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ABSTRACT

A subspace of `2(X) without the approximation property

by

Christopher Chlebovec

The aim of the thesis is to provide support to the following conjecture, which

would provide an isomorphic characterization of a Hilbert space in terms of the ap-

proximation property: an infinite dimensional Banach space X is isomorphic to `2 if

and only if every subspace of `2(X) has the approximation property.

We show that if X has cotype 2 and the sequence of Euclidean distances {dn(X∗)}n

of X∗ satisfies dn(X∗) ≥ α(log2 n)β for all n ≥ 1 and some absolute constants α > 0

and β > 4, then `2(X) contains a subspace without the approximation property.

v



CHAPTER I

Introduction

This is a thesis in Geometric Functional Analysis devoted to the study of structural

properties of infinite dimensional Banach spaces.

Among all Banach spaces, the Hilbert space `2 is the “nicest” and most “regular”.

It has lots of symmetries and, in particular, all of its infinite dimensional subspaces

are isomorphic to the entire space. This is not true even for such classical spaces as

`p, Lp (p 6= 2), whose subspaces admit much more diversity.

In this thesis we concentrate on constructing (infinite dimensional) Banach spaces

without the approximation property; in particular, such Banach spaces do not admit

a Schauder basis, which is to say that they do not have an infinite dimensional

coordinate system. We are looking for arguments which allow us to obtain these

constructions inside Banach spaces from certain large classes of spaces. This would

support the idea that such a phenomenon is not merely accidental, but it reflects a

common behavior.

We discuss first, in Chapter III, the very important construction of Szankowski [9]

from the late 70s, who obtained subspaces of `p (p 6= 2) without the approximation

property. As observed in the same paper, his arguments turned out to be more

general and can be easily adapted to obtain the following more general result: an

infinite dimensional Banach space X contains a subspace without the approximation
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property, unless X is “very close” to a Hilbert space, which is to say that X has type

(2− ε) and cotype (2 + ε) for all ε > 0.

The objective of the thesis is to provide support to the following conjecture, which

would provide an isomorphic characterization of a Hilbert space in terms of the ap-

proximation property: an infinite dimensional Banach space X is isomorphic to `2

if and only if every subspace of `2(X) has the approximation property. It is known

that the corresponding statement involving only subspaces of X is not true (see, for

example, the discussion in Chapter V).

The proposed question is equivalent to finding subspaces without the approxima-

tion property in `2(X), for every X which is not isomorphic to `2. Due to Szankowski’s

result, one only has to consider the case when X is an infinite dimensional space which

has type (2 − ε) and cotype (2 + ε) for all ε > 0. We will investigate the problem

under the additional assumption that there is a certain control on the sequence of

Euclidean distances of X, {dn(X)}n. The type and cotype properties of X imply,

in this case, estimates of the form dn(X) ≤ c(α)nα and dn(X∗) ≤ c(α)nα for all

α > 0 and n ≥ 1 (see, for example, [7]). In the main result of the thesis, which is

contained in Chapter IV, we show that we can obtain subspaces of `2(X) without the

approximation property provided that the sequence {dn(X∗)}n is bounded below by

{C(log2 n)β}n, where C and β are absolute constants.

The result of the thesis and the discussion at the end of Chapter V suggest that

it seems plausible to continue the investigation and obtain a positive answer to the

following question: does `2(X) contain a subspace without the approximation prop-

erty provided the sequence of Euclidean distances {dn(X∗)}n is bounded below by

{f(n)}n for some iterate f of log? This would “almost” prove the mentioned isomor-

phic characterization of a Hilbert space in terms of the approximation property.
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CHAPTER II

Preliminaries

We will start with some basic definitions needed throughout. For all other nota-

tions and concepts not explained here, we refer the reader to [2] and [4].

Definition II.1. Let X be a vector space over C. A norm on X is a real valued

function || · || : X → R that satisfies the following properties for all x, y ∈ X and

α ∈ C:

• ||x|| ≥ 0

• ||x|| = 0 if and only if x = 0

• ||αx|| = |α| · ||x||

• ||x+ y|| ≤ ||x||+ ||y||

A vector space X equipped with a norm || · || is called a normed vector space, or

simply a normed space.

Definition II.2. A normed spaced X is called a Banach space if it is complete with

respect to the metric induced by its norm.

Definition II.3. Let X be a Banach space. A sequence {ei}Li=1 in X is said to be

1-unconditional if ∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

θiei

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

ei

∣∣∣∣∣
∣∣∣∣∣
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for all possible signs {θi}Li=1.

Definition II.4. Let {Xi}i≥1 be a sequence of Banach spaces and 1 ≤ p < ∞. The

`p-direct sum of the sequence {Xi}i≥1 is

(X1 ⊕X2 ⊕ · · · )`p =

x = (x1, x2, . . . , ) ∈
∞∏
i=1

Xi : ||x|| =

(
∞∑
i=1

||xi||pXi

)1/p

<∞

 .

We will write (
∑

n≥1

⊕
Xn)`p = (X1 ⊕ X2 ⊕ · · · )`p and if X = Xi for all i ≥ 1,

`p(X) = (X ⊕X ⊕ · · · )`p .

We start with some preliminary results:

Proposition II.5. Let X and Y be Banach spaces. Let {ei}Li=1 and {fj}Kj=1 be a

sequence of 1-unconditional vectors in X and Y , respectively. Then, {(ei, 0))}Li=1 ∪

{(0, fj)}Kj=1 is a 1-unconditional sequence in X ⊕2 Y .

Proof. In X ⊕2 Y we have,

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

θi(ei, 0) +
K∑
j=1

ηj(0, fj)

∣∣∣∣∣
∣∣∣∣∣
X⊕2Y

=

∣∣∣∣∣
∣∣∣∣∣
(

L∑
i=1

θiei,
K∑
j=1

ηjfj

)∣∣∣∣∣
∣∣∣∣∣
X⊕2Y

=

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

θiei

∣∣∣∣∣
∣∣∣∣∣
2

X

+

∣∣∣∣∣
∣∣∣∣∣
K∑
j=1

ηjfj

∣∣∣∣∣
∣∣∣∣∣
2

Y

1/2

=

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

ei

∣∣∣∣∣
∣∣∣∣∣
2

X

+

∣∣∣∣∣
∣∣∣∣∣
K∑
j=1

fj

∣∣∣∣∣
∣∣∣∣∣
2

Y

1/2

=

∣∣∣∣∣
∣∣∣∣∣
(

L∑
i=1

ei,

K∑
j=1

fj

)∣∣∣∣∣
∣∣∣∣∣
X⊕2Y

=

∣∣∣∣∣
∣∣∣∣∣
L∑
i=1

(ei, 0) +
K∑
j=1

(0, fj)

∣∣∣∣∣
∣∣∣∣∣
X⊕2Y

for all possible signs {θi}Li=1 and {ηj}Kj=1.
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Proposition II.6. Let p, q ∈ (1,∞) be such that 1
p

+ 1
q

= 1 and let {Xi}i≥1 be a

sequence of Banach spaces. Then, the dual of
(∑

i≥1

⊕
Xi

)
`p

is isometrically isomor-

phic to
(∑

i≥1

⊕
X∗i
)
`q

.

Proof. Let X =
(∑

i≥1

⊕
Xi

)
`p

and Y =
(∑

i≥1

⊕
X∗i
)
`q
. Let

X∗
T−−→ Y

f 7−→ (x∗i )i

where x∗i (xi) = f(0, . . . , 0, xi, 0, . . .) for each xi ∈ Xi. Clearly T is linear and each

x∗i ∈ X∗i since

|x∗i (xi)| = |f(0, . . . , 0, xi, 0, . . .) ≤ ||f || · ||(0, . . . , 0, xi, 0, . . .)||X = ||f || · ||xi||Xi ,

which implies that ||x∗i ||X∗
i
≤ ||f || < ∞. We will use below that for each 0 < δ < 1,

there exists a yn ∈ Xn with x∗n(yn) ≥ δ||x∗n|| and ||yn|| = 1. Now, put zn = ||x∗n||q−1yn.

Then, for each k,

δ

(
k∑

n=1

||x∗n||
q
X∗
n

)
=

k∑
n=1

||x∗n||
q−1
X∗
n
· δ||x∗n||X∗

n

≤
k∑

n=1

||x∗n||
q−1
X∗
n
· x∗n(yn)

= f(z1, z2, . . . , zk, 0, 0, . . .)

≤ ||f || · ||(z1, z2, . . . , zk, 0, 0, . . .)||X

= ||f || ·

(
k∑

n=1

||zn||pXn

)1/p

5



= ||f || ·

(
k∑

n=1

||x∗n||
(q−1)p
X∗
n

)1/p

.

Since (q − 1)p = q and 1 − 1
p

= 1
q

we get that δ
(∑k

n=1 ||x∗n||q
)1/q

≤ ||f || holds for

each k and 0 < δ < 1. Hence, ||(x∗i )i||Y ≤ ||f ||X∗ <∞. Also, for (xi)i ∈ X

|f(x1, x2, . . .)| =

∣∣∣∣∣
∞∑
n=1

x∗n(xn)

∣∣∣∣∣
≤

∞∑
n=1

|x∗n(xn)|

≤
∞∑
n=1

||x∗n||X∗
n
· ||xn||Xn

≤

(
∞∑
n=1

||x∗n||
q
X∗
n

)1/q( ∞∑
n=1

||xn||pXn

)1/p

.

Therefore, ||f ||X∗ ≤ ||(x∗i )i||Y so that ||f ||X∗ = ||(x∗i )i||Y .

To prove surjectivity let (y∗1, y
∗
2, . . .) ∈ (X∗1 ⊕ X∗2 ⊕ · · · )`q and define h ∈ (X1 ⊕

X2⊕· · · )∗`p by h(y1, y2, . . .) =
∑∞

n=1 y
∗
n(yn), where (y1, y2, . . .) ∈ (X1⊕X2⊕· · · )`p .We

have that h is well defined and thus T (h) = (y∗i )i.
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CHAPTER III

A subspace of `p (p 6= 2) without the

approximation property

The purpose of this chapter is to present the argument of Szankowski from [9] in

which he obtains subspaces of `p (p 6= 2) without the approximation property.

Definition III.1. A Banach space X has the approximation property if, for every

compact set K in X and ε > 0, there is a finite rank operator T on X so that

‖Tx− x‖ ≤ ε for every x ∈ K. A weaker property is obtained if we only require the

operator T to be compact, in which case the space X is said to have the compact

approximation property (C.A.P.).

Examples of Banach spaces with the approximation property include all spaces

with a Schauder basis; a sequence {xi}i in X forms a Schauder basis for X if every

element x ∈ X has a unique representation as an infinite series x =
∑

i aixi, for some

scalars {ai}i. In order to check that such Banach spaces have the approximation

property, one can always verify the definition above for an operator T chosen from

one of the finite dimensional natural projections {Pn}n, defined as Pn(x) =
∑n

i=1 aixi

for all x =
∑

n aixi.

The following criterion of a Banach space not having the C.A.P. is a modification

of Enflo’s original [3].
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Proposition III.2. Let X be a Banach space. Assume that there are sequences

{xj}∞j=1 and {x∗j}∞j=1 in X and X∗ respectively, a sequence {Fn}∞n=1 of finite subsets

of X and an increasing sequence of integers {kn}∞n=1 so that the following hold:

(i) x∗j(xj) = 1 for every j

(ii) x∗j
w∗−→ 0 , supj ||xj|| <∞

(iii) |βn(T ) − βn−1(T )| ≤ sup{||Tx|| : x ∈ Fn} for every T ∈ L(X,X) and n ≥ 1,

where β0(T ) = 0 and for n ≥ 1,

βn(T ) = k−1
n

kn∑
j=1

x∗j(Txj)

(iv)
∞∑
n=1

γn <∞ where γn = sup{||x|| : x ∈ Fn}.

Then X does not have the C.A.P .

Proof. Let T ∈ L(X,X) and ε > 0. By (iv) there exists an s0 ≥ 1 with
∞∑

n=s0

γn <
ε

||T ||
.

Now, let r > s ≥ s0. So, using (iii) we obtain

|βr(T )− βs(T )| =

∣∣∣∣∣
r∑

n=s+1

(βn(T )− βn−1(T ))

∣∣∣∣∣
≤

r∑
n=s+1

|βn(T )− βn−1(T )|

≤ ||T || ·
r∑

n=s+1

γn

≤ ||T || ·
∞∑

n=s+1

γn

< ε

8



Thus, {βn(T )}n≥1 is convergent for every T ∈ L(X,X) and so β(T ) := lim
n→∞

βn(T )

defines a linear functional β on L(X,X). Let {ηn}n≥1 be a sequence of positive

numbers with ηn →∞ such that C =
∞∑
n=1

ηnγn <∞ and set K =
⋃∞
n=1(ηnγn)−1Fn ∪

{0}. Clearly, K is countable and every nonzero element in K is of the form (ηnγn)−1yn,

where yn ∈ Fn. Since ||(ηnγn)−1yn|| = |(ηnγn)−1| ||yn|| ≤ 1
ηn

and 1
ηn
→ 0 as n → ∞

we see that K is just a sequence tending to 0. Hence, K is compact.

If y ∈ Fk we have y = (ηkγk)x for some x ∈ K. Thus,

|βn(T )| =

∣∣∣∣∣
n∑
k=1

(βk(T )− βk−1(T ))

∣∣∣∣∣
≤

n∑
k=1

|βk(T )− βk−1(T )|

≤
n∑
k=1

sup{||Ty|| : y ∈ Fk}

≤

(
n∑
k=1

ηkγk

)
sup{||Tx|| : x ∈ K}

Therefore, we have |β(T )| ≤ C sup{||Tx|| : x ∈ K}. Clearly, if I is the identity

operator on X then βn(I) = 1 for n ≥ 1 and so β(I) = 1. We will prove below that

β(T ) = 0 for every compact operator T ∈ L(X,X). This will conclude the proof

since it will imply that

sup{||Tx− x|| : x ∈ K} ≥ C−1|β(I − T )| = C−1

for every compact operator T ∈ L(X,X).

Let T be compact and let δ > 0. Since supj ||xj|| < ∞ we have that {Txj}∞j=1

is compact and hence totally bounded. Thus, we can pick points {yi}mi=1 so that

{Bδ(yi)}mi=1 is a finite cover of {Txj}∞j=1. Equivalently, we have points {yi}mi=1 so that

9



for every j there is an i(j) with ||Txj − yi(j)|| ≤ δ. For n ≥ 1 we get that

βn(T ) = k−1
n

kn∑
j=1

x∗j(Txj − yi(j)) + k−1
n

kn∑
j=1

x∗j(yi(j))

and thus

|βn(T )| ≤ δ sup
j
||x∗j ||+

m∑
i=1

k−1
n

kn∑
j=1

|x∗j(yi)|

For each i ∈ {1, . . . ,m}, we notice that k−1
n

kn∑
j=1

|x∗j(yi)| is a Cesàro mean and since

x∗j
w∗−→ 0 we get |β(T )| ≤ δ supj ||x∗j ||. Since δ > 0 is arbitrary we get |β(T )| = 0.

The next lemma is a combinatorial result which plays an important role in Szankowski’s

argument. Before proceeding to Lemma III.3, we will introduce some notations. For

n = 1, 2, . . ., let σn = {2n, 2n + 1, . . . , 2n+1 − 1}. For each integer j ≥ 8, we define

nine integers {gk(j)}9
k=1 as follows:

gk(4i+ l) = 2i+ k − 1, i = 2, 3, 4, . . . , l = 0, 1, 2, 3, k = 1, 2

gk(4i+ l) = 4i+ (l + k − 2) mod 4 i = 2, 3, 4, . . . , l = 0, 1, 2, 3, k = 3, 4, 5

gk(4i+ l) = 8i+ k − 6, i = 2, 3, 4, . . . , l = 0, 1, k = 6, 7, 8, 9

gk(4i+ l) = 8i+ k − 2, i = 2, 3, 4, . . . , l = 2, 3, k = 6, 7, 8, 9

Note that gk(σn) ⊂ σn−1 for k = 1, 2 ; gk(σn) ⊂ σn for k = 3, 4, 5; and, gk(σn) ⊂ σn+1

for k = 6, 7, 8, 9.

Lemma III.3. There exist partitions ∆n and ∇n of σn into disjoint sets and a se-

quence of integers {mn}∞n=1 with mn ≥ 2n/8−2, n = 2, 3, 4 . . ., so that

(i) If A ∈ ∇n, then mn ≤ |A| ≤ 2mn.

(ii) If A ∈ ∇n and B ∈ ∆n then |A ∩B| ≤ 1.

(iii) For every A ∈ ∇n and 1 ≤ k ≤ 9, gk is an injective function on A.

(iv) For every A ∈ ∇n, there is an element B of ∆n−1, ∆n or ∆n+1 such that

10



gk(A) ⊂ B for all n ≥ 3 and 1 ≤ k ≤ 9.

Proof. For n ≥ 2 and l = 0, 1, 2, 3 we will denote σln = {j ∈ σn : j ≡ l mod 4}. Define

ϕln : σ0
n → σln by ϕln(j) = j + l and for r = 0, 1 define ψn,r : σ0

n → σ0
n+1 by ψn,r(j) =

2j+4r. The above maps are injective and ϕln(σ0
n) = σln and ψn,0(σ0

n)∪ψn,1(σ0
n) = σ0

n+1.

Since {σln}3
l=0 partitions σn and {ψn,r(σ0

n)}1
r=0 partitions σ0

n+1, the maps have disjoint

ranges.

For n ≥ 2 we will represent σ0
n as σ0

n = Cn ×Dn, where

|D2m| = |D2m+1| = |C2m−1| = |C2m| = 2m−1, m = 1, 2, . . .

so that for n ≥ 3 we have the following:

• For each c ∈ Cn, there is an r = 0, 1 and a d ∈ Dn−1 with ψn−1,r(Cn−1×{d}) =

{c} ×Dn

• For each c ∈ Cn, there is a d ∈ Dn+1 with ψn,0({c} × Dn) ∪ ψn,1({c} × Dn) =

Cn+1 × {d}

Indeed, we will proceed inductively. Let Cn = {c1, . . . , c|Cn|} , Dn = {d1, . . . , d|Dn|}

such that σ0
n = Cn × Dn and by this we mean that there exists a bijection Fn :

Cn × Dn → σ0
n. Let Cn+1 = {c1, c2, . . . , c2|Dn|} and Dn+1 = {d1, d2, . . . , d|Cn|} be

arbitrary sets of the prescribed cardinality. We will denote C
(1)
n+1 = {c1, c2, . . . , c|Dn|}

and C
(2)
n+1 = {c|Dn|+1, c|Dn|+2, . . . , c2|Dn|} so that Cn+1 = C

(1)
n+1 ∪ C

(2)
n+1. In order to

obtain the claim for σ0
n+1 we first define Fn+1,i : Cn+1 × {di} → σ0

n+1 by

Fn+1,i(cj, di) =


ψn,0(Fn(ci, dj)) if cj ∈ C(1)

n+1

ψn,1(Fn(ci, dj−|Dn|)) if cj ∈ C(2)
n+1

.

Then, if we let Fn+1 =

|Cn|⋃
i=1

Fn+1,i, we get a bijection Fn+1 : Cn+1 × Dn+1 → σ0
n+1,

11



which gives the representation σ0
n+1 = Cn+1×Dn+1. It is easy to see that if cj ∈ C(1)

n+1,

ψn,0(Cn×{dj}) = {cj}×Dn+1 and if cj ∈ C(2)
n+1, ψn,1(Cn×{dj−|Dn|}) = {cj}×Dn+1.

Also, ψn,0({ci} ×Dn) ∪ ψn,1({ci} ×Dn) = Cn+1 × {di} so that the above conditions

are satisfied.

Now, having σ0
n represented as σ0

n = Cn × Dn, we will represent Dn further as

Dn =
3∏
l=0

Dl
n so that

|D0
n| ≤ |D1

n| ≤ |D2
n| ≤ |D3

n| ≤ 2|D0
n|.

We are now ready to define our partitions.

∇n =

{
ϕln({f} ×Dl

n) : f ∈ Cn ×
∏
i6=l

Di
n, l = 0, 1, 2, 3

}

∆n =

{
ϕln

(
Cn ×

∏
i6=l

Di
n × {d}

)
: d ∈ Dl

n, l = 0, 1, 2, 3

}

Let mn = |D0
n| and pick an arbitrary A ∈ ∇n, say A = ϕln({f} × Dl

n) for some

l = 0, 1, 2, 3 and f = f ′ ×
∏

i6=l fi, where f ′ ∈ Cn and fi ∈ Di
n. We are now ready to

prove the four claims of Lemma III.3:

(i) Clearly, |A| = |Dl
n| and so mn ≤ |A| ≤ 2mn.

(ii) Let B ∈ ∆n be such that B = ϕsn

(
Cn ×

∏
i6=sD

i
n × {d}

)
, where d ∈ Ds

n. If

l 6= s then A ∩B = ∅. Otherwise we have A ∩B = {ϕln(f × d)}.

(iii) Any element in A can be written as 4m + l, for some m ∈ σn. Then, for all

k = 1, . . . , 9, it is easy to see that gk(4i+ l) = gk(4j+ l) implies i = j and hence

gk is injective on A.

(iv) To show gk(A) is contained in an element of either ∆n−1,∆n or ∆n+1 we will

consider three cases: k = 1, 2; k = 3, 4, 5; and k = 6, 7, 8, 9.

12



• k = 1, 2: We have gk(A) = ϕβn−1ψ
−1
n−1,r({f} × Dl

n), where for k = 1:

r = 0, β = 0 (or r = 1, β = 2) and for k = 2: r = 0, β = 1 (or r = 1, β = 3).

Since f ′ ∈ Cn there is a γ = 0 or 1 and an e ∈ Dn−1 such that ψn−1,γ(Cn−1×

{e}) = {f ′}×Dn. So, we will choose r = γ and then the corresponding β.

Thus, ϕβn−1ψ
−1
n−1,r({f}×Dl

n) ⊂ ϕβn−1ψ
−1
n−1,r({f ′}×Dn) = ϕβn−1(Cn−1×{e})

for some e =
∏3

i=0 ei. Since Cn−1 × {e} ⊂ Cn−1 ×
∏

i6=βD
i
n × {eβ} we get

gk(A) ⊂ ϕβn−1(Cn−1 × {e}) ⊂ ϕβn−1

(
Cn−1 ×

∏
i6=β

Di
n × {eβ}

)
∈ ∆n−1.

• k = 3, 4, 5: We have gk(A) = ϕsn({f} ×Dl
n), where s ≡ (l + k − 2) mod 4.

Since s 6= l we can write f = f ′ ×
∏

i6=l,i6=s fi × fs, where fs ∈ Ds
n. Thus,

{f} ×Dl
n ⊂ Cn ×

∏
i6=sD

i
n × {fs}. Therefore,

gk(A) = ϕsn({f} ×Dl
n) ⊂ ϕsn

(
Cn ×

∏
i6=s

Di
n × {fs}

)
∈ ∆n.

• k = 6, 7, 8, 9: We have gk(A) = ϕβn+1ψn,r({f}×Dl
n), where r = 0 if l = 0, 1,

r = 1 if l = 2, 3 and β = 0, 1, 2, 3. Since f ′ ∈ Cn, there is an e ∈ Dn+1 so

that ψn,0({f ′}×Dn)∪ψn,1({f ′}×Dn) = Cn+1×{e}, for some e =
∏3

i=0 ei

with ei ∈ Di
n+1. Thus, ψn,r({f ′} ×Dn) ⊂ Cn+1 × {e} and so

gk(A) ⊂ ϕβn+1ψn,r({f ′} ×Dn) ⊂ ϕβn+1(Cn+1 × {e})

⊂ ϕβn+1

(
Cn+1 ×

∏
i6=β

Di
n+1 × {eβ}

)
∈ ∆n+1.

13



Remark. We notice that if we set

∇n = ∆n = {ϕln({f} ×Dl
n) : f ∈ Cn ×

∏
i6=l

Di
n, l = 0, 1, 2, 3}

the above proof is easily modified to obtain the results of Lemma III.5.

Theorem III.4. For every 1 ≤ p < 2 the space `p has a subspace without the C.A.P.

Proof. Let ∆n be a partition of σn as given in Lemma III.3 Let 1 ≤ p < 2 and X be

the space of all sequences t = (ti)
∞
i=1 such that

||t|| =

 ∞∑
n=2

∑
B∈∆n

(∑
j∈B

|ti|2
)p/2

1/p

<∞.

Thus, X =
(∑

n≥2

∑
A∈∆n

⊕
`
|A|
2

)
`p

which we know is isomorphic to a subspace of

`p. Let {ei}∞i=4 be the unit vector basis of X and {e∗i }∞i=4 the biorthogonal functionals

in X∗(i.e. e∗i (ej) = δij). By Proposition II.6 we have that

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=4

tie
∗
i

∣∣∣∣∣
∣∣∣∣∣
X∗

=

 ∞∑
n=2

∑
B∈∆n

(∑
j∈B

|ti|2
)q/2

1/q

,

where 1
p

+ 1
q

= 1. Now define zi = e2i − e2i+1 + e4i + e4i+1 + e4i+2 + e4i+3 and

Z = span{zi}∞i=2 which is a closed subspace of X. Define z∗i = 1
2
(e∗2i − e∗2i+1) and for

T ∈ L(Z,Z) we put

βn(T ) = 2−n
∑
i∈σn

z∗i (Tzi) n = 1, 2, 3 . . . .

Using Proposition III.2 we will prove that Z does not have the C.A.P. Clearly (i)

holds and for (ii) take z ∈ Z, say z =
∑∞

j=4 λjej, since Z is a closed subspace of X.

Then, z∗i (z) =
∑∞

j=4 λjz
∗
i (ej) = 1

2
(λ2i − λ2i+1). Since |λi| → 0 we have that z∗i

w∗−→ 0.

So we are left to show (iii) and (iv) hold. We notice (e∗4i+e∗4i+1 +e∗4i+2 +e∗4i+3)(zi) = 4

14



and (e∗4i + e∗4i+1 + e∗4i+2 + e∗4i+3)(zj) = 0 when j 6= i. Therefore,

z∗i =
1

2
(e∗2i − e∗2i+1)|Z =

1

4
(e∗4i + e∗4i+1 + e∗4i+2 + e∗4i+3)|Z .

Hence, for n ≥ 2 and T ∈ L(Z,Z),

βn(T )− βn−1(T ) =

2−n−1
∑
i∈σn

(e∗2i − e∗2i+1)T (e2i − e2i+1 + e4i + e4i+1 + · · ·+ e4i+3)

− 2−n−1
∑
i∈σn−1

(e∗4i + · · ·+ e∗4i+3)T (e2i − e2i+1 + e4i + e4i+1 + · · ·+ e4i+3)

= 2−n−1
∑
i∈σn−1


(e∗4i − e∗4i+1)T (e4i − e4i+1 + e8i + e8i+1 + · · ·+ e8i+3)

+(e∗4i+2 − e∗4i+3)T (e4i+2 − e4i+3 + e8i+4 + e8i+5 + · · ·+ e8i+7)

− 2−n−1
∑
i∈σn−1

(e∗4i + · · ·+ e∗4i+3)T (e2i − e2i+1 + e4i + e4i+1 + · · ·+ e4i+3)

= 2−n−1
∑
i∈σn−1



e∗4iT (e4i − e4i+1 + e8i + · · ·+ e8i+3 − e2i + e2i+1 − e4i − · · · − e4i+3)

+e∗4i+1T (−e4i + e4i+1 − e8i − · · · − e8i+3 − e2i + e2i+1 − e4i − · · · − e4i+3)

+e∗4i+2T (e4i+2 − e4i+3 + e8i+4 + · · ·+ e8i+7 − e2i + e2i+1 − e4i − · · · − e4i+3)

+e∗4i+3T (−e4i+2 + e4i+3 − e8i+4 − · · · − e8i+7 − e2i + e2i+1 − e4i − · · · − e4i+3)

= 2−n−1
∑
i∈σn−1



e∗4iT (−e2i + e2i+1 − 2e4i+1 − e4i+2 − e4i+3 + e8i + · · ·+ e8i+3)

+e∗4i+1T (−e2i + e2i+1 − 2e4i − e4i+2 − e4i+3 − e8i − · · · − e8i+3)

+e∗4i+2T (−e2i + e2i+1 − e4i − e4i+1 − 2e4i+3 + e8i+4 + · · ·+ e8i+7)

+e∗4i+3T (−e2i + e2i+1 − e4i − e4i+1 − 2e4i+2 − e8i+4 − · · · − e8i+7)
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= 2−n−1
∑

j∈σn+1

e∗j(Tyj),

where
9∑

k=1

λj,kegk(j) = yj ∈ Z j = 8, 9, 10, . . . ,

and for every j, |λj,k| = 1 for eight indices k and |λj,k| = 2 for the ninth k.

For every A ∈ ∇n+1 we can write

∑
j∈A

e∗jTyj = 2−|A|
∑
θ

[(∑
j∈A

θje
∗
j

)
T

(∑
j∈A

θjyj

)]
,

where
∑
θ

is the summation taken over all possible signs {θj}j∈A.

Hence, we have that

βn(T )− βn−1(T ) = 2−n−1
∑

A∈∇n+1

∑
j∈A

e∗jTyj

= 2−n−1
∑

A∈∇n+1

2−|A|
∑
θ

[(∑
j∈A

θje
∗
j

)
T

(∑
j∈A

θjyj

)]
.

For every A ∈ ∇n+1 (n ≥ 2) and {θj}j∈A we have, by (ii) of Lemma III.3, that

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θje
∗
j

∣∣∣∣∣
∣∣∣∣∣
Z∗

≤

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θje
∗
j

∣∣∣∣∣
∣∣∣∣∣
X∗

=

 ∑
B∈∆n+1

( ∑
j∈B∩A

|θj|2
)q/2

1/q

=

(∑
j∈A

|θj|q
)1/q

= |A|1/q

≤ (2mn+1)1/q,
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where 1
p

+ 1
q

= 1. Let En =

{∑
j∈A

θjyj : A ∈ ∇n+1, θj = ±1

}
. Then,

|βn(T )− βn−1(T )| ≤ 2−n−1
∑

A∈∇n+1

(2mn+1)1/q sup{||Tz|| : z ∈ En}

≤ 2−n−1(2n+1m−1
n+1)(2mn+1)1/q sup{||Tz|| : z ∈ En}

≤ 2m−1
n+1m

1/q
n+1 sup{||Tz|| : z ∈ En}

= 2m
−1/p
n+1 sup{||Tz|| : z ∈ En}.

If we put Fn = 2m
−1/p
n+1 En we see that (iii) holds. So, we are left to show that (iv)

holds. Define a sequence {αgk(j)}j∈A by αgk(j) = θj and note that it is well-defined

by (iii) of Lemma III.3. By (iv) of Lemma III.3, gk(A) ⊂ B, where B is an element

of ∇n,∇n+1 or ∇n+2. Hence, for every A ∈ ∇n+1 (n ≥ 2) and {θj}j∈A and every

1 ≤ k ≤ 9,

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjegk(j)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j∈gk(A)

αjej

∣∣∣∣∣∣
∣∣∣∣∣∣

=

 ∑
j∈B∩gk(A)

|αj|2
1/2

=

 ∑
j∈gk(A)

|αj|2
1/2

=

(∑
j∈A

|θj|2
)1/2

= |A|1/2

≤ (2mn+1)1/2
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and hence,

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjyj

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

9∑
k=1

λj,k
∑
j∈A

θjegk(j)

∣∣∣∣∣
∣∣∣∣∣

≤
9∑

k=1

|λj,k|

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjegk(j)

∣∣∣∣∣
∣∣∣∣∣

≤ (8 + 2)(2mn+1)1/2

≤ 15m
1/2
n+1.

For every A ∈ ∇n+1 and 1 ≤ p < 2, we get that

sup{||x|| : x ∈ Fn} ≤ 2m
−1/p
n+1 15m

1/2
n+1

= 30m
1/2−1/p
n+1

≤ C2`n,

where ` < 0 and C is some constant, since mn+1 ≥ 2n+1/8−2. Therefore, (iv) holds as

desired.

Lemma III.5. There exist partitions ∆n and ∇n of σn into disjoint sets and a se-

quence of integers {mn}∞m=1 with mn ≥ 2n/8−2, n = 2, 3, 4 . . ., so that

(i) If A ∈ ∇n, then mn ≤ |A| ≤ 2mn.

(ii) For every A ∈ ∇n there is an element B ∈ ∆n with A ⊂ B.

(iii) For every A ∈ ∇n and 1 ≤ k ≤ 9, gk is an injective function on A.

(iv) For every A ∈ ∇n, k = 1, . . . , 9, and every B ∈ ∆n−1, ∆n or ∆n+1, |B∩gk(A)| ≤

1.
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Theorem III.6. If 2 < p ≤ ∞, the space `p has a subspace without the C.A.P.

Proof. Let ∆n be a partition of σn as given in the above lemma III.5. Let 2 < p ≤ ∞

and X be the space of all sequences t = (ti)
∞
i=1 such that

||t|| =

 ∞∑
n=2

∑
B∈∆n

(∑
j∈B

|ti|2
)p/2

1/p

<∞.

Thus, X =
(∑

n≥2

∑
A∈∆n

⊕
`
|A|
2

)
`p

which we know is isomorphic to a subspace of

`p. Let {ei}∞i=4 be the unit vector basis of X and {e∗i }∞i=4 the biorthogonal functionals

in X∗(i.e. e∗i (ej) = δij). By Proposition II.6 we have that

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=4

tie
∗
i

∣∣∣∣∣
∣∣∣∣∣
X∗

=

 ∞∑
n=2

∑
B∈∆n

(∑
j∈B

|ti|2
)q/2

1/q

,

where 1
p

+ 1
q

= 1. Now define zi = e2i − e2i+1 + e4i + e4i+1 + e4i+2 + e4i+3 and

Z = span{zi}∞i=2 which is a closed subspace of X. Define z∗i = 1
2
(e∗2i − e∗2i+1) and for

T ∈ L(Z,Z) we put

βn(T ) = 2−n
∑
i∈σn

z∗i (Tzi) n = 1, 2, 3 . . . .

Using Proposition III.2 we will prove that Z does not have the C.A.P. Clearly (i)

holds and for (ii) take z ∈ Z, say z =
∑∞

j=4 λjej, since Z is a closed subspace of X.

Then, z∗i (z) =
∑∞

j=4 λjz
∗
i (ej) = 1

2
(λ2i − λ2i+1). Since |λi| → 0 we have that z∗i

w∗−→ 0.

So we are left to show (iii) and (iv) hold. We notice (e∗4i+e∗4i+1 +e∗4i+2 +e∗4i+3)(zi) = 4

and (e∗4i + e∗4i+1 + e∗4i+2 + e∗4i+3)(zj) = 0 when j 6= i. Therefore,

z∗i =
1

2
(e∗2i − e∗2i+1)|Z =

1

4
(e∗4i + e∗4i+1 + e∗4i+2 + e∗4i+3)|Z .

19



As seen in Theorem III.4, for n ≥ 2 and T ∈ L(Z,Z) we get

βn(T )− βn−1(T ) = 2−n−1
∑

j∈σn+1

e∗j(Tyj),

where
9∑

k=1

λj,kefk(j) = yj ∈ Z j = 8, 9, 10, . . . ,

and for every j, |λj,k| = 1 for eight indices k and |λj,k| = 2 for the ninth k.

For every A ∈ ∇n+1 we can write

∑
j∈A

e∗jTyj = 2−|A|
∑
θ

[(∑
j∈A

θje
∗
j

)
T

(∑
j∈A

θjyj

)]
,

where
∑
θ

is the summation taken over all possible signs {θj}j∈A. Hence, we have

that

βn(T )− βn−1(T ) = 2−n−1
∑

A∈∇n+1

∑
j∈A

e∗jTyj

= 2−n−1
∑

A∈∇n+1

2−|A|
∑
θ

[(∑
j∈A

θje
∗
j

)
T

(∑
j∈A

θjyj

)]
.

For every A ∈ ∇n+1 (n ≥ 2) and {θj}j∈A we have that

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θje
∗
j

∣∣∣∣∣
∣∣∣∣∣
Z∗

≤

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θje
∗
j

∣∣∣∣∣
∣∣∣∣∣
X∗

=

(∑
j∈A

|θj|2
)q/2

1/q

= |A|1/2

≤ (2mn+1)1/2,
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where 1
p

+ 1
q

= 1. Let En =

{∑
j∈A

θjyj : A ∈ ∇n+1, θj = ±1

}
. Then,

|βn(T )− βn−1(T )| ≤ 2−n−1
∑

A∈∇n+1

(2mn+1)1/2 sup{||Tz|| : z ∈ En}

≤ 2−n−1(2n+1m−1
n+1)(2mn+1)1/2 sup{||Tz|| : z ∈ En}

≤ 2m−1
n+1m

1/2
n+1 sup{||Tz|| : z ∈ En}

= 2m
−1/2
n+1 sup{||Tz|| : z ∈ En}.

If we put Fn = 2m
−1/2
n+1 En we see that (iii) holds. So, we are left to show that (iv)

holds. Let A ∈ ∇n+1 (n ≥ 2) and {θj}j∈A and every 1 ≤ k ≤ 9. Define a sequence

{αgk(j)}j∈A by αgk(j) = θj and note that it is well-defined by (iii) of Lemma III.5.

Using the fact that gk(A) ⊂ σm, where m = n, n + 1, or n + 2 (see the statement

preceding Lemma III.3) as well as (iii) and (iv) of Lemma III.5, we have

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjegk(j)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j∈gk(A)

αjej

∣∣∣∣∣∣
∣∣∣∣∣∣

=

 ∑
B∈∆m

 ∑
j∈B∩gk(A)

|αj|2
p/2


1/p

=

 ∑
j∈gk(A)

|αj|p
1/p

=

(∑
j∈A

|θj|p
)1/p

= |A|1/p

≤ (2mn+1)1/p
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and hence,

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjyj

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

9∑
k=1

λj,k
∑
j∈A

θjegk(j)

∣∣∣∣∣
∣∣∣∣∣

≤
9∑

k=1

|λj,k|

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjegk(j)

∣∣∣∣∣
∣∣∣∣∣

≤ (8 + 2)(2mn+1)1/p

≤ 15m
1/p
n+1.

For every A ∈ ∇n+1 and 2 < p ≤ ∞ we get that

sup{||x|| : x ∈ Fn} ≤ 2m
−1/2
n+1 15m

1/p
n+1

= 30m
1/p−1/2
n+1

≤ C2`n,

where ` < 0 and C is some constant, since mn+1 ≥ 2n+1/8−2. Therefore, (iv) holds as

desired.

Remark. It was observed by Szankowski, in the same paper [9], that the above argu-

ments can be easily adapted to obtain the following more general result: if X is an

infinite dimensional Banach space, which contains `np ’s uniformly for some p 6= 2 then

X contains a subspace without the C.A.P. Combining this result with the Maurey-

Pisier theorem one obtains the following:

Theorem III.7. Let X be an infinite dimensional Banach space. Then, X contains

a subspace without the C.A.P. provided one of the following conditions hold:

p
(X)
0 = sup{p : X has type p} < 2
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or

q
(X)
0 = inf{q : X has cotype q} > 2.

Definition III.8. Given 1 ≤ p ≤ 2, we say that X is of type p if there exists a Cp > 0

such that for all x1, . . . , xn ∈ X,

 1∫
0

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri(t)xi

∣∣∣∣∣
∣∣∣∣∣
2

dt

1/2

≤ Cp

(
n∑
i=1

||xi||p
)1/p

,

where ri are the Rademacher functions, which are defined as ri(t) = sgn sin(2iπt) ,

t ∈ [0, 1]. If X is of type p, we let Tp(X) be the smallest such Cp that satisfies the

above inequality for all x1, . . . , xn ∈ X and all n.

Similarly, X is of cotype q ≥ 2 if there exists a Cq > 0 such that for all x1, . . . , xn ∈

X,  1∫
0

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri(t)xi

∣∣∣∣∣
∣∣∣∣∣
2

dt

1/2

≥ 1

Cq

(
n∑
i=1

||xi||q
)1/q

.

If X is of cotype q we let Cq(X) to be the largest such Cq that satisfies the above

inequality for all x1, . . . , xn ∈ X and all n.
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CHAPTER IV

A subspace of `2(X) without the

approximation property

The purpose of this chapter is to provide sufficient conditions which imply that

`2(X) contains a subspace without the approximation property. As discussed in

Chapter III, one only has to consider infinite dimensional spaces X which are of type

(2 − ε) and cotype (2 + ε) for all ε > 0; otherwise, X itself will admit a subspace

without the approximation property.

Definition IV.1. The Banach-Mazur distance d(X, Y ) between two Banach spaces

X and Y is defined as

d(X, Y ) = inf{||T || · ||T−1|| : T is an isomorphism between X and Y }.

We note that d(X, Y ) ≥ 1 and if X and Y are isometric then d(X.Y ) = 1. If X and

Y are not isomorphic we write d(X, Y ) =∞.

Definition IV.2. Let X be an infinite dimensional Banach space. The sequence of

Euclidean distances {dn(X)}n is defined as

dn(X) = sup{d(Z, ln2 ) : Z ⊂ X, dimZ = n}.
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It is clear that dn(X)↗∞ as n→∞, for any infinite dimensional Banach space X

which is not isomorphic to `2.

In the arguments below we will consider linear combinations with equal coefficients

of certain 1-unconditional vectors. We require a behaviour in norm which we may

not obtain in a given Banach space X, but can always get in `2(X). This is due

to the following fact, which was originally formulated in terms of property (H) (see

[8], Proposition 1.2): if Z is an n-dimensional Banach space there exists a universal

constant c > 0 and m ≤ n normalized, 1-unconditional vectors {u1, . . . , um} ⊂ `2(Z),

such that either

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
`2(Z)

> cd(Z, ln2 )1/4m1/2

or

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
`2(Z)

<
1

cd(Z, ln2 )1/4
m1/2.

Thus, given any infinite dimensional Banach space X, for all n ≥ 1, there ex-

ists a universal constant c > 0 and m ≤ n normalized, 1-unconditional vectors

{u1, . . . , um} ⊂ `2(X), such that either

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
`2(X)

> cdn(X)1/4m1/2 (4.1)

or

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
`2(X)

<
1

cdn(X)1/4
m1/2. (4.2)

The existence of such vectors was essential for some other results which deal with

the structure of subspaces of `2(X) (see for example [1] and [6]).
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The following Lemma IV.3 and more specifically Corollary IV.5 describe the be-

haviour in norm of specific 1-unconditional normalized vectors necessary in construct-

ing a subspace of `2(X) without the C.A.P., as seen in the proof of Theorem IV.6.

Lemma IV.3. Let X be a Banach space so that (4.2) holds for some N . Then, there

exist 1-unconditional normalized vectors {zi}Ni=1 ⊂ `2(X) such that

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣
∣∣∣∣∣
`2(X)

≤
√

2

cdN(X)1/4
N1/2.

Proof. Let N be as described in condition (4.2). Then, there exists M ≤ N normal-

ized, 1-unconditional vectors {yi}Mi=1 ⊂ `2(X) such that

∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

yi

∣∣∣∣∣
∣∣∣∣∣
`2(X)

≤ 1

cdN(X)1/4
M1/2. (4.3)

Suppose N is divisible by M , say N = LM for some L ≥ 1. We will now

partition the set {1, . . . , N} into L sets of M elements and denote them by A1 =

{1, . . . ,M}, A2 = {M + 1, . . . , 2M}, . . . , AL = {(L − 1)M + 1, . . . , LM}. We can

generate L sequences {yi}i∈A1 , . . . , {yi}i∈AL of normalized, 1-unconditional vectors

with ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Aj

yi

∣∣∣∣∣∣
∣∣∣∣∣∣
`2(X)

≤ 1

cdN(X)1/4
M1/2

for every 1 ≤ j ≤ L by simply repeating and relabeling (4.3) L − 1 times. For

any 1 ≤ j ≤ L and i ∈ Aj, define zi ∈
L copies︷ ︸︸ ︷

`2(X)⊕2 · · · ⊕2 `2(X) ∼= `2(X) by zi =

(0, . . . , yi, 0 . . . , 0), where yi is in the jth position. Then, by Proposition II.5 we have

a set of normalized, 1-unconditional vectors {zi}Ni=1 in `2(X) with

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣
∣∣∣∣∣
`2(X)

=

∣∣∣∣∣
∣∣∣∣∣∑
i∈A1

zi +
∑
i∈A2

zi + · · ·+
∑
i∈AL

zi

∣∣∣∣∣
∣∣∣∣∣
`2(X)
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=

∣∣∣∣∣
∣∣∣∣∣∑
i∈A1

yi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

+ · · ·+

∣∣∣∣∣
∣∣∣∣∣∑
i∈AL

yi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

≤
(
L · 1

c2dN(X)1/2
M

)1/2

=
1

cdN(X)1/4
N1/2

Suppose on the other hand that N is not divisible by M and now take L = bN
M
c.

Then, LM ≤ N < (L + 1)M. Define AL+1 = {LM + 1, . . . , (L + 1)M} and by (4.2)

pick again a sequence {yi}i∈AL+1
which is 1-unconditional and normalized with

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈AL+1

yi

∣∣∣∣∣∣
∣∣∣∣∣∣
`2(X)

≤ 1

cdN(X)1/4
M1/2

In this case we will partition {1, . . . , N} into the sets A1, . . . , AL, {LM + 1, . . . , N},

where {LM + 1, . . . , N} ⊂ AL+1. If we take {yi}Ni=LM+1, by 1-unconditionality we

have ∣∣∣∣∣
∣∣∣∣∣

N∑
i=LM+1

yi

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈AL+1

yi

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

cdN(X)1/4
M1/2

We define zi as before, but now for every 1 ≤ j ≤ L + 1 and i ∈ Aj we have

zi ∈
L+1 copies︷ ︸︸ ︷

`2(X)⊕2 · · · ⊕2 `2(X) ∼= `2(X). Finally,

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣
∣∣∣∣∣
`2(X)

=

∣∣∣∣∣
∣∣∣∣∣∑
i∈A1

zi +
∑
i∈A2

zi + · · ·+
∑
i∈AL

zi +
N∑

i=LM+1

zi

∣∣∣∣∣
∣∣∣∣∣
`2(X)

=

∣∣∣∣∣
∣∣∣∣∣∑
i∈A1

yi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

+ · · ·+

∣∣∣∣∣
∣∣∣∣∣∑
i∈AL

yi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

+

∣∣∣∣∣
∣∣∣∣∣

N∑
i=LM+1

yi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

≤
(

(L+ 1) · 1

c2dN(X)1/2
M

)1/2
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≤
√

2

cdN(X)1/4
N1/2,

where the last inequality comes easily from the fact that (L + 1)M = LM + M ≤

N +N = 2N .

Lemma IV.4. If X is a Banach space of type 2, then `2(X) is of type 2.

Proof. For each 1 ≤ i ≤ n, let yi = (xi1, . . . , x
i
k, . . . , ) ∈ `2(X). Then,

 1∫
0

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri(t)yi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

dt

1/2

=

 1∫
0

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri(t)(x
i
1, . . . , x

i
k, . . .)

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

dt

1/2

=

 1∫
0

∣∣∣∣∣
∣∣∣∣∣
(

n∑
i=1

ri(t)x
i
1, . . . ,

n∑
i=1

ri(t)x
i
k, . . .

)∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

dt

1/2

=

 1∫
0

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri(t)x
i
1

∣∣∣∣∣
∣∣∣∣∣
2

X

dt+ · · ·+
1∫

0

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ri(t)x
i
k

∣∣∣∣∣
∣∣∣∣∣
2

X

dt+ · · ·

1/2

≤

(
T2(X)2

n∑
i=1

||xi1||2X + · · ·+ T2(X)2

n∑
i=1

||xik||2X + · · ·

)1/2

= T2(X)

(
n∑
i=1

(||xi1||2X + · · ·+ ||xik||2X + · · · )

)1/2

= T2(X)

(
n∑
i=1

||(xi1, . . . , xik)||2`2(X)

)1/2

= T2(X)

(
n∑
i=1

||yi||2`2(X)

)1/2

.

The next result shows that under the hypothesis of X having type 2, condition

(4.2) must be satisfied for all N large enough.
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Corollary IV.5. Let X be a an infinite dimensional Banach space of type 2 which

is not isomorphic to `2. Then, for all N large enough, there exist normalized, 1-

unconditional vectors {zi}Ni=1 ⊂ `2(X) such that

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣
∣∣∣∣∣
`2(X)

≤
√

2

cdN(X)1/4
N1/2.

Proof. We claim that (4.1) holds for only finitely many N . Suppose on the contrary

that (4.1) holds for infinitely many N . Then, we can find an infinite increasing

sequence {kn}n≥1 and mn ≤ kn normalized 1-unconditional vectors {u1, . . . , umn} ⊂

`2(X) such that ∣∣∣∣∣
∣∣∣∣∣
mn∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
`2(X)

> cdkn(X)1/4mn
1/2.

Since X is of type 2, `2(X) is of type 2 by Lemma IV.4 and taking into account the

1-unconditionality we must have

T2(`2(X))m1/2
n = T2(`2(X))

(
mn∑
j=1

||uj||2
)1/2

≥

 1∫
0

∣∣∣∣∣
∣∣∣∣∣
mn∑
j=1

ri(t)uj

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

=

 1

2mn

∑
εj=±1

∣∣∣∣∣
∣∣∣∣∣
mn∑
j=1

εjuj

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

=

 1

2mn

∑
εj=±1

∣∣∣∣∣
∣∣∣∣∣
mn∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

=

∣∣∣∣∣
∣∣∣∣∣
mn∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣
`2(X)

≥ cdkn(X)1/4mn
1/2
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Therefore, T2(`2(X)) ≥ cdkn(X)1/4. Since X is not isomorphic to `2, dkn(X)→∞

as n → ∞. This implies T2(`2(X)) = ∞, which is a contradiction. Hence, there is

a finite number of values N1, . . . , Nk for which (4.1) holds. So, we have that (4.2)

holds if we take N > max{N1, . . . , Nk}. Since (4.2) holds for all N large enough, by

Lemma IV.3 we get the desired result.

The proof of the main result of the thesis (Theorem IV.6) uses the same com-

binatorial result as Szankowski (see Lemma III.3 or III.5). We will use only one of

the partitions, namely ∇n, which basically satisfies the following property: for every

A ∈ ∇n, k = 1, . . . , 9, and every A0 ∈ ∇n−1, ∇n or ∇n+1, |A0 ∩ gk(A)| ≤ 1 (see (ii)

and (iv) of Lemma III.3 or III.5).

Theorem IV.6. Let X be an infinite dimensional Banach space which is not iso-

morphic to `2. Assume that X has cotype 2 and dn(X∗) ≥ α(log2 n)β for all n ≥ 1

and some absolute constants α > 0 and β > 4. Then, `2(X) has a subspace without

the C.A.P.

To put things into perspective, we should mention that an infinite dimensional Banach

space X which has type (2− ε) and cotype (2 + ε) for all ε > 0, satisfies the following

estimates for its sequences of Euclidean distances {dn(X)}n and {dn(X∗)}n:

dn(X) ≤ c(γ)nγ and dn(X∗) ≤ c(γ)nγ,

for all γ > 0 and n ≥ 1 (see [7]).

Proof. We can assume that X does not contain `n1 ’s uniformly, otherwise X itself

will have a subspace without the C.A.P. by Szankowski’s result. In such a case, X∗

is of type 2 since X has cotype 2 (see [7]).

Let m ≥ 2 be fixed and pick A0 ∈ ∇m. Then, by Corolloary IV.5 there exist a set
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of normalized, 1-unconditional vectors {e∗i }i∈A0 in `2(X∗) such that

∣∣∣∣∣
∣∣∣∣∣∑
i∈A0

e∗i

∣∣∣∣∣
∣∣∣∣∣
`2(X∗)

≤
√

2

c(log2 |A0|)γ
|A0|1/2

for some absolute constants c > 0 and γ > 1 (which do not depend on m or |A0|).

Take j ∈ A0 arbitrarily fixed and define ẽ∗∗j : span{e∗i }i∈A0 −→ R by ẽ∗∗j (e∗i ) = δij.

By 1-unconditionality we have that ||ake∗k|| ≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈A0

aie
∗
i

∣∣∣∣∣
∣∣∣∣∣ for every k ∈ A0 and scalars

{ai}i∈A0 . Thus,

||ẽ∗∗j || = sup

{∣∣∣∣∣ẽ∗∗j
(∑
i∈A0

aie
∗
i

)∣∣∣∣∣ :

∣∣∣∣∣
∣∣∣∣∣∑
j∈A0

aje
∗
j

∣∣∣∣∣
∣∣∣∣∣ = 1

}

= sup

{
|aj| :

∣∣∣∣∣
∣∣∣∣∣∑
j∈A0

aje
∗
j

∣∣∣∣∣
∣∣∣∣∣ = 1

}

= sup

{
||aje∗j || :

∣∣∣∣∣
∣∣∣∣∣∑
j∈A0

aje
∗
j

∣∣∣∣∣
∣∣∣∣∣ = 1

}

≤ 1

Since ẽ∗∗j (ej) = 1 we have that ||ẽ∗∗j || = 1.

So, by the Hahn-Banach theorem there is an e∗∗j ∈ (`2(X∗))∗ with e∗∗j (e∗i ) = δij and

||e∗∗j ||(`2(X∗))∗ = 1. Since (`2(X∗))∗ ∼= `2(X)∗∗ by the principle of local reflexivity (see

[10]) there exist elements {ej}j∈A0 ⊂ `2(X) satisfying 1
2
≤ ||ej|| ≤ 3

2
and e∗i (ej) = δij

for each i ∈ A0.

For everyA ∈ ∇m (m ≥ 2), letXA = span{ei}i∈A and set Y =

(
∞∑
m=2

∑
A∈∇m

⊕
XA

)
`2

.

Clearly, Y is a subspace of `2(X) since XA is a subspace of `2(X) and `2(`2(X)) ∼=

`2(X). Let i ∈ A and define fi = (0, . . . , 0, ei, 0, . . .), where ei ∈ XA. Then, the set

of vectors {fi}i≥4 is a basis for Y since {ei}i∈A is a basis for each corresponding XA
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(A ∈ ∇m, m ≥ 2). Therefore, any element of Y has the form
∑
tifi with norm

∣∣∣∣∣∣∑ tifi

∣∣∣∣∣∣
Y

=

 ∞∑
m=2

∑
A∈∇m

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

tifi

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

=

 ∞∑
m=2

∑
A∈∇m

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

tiei

∣∣∣∣∣
∣∣∣∣∣
2

`2(X)

1/2

.

We also notice that for each i ∈ A, e∗i ∈ `2(X)∗ since `2(X∗) ∼= `2(X)∗ and

thus e∗i

∣∣∣
XA
∈ X∗A with e∗i

∣∣∣
XA

(ej) = δij for every j ∈ A and

∣∣∣∣∣∣∣∣e∗i ∣∣∣
XA

∣∣∣∣∣∣∣∣ ≤ 1. Hence,{
e∗i

∣∣∣
XA

}
i∈A

is a basis for X∗A. So, by Proposition II.6

Y ∗ =

(
∞∑
m=2

∑
A∈∇m

⊕
X∗A

)
`2

with X∗A = span

{
e∗i

∣∣∣
XA

}
i∈A

.

Now define for A ∈ ∇m and i ∈ A, f ∗i =

(
0, . . . ,0, e∗i

∣∣∣
XA
,0, . . .

)
, where e∗i

∣∣∣
XA
∈ X∗A.

Thus, any element of Y ∗ is of the form
∞∑
m=2

∑
A∈∇m

∑
i∈A

tif
∗
i with norm

∣∣∣∣∣
∣∣∣∣∣
∞∑
m=2

∑
A∈∇m

∑
i∈A

tif
∗
i

∣∣∣∣∣
∣∣∣∣∣
Y ∗

=

 ∞∑
m=2

∑
A∈∇m

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

tie
∗
i

∣∣∣
XA

∣∣∣∣∣
∣∣∣∣∣
2

X∗
A

1/2

.

Moreover, if j ∈ A then f ∗i (fj) = e∗i

∣∣∣
XA

(ej) = δij. If j 6∈ A, then f ∗i (fj) = e∗i

∣∣∣
XA

(0) +

0(ej) = 0. Hence, f ∗i (fj) = δij for all i, j ≥ 4.

We are now ready to construct our subspace of `2(X). As in the proof of Theo-

rem III.4 define zi = f2i−f2i+1 +f4i+f4i+1 +f4i+2 +f4i+3 and Z = span{zi}∞i=2 which

is a closed subspace of Y . Define z∗i = 1
2
(f ∗2i − f ∗2i+1) and for T ∈ L(Z,Z) we put

βn(T ) = 2−n
∑
i∈σn

z∗i (Tzi) n = 1, 2, 3 . . . .

Using Proposition III.2 we will prove that Z does not have the C.A.P. Clearly (i) holds

and for (ii) take z ∈ Z, say z =
∑∞

j=4 λjfj, since Z is a closed subspace of Y . Then,
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z∗i (z) =
∑∞

j=4 λjz
∗
i (fj) = 1

2
(λ2i − λ2i+1). Since |λi| → 0 we have that z∗i

w∗−→ 0. So we

are left to show that (iii) and (iv) hold. We notice (f ∗4i + f ∗4i+1 + f ∗4i+2 + f ∗4i+3)(zi) = 4

and (f ∗4i + f ∗4i+1 + f ∗4i+2 + f ∗4i+3)(zj) = 0 when j 6= i. Therefore,

z∗i =
1

2
(f ∗2i − f ∗2i+1)|Z =

1

4
(f ∗4i + f ∗4i+1 + f ∗4i+2 + f ∗4i+3)|Z .

Hence, for n ≥ 2 and T ∈ L(Z,Z),

βn(T )− βn−1(T ) =

2−n−1
∑
i∈σn

(f ∗2i − f ∗2i+1)T (f2i − f2i+1 + f4i + · · ·+ f4i+3)

− 2−n−1
∑
i∈σn−1

(f ∗4i + · · ·+ f ∗4i+3)T (f2i − f2i+1 + f4i + · · ·+ f4i+3)

= 2−n−1
∑
i∈σn−1


(f ∗4i − f ∗4i+1)T (f4i − f4i+1 + f8i + · · ·+ f8i+3)

+(f ∗4i+2 − f ∗4i+3)T (f4i+2 − f4i+3 + f8i+4 + · · ·+ f8i+7)

− 2−n−1
∑
i∈σn−1

(f ∗4i + · · ·+ f ∗4i+3)T (f2i − f2i+1 + f4i + · · ·+ f4i+3)

= 2−n−1
∑
i∈σn−1



f ∗4iT (f4i − f4i+1 + f8i + · · ·+ f8i+3 − f2i + f2i+1 − f4i − · · · − f4i+3)

+f ∗4i+1T (−f4i + f4i+1 − f8i − · · · − f8i+3 − f2i + f2i+1 − f4i − · · · − f4i+3)

+f ∗4i+2T (f4i+2 − f4i+3 + f8i+4 + · · ·+ f8i+7 − f2i + f2i+1 − f4i − · · · − f4i+3)

+f ∗4i+3T (−f4i+2 + f4i+3 − f8i+4 − · · · − f8i+7 − f2i + f2i+1 − f4i − · · · − f4i+3)
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= 2−n−1
∑
i∈σn−1



f ∗4iT (−f2i + f2i+1 − 2f4i+1 − f4i+2 − f4i+3 + f8i + · · ·+ f8i+3)

+f ∗4i+1T (−f2i + f2i+1 − 2f4i − f4i+2 − f4i+3 − f8i − · · · − f8i+3)

+f ∗4i+2T (−f2i + f2i+1 − f4i − f4i+1 − 2f4i+3 + f8i+4 + · · ·+ f8i+7)

+f ∗4i+3T (−f2i + f2i+1 − f4i − f4i+1 − 2f4i+2 − f8i+4 − · · · − f8i+7)

= 2−n−1
∑

j∈σn+1

f ∗j (Tyj),

where
9∑

k=1

λj,kfgk(j) = yj ∈ Z j = 8, 9, 10, . . . ,

and for every j, |λj,k| = 1 for eight indices k and |λj,k| = 2 for the ninth k.

We note that for every A ∈ ∇n+1 we can write

∑
j∈A

f ∗j Tyj = 2−|A|
∑
θ

[(∑
j∈A

θjf
∗
j

)
T

(∑
j∈A

θjyj

)]
,

where
∑
θ

is the summation taken over all possible signs {θj}j∈A. Hence, we have

that

βn(T )− βn−1(T ) = 2−n−1
∑

A∈∇n+1

∑
j∈A

f ∗j Tyj

= 2−n−1
∑

A∈∇n+1

2−|A|
∑
θ

[(∑
j∈A

θjf
∗
j

)
T

(∑
j∈A

θjyj

)]
.

For every A ∈ ∇n+1 (n ≥ 2) and signs {θj}j∈A we have that

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjf
∗
j

∣∣∣∣∣
∣∣∣∣∣
Z∗

≤

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjf
∗
j

∣∣∣∣∣
∣∣∣∣∣
Y ∗

=

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θje
∗
j

∣∣∣
XA

∣∣∣∣∣
∣∣∣∣∣
X∗
A

34



=

∣∣∣∣∣
∣∣∣∣∣
(∑
j∈A

θje
∗
j

)∣∣∣∣∣
XA

∣∣∣∣∣
∣∣∣∣∣
X∗
A

≤

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

θie
∗
i

∣∣∣∣∣
∣∣∣∣∣
`2(X∗)

=

∣∣∣∣∣
∣∣∣∣∣∑
i∈A

e∗i

∣∣∣∣∣
∣∣∣∣∣
`2(X∗)

≤
√

2

c(log2 |A|)γ
|A|1/2

≤
√

2

c(n+1
8
− 2)γ

(2mn+1)1/2

since 2mn+1 ≥ |A| ≥ mn+1 ≥ 2n+1/8−2.

Let En =

{∑
j∈A

θjyj : A ∈ ∇n+1, θj = ±1

}
. Then,

|βn(T )− βn−1(T )| ≤ 2−n−1
∑

A∈∇n+1

√
2

c(n+1
8
− 2)γ

(2mn+1)1/2 sup{||Tz|| : z ∈ En}

≤ 2−n−1(2n+1m−1
n+1)

√
2

c(n+1
8
− 2)γ

(2mn+1)1/2 sup{||Tz|| : z ∈ En}

=
1

c(n+1
8
− 2)γ

2m
−1/2
n+1 sup{||Tz|| : z ∈ En}.

If we put Fn = 1
c(n+1

8
−2)γ

2m
−1/2
n+1 En, we see that (iii) holds. So, we are left to

show that (iv) holds. Let A ∈ ∇n+1 (n ≥ 2) and {θj}j∈A and every 1 ≤ k ≤ 9.

Define a sequence {αgk(j)}j∈A by αgk(j) = θj and note that it is well-defined by (iii) of

Lemma III.5. Using the fact that gk(A) ⊂ σm, where m = n, n+ 1, or n+ 2 (see the

statement preceding Lemma III.3), we have

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjfgk(j)

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j∈gk(A)

αjfj

∣∣∣∣∣∣
∣∣∣∣∣∣
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=

 ∑
A0∈∇m

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

j∈A0∩gk(A)

αjej

∣∣∣∣∣∣
∣∣∣∣∣∣
21/2

=

 ∑
j∈gk(A)

||αjej||2
1/2

=

 ∑
j∈gk(A)

|αj|2
1/2

=

(∑
j∈A

|θj|2
)1/2

= |A|1/2

≤ (2mn+1)1/2

and hence

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjyj

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

9∑
k=1

λj,k
∑
j∈A

θjfgk(j)

∣∣∣∣∣
∣∣∣∣∣

≤
9∑

k=1

|λj,k|

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

θjfgk(j)

∣∣∣∣∣
∣∣∣∣∣

≤ (8 + 2)(2mn+1)1/2

≤ 15m
1/2
n+1.

Finally, for every A ∈ ∇n+1 we get that

sup{||x|| : x ∈ Fn} ≤
1

c(n+1
8
− 2)γ

2m
−1/2
n+1 15m

1/2
n+1

=
30

c(n+1
8
− 2)γ

.
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Since
∑

30
c(n+1

8
−2)γ

<∞, we obtain (iv).
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CHAPTER V

An Example

Based on Theorem IV.6, the goal of this chapter is to describe a specific infinite

dimensional Banach space X for which `2(X) has a subspace without the C.A.P . For

the Banach space X, which will be exhibited in Example V.1, we will not be able to

verify that it satisfies the statement of Theorem IV.6 since it is difficult to compute

the sequence of Euclidean distances {dn(X∗)}n and, in turn, to show that they are

greater than {c(log2 n)β}n for some absolute constants c > 0 and β > 4. Instead, we

will direct our attention to finding, for each n, a set of normalized 1-unconditional

vectors {u1, . . . , un} ⊂ `2(X∗) satisfying

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

c(log2 n)γ
n1/2

for some absolute constants c > 0 and γ > 1, since it will allow us to use the arguments

of Theorem IV.6.

We will model our example X after the Banach space constructed by Johnson in

[5] , which has the property that all its subspaces have the approximation property;

X will be of the form X = (
∑

n≥1

⊕
`knqn )`2 with {kn}n a fast increasing sequence

converging to infinity and {qn}n a sequence converging quickly to 2. While we are

not able to show that `2(X) admits a subspace without the C.A.P. for Johnson’s

space X, our example is not far from it. We will comment more on this point at the
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end of this chapter.

Example V.1. We will construct our space X = (
∑

n≥1

⊕
`knqn )`2 so that we have

X∗ = (
∑

n≥1

⊕
`knpn)`2 , where we choose {pn}n and {kn}n in the following way: we

first pick absolute constants β > 2 and γ > 1 and then we proceed by taking p1 = 3

and picking k1, p2, k2, . . . , pn, kn, . . . , in this order such that

k
| 1
pn
− 1

2
|

n = 2h(n),

where h(n) → ∞ as n → ∞ satisfies h(n) ≥ 1 and

(
βh(n)2

| 1
pn
− 1

2
|

)γ
≤ 2h(n) (basically pn

determines h(n) which in turn determines kn). Then choose pn+1 such that

m(kn)

∣∣∣ 1
pn+1

− 1
2

∣∣∣
= 2,

where m(kn) = kβn. We notice that kn ↗∞ and pn ↘ 2. Indeed, by our construction

k
1

h(n) | 1
pn
− 1

2 |
n = k

β
∣∣∣ 1
pn+1

− 1
2

∣∣∣
n = 2,

1

h(n)

∣∣∣∣ 1

pn
− 1

2

∣∣∣∣ = β

∣∣∣∣ 1

pn+1

− 1

2

∣∣∣∣ ,∣∣∣ 1
pn+1
− 1

2

∣∣∣∣∣∣ 1
pn
− 1

2

∣∣∣ =
1

βh(n)
.

Since 1
βh(n)

< 1
2

for all n we have,

∣∣∣∣ 1

pn+1

− 1

2

∣∣∣∣ < 1

2

∣∣∣∣ 1

pn
− 1

2

∣∣∣∣ < · · · < 1

2n

∣∣∣∣ 1

p1

− 1

2

∣∣∣∣ .
Thus, pn ↘ 2 and as a consequence kn ↗∞.

Given s, let α(s) be the smallest constant α for which we can find 1-unconditional
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normalized vectors {u1, . . . , us} ⊂ `2(X∗) satisfying

∣∣∣∣∣
∣∣∣∣∣
s∑
j=1

uj

∣∣∣∣∣
∣∣∣∣∣ ≤ α · s1/2.

In order to use the arguments of Theorem IV.6 and conclude that `2(X) has a subspace

without the C.A.P., we are left to show that for each s ≥ 1, α(s) ≤ 1
c(log2 s)

γ for some

absolute constant c > 0.

Let s be arbitrary and find n such that kn < s ≤ kn+1 where for convenience we

denote k0 = 0. For j ∈ {1, 2, . . . , s}, let yj = ej where {ej}kn+1

j=1 ⊂ `kn+1
pn+1

forms the unit

vector basis. Clearly, {y1, y2, . . . , ys} are 1-unconditional normalized vectors. Also,

∣∣∣∣∣
∣∣∣∣∣
s∑

y=1

yj

∣∣∣∣∣
∣∣∣∣∣ = s

1
pn+1

= s
1

pn+1
− 1

2 · s
1
2

= s
−

∣∣∣ 1
pn+1

− 1
2

∣∣∣ · s 1
2

Thus, α(s) ≤ s
−

∣∣∣ 1
pn+1

− 1
2

∣∣∣
.

Without loss of generality, suppose next that s is divisible by kn. Then, there is

a positive integer l such that s = lkn. We will define {xi}si=1 ⊂ `2(`knpn) ⊂ `2(X∗)

in the following way. First, for i ∈ {1, 2, . . . , kn} we define xi = (ei, 0, 0, . . .),

where {ei}kni=1 is the unit vector basis in `knpn . Next, for i ∈ {kn + 1, . . . , 2kn} we

define xi = (0, ei−kn , 0, . . .). Then, continuing in this way we can define xi for

i ∈ {(m − 1)kn + 1, . . . ,mkn} with m = 3, 4, . . . , l. Namely, we define xi by xi =

(0, 0, . . . , ei−(m−1)kn , 0, . . .), where ei−(m−1)kn is in the mth entry. Then, {xi}si=1 ⊂

`2(`knpn) are 1-unconditional normalized vectors and

∣∣∣∣∣
∣∣∣∣∣
s∑
j=1

xj

∣∣∣∣∣
∣∣∣∣∣
`2(`knpn )

=
∣∣∣∣(x1 + · · ·+ xkn) + (xkn+1 + · · ·+ x2kn) + · · ·+ (x(l−1)kn+1 + · · ·+ xlkn)

∣∣∣∣
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=

(
k

1
pn
·2

n + k
1
pn
·2

n + · · ·+ k
1
pn
·2

n

)1/2

= (k
2
pn
n · l)1/2

= k
1
pn
n · l1/2

= k
1
pn
− 1

2
n (k1/2 · l1/2)

= k
−| 1

pn
− 1

2
|

n · s1/2

Thus, α(s) ≤ k
−| 1

pn
− 1

2
|

n .

We now have that α(s) ≤ min{s−|
1

pn+1
− 1

2
|
, k
−| 1

pn
− 1

2
|

n }, whenever kn < s ≤ kn+1, and

we will finish the example by showing that the min{s−|
1

pn+1
− 1

2
|
, k
−| 1

pn
− 1

2
|

n } ≤ 1
(log2 s)

γ .

Let kn < s ≤ kn+1. We first notice that the intersection of the portion of the

graph s
−| 1

pn+1
− 1

2
|

and the constant function k
−| 1

pn
− 1

2
|

n is when s = m(kn)h(n) = k
βh(n)
n ,

which we will denote as k̃n. Indeed, k
−| 1

pn
− 1

2
|

n = 2−h(n) =
(
m(kn)h(n)

)−| 1
pn+1

− 1
2
|
. Now,

for kn < s ≤ kn+1 we can graph min{s−|
1

pn+1
− 1

2
|
, k
−| 1

pn
− 1

2
|

n } as a function of s, where

its graph will be the constant function k
−| 1

pn
− 1

2
|

n on the interval (kn, k̃n] and s
−| 1

pn+1
− 1

2
|

on the interval (k̃n, kn+1]. By our construction, we have that h(n)

| 1
pn
− 1

2
| = log2 kn and

2h(n) = k
βh(n)| 1

pn+1
− 1

2
|

n . Since

(
βh(n)2

| 1
pn
− 1

2
|

)γ
≤ 2h(n) we get that

(log2 k
βh(n)
n )γ ≤ k

βh(n)| 1
pn+1

− 1
2
|

n ,

which implies

α(k̃n) =
1

k̃
| 1
pn+1

− 1
2
|

n

≤ 1

(log2 k̃n)γ
.

Hence, for s ∈ (kn, k̃n], we have k
−| 1

pn
− 1

2
|

n ≤ 1
(log2 s)

γ since the latter function is de-

creasing and the former(constant) function is equal to k̃
−| 1

pn+1
− 1

2
|

n . Let s ∈ (k̃n, kn+1]

and write s = k̃jn for some j > 1. Then, using the fact that j(log2 k̃n) < (log2 k̃n)j we
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have that

1

s
| 1
pn+1

− 1
2
|

=
1

k̃
j| 1
pn+1

− 1
2
|

n

=

(
1

k̃
| 1
pn+1

− 1
2
|

n

)j

<

(
1

log2 k̃n

)jγ

<

(
1

j log2 k̃n

)γ

<
1

(log2 s)
γ
.

Therefore we obtain α(s) ≤ min{s−|
1

pn+1
− 1

2
|
, k
−| 1

pn
− 1

2
|

n } ≤ 1
(log2 s)

γ .

Remark. If s is not divisible by kn in the above example, then we will have

α(s) ≤ min{
√

2s
−

∣∣∣ 1
pn+1

− 1
2

∣∣∣
,
√

2k
−| 1

pn
− 1

2
|

n } ≤ 1

c(log2 s)
γ
,

but with an absolute constant c = 1√
2
.

Remark. Johnson’s space was constructed with m(kn) = 55kn . In this case, by an

argument similar to the previous discussion, we get

α(s) ≤ 1

(log5(log5(log5 s)))
γ
.

The only difference is that now k̃n = m(kn)h(n) is larger than before, namely k̃n =

(55kn )h(n), which forces

α(k̃n) ≤ 1

(log5(log5(log5 k̃n)))γ
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for a suitable choice of h(n). Subsequently,

α(s) ≤ 1

(log5(log5(log5 s)))
γ
.

Therefore, in order to obtain that `2(X) has a subspace without the C.A.P. for

Johnson’s space X, we would need to prove a similar statement as in Theorem IV.6

but involving more iterates of log.
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