fan model (Walker, 1976). Stratigraphic sections 

(Figures 4 and 5) from the Steel River Bridge have been interpreted as thinning upwards 

(Figure 4) and thickening upwards (Figure 5). Schnieders (1987) favours deposition on a 

submarine fan using Walker’s (1978) model, but also suggests that deposition could have 

occurred in an arc-trench system with the progradation of small fan lobes along the floor 

of the trench. 

Schnieders (1987) also examined the nature and chemistry of iron formation in the 

Jackfish Area in detail. They occur as units of varying thickness and commonly mark the 

contact between volcanic and sedimentary successions. They are often interbedded with 

carbonaceous slates underlying the turbidites (Schnieders, 1987). 
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Mafic (pillowed, massive, porphyritic and amygdaloidai) volcanic rocks are the predominant 

lithology associated with the iron formations of the Jackfish Area (Schnieders, 1987). In the 

Jackfish-Middleton region, mafic volcanic rocks consist of pillowed, sometimes variolitic, 

sometimes amygdaloidai, tholeiitic and minor calc-alkalic flows. One outcrop to the east 

of the Steel River on Hwy 17 shows an excellent exposure of spherulitic basalt . These 

spherules consist mainly of carbonate, giving the rock a higher than average COg (up to 

5%) content. These mafic rocks also have a lower SiOg content (47-52%) compared with 

other volcanic rocks from this portion of the study area which tend to have Si02 contents 

on the order of 60-69% (i.e. Samples BRS-14, BRS-15, BRS-16, data from Schnieders, 

1987). 

Graphitic slates were observed, primarily in the McKellar Harbour area, and consist of thin 

<1m beds of schistose, graphitic shale/slate often separating individual turbidites (McKellar 

Harbour Section, Appendix B). No calc-silicate units were observed in this portion of the 

study area. 

In the Jackfish-Middleton portion of the study area, intermediate to felsic volcanic rocks 

occur as a large package to the north of the sedimentary units logged in the McKellar 

Harbour area. Walker (1967) describes these as tuff, lapilli tuff, agglomerate, crystal tuff and 

porphyritic lava. These rocks were not examined as part of this study. 
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3.2.2 McKeilar Harbour Area 

Coarse-Grained Lithologies 

In the McKeilar Harbour area, only one thin (5-10 cm) conglomeratic unit was located. 

This unit is consists of felsic and intermediate volcanic clasts in a fine-grained sandy matrix. 

It can be classified as facies Mgys using the nomenclature of Ghibaudo (1992). The clasts 

are angular and elongate parallel to bedding, with an average size of about 2X4 cm. No 

sedimentary structures were observed in the unit, and in thin section, the sandy matrix 

consists of mainly quartz with lesser amounts of feldspar and minor biotite. This unit occurs 

at the base of a Type 1 Subsequence (see below). 

Medium-Grained Lithologies 

The best occurrences of sandstone in this area are located within the sedimentary rocks 

that crop out in McKeilar Harbour. A composite section was logged along the shore of 

Lake Superior, giving approximately 850 m of nearly continuous section (Appendix B). The 

sequence consists of mainly medium- to fine-grained turbiditic sandstones in conjunction 

with generally thinner siltstone/shale units in AE, AD, BE, ABE, CE, CD, DE, and rarely 

ABODE (Bouma, 1962) arrangements. These units can also be described as facies gSM, 

gISM, ISM, xSM, tgSM, and trSM (Ghibaudo, 1992). The sandstone beds range in 

thickness from 10 cm to over 2 m, and usually possess parallel laminations of finer, but 

sometimes coarser sand. Other internal primary structures observed were: ripple cross- 

lamination, scour structures, suspended ripples, loaded ripples, convoluted bedding. 
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siltstone/mudstone rip-up clasts, and occasional dewatering features such as sandstone 

dikes. Coarse-tail grading was noted at a few locations. Some beds of medium-grained 

sand contain laminations of medium- to coarse-sand- sized lithic fragments (usually granitic, 

but occasional volcanic in composition). Isolated, loaded, sandy ripples occur within some 

shale/mudstone units. Sedimentary structures define the individual lithofacies associations 

and will be discussed in more detail in the relevant section. 

Fine-Grained Lithologies 

Siltstone units were observed in the McKellar Harbour area most often as the C or D 

division of CE and DE turbidites (Bouma, 1962). These correspond to facies ITM and gTM 

of Ghibaudo (1992). However, Ghibaudo does not include a classification for rippled silt- 

mud couplets (CE turbidites). Using the same format as Ghibaudo, they can be given the 

letter-code rTM. 

The silt-mud couplets observed in the McKellar Harbour Sequence range in thickness 

from < 1 cm to 25 - 30 cm. They are commonly bounded by sharp contacts, especially 

between individual turbidites. Within a single turbidite, the contact between the underlying 

siltstone and the overlying mudstone is somewhat more gradual, but still makes a sharp 

transition in grain size. The siltstone units commonly show parallel lamination (D division), 

but some beds show cross-stratification, and some contain ripples, classifying them as the 

C division of a CE turbidite (facies rTM). At times the siltstone units scour into underlying 

units, or in turn are scoured into by overlying units. Shale rip-up clasts are occasionally 

present within siltstone units. Silty material is also present as loaded or isolated ripples in 
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the mudstone E divisions of some turbidites. Siltstones occur in Subsequence Types 1 and 

2 (see below for their association with the sandstone lithologies). 

In the Jackfish - Middleton area mudstone units usually occur as the E division in DE, 

BE, and CE turbidites (Bouma, 1962) or facies ITM, gTM or rTM (Ghibaudo, 1992) within 

Subsequence Types 1 and 2. Rare isolated siltstone/shale beds were observed. Thickness 

varies from <1 cm to >1 m. Sharp contacts usually exist between shale units and the 

surrounding beds, both within a single DE turbidite, and a sharp contact defines the top of 

one DE sequence and the beginning of the next. However, within an individual DE 

sequence, the contact between the shale E division and the underlying sandstone or 

siltstone D division is generally more gradual than that between separate DE sequences. 

Individual shale units (facies IgM or gM, Ghibaudo, 1992) also occur, often separating 

coarser sandstone units, but not as part of a turbidite deposit. The shale in these units is 

black in appearance, and usually has a well-developed planar fabric parallel to bedding. 

These individual shale units are interpreted to represent the top of Subsequence Type 3. 

Commonly, wisps of fine sand, and more rarely, isolated ripples of fine sand occur within 

the shale units. Overlying sandstone units often scour into underlying shale units 

(especially between separate turbidite sequences), and shale rip-up clasts are common 

within sandstone units. 
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3.2.3 Sequence Organization 

The McKellar Harbour sequence can be divided into 4 types of subsequences, or 

lithofacies associations, based on the types of sedimentary structures present within 

individual layers, the relative thickness and grain size of the units, and their association with 

one another. There is a general lack of organization of the sequence into definitive cycles, 

but an attempt has been made to group units of a similar nature into their respective 

subsequences. The Subsequence Types 1, 2, and 3 are similar in appearance, but when 

examined in detail section (Appendix B) the differences in bed thickness, combined with 

the presence or absence of beds with specific sedimentary structures enables distinction 

to be made. Subsequence Type 4 is significantly different than the other Subsequences, 

making recognition easier, but only one occurrence of this Type was noted in the McKellar 

Harbour Area. Once one is familiar with the Subsequences, it is possible to recognize them 

in the field. The Subsequence nomenclature used herein has been developed based on 

data collected from McKellar Harbour, and is used only as a tool to aid in the description 

of the McKellar Harbour Sequence. The portions of the stratigraphic sections presented in 

this chapter use the legend as presented in Appendix B. 

Type 1 Subsequence 

This subsequence (Figure 6, Photograph 1) is the second most common within the 

Mckellar Harbour Sequence and consists of relatively thick (1 - 1.5 m) AE, BE and CE 

turbidites (facies gsS, gsxS, gslS,etc of Ghibaudo (1992). 
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FIGURE 6; Type 1 Subsequence. 
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PHOTOGRAPH 1; Type 1 Subsequence. 
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The A/B/C divisions show medium to coarse bases that rapidly grade upwards to fine 

sand, usually in the first 10 to 20 cm. Lithic fragments (coarse sand-sized) are common in 

the bases, and petrographic examination has shown that mono or polycrystaline quartz 

dominates, but granitic fragments are common, and volcanic fragments form a minor 

component. In some beds, the lithic fragments or coarse sand grains are observed to float 

in a matrix of finer sand. The sand units are commonly parallel laminated (facies gIS), with 

the laminations concentrated near the bottoms of the beds, becoming less frequent towards 

the tops of the beds. Other internal sedimentary structures consist of: shale rip-up clasts 

(usually but not always located near the bottom of beds); isolated ripples of coarser sand 

located sporadically throughout the unit; ripple cross-stratification (usually located in the 

upper portions of beds); scours into underlying units; convoluted lamination (disrupting the 

parallel-laminated portions of the beds); and sandstone dikes into overlying units. The last 

two dewatering features occur less frequently than the other features. Sedimentary 

structures usually occur only in the thickest units, with the exception of parallel lamination. 

The top of the sand unit is marked by a sharp contact, followed by 1 to 20 cm of silty shale, 

then a sharp contact with the overlying turbidite. Sometimes the E division silty shale 

contains isolated ripples of fine sand, or is scoured into by the overlying unit. The contact 

between the fine and coarse divisions of a single turbidite is generally not as sharp as that 

between separate turbidites, allowing them to be distinguished in the field. 
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Type 1 Subsequences vary in thickness from several metres to tens of meters, and often 

show a gradual upwards transition into other subsequences, but the upwards transition can 

be quite abrupt. The lower transition is almost always sharp. Within this Subsequence, the 

beds are usually observed to thin upwards, particularly when a transitional boundary exists 

between Type 1 and Type 2 (below) Subsequences. 

Type 2 Subsequence 

This subsequence (Figure 7, Photograph 2) dominates the McKeilar Harbour Sequence. 

It consists mostly of AE, BE, CE, CD, BDE, ADE, and rarely ABODE turbidites or facies 

gSM, ISM, gISM, gxSM, rSM, and rgSM of Ghibaudo (1992). These units are thinner 

(usually <1 m) than those included in the Type 1 Subsequence, but possess the same 

general appearance as they have a medium- to coarse-grained sand base which grades 

rapidly (within the first few cm) to fine-grained sand. The sand units also possess the same 

types of sedimentary structures as the Type 1 Subsequence. This Subsequence consists 

of relatively thinner 
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PHOTOGRAPH 2: Type 2 Subsequence. 
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units however, and sedimentary structures other than parallel lamination occur less 

frequently than in the Type 1 Subsequence. Shale rip up clasts appear more frequently in 

Type 2 Subsequences than in Type 1. The E division (silty shale, facies T) is bounded by 

sharp contacts, as in the Type 1 Subsequence. Type 2 Subsequences range in thickness 

from several meters to several tens of meters, and dominate the middle portion of the 

McKellar Harbour Sequence. The lower boundaries of this Subsequence type are often 

hard to distinguish due to their transitional nature, but the upper boundary between this 

Subsequence and Types 1 and 3 is usually distinct due to changes in bed thickness. 

Type 3 Subsequence 

This Subsequence (Figure 8, Photograph 3) occurs less frequently than the Type 1 

Subsequence, but is similar in that it consists of relatively thick (up to 3 m) sandstone units, 

but usually the silty shale E division (facies T or M), present in Type 1, is lacking. The 

sandstone units can grade rapidly from medium- to coarse-grained sand at the base to fine- 

grained sand within a few centimetres, (facies gIS) but size grading is less apparent, and 

parallel lamination less common within this type of subsequence than with those previously 

described. Shale rip-up clasts are quite common within this Subsequence, and loaded 

ripples (facies grS, Ghibaudo, 1992) often occur at or near the top of individual beds. 

Several of these thick sand units will occur together, topped by a unit of black shale (facies 

IM, Ghibaudo, 1992) 0.5 to 1 m thick. These shale units mark the top of the Type 3 

Subsequences. Type 3 Subsequences vary in thickness from 3 to 20 metres, appear to 

occur primarily in the top 1/3 of the McKellar Harbour Sequence, and are marked by sharp 
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upper and lower transitions into other Subsequences. 

Type 4 Subsequence 

Only one Type 4 Subsequence (Figure 9, Photograph 4) was located in the McKellar 

Harbour Sequence, but because of its markedly different character, it deserves it’s own 

classification. It consists of thick (1 -2 m) beds of silty shale separated by thin (10 cm) 

fine-grained sand layers (facies mMS). One silt layer contains shale rip-up clasts, and one 

fine-grained sand layer contains ripples (facies rMS), but sedimentary structures are 

generally lacking within the Subsequence. This Subsequence is approximately 10 metres 

thick, and is bounded by sharp transitions with the overlying Type 3 and underlying Type 

2 Subsequences. Subsequence development in the McKellar Harbour Sequence from 

bottom to top is shown in Table 1 below, omitting missing portions of the section. From 

this Table, it can be seen that the lower and middle parts of the McKellar Harbour 

Sequence are dominated by Type 1 and 2 Subsequences while the upper parts are 

dominated by Type 3 Subsequences, with one occurrence of a Type 4 Subsequence. 
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FIGURE 8: Type 3 Subsequence. 
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PHOTOGRAPH 3: Type 3 Subsequence. 
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FIGURE 9: Type 4 Subsequence. 
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PHOTOGRAPH 4: Type 4 Subsequence. 
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FIGURE 10: Table 1- Sequence Organization. 

stratigraphic Position Subsequence Type 

0-40m Type 1 

40-42m Transition to Type 2 

42-72m Type 2 

72-99m Type 1 Transitional to Type 2 

99-124m Type 1 Transitional to Type 2 

124-154m Type 1 Transitional to Type 2 

154-236m Type 1 

236-246m Type 2 

246-265m Type 1 

265-325m Quartz Diorite Intrusion 

325-366m Type 1 Transitional to Type 2 

366-403m Type 1 

403-491m Type 1 Transitional to Type 2, Transitional back to Type 1 

491-505m Type 2 

505-641 m Type 2 

641-660m Type 3 

660-664m Type 3 

664-745m Type 2 

775-786m Type 4 

786-790m Type 3 

790-811 m Type 3 

811-815m Type 3 

815-835m Type 3 

835-837m Type 3 

837-849m Type 3 

849-850m Type 1 
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4.0 LITHOFACIES ASSOCIATIONS - POSSIBLE SOURCE AREAS 

4.1 Quetico Subprovince 

The rocks of the Quetico Metasedimentary Province have been described as a 70 km 

wide sequence consisting of "thinly bedded, feldspathic and lithic wackes containing 

abundant intraformational breccias, grainflows, rare ironstones, mixtites, and ultramafic 

sediments" (Percival, 1989, Williams, 1987a, 1989). The southern portion of the 

Subprovince (between Big Duck and Killalla Lake, immediately to the north of the Winston 

Lake area) contains a unit of "felsic volcanic breccia and derived conglomerate" (Williams, 

1989) that can be interpreted as proximal facies derived from the Wawa Subprovince 

volcanic centres to the south. Workers in the Quetico Subprovince (Williams, 1987, 1989, 

1990; Devaney and Williams, 1988, and Card, 1990) describe it as an accretionary prism 

lying between the Onaman-Tashota/Beardmore-Geraldton Terranes to the north, and the 

Wawa Terrane to the south . This prism was then subjected to high temperature (Abukuma 

Type) metamorphism (Card, 1990) during the conversion from a forearc setting to a back- 

arc setting as the oceanic basin between the northern (Onaman-Tashota/Beardmore- 

Geraldton) volcanic arc and southern (Wawa) volcanic arc closed. 

Barret and Fralick (1989) and Fralick et al. (1992) have examined sedimentary rocks in the 

Beardmore-Geraldton and northern Quetico areas, and have concluded that a submarine 

ramp (Heller and Dickinson, 1985) was the depositional system. Felsic turbidites occur 

south of Beardmore in vertically structured successions of turbidites (Fralick et al, 1992). 
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The turbidites are organized into thick thinning- and fining-upwards sequences, and are 

topped by CDE and/or DE turbidites, with the overlying massive grainflows/high density 

turbidites marking the bottom of the next sequence. 

4.2 Schreiber- Winston Lake Region 

Conglomeratic rocks make up only a small proportion of the rocks observed in the 

Schreiber-Winston Lake area. To the north, adjacent to the Winston Lake Mine, there are 

units present that have been described as "pseudo-fragmental" (Balint et al, 1990). In the 

field the rocks have a sedimentary appearance, but this may be the result of post- 

depositional deformation, with the "pseudo-fragments" representing tectonically disrupted 

layers. Also at the Winston Lake Mine, units described as "pyroclastic" (Balint et al, 1990) 

occur several hundred metres south of the mine site. In thin section, the "clasts" in these 

units show an outer rim or rind of feldspar and quartz-rich material, with an inner rim of 

mafic minerals (hornblende and biotite). Inside this inner rim is a core of fairly coarse- 

grained (0.5mm) quartz. Little work has been performed on features of this sort, but it is 

thought that this core and rim structure suggests a metamorphic/tectonic origin for these 

"clasts" (Dr. G. Borradaile, pers. comm.). 

At the Winston Lake Mine, the volcaniclastic rocks observed have been subjected to 

metamorphism, deformation and chemical alteration which makes lithofacies identification 

and original grain size determination difficult. They occur interbedded with pillowed mafic 
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volcanic flows (Balint et al. 1990) and gabbroic intrusive rocks in units up to several metres 

in thickness. Each "unit' consists of beds or layers (Winston Lake Section, Figure 11) that 

vary in thickness from several centimetres to several tens of centimetres. Often the layers 

are disrupted, contorted, or crenulated, and occasional fish-hook folds were observed. 

Graded beds either did not exist, or these features have been obliterated due to combined 

deformation, metamorphism and alteration. To the west of the mine area, away from the 

alteration envelope, units of definite sedimentary origin occur. Unfortunately, these units 

are relatively poorly exposed, and no detailed stratigraphic work could be performed. 

Adjacent to Hwy. 17, immediately to the east of the town of Schreiber, there occur 

several sedimentary units intercalated with intermediate volcanic rocks. These thin (<1 m) 

units consist of massive fine sandstone beds 10 to 20 cm thick, interbedded with graphitic 

shale. These sedimentary units make up a relatively small proportion of the rocks present. 

Just west of the town of Schreiber, an excellent exposure of iron formation occurs, but 

it was not examined as part of this study. The Morley Pyrite Occurrence (located between 

Schreiber and Terrace Bay) was the subject of a study by Fralick et al. (1989). These 

workers found that the internal structure of the pyrite laminations indicates the presence of 

deep water organic mats adjacent to hydrothermal vents, and a possible modern analogue 

exists with the sulphidic sediments of the Red Sea brine deeps. 
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The mafic volcanic rocks examined near the Winston Lake Mine have been subjected 

to amphibolite-facies metamorphism (Carter, 1988). They are quite schistose, and appear 

black or dark green on fresh surface, but are grey to rusty on weathered surfaces. Some 

outcrops to the west of the mine site, removed from the alteration associated with the 

Winston Lake VMS deposit are pillowed, but generally these features are not present. 

Mineral assemblages consist predominantly of hornblende, plagioclase feldspar, -t-/- garnet, 

with minor quartz. Biotite develops along the planes of the schistosity. 

Intermediate to felsic volcanic rocks exist in the Winston Lake Area as pyroclastic 

tuffaceous units, in the mine area it is difficult to determine the exact origin of these units. 

4.3 Heron Bay - Hemlo Region 

The Heron Bay - Hemlo Region consists of the Lake Superior Area, the Pukaskwa Area, 

the Hemlo Area, and the Amwri Lake Area (Figure 12). The region is dominated by volcanic 

rocks of the Heron Bay Group and the Playter Harbour Group (Muir, 1982a,b), but 

sedimentary rocks do occur within the belt, and meaningful stratigraphic information could 

be obtained from these units. 
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4.3.1 Coarse-Grained Lithologies 

Two occurrences of conglomeratic rocks were examined in the Hemlo - Heron Bay area 

as part of this study. The first is located just northwest of Amwri Lake (Figure 11), while the 

second is located on the Page-Williams mine site in the Hemlo Area. They are variable in 

composition and configuration, but possess an assortment of angular clast types and sizes. 

These rocks have been termed pebbly arenite and conglomerate (Siragusa, 1984a,b), 

conglomerate (Milne, 1968, Brown et. al. 1985), volcaniclastic conglomerate (Patterson 

1984, Muir 1982b), polymictic paraconglomerate (Quartermain, 1985), agglomerate (Milne, 

1968), and primary intraformational breccia (Muir, 1982b). 

Amwri Lake Area 

Conglomeratic rocks outcrop on the Amwri Lake sideroad which extends west from 

Highway 614, 14 km north of the Trans Canada Highway (Hwy. 17). Eleven small outcrops 

occur 3.4 to 3.8 km west of Hwy. 614. These outcrops are well-exposed, as they were 

stripped and cleaned by Noranda Exploration in 1983. The outcrops were carefully logged, 

the clast lithologies noted, and internal characteristics (i.e. thickness of fragment- and 

fragment-free layers, sorting and grading, etc.) recorded. 
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Five different clast lithologies are present. The most abundant is a feldspar-quartz 

porphyry of granitic composition. Feldspar phenocryst content generally exceeds quartz 

phenocryst content, and both average 1-3 mm in size. The matrix consists of fine-grained 

(< 1 mm) felsic material with minor mafic mineral grains. Somewhat less abundant are 

clasts of a feldspar +/- quartz porphyry which has a dioritic bulk composition, with a greater 

concentration of mafic mineral grains in the matrix. Although there is a gradation of 

fragment types between the two end members, most of the fragments can be placed within 

the category of one or the other end member. The third and fourth fragment lithologies 

consist of fine-grained mafic schists; either biotite schist (more common), or hornblende 

schist (less common). The fifth fragment lithology is an aphanitic, felsic (rhyolitic) type that 

occasionally contains small (< 1 mm) phenocrysts of feldspar, with occasional quartz. 

These clasts are identical in appearance to lapilli within felsic pyroclastic rocks to the west, 

and are interpreted as felsic volcanic clasts. The relative abundances of these fragment 

lithologies were determined by counting the number of each fragment type within a one 

metre square area on an apparently representative outcrop of the Amwri Lake conglomerate 

(Thomson, 1985, unpublished data). The outcrop was chosen for its good exposure, even 

clast size (to eliminate possible bias due to clast size), and its possession of clasts that 

appear to be representative of the unit as a whole. 
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Of 117 fragments counted, 59 (50%) were granitic feldspar-quartz porphyry; 44 (38%) 

were dioritic feldspar (=/- quartz) porphyry; 11 (9%) were biotite schist; 1 (1%) was a 

hornblende schist; and 2 (2%) were felsic volcanics (Table 2). These values tend to over- 

represent the volcanic and hornblende schist fragments, as only 8 volcanic fragments, and 

just several hornblende schist fragments were located during subsequent work in the area. 

It was also found that the proportion of dioritic porphyry fragments may locally exceed that 

of the granitic porphyry fragments. Several granitic porphyry clasts were observed to 

contain small somewhat angular inclusions of mafic material (biotite- and/or hornblende- 

rich) similar to the mafic schist clast types. 

Size of the fragment types varies (Table 2), ranging from .01 x 1 cm to 16 x 100 cm. 

Generally the porphyry fragments are largest, the mafic schist fragments are intermediate 

in size, and the felsic volcanic fragments tend to be smallest. Fragment size distribution 

will be discussed later. 

The long axis-short axis ratios for the fragments (as viewed in two dimensions) are also 

quite variable, and appears strongly dependent on fragment lithology. These data are 

presented in Table 2. 
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Table 2. 

This conglomeratic unit consists of fragmental layers ranging in thickness from 4 cm to 

almost 3 m with an average thickness of 1 m. Alternating with these are clast-free layers that 

range from several cm to over 1m, with an average thickness between 15 and 20 cm. The 

fragments are clast-supported. The coarser fragmental layers show, at best, poor sorting, 

and are generally unsorted. The finer units are moderately sorted, with rarer wel- sorted 

layers. Size grading is not common in this lithofacies, and is crude where present. Often, 

unsorted layers of coarser clasts alternate with finer clast-sized units that display very poor 

size grading. This can give the impression of a thicker, more sorted layer than those that 
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actually exist. Fining is most commonly in a northern direction, but some layers exhibited 

coarsening to the centre, grading to finer material to both the bottom and top of the layer. 

The clast-free layers interstratified with the conglomerate layers consist primarily of fine 

sand-sized (0.1 to 0.2 mm average, range is 0.4 to 0.6 mm) quartz and feldspar with lesser 

mafic minerals. Thin section study gave visual estimates of composition as follows: 45-50 

% quartz, 10-20 % albitic plagioclase, 5 % microcline, 10-20 % biotite, 5-15 % hornblende, 

1-3 % epidote, and 0-2 % chlorite. Two samples (Samples H53, H54) of clast-free layers 

from this lithofacies were analysed in order to determine their geochemical composition. 

The internal structure of the clast-free layers of the conglomeratic lithofacies is 

somewhat variable. Some layers are not truly "clast free" but can contain minor 

accumulations or the occasional isolated small fragment of the same composition as those 

described above. These clasts are 0.1x1.0 cm to 0.3x2.0 cm in size, with occasional larger 

clasts (up to 5x15 cm). 

The clasts can be sparsely, but equally distributed throughout the lithofacies, and thus 

the clast-poor layers are considered a clast-poor, matrix-supported variety of the unit. More 

commonly, the clasts are concentrated at what has been interpreted as the base of the 

layer, with poor grading into the clast-free upper portion of the layer. Clast- free sandstone 

is often massive and non-graded. Several layers do contain alternating laminations of felsic 

and mafic minerals on a mm scale which are restricted to the basal few centimetres of the 

layer. These laminated interlayers are usually finer grained than the remainder of the unit. 

Size grading (where present) is found to be restricted to the uppermost few cm’s of the 

layer. Some of the thicker sandstone (clast-free) units have a finer grained, compositionally 
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laminated base several cm’s thick, followed by a succession of well-defined layers which 

fine-up (northward). 

Hemlo Area 

Two distinctly different types of conglomeratic rocks occur on the Page Williams mine 

site. The first is similar to that described above, and has been described as a heterolithic 

fragmental unit by Valliant et al. (1985) and Valliant (1986). This description is essentially 

meaningless, as all sedimentary rocks are made up of fragments of some sort, and an 

ordinary sandstone could be classified as a "heterolithic fragmental unit". It is concluded, 

based on field observation that Valliant is referring to a conglomeratic lithology. This unit 

is relatively poorly exposed, and, where present, relatively strongly deformed. Muir (1982b) 

places this unit at the core of a large reclined overturned syncline, introducing the possibility 

of bed repetition. With the poor exposure, little meaningful geological information could be 

obtained, and this unit was not examined to any great extent. A brief, description will, 

however, be given here. 

As with the Amwri Lake area, this unit appears to contain two main clast lithologies. The 

first is a granitic feldspar {+!- quartz) porphyry, and the second is mafic schist (biotite with 

minor hornblende). The granitic porphyry fragments appear to predominate, but no clast 

counts were performed. Other clast types may occur, but were not located. Clast sizes are 

comparable to those in the Amwri Lake Area, and range in size from 0.7x3.5 cm to 3x16 

cm, with occasional larger clasts up to 12x60 cm in size. The long axis:short axis ratios. 
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(as seen in two dimensions) are in the order of 4:1 to 5:1 for the granitic fragments and 

10:1 for the mafic schist fragments. The clasts from this unit show deformational features 

such as fishhook folds on the end of clasts, or in rare cases, the clast may itself be 

isoclinally folded. Some clasts show amoeboid shapes. The mafic schist clasts do not 

exhibit these features. 

The internal structure of these units appear to differ from those in the Amwri Lake Area 

in that they are strongly matrix supported (<25% clasts by volume), and no evidence of size 

grading was found. Only several clast free units were located, and no evidence of size 

grading, or internal structures were present. A thin section of this clast-free unit showed a 

very fine-grained sandstone (0.05-0.06 mm in size) with 30% quartz, 45% plagioclase 

feldspar, 15% biotite, 5% chlorite, 4% calcite and 1% epidote. The composition of the 

Amwri Lake Area units appears to be less feldspathic and more quartz-rich. 

The second type of conglomeratic unit located on the Page Williams Site is quite 

different. It has been referred to as an intraformational breccia (Muir, 1982b), possibly 

resulting from slump brecciation. It is 2-3 m thick and has been traced around the limb of 

the previously mentioned fold for 600 m. The intraformational nature of this conglomeratic 

unit is suggested by the clast lithologies which are identical to the thinly interstratified rock 

types surrounding it. The clasts consist of garnet and staurolite bearing pelitic material and 

calc-silicate rock containing chiefly calcic amphibole, plagioclase, and calcite. Biotite schist 

and biotitic sandstone clasts are relatively less abundant. The clasts are angular to 

subrounded, less commonly ellipsoid in shape. They rarely exceed 15 cm in length, and 

numerous clasts appear boudinaged or folded. 
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4.3.2 Sandstone 

In the Hemlo area, sandstone units have been interpreted as having been derived from 

both unlithified volcanic sources, and from reworked material (Muir, 1982b). They range 

from thinly bedded fine- to medium-grained sandstone turbidites to thicker, graded layers. 

The sandstone units occur interbedded with calc-silicate horizons and with conglomeratic 

rocks similar to the Amwri Lake Area. The rocks in this area have been subjected to 

contact metamorphism due to their proximity to the Cedar Lake Pluton (Muir, 1982b), and 

sandstone units sometimes show metamorphically induced reverse grading. Their garnet- 

andalusite-staurolite-cordierite and minor sillimanite assemblage is representative of contact 

metamorphism (Muir, 1982b). Bedding in outcrops in the mine area is often hard to 

discern, or is obscured by metamorphism and/or deformation, making meaningful 

stratigraphic study difficult. 

4.3.3 Siltstone 

Siltstone units occur infrequently in the Heron Bay - Hemlo Region, and are seen as 

relatively thin units interbedded with the sandstone and only occasionally associated with 

conglomeratic units. Sedimentary features are usually not present, aside from parallel 

lamination, with some beds showing convolute lamination. 
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Shale is found interbedded with sandstone and siltstone units, as interflow sediment 

between volcanic flows, or associated with calc-silicate horizons. Generally these units do 

not exhibit sedimentary structures, but occasional wispy and or parallel lamination can be 

observed. 

4.3.4 Chemical Sedimentary Rocks 

Iron formation, graphitic shales/slates, calc-silicate units, and barite horizons are present 

in the Heron Bay - Hemlo Region. Iron formations occur as thin units intercalated with 

mafic volcanic rocks within the Playter Harbour sequence on the shores of Lake Superior 

(Muir, 1982a), and were not examined as part of this study. Graphitic shales appear as thin 

interflow type units within mafic volcanic successions. Calc-silicate units in the vicinity of 

the Hemlo mining camp have been interpreted as thin bedded marl that has been 

metamorphosed to calcium-rich plagioclase and amphibole (Patterson, 1984). These thinly 

bedded units are associated with volcaniclastic sediments and tuffs. 

Barite horizons were studied by Gliddon (1985). They are found associated with DE 

turbiditic argillaceous siltstones (sometimes with green mica clasts), green mica schists, 

sericite carbonate schists, mafic metavolcanic fragmentals and flows, as well as minor tuffs 

and quartz-feldspar porphyry. Gliddon (1985) interprets these horizons as having a 

syngenetic chemical sedimentary origin. Gliddon (1985) interprets the sedimentary rocks 

as being indicative of a deep water, starved basinal setting. 
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4.3.5 Volcanic Rocks 

Mafic volcanic rocks in this portion of the study area consist of massive to pillowed, 

mainly tholeiitic flows that are locally variolitic. Flow top and pillow breccias are also 

present (Muir, 1982a,b). Minor calc-alkalic flows also occur. 

In the Heron Bay-Hemlo portion of the study area intermediate to felsic volcanic rocks 

occur commonly in the Heron Bay sequence and only rarely in the Playter Harbour 

sequence (Muir, 1982a). These rocks occur as tuffs, and lapilli tuffs, and often grade 

laterally into sedimentary units. Geochemically, these rocks are thought to represent calc- 

alkalic rhyolites (Muir, 1982a). In the vicinity of the Hemlo Mining Camp, felsic pyroclastic 

units and tuff are found interbedded with siltstones and calc-silicate units. 

Pukaskwa Area 

On the shore of Lake Superior in Pukaskwa National Park, conglomerate occurs 

intercalated with sandstones (Figures 13 and 14). These units consist of pebble-sized 

material supported by a matrix of coarse- to medium-grained sandstone. The pebbles 

range in size from .2 X ,5 cm to 2 X 5 cm, and are usually graded. These units can be 

given the facies classification GyS (Ghibaudo, 1992). In one unit, at the top of Pukaskwa 

Section #2, pebbly medium/coarse sand occurs as lenses in massive silty shale. 

Ghibaudo (1992) does not have a classification for this type of unit. Clast types (in the 

order of relative abundance) were observed as follows: granitic/dioritic (which were the 

larger clasts), intermediate volcanic, and hornblende-biotite. The hornblende-biotite clasts 

were schistose, and may have been derived from either a volcanic or a sedimentary source. 
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A large proportion of volcanic clasts, with few (if any) intrusive or sedimentary clasts would 

be indicative of a pyroclastic origin for these rocks, but the proportionally larger number of 

granitic intrusive clasts relative to the volcanic clasts indicates that these units are not of 

pyroclastic origin, but are the result of the weathering of a granitic/volcanic terrane. 

Sandstone units in the Pukaskwa area were observed to range in thickness from 5 cm to 

several meters, and are often graded from medium-grained sand at the base to fine sand 

at the top of individual units. They commonly occur as AE, DE, and BE turbidites, and as 

individual beds separating conglomerate units. These units correspond to facies gIS or 

gsIS. Several thick sandstone units containing lithic fragments of granitic, felsic volcanic 

and sedimentary material (Figure 11) were also observed. One of these units has a basal 

section where the lithic fragments are 0.5 cm in size. The thicker sandstone units tend to 

show parallel lamination, and to contain lithic fragments of mainly granitic composition with 

minor volcanic fragments. Three sandstone beds are trough cross-stratified (facies xS, 

Ghibaudo, 1992), and others are convolute bedded. Ghibaudo (1992) does not have 

nomenclature for convoluted bedding, but following his system it is proposed here to use 

the symbol "c" to indicate the presence of this sedimentary feature. Sandstone with 

convoluted bedding would then have the facies classification cS. Sandstone was also 

observed as lenses and loaded ripples within shale/siltstone units. 
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FIGURE 13; Pukaskwa Section 1. 
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FIGURE 14: Pukaskwa Section 2. 
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The occurrence of siltstone beds in the Pukaskwa area is limited to relatively thin units 

interbedded with the coarser sandstone units. Siltstone units in this area commonly show 

parallel lamination, with minor convolute lamination, giving them the facies classification sT 

and cT. 

Mudstone and pelitic rocks are found interbedded with the coarser sandstones, often 

as the E division of a DE turbidite (part of facies MS). They can occur as interflow units 

between volcanic flows, or as beds adjacent to calc-silicate units. They usually do not show 

any sedimentary features other than parallel lamination, with occasional wispy or convolute 

lamination. 

Lake Superior Area 

To the north of the sedimentary rocks observed in Pukaskwa National Park, north of 

Randle Point on Lake Superior, sandstone units are thicker and finer grained (Figure 15). 

More features indicative of slumping (convoluted bedding, slump folds, etc.) are found in 

these units. Pebbly sandstones were absent, but lithic fragments (mostly felsic volcanic) 

were present in some beds. The thicker beds do not show well-developed size grading, 

while the thinner units are generally graded (facies classifications cS,mS or gS [Ghibaudo, 

1992]). There are also two thick units of felsic (rhyolite) tuffaceous material. Some 

shale/siltstone units contain sandstone as loaded or starved ripples (facies rSyM, Ghibaudo, 

1992). 
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FIGURE 15: Lake Superior Section. 
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5.0 DEPOSITIONAL ENVIRONMENTS 

5.1 Introduction 

This chapter will provide a review of processes operative in sedimentary gravity flows, 

and how these were at work during the deposition of the McKellar Harbour Sequence. The 

depositional environments of the possible source areas will then be discussed, allowing 

subsequent interpretation of the provenance of the McKellar Harbour Sequence. 

5.2 Sediment Gravity Flows 

The deposition of turbidites is well-documented and described by Bouma, (1962). 

Bouma’s work has been expanded on by workers such as Stow, (1985) to describe slump 

facies, debrites, coarse-grained turbidites, medium-grained or classical (as described by 

Bouma) turbidites, and fine-grained turbidites. Slumps occur in any lithology, can vary 

considerably in thickness, and in the types of deformational features present within 

individual beds. These are typically folds, thrusts, balls, fish-hook folds, rotational slumps, 

scars, etc.. Debrites consist of material ranging from mud to boulders, and can vary up to 

several tens of metres in thickness. They tend to be relatively unorganized and 

structureless. Turbidites have now been separated into three models, based on grain size 

and bedforms present. Coarse-grained turbidites are mainly deposited by high density 

turbidity currents, but the internal features generated are a result of grain flow, fluidized flow, 

or liquified flow mechanisms during the final stages of deposition (Lowe, 1982). Medium- 

grained turbidite facies develop usually as the classical Bouma (1962) sequence: Ta - 

massive to graded sand; Tb - parallel-laminated sand; Tc - cross-laminated and/or 
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convolute sand; Td - parallel laminated fine sand and silt; and Te - bioturbated mud (in 

Phanerozoic and younger deposits). Fine-grained turbidites usually consist of graded silt- 

laminated mud passing upwards into graded and nongraded mud. With these general 

models in mind, it should be noted that complete sequences are rare, and that partial 

sequences are much more common. 

Lowe (1982) describes deposition of sediment by both high and low density turbidity 

currents. Low density currents produce the facies already described (i.e. the "classic" 

Bouma (1962) model), with deposition occurring through suspension, followed by traction. 

High density turbidity currents occur as sandy flows (with grains supported by turbidity and 

hindered settling), or as gravelly flows (with sediment supported largely by dispersive 

pressure and matrix buoyant lift). The terms low density current and high density (Lowe, 

1982) appear to be more reflective of the relative energy of the turbidity currents, as 

opposed to the actual density, and sandy high density flows are supported by much the 

same mechanisms as low density flows (turbidity and hindered settling). In low density 

turbidity currents the material tends to be finer (silt as opposed to sand), and thus requires 

less energy to keep the material in suspension. The deposition of sandy "high density 

turbidites" occurs through three stages (Lowe, 1982): 1) a traction sedimentation stage, 2) 

a traction-carpet stage, and 3) a suspension-sedimentation stage. Within a turbidite flow, 

material moves in traction at the base, with a plume of suspended material above and 

behind the body of the flow. The traction-carpet stage marks deposition of material through 

"freezing" below the flow (Lowe, 1982). The material deposited by traction is 

characteristically parallel laminated or cross-stratified, while deposition by the traction carpet 
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results in layers of graded coarse sand (facies Ta of Bouma, 1962) at the base of the 

turbidite. Deposition of the suspended material above the flow typically shows grading, 

water escape structures, or can be reworked by residual currents operating after cessation 

of the initial flow. These residual, lower energy currents can produce an upper layer of 

planar-laminated or cross-stratified material typical of "low density" turbidity currents (Lowe, 

1982). 

Gravelly high density turbidity currents consist of a range of material from sand to gravel, 

with this gradation resulting in a range of depositional mechanisms. The coarser material 

in the base of the flow is "frozen" in place when the energy of the flow drops below that 

required to maintain dispersive pressure (Lowe, 1982), resulting in a basal, inversely graded 

traction carpet. This is in turn overlain by a normally graded suspension sedimentation unit 

(Lowe, 1982). This sequence is thought to represent more proximal facies, as flow 

unsteadiness will result in direct suspension sedimentation without traction carpet 

development (Lowe, 1982). Also, as the flow moves more distal to the source, much of the 

material that could be carried by traction carpet processes may have already been 

deposited through "freezing", leaving only that which can be transported through 

suspension. 
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5.2.1 Jackfish - Middleton Region 

The Jackfish - Middleton Region is dominated by the rocks of the McKellar Harbour 

sequence. This is a relatively thick assembiage of turbiditic sandstone, siltstone, and 

mudstone. The McKellar Harbour Sequence does not exhibit any changes of younging 

direction, nor were any small-scale folds observed for over 800 meters of section. Some 

portions of the section are missing (covered by water or overburden), and this could mark 

the locations of folds or faults. However, as there is no evidence to the contrary, the 

McKellar Harbour Sequence will be treated as a continuous sequence for the purposes of 

this interpretation. 

A submarine fan model incorporating three fan facies associations has been developed 

(Mutti and Ricci-Lucchi, 1978, Walker, 1978). The upper fan facies is characterized by 

channel (thick-bedded coarse-grained sandstone-conglomerate) and interchannel deposits 

(laminated or bioturbated mudstone-marlstone). Levee deposits are represented in this 

model by thin bedded, fine-grained turbidites. Middle fan facies consist of distributary 

channels (thinning upwards cycles), overlying the thickening upwards cycles representative 

of prograding lobes. In this mid-fan facies medium- and coarse-grained discontinuous 

turbidites and crevasse-splay sandstones, as well as hemipelagites occur in interchannel 

and distal lobe areas,. The lower fan facies consists of medium- and fine-grained laterally 

continuous turbidites and interbedded hemipelagites. Walker’s (1978) model consists of 

inner, mid and outer facies consisting of debris flow conglomerates, slumped sandstones, 

and graded pebbly sandstones deposited in the inner fan, with "classical" turbidites 

occurring in the mid to lower fan. "Proximal" turbidites are thought to be thick bedded, 
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while "distal" turbidites are thought to be thin bedded in this model. Both these models 

show that in modern and ancient submarine fans, a well-ordered, structured sequence 

develops. The McKellar Harbour Sequence does not show any of the structuring usually 

encountered in a submarine fan environment. 

Relatively unordered stacking of turbiditic sandstones occurs in regions that have a 

submarine ramp environment (Heller and Dickinson, 1985). A submarine ramp is essentially 

a sandy submarine fan that has not developed any long-lasting channels. This lack of 

channelization tends to prohibit the development of suprafan lobes, which occur only locally 

in the ramp environment (Heller and Dickinson, 1985). Ramps are often fed by deltas 

prograding onto the basin floor, over the slope, from numerous points along the delta front 

(Heller and Dickinson, 1985). Figure 16 illustrates the differences between the "classic" 

submarine fan model of Mutti and Ricci-Lucchi (1978) and the model for a submarine ramp. 

The most significant feature of a submarine ramp is the lack of a dominant feeder system 

or submarine canyon. This prohibits the development of channelized inner fan and mid-fan 

deposits (Heller and Dickinson, 1985). Heller and Dickinson (1985) also state that bedding 

thicknesses are generally random, and that asymmetric cycles occur only rarely. 

Submarine ramps are composed of "relatively monotonous and laterally continuous sheets 

of sandstone, the average thickness of which gradually diminishes downramp as the 

sandstone to shale ratio gradually increases" (Heller and Dickinson, 1985). Ramp 

development occurs in basins that are of moderate depth, and have subdued margins. 
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FIGURE 16: Comparison between fan (A) and ramp (B) depositional systems (Heller and 

Dickinson, 1985). 
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Another requirement is a high sedimentation rate that allows the shelf and slope break to 

be swamped with material, preventing the formation of canyons and channelized deposits 

(Heller and Dickinson, 1985). The ramp environment has also been described as a mass 

flow apron (Aitchison and Landis, 1990) and a slope apron (ineson, 1989). Aitchison and 

Landis (1990) describe strata from the Triassic Stepehens Subgroup of Southland New 

Zealand as having characteristics consistent with deposition in a mid-fan area. However, 

Aitchison and Landis (1990) note that the depositional cycles are generally smaller in scale 

than those expected in submarine fan environments, but are reluctant to conclude that this 

alone indicates a ramp environment. They suggest that the lack of structure may be due 

to migratory feeder channels resulting from intra-basinal tectonic activity. Regardless of the 

cause, the Stephens Subgroup lacks a dominant feeder channel or channel system, and 

the resulting facies that such features produce. A ramp environment can be inferred when 

there is no evidence of point sources, or large-scale channels. The presence of 

structureless sand bodies with dewatering features suggests rapid deposition into deep 

water in these environments. Aitchison and Landis prefer to use the term "mass flow apron" 

to describe the ramp environment, but the main features are the same as the submarine 

ramp described by Heller and Dickinson (1985). Mass flow aprons have also been 

described by Ineson (1989) in Cretaceous rocks from Antarctica. The rocks described in 

Ineson’s work appear to locally exhibit more structure (levee facies, channel facies, etc.) 

than that described by Heller and Dickinson (1985) and Aitchison and Landis (1990). This 

difference in morphology is attributed to the development of relatively small fans due to 

localized input of coarse arc-derived sediment. The localized input in Ineson’s model 
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results from variations in basin tectonics, or local increases in volcanic activity. 

Where unchannelized, the environment and resulting sedimentary features (the slope 

apron deposits described by Ineson (1989)) resemble those of the submarine ramp of 

Heller and Dickinson (1985). It is clear therefore, that a relatively narrow shelf with no 

channelization is necessary for the development of a true submarine ramp environment. 

The lack of channelized sediment delivery results in little or no facies segregation into the 

channel facies typical of submarine fans and fan-deltas. Literature review suggests that 

there is a spectrum of depositional environments with the relatively unstructured, 

unchannelized submarine ramps of Heller and Dickinson (1985) at one end, and the highly 

structured fans generated by incised feeder channels in the shelf modelled by Walker 

(1978) and Mutti and Ricchi-Lucchi (1978) at the other end. This concept has been 

discussed by Barrett and Fralick (1989). 

The features of a submarine ramp environment are easily recognized in the McKellar 

Harbour Sequence. The Sequence is dominated by sandy turbidites that show only 

obscure vertical bed thickness and grainsize trends, with the boundaries between 

Subsequences mostly transitional. In over 850m of section there is no evidence of 

channelized deposits, with the possible exception of the conglomeratic unit and associated 

thick and coarser-grained sandstone units that occur about 150m from the base of the 

Sequence. The sandstone units of the McKellar Harbour Sequence are also quite laterally 

continuous, with some units traced for over 1 km along strike. Overall, the lack of facies 

typical of the mid-fan and suprafan lobes, combined with the lateral continuity of the units 

indicates that the McKellar Harbour Sequence was deposited as a submarine ramp. 
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The Subsequences defined in the McKellar Harbour Sequence represent subtle changes 

in the processes at work during the deposition of the Sequence, Type 2 Subsequences 

(most common in the McKellar Harbour Sequence) are typical of the distal ramp facies of 

Heller and Dickinson (1985). As the units become thicker and show more sedimentary 

features (i.e. Type 1 Subsequence), a more proximal ramp environment can be interpreted. 

The thick, relatively ungraded units of the Type 3 Subsequences capped by black shale are 

indicative of proximal ramp facies (Heller and Dickinson, 1985). The Type 4 Subsequence 

(silty shale separated by thin sand units) is a bit of anomaly, as it does not fit the pattern 

of deposition usually encountered with a submarine ramp. It is possible that, during the 

transition from Type 2 (distal) to Type 3 (proximal) facies that occurs 641 m from the base 

of the section, a portion of the ramp was starved for coarser sediment, and only silt and 

minimal sand was deposited. Overall, it appears that the McKellar Harbour Sequence 

shows an upward transition from distal to proximal ramp facies, indicating progradation of 

the ramp onto the basin floor. 

At the Steel River Schnieders’ work (1987) shows the sedimentary rocks to possess 

more structuring/ordering than in the McKellar Harbour Area. The facies present have been 

interpreted as mid fan facies of Walker’s (1978) submarine fan model. It is possible to 

develop minor lobes on a submarine ramp (Heller and Dickinson, 1985), and these would 

give the appearance of lobe deposits of Walker’s (1978) mid-fan region. When put into a 

more regional context, and given their association with the relatively unstructured McKellar 

Harbour Sequence, it can be concluded that the structuring observed by Schnieders (1987) 
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is the result of minor lobe development on a submarine ramp. These units may also reflect 

a change in basin tectonics that caused local channelization of the sediment supply as 

described by Ineson, (1989), resulting in a minor fan developing as part of the ramp. 

5.3 Possible Source Areas 

5.3.1 Schreiber-Winston Lake Region 

To the north of Schreiber, in the Winston Lake area, volcaniclastic rocks are found in 

association with what has been interpreted as pillowed mafic flows (Balint et al. 1990) and 

gabbroic to peridotitic intrusive rocks. These relationships are illustrated in the Winston 

Lake Section (Figure 11). Thinly bedded units of volcaniclastic material lie intercalated with 

several units of biotite schist that have been interpreted as mafic flows (Balint et al., 1990). 

Bedding parallel layers of gabbroic rocks are thought to represent sub-volcanic intrusions 

(Balint et al, 1990). 

Due to the alteration and metamorphism that has affected these rocks it is difficult to 

determine their mode of deposition. The association of the tuffaceous sedimentary and 

pyroclastic rocks with pillowed mafic volcanics indicates deposition either subaqueously, 

or near a body of water. It is quite possible that deposition of the bedded tuffaceous units 

occurred as airfall onto a standing body of water. It is also possible for the tuffaceous 

material to be transported through sedimentary processes to their site of deposition. 
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5.3.2 Lake Superior Area 

The sedimentary rocks of this area are thicker and coarser than those of the McKellar 

Harbour Sequence, and do not show the same rhythmic development of turbidites. AA, AC, 

and CE turbidites dominate at this location. The sandstone to shale ratio is higher, with 

only occasional beds of shale. Features indicative of slumping are common, size grading 

is less apparent, and some units contain abundant lithic fragments. Slumping of 

sedimentary units occurs in areas of high slope and/or rapid deposition. Units in this area 

also tend to thicken and coarsen upwards. Exact interpretation of the depositional 

environment is difficult, but some general conclusions are possible. The lack of shallow 

water (i.e. wave-generated and beach facies) combined with the turbiditic nature of these 

rocks indicates deposition in a relatively deep marine (below storm wave depth) setting with 

a moderate to high slope, and fairly rapid sedimentation rates. The occurrence of two 

rhyolitic units within the section indicates a region close to a volcanic source, where felsic 

tuffs could fall on the water’s surface, sink and become incorporated into the sedimentary 

sequence. The sedimentary rocks in this portion of the study area occur as a relatively thin 

wedge within the much thicker, intermediate to felsic pyroclastic rocks of the Heron Bay 

Group (Muir, 1982a). These volcanic rocks could represent the source for the sedimentary 

rocks of this area. 

The incorporation of volcaniclastic units into sedimentary sequences in volcanic island 

settings has been documented by several workers (i.e. Aitchison and Landis, 1990, Ineson, 

1989). This usually occurs in a depositional system that disperses material derived from 

a volcanic arc (both through airfall and through erosion) into a marine setting. Dispersal 
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systems in these environments have been described as: mass flow aprons (Aitchison and 

Landis, 1990); fan/slope aprons (Ineson, 1989); marine volcaniclastic aprons (Busby-Spera, 

1988): fan-deltas (Nocita and Lowe, 1990); and submarine ramps (Heller and Dickinson, 

1985). 

5.3.3 Pukaskwa Area 

Sedimentary rocks of the Pukaskwa Area are characterised by sandstone units up to 

4m thick that grade upwards to thin (cm) DE or BE turbidites. Some units (particularly the 

thicker ones) contain lithic fragments, and others consist of pebbly sandstone. Several 

units contain trough cross-stratification, and only two beds contain slump features. The 

pebbly sandstones below units of trough cross-stratified sandstone could represent 

deposition in distributary channels in a fluvial dominated delta (Reading, 1986, pp 140-141), 

Synsedimentary deformation in this environment is common and tends to disrupt the facies 

pattern (ibid), but a general pattern for the progradation of a fluvial dominated delta front 

has been developed. This sequence has silty mudstones with occasional turbidites passing 

upwards to parallel laminated siltstones, which are in turn overlain by conglomerate and 

massive to cross-bedded sandstones. The conglomerate units overlie erosional surfaces 

and represent lag deposits. Features of this type of sequence can be interpreted in the 

Pukaskwa Area. Pukaskwa Section 2 (Figure 12) in particular has the features common to 

a fluvial-distributary channel in a fluvial- dominated delta, with trough cross-stratified 

sandstones overlying conglomerates. The slump features that occur near the top of this 

section could be the result of bank slumping, and the pebbly sandstone lenses in silt at the 
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top could represent overbank deposition into low lying areas adjacent to the channels. 

5.3.4 Hemlo Area 

The Hemlo Area is characterised by relatively fined-grained and thin-bedded 

sedimentary rocks closely associated with intermediate to felsic pyroclastic and volcanic 

rocks. Conglomerate units are also present, including an intraformational breccia that may 

have been produced by synsedimentary deformation. The close association of the turbiditic 

sandstone units with tuffaceous pyroclastic units indicates that the pyroclastic rocks were 

deposited as airfall into water, beneath which turbiditic sandstones and conglomerates were 

being deposited. The conglomerates may be the result of debris flows and are interbedded 

with turbidites. Volcaniclastic material delivered to the system at this point would fall on the 

water’s surface, sink and become interstratified with the sedimentary units. A possible 

environment of deposition for these units would be subaqueous with at least a gentle slope 

to enable slump-generated debrites (Walker, 1984). Slumping likely resulted in the 

intraformational breccia (described above. Chapter 3) as a debrite. Delivery of coarse 

material resulting in the conglomerates could have occurred through channels near a delta 

front, or at the base of an alluvial fan. The lack of size grading in the conglomerate units 

is typical of disorganized bedded sub-aqueous mass-flows, and the association with 

turbidites further suggests sub-aqueous deposition. 
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5.3.5 Amwri Lake Area 

The Amwri Lake Area is dominated by conglomerate units ranging from a few 

centimetres to a few metres in thickness, and where present, grading is crude at best. 

These conglomerates are generally in clast support, and some of these units are separated 

by relatively thin sandstone layers that only rarely show rough grading. Units of clast 

supported conglomerate showing crude reverse to normal grading have been shown to be 

deposited by sediment gravity flows (Lowe, 1982). Unorganized (ungraded) units likely 

represent deposition by "cohesive debris flows" (ibid), and the transition from reversely 

graded to normally graded units corresponds to the transition from debris flows (cohesive 

and grain flows) to high density turbidity currents. Lowe (1982) does not speculate on the 

determination of subaereal versus sub-aqueous deposition in sediment gravity flows. The 

lack of stream reworked pebbly units above conglomerate units, combined with a lack of 

well developed grading, and a mud free matrix in conglomerate units has been interpreted 

as indicating a sub-aqueous environment (Higgs, 1990). This description closely matches 

that of the Amwri Lake conglomerates, and it is therefore possible that they were also 

deposited sub-aqueously. Sandstone units that overtop the conglomerate units are then 

likely the result of turbidity currents as part of the same series of events as the underlying 

conglomerate, or as a separate, later, event. 
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6.0 DEPOSITIONAL SYSTEMS 

6.1 Introduction 

The depositional environments discussed in the previous chapter can now be placed 

in a more regional context and the depositional systems operating over a larger area can 

be interpreted. 

6.2 Winston Lake Area 

This portion of the study area lies immediately to the south of the Quetico Subprovince, 

which has been postulated as a south-facing accretionary wedge (Devaney and Williams, 

1988, Williams, 1989) active at approximately 2700 Ma (D. Davis, ROM, pers. comm). Other 

workers have concluded that the Quetico Subprovince is a north facing accretionary wedge 

(i.e. Card, 1990). This conclusion fits well with the depositional environments for the 

Onaman-Tashota and Beardmore-Geraldton areas described by Barrett and Fralick (1985, 

1989), Devaney (1987), Devaney and Fralick (1985), and Fralick (1987) which also favour 

northwards subduction. The Schreiber-Winston Lake area would then represent a volcanic 

arc on the trailing edge of the plate being subducted to the north under the Beardmore- 

Geraldton Terrane, with the Quetico accretionary complex lying between (Fralick and 

Barrett, 1991; Eriksson et al, 1994, in press). 

The presence of pillowed mafic flows suggests a subaqueous environment for the 

deposition of units in the Winston Lake area. If the thin bedding of the volcaniclastic rocks 

associated with the pillowed mafic flows is taken to be primary, the tuffaceous units could 
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have a turbiditic association. These rocks were probably deposited on the flanks of a 

volcanic edifice. Volcanism would have been active during deposition, as the flows and 

clastic rocks are interbedded. The isolated occurrences of carbonaceous sedimentary 

rocks with minor sand and siltstone would have been deposited within minor basins located 

on the flanks of the arc. Another possibility is that sediments from the Beardmore- 

Geraldton terrane to the north filled the Quetico trench, and were transported to the south 

through gaps in the Schreiber volcanic terrain. A submarine ramp has been interpreted as 

the depositional system operating in the Beardmore-Geraldton area (Barret and Fralick, 

1989), and the Quetico Trench (Fralick et al, 1992). This environment is thought to occur 

where the sedimentation rates are high (Heller and Dickinson, 1985). Sediments carried 

over the trench by the submarine ramp would then have a distal ramp affinity, and would 

pond in small basins associated with the Schreiber volcanic terrain. 

6.3 McKellar Harbour Area 

This area shows a thick sequence of turbiditic sedimentary rocks. Schnieders (1987) 

interpreted rocks to the west as representing the mid-fan area in the submarine fan model 

(Walker, 1978), as these rocks show structuring similar to fan lobes. However, it is more 

likely that the McKellar Harbour sequence is representative of a submarine ramp 

environment (Heller and Dickinson, 1985; Barrett and Fralick, 1989). This interpretation is 

favoured due to the lateral and vertical consistency of thickness and bed type over the 

sequence as a whole, and a general lack of channel and depositional lobe facies. 

Schnieders’ (1987) work indicates that some structuring of the ramp took place to the west 
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of the McKeilar Harbour Sequence, and this could represent lobe facies that can occur 

locally within both proximal and distal ramp environments (Heller and Dickinson, 1985). The 

lobe facies in a ramp environment should bear close resemblance to mid-fan facies (Walker, 

1984), as both represent deposition at channel mouths. 

6.4 Heron Bay - Hemlo Area 

Sedimentary rocks in the vicinity of Randle Point and Pukaskwa National Park show 

more proximal affinities than those in McKeilar Harbour. The sandstone units are generally 

coarser, and often contain lithic fragments. Some units are conglomeratic with pebbles in 

a sandy matrix. There is evidence of shallow water deposition in the presence of trough 

cross-stratification, which indicates possible channelization of these units (Figures 11 and 

12 and photo 5). Moving from west to east (from Lake Superior to Amwri Lake) through the 

area, the nature of the sedimentary rocks changes. The units become thicker, and 

conglomeratic rocks appear more frequently. The rocks are clast-rich (usually in clast 

support) indicating a source proximal location. There are also associated felsic pyroclastic 

units, and mafic volcanic flows. Deposition of these units likely occurred sub-aqueously on 

the flanks of an active volcanic island system, and they do not have the sedimentary 

characteristics of a submarine ramp, it is therefore unlikely that they are genetically related 

to the McKeilar Harbour Sequence, and are the result of deposition in a separate basin. 

There is currently insufficient stratigraphic information to ascertain the depositional system 

for these rocks. 
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7.0 PROVENANCE 

7.1 Introduction 

This chapter will interpret the provenance of some of the units in each region of the 

study area. Provenance determination of coarse-grained lithologies (i.e. conglomerates) is 

based mainly on the rock types of the clasts present in each unit. In some cases the 

relative abundances of the clast types was determined using a point counting method, but 

in other areas a visual estimation of the relative clast lithologies was made. The provenance 

of the finer grained lithologies (metasandstone and slate) occurring in each respective 

region was investigated using immobile elements in a geochemical data set. Unfortunately, 

only two samples of sandstone were collected from the Amwri Lake region, and hence 

provenance of the unit was not evaluated using geochemical data. More detailed 

information regarding the clast abundances was collected from this region, and this should 

compensate for the lack of geochemical data from the finer units. 

7.2 Conglomerate Provenance 

There was only one conglomeratic unit located in the McKellar Harbour Sequence. This 

thin unit contained clasts of only intermediate volcanic composition. 

Clast lithologies present in the Amwri Lake Area conglomerate were counted, and the 

data indicate that the majority were of granitic and/or dioritic composition. It is likely that 

the conglomerates resulted from the unroofing of felsic to intermediate plutonic rocks. 

These plutons may have served as possible feeders for the extensive volcanic sequences 

in the region. 
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The conglomerates observed on the shore of Lake Superior in Pukaskwa National Park 

are dominated by clasts of granitic and dioritic origin, with slightly lesser quantities of clasts 

with a volcanic and/or sedimentary origin (the schistose clasts previously described). The 

clast lithologies indicate that the conglomerates evolved from a intrusive/extrusive terrane. 

Conglomerate examined in the Hemlo region consists mainly of granitic feldspar-quartz 

porphyry clasts, with slightly less dominant proportions of biotite-hornblende schist clasts. 

The biotite-hornblende schist clasts probably represent fragments of metamorphosed fine- 

grained sediment. The two clast types are found supported by a matrix of sand. The origin 

of these units may be similar to that of the Amwri Lake conglomerates. However, the 

Hemlo conglomerate is matrix- as opposed to clast-supported, and the relative proportion 

of clasts of a sedimentary origin is greater in the Hemlo units. Unfortunately, these rocks 

were so poorly exposed that no meaningful stratigraphic information could be collected to 

place them in context. 

A second type of conglomerate observed in the Hemlo area occurs on the Page Williams 

property. This unit is likely an intraformational breccia generated by slumping during 

deposition, or as a tectonic breccia produced during folding. The clasts appear to consist 

of material similar to that of the surrounding thinly laminated pelitic beds. 
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7.3 Sandstone Provenance 

7.3.1 Introduction 

Petrographic examination of rocks from the study area revealed only that they were derived 

from intermediate to felsic igneous sources (as evidenced by the presence of granitic and 

intermediate/felsic lithic fragments in the sandstone units). These data did not, however 

yield any information as to the actual source regions, and therefore a more precise 

technique for determining provenance was necessary. Whole rock geochemistry was 

selected as the tool for provenance determination. Samples were collected from the various 

regions within the study area, as indicated on the relevant maps and sections. Appendix 

B presents the methodology used for the determination of the oxide chemistry, and the data 

set itself. A discussion of the geochemical techniques used for the determination of 

sandstone provenance is presented below. 
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7.3,2 Sandstone Provenance - Geochemical Techniques 

Sandstone provenance has been given much attention over the years. Roser and 

Korsch (1986. 1988), Bhatia and Crook (1986), and Bhatia (1983) have developed 

processes for provenance determination based on major element oxides and REE’s. These 

workers tend to ignore the fact that some major elements (Na K, Ca, etc.) are highly mobile, 

and that the composition of sandstones is not necessarily reflective of their original 

composition. This original composition will begin to change as the rock breaks down both 

physically and chemically. The process continues through soil development, diagenesis, 

subsequent metamorphism, and possibly hydrothermal alteration. The combination of these 

processes results in a composition that can be quite different from that of the original rock. 

The mobility of a given element in a rock varies depending on the specific set of erosional, 

depositional, metamorphic and hydrothermal conditions that the rock has been subjected 

to. These factors become more important than the initial source rock composition (Heins, 

1993, Palomares and Arribas, 1993, Melfi etal, 1983, Sastri and Sastry, 1982). Thus, when 

addressing the problem of provenance determination using sediment geochemistry, the 

physical and chemical mobility of the elements used in the determination must be 

addressed. 

Fralick and Kronberg (in press) have developed a procedure for first testing the mobility 

of various elements, concentrating on the less mobile elements (as determined by a 

screening process) and using the immobile elements to infer sedimentary provenance. The 

key to this determination is to find elements in the data set that have a composition 
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reflecting that of the parent material, and have been affected by quantifiable processes. As 

other elements are depleted/enriched, the concentration of immobile elements will be 

concentrated or diluted, and this "constant sum" (Fralick and Kronberg, in press) 

relationship can be used to determine if a given element has been immobile. 

Immobile elements will increase or decrease in concentration as mobile elements are 

lost or gained by the rock. When plotted against one another, the points will move towards 

or away from the origin as mobile elements are added to or depleted from the rock. The 

amount of any immobile element (i.e. the number of atoms of that element) will stay 

relatively constant, it is the addition and/or depletion of the mobile elements that changes 

the relative proportions (i.e. mass of the rock), resulting in changes in the concentrations 

of the immobile elements in the rock. Physical weathering (hydraulic sorting) will cause 

elements that concentrate in finer fractions to give higher concentrations in the clays, and 

likewise elements that concentrate in the coarse fractions will give higher concentrations in 

sands. This physical fractionation will create a line connecting the origin and the two end 

members of the size gradation. This relationship is shown in Figure 17. 
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ELEMENTS CONCENTRATE IN CLAY 

A CONCENTRATES IN SAND, B CONCENTRATES IN CLAY, 

t 

B immobile 

FIGURE 17: Theoretical sketches illustrating the use of scattergrams in determining 
element mobility. 

(A): For immobile-immobile pairs the starting composition A moves to B as a result 
of loss of other consituents from the system. Composition B splits into sh 
(clay) and sst (sand) due to hydraulic fractionaltion (elements A and B 
enriched in clay). If the elements remain immobile during postdepositional 
alteration processes the points sh and sst will move along the A-B vector but 
will not move off it. If the elements were mobile during a phase of alteration, 
they will move off the A-B vector (one possible path is shown by the dotted 
lines). Plotting of immobile pairs from a number so samples will result in a 
linear array of points along radians (r) extending through the origin. 

(B-F); Other possible scenarios involving mobile-immobile combinations: Plotting 
of multiple samples for any of these scenarios results in a scatter of points. 
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When a mobile element is plotted against an immobile element, the pattern is different. 

As the concentration of the mobile element decreases, the line connecting the coarse 

fraction and fine fraction will no longer pass through the origin. This relationship is 

illustrated in Figure 17. 

This technique for mobility determination is most useful for data collected from multiple 

samples of sediment from the same source area. If both the plotted elements are immobile, 

and have behaved in a similar manner hydrodynamically, the data will form a linear trend 

which, when extended, passes through the origin. The data will appear scattered under any 

other circumstances. The chemistry of the source area must remain constant in order for 

this technique to work, and care must be taken to avoid plotting mobile elements that 

behave in a similar manner (i.e. REE’s) against one another, as they may display a false 

linear trend that is not indicative of their mobility. 

A second method developed by Fralick and Kronberg (in press) that is useful in the 

determination of the mobility of elements employs the premise that chemical and physical 

weathering break down all major mineral phases with the exception of quartz. The widely 

held belief that quartz-rich sands are more mature supports this assumption. SiOg must be 

relatively immobile in the given rocks for this technique to work. Figure 18 illustrates the 

following discussion. Sediment undergoing physical and chemical breakdown will split into 

two endpoints (sand and clay). For elements which are hydrodynamically concentrated in 

the fine-grained component, the points will lie on a line that connects 100 % SiOg with the 

original composition. Immobile elements that concentrate in the coarse fraction will form 
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a linear trend that passes through the original composition and the origin. These linear 

trends will appear with the plotting of multiple data points, as long as the starting 

composition of the sediment did not change (i.e. the source rock composition did not 

change, nor did the provenance of the sediment). 

A concern with reconstructing source area composition with geochemical data is that the 

concentrations of chemically immobile elements may not be similar to the starting 

compositions due to mass change during chemical and physical weathering (Floyd et. al, 

1991). This problem can be avoided by examining the ratios of chemically immobile 

elements that have major mineral phases which concentrate in the same size fraction, which 

will not change significantly during chemical alteration and hydrodynamic sorting, and will 

reflect the ratios present in the source rocks, assisting in the determination of provenance. 
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FIGURE 18: Theoretical sketches illustrating the use of SIO^ plots in determining element 
mobility. 

Starting composition splits into fine (sh) and coarse (sst) subpopulations due 
to chemical weathering and hydrodynamic sorting. Changes in SIO^ content 
proceed at the same rate as changes in concentration of the immobile 
element resulting in a vector extending to 100% SiOg for an immobile element 
which concentrates in clay (A) and 0% SiOg for an immobile element which 
concentrates in sand (B). 

Arrows denote movement of points if element A becomes mobile during a 
later phase of alteration. 

Plotting of numerous data points will result in linear trends extending to either 
100 or 0% SiOg for scenarios (A) and (B). Other scenarios: (C), (D), (E), (F), 
will result in a scatter of points when multiple samples are plotted. 
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7.3.3 Application of the Technique to the Study Area 

The suspected immobile elements in sandstone and shales were plotted against one 

another in order to determine their respective mobilities, and the plots are included as 

Appendix D. This process was applied to rocks from each of the study regions; Winston 

Lake, Schreiber, McKellar Harbour, Lake Superior, Pukaskwa, and Hemlo. A linear trend 

towards the origin indicates that the elements in question have remained chemically 

immobile, and have hydrodynamically fractionated in a similar manner (Fralick and 

Kronberg, in press). The plots of Nb vs Ti02 and AI2O3 show that data from the Winston 

Lake area are scattered, and thus these elements have not remained immobile. This is true 

as well for data from Hemlo and Lake Superior. The data from the Schreiber area indicate 

that the elements have remained immobile, and have been hydraulically fractionated in a 

similar manner. The data from McKellar Harbour show a linear trend towards the origin. 

The data appear to be oddly clustered, but this is due to the fact that the analyses were 

given to the nearest 1 ppm Nb, causing the data to "string out" on single incremental values 

of Nb. The data indicate that the elements are immobile and have behaved in a 

hydrodynamically similar manner. Data from the Pukaskwa Area show a linear trend 

towards the origin, indicating that the elements are immobile. Y produces a wide scatter 

when plotted with other elements, indicating that throughout the study area, it has been 

relatively mobile, limiting it’s use in this technique. Zr plotted with TiOg shows a linear trend 

to the origin only for the Pukaskwa region, all others show scattering. Plots of Zr vs AI2O3 

indicate that Schreiber and Hemlo have linear trends towards the origin, but data from the 
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other regions are scattered. 

Further information concerning the chemical and hydrodynamic behaviour of an element 

can be obtained by plotting the element against SiOj. Elements that concentrate in the 

coarser fractions (i.e. sand) will show an increase with increasing SiOg, resulting in a linear 

trend (positive slope). If the element concentrates in the finer fraction (i.e. shale), the trend 

will show decreasing values with increasing SiOg content (negative slope). 

Zr data from McKellar Harbour, Pukaskwa, and Hemlo show a linear trend with a 

negative slope, indicating that Zr has concentrated in the finer fractions, but these linear 

trends are not well developed. Lake Superior data were scattered, as were data from 

Winston Lake and Schreiber. 

Y data from all the study areas are scattered, as are Rb data. 

The plot of Si02 vs AlgOg shows a rough negatively sloped linear trend for data from 

the Lake Superior region, but data from McKellar Harbour, Pukaskwa, and Hemlo are 

scattered. Winston Lake shows a poorly developed negative slope, as does that from 

Schreiber. 
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7.3.4 Geochemical Interpretation 

The data indicate that with the exception of the Winston Lake and Hemlo areas, TiOg, 

Nb, and AI2O3 were relatively immobile and behaved in a hydrodynamically similar manner. 

The SiOg scattergrams indicate that for the McKellar, Schreiber and Hemlo areas these 

elements were concentrated in the fine fraction, while the Pukaskwa depositional processes 

concentrated these elements in the coarse fraction. Ratios of the Ti, Al, Zr and Nb from 

each region will be strongly related to the average ratios of the source rocks for these 

regions. 

Plots of these ratios for the McKellar Harbour and Schreiber areas compared to the 

ratios of rocks from potential source areas provides a great deal of information on 

provenance. Figure 19 plots the average Ti/AI ratio vs the average Ti/Nb ratio for 

sedimentary rocks from the study area with data from the Quetico Subprovince and 

Beardmore-Geraldton greenstone belt (Fralick et al. 1992, data set included in Appendix C). 

The plot clearly shows that data from McKellar Harbour, Schreiber, and Quetico are tightly 

clustered. The Pukaskwa, Beardmore-Geraldton, and Western Quetico data lie close to this 

cluster. Data from Winston Lake, Amwri Lake, Hemlo, and Lake Superior are separate from 

the cluster. This indicates that rocks from the Schreiber, McKellar Harbour, and Quetico 

were derived from source rocks with similar Ti/AI and Ti/Nb ratios, and metasediments from 

Pukaskwa and the Beardmore-Geraldton area also have similar ratios. 

This interpretation is reinforced by plotting Zr/AI vs Ti/Zr for the same rocks (Figure 20). 

The scatter plot shows the data from McKellar Harbour, Schreiber, Quetico (south of 

Geraldton) and the Beardmore-Geraldton areas lying in a tight linear arrangement. The 
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composition of rocks from these areas follow a trend from Beardmore-Geraldton, Quetico 

south of Geraldton, Schreiber, then McKellar Harbour. The Lake Superior area plots below 

but further along the trend. This trend combined with the Ti/AI -Ti/Nb plot indicates that 

rocks from the Beard more-Geraldton, Quetico, Schreiber, and McKellar Harbour areas are 

derived from a very similar source. That the data form a linear trend further reinforces this 

concept, as Ti tends to accumulate in the finer (e.g. clay) fraction, and Ti becomes 

concentrated relative to Zr with distance from source. Thus more distal turbidites have 

slightly different Ti/Zr ratios due to an increase in fine-grained matrix content. This trend is 

predictable and similar to the tight linear trend apparent in the data. It can therefore be 

concluded that the McKellar Harbour Sequence was probably derived from material 

produced in the Beardmore-Geraldton terrane. 

93 



eosiv/0
01X3011 

10 

Regional Averages 

0+ 
0 

—I 1 “I 

0.4 0.8 
Ti02/Nbx1000 

—I— 

1.2 1.6 

FIGURE 19; Immobile Element Ratios for: Amwri Lake (AL), Hemlo (H), Lake Superior (LS) 
McKellar Harbour (MK), Pukaskwa (P), Schreiber (SC), Quetico south of 
Geraldton (Q1), Quetico west of Thunder Bay (Q2-Q4), Average Quetico (QA), 
and Beardmore-Geraldton (Wabigoon Intermontane) (Wl). 

94 



Z
rx

10
00

/A
l2

03
 

Regional Averages 
160 

120 

Ti02/Zr 

FIGURE 20: Immobile Element Ratios for: Amwri Lake (AL), Hemlo (H), Lake Superior (LS), 
McKellar Harbour (MK), Pukaskwa (P), Schreiber (SC), Quetico south of 
Geraldton (Q1), Quetico west of Thunder Bay (Q2-Q4), Average Quetico (QA), 
and Beardmore-Geraldton (Wabigoon Intermontane) (Wl). 

95 



8.0 DISCUSSION AND CONCLUSIONS 

The stratigraphic and geochemical evidence suggest that the McKellar Harbour 

Sequence was deposited on the distal portion of a submarine ramp being fed by sediment 

from the Beardmore-Geraldton terrane. It thus forms the distal portion of the proximal 

submarine ramp (Fralick et al., 1992) present in the Quetico metasedimentary belt. Other 

possible sediment feed areas are shown to have been deposited in other environments, and 

to have been derived from source areas with quite different immobile-element geochemistry. 

Figure 21 is a geological model illustrating the interpreted configuration of the area at the 

time of deposition of the McKellar Harbour Sequence. Sediment from the Onaman-Tashota 

and Beardmore-Geraldton terranes is carried across the trench, through gaps in the 

Schreiber volcanic island system. It collects in basins associated with the volcanic islands. 

The mechanism for this transport is a submarine ramp that has developed due to the rapid 

sedimentation rate on a narrow shelf in the Beardmore-Geraldton terrane. Sediments 

carried to the Schreiber volcanic system are distal portions of the Beardmore-Geraldton 

submarine ramp, and are preserved as the McKellar Harbour Sequence. Sediments in the 

Amwri, Hemlo, and Pukaskwa regions were deposited in basins not linked to the Schreiber- 

McKellar Harbour basin. Sediment in these three other areas was deposited by processes 

that are quite different from that of a submarine ramp, and the volcanic assemblage in the 

Hemlo area is quite different geochemically than that of the Onaman-Tashota/Beardmore- 

Geraldton terrane. This difference in chemistry is illustrated by the immobile element 

chemistry. Sediments in the Heron Bay - Hemlo area require further investigation. 
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FIGURE 21: Paleoenvironmental Reconstruction (after Fralick, 1992). 
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This investigation has shown that geological subprovince boundaries are not barriers 

to geological processes. There is a continuum of depositional systems that has been 

shown to start in the Wabigoon Subprovince, cross the Quetico Subprovince, and result in 

deposition in the Wawa-Abitibi Subprovince. If cross-boundary deposition can happen in 

one area, it is reasonable to conclude that it can also take place in other regions (see 

Zaleski et al, 1994). 
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G. Ghibcudo 

Tabic 2. The names and leltcr-codcs used for Ihc facies and 
subfacics distinguished in the present review. 

Facies G (gravel beds) 
mG: massive gravel 
xG; cross-stratified gravel 
sG: planc-slratificd gravel 
gG: graded gravel 

gsG: graded to plane-stralificd gravel 

Facies GS (gravel-sand couplets) 
gGS: graded gravel-sand couplet 

gxGS; graded to cross-stratified gravel-sand couplet 
gsGS: graded to planc-slraiificd gravel-sand couplet 
glGS: graded to laminated gravel-sand couplet 

gsxGS; graded to plane-stratified to cross-stratified 
gravel-sand couplet 

gslGS: graded to plane-stratified to laminated gravel- 
sand couplet 

Facies GyS 
mGyS 
xGyS 
gGyS 

gxGyS 
gsGyS 
gIGyS 

gsxGyS 

gslGyS: 

sGyS 
sxGyS 
sIGyS 

(gravelly sand beds) 
massive gravelly sand 
cross-slratificd gravelly sand 
graded gravelly sand 
graded to cross-stratified gravelly sand 
graded to plane-stratified gravelly sand 
graded to laminated gravelly sand 
graded to plane-stratified to cross-stratified 
gravelly sand 
graded to plane-stralificd to laminated gravelly 
sand 
plane-stratified gravelly sand 
plane-stratified to cross-stratified gravelly sand 
plane-stratified to laminated gravelly sand 

Facies S (sand beds) 
mS 
xS 
gS 

gxS 
gsS 
gis 

gsxS 

gsIS 
sS 

sxS 
slS 

massive sand 
cross-stratified sand 
graded sand 
graded to cross-stratified sand 
graded to plane-stratified sand 
graded to laminated sand 
graded to plane-stratified to cross-stratified 
sand 
graded to plane-stratified to laminated sand 
plane-stratified sand 
plane-stratified to cross-stratified sand 
plane-stratified to laminated sand 

Facies SM (sand-mud couplets) 
gSM; graded sand-mud couplet 

glSM; graded to laminated sand-mud couplet 
ISM; laminated sand-mud couplet 

xSM: cross-stralifted sand-mud couplet 
tgSM; thin-bedded, graded sand-mud couplet 
trSM: thin-bedded, rippled sand-mud couplet 

Facies MS (mud-sand couplets) 
glMS; graded to laminated mud-sand couplet 

IMS; laminated mud-sand couplet 

Facies MT (mud-silt couplets) 
IMT: laminated mud-sill couplet 
gMT: graded mud-silt couplet 

Facies M (mud beds) 
IgM: laminated to graded mud 
gM: graded mud 

Facies MyS (muddy sand beds) 
mMyS: massive muddy sand 
gMyS: graded muddy sands 

Facies SyM (sandy mud beds) 
mSyM: massive sandy mud 
gSyM; graded sandy mud 

Facies MyG (muddy gravel beds) 
mMyG: massive muddy gravel 
gMyG: graded muddy gravel 

Facies GyM (gravelly mud beds) 
mGyM: massive gravelly mud 
gGyM; graded gravelly mud 

(Ghibaudo, 1992) 

Facies TM (sill-mud couplets) 
ITM: laminated sill-mud couplet 
gTM : graded silt-mud couplet 
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The samples collected for this study were analysed in the Lakehead University 

Department of Chemistry Analytical Laboratory using inductively coupled plasma atomic 

emission spectrometry (ICP-AES). ICP-AES can be used for the determination of all 

elements except argon (Thompson and Walsh, 1989), however there are some limitations. 

Unstable elements require special facilities for handling the radioactive fume from the 

plasma, and the determination of fluorine, chlorine, and bromine requires special optics for 

the transmission of the very short wavelengths produced from these elements. Also a few 

elements such as nitrogen and rubidium have poor sensitivities in relation to other analytical 

techniques, and to the concentrations normally encountered (Thompson and Walsh, 1989). 

Despite these complexities, ICP-AES, when backed up with a dedicated computer and 

proper calibration, remains a powerful analytical technique for the geologist. The 

techniques used to prepare samples for analyses using ICP-AES are best outlined by 

Church (1981). 

Table C-1 shows the data set of oxide chemistry and element ratios used to produce the 

graphs included as Appendix D. Table C-2 presents data from the Beardmore-Geraldton 

and Quetico terranes (Fralick and Kronberg, in press). 

Figures C-1 and C-2 show the sample locations for the McKellar Harbour and Heron Bay - 

Hemio Areas. Figure C-3 shows Fralick and Kronberg’s sample locations. 
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TABLE C-1: GEOCHEMICAL DATA 
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General Geology and Sample Locations 
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FIGURE C-1: General Geology and Sample Locations - McKellar Harbour. 
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HERON BAY - HEMLO SAMPLE LOCATIONS 

★ H34 Sample collected by Thomson, 1989. 

★ RPT 53 Sample collected by Purdon, this study. 

FIGURE C-2; Hemlo area sample locations. 



TABLE C-3: Geochemical data from Fralick and Kronberg (in press). 

Analysis of metasediments from the Beardmore-Geraldton Region 

Forearc Fluvial 

1 2 3 
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FIGURE C-3; Sample Locations - Beardmore-Geraldton. 
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APPENDIX D - DETERMINATION OF ELEMENT MOBILITY 

135 



b 
vs

 A
I2

0
3

 
W

in
st

o
n
 L

ak
e 

(Ludd) qN 

136 

A
I2

0
3
 (

%
) 



N
b 

vs
 T

i0
2 

(Ludd) qiM 

137 



N
b 

vs
 T

i0
2 

M
cK

el
la

r 

CM 
O 

(ujdd) qN 

138 



N
b

vs
T

i0
2 

P
uk

as
kw

a 

oo 
d 

(O 
d 

d 

CM 

d 

CM g 

139 



N
b
 v

s 
T

i0
2

 
S

ch
re

ib
er

 

(ludd) qN 

140 



N
b 

vs
 T

i0
2 

W
in

st
o

n
 L

ak
e 

"T 1 ^^ 1 I I I r 
o o o o o 
n- CO CM 

(ujdd) qN 

141 



(ludd) qN 

142 



N 
b 

vs
 A

I2
03

 

143 

A
I2

0
3
 (

%
) 



 1 ^ 1 1 1 I I I I r 
CJ O oo <D ^ CsJ 

(Ludd) qN 

144 

A
I2

0
3
 (

%
) 



N 
b 

vs
 A

I2
03

 
P

u
ka

sk
w

a 

(uidd) qN 

145 

A
I2

0
3
 (

%
) 



N
b
 v

s 
A

I2
0
3

 
S

ch
re

ib
er

 

(Ludd) qN 

146 

12
.5
 

13
.5
 

14
.5
 

15
.5
 

16
.5

 
A

I2
03

 (
%

) 



vs
 A

I2
0

3
 

in
st

on
 L

ak
e 

(uidd) qN 

147 

A
I2

03
 (

%
) 



Ti02 vs Y 
Study Area by Region 

■ Lake Superior + McKellar ^ Pukaskwa 



T
i0

2 
vs

 Y
 

S
tu

d
y 

A
re

a 
b

y 
R

eg
io

n
 

 1 1 1 1 I i i r 
CD C\J CO ■'d- o 

• a a ■ 

T- O O 

(%) soil 

149 

W
in

st
on

 L
ak

e 
+
 

H
em

lo
 

^
 

S
ch

re
ib

er
 



A
I2

0
3
 (

%
) 

AI203 vs Y 
Study Area by Region 

■ Lake Superior + McKellar Pukaskwa 



A
I2

0
3
 (

%
) 

20 

16 

12 

8 

4 
5 15 25 35 

Y (ppm) 

AI203 vs Y 
Study Area by Region 

■ Winston Lake + Hemlo Schreiber 



Y
 (

p
p
m

) 

YvsZr 
Study Area by Region 

■ L Superior + McKellar Pukaskwa 



Y
vs

Z
r 

S
tu

d
y 

A
re

a 
b

y 
R

eg
io

n
 

(ludd) A 

153 

W
in

st
o

n
 L

ak
e 

+
 

H
em

lo
 

^
 

S
ch

re
ib

er
 



Y
vs

Z
r 

S
tu

d
y 

A
re

a 
b

y 
R

eg
io

n
 

(mdd) A 

154 



Ti02 vs Zr 
Study Area by Region 

■ L Superior + McKellar ^ Pukaskwa 
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Si02 vs Y 
Study Area by Region 

■ Lake Superior + McKellar ^ Pukaskwa 
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Study Area by Region 

Lake Superior + McKellar ^ Pukaskwa 
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